1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/xdr.c 4 * 5 * Generic XDR support. 6 * 7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/string.h> 14 #include <linux/kernel.h> 15 #include <linux/pagemap.h> 16 #include <linux/errno.h> 17 #include <linux/sunrpc/xdr.h> 18 #include <linux/sunrpc/msg_prot.h> 19 #include <linux/bvec.h> 20 #include <trace/events/sunrpc.h> 21 22 static void _copy_to_pages(struct page **, size_t, const char *, size_t); 23 24 25 /* 26 * XDR functions for basic NFS types 27 */ 28 __be32 * 29 xdr_encode_netobj(__be32 *p, const struct xdr_netobj *obj) 30 { 31 unsigned int quadlen = XDR_QUADLEN(obj->len); 32 33 p[quadlen] = 0; /* zero trailing bytes */ 34 *p++ = cpu_to_be32(obj->len); 35 memcpy(p, obj->data, obj->len); 36 return p + XDR_QUADLEN(obj->len); 37 } 38 EXPORT_SYMBOL_GPL(xdr_encode_netobj); 39 40 __be32 * 41 xdr_decode_netobj(__be32 *p, struct xdr_netobj *obj) 42 { 43 unsigned int len; 44 45 if ((len = be32_to_cpu(*p++)) > XDR_MAX_NETOBJ) 46 return NULL; 47 obj->len = len; 48 obj->data = (u8 *) p; 49 return p + XDR_QUADLEN(len); 50 } 51 EXPORT_SYMBOL_GPL(xdr_decode_netobj); 52 53 /** 54 * xdr_encode_opaque_fixed - Encode fixed length opaque data 55 * @p: pointer to current position in XDR buffer. 56 * @ptr: pointer to data to encode (or NULL) 57 * @nbytes: size of data. 58 * 59 * Copy the array of data of length nbytes at ptr to the XDR buffer 60 * at position p, then align to the next 32-bit boundary by padding 61 * with zero bytes (see RFC1832). 62 * Note: if ptr is NULL, only the padding is performed. 63 * 64 * Returns the updated current XDR buffer position 65 * 66 */ 67 __be32 *xdr_encode_opaque_fixed(__be32 *p, const void *ptr, unsigned int nbytes) 68 { 69 if (likely(nbytes != 0)) { 70 unsigned int quadlen = XDR_QUADLEN(nbytes); 71 unsigned int padding = (quadlen << 2) - nbytes; 72 73 if (ptr != NULL) 74 memcpy(p, ptr, nbytes); 75 if (padding != 0) 76 memset((char *)p + nbytes, 0, padding); 77 p += quadlen; 78 } 79 return p; 80 } 81 EXPORT_SYMBOL_GPL(xdr_encode_opaque_fixed); 82 83 /** 84 * xdr_encode_opaque - Encode variable length opaque data 85 * @p: pointer to current position in XDR buffer. 86 * @ptr: pointer to data to encode (or NULL) 87 * @nbytes: size of data. 88 * 89 * Returns the updated current XDR buffer position 90 */ 91 __be32 *xdr_encode_opaque(__be32 *p, const void *ptr, unsigned int nbytes) 92 { 93 *p++ = cpu_to_be32(nbytes); 94 return xdr_encode_opaque_fixed(p, ptr, nbytes); 95 } 96 EXPORT_SYMBOL_GPL(xdr_encode_opaque); 97 98 __be32 * 99 xdr_encode_string(__be32 *p, const char *string) 100 { 101 return xdr_encode_array(p, string, strlen(string)); 102 } 103 EXPORT_SYMBOL_GPL(xdr_encode_string); 104 105 __be32 * 106 xdr_decode_string_inplace(__be32 *p, char **sp, 107 unsigned int *lenp, unsigned int maxlen) 108 { 109 u32 len; 110 111 len = be32_to_cpu(*p++); 112 if (len > maxlen) 113 return NULL; 114 *lenp = len; 115 *sp = (char *) p; 116 return p + XDR_QUADLEN(len); 117 } 118 EXPORT_SYMBOL_GPL(xdr_decode_string_inplace); 119 120 /** 121 * xdr_terminate_string - '\0'-terminate a string residing in an xdr_buf 122 * @buf: XDR buffer where string resides 123 * @len: length of string, in bytes 124 * 125 */ 126 void xdr_terminate_string(const struct xdr_buf *buf, const u32 len) 127 { 128 char *kaddr; 129 130 kaddr = kmap_atomic(buf->pages[0]); 131 kaddr[buf->page_base + len] = '\0'; 132 kunmap_atomic(kaddr); 133 } 134 EXPORT_SYMBOL_GPL(xdr_terminate_string); 135 136 size_t xdr_buf_pagecount(const struct xdr_buf *buf) 137 { 138 if (!buf->page_len) 139 return 0; 140 return (buf->page_base + buf->page_len + PAGE_SIZE - 1) >> PAGE_SHIFT; 141 } 142 143 int 144 xdr_alloc_bvec(struct xdr_buf *buf, gfp_t gfp) 145 { 146 size_t i, n = xdr_buf_pagecount(buf); 147 148 if (n != 0 && buf->bvec == NULL) { 149 buf->bvec = kmalloc_array(n, sizeof(buf->bvec[0]), gfp); 150 if (!buf->bvec) 151 return -ENOMEM; 152 for (i = 0; i < n; i++) { 153 bvec_set_page(&buf->bvec[i], buf->pages[i], PAGE_SIZE, 154 0); 155 } 156 } 157 return 0; 158 } 159 160 void 161 xdr_free_bvec(struct xdr_buf *buf) 162 { 163 kfree(buf->bvec); 164 buf->bvec = NULL; 165 } 166 167 /** 168 * xdr_buf_to_bvec - Copy components of an xdr_buf into a bio_vec array 169 * @bvec: bio_vec array to populate 170 * @bvec_size: element count of @bio_vec 171 * @xdr: xdr_buf to be copied 172 * 173 * Returns the number of entries consumed in @bvec. 174 */ 175 unsigned int xdr_buf_to_bvec(struct bio_vec *bvec, unsigned int bvec_size, 176 const struct xdr_buf *xdr) 177 { 178 const struct kvec *head = xdr->head; 179 const struct kvec *tail = xdr->tail; 180 unsigned int count = 0; 181 182 if (head->iov_len) { 183 bvec_set_virt(bvec++, head->iov_base, head->iov_len); 184 ++count; 185 } 186 187 if (xdr->page_len) { 188 unsigned int offset, len, remaining; 189 struct page **pages = xdr->pages; 190 191 offset = offset_in_page(xdr->page_base); 192 remaining = xdr->page_len; 193 while (remaining > 0) { 194 len = min_t(unsigned int, remaining, 195 PAGE_SIZE - offset); 196 bvec_set_page(bvec++, *pages++, len, offset); 197 remaining -= len; 198 offset = 0; 199 if (unlikely(++count > bvec_size)) 200 goto bvec_overflow; 201 } 202 } 203 204 if (tail->iov_len) { 205 bvec_set_virt(bvec, tail->iov_base, tail->iov_len); 206 if (unlikely(++count > bvec_size)) 207 goto bvec_overflow; 208 } 209 210 return count; 211 212 bvec_overflow: 213 pr_warn_once("%s: bio_vec array overflow\n", __func__); 214 return count - 1; 215 } 216 217 /** 218 * xdr_inline_pages - Prepare receive buffer for a large reply 219 * @xdr: xdr_buf into which reply will be placed 220 * @offset: expected offset where data payload will start, in bytes 221 * @pages: vector of struct page pointers 222 * @base: offset in first page where receive should start, in bytes 223 * @len: expected size of the upper layer data payload, in bytes 224 * 225 */ 226 void 227 xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset, 228 struct page **pages, unsigned int base, unsigned int len) 229 { 230 struct kvec *head = xdr->head; 231 struct kvec *tail = xdr->tail; 232 char *buf = (char *)head->iov_base; 233 unsigned int buflen = head->iov_len; 234 235 head->iov_len = offset; 236 237 xdr->pages = pages; 238 xdr->page_base = base; 239 xdr->page_len = len; 240 241 tail->iov_base = buf + offset; 242 tail->iov_len = buflen - offset; 243 xdr->buflen += len; 244 } 245 EXPORT_SYMBOL_GPL(xdr_inline_pages); 246 247 /* 248 * Helper routines for doing 'memmove' like operations on a struct xdr_buf 249 */ 250 251 /** 252 * _shift_data_left_pages 253 * @pages: vector of pages containing both the source and dest memory area. 254 * @pgto_base: page vector address of destination 255 * @pgfrom_base: page vector address of source 256 * @len: number of bytes to copy 257 * 258 * Note: the addresses pgto_base and pgfrom_base are both calculated in 259 * the same way: 260 * if a memory area starts at byte 'base' in page 'pages[i]', 261 * then its address is given as (i << PAGE_CACHE_SHIFT) + base 262 * Alse note: pgto_base must be < pgfrom_base, but the memory areas 263 * they point to may overlap. 264 */ 265 static void 266 _shift_data_left_pages(struct page **pages, size_t pgto_base, 267 size_t pgfrom_base, size_t len) 268 { 269 struct page **pgfrom, **pgto; 270 char *vfrom, *vto; 271 size_t copy; 272 273 BUG_ON(pgfrom_base <= pgto_base); 274 275 if (!len) 276 return; 277 278 pgto = pages + (pgto_base >> PAGE_SHIFT); 279 pgfrom = pages + (pgfrom_base >> PAGE_SHIFT); 280 281 pgto_base &= ~PAGE_MASK; 282 pgfrom_base &= ~PAGE_MASK; 283 284 do { 285 if (pgto_base >= PAGE_SIZE) { 286 pgto_base = 0; 287 pgto++; 288 } 289 if (pgfrom_base >= PAGE_SIZE){ 290 pgfrom_base = 0; 291 pgfrom++; 292 } 293 294 copy = len; 295 if (copy > (PAGE_SIZE - pgto_base)) 296 copy = PAGE_SIZE - pgto_base; 297 if (copy > (PAGE_SIZE - pgfrom_base)) 298 copy = PAGE_SIZE - pgfrom_base; 299 300 vto = kmap_atomic(*pgto); 301 if (*pgto != *pgfrom) { 302 vfrom = kmap_atomic(*pgfrom); 303 memcpy(vto + pgto_base, vfrom + pgfrom_base, copy); 304 kunmap_atomic(vfrom); 305 } else 306 memmove(vto + pgto_base, vto + pgfrom_base, copy); 307 flush_dcache_page(*pgto); 308 kunmap_atomic(vto); 309 310 pgto_base += copy; 311 pgfrom_base += copy; 312 313 } while ((len -= copy) != 0); 314 } 315 316 /** 317 * _shift_data_right_pages 318 * @pages: vector of pages containing both the source and dest memory area. 319 * @pgto_base: page vector address of destination 320 * @pgfrom_base: page vector address of source 321 * @len: number of bytes to copy 322 * 323 * Note: the addresses pgto_base and pgfrom_base are both calculated in 324 * the same way: 325 * if a memory area starts at byte 'base' in page 'pages[i]', 326 * then its address is given as (i << PAGE_SHIFT) + base 327 * Also note: pgfrom_base must be < pgto_base, but the memory areas 328 * they point to may overlap. 