1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/power/snapshot.c 4 * 5 * This file provides system snapshot/restore functionality for swsusp. 6 * 7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 9 */ 10 11 #define pr_fmt(fmt) "PM: hibernation: " fmt 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/memblock.h> 25 #include <linux/nmi.h> 26 #include <linux/syscalls.h> 27 #include <linux/console.h> 28 #include <linux/highmem.h> 29 #include <linux/list.h> 30 #include <linux/slab.h> 31 #include <linux/compiler.h> 32 #include <linux/ktime.h> 33 #include <linux/set_memory.h> 34 35 #include <linux/uaccess.h> 36 #include <asm/mmu_context.h> 37 #include <asm/tlbflush.h> 38 #include <asm/io.h> 39 40 #include "power.h" 41 42 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY) 43 static bool hibernate_restore_protection; 44 static bool hibernate_restore_protection_active; 45 46 void enable_restore_image_protection(void) 47 { 48 hibernate_restore_protection = true; 49 } 50 51 static inline void hibernate_restore_protection_begin(void) 52 { 53 hibernate_restore_protection_active = hibernate_restore_protection; 54 } 55 56 static inline void hibernate_restore_protection_end(void) 57 { 58 hibernate_restore_protection_active = false; 59 } 60 61 static inline int __must_check hibernate_restore_protect_page(void *page_address) 62 { 63 if (hibernate_restore_protection_active) 64 return set_memory_ro((unsigned long)page_address, 1); 65 return 0; 66 } 67 68 static inline int hibernate_restore_unprotect_page(void *page_address) 69 { 70 if (hibernate_restore_protection_active) 71 return set_memory_rw((unsigned long)page_address, 1); 72 return 0; 73 } 74 #else 75 static inline void hibernate_restore_protection_begin(void) {} 76 static inline void hibernate_restore_protection_end(void) {} 77 static inline int __must_check hibernate_restore_protect_page(void *page_address) {return 0; } 78 static inline int hibernate_restore_unprotect_page(void *page_address) {return 0; } 79 #endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */ 80 81 82 /* 83 * The calls to set_direct_map_*() should not fail because remapping a page 84 * here means that we only update protection bits in an existing PTE. 85 * It is still worth to have a warning here if something changes and this 86 * will no longer be the case. 87 */ 88 static inline void hibernate_map_page(struct page *page) 89 { 90 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) { 91 int ret = set_direct_map_default_noflush(page); 92 93 if (ret) 94 pr_warn_once("Failed to remap page\n"); 95 } else { 96 debug_pagealloc_map_pages(page, 1); 97 } 98 } 99 100 static inline void hibernate_unmap_page(struct page *page) 101 { 102 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) { 103 unsigned long addr = (unsigned long)page_address(page); 104 int ret = set_direct_map_invalid_noflush(page); 105 106 if (ret) 107 pr_warn_once("Failed to remap page\n"); 108 109 flush_tlb_kernel_range(addr, addr + PAGE_SIZE); 110 } else { 111 debug_pagealloc_unmap_pages(page, 1); 112 } 113 } 114 115 static int swsusp_page_is_free(struct page *); 116 static void swsusp_set_page_forbidden(struct page *); 117 static void swsusp_unset_page_forbidden(struct page *); 118 119 /* 120 * Number of bytes to reserve for memory allocations made by device drivers 121 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't 122 * cause image creation to fail (tunable via /sys/power/reserved_size). 123 */ 124 unsigned long reserved_size; 125 126 void __init hibernate_reserved_size_init(void) 127 { 128 reserved_size = SPARE_PAGES * PAGE_SIZE; 129 } 130 131 /* 132 * Preferred image size in bytes (tunable via /sys/power/image_size). 133 * When it is set to N, swsusp will do its best to ensure the image 134 * size will not exceed N bytes, but if that is impossible, it will 135 * try to create the smallest image possible. 136 */ 137 unsigned long image_size; 138 139 void __init hibernate_image_size_init(void) 140 { 141 image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE; 142 } 143 144 /* 145 * List of PBEs needed for restoring the pages that were allocated before 146 * the suspend and included in the suspend image, but have also been 147 * allocated by the "resume" kernel, so their contents cannot be written 148 * directly to their "original" page frames. 149 */ 150 struct pbe *restore_pblist; 151 152 /* struct linked_page is used to build chains of pages */ 153 154 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 155 156 struct linked_page { 157 struct linked_page *next; 158 char data[LINKED_PAGE_DATA_SIZE]; 159 } __packed; 160 161 /* 162 * List of "safe" pages (ie. pages that were not used by the image kernel 163 * before hibernation) that may be used as temporary storage for image kernel 164 * memory contents. 165 */ 166 static struct linked_page *safe_pages_list; 167 168 /* Pointer to an auxiliary buffer (1 page) */ 169 static void *buffer; 170 171 #define PG_ANY 0 172 #define PG_SAFE 1 173 #define PG_UNSAFE_CLEAR 1 174 #define PG_UNSAFE_KEEP 0 175 176 static unsigned int allocated_unsafe_pages; 177 178 /** 179 * get_image_page - Allocate a page for a hibernation image. 180 * @gfp_mask: GFP mask for the allocation. 181 * @safe_needed: Get pages that were not used before hibernation (restore only) 182 * 183 * During image restoration, for storing the PBE list and the image data, we can 184 * only use memory pages that do not conflict with the pages used before 185 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them 186 * using allocated_unsafe_pages. 187 * 188 * Each allocated image page is marked as PageNosave and PageNosaveFree so that 189 * swsusp_free() can release it. 190 */ 191 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 192 { 193 void *res; 194 195 res = (void *)get_zeroed_page(gfp_mask); 196 if (safe_needed) 197 while (res && swsusp_page_is_free(virt_to_page(res))) { 198 /* The page is unsafe, mark it for swsusp_free() */ 199 swsusp_set_page_forbidden(virt_to_page(res)); 200 allocated_unsafe_pages++; 201 res = (void *)get_zeroed_page(gfp_mask); 202 } 203 if (res) { 204 swsusp_set_page_forbidden(virt_to_page(res)); 205 swsusp_set_page_free(virt_to_page(res)); 206 } 207 return res; 208 } 209 210 static void *__get_safe_page(gfp_t gfp_mask) 211 { 212 if (safe_pages_list) { 213 void *ret = safe_pages_list; 214 215 safe_pages_list = safe_pages_list->next; 216 memset(ret, 0, PAGE_SIZE); 217 return ret; 218 } 219 return get_image_page(gfp_mask, PG_SAFE); 220 } 221 222 unsigned long get_safe_page(gfp_t gfp_mask) 223 { 224 return (unsigned long)__get_safe_page(gfp_mask); 225 } 226 227 static struct page *alloc_image_page(gfp_t gfp_mask) 228 { 229 struct page *page; 230 231 page = alloc_page(gfp_mask); 232 if (page) { 233 swsusp_set_page_forbidden(page); 234 swsusp_set_page_free(page); 235 } 236 return page; 237 } 238 239 static void recycle_safe_page(void *page_address) 240 { 241 struct linked_page *lp = page_address; 242 243 lp->next = safe_pages_list; 244 safe_pages_list = lp; 245 } 246 247 /** 248 * free_image_page - Free a page allocated for hibernation image. 249 * @addr: Address of the page to free. 250 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page. 251 * 252 * The page to free should have been allocated by get_image_page() (page flags 253 * set by it are affected). 254 */ 255 static inline void free_image_page(void *addr, int clear_nosave_free) 256 { 257 struct page *page; 258 259 BUG_ON(!virt_addr_valid(addr)); 260 261 page = virt_to_page(addr); 262 263 swsusp_unset_page_forbidden(page); 264 if (clear_nosave_free) 265 swsusp_unset_page_free(page); 266 267 __free_page(page); 268 } 269 270 static inline void free_list_of_pages(struct linked_page *list, 271 int clear_page_nosave) 272 { 273 while (list) { 274 struct linked_page *lp = list->next; 275 276 free_image_page(list, clear_page_nosave); 277 list = lp; 278 } 279 } 280 281 /* 282 * struct chain_allocator is used for allocating small objects out of 283 * a linked list of pages called 'the chain'. 284 * 285 * The chain grows each time when there is no room for a new object in 286 * the current page. The allocated objects cannot be freed individually. 287 * It is only possible to free them all at once, by freeing the entire 288 * chain. 