329 */ 330 static void 331 _shift_data_right_pages(struct page **pages, size_t pgto_base, 332 size_t pgfrom_base, size_t len) 333 { 334 struct page **pgfrom, **pgto; 335 char *vfrom, *vto; 336 size_t copy; 337 338 BUG_ON(pgto_base <= pgfrom_base); 339 340 if (!len) 341 return; 342 343 pgto_base += len; 344 pgfrom_base += len; 345 346 pgto = pages + (pgto_base >> PAGE_SHIFT); 347 pgfrom = pages + (pgfrom_base >> PAGE_SHIFT); 348 349 pgto_base &= ~PAGE_MASK; 350 pgfrom_base &= ~PAGE_MASK; 351 352 do { 353 /* Are any pointers crossing a page boundary? */ 354 if (pgto_base == 0) { 355 pgto_base = PAGE_SIZE; 356 pgto--; 357 } 358 if (pgfrom_base == 0) { 359 pgfrom_base = PAGE_SIZE; 360 pgfrom--; 361 } 362 363 copy = len; 364 if (copy > pgto_base) 365 copy = pgto_base; 366 if (copy > pgfrom_base) 367 copy = pgfrom_base; 368 pgto_base -= copy; 369 pgfrom_base -= copy; 370 371 vto = kmap_atomic(*pgto); 372 if (*pgto != *pgfrom) { 373 vfrom = kmap_atomic(*pgfrom); 374 memcpy(vto + pgto_base, vfrom + pgfrom_base, copy); 375 kunmap_atomic(vfrom); 376 } else 377 memmove(vto + pgto_base, vto + pgfrom_base, copy); 378 flush_dcache_page(*pgto); 379 kunmap_atomic(vto); 380 381 } while ((len -= copy) != 0); 382 } 383 384 /** 385 * _copy_to_pages 386 * @pages: array of pages 387 * @pgbase: page vector address of destination 388 * @p: pointer to source data 389 * @len: length 390 * 391 * Copies data from an arbitrary memory location into an array of pages 392 * The copy is assumed to be non-overlapping. 393 */ 394 static void 395 _copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len) 396 { 397 struct page **pgto; 398 char *vto; 399 size_t copy; 400 401 if (!len) 402 return; 403 404 pgto = pages + (pgbase >> PAGE_SHIFT); 405 pgbase &= ~PAGE_MASK; 406 407 for (;;) { 408 copy = PAGE_SIZE - pgbase; 409 if (copy > len) 410 copy = len; 411 412 vto = kmap_atomic(*pgto); 413 memcpy(vto + pgbase, p, copy); 414 kunmap_atomic(vto); 415 416 len -= copy; 417 if (len == 0) 418 break; 419 420 pgbase += copy; 421 if (pgbase == PAGE_SIZE) { 422 flush_dcache_page(*pgto); 423 pgbase = 0; 424 pgto++; 425 } 426 p += copy; 427 } 428 flush_dcache_page(*pgto); 429 } 430 431 /** 432 * _copy_from_pages 433 * @p: pointer to destination 434 * @pages: array of pages 435 * @pgbase: offset of source data 436 * @len: length 437 * 438 * Copies data into an arbitrary memory location from an array of pages 439 * The copy is assumed to be non-overlapping. 440 */ 441 void 442 _copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len) 443 { 444 struct page **pgfrom; 445 char *vfrom; 446 size_t copy; 447 448 if (!len) 449 return; 450 451 pgfrom = pages + (pgbase >> PAGE_SHIFT); 452 pgbase &= ~PAGE_MASK; 453 454 do { 455 copy = PAGE_SIZE - pgbase; 456 if (copy > len) 457 copy = len; 458 459 vfrom = kmap_atomic(*pgfrom); 460 memcpy(p, vfrom + pgbase, copy); 461 kunmap_atomic(vfrom); 462 463 pgbase += copy; 464 if (pgbase == PAGE_SIZE) { 465 pgbase = 0; 466 pgfrom++; 467 } 468 p += copy; 469 470 } while ((len -= copy) != 0); 471 } 472 EXPORT_SYMBOL_GPL(_copy_from_pages); 473 474 static void xdr_buf_iov_zero(const struct kvec *iov, unsigned int base, 475 unsigned int len) 476 { 477 if (base >= iov->iov_len) 478 return; 479 if (len > iov->iov_len - base) 480 len = iov->iov_len - base; 481 memset(iov->iov_base + base, 0, len); 482 } 483 484 /** 485 * xdr_buf_pages_zero 486 * @buf: xdr_buf 487 * @pgbase: beginning offset 488 * @len: length 489 */ 490 static void xdr_buf_pages_zero(const struct xdr_buf *buf, unsigned int pgbase, 491 unsigned int len) 492 { 493 struct page **pages = buf->pages; 494 struct page **page; 495 char *vpage; 496 unsigned int zero; 497 498 if (!len) 499 return; 500 if (pgbase >= buf->page_len) { 501 xdr_buf_iov_zero(buf->tail, pgbase - buf->page_len, len); 502 return; 503 } 504 if (pgbase + len > buf->page_len) { 505 xdr_buf_iov_zero(buf->tail, 0, pgbase + len - buf->page_len); 506 len = buf->page_len - pgbase; 507 } 508 509 pgbase += buf->page_base; 510 511 page = pages + (pgbase >> PAGE_SHIFT); 512 pgbase &= ~PAGE_MASK; 513 514 do { 515 zero = PAGE_SIZE - pgbase; 516 if (zero > len) 517 zero = len; 518 519 vpage = kmap_atomic(*page); 520 memset(vpage + pgbase, 0, zero); 521 kunmap_atomic(vpage); 522 523 flush_dcache_page(*page); 524 pgbase = 0; 525 page++; 526 527 } while ((len -= zero) != 0); 528 } 529 530 static unsigned int xdr_buf_pages_fill_sparse(const struct xdr_buf *buf, 531 unsigned int buflen, gfp_t gfp) 532 { 533 unsigned int i, npages, pagelen; 534 535 if (!(buf->flags & XDRBUF_SPARSE_PAGES)) 536 return buflen; 537 if (buflen <= buf->head->iov_len) 538 return buflen; 539 pagelen = buflen - buf->head->iov_len; 540 if (pagelen > buf->page_len) 541 pagelen = buf->page_len; 542 npages = (pagelen + buf->page_base + PAGE_SIZE - 1) >> PAGE_SHIFT; 543 for (i = 0; i < npages; i++) { 544 if (!buf->pages[i]) 545 continue; 546 buf->pages[i] = alloc_page(gfp); 547 if (likely(buf->pages[i])) 548 continue; 549 buflen -= pagelen; 550 pagelen = i << PAGE_SHIFT; 551 if (pagelen > buf->page_base) 552 buflen += pagelen - buf->page_base; 553 break; 554 } 555 return buflen; 556 } 557 558 static void xdr_buf_try_expand(struct xdr_buf *buf, unsigned int len) 559 { 560 struct kvec *head = buf->head; 561 struct kvec *tail = buf->tail; 562 unsigned int sum = head->iov_len + buf->page_len + tail->iov_len; 563 unsigned int free_space, newlen; 564 565 if (sum > buf->len) { 566 free_space = min_t(unsigned int, sum - buf->len, len); 567 newlen = xdr_buf_pages_fill_sparse(buf, buf->len + free_space, 568 GFP_KERNEL); 569 free_space = newlen - buf->len; 570 buf->len = newlen; 571 len -= free_space; 572 if (!len) 573 return; 574 } 575 576 if (buf->buflen > sum) { 577 /* Expand the tail buffer */ 578 free_space = min_t(unsigned int, buf->buflen - sum, len); 579 tail->iov_len += free_space; 580 buf->len += free_space; 581 } 582 } 583 584 static void xdr_buf_tail_copy_right(const struct xdr_buf *buf, 585 unsigned int base, unsigned int len, 586 unsigned int shift) 587 { 588 const struct kvec *tail = buf->tail; 589 unsigned int to = base + shift; 590 591 if (to >= tail->iov_len) 592 return; 593 if (len + to > tail->iov_len) 594 len = tail->iov_len - to; 595 memmove(tail->iov_base + to, tail->iov_base + base, len); 596 } 597 598 static void xdr_buf_pages_copy_right(const struct xdr_buf *buf, 599 unsigned int base, unsigned int len, 600 unsigned int shift) 601 { 602 const struct kvec *tail = buf->tail; 603 unsigned int to = base + shift; 604 unsigned int pglen = 0; 605 unsigned int talen = 0, tato = 0; 606 607 if (base >= buf->page_len) 608 return; 609 if (len > buf->page_len - base) 610 len = buf->page_len - base; 611 if (to >= buf->page_len) { 612 tato = to - buf->page_len; 613 if (tail->iov_len >= len + tato) 614 talen = len; 615 else if (tail->iov_len > tato) 616 talen = tail->iov_len - tato; 617 } else if (len + to >= buf->page_len) { 618 pglen = buf->page_len - to; 619 talen = len - pglen; 620 if (talen > tail->iov_len) 621 talen = tail->iov_len; 622 } else 623 pglen = len; 624 625 _copy_from_pages(tail->iov_base + tato, buf->pages, 626 buf->page_base + base + pglen, talen); 627 _shift_data_right_pages(buf->pages, buf->page_base + to, 628 buf->page_base + base, pglen); 629 } 630 631 static void xdr_buf_head_copy_right(const struct xdr_buf *buf, 632 unsigned int base, unsigned int len, 633 unsigned int shift) 634 { 635 const struct kvec *head = buf->head; 636 const struct kvec *tail = buf->tail; 637 unsigned int to = base + shift; 638 unsigned int pglen = 0, pgto = 0; 639 unsigned int talen = 0, tato = 0; 640 641 if (base >= head->iov_len) 642 return; 643 if (len > head->iov_len - base) 644 len = head->iov_len - base; 645 if (to >= buf->page_len + head->iov_len) { 646 tato = to - buf->page_len - head->iov_len; 647 talen = len; 648 } else if (to >= head->iov_len) { 649 pgto = to - head->iov_len; 650 pglen = len; 651 if (pgto + pglen > buf->page_len) { 652 talen = pgto + pglen - buf->page_len; 653 pglen -= talen; 654 } 655 } else { 656 pglen = len - to; 657 if (pglen > buf->page_len) { 658 talen = pglen - buf->page_len; 659 pglen = buf->page_len; 660 } 661 } 662 663 len -= talen; 664 base += len; 665 if (talen + tato > tail->iov_len) 666 talen = tail->iov_len > tato ? tail->iov_len - tato : 0; 667 memcpy(tail->iov_base + tato, head->iov_base + base, talen); 668 669 len -= pglen; 670 base -= pglen; 671 _copy_to_pages(buf->pages, buf->page_base + pgto, head->iov_base + base, 672 pglen); 673 674 base -= len; 675 memmove(head->iov_base + to, head->iov_base + base, len); 676 } 677 678 static void xdr_buf_tail_shift_right(const struct xdr_buf *buf, 679 unsigned int base, unsigned int len, 680 unsigned int shift) 681 { 682 const struct kvec *tail = buf->tail; 683 684 if (base >= tail->iov_len || !shift || !len) 685 return; 686 xdr_buf_tail_copy_right(buf, base, len, shift); 687 } 688 689 static void xdr_buf_pages_shift_right(const struct xdr_buf *buf, 690 unsigned int base, unsigned int len, 691 unsigned int shift) 692 { 693 if (!shift || !len) 694 return; 695 if (base >= buf->page_len) { 696 xdr_buf_tail_shift_right(buf, base - buf->page_len, len, shift); 697 return; 698 } 699 if (base + len > buf->page_len) 700 xdr_buf_tail_shift_right(buf, 0, base + len - buf->page_len, 701 shift); 702 xdr_buf_pages_copy_right(buf, base, len, shift); 703 } 704 705 static void xdr_buf_head_shift_right(const struct xdr_buf *buf, 706 unsigned int base, unsigned int len, 707 unsigned int shift) 708 { 709 const struct kvec *head = buf->head; 710 711 if (!shift) 712 return; 713 if (base >= head->iov_len) { 714 xdr_buf_pages_shift_right(buf, head->iov_len - base, len, 715 shift); 716 return; 717 } 718 if (base + len > head->iov_len) 719 xdr_buf_pages_shift_right(buf, 0, base + len - head->iov_len, 720 shift); 721 xdr_buf_head_copy_right(buf, base, len, shift); 722 } 723 724 static void xdr_buf_tail_copy_left(const struct xdr_buf *buf, unsigned int base, 725 unsigned int len, unsigned int shift) 726 { 727 const struct kvec *tail = buf->tail; 728 729 if (base >= tail->iov_len) 730 return; 731 if (len > tail->iov_len - base) 732 len = tail->iov_len - base; 733 /* Shift data into head */ 734 if (shift > buf->page_len + base) { 735 const struct kvec *head = buf->head; 736 unsigned int hdto = 737 head->iov_len + buf->page_len + base - shift; 738 unsigned int hdlen = len; 739 740 if (WARN_ONCE(shift > head->iov_len + buf->page_len + base, 741 "SUNRPC: Misaligned data.\n")) 742 return; 743 if (hdto + hdlen > head->iov_len) 744 hdlen = head->iov_len - hdto; 745 memcpy(head->iov_base + hdto, tail->iov_base + base, hdlen); 746 base += hdlen; 747 len -= hdlen; 748 if (!len) 749 return; 750 } 751 /* Shift data into pages */ 752 if (shift > base) { 753 unsigned int pgto = buf->page_len + base - shift; 754 unsigned int pglen = len; 755 756 if (pgto + pglen > buf->page_len) 757 pglen = buf->page_len - pgto; 758 _copy_to_pages(buf->pages, buf->page_base + pgto, 759 tail->iov_base + base, pglen); 760 base += pglen; 761 len -= pglen; 762 if (!len) 763 return; 764 } 765 memmove(tail->iov_base + base - shift, tail->iov_base + base, len); 766 } 767 768 static void xdr_buf_pages_copy_left(const struct xdr_buf *buf, 769 unsigned int base, unsigned int len, 770 unsigned int shift) 771 { 772 unsigned int pgto; 773 774 if (base >= buf->page_len) 775 return; 776 if (len > buf->page_len - base) 777 len = buf->page_len - base; 778 /* Shift data into head */ 779 if (shift > base) { 780 const struct kvec *head = buf->head; 781 unsigned int hdto = head->iov_len + base - shift; 782 unsigned int hdlen = len; 783 784 if (WARN_ONCE(shift > head->iov_len + base, 785 "SUNRPC: Misaligned data.\n")) 786 return; 787 if (hdto + hdlen > head->iov_len) 788 hdlen = head->iov_len - hdto; 789 _copy_from_pages(head->iov_base + hdto, buf->pages, 790 buf->page_base + base, hdlen); 791 base += hdlen; 792 len -= hdlen; 793 if (!len) 794 return; 795 } 796 pgto = base - shift; 797 _shift_data_left_pages(buf->pages, buf->page_base + pgto, 798 buf->page_base + base, len); 799 } 800 801 static void xdr_buf_tail_shift_left(const struct xdr_buf *buf, 802 unsigned int base, unsigned int len, 803 unsigned int shift) 804 { 805 if (!shift || !len) 806 return; 807 xdr_buf_tail_copy_left(buf, base, len, shift); 808 } 809 810 static void xdr_buf_pages_shift_left(const struct xdr_buf *buf, 811 unsigned int base, unsigned int len, 812 unsigned int shift) 813 { 814 if (!shift || !len) 815 return; 816 if (base >= buf->page_len) { 817 xdr_buf_tail_shift_left(buf, base - buf->page_len, len, shift); 818 return; 819 } 820 xdr_buf_pages_copy_left(buf, base, len, shift); 821 len += base; 822 if (len <= buf->page_len) 823 return; 824 xdr_buf_tail_copy_left(buf, 0, len - buf->page_len, shift); 825 } 826 827 static void xdr_buf_head_shift_left(const struct xdr_buf *buf, 828 unsigned int base, unsigned int len, 829 unsigned int shift) 830 { 831 const struct kvec *head = buf->head; 832 unsigned int bytes; 833 834 if (!shift || !len) 835 return; 836 837 if (shift > base) { 838 bytes = (shift - base); 839 if (bytes >= len) 840 return; 841 base += bytes; 842 len -= bytes; 843 } 844 845 if (base < head->iov_len) { 846 bytes = min_t(unsigned int, len, head->iov_len - base); 847 memmove(head->iov_base + (base - shift), 848 head->iov_base + base, bytes); 849 base += bytes; 850 len -= bytes; 851 } 852 xdr_buf_pages_shift_left(buf, base - head->iov_len, len, shift); 853 } 854 855 /** 856 * xdr_shrink_bufhead 857 * @buf: xdr_buf 858 * @len: new length of buf->head[0] 859 * 860 * Shrinks XDR buffer's header kvec buf->head[0], setting it to 861 * 'len' bytes. The extra data is not lost, but is instead 862 * moved into the inlined pages and/or the tail. 863 */ 864 static unsigned int xdr_shrink_bufhead(struct xdr_buf *buf, unsigned int len) 865 { 866 struct kvec *head = buf->head; 867 unsigned int shift, buflen = max(buf->len, len); 868 869 WARN_ON_ONCE(len > head->iov_len); 870 if (head->iov_len > buflen) { 871 buf->buflen -= head->iov_len - buflen; 872 head->iov_len = buflen; 873 } 874 if (len >= head->iov_len) 875 return 0; 876 shift = head->iov_len - len; 877 xdr_buf_try_expand(buf, shift); 878 xdr_buf_head_shift_right(buf, len, buflen - len, shift); 879 head->iov_len = len; 880 buf->buflen -= shift; 881 buf->len -= shift; 882 return shift; 883 } 884 885 /** 886 * xdr_shrink_pagelen - shrinks buf->pages to @len bytes 887 * @buf: xdr_buf 888 * @len: new page buffer length 889 * 890 * The extra data is not lost, but is instead moved into buf->tail. 891 * Returns the actual number of bytes moved. 892 */ 893 static unsigned int xdr_shrink_pagelen(struct xdr_buf *buf, unsigned int len) 894 { 895 unsigned int shift, buflen = buf->len - buf->head->iov_len; 896 897 WARN_ON_ONCE(len > buf->page_len); 898 if (buf->head->iov_len >= buf->len || len > buflen) 899 buflen = len; 900 if (buf->page_len > buflen) { 901 buf->buflen -= buf->page_len - buflen; 902 buf->page_len = buflen; 903 } 904 if (len >= buf->page_len) 905 return 0; 906 shift = buf->page_len - len; 907 xdr_buf_try_expand(buf, shift); 908 xdr_buf_pages_shift_right(buf, len, buflen - len, shift); 909 buf->page_len = len; 910 buf->len -= shift; 911 buf->buflen -= shift; 912 return shift; 913 } 914 915 /** 916 * xdr_stream_pos - Return the current offset from the start of the xdr_stream 917 * @xdr: pointer to struct xdr_stream 918 */ 919 unsigned int xdr_stream_pos(const struct xdr_stream *xdr) 920 { 921 return (unsigned int)(XDR_QUADLEN(xdr->buf->len) - xdr->nwords) << 2; 922 } 923 EXPORT_SYMBOL_GPL(xdr_stream_pos); 924 925 static void xdr_stream_set_pos(struct xdr_stream *xdr, unsigned int pos) 926 { 927 unsigned int blen = xdr->buf->len; 928 929 xdr->nwords = blen > pos ? XDR_QUADLEN(blen) - XDR_QUADLEN(pos) : 0; 930 } 931 932 static void xdr_stream_page_set_pos(struct xdr_stream *xdr, unsigned int pos) 933 { 934 xdr_stream_set_pos(xdr, pos + xdr->buf->head[0].iov_len); 935 } 936 937 /** 938 * xdr_page_pos - Return the current offset from the start of the xdr pages 939 * @xdr: pointer to struct xdr_stream 940 */ 941 unsigned int xdr_page_pos(const struct xdr_stream *xdr) 942 { 943 unsigned int pos = xdr_stream_pos(xdr); 944 945 WARN_ON(pos < xdr->buf->head[0].iov_len); 946 return pos - xdr->buf->head[0].iov_len; 947 } 948 EXPORT_SYMBOL_GPL(xdr_page_pos); 949 950 /** 951 * xdr_init_encode - Initialize a struct xdr_stream for sending data. 952 * @xdr: pointer to xdr_stream struct 953 * @buf: pointer to XDR buffer in which to encode data 954 * @p: current pointer inside XDR buffer 955 * @rqst: pointer to controlling rpc_rqst, for debugging 956 * 957 * Note: at the moment the RPC client only passes the length of our 958 * scratch buffer in the xdr_buf's header kvec. Previously this 959 * meant we needed to call xdr_adjust_iovec() after encoding the 960 * data. With the new scheme, the xdr_stream manages the details 961 * of the buffer length, and takes care of adjusting the kvec 962 * length for us. 963 */ 964 void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p, 965 struct rpc_rqst *rqst) 966 { 967 struct kvec *iov = buf->head; 968 int scratch_len = buf->buflen - buf->page_len - buf->tail[0].iov_len; 969 970 xdr_reset_scratch_buffer(xdr); 971 BUG_ON(scratch_len < 0); 972 xdr->buf = buf; 973 xdr->iov = iov; 974 xdr->p = (__be32 *)((char *)iov->iov_base + iov->iov_len); 