289 * 290 * NOTE: The chain allocator may be inefficient if the allocated objects 291 * are not much smaller than PAGE_SIZE. 292 */ 293 struct chain_allocator { 294 struct linked_page *chain; /* the chain */ 295 unsigned int used_space; /* total size of objects allocated out 296 of the current page */ 297 gfp_t gfp_mask; /* mask for allocating pages */ 298 int safe_needed; /* if set, only "safe" pages are allocated */ 299 }; 300 301 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask, 302 int safe_needed) 303 { 304 ca->chain = NULL; 305 ca->used_space = LINKED_PAGE_DATA_SIZE; 306 ca->gfp_mask = gfp_mask; 307 ca->safe_needed = safe_needed; 308 } 309 310 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 311 { 312 void *ret; 313 314 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 315 struct linked_page *lp; 316 317 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) : 318 get_image_page(ca->gfp_mask, PG_ANY); 319 if (!lp) 320 return NULL; 321 322 lp->next = ca->chain; 323 ca->chain = lp; 324 ca->used_space = 0; 325 } 326 ret = ca->chain->data + ca->used_space; 327 ca->used_space += size; 328 return ret; 329 } 330 331 /* 332 * Data types related to memory bitmaps. 333 * 334 * Memory bitmap is a structure consisting of many linked lists of 335 * objects. The main list's elements are of type struct zone_bitmap 336 * and each of them corresponds to one zone. For each zone bitmap 337 * object there is a list of objects of type struct bm_block that 338 * represent each blocks of bitmap in which information is stored. 339 * 340 * struct memory_bitmap contains a pointer to the main list of zone 341 * bitmap objects, a struct bm_position used for browsing the bitmap, 342 * and a pointer to the list of pages used for allocating all of the 343 * zone bitmap objects and bitmap block objects. 344 * 345 * NOTE: It has to be possible to lay out the bitmap in memory 346 * using only allocations of order 0. Additionally, the bitmap is 347 * designed to work with arbitrary number of zones (this is over the 348 * top for now, but let's avoid making unnecessary assumptions ;-). 349 * 350 * struct zone_bitmap contains a pointer to a list of bitmap block 351 * objects and a pointer to the bitmap block object that has been 352 * most recently used for setting bits. Additionally, it contains the 353 * PFNs that correspond to the start and end of the represented zone. 354 * 355 * struct bm_block contains a pointer to the memory page in which 356 * information is stored (in the form of a block of bitmap) 357 * It also contains the pfns that correspond to the start and end of 358 * the represented memory area. 359 * 360 * The memory bitmap is organized as a radix tree to guarantee fast random 361 * access to the bits. There is one radix tree for each zone (as returned 362 * from create_mem_extents). 363 * 364 * One radix tree is represented by one struct mem_zone_bm_rtree. There are 365 * two linked lists for the nodes of the tree, one for the inner nodes and 366 * one for the leave nodes. The linked leave nodes are used for fast linear 367 * access of the memory bitmap. 368 * 369 * The struct rtree_node represents one node of the radix tree. 370 */ 371 372 #define BM_END_OF_MAP (~0UL) 373 374 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 375 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3) 376 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1) 377 378 /* 379 * struct rtree_node is a wrapper struct to link the nodes 380 * of the rtree together for easy linear iteration over 381 * bits and easy freeing 382 */ 383 struct rtree_node { 384 struct list_head list; 385 unsigned long *data; 386 }; 387 388 /* 389 * struct mem_zone_bm_rtree represents a bitmap used for one 390 * populated memory zone. 391 */ 392 struct mem_zone_bm_rtree { 393 struct list_head list; /* Link Zones together */ 394 struct list_head nodes; /* Radix Tree inner nodes */ 395 struct list_head leaves; /* Radix Tree leaves */ 396 unsigned long start_pfn; /* Zone start page frame */ 397 unsigned long end_pfn; /* Zone end page frame + 1 */ 398 struct rtree_node *rtree; /* Radix Tree Root */ 399 int levels; /* Number of Radix Tree Levels */ 400 unsigned int blocks; /* Number of Bitmap Blocks */ 401 }; 402 403 /* struct bm_position is used for browsing memory bitmaps */ 404 405 struct bm_position { 406 struct mem_zone_bm_rtree *zone; 407 struct rtree_node *node; 408 unsigned long node_pfn; 409 unsigned long cur_pfn; 410 int node_bit; 411 }; 412 413 struct memory_bitmap { 414 struct list_head zones; 415 struct linked_page *p_list; /* list of pages used to store zone 416 bitmap objects and bitmap block 417 objects */ 418 struct bm_position cur; /* most recently used bit position */ 419 }; 420 421 /* Functions that operate on memory bitmaps */ 422 423 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long)) 424 #if BITS_PER_LONG == 32 425 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2) 426 #else 427 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3) 428 #endif 429 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1) 430 431 /** 432 * alloc_rtree_node - Allocate a new node and add it to the radix tree. 433 * @gfp_mask: GFP mask for the allocation. 434 * @safe_needed: Get pages not used before hibernation (restore only) 435 * @ca: Pointer to a linked list of pages ("a chain") to allocate from 436 * @list: Radix Tree node to add. 437 * 438 * This function is used to allocate inner nodes as well as the 439 * leave nodes of the radix tree. It also adds the node to the 440 * corresponding linked list passed in by the *list parameter. 441 */ 442 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed, 443 struct chain_allocator *ca, 444 struct list_head *list) 445 { 446 struct rtree_node *node; 447 448 node = chain_alloc(ca, sizeof(struct rtree_node)); 449 if (!node) 450 return NULL; 451 452 node->data = get_image_page(gfp_mask, safe_needed); 453 if (!node->data) 454 return NULL; 455 456 list_add_tail(&node->list, list); 457 458 return node; 459 } 460 461 /** 462 * add_rtree_block - Add a new leave node to the radix tree. 463 * 464 * The leave nodes need to be allocated in order to keep the leaves 465 * linked list in order. This is guaranteed by the zone->blocks 466 * counter. 467 */ 468 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask, 469 int safe_needed, struct chain_allocator *ca) 470 { 471 struct rtree_node *node, *block, **dst; 472 unsigned int levels_needed, block_nr; 473 int i; 474 475 block_nr = zone->blocks; 476 levels_needed = 0; 477 478 /* How many levels do we need for this block nr? */ 479 while (block_nr) { 480 levels_needed += 1; 481 block_nr >>= BM_RTREE_LEVEL_SHIFT; 482 } 483 484 /* Make sure the rtree has enough levels */ 485 for (i = zone->levels; i < levels_needed; i++) { 486 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 487 &zone->nodes); 488 if (!node) 489 return -ENOMEM; 490 491 node->data[0] = (unsigned long)zone->rtree; 492 zone->rtree = node; 493 zone->levels += 1; 494 } 495 496 /* Allocate new block */ 497 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves); 498 if (!block) 499 return -ENOMEM; 500 501 /* Now walk the rtree to insert the block */ 502 node = zone->rtree; 503 dst = &zone->rtree; 504 block_nr = zone->blocks; 505 for (i = zone->levels; i > 0; i--) { 506 int index; 507 508 if (!node) { 509 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 510 &zone->nodes); 511 if (!node) 512 return -ENOMEM; 513 *dst = node; 514 } 515 516 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 517 index &= BM_RTREE_LEVEL_MASK; 518 dst = (struct rtree_node **)&((*dst)->data[index]); 519 node = *dst; 520 } 521 522 zone->blocks += 1; 523 *dst = block; 524 525 return 0; 526 } 527 528 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 529 int clear_nosave_free); 530 531 /** 532 * create_zone_bm_rtree - Create a radix tree for one zone. 533 * 534 * Allocated the mem_zone_bm_rtree structure and initializes it. 535 * This function also allocated and builds the radix tree for the 536 * zone. 537 */ 538 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask, 539 int safe_needed, 540 struct chain_allocator *ca, 541 unsigned long start, 542 unsigned long end) 543 { 544 struct mem_zone_bm_rtree *zone; 545 unsigned int i, nr_blocks; 546 unsigned long pages; 547 548 pages = end - start; 549 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree)); 550 if (!zone) 551 return NULL; 552 553 INIT_LIST_HEAD(&zone->nodes); 554 INIT_LIST_HEAD(&zone->leaves); 555 zone->start_pfn = start; 556 zone->end_pfn = end; 557 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 558 559 for (i = 0; i < nr_blocks; i++) { 560 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) { 561 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR); 562 return NULL; 563 } 564 } 565 566 return zone; 567 } 568 569 /** 570 * free_zone_bm_rtree - Free the memory of the radix tree. 571 * 572 * Free all node pages of the radix tree. The mem_zone_bm_rtree 573 * structure itself is not freed here nor are the rtree_node 574 * structs. 