975 xdr->end = (__be32 *)((char *)iov->iov_base + scratch_len); 976 BUG_ON(iov->iov_len > scratch_len); 977 978 if (p != xdr->p && p != NULL) { 979 size_t len; 980 981 BUG_ON(p < xdr->p || p > xdr->end); 982 len = (char *)p - (char *)xdr->p; 983 xdr->p = p; 984 buf->len += len; 985 iov->iov_len += len; 986 } 987 xdr->rqst = rqst; 988 } 989 EXPORT_SYMBOL_GPL(xdr_init_encode); 990 991 /** 992 * xdr_init_encode_pages - Initialize an xdr_stream for encoding into pages 993 * @xdr: pointer to xdr_stream struct 994 * @buf: pointer to XDR buffer into which to encode data 995 * @pages: list of pages to decode into 996 * @rqst: pointer to controlling rpc_rqst, for debugging 997 * 998 */ 999 void xdr_init_encode_pages(struct xdr_stream *xdr, struct xdr_buf *buf, 1000 struct page **pages, struct rpc_rqst *rqst) 1001 { 1002 xdr_reset_scratch_buffer(xdr); 1003 1004 xdr->buf = buf; 1005 xdr->page_ptr = pages; 1006 xdr->iov = NULL; 1007 xdr->p = page_address(*pages); 1008 xdr->end = (void *)xdr->p + min_t(u32, buf->buflen, PAGE_SIZE); 1009 xdr->rqst = rqst; 1010 } 1011 EXPORT_SYMBOL_GPL(xdr_init_encode_pages); 1012 1013 /** 1014 * __xdr_commit_encode - Ensure all data is written to buffer 1015 * @xdr: pointer to xdr_stream 1016 * 1017 * We handle encoding across page boundaries by giving the caller a 1018 * temporary location to write to, then later copying the data into 1019 * place; xdr_commit_encode does that copying. 1020 * 1021 * Normally the caller doesn't need to call this directly, as the 1022 * following xdr_reserve_space will do it. But an explicit call may be 1023 * required at the end of encoding, or any other time when the xdr_buf 1024 * data might be read. 1025 */ 1026 void __xdr_commit_encode(struct xdr_stream *xdr) 1027 { 1028 size_t shift = xdr->scratch.iov_len; 1029 void *page; 1030 1031 page = page_address(*xdr->page_ptr); 1032 memcpy(xdr->scratch.iov_base, page, shift); 1033 memmove(page, page + shift, (void *)xdr->p - page); 1034 xdr_reset_scratch_buffer(xdr); 1035 } 1036 EXPORT_SYMBOL_GPL(__xdr_commit_encode); 1037 1038 /* 1039 * The buffer space to be reserved crosses the boundary between 1040 * xdr->buf->head and xdr->buf->pages, or between two pages 1041 * in xdr->buf->pages. 1042 */ 1043 static noinline __be32 *xdr_get_next_encode_buffer(struct xdr_stream *xdr, 1044 size_t nbytes) 1045 { 1046 int space_left; 1047 int frag1bytes, frag2bytes; 1048 void *p; 1049 1050 if (nbytes > PAGE_SIZE) 1051 goto out_overflow; /* Bigger buffers require special handling */ 1052 if (xdr->buf->len + nbytes > xdr->buf->buflen) 1053 goto out_overflow; /* Sorry, we're totally out of space */ 1054 frag1bytes = (xdr->end - xdr->p) << 2; 1055 frag2bytes = nbytes - frag1bytes; 1056 if (xdr->iov) 1057 xdr->iov->iov_len += frag1bytes; 1058 else 1059 xdr->buf->page_len += frag1bytes; 1060 xdr->page_ptr++; 1061 xdr->iov = NULL; 1062 1063 /* 1064 * If the last encode didn't end exactly on a page boundary, the 1065 * next one will straddle boundaries. Encode into the next 1066 * page, then copy it back later in xdr_commit_encode. We use 1067 * the "scratch" iov to track any temporarily unused fragment of 1068 * space at the end of the previous buffer: 1069 */ 1070 xdr_set_scratch_buffer(xdr, xdr->p, frag1bytes); 1071 1072 /* 1073 * xdr->p is where the next encode will start after 1074 * xdr_commit_encode() has shifted this one back: 1075 */ 1076 p = page_address(*xdr->page_ptr); 1077 xdr->p = p + frag2bytes; 1078 space_left = xdr->buf->buflen - xdr->buf->len; 1079 if (space_left - frag1bytes >= PAGE_SIZE) 1080 xdr->end = p + PAGE_SIZE; 1081 else 1082 xdr->end = p + space_left - frag1bytes; 1083 1084 xdr->buf->page_len += frag2bytes; 1085 xdr->buf->len += nbytes; 1086 return p; 1087 out_overflow: 1088 trace_rpc_xdr_overflow(xdr, nbytes); 1089 return NULL; 1090 } 1091 1092 /** 1093 * xdr_reserve_space - Reserve buffer space for sending 1094 * @xdr: pointer to xdr_stream 1095 * @nbytes: number of bytes to reserve 1096 * 1097 * Checks that we have enough buffer space to encode 'nbytes' more 1098 * bytes of data. If so, update the total xdr_buf length, and 1099 * adjust the length of the current kvec. 1100 * 1101 * The returned pointer is valid only until the next call to 1102 * xdr_reserve_space() or xdr_commit_encode() on @xdr. The current 1103 * implementation of this API guarantees that space reserved for a 1104 * four-byte data item remains valid until @xdr is destroyed, but 1105 * that might not always be true in the future. 1106 */ 1107 __be32 * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes) 1108 { 1109 __be32 *p = xdr->p; 1110 __be32 *q; 1111 1112 xdr_commit_encode(xdr); 1113 /* align nbytes on the next 32-bit boundary */ 1114 nbytes += 3; 1115 nbytes &= ~3; 1116 q = p + (nbytes >> 2); 1117 if (unlikely(q > xdr->end || q < p)) 1118 return xdr_get_next_encode_buffer(xdr, nbytes); 1119 xdr->p = q; 1120 if (xdr->iov) 1121 xdr->iov->iov_len += nbytes; 1122 else 1123 xdr->buf->page_len += nbytes; 1124 xdr->buf->len += nbytes; 1125 return p; 1126 } 1127 EXPORT_SYMBOL_GPL(xdr_reserve_space); 1128 1129 /** 1130 * xdr_reserve_space_vec - Reserves a large amount of buffer space for sending 1131 * @xdr: pointer to xdr_stream 1132 * @nbytes: number of bytes to reserve 1133 * 1134 * The size argument passed to xdr_reserve_space() is determined based 1135 * on the number of bytes remaining in the current page to avoid 1136 * invalidating iov_base pointers when xdr_commit_encode() is called. 1137 * 1138 * Return values: 1139 * %0: success 1140 * %-EMSGSIZE: not enough space is available in @xdr 1141 */ 1142 int xdr_reserve_space_vec(struct xdr_stream *xdr, size_t nbytes) 1143 { 1144 size_t thislen; 1145 __be32 *p; 1146 1147 /* 1148 * svcrdma requires every READ payload to start somewhere 1149 * in xdr->pages. 1150 */ 1151 if (xdr->iov == xdr->buf->head) { 1152 xdr->iov = NULL; 1153 xdr->end = xdr->p; 1154 } 1155 1156 /* XXX: Let's find a way to make this more efficient */ 1157 while (nbytes) { 1158 thislen = xdr->buf->page_len % PAGE_SIZE; 1159 thislen = min_t(size_t, nbytes, PAGE_SIZE - thislen); 1160 1161 p = xdr_reserve_space(xdr, thislen); 1162 if (!p) 1163 return -EMSGSIZE; 1164 1165 nbytes -= thislen; 1166 } 1167 1168 return 0; 1169 } 1170 EXPORT_SYMBOL_GPL(xdr_reserve_space_vec); 1171 1172 /** 1173 * xdr_truncate_encode - truncate an encode buffer 1174 * @xdr: pointer to xdr_stream 1175 * @len: new length of buffer 1176 * 1177 * Truncates the xdr stream, so that xdr->buf->len == len, 1178 * and xdr->p points at offset len from the start of the buffer, and 1179 * head, tail, and page lengths are adjusted to correspond. 1180 * 1181 * If this means moving xdr->p to a different buffer, we assume that 1182 * the end pointer should be set to the end of the current page, 1183 * except in the case of the head buffer when we assume the head 1184 * buffer's current length represents the end of the available buffer. 1185 * 1186 * This is *not* safe to use on a buffer that already has inlined page 1187 * cache pages (as in a zero-copy server read reply), except for the 1188 * simple case of truncating from one position in the tail to another. 1189 * 1190 */ 1191 void xdr_truncate_encode(struct xdr_stream *xdr, size_t len) 1192 { 1193 struct xdr_buf *buf = xdr->buf; 1194 struct kvec *head = buf->head; 1195 struct kvec *tail = buf->tail; 1196 int fraglen; 1197 int new; 1198 1199 if (len > buf->len) { 1200 WARN_ON_ONCE(1); 1201 return; 1202 } 1203 xdr_commit_encode(xdr); 1204 1205 fraglen = min_t(int, buf->len - len, tail->iov_len); 1206 tail->iov_len -= fraglen; 1207 buf->len -= fraglen; 1208 if (tail->iov_len) { 1209 xdr->p = tail->iov_base + tail->iov_len; 1210 WARN_ON_ONCE(!xdr->end); 1211 WARN_ON_ONCE(!xdr->iov); 1212 return; 1213 } 1214 WARN_ON_ONCE(fraglen); 1215 fraglen = min_t(int, buf->len - len, buf->page_len); 1216 buf->page_len -= fraglen; 1217 buf->len -= fraglen; 1218 1219 new = buf->page_base + buf->page_len; 1220 1221 xdr->page_ptr = buf->pages + (new >> PAGE_SHIFT); 1222 1223 if (buf->page_len) { 1224 xdr->p = page_address(*xdr->page_ptr); 1225 xdr->end = (void *)xdr->p + PAGE_SIZE; 1226 xdr->p = (void *)xdr->p + (new % PAGE_SIZE); 1227 WARN_ON_ONCE(xdr->iov); 1228 return; 1229 } 1230 if (fraglen) 1231 xdr->end = head->iov_base + head->iov_len; 1232 /* (otherwise assume xdr->end is already set) */ 1233 xdr->page_ptr--; 1234 head->iov_len = len; 1235 buf->len = len; 1236 xdr->p = head->iov_base + head->iov_len; 1237 xdr->iov = buf->head; 1238 } 1239 EXPORT_SYMBOL(xdr_truncate_encode); 1240 1241 /** 1242 * xdr_truncate_decode - Truncate a decoding stream 1243 * @xdr: pointer to struct xdr_stream 1244 * @len: Number of bytes to remove 1245 * 1246 */ 1247 void xdr_truncate_decode(struct xdr_stream *xdr, size_t len) 1248 { 1249 unsigned int nbytes = xdr_align_size(len); 1250 1251 xdr->buf->len -= nbytes; 1252 xdr->nwords -= XDR_QUADLEN(nbytes); 1253 } 1254 EXPORT_SYMBOL_GPL(xdr_truncate_decode); 1255 1256 /** 1257 * xdr_restrict_buflen - decrease available buffer space 1258 * @xdr: pointer to xdr_stream 1259 * @newbuflen: new maximum number of bytes available 1260 * 1261 * Adjust our idea of how much space is available in the buffer. 1262 * If we've already used too much space in the buffer, returns -1. 1263 * If the available space is already smaller than newbuflen, returns 0 1264 * and does nothing. Otherwise, adjusts xdr->buf->buflen to newbuflen 1265 * and ensures xdr->end is set at most offset newbuflen from the start 1266 * of the buffer. 1267 */ 1268 int xdr_restrict_buflen(struct xdr_stream *xdr, int newbuflen) 1269 { 1270 struct xdr_buf *buf = xdr->buf; 1271 int left_in_this_buf = (void *)xdr->end - (void *)xdr->p; 1272 int end_offset = buf->len + left_in_this_buf; 1273 1274 if (newbuflen < 0 || newbuflen < buf->len) 1275 return -1; 1276 if (newbuflen > buf->buflen) 1277 return 0; 1278 if (newbuflen < end_offset) 1279 xdr->end = (void *)xdr->end + newbuflen - end_offset; 1280 buf->buflen = newbuflen; 1281 return 0; 1282 } 1283 EXPORT_SYMBOL(xdr_restrict_buflen); 1284 1285 /** 1286 * xdr_write_pages - Insert a list of pages into an XDR buffer for sending 1287 * @xdr: pointer to xdr_stream 1288 * @pages: array of pages to insert 1289 * @base: starting offset of first data byte in @pages 1290 * @len: number of data bytes in @pages to insert 1291 * 1292 * After the @pages are added, the tail iovec is instantiated pointing to 1293 * end of the head buffer, and the stream is set up to encode subsequent 1294 * items into the tail. 1295 */ 1296 void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base, 1297 unsigned int len) 1298 { 1299 struct xdr_buf *buf = xdr->buf; 1300 struct kvec *tail = buf->tail; 1301 1302 buf->pages = pages; 1303 buf->page_base = base; 1304 buf->page_len = len; 1305 1306 tail->iov_base = xdr->p; 1307 tail->iov_len = 0; 1308 xdr->iov = tail; 1309 1310 if (len & 3) { 1311 unsigned int pad = 4 - (len & 3); 1312 1313 BUG_ON(xdr->p >= xdr->end); 1314 tail->iov_base = (char *)xdr->p + (len & 3); 1315 tail->iov_len += pad; 1316 len += pad; 1317 *xdr->p++ = 0; 1318 } 1319 buf->buflen += len; 1320 buf->len += len; 1321 } 1322 EXPORT_SYMBOL_GPL(xdr_write_pages); 1323 1324 static unsigned int xdr_set_iov(struct xdr_stream *xdr, struct kvec *iov, 1325 unsigned int base, unsigned int len) 1326 { 1327 if (len > iov->iov_len) 1328 len = iov->iov_len; 1329 if (unlikely(base > len)) 1330 base = len; 1331 xdr->p = (__be32*)(iov->iov_base + base); 1332 xdr->end = (__be32*)(iov->iov_base + len); 1333 xdr->iov = iov; 1334 xdr->page_ptr = NULL; 1335 return len - base; 1336 } 1337 1338 static unsigned int xdr_set_tail_base(struct xdr_stream *xdr, 1339 unsigned int base, unsigned int len) 1340 { 1341 struct xdr_buf *buf = xdr->buf; 1342 1343 xdr_stream_set_pos(xdr, base + buf->page_len + buf->head->iov_len); 1344 return xdr_set_iov(xdr, buf->tail, base, len); 1345 } 1346 1347 static void xdr_stream_unmap_current_page(struct xdr_stream *xdr) 1348 { 1349 if (xdr->page_kaddr) { 1350 kunmap_local(xdr->page_kaddr); 1351 xdr->page_kaddr = NULL; 1352 } 1353 } 1354 1355 static unsigned int xdr_set_page_base(struct xdr_stream *xdr, 1356 unsigned int base, unsigned int len) 1357 { 1358 unsigned int pgnr; 1359 unsigned int maxlen; 1360 unsigned int pgoff; 1361 unsigned int pgend; 1362 void *kaddr; 1363 1364 maxlen = xdr->buf->page_len; 1365 if (base >= maxlen) 1366 return 0; 1367 else 1368 maxlen -= base; 1369 if (len > maxlen) 1370 len = maxlen; 1371 1372 xdr_stream_unmap_current_page(xdr); 1373 xdr_stream_page_set_pos(xdr, base); 1374 base += xdr->buf->page_base; 1375 1376 pgnr = base >> PAGE_SHIFT; 1377 xdr->page_ptr = &xdr->buf->pages[pgnr]; 1378 1379 if (PageHighMem(*xdr->page_ptr)) { 1380 xdr->page_kaddr = kmap_local_page(*xdr->page_ptr); 1381 kaddr = xdr->page_kaddr; 1382 } else 1383 kaddr = page_address(*xdr->page_ptr); 1384 1385 pgoff = base & ~PAGE_MASK; 1386 xdr->p = (__be32*)(kaddr + pgoff); 1387 1388 pgend = pgoff + len; 1389 if (pgend > PAGE_SIZE) 1390 pgend = PAGE_SIZE; 1391 xdr->end = (__be32*)(kaddr + pgend); 1392 xdr->iov = NULL; 1393 return len; 1394 } 1395 1396 static void xdr_set_page(struct xdr_stream *xdr, unsigned int base, 1397 unsigned int len) 1398 { 1399 if (xdr_set_page_base(xdr, base, len) == 0) { 1400 base -= xdr->buf->page_len; 1401 xdr_set_tail_base(xdr, base, len); 1402 } 1403 } 1404 1405 static void xdr_set_next_page(struct xdr_stream *xdr) 1406 { 1407 unsigned int newbase; 1408 1409 newbase = (1 + xdr->page_ptr - xdr->buf->pages) << PAGE_SHIFT; 1410 newbase -= xdr->buf->page_base; 1411 if (newbase < xdr->buf->page_len) 1412 xdr_set_page_base(xdr, newbase, xdr_stream_remaining(xdr)); 1413 else 1414 xdr_set_tail_base(xdr, 0, xdr_stream_remaining(xdr)); 1415 } 1416 1417 static bool xdr_set_next_buffer(struct xdr_stream *xdr) 1418 { 1419 if (xdr->page_ptr != NULL) 1420 xdr_set_next_page(xdr); 1421 else if (xdr->iov == xdr->buf->head) 1422 xdr_set_page(xdr, 0, xdr_stream_remaining(xdr)); 1423 return xdr->p != xdr->end; 1424 } 1425 1426 /** 1427 * xdr_init_decode - Initialize an xdr_stream for decoding data. 1428 * @xdr: pointer to xdr_stream struct 1429 * @buf: pointer to XDR buffer from which to decode data 1430 * @p: current pointer inside XDR buffer 1431 * @rqst: pointer to controlling rpc_rqst, for debugging 1432 */ 1433 void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p, 1434 struct rpc_rqst *rqst) 1435 { 1436 xdr->buf = buf; 1437 xdr->page_kaddr = NULL; 1438 xdr_reset_scratch_buffer(xdr); 1439 xdr->nwords = XDR_QUADLEN(buf->len); 1440 if (xdr_set_iov(xdr, buf->head, 0, buf->len) == 0 && 1441 xdr_set_page_base(xdr, 0, buf->len) == 0) 1442 xdr_set_iov(xdr, buf->tail, 0, buf->len); 1443 if (p != NULL && p > xdr->p && xdr->end >= p) { 1444 xdr->nwords -= p - xdr->p; 1445 xdr->p = p; 1446 } 1447 xdr->rqst = rqst; 1448 } 1449 EXPORT_SYMBOL_GPL(xdr_init_decode); 1450 1451 /** 1452 * xdr_init_decode_pages - Initialize an xdr_stream for decoding into pages 1453 * @xdr: pointer to xdr_stream struct 1454 * @buf: pointer to XDR buffer from which to decode data 1455 * @pages: list of pages to decode into 1456 * @len: length in bytes of buffer in pages 1457 */ 1458 void xdr_init_decode_pages(struct xdr_stream *xdr, struct xdr_buf *buf, 1459 struct page **pages, unsigned int len) 1460 { 1461 memset(buf, 0, sizeof(*buf)); 1462 buf->pages = pages; 1463 buf->page_len = len; 1464 buf->buflen = len; 1465 buf->len = len; 1466 xdr_init_decode(xdr, buf, NULL, NULL); 1467 } 1468 EXPORT_SYMBOL_GPL(xdr_init_decode_pages); 1469 1470 /** 1471 * xdr_finish_decode - Clean up the xdr_stream after decoding data. 1472 * @xdr: pointer to xdr_stream struct 1473 */ 1474 void xdr_finish_decode(struct xdr_stream *xdr) 1475 { 1476 xdr_stream_unmap_current_page(xdr); 1477 } 1478 EXPORT_SYMBOL(xdr_finish_decode); 1479 1480 static __be32 * __xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes) 1481 { 1482 unsigned int nwords = XDR_QUADLEN(nbytes); 1483 __be32 *p = xdr->p; 1484 __be32 *q = p + nwords; 1485 1486 if (unlikely(nwords > xdr->nwords || q > xdr->end || q < p)) 1487 return NULL; 1488 xdr->p = q; 1489 xdr->nwords -= nwords; 1490 return p; 1491 } 1492 1493 static __be32 *xdr_copy_to_scratch(struct xdr_stream *xdr, size_t nbytes) 1494 { 1495 __be32 *p; 1496 char *cpdest = xdr->scratch.iov_base; 1497 size_t cplen = (char *)xdr->end - (char *)xdr->p; 1498 1499 if (nbytes > xdr->scratch.iov_len) 1500 goto out_overflow; 1501 p = __xdr_inline_decode(xdr, cplen); 1502 if (p == NULL) 1503 return NULL; 1504 memcpy(cpdest, p, cplen); 1505 if (!xdr_set_next_buffer(xdr)) 1506 goto out_overflow; 1507 cpdest += cplen; 1508 nbytes -= cplen; 1509 p = __xdr_inline_decode(xdr, nbytes); 1510 if (p == NULL) 1511 return NULL; 1512 memcpy(cpdest, p, nbytes); 1513 return xdr->scratch.iov_base; 1514 out_overflow: 1515 trace_rpc_xdr_overflow(xdr, nbytes); 1516 return NULL; 1517 } 1518 1519 /** 1520 * xdr_inline_decode - Retrieve XDR data to decode 1521 * @xdr: pointer to xdr_stream struct 1522 * @nbytes: number of bytes of data to decode 1523 * 1524 * Check if the input buffer is long enough to enable us to decode 1525 * 'nbytes' more bytes of data starting at the current position. 1526 * If so return the current pointer, then update the current 1527 * pointer position. 