575 */ 576 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 577 int clear_nosave_free) 578 { 579 struct rtree_node *node; 580 581 list_for_each_entry(node, &zone->nodes, list) 582 free_image_page(node->data, clear_nosave_free); 583 584 list_for_each_entry(node, &zone->leaves, list) 585 free_image_page(node->data, clear_nosave_free); 586 } 587 588 static void memory_bm_position_reset(struct memory_bitmap *bm) 589 { 590 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree, 591 list); 592 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 593 struct rtree_node, list); 594 bm->cur.node_pfn = 0; 595 bm->cur.cur_pfn = BM_END_OF_MAP; 596 bm->cur.node_bit = 0; 597 } 598 599 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 600 601 struct mem_extent { 602 struct list_head hook; 603 unsigned long start; 604 unsigned long end; 605 }; 606 607 /** 608 * free_mem_extents - Free a list of memory extents. 609 * @list: List of extents to free. 610 */ 611 static void free_mem_extents(struct list_head *list) 612 { 613 struct mem_extent *ext, *aux; 614 615 list_for_each_entry_safe(ext, aux, list, hook) { 616 list_del(&ext->hook); 617 kfree(ext); 618 } 619 } 620 621 /** 622 * create_mem_extents - Create a list of memory extents. 623 * @list: List to put the extents into. 624 * @gfp_mask: Mask to use for memory allocations. 625 * 626 * The extents represent contiguous ranges of PFNs. 627 */ 628 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 629 { 630 struct zone *zone; 631 632 INIT_LIST_HEAD(list); 633 634 for_each_populated_zone(zone) { 635 unsigned long zone_start, zone_end; 636 struct mem_extent *ext, *cur, *aux; 637 638 zone_start = zone->zone_start_pfn; 639 zone_end = zone_end_pfn(zone); 640 641 list_for_each_entry(ext, list, hook) 642 if (zone_start <= ext->end) 643 break; 644 645 if (&ext->hook == list || zone_end < ext->start) { 646 /* New extent is necessary */ 647 struct mem_extent *new_ext; 648 649 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 650 if (!new_ext) { 651 free_mem_extents(list); 652 return -ENOMEM; 653 } 654 new_ext->start = zone_start; 655 new_ext->end = zone_end; 656 list_add_tail(&new_ext->hook, &ext->hook); 657 continue; 658 } 659 660 /* Merge this zone's range of PFNs with the existing one */ 661 if (zone_start < ext->start) 662 ext->start = zone_start; 663 if (zone_end > ext->end) 664 ext->end = zone_end; 665 666 /* More merging may be possible */ 667 cur = ext; 668 list_for_each_entry_safe_continue(cur, aux, list, hook) { 669 if (zone_end < cur->start) 670 break; 671 if (zone_end < cur->end) 672 ext->end = cur->end; 673 list_del(&cur->hook); 674 kfree(cur); 675 } 676 } 677 678 return 0; 679 } 680 681 /** 682 * memory_bm_create - Allocate memory for a memory bitmap. 683 */ 684 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, 685 int safe_needed) 686 { 687 struct chain_allocator ca; 688 struct list_head mem_extents; 689 struct mem_extent *ext; 690 int error; 691 692 chain_init(&ca, gfp_mask, safe_needed); 693 INIT_LIST_HEAD(&bm->zones); 694 695 error = create_mem_extents(&mem_extents, gfp_mask); 696 if (error) 697 return error; 698 699 list_for_each_entry(ext, &mem_extents, hook) { 700 struct mem_zone_bm_rtree *zone; 701 702 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca, 703 ext->start, ext->end); 704 if (!zone) { 705 error = -ENOMEM; 706 goto Error; 707 } 708 list_add_tail(&zone->list, &bm->zones); 709 } 710 711 bm->p_list = ca.chain; 712 memory_bm_position_reset(bm); 713 Exit: 714 free_mem_extents(&mem_extents); 715 return error; 716 717 Error: 718 bm->p_list = ca.chain; 719 memory_bm_free(bm, PG_UNSAFE_CLEAR); 720 goto Exit; 721 } 722 723 /** 724 * memory_bm_free - Free memory occupied by the memory bitmap. 725 * @bm: Memory bitmap. 726 */ 727 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 728 { 729 struct mem_zone_bm_rtree *zone; 730 731 list_for_each_entry(zone, &bm->zones, list) 732 free_zone_bm_rtree(zone, clear_nosave_free); 733 734 free_list_of_pages(bm->p_list, clear_nosave_free); 735 736 INIT_LIST_HEAD(&bm->zones); 737 } 738 739 /** 740 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap. 741 * 742 * Find the bit in memory bitmap @bm that corresponds to the given PFN. 743 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated. 744 * 745 * Walk the radix tree to find the page containing the bit that represents @pfn 746 * and return the position of the bit in @addr and @bit_nr. 747 */ 748 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 749 void **addr, unsigned int *bit_nr) 750 { 751 struct mem_zone_bm_rtree *curr, *zone; 752 struct rtree_node *node; 753 int i, block_nr; 754 755 zone = bm->cur.zone; 756 757 if (pfn >= zone->start_pfn && pfn < zone->end_pfn) 758 goto zone_found; 759 760 zone = NULL; 761 762 /* Find the right zone */ 763 list_for_each_entry(curr, &bm->zones, list) { 764 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) { 765 zone = curr; 766 break; 767 } 768 } 769 770 if (!zone) 771 return -EFAULT; 772 773 zone_found: 774 /* 775 * We have found the zone. Now walk the radix tree to find the leaf node 776 * for our PFN. 777 */ 778 779 /* 780 * If the zone we wish to scan is the current zone and the 781 * pfn falls into the current node then we do not need to walk 782 * the tree. 783 */ 784 node = bm->cur.node; 785 if (zone == bm->cur.zone && 786 ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn) 787 goto node_found; 788 789 node = zone->rtree; 790 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT; 791 792 for (i = zone->levels; i > 0; i--) { 793 int index; 794 795 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 796 index &= BM_RTREE_LEVEL_MASK; 797 BUG_ON(node->data[index] == 0); 798 node = (struct rtree_node *)node->data[index]; 799 } 800 801 node_found: 802 /* Update last position */ 803 bm->cur.zone = zone; 804 bm->cur.node = node; 805 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK; 806 bm->cur.cur_pfn = pfn; 807 808 /* Set return values */ 809 *addr = node->data; 810 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK; 811 812 return 0; 813 } 814 815 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 816 { 817 void *addr; 818 unsigned int bit; 819 int error; 820 821 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 822 BUG_ON(error); 823 set_bit(bit, addr); 824 } 825 826 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 827 { 828 void *addr; 829 unsigned int bit; 830 int error; 831 832 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 833 if (!error) 834 set_bit(bit, addr); 835 836 return error; 837 } 838 839 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 840 { 841 void *addr; 842 unsigned int bit; 843 int error; 844 845 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 846 BUG_ON(error); 847 clear_bit(bit, addr); 848 } 849 850 static void memory_bm_clear_current(struct memory_bitmap *bm) 851 { 852 int bit; 853 854 bit = max(bm->cur.node_bit - 1, 0); 855 clear_bit(bit, bm->cur.node->data); 856 } 857 858 static unsigned long memory_bm_get_current(struct memory_bitmap *bm) 859 { 860 return bm->cur.cur_pfn; 861 } 862 863 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 864 { 865 void *addr; 866 unsigned int bit; 867 int error; 868 869 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 870 BUG_ON(error); 871 return test_bit(bit, addr); 872 } 873 874 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 875 { 876 void *addr; 877 unsigned int bit; 878 879 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 880 } 881 882 /* 883 * rtree_next_node - Jump to the next leaf node. 884 * 885 * Set the position to the beginning of the next node in the 886 * memory bitmap. This is either the next node in the current 887 * zone's radix tree or the first node in the radix tree of the 888 * next zone. 889 * 890 * Return true if there is a next node, false otherwise. 891 */ 892 static bool rtree_next_node(struct memory_bitmap *bm) 893 { 894 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) { 895 bm->cur.node = list_entry(bm->cur.node->list.next, 896 struct rtree_node, list); 897 bm->cur.node_pfn += BM_BITS_PER_BLOCK; 898 bm->cur.node_bit = 0; 899 touch_softlockup_watchdog(); 900 return true; 901 } 902 903 /* No more nodes, goto next zone */ 904 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) { 905 bm->cur.zone = list_entry(bm->cur.zone->list.next, 906 struct mem_zone_bm_rtree, list); 907 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 908 struct rtree_node, list); 909 bm->cur.node_pfn = 0; 910 bm->cur.node_bit = 0; 911 return true; 912 } 913 914 /* No more zones */ 915 return false; 916 } 917 918 /** 919 * memory_bm_next_pfn - Find the next set bit in a memory bitmap. 920 * @bm: Memory bitmap. 