1528 */ 1529 __be32 * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes) 1530 { 1531 __be32 *p; 1532 1533 if (unlikely(nbytes == 0)) 1534 return xdr->p; 1535 if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr)) 1536 goto out_overflow; 1537 p = __xdr_inline_decode(xdr, nbytes); 1538 if (p != NULL) 1539 return p; 1540 return xdr_copy_to_scratch(xdr, nbytes); 1541 out_overflow: 1542 trace_rpc_xdr_overflow(xdr, nbytes); 1543 return NULL; 1544 } 1545 EXPORT_SYMBOL_GPL(xdr_inline_decode); 1546 1547 static void xdr_realign_pages(struct xdr_stream *xdr) 1548 { 1549 struct xdr_buf *buf = xdr->buf; 1550 struct kvec *iov = buf->head; 1551 unsigned int cur = xdr_stream_pos(xdr); 1552 unsigned int copied; 1553 1554 /* Realign pages to current pointer position */ 1555 if (iov->iov_len > cur) { 1556 copied = xdr_shrink_bufhead(buf, cur); 1557 trace_rpc_xdr_alignment(xdr, cur, copied); 1558 xdr_set_page(xdr, 0, buf->page_len); 1559 } 1560 } 1561 1562 static unsigned int xdr_align_pages(struct xdr_stream *xdr, unsigned int len) 1563 { 1564 struct xdr_buf *buf = xdr->buf; 1565 unsigned int nwords = XDR_QUADLEN(len); 1566 unsigned int copied; 1567 1568 if (xdr->nwords == 0) 1569 return 0; 1570 1571 xdr_realign_pages(xdr); 1572 if (nwords > xdr->nwords) { 1573 nwords = xdr->nwords; 1574 len = nwords << 2; 1575 } 1576 if (buf->page_len <= len) 1577 len = buf->page_len; 1578 else if (nwords < xdr->nwords) { 1579 /* Truncate page data and move it into the tail */ 1580 copied = xdr_shrink_pagelen(buf, len); 1581 trace_rpc_xdr_alignment(xdr, len, copied); 1582 } 1583 return len; 1584 } 1585 1586 /** 1587 * xdr_read_pages - align page-based XDR data to current pointer position 1588 * @xdr: pointer to xdr_stream struct 1589 * @len: number of bytes of page data 1590 * 1591 * Moves data beyond the current pointer position from the XDR head[] buffer 1592 * into the page list. Any data that lies beyond current position + @len 1593 * bytes is moved into the XDR tail[]. The xdr_stream current position is 1594 * then advanced past that data to align to the next XDR object in the tail. 1595 * 1596 * Returns the number of XDR encoded bytes now contained in the pages 1597 */ 1598 unsigned int xdr_read_pages(struct xdr_stream *xdr, unsigned int len) 1599 { 1600 unsigned int nwords = XDR_QUADLEN(len); 1601 unsigned int base, end, pglen; 1602 1603 pglen = xdr_align_pages(xdr, nwords << 2); 1604 if (pglen == 0) 1605 return 0; 1606 1607 base = (nwords << 2) - pglen; 1608 end = xdr_stream_remaining(xdr) - pglen; 1609 1610 xdr_set_tail_base(xdr, base, end); 1611 return len <= pglen ? len : pglen; 1612 } 1613 EXPORT_SYMBOL_GPL(xdr_read_pages); 1614 1615 /** 1616 * xdr_set_pagelen - Sets the length of the XDR pages 1617 * @xdr: pointer to xdr_stream struct 1618 * @len: new length of the XDR page data 1619 * 1620 * Either grows or shrinks the length of the xdr pages by setting pagelen to 1621 * @len bytes. When shrinking, any extra data is moved into buf->tail, whereas 1622 * when growing any data beyond the current pointer is moved into the tail. 1623 * 1624 * Returns True if the operation was successful, and False otherwise. 1625 */ 1626 void xdr_set_pagelen(struct xdr_stream *xdr, unsigned int len) 1627 { 1628 struct xdr_buf *buf = xdr->buf; 1629 size_t remaining = xdr_stream_remaining(xdr); 1630 size_t base = 0; 1631 1632 if (len < buf->page_len) { 1633 base = buf->page_len - len; 1634 xdr_shrink_pagelen(buf, len); 1635 } else { 1636 xdr_buf_head_shift_right(buf, xdr_stream_pos(xdr), 1637 buf->page_len, remaining); 1638 if (len > buf->page_len) 1639 xdr_buf_try_expand(buf, len - buf->page_len); 1640 } 1641 xdr_set_tail_base(xdr, base, remaining); 1642 } 1643 EXPORT_SYMBOL_GPL(xdr_set_pagelen); 1644 1645 /** 1646 * xdr_enter_page - decode data from the XDR page 1647 * @xdr: pointer to xdr_stream struct 1648 * @len: number of bytes of page data 1649 * 1650 * Moves data beyond the current pointer position from the XDR head[] buffer 1651 * into the page list. Any data that lies beyond current position + "len" 1652 * bytes is moved into the XDR tail[]. The current pointer is then 1653 * repositioned at the beginning of the first XDR page. 1654 */ 1655 void xdr_enter_page(struct xdr_stream *xdr, unsigned int len) 1656 { 1657 len = xdr_align_pages(xdr, len); 1658 /* 1659 * Position current pointer at beginning of tail, and 1660 * set remaining message length. 1661 */ 1662 if (len != 0) 1663 xdr_set_page_base(xdr, 0, len); 1664 } 1665 EXPORT_SYMBOL_GPL(xdr_enter_page); 1666 1667 static const struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0}; 1668 1669 void xdr_buf_from_iov(const struct kvec *iov, struct xdr_buf *buf) 1670 { 1671 buf->head[0] = *iov; 1672 buf->tail[0] = empty_iov; 1673 buf->page_len = 0; 1674 buf->buflen = buf->len = iov->iov_len; 1675 } 1676 EXPORT_SYMBOL_GPL(xdr_buf_from_iov); 1677 1678 /** 1679 * xdr_buf_subsegment - set subbuf to a portion of buf 1680 * @buf: an xdr buffer 1681 * @subbuf: the result buffer 1682 * @base: beginning of range in bytes 1683 * @len: length of range in bytes 1684 * 1685 * sets @subbuf to an xdr buffer representing the portion of @buf of 1686 * length @len starting at offset @base. 1687 * 1688 * @buf and @subbuf may be pointers to the same struct xdr_buf. 1689 * 1690 * Returns -1 if base or length are out of bounds. 1691 */ 1692 int xdr_buf_subsegment(const struct xdr_buf *buf, struct xdr_buf *subbuf, 1693 unsigned int base, unsigned int len) 1694 { 1695 subbuf->buflen = subbuf->len = len; 1696 if (base < buf->head[0].iov_len) { 1697 subbuf->head[0].iov_base = buf->head[0].iov_base + base; 1698 subbuf->head[0].iov_len = min_t(unsigned int, len, 1699 buf->head[0].iov_len - base); 1700 len -= subbuf->head[0].iov_len; 1701 base = 0; 1702 } else { 1703 base -= buf->head[0].iov_len; 1704 subbuf->head[0].iov_base = buf->head[0].iov_base; 1705 subbuf->head[0].iov_len = 0; 1706 } 1707 1708 if (base < buf->page_len) { 1709 subbuf->page_len = min(buf->page_len - base, len); 1710 base += buf->page_base; 1711 subbuf->page_base = base & ~PAGE_MASK; 1712 subbuf->pages = &buf->pages[base >> PAGE_SHIFT]; 1713 len -= subbuf->page_len; 1714 base = 0; 1715 } else { 1716 base -= buf->page_len; 1717 subbuf->pages = buf->pages; 1718 subbuf->page_base = 0; 1719 subbuf->page_len = 0; 1720 } 1721 1722 if (base < buf->tail[0].iov_len) { 1723 subbuf->tail[0].iov_base = buf->tail[0].iov_base + base; 1724 subbuf->tail[0].iov_len = min_t(unsigned int, len, 1725 buf->tail[0].iov_len - base); 1726 len -= subbuf->tail[0].iov_len; 1727 base = 0; 1728 } else { 1729 base -= buf->tail[0].iov_len; 1730 subbuf->tail[0].iov_base = buf->tail[0].iov_base; 1731 subbuf->tail[0].iov_len = 0; 1732 } 1733 1734 if (base || len) 1735 return -1; 1736 return 0; 1737 } 1738 EXPORT_SYMBOL_GPL(xdr_buf_subsegment); 1739 1740 /** 1741 * xdr_stream_subsegment - set @subbuf to a portion of @xdr 1742 * @xdr: an xdr_stream set up for decoding 1743 * @subbuf: the result buffer 1744 * @nbytes: length of @xdr to extract, in bytes 1745 * 1746 * Sets up @subbuf to represent a portion of @xdr. The portion 1747 * starts at the current offset in @xdr, and extends for a length 1748 * of @nbytes. If this is successful, @xdr is advanced to the next 1749 * XDR data item following that portion. 1750 * 1751 * Return values: 1752 * %true: @subbuf has been initialized, and @xdr has been advanced. 1753 * %false: a bounds error has occurred 1754 */ 1755 bool xdr_stream_subsegment(struct xdr_stream *xdr, struct xdr_buf *subbuf, 1756 unsigned int nbytes) 1757 { 1758 unsigned int start = xdr_stream_pos(xdr); 1759 unsigned int remaining, len; 1760 1761 /* Extract @subbuf and bounds-check the fn arguments */ 1762 if (xdr_buf_subsegment(xdr->buf, subbuf, start, nbytes)) 1763 return false; 1764 1765 /* Advance @xdr by @nbytes */ 1766 for (remaining = nbytes; remaining;) { 1767 if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr)) 1768 return false; 1769 1770 len = (char *)xdr->end - (char *)xdr->p; 1771 if (remaining <= len) { 1772 xdr->p = (__be32 *)((char *)xdr->p + 1773 (remaining + xdr_pad_size(nbytes))); 1774 break; 1775 } 1776 1777 xdr->p = (__be32 *)((char *)xdr->p + len); 1778 xdr->end = xdr->p; 1779 remaining -= len; 1780 } 1781 1782 xdr_stream_set_pos(xdr, start + nbytes); 1783 return true; 1784 } 1785 EXPORT_SYMBOL_GPL(xdr_stream_subsegment); 1786 1787 /** 1788 * xdr_stream_move_subsegment - Move part of a stream to another position 1789 * @xdr: the source xdr_stream 1790 * @offset: the source offset of the segment 1791 * @target: the target offset of the segment 1792 * @length: the number of bytes to move 1793 * 1794 * Moves @length bytes from @offset to @target in the xdr_stream, overwriting 1795 * anything in its space. Returns the number of bytes in the segment. 