921 * 922 * Starting from the last returned position this function searches for the next 923 * set bit in @bm and returns the PFN represented by it. If no more bits are 924 * set, BM_END_OF_MAP is returned. 925 * 926 * It is required to run memory_bm_position_reset() before the first call to 927 * this function for the given memory bitmap. 928 */ 929 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 930 { 931 unsigned long bits, pfn, pages; 932 int bit; 933 934 do { 935 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn; 936 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK); 937 bit = find_next_bit(bm->cur.node->data, bits, 938 bm->cur.node_bit); 939 if (bit < bits) { 940 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit; 941 bm->cur.node_bit = bit + 1; 942 bm->cur.cur_pfn = pfn; 943 return pfn; 944 } 945 } while (rtree_next_node(bm)); 946 947 bm->cur.cur_pfn = BM_END_OF_MAP; 948 return BM_END_OF_MAP; 949 } 950 951 /* 952 * This structure represents a range of page frames the contents of which 953 * should not be saved during hibernation. 954 */ 955 struct nosave_region { 956 struct list_head list; 957 unsigned long start_pfn; 958 unsigned long end_pfn; 959 }; 960 961 static LIST_HEAD(nosave_regions); 962 963 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone) 964 { 965 struct rtree_node *node; 966 967 list_for_each_entry(node, &zone->nodes, list) 968 recycle_safe_page(node->data); 969 970 list_for_each_entry(node, &zone->leaves, list) 971 recycle_safe_page(node->data); 972 } 973 974 static void memory_bm_recycle(struct memory_bitmap *bm) 975 { 976 struct mem_zone_bm_rtree *zone; 977 struct linked_page *p_list; 978 979 list_for_each_entry(zone, &bm->zones, list) 980 recycle_zone_bm_rtree(zone); 981 982 p_list = bm->p_list; 983 while (p_list) { 984 struct linked_page *lp = p_list; 985 986 p_list = lp->next; 987 recycle_safe_page(lp); 988 } 989 } 990 991 /** 992 * register_nosave_region - Register a region of unsaveable memory. 993 * 994 * Register a range of page frames the contents of which should not be saved 995 * during hibernation (to be used in the early initialization code). 996 */ 997 void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn) 998 { 999 struct nosave_region *region; 1000 1001 if (start_pfn >= end_pfn) 1002 return; 1003 1004 if (!list_empty(&nosave_regions)) { 1005 /* Try to extend the previous region (they should be sorted) */ 1006 region = list_entry(nosave_regions.prev, 1007 struct nosave_region, list); 1008 if (region->end_pfn == start_pfn) { 1009 region->end_pfn = end_pfn; 1010 goto Report; 1011 } 1012 } 1013 /* This allocation cannot fail */ 1014 region = memblock_alloc_or_panic(sizeof(struct nosave_region), 1015 SMP_CACHE_BYTES); 1016 region->start_pfn = start_pfn; 1017 region->end_pfn = end_pfn; 1018 list_add_tail(®ion->list, &nosave_regions); 1019 Report: 1020 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n", 1021 (unsigned long long) start_pfn << PAGE_SHIFT, 1022 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 1023 } 1024 1025 /* 1026 * Set bits in this map correspond to the page frames the contents of which 1027 * should not be saved during the suspend. 1028 */ 1029 static struct memory_bitmap *forbidden_pages_map; 1030 1031 /* Set bits in this map correspond to free page frames. */ 1032 static struct memory_bitmap *free_pages_map; 1033 1034 /* 1035 * Each page frame allocated for creating the image is marked by setting the 1036 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 1037 */ 1038 1039 void swsusp_set_page_free(struct page *page) 1040 { 1041 if (free_pages_map) 1042 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 1043 } 1044 1045 static int swsusp_page_is_free(struct page *page) 1046 { 1047 return free_pages_map ? 1048 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 1049 } 1050 1051 void swsusp_unset_page_free(struct page *page) 1052 { 1053 if (free_pages_map) 1054 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 1055 } 1056 1057 static void swsusp_set_page_forbidden(struct page *page) 1058 { 1059 if (forbidden_pages_map) 1060 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 1061 } 1062 1063 int swsusp_page_is_forbidden(struct page *page) 1064 { 1065 return forbidden_pages_map ? 1066 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 1067 } 1068 1069 static void swsusp_unset_page_forbidden(struct page *page) 1070 { 1071 if (forbidden_pages_map) 1072 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 1073 } 1074 1075 /** 1076 * mark_nosave_pages - Mark pages that should not be saved. 1077 * @bm: Memory bitmap. 1078 * 1079 * Set the bits in @bm that correspond to the page frames the contents of which 1080 * should not be saved. 1081 */ 1082 static void mark_nosave_pages(struct memory_bitmap *bm) 1083 { 1084 struct nosave_region *region; 1085 1086 if (list_empty(&nosave_regions)) 1087 return; 1088 1089 list_for_each_entry(region, &nosave_regions, list) { 1090 unsigned long pfn; 1091 1092 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n", 1093 (unsigned long long) region->start_pfn << PAGE_SHIFT, 1094 ((unsigned long long) region->end_pfn << PAGE_SHIFT) 1095 - 1); 1096 1097 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 1098 if (pfn_valid(pfn)) { 1099 /* 1100 * It is safe to ignore the result of 1101 * mem_bm_set_bit_check() here, since we won't 1102 * touch the PFNs for which the error is 1103 * returned anyway. 1104 */ 1105 mem_bm_set_bit_check(bm, pfn); 1106 } 1107 } 1108 } 1109 1110 /** 1111 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information. 1112 * 1113 * Create bitmaps needed for marking page frames that should not be saved and 1114 * free page frames. The forbidden_pages_map and free_pages_map pointers are 1115 * only modified if everything goes well, because we don't want the bits to be 1116 * touched before both bitmaps are set up. 1117 */ 1118 int create_basic_memory_bitmaps(void) 1119 { 1120 struct memory_bitmap *bm1, *bm2; 1121 int error; 1122 1123 if (forbidden_pages_map && free_pages_map) 1124 return 0; 1125 else 1126 BUG_ON(forbidden_pages_map || free_pages_map); 1127 1128 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1129 if (!bm1) 1130 return -ENOMEM; 1131 1132 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 1133 if (error) 1134 goto Free_first_object; 1135 1136 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1137 if (!bm2) 1138 goto Free_first_bitmap; 1139 1140 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 1141 if (error) 1142 goto Free_second_object; 1143 1144 forbidden_pages_map = bm1; 1145 free_pages_map = bm2; 1146 mark_nosave_pages(forbidden_pages_map); 1147 1148 pr_debug("Basic memory bitmaps created\n"); 1149 1150 return 0; 1151 1152 Free_second_object: 1153 kfree(bm2); 1154 Free_first_bitmap: 1155 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1156 Free_first_object: 1157 kfree(bm1); 1158 return -ENOMEM; 1159 } 1160 1161 /** 1162 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information. 1163 * 1164 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The 1165 * auxiliary pointers are necessary so that the bitmaps themselves are not 1166 * referred to while they are being freed. 1167 */ 1168 void free_basic_memory_bitmaps(void) 1169 { 1170 struct memory_bitmap *bm1, *bm2; 1171 1172 if (WARN_ON(!(forbidden_pages_map && free_pages_map))) 1173 return; 1174 1175 bm1 = forbidden_pages_map; 1176 bm2 = free_pages_map; 1177 forbidden_pages_map = NULL; 1178 free_pages_map = NULL; 1179 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1180 kfree(bm1); 1181 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 1182 kfree(bm2); 1183 1184 pr_debug("Basic memory bitmaps freed\n"); 1185 } 1186 1187 static void clear_or_poison_free_page(struct page *page) 1188 { 1189 if (page_poisoning_enabled_static()) 1190 __kernel_poison_pages(page, 1); 1191 else if (want_init_on_free()) 1192 clear_highpage(page); 1193 } 1194 1195 void clear_or_poison_free_pages(void) 1196 { 1197 struct memory_bitmap *bm = free_pages_map; 1198 unsigned long pfn; 1199 1200 if (WARN_ON(!(free_pages_map))) 1201 return; 1202 1203 if (page_poisoning_enabled() || want_init_on_free()) { 1204 memory_bm_position_reset(bm); 1205 pfn = memory_bm_next_pfn(bm); 1206 while (pfn != BM_END_OF_MAP) { 1207 if (pfn_valid(pfn)) 1208 clear_or_poison_free_page(pfn_to_page(pfn)); 1209 1210 pfn = memory_bm_next_pfn(bm); 1211 } 1212 memory_bm_position_reset(bm); 1213 pr_info("free pages cleared after restore\n"); 1214 } 1215 } 1216 1217 /** 1218 * snapshot_additional_pages - Estimate the number of extra pages needed. 1219 * @zone: Memory zone to carry out the computation for. 1220 * 1221 * Estimate the number of additional pages needed for setting up a hibernation 1222 * image data structures for @zone (usually, the returned value is greater than 1223 * the exact number). 