1796 */ 1797 unsigned int xdr_stream_move_subsegment(struct xdr_stream *xdr, unsigned int offset, 1798 unsigned int target, unsigned int length) 1799 { 1800 struct xdr_buf buf; 1801 unsigned int shift; 1802 1803 if (offset < target) { 1804 shift = target - offset; 1805 if (xdr_buf_subsegment(xdr->buf, &buf, offset, shift + length) < 0) 1806 return 0; 1807 xdr_buf_head_shift_right(&buf, 0, length, shift); 1808 } else if (offset > target) { 1809 shift = offset - target; 1810 if (xdr_buf_subsegment(xdr->buf, &buf, target, shift + length) < 0) 1811 return 0; 1812 xdr_buf_head_shift_left(&buf, shift, length, shift); 1813 } 1814 return length; 1815 } 1816 EXPORT_SYMBOL_GPL(xdr_stream_move_subsegment); 1817 1818 /** 1819 * xdr_stream_zero - zero out a portion of an xdr_stream 1820 * @xdr: an xdr_stream to zero out 1821 * @offset: the starting point in the stream 1822 * @length: the number of bytes to zero 1823 */ 1824 unsigned int xdr_stream_zero(struct xdr_stream *xdr, unsigned int offset, 1825 unsigned int length) 1826 { 1827 struct xdr_buf buf; 1828 1829 if (xdr_buf_subsegment(xdr->buf, &buf, offset, length) < 0) 1830 return 0; 1831 if (buf.head[0].iov_len) 1832 xdr_buf_iov_zero(buf.head, 0, buf.head[0].iov_len); 1833 if (buf.page_len > 0) 1834 xdr_buf_pages_zero(&buf, 0, buf.page_len); 1835 if (buf.tail[0].iov_len) 1836 xdr_buf_iov_zero(buf.tail, 0, buf.tail[0].iov_len); 1837 return length; 1838 } 1839 EXPORT_SYMBOL_GPL(xdr_stream_zero); 1840 1841 /** 1842 * xdr_buf_trim - lop at most "len" bytes off the end of "buf" 1843 * @buf: buf to be trimmed 1844 * @len: number of bytes to reduce "buf" by 1845 * 1846 * Trim an xdr_buf by the given number of bytes by fixing up the lengths. Note 1847 * that it's possible that we'll trim less than that amount if the xdr_buf is 1848 * too small, or if (for instance) it's all in the head and the parser has 1849 * already read too far into it. 1850 */ 1851 void xdr_buf_trim(struct xdr_buf *buf, unsigned int len) 1852 { 1853 size_t cur; 1854 unsigned int trim = len; 1855 1856 if (buf->tail[0].iov_len) { 1857 cur = min_t(size_t, buf->tail[0].iov_len, trim); 1858 buf->tail[0].iov_len -= cur; 1859 trim -= cur; 1860 if (!trim) 1861 goto fix_len; 1862 } 1863 1864 if (buf->page_len) { 1865 cur = min_t(unsigned int, buf->page_len, trim); 1866 buf->page_len -= cur; 1867 trim -= cur; 1868 if (!trim) 1869 goto fix_len; 1870 } 1871 1872 if (buf->head[0].iov_len) { 1873 cur = min_t(size_t, buf->head[0].iov_len, trim); 1874 buf->head[0].iov_len -= cur; 1875 trim -= cur; 1876 } 1877 fix_len: 1878 buf->len -= (len - trim); 1879 } 1880 EXPORT_SYMBOL_GPL(xdr_buf_trim); 1881 1882 static void __read_bytes_from_xdr_buf(const struct xdr_buf *subbuf, 1883 void *obj, unsigned int len) 1884 { 1885 unsigned int this_len; 1886 1887 this_len = min_t(unsigned int, len, subbuf->head[0].iov_len); 1888 memcpy(obj, subbuf->head[0].iov_base, this_len); 1889 len -= this_len; 1890 obj += this_len; 1891 this_len = min_t(unsigned int, len, subbuf->page_len); 1892 _copy_from_pages(obj, subbuf->pages, subbuf->page_base, this_len); 1893 len -= this_len; 1894 obj += this_len; 1895 this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len); 1896 memcpy(obj, subbuf->tail[0].iov_base, this_len); 1897 } 1898 1899 /* obj is assumed to point to allocated memory of size at least len: */ 1900 int read_bytes_from_xdr_buf(const struct xdr_buf *buf, unsigned int base, 1901 void *obj, unsigned int len) 1902 { 1903 struct xdr_buf subbuf; 1904 int status; 1905 1906 status = xdr_buf_subsegment(buf, &subbuf, base, len); 1907 if (status != 0) 1908 return status; 1909 __read_bytes_from_xdr_buf(&subbuf, obj, len); 1910 return 0; 1911 } 1912 EXPORT_SYMBOL_GPL(read_bytes_from_xdr_buf); 1913 1914 static void __write_bytes_to_xdr_buf(const struct xdr_buf *subbuf, 1915 void *obj, unsigned int len) 1916 { 1917 unsigned int this_len; 1918 1919 this_len = min_t(unsigned int, len, subbuf->head[0].iov_len); 1920 memcpy(subbuf->head[0].iov_base, obj, this_len); 1921 len -= this_len; 1922 obj += this_len; 1923 this_len = min_t(unsigned int, len, subbuf->page_len); 1924 _copy_to_pages(subbuf->pages, subbuf->page_base, obj, this_len); 1925 len -= this_len; 1926 obj += this_len; 1927 this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len); 1928 memcpy(subbuf->tail[0].iov_base, obj, this_len); 1929 } 1930 1931 /* obj is assumed to point to allocated memory of size at least len: */ 1932 int write_bytes_to_xdr_buf(const struct xdr_buf *buf, unsigned int base, 1933 void *obj, unsigned int len) 1934 { 1935 struct xdr_buf subbuf; 1936 int status; 1937 1938 status = xdr_buf_subsegment(buf, &subbuf, base, len); 1939 if (status != 0) 1940 return status; 1941 __write_bytes_to_xdr_buf(&subbuf, obj, len); 1942 return 0; 1943 } 1944 EXPORT_SYMBOL_GPL(write_bytes_to_xdr_buf); 1945 1946 int xdr_decode_word(const struct xdr_buf *buf, unsigned int base, u32 *obj) 1947 { 1948 __be32 raw; 1949 int status; 1950 1951 status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj)); 1952 if (status) 1953 return status; 1954 *obj = be32_to_cpu(raw); 1955 return 0; 1956 } 1957 EXPORT_SYMBOL_GPL(xdr_decode_word); 1958 1959 int xdr_encode_word(const struct xdr_buf *buf, unsigned int base, u32 obj) 1960 { 1961 __be32 raw = cpu_to_be32(obj); 1962 1963 return write_bytes_to_xdr_buf(buf, base, &raw, sizeof(obj)); 1964 } 1965 EXPORT_SYMBOL_GPL(xdr_encode_word); 1966 1967 /* Returns 0 on success, or else a negative error code. */ 1968 static int xdr_xcode_array2(const struct xdr_buf *buf, unsigned int base, 1969 struct xdr_array2_desc *desc, int encode) 1970 { 1971 char *elem = NULL, *c; 1972 unsigned int copied = 0, todo, avail_here; 1973 struct page **ppages = NULL; 1974 int err; 1975 1976 if (encode) { 1977 if (xdr_encode_word(buf, base, desc->array_len) != 0) 1978 return -EINVAL; 1979 } else { 1980 if (xdr_decode_word(buf, base, &desc->array_len) != 0 || 1981 desc->array_len > desc->array_maxlen || 1982 (unsigned long) base + 4 + desc->array_len * 1983 desc->elem_size > buf->len) 1984 return -EINVAL; 1985 } 1986 base += 4; 1987 1988 if (!desc->xcode) 1989 return 0; 1990 1991 todo = desc->array_len * desc->elem_size; 1992 1993 /* process head */ 1994 if (todo && base < buf->head->iov_len) { 1995 c = buf->head->iov_base + base; 1996 avail_here = min_t(unsigned int, todo, 1997 buf->head->iov_len - base); 1998 todo -= avail_here; 1999 2000 while (avail_here >= desc->elem_size) { 2001 err = desc->xcode(desc, c); 2002 if (err) 2003 goto out; 2004 c += desc->elem_size; 2005 avail_here -= desc->elem_size; 2006 } 2007 if (avail_here) { 2008 if (!elem) { 2009 elem = kmalloc(desc->elem_size, GFP_KERNEL); 2010 err = -ENOMEM; 2011 if (!elem) 2012 goto out; 2013 } 2014 if (encode) { 2015 err = desc->xcode(desc, elem); 2016 if (err) 2017 goto out; 2018 memcpy(c, elem, avail_here); 2019 } else 2020 memcpy(elem, c, avail_here); 2021 copied = avail_here; 2022 } 2023 base = buf->head->iov_len; /* align to start of pages */ 2024 } 2025 2026 /* process pages array */ 2027 base -= buf->head->iov_len; 2028 if (todo && base < buf->page_len) { 2029 unsigned int avail_page; 2030 2031 avail_here = min(todo, buf->page_len - base); 2032 todo -= avail_here; 2033 2034 base += buf->page_base; 2035 ppages = buf->pages + (base >> PAGE_SHIFT); 2036 base &= ~PAGE_MASK; 2037 avail_page = min_t(unsigned int, PAGE_SIZE - base, 2038 avail_here); 2039 c = kmap(*ppages) + base; 2040 2041 while (avail_here) { 2042 avail_here -= avail_page; 2043 if (copied || avail_page < desc->elem_size) { 2044 unsigned int l = min(avail_page, 2045 desc->elem_size - copied); 2046 if (!elem) { 2047 elem = kmalloc(desc->elem_size, 2048 GFP_KERNEL); 2049 err = -ENOMEM; 2050 if (!elem) 2051 goto out; 2052 } 2053 if (encode) { 2054 if (!copied) { 2055 err = desc->xcode(desc, elem); 2056 if (err) 2057 goto out; 2058 } 2059 memcpy(c, elem + copied, l); 2060 copied += l; 2061 if (copied == desc->elem_size) 2062 copied = 0; 2063 } else { 2064 memcpy(elem + copied, c, l); 2065 copied += l; 2066 if (copied == desc->elem_size) { 2067 err = desc->xcode(desc, elem); 2068 if (err) 2069 goto out; 2070 copied = 0; 2071 } 2072 } 2073 avail_page -= l; 2074 c += l; 2075 } 2076 while (avail_page >= desc->elem_size) { 2077 err = desc->xcode(desc, c); 2078 if (err) 2079 goto out; 2080 c += desc->elem_size; 2081 avail_page -= desc->elem_size; 2082 } 2083 if (avail_page) { 2084 unsigned int l = min(avail_page, 2085 desc->elem_size - copied); 2086 if (!elem) { 2087 elem = kmalloc(desc->elem_size, 2088 GFP_KERNEL); 2089 err = -ENOMEM; 2090 if (!elem) 2091 goto out; 2092 } 2093 if (encode) { 2094 if (!copied) { 2095 err = desc->xcode(desc, elem); 2096 if (err) 2097 goto out; 2098 } 2099 memcpy(c, elem + copied, l); 2100 copied += l; 2101 if (copied == desc->elem_size) 2102 copied = 0; 2103 } else { 2104 memcpy(elem + copied, c, l); 2105 copied += l; 2106 if (copied == desc->elem_size) { 2107 err = desc->xcode(desc, elem); 2108 if (err) 2109 goto out; 2110 copied = 0; 2111 } 2112 } 2113 } 2114 if (avail_here) { 2115 kunmap(*ppages); 2116 ppages++; 2117 c = kmap(*ppages); 2118 } 2119 2120 avail_page = min(avail_here, 2121 (unsigned int) PAGE_SIZE); 2122 } 2123 base = buf->page_len; /* align to start of tail */ 2124 } 2125 2126 /* process tail */ 2127 base -= buf->page_len; 2128 if (todo) { 2129 c = buf->tail->iov_base + base; 2130 if (copied) { 2131 unsigned int l = desc->elem_size - copied; 2132 2133 if (encode) 2134 memcpy(c, elem + copied, l); 2135 else { 2136 memcpy(elem + copied, c, l); 2137 err = desc->xcode(desc, elem); 2138 if (err) 2139 goto out; 2140 } 2141 todo -= l; 2142 c += l; 2143 } 2144 while (todo) { 2145 err = desc->xcode(desc, c); 2146 if (err) 2147 goto out; 2148 c += desc->elem_size; 2149 todo -= desc->elem_size; 2150 } 2151 } 2152 err = 0; 2153 2154 out: 2155 kfree(elem); 2156 if (ppages) 2157 kunmap(*ppages); 2158 return err; 2159 } 2160 2161 int xdr_decode_array2(const struct xdr_buf *buf, unsigned int base, 2162 struct xdr_array2_desc *desc) 2163 { 2164 if (base >= buf->len) 2165 return -EINVAL; 2166 2167 return xdr_xcode_array2(buf, base, desc, 0); 2168 } 2169 EXPORT_SYMBOL_GPL(xdr_decode_array2); 2170 2171 int xdr_encode_array2(const struct xdr_buf *buf, unsigned int base, 2172 struct xdr_array2_desc *desc) 2173 { 2174 if ((unsigned long) base + 4 + desc->array_len * desc->elem_size > 2175 buf->head->iov_len + buf->page_len + buf->tail->iov_len) 2176 return -EINVAL; 2177 2178 return xdr_xcode_array2(buf, base, desc, 1); 2179 } 2180 EXPORT_SYMBOL_GPL(xdr_encode_array2); 2181 2182 int xdr_process_buf(const struct xdr_buf *buf, unsigned int offset, 2183 unsigned int len, 2184 int (*actor)(struct scatterlist *, void *), void *data) 2185 { 2186 int i, ret = 0; 2187 unsigned int page_len, thislen, page_offset; 2188 struct scatterlist sg[1]; 2189 2190 sg_init_table(sg, 1); 2191 2192 if (offset >= buf->head[0].iov_len) { 2193 offset -= buf->head[0].iov_len; 2194 } else { 2195 thislen = buf->head[0].iov_len - offset; 2196 if (thislen > len) 2197 thislen = len; 2198 sg_set_buf(sg, buf->head[0].iov_base + offset, thislen); 2199 ret = actor(sg, data); 2200 if (ret) 2201 goto out; 2202 offset = 0; 2203 len -= thislen; 2204 } 2205 if (len == 0) 2206 goto out; 2207 2208 if (offset >= buf->page_len) { 2209 offset -= buf->page_len; 2210 } else { 2211 page_len = buf->page_len - offset; 2212 if (page_len > len) 2213 page_len = len; 2214 len -= page_len; 2215 page_offset = (offset + buf->page_base) & (PAGE_SIZE - 1); 2216 i = (offset + buf->page_base) >> PAGE_SHIFT; 2217 thislen = PAGE_SIZE - page_offset; 2218 do { 2219 if (thislen > page_len) 2220 thislen = page_len; 2221 sg_set_page(sg, buf->pages[i], thislen, page_offset); 2222 ret = actor(sg, data); 2223 if (ret) 2224 goto out; 2225 page_len -= thislen; 2226 i++; 2227 page_offset = 0; 2228 thislen = PAGE_SIZE; 2229 } while (page_len != 0); 2230 offset = 0; 2231 } 2232 if (len == 0) 2233 goto out; 2234 if (offset < buf->tail[0].iov_len) { 2235 thislen = buf->tail[0].iov_len - offset; 2236 if (thislen > len) 2237 thislen = len; 2238 sg_set_buf(sg, buf->tail[0].iov_base + offset, thislen); 2239 ret = actor(sg, data); 2240 len -= thislen; 2241 } 2242 if (len != 0) 2243 ret = -EINVAL; 2244 out: 2245 return ret; 2246 } 2247 EXPORT_SYMBOL_GPL(xdr_process_buf); 2248 2249 /** 2250 * xdr_stream_decode_opaque - Decode variable length opaque 2251 * @xdr: pointer to xdr_stream 2252 * @ptr: location to store opaque data 2253 * @size: size of storage buffer @ptr 2254 * 2255 * Return values: 2256 * On success, returns size of object stored in *@ptr 2257 * %-EBADMSG on XDR buffer overflow 2258 * %-EMSGSIZE on overflow of storage buffer @ptr 2259 */ 2260 ssize_t xdr_stream_decode_opaque(struct xdr_stream *xdr, void *ptr, size_t size) 2261 { 2262 ssize_t ret; 2263 void *p; 2264 2265 ret = xdr_stream_decode_opaque_inline(xdr, &p, size); 2266 if (ret <= 0) 2267 return ret; 2268 memcpy(ptr, p, ret); 2269 return ret; 2270 } 2271 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque); 2272 2273 /** 2274 * xdr_stream_decode_opaque_dup - Decode and duplicate variable length opaque 2275 * @xdr: pointer to xdr_stream 2276 * @ptr: location to store pointer to opaque data 2277 * @maxlen: maximum acceptable object size 2278 * @gfp_flags: GFP mask to use 2279 * 2280 * Return values: 2281 * On success, returns size of object stored in *@ptr 2282 * %-EBADMSG on XDR buffer overflow 2283 * %-EMSGSIZE if the size of the object would exceed @maxlen 2284 * %-ENOMEM on memory allocation failure 2285 */ 2286 ssize_t xdr_stream_decode_opaque_dup(struct xdr_stream *xdr, void **ptr, 2287 size_t maxlen, gfp_t gfp_flags) 2288 { 2289 ssize_t ret; 2290 void *p; 2291 2292 ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen); 2293 if (ret > 0) { 2294 *ptr = kmemdup(p, ret, gfp_flags); 2295 if (*ptr != NULL) 2296 return ret; 2297 ret = -ENOMEM; 2298 } 2299 *ptr = NULL; 2300 return ret; 2301 } 2302 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque_dup); 2303 2304 /** 2305 * xdr_stream_decode_string - Decode variable length string 2306 * @xdr: pointer to xdr_stream 2307 * @str: location to store string 2308 * @size: size of storage buffer @str 2309 * 2310 * Return values: 2311 * On success, returns length of NUL-terminated string stored in *@str 2312 * %-EBADMSG on XDR buffer overflow 2313 * %-EMSGSIZE on overflow of storage buffer @str 2314 */ 2315 ssize_t xdr_stream_decode_string(struct xdr_stream *xdr, char *str, size_t size) 2316 { 2317 ssize_t ret; 2318 void *p; 2319 2320 ret = xdr_stream_decode_opaque_inline(xdr, &p, size); 2321 if (ret > 0) { 2322 memcpy(str, p, ret); 2323 str[ret] = '\0'; 2324 return strlen(str); 2325 } 2326 *str = '\0'; 2327 return ret; 2328 } 2329 EXPORT_SYMBOL_GPL(xdr_stream_decode_string); 2330 2331 /** 2332 * xdr_stream_decode_string_dup - Decode and duplicate variable length string 2333 * @xdr: pointer to xdr_stream 2334 * @str: location to store pointer to string 2335 * @maxlen: maximum acceptable string length 2336 * @gfp_flags: GFP mask to use 2337 * 2338 * Return values: 2339 * On success, returns length of NUL-terminated string stored in *@ptr 2340 * %-EBADMSG on XDR buffer overflow 2341 * %-EMSGSIZE if the size of the string would exceed @maxlen 2342 * %-ENOMEM on memory allocation failure 2343 */ 2344 ssize_t xdr_stream_decode_string_dup(struct xdr_stream *xdr, char **str, 2345 size_t maxlen, gfp_t gfp_flags) 2346 { 2347 void *p; 2348 ssize_t ret; 2349 2350 ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen); 2351 if (ret > 0) { 2352 char *s = kmemdup_nul(p, ret, gfp_flags); 2353 if (s != NULL) { 2354 *str = s; 2355 return strlen(s); 2356 } 2357 ret = -ENOMEM; 2358 } 2359 *str = NULL; 2360 return ret; 2361 } 2362 EXPORT_SYMBOL_GPL(xdr_stream_decode_string_dup); 2363 2364 /** 2365 * xdr_stream_decode_opaque_auth - Decode struct opaque_auth (RFC5531 S8.2) 2366 * @xdr: pointer to xdr_stream 2367 * @flavor: location to store decoded flavor 2368 * @body: location to store decode body 2369 * @body_len: location to store length of decoded body 2370 * 2371 * Return values: 2372 * On success, returns the number of buffer bytes consumed 2373 * %-EBADMSG on XDR buffer overflow 2374 * %-EMSGSIZE if the decoded size of the body field exceeds 400 octets 2375 */ 2376 ssize_t xdr_stream_decode_opaque_auth(struct xdr_stream *xdr, u32 *flavor, 2377 void **body, unsigned int *body_len) 2378 { 2379 ssize_t ret, len; 2380 2381 len = xdr_stream_decode_u32(xdr, flavor); 2382 if (unlikely(len < 0)) 2383 return len; 2384 ret = xdr_stream_decode_opaque_inline(xdr, body, RPC_MAX_AUTH_SIZE); 2385 if (unlikely(ret < 0)) 2386 return ret; 2387 *body_len = ret; 2388 return len + ret; 2389 } 2390 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque_auth); 2391 2392 /** 2393 * xdr_stream_encode_opaque_auth - Encode struct opaque_auth (RFC5531 S8.2) 2394 * @xdr: pointer to xdr_stream 2395 * @flavor: verifier flavor to encode 2396 * @body: content of body to encode 2397 * @body_len: length of body to encode 2398 * 2399 * Return values: 2400 * On success, returns length in bytes of XDR buffer consumed 2401 * %-EBADMSG on XDR buffer overflow 2402 * %-EMSGSIZE if the size of @body exceeds 400 octets 2403 */ 2404 ssize_t xdr_stream_encode_opaque_auth(struct xdr_stream *xdr, u32 flavor, 2405 void *body, unsigned int body_len) 2406 { 2407 ssize_t ret, len; 2408 2409 if (unlikely(body_len > RPC_MAX_AUTH_SIZE)) 2410 return -EMSGSIZE; 2411 len = xdr_stream_encode_u32(xdr, flavor); 2412 if (unlikely(len < 0)) 2413 return len; 2414 ret = xdr_stream_encode_opaque(xdr, body, body_len); 2415 if (unlikely(ret < 0)) 2416 return ret; 2417 return len + ret; 2418 } 2419 EXPORT_SYMBOL_GPL(xdr_stream_encode_opaque_auth); 2420