1224 */ 1225 unsigned int snapshot_additional_pages(struct zone *zone) 1226 { 1227 unsigned int rtree, nodes; 1228 1229 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 1230 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node), 1231 LINKED_PAGE_DATA_SIZE); 1232 while (nodes > 1) { 1233 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL); 1234 rtree += nodes; 1235 } 1236 1237 return 2 * rtree; 1238 } 1239 1240 /* 1241 * Touch the watchdog for every WD_PAGE_COUNT pages. 1242 */ 1243 #define WD_PAGE_COUNT (128*1024) 1244 1245 static void mark_free_pages(struct zone *zone) 1246 { 1247 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 1248 unsigned long flags; 1249 unsigned int order, t; 1250 struct page *page; 1251 1252 if (zone_is_empty(zone)) 1253 return; 1254 1255 spin_lock_irqsave(&zone->lock, flags); 1256 1257 max_zone_pfn = zone_end_pfn(zone); 1258 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1259 if (pfn_valid(pfn)) { 1260 page = pfn_to_page(pfn); 1261 1262 if (!--page_count) { 1263 touch_nmi_watchdog(); 1264 page_count = WD_PAGE_COUNT; 1265 } 1266 1267 if (page_zone(page) != zone) 1268 continue; 1269 1270 if (!swsusp_page_is_forbidden(page)) 1271 swsusp_unset_page_free(page); 1272 } 1273 1274 for_each_migratetype_order(order, t) { 1275 list_for_each_entry(page, 1276 &zone->free_area[order].free_list[t], buddy_list) { 1277 unsigned long i; 1278 1279 pfn = page_to_pfn(page); 1280 for (i = 0; i < (1UL << order); i++) { 1281 if (!--page_count) { 1282 touch_nmi_watchdog(); 1283 page_count = WD_PAGE_COUNT; 1284 } 1285 swsusp_set_page_free(pfn_to_page(pfn + i)); 1286 } 1287 } 1288 } 1289 spin_unlock_irqrestore(&zone->lock, flags); 1290 } 1291 1292 #ifdef CONFIG_HIGHMEM 1293 /** 1294 * count_free_highmem_pages - Compute the total number of free highmem pages. 1295 * 1296 * The returned number is system-wide. 1297 */ 1298 static unsigned int count_free_highmem_pages(void) 1299 { 1300 struct zone *zone; 1301 unsigned int cnt = 0; 1302 1303 for_each_populated_zone(zone) 1304 if (is_highmem(zone)) 1305 cnt += zone_page_state(zone, NR_FREE_PAGES); 1306 1307 return cnt; 1308 } 1309 1310 /** 1311 * saveable_highmem_page - Check if a highmem page is saveable. 1312 * 1313 * Determine whether a highmem page should be included in a hibernation image. 1314 * 1315 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 1316 * and it isn't part of a free chunk of pages. 1317 */ 1318 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 1319 { 1320 struct page *page; 1321 1322 if (!pfn_valid(pfn)) 1323 return NULL; 1324 1325 page = pfn_to_online_page(pfn); 1326 if (!page || page_zone(page) != zone) 1327 return NULL; 1328 1329 BUG_ON(!PageHighMem(page)); 1330 1331 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1332 return NULL; 1333 1334 if (PageReserved(page) || PageOffline(page)) 1335 return NULL; 1336 1337 if (page_is_guard(page)) 1338 return NULL; 1339 1340 return page; 1341 } 1342 1343 /** 1344 * count_highmem_pages - Compute the total number of saveable highmem pages. 1345 */ 1346 static unsigned int count_highmem_pages(void) 1347 { 1348 struct zone *zone; 1349 unsigned int n = 0; 1350 1351 for_each_populated_zone(zone) { 1352 unsigned long pfn, max_zone_pfn; 1353 1354 if (!is_highmem(zone)) 1355 continue; 1356 1357 mark_free_pages(zone); 1358 max_zone_pfn = zone_end_pfn(zone); 1359 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1360 if (saveable_highmem_page(zone, pfn)) 1361 n++; 1362 } 1363 return n; 1364 } 1365 #endif /* CONFIG_HIGHMEM */ 1366 1367 /** 1368 * saveable_page - Check if the given page is saveable. 1369 * 1370 * Determine whether a non-highmem page should be included in a hibernation 1371 * image. 1372 * 1373 * We should save the page if it isn't Nosave, and is not in the range 1374 * of pages statically defined as 'unsaveable', and it isn't part of 1375 * a free chunk of pages. 1376 */ 1377 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 1378 { 1379 struct page *page; 1380 1381 if (!pfn_valid(pfn)) 1382 return NULL; 1383 1384 page = pfn_to_online_page(pfn); 1385 if (!page || page_zone(page) != zone) 1386 return NULL; 1387 1388 BUG_ON(PageHighMem(page)); 1389 1390 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1391 return NULL; 1392 1393 if (PageOffline(page)) 1394 return NULL; 1395 1396 if (PageReserved(page) 1397 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 1398 return NULL; 1399 1400 if (page_is_guard(page)) 1401 return NULL; 1402 1403 return page; 1404 } 1405 1406 /** 1407 * count_data_pages - Compute the total number of saveable non-highmem pages. 1408 */ 1409 static unsigned int count_data_pages(void) 1410 { 1411 struct zone *zone; 1412 unsigned long pfn, max_zone_pfn; 1413 unsigned int n = 0; 1414 1415 for_each_populated_zone(zone) { 1416 if (is_highmem(zone)) 1417 continue; 1418 1419 mark_free_pages(zone); 1420 max_zone_pfn = zone_end_pfn(zone); 1421 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1422 if (saveable_page(zone, pfn)) 1423 n++; 1424 } 1425 return n; 1426 } 1427 1428 /* 1429 * This is needed, because copy_page and memcpy are not usable for copying 1430 * task structs. Returns true if the page was filled with only zeros, 1431 * otherwise false. 1432 */ 1433 static inline bool do_copy_page(long *dst, long *src) 1434 { 1435 long z = 0; 1436 int n; 1437 1438 for (n = PAGE_SIZE / sizeof(long); n; n--) { 1439 z |= *src; 1440 *dst++ = *src++; 1441 } 1442 return !z; 1443 } 1444 1445 /** 1446 * safe_copy_page - Copy a page in a safe way. 1447 * 1448 * Check if the page we are going to copy is marked as present in the kernel 1449 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or 1450 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present() 1451 * always returns 'true'. Returns true if the page was entirely composed of 1452 * zeros, otherwise it will return false. 1453 */ 1454 static bool safe_copy_page(void *dst, struct page *s_page) 1455 { 1456 bool zeros_only; 1457 1458 if (kernel_page_present(s_page)) { 1459 zeros_only = do_copy_page(dst, page_address(s_page)); 1460 } else { 1461 hibernate_map_page(s_page); 1462 zeros_only = do_copy_page(dst, page_address(s_page)); 1463 hibernate_unmap_page(s_page); 1464 } 1465 return zeros_only; 1466 } 1467 1468 #ifdef CONFIG_HIGHMEM 1469 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn) 1470 { 1471 return is_highmem(zone) ? 1472 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 1473 } 1474 1475 static bool copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1476 { 1477 struct page *s_page, *d_page; 1478 void *src, *dst; 1479 bool zeros_only; 1480 1481 s_page = pfn_to_page(src_pfn); 1482 d_page = pfn_to_page(dst_pfn); 1483 if (PageHighMem(s_page)) { 1484 src = kmap_local_page(s_page); 1485 dst = kmap_local_page(d_page); 1486 zeros_only = do_copy_page(dst, src); 1487 kunmap_local(dst); 1488 kunmap_local(src); 1489 } else { 1490 if (PageHighMem(d_page)) { 1491 /* 1492 * The page pointed to by src may contain some kernel 1493 * data modified by kmap_atomic() 1494 */ 1495 zeros_only = safe_copy_page(buffer, s_page); 1496 dst = kmap_local_page(d_page); 1497 copy_page(dst, buffer); 1498 kunmap_local(dst); 1499 } else { 1500 zeros_only = safe_copy_page(page_address(d_page), s_page); 1501 } 1502 } 1503 return zeros_only; 1504 } 1505 #else 1506 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1507 1508 static inline int copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1509 { 1510 return safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1511 pfn_to_page(src_pfn)); 1512 } 1513 #endif /* CONFIG_HIGHMEM */ 1514 1515 /* 1516 * Copy data pages will copy all pages into pages pulled from the copy_bm. 1517 * If a page was entirely filled with zeros it will be marked in the zero_bm. 1518 * 1519 * Returns the number of pages copied. 1520 */ 1521 static unsigned long copy_data_pages(struct memory_bitmap *copy_bm, 1522 struct memory_bitmap *orig_bm, 1523 struct memory_bitmap *zero_bm) 1524 { 1525 unsigned long copied_pages = 0; 1526 struct zone *zone; 1527 unsigned long pfn, copy_pfn; 1528 1529 for_each_populated_zone(zone) { 1530 unsigned long max_zone_pfn; 1531 1532 mark_free_pages(zone); 1533 max_zone_pfn = zone_end_pfn(zone); 1534 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1535 if (page_is_saveable(zone, pfn)) 1536 memory_bm_set_bit(orig_bm, pfn); 1537 } 1538 memory_bm_position_reset(orig_bm); 1539 memory_bm_position_reset(copy_bm); 1540 copy_pfn = memory_bm_next_pfn(copy_bm); 1541 for(;;) { 1542 pfn = memory_bm_next_pfn(orig_bm); 1543 if (unlikely(pfn == BM_END_OF_MAP)) 1544 break; 1545 if (copy_data_page(copy_pfn, pfn)) { 1546 memory_bm_set_bit(zero_bm, pfn); 1547 /* Use this copy_pfn for a page that is not full of zeros */ 1548 continue; 1549 } 1550 copied_pages++; 1551 copy_pfn = memory_bm_next_pfn(copy_bm); 1552 } 1553 return copied_pages; 1554 } 1555 1556 /* Total number of image pages */ 1557 static unsigned int nr_copy_pages; 1558 /* Number of pages needed for saving the original pfns of the image pages */ 1559 static unsigned int nr_meta_pages; 1560 /* Number of zero pages */ 1561 static unsigned int nr_zero_pages; 1562 1563 /* 1564 * Numbers of normal and highmem page frames allocated for hibernation image 1565 * before suspending devices. 1566 */ 1567 static unsigned int alloc_normal, alloc_highmem; 1568 /* 1569 * Memory bitmap used for marking saveable pages (during hibernation) or 1570 * hibernation image pages (during restore) 1571 */ 1572 static struct memory_bitmap orig_bm; 1573 /* 1574 * Memory bitmap used during hibernation for marking allocated page frames that 1575 * will contain copies of saveable pages. During restore it is initially used 1576 * for marking hibernation image pages, but then the set bits from it are 1577 * duplicated in @orig_bm and it is released. On highmem systems it is next 1578 * used for marking "safe" highmem pages, but it has to be reinitialized for 1579 * this purpose. 1580 */ 1581 static struct memory_bitmap copy_bm; 1582 1583 /* Memory bitmap which tracks which saveable pages were zero filled. */ 1584 static struct memory_bitmap zero_bm; 1585 1586 /** 1587 * swsusp_free - Free pages allocated for hibernation image. 1588 * 1589 * Image pages are allocated before snapshot creation, so they need to be 1590 * released after resume. 1591 */ 1592 void swsusp_free(void) 1593 { 1594 unsigned long fb_pfn, fr_pfn; 1595 1596 if (!forbidden_pages_map || !free_pages_map) 1597 goto out; 1598 1599 memory_bm_position_reset(forbidden_pages_map); 1600 memory_bm_position_reset(free_pages_map); 1601 1602 loop: 1603 fr_pfn = memory_bm_next_pfn(free_pages_map); 1604 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1605 1606 /* 1607 * Find the next bit set in both bitmaps. This is guaranteed to 1608 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP. 1609 */ 1610 do { 1611 if (fb_pfn < fr_pfn) 1612 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1613 if (fr_pfn < fb_pfn) 1614 fr_pfn = memory_bm_next_pfn(free_pages_map); 1615 } while (fb_pfn != fr_pfn); 1616 1617 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) { 1618 struct page *page = pfn_to_page(fr_pfn); 1619 1620 memory_bm_clear_current(forbidden_pages_map); 1621 memory_bm_clear_current(free_pages_map); 1622 hibernate_restore_unprotect_page(page_address(page)); 1623 __free_page(page); 1624 goto loop; 1625 } 1626 1627 out: 1628 nr_copy_pages = 0; 1629 nr_meta_pages = 0; 1630 nr_zero_pages = 0; 1631 restore_pblist = NULL; 1632 buffer = NULL; 1633 alloc_normal = 0; 1634 alloc_highmem = 0; 1635 hibernate_restore_protection_end(); 1636 } 1637 1638 /* Helper functions used for the shrinking of memory. */ 1639 1640 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1641 1642 /** 1643 * preallocate_image_pages - Allocate a number of pages for hibernation image. 1644 * @nr_pages: Number of page frames to allocate. 1645 * @mask: GFP flags to use for the allocation. 1646 * 1647 * Return value: Number of page frames actually allocated 1648 */ 1649 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1650 { 1651 unsigned long nr_alloc = 0; 1652 1653 while (nr_pages > 0) { 1654 struct page *page; 1655 1656 page = alloc_image_page(mask); 1657 if (!page) 1658 break; 1659 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1660 if (PageHighMem(page)) 1661 alloc_highmem++; 1662 else 1663 alloc_normal++; 1664 nr_pages--; 1665 nr_alloc++; 1666 } 1667 1668 return nr_alloc; 1669 } 1670 1671 static unsigned long preallocate_image_memory(unsigned long nr_pages, 1672 unsigned long avail_normal) 1673 { 1674 unsigned long alloc; 1675 1676 if (avail_normal <= alloc_normal) 1677 return 0; 1678 1679 alloc = avail_normal - alloc_normal; 1680 if (nr_pages < alloc) 1681 alloc = nr_pages; 1682 1683 return preallocate_image_pages(alloc, GFP_IMAGE); 1684 } 1685 1686 #ifdef CONFIG_HIGHMEM 1687 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1688 { 1689 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1690 } 1691 1692 /** 1693 * __fraction - Compute (an approximation of) x * (multiplier / base). 1694 */ 1695 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1696 { 1697 return div64_u64(x * multiplier, base); 1698 } 1699 1700 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1701 unsigned long highmem, 1702 unsigned long total) 1703 { 1704 unsigned long alloc = __fraction(nr_pages, highmem, total); 1705 1706 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1707 } 1708 #else /* CONFIG_HIGHMEM */ 1709 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1710 { 1711 return 0; 1712 } 1713 1714 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1715 unsigned long highmem, 1716 unsigned long total) 1717 { 1718 return 0; 1719 } 1720 #endif /* CONFIG_HIGHMEM */ 1721 1722 /** 1723 * free_unnecessary_pages - Release preallocated pages not needed for the image. 1724 */ 1725 static unsigned long free_unnecessary_pages(void) 1726 { 1727 unsigned long save, to_free_normal, to_free_highmem, free; 1728 1729 save = count_data_pages(); 1730 if (alloc_normal >= save) { 1731 to_free_normal = alloc_normal - save; 1732 save = 0; 1733 } else { 1734 to_free_normal = 0; 1735 save -= alloc_normal; 1736 } 1737 save += count_highmem_pages(); 1738 if (alloc_highmem >= save) { 1739 to_free_highmem = alloc_highmem - save; 1740 } else { 1741 to_free_highmem = 0; 1742 save -= alloc_highmem; 1743 if (to_free_normal > save) 1744 to_free_normal -= save; 1745 else 1746 to_free_normal = 0; 1747 } 1748 free = to_free_normal + to_free_highmem; 1749 1750 memory_bm_position_reset(©_bm); 1751 1752 while (to_free_normal > 0 || to_free_highmem > 0) { 1753 unsigned long pfn = memory_bm_next_pfn(©_bm); 1754 struct page *page = pfn_to_page(pfn); 1755 1756 if (PageHighMem(page)) { 1757 if (!to_free_highmem) 1758 continue; 1759 to_free_highmem--; 1760 alloc_highmem--; 1761 } else { 1762 if (!to_free_normal) 1763 continue; 1764 to_free_normal--; 1765 alloc_normal--; 1766 } 1767 memory_bm_clear_bit(©_bm, pfn); 1768 swsusp_unset_page_forbidden(page); 1769 swsusp_unset_page_free(page); 1770 __free_page(page); 1771 } 1772 1773 return free; 1774 } 1775 1776 /** 1777 * minimum_image_size - Estimate the minimum acceptable size of an image. 1778 * @saveable: Number of saveable pages in the system. 1779 * 1780 * We want to avoid attempting to free too much memory too hard, so estimate the 1781 * minimum acceptable size of a hibernation image to use as the lower limit for 1782 * preallocating memory. 1783 * 1784 * We assume that the minimum image size should be proportional to 1785 * 1786 * [number of saveable pages] - [number of pages that can be freed in theory] 1787 * 1788 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1789 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages. 1790 */ 1791 static unsigned long minimum_image_size(unsigned long saveable) 1792 { 1793 unsigned long size; 1794 1795 size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) 1796 + global_node_page_state(NR_ACTIVE_ANON) 1797 + global_node_page_state(NR_INACTIVE_ANON) 1798 + global_node_page_state(NR_ACTIVE_FILE) 1799 + global_node_page_state(NR_INACTIVE_FILE); 1800 1801 return saveable <= size ? 0 : saveable - size; 1802 } 1803 1804 /** 1805 * hibernate_preallocate_memory - Preallocate memory for hibernation image. 1806 * 1807 * To create a hibernation image it is necessary to make a copy of every page 1808 * frame in use. We also need a number of page frames to be free during 1809 * hibernation for allocations made while saving the image and for device 1810 * drivers, in case they need to allocate memory from their hibernation 1811 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough 1812 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through 1813 * /sys/power/reserved_size, respectively). To make this happen, we compute the 1814 * total number of available page frames and allocate at least 1815 * 1816 * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2 1817 * - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) 1818 * 1819 * of them, which corresponds to the maximum size of a hibernation image. 1820 * 1821 * If image_size is set below the number following from the above formula, 1822 * the preallocation of memory is continued until the total number of saveable 1823 * pages in the system is below the requested image size or the minimum 1824 * acceptable image size returned by minimum_image_size(), whichever is greater. 1825 */ 1826 int hibernate_preallocate_memory(void) 1827 { 1828 struct zone *zone; 1829 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1830 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1831 ktime_t start, stop; 1832 int error; 1833 1834 pr_info("Preallocating image memory\n"); 1835 start = ktime_get(); 1836 1837 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1838 if (error) { 1839 pr_err("Cannot allocate original bitmap\n"); 1840 goto err_out; 1841 } 1842 1843 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1844 if (error) { 1845 pr_err("Cannot allocate copy bitmap\n"); 1846 goto err_out; 1847 } 1848 1849 error = memory_bm_create(&zero_bm, GFP_IMAGE, PG_ANY); 1850 if (error) { 1851 pr_err("Cannot allocate zero bitmap\n"); 1852 goto err_out; 1853 } 1854 1855 alloc_normal = 0; 1856 alloc_highmem = 0; 1857 nr_zero_pages = 0; 1858 1859 /* Count the number of saveable data pages. */ 1860 save_highmem = count_highmem_pages(); 1861 saveable = count_data_pages(); 1862 1863 /* 1864 * Compute the total number of page frames we can use (count) and the 1865 * number of pages needed for image metadata (size). 1866 */ 1867 count = saveable; 1868 saveable += save_highmem; 1869 highmem = save_highmem; 1870 size = 0; 1871 for_each_populated_zone(zone) { 1872 size += snapshot_additional_pages(zone); 1873 if (is_highmem(zone)) 1874 highmem += zone_page_state(zone, NR_FREE_PAGES); 1875 else 1876 count += zone_page_state(zone, NR_FREE_PAGES); 1877 } 1878 avail_normal = count; 1879 count += highmem; 1880 count -= totalreserve_pages; 1881 1882 /* Compute the maximum number of saveable pages to leave in memory. */ 1883 max_size = (count - (size + PAGES_FOR_IO)) / 2 1884 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); 1885 /* Compute the desired number of image pages specified by image_size. */ 1886 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1887 if (size > max_size) 1888 size = max_size; 1889 /* 1890 * If the desired number of image pages is at least as large as the 1891 * current number of saveable pages in memory, allocate page frames for 1892 * the image and we're done. 1893 */ 1894 if (size >= saveable) { 1895 pages = preallocate_image_highmem(save_highmem); 1896 pages += preallocate_image_memory(saveable - pages, avail_normal); 1897 goto out; 1898 } 1899 1900 /* Estimate the minimum size of the image. */ 1901 pages = minimum_image_size(saveable); 1902 /* 1903 * To avoid excessive pressure on the normal zone, leave room in it to 1904 * accommodate an image of the minimum size (unless it's already too 1905 * small, in which case don't preallocate pages from it at all). 1906 */ 1907 if (avail_normal > pages) 1908 avail_normal -= pages; 1909 else 1910 avail_normal = 0; 1911 if (size < pages) 1912 size = min_t(unsigned long, pages, max_size); 1913 1914 /* 1915 * Let the memory management subsystem know that we're going to need a 1916 * large number of page frames to allocate and make it free some memory. 1917 * NOTE: If this is not done, performance will be hurt badly in some 1918 * test cases. 1919 */ 1920 shrink_all_memory(saveable - size); 1921 1922 /* 1923 * The number of saveable pages in memory was too high, so apply some 1924 * pressure to decrease it. First, make room for the largest possible 1925 * image and fail if that doesn't work. Next, try to decrease the size 1926 * of the image as much as indicated by 'size' using allocations from 1927 * highmem and non-highmem zones separately. 1928 */ 1929 pages_highmem = preallocate_image_highmem(highmem / 2); 1930 alloc = count - max_size; 1931 if (alloc > pages_highmem) 1932 alloc -= pages_highmem; 1933 else 1934 alloc = 0; 1935 pages = preallocate_image_memory(alloc, avail_normal); 1936 if (pages < alloc) { 1937 /* We have exhausted non-highmem pages, try highmem. */ 1938 alloc -= pages; 1939 pages += pages_highmem; 1940 pages_highmem = preallocate_image_highmem(alloc); 1941 if (pages_highmem < alloc) { 1942 pr_err("Image allocation is %lu pages short\n", 1943 alloc - pages_highmem); 1944 goto err_out; 1945 } 1946 pages += pages_highmem; 1947 /* 1948 * size is the desired number of saveable pages to leave in 1949 * memory, so try to preallocate (all memory - size) pages. 1950 */ 1951 alloc = (count - pages) - size; 1952 pages += preallocate_image_highmem(alloc); 1953 } else { 1954 /* 1955 * There are approximately max_size saveable pages at this point 1956 * and we want to reduce this number down to size. 1957 */ 1958 alloc = max_size - size; 1959 size = preallocate_highmem_fraction(alloc, highmem, count); 1960 pages_highmem += size; 1961 alloc -= size; 1962 size = preallocate_image_memory(alloc, avail_normal); 1963 pages_highmem += preallocate_image_highmem(alloc - size); 1964 pages += pages_highmem + size; 1965 } 1966 1967 /* 1968 * We only need as many page frames for the image as there are saveable 1969 * pages in memory, but we have allocated more. Release the excessive 1970 * ones now. 1971 */ 1972 pages -= free_unnecessary_pages(); 1973 1974 out: 1975 stop = ktime_get(); 1976 pr_info("Allocated %lu pages for snapshot\n", pages); 1977 swsusp_show_speed(start, stop, pages, "Allocated"); 1978 1979 return 0; 1980 1981 err_out: 1982 swsusp_free(); 1983 return -ENOMEM; 1984 } 1985 1986 #ifdef CONFIG_HIGHMEM 1987 /** 1988 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem. 1989 * 1990 * Compute the number of non-highmem pages that will be necessary for creating 1991 * copies of highmem pages. 1992 */ 1993 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1994 { 1995 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1996 1997 if (free_highmem >= nr_highmem) 1998 nr_highmem = 0; 1999 else 2000 nr_highmem -= free_highmem; 2001 2002 return nr_highmem; 2003 } 2004 #else 2005 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 2006 #endif /* CONFIG_HIGHMEM */ 2007 2008 /** 2009 * enough_free_mem - Check if there is enough free memory for the image. 2010 */ 2011 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 2012 { 2013 struct zone *zone; 2014 unsigned int free = alloc_normal; 2015 2016 for_each_populated_zone(zone) 2017 if (!is_highmem(zone)) 2018 free += zone_page_state(zone, NR_FREE_PAGES); 2019 2020 nr_pages += count_pages_for_highmem(nr_highmem); 2021 pr_debug("Normal pages needed: %u + %u, available pages: %u\n", 2022 nr_pages, PAGES_FOR_IO, free); 2023 2024 return free > nr_pages + PAGES_FOR_IO; 2025 } 2026 2027 #ifdef CONFIG_HIGHMEM 2028 /** 2029 * get_highmem_buffer - Allocate a buffer for highmem pages. 2030 * 2031 * If there are some highmem pages in the hibernation image, we may need a 2032 * buffer to copy them and/or load their data. 2033 */ 2034 static inline int get_highmem_buffer(int safe_needed) 2035 { 2036 buffer = get_image_page(GFP_ATOMIC, safe_needed); 2037 return buffer ? 0 : -ENOMEM; 2038 } 2039 2040 /** 2041 * alloc_highmem_pages - Allocate some highmem pages for the image. 2042 * 2043 * Try to allocate as many pages as needed, but if the number of free highmem 2044 * pages is less than that, allocate them all. 2045 */ 2046 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 2047 unsigned int nr_highmem) 2048 { 2049 unsigned int to_alloc = count_free_highmem_pages(); 2050 2051 if (to_alloc > nr_highmem) 2052 to_alloc = nr_highmem; 2053 2054 nr_highmem -= to_alloc; 2055 while (to_alloc-- > 0) { 2056 struct page *page; 2057 2058 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM); 2059 memory_bm_set_bit(bm, page_to_pfn(page)); 2060 } 2061 return nr_highmem; 2062 } 2063 #else 2064 static inline int get_highmem_buffer(int safe_needed) { return 0; } 2065 2066 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 2067 unsigned int n) { return 0; } 2068 #endif /* CONFIG_HIGHMEM */ 2069 2070 /** 2071 * swsusp_alloc - Allocate memory for hibernation image. 2072 * 2073 * We first try to allocate as many highmem pages as there are 2074 * saveable highmem pages in the system. If that fails, we allocate 2075 * non-highmem pages for the copies of the remaining highmem ones. 2076 * 2077 * In this approach it is likely that the copies of highmem pages will 2078 * also be located in the high memory, because of the way in which 2079 * copy_data_pages() works. 2080 */ 2081 static int swsusp_alloc(struct memory_bitmap *copy_bm, 2082 unsigned int nr_pages, unsigned int nr_highmem) 2083 { 2084 if (nr_highmem > 0) { 2085 if (get_highmem_buffer(PG_ANY)) 2086 goto err_out; 2087 if (nr_highmem > alloc_highmem) { 2088 nr_highmem -= alloc_highmem; 2089 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 2090 } 2091 } 2092 if (nr_pages > alloc_normal) { 2093 nr_pages -= alloc_normal; 2094 while (nr_pages-- > 0) { 2095 struct page *page; 2096 2097 page = alloc_image_page(GFP_ATOMIC); 2098 if (!page) 2099 goto err_out; 2100 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 2101 } 2102 } 2103 2104 return 0; 2105 2106 err_out: 2107 swsusp_free(); 2108 return -ENOMEM; 2109 } 2110 2111 asmlinkage __visible int swsusp_save(void) 2112 { 2113 unsigned int nr_pages, nr_highmem; 2114 2115 pr_info("Creating image:\n"); 2116 2117 drain_local_pages(NULL); 2118 nr_pages = count_data_pages(); 2119 nr_highmem = count_highmem_pages(); 2120 pr_info("Need to copy %u pages\n", nr_pages + nr_highmem); 2121 2122 if (!enough_free_mem(nr_pages, nr_highmem)) { 2123 pr_err("Not enough free memory\n"); 2124 return -ENOMEM; 2125 } 2126 2127 if (swsusp_alloc(©_bm, nr_pages, nr_highmem)) { 2128 pr_err("Memory allocation failed\n"); 2129 return -ENOMEM; 2130 } 2131 2132 /* 2133 * During allocating of suspend pagedir, new cold pages may appear. 2134 * Kill them. 2135 */ 2136 drain_local_pages(NULL); 2137 nr_copy_pages = copy_data_pages(©_bm, &orig_bm, &zero_bm); 2138 2139 /* 2140 * End of critical section. From now on, we can write to memory, 2141 * but we should not touch disk. This specially means we must _not_ 2142 * touch swap space! Except we must write out our image of course. 2143 */ 2144 nr_pages += nr_highmem; 2145 /* We don't actually copy the zero pages */ 2146 nr_zero_pages = nr_pages - nr_copy_pages; 2147 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 2148 2149 pr_info("Image created (%d pages copied, %d zero pages)\n", nr_copy_pages, nr_zero_pages); 2150 2151 return 0; 2152 } 2153 2154 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 2155 static int init_header_complete(struct swsusp_info *info) 2156 { 2157 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 2158 info->version_code = LINUX_VERSION_CODE; 2159 return 0; 2160 } 2161 2162 static const char *check_image_kernel(struct swsusp_info *info) 2163 { 2164 if (info->version_code != LINUX_VERSION_CODE) 2165 return "kernel version"; 2166 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 2167 return "system type"; 2168 if (strcmp(info->uts.release,init_utsname()->release)) 2169 return "kernel release"; 2170 if (strcmp(info->uts.version,init_utsname()->version)) 2171 return "version"; 2172 if (strcmp(info->uts.machine,init_utsname()->machine)) 2173 return "machine"; 2174 return NULL; 2175 } 2176 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 2177 2178 unsigned long snapshot_get_image_size(void) 2179 { 2180 return nr_copy_pages + nr_meta_pages + 1; 2181 } 2182 2183 static int init_header(struct swsusp_info *info) 2184 { 2185 memset(info, 0, sizeof(struct swsusp_info)); 2186 info->num_physpages = get_num_physpages(); 2187 info->image_pages = nr_copy_pages; 2188 info->pages = snapshot_get_image_size(); 2189 info->size = info->pages; 2190 info->size <<= PAGE_SHIFT; 2191 return init_header_complete(info); 2192 } 2193 2194 #define ENCODED_PFN_ZERO_FLAG ((unsigned long)1 << (BITS_PER_LONG - 1)) 2195 #define ENCODED_PFN_MASK (~ENCODED_PFN_ZERO_FLAG) 2196 2197 /** 2198 * pack_pfns - Prepare PFNs for saving. 2199 * @bm: Memory bitmap. 2200 * @buf: Memory buffer to store the PFNs in. 2201 * @zero_bm: Memory bitmap containing PFNs of zero pages. 2202 * 2203 * PFNs corresponding to set bits in @bm are stored in the area of memory 2204 * pointed to by @buf (1 page at a time). Pages which were filled with only 2205 * zeros will have the highest bit set in the packed format to distinguish 2206 * them from PFNs which will be contained in the image file. 2207 */ 2208 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm, 2209 struct memory_bitmap *zero_bm) 2210 { 2211 int j; 2212 2213 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2214 buf[j] = memory_bm_next_pfn(bm); 2215 if (unlikely(buf[j] == BM_END_OF_MAP)) 2216 break; 2217 if (memory_bm_test_bit(zero_bm, buf[j])) 2218 buf[j] |= ENCODED_PFN_ZERO_FLAG; 2219 } 2220 } 2221 2222 /** 2223 * snapshot_read_next - Get the address to read the next image page from. 2224 * @handle: Snapshot handle to be used for the reading. 2225 * 2226 * On the first call, @handle should point to a zeroed snapshot_handle 2227 * structure. The structure gets populated then and a pointer to it should be 2228 * passed to this function every next time. 2229 * 2230 * On success, the function returns a positive number. Then, the caller 2231 * is allowed to read up to the returned number of bytes from the memory 2232 * location computed by the data_of() macro. 2233 * 2234 * The function returns 0 to indicate the end of the data stream condition, 2235 * and negative numbers are returned on errors. If that happens, the structure 2236 * pointed to by @handle is not updated and should not be used any more. 2237 */ 2238 int snapshot_read_next(struct snapshot_handle *handle) 2239 { 2240 if (handle->cur > nr_meta_pages + nr_copy_pages) 2241 return 0; 2242 2243 if (!buffer) { 2244 /* This makes the buffer be freed by swsusp_free() */ 2245 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2246 if (!buffer) 2247 return -ENOMEM; 2248 } 2249 if (!handle->cur) { 2250 int error; 2251 2252 error = init_header((struct swsusp_info *)buffer); 2253 if (error) 2254 return error; 2255 handle->buffer = buffer; 2256 memory_bm_position_reset(&orig_bm); 2257 memory_bm_position_reset(©_bm); 2258 } else if (handle->cur <= nr_meta_pages) { 2259 clear_page(buffer); 2260 pack_pfns(buffer, &orig_bm, &zero_bm); 2261 } else { 2262 struct page *page; 2263 2264 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 2265 if (PageHighMem(page)) { 2266 /* 2267 * Highmem pages are copied to the buffer, 2268 * because we can't return with a kmapped 2269 * highmem page (we may not be called again). 2270 */ 2271 void *kaddr; 2272 2273 kaddr = kmap_atomic(page); 2274 copy_page(buffer, kaddr); 2275 kunmap_atomic(kaddr); 2276 handle->buffer = buffer; 2277 } else { 2278 handle->buffer = page_address(page); 2279 } 2280 } 2281 handle->cur++; 2282 return PAGE_SIZE; 2283 } 2284 2285 static void duplicate_memory_bitmap(struct memory_bitmap *dst, 2286 struct memory_bitmap *src) 2287 { 2288 unsigned long pfn; 2289 2290 memory_bm_position_reset(src); 2291 pfn = memory_bm_next_pfn(src); 2292 while (pfn != BM_END_OF_MAP) { 2293 memory_bm_set_bit(dst, pfn); 2294 pfn = memory_bm_next_pfn(src); 2295 } 2296 } 2297 2298 /** 2299 * mark_unsafe_pages - Mark pages that were used before hibernation. 2300 * 2301 * Mark the pages that cannot be used for storing the image during restoration, 2302 * because they conflict with the pages that had been used before hibernation. 2303 */ 2304 static void mark_unsafe_pages(struct memory_bitmap *bm) 2305 { 2306 unsigned long pfn; 2307 2308 /* Clear the "free"/"unsafe" bit for all PFNs */ 2309 memory_bm_position_reset(free_pages_map); 2310 pfn = memory_bm_next_pfn(free_pages_map); 2311 while (pfn != BM_END_OF_MAP) { 2312 memory_bm_clear_current(free_pages_map); 2313 pfn = memory_bm_next_pfn(free_pages_map); 2314 } 2315 2316 /* Mark pages that correspond to the "original" PFNs as "unsafe" */ 2317 duplicate_memory_bitmap(free_pages_map, bm); 2318 2319 allocated_unsafe_pages = 0; 2320 } 2321 2322 static int check_header(struct swsusp_info *info) 2323 { 2324 const char *reason; 2325 2326 reason = check_image_kernel(info); 2327 if (!reason && info->num_physpages != get_num_physpages()) 2328 reason = "memory size"; 2329 if (reason) { 2330 pr_err("Image mismatch: %s\n", reason); 2331 return -EPERM; 2332 } 2333 return 0; 2334 } 2335 2336 /** 2337 * load_header - Check the image header and copy the data from it. 2338 */ 2339 static int load_header(struct swsusp_info *info) 2340 { 2341 int error; 2342 2343 restore_pblist = NULL; 2344 error = check_header(info); 2345 if (!error) { 2346 nr_copy_pages = info->image_pages; 2347 nr_meta_pages = info->pages - info->image_pages - 1; 2348 } 2349 return error; 2350 } 2351 2352 /** 2353 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap. 2354 * @bm: Memory bitmap. 2355 * @buf: Area of memory containing the PFNs. 2356 * @zero_bm: Memory bitmap with the zero PFNs marked. 2357 * 2358 * For each element of the array pointed to by @buf (1 page at a time), set the 2359 * corresponding bit in @bm. If the page was originally populated with only 2360 * zeros then a corresponding bit will also be set in @zero_bm. 2361 */ 2362 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm, 2363 struct memory_bitmap *zero_bm) 2364 { 2365 unsigned long decoded_pfn; 2366 bool zero; 2367 int j; 2368 2369 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2370 if (unlikely(buf[j] == BM_END_OF_MAP)) 2371 break; 2372 2373 zero = !!(buf[j] & ENCODED_PFN_ZERO_FLAG); 2374 decoded_pfn = buf[j] & ENCODED_PFN_MASK; 2375 if (pfn_valid(decoded_pfn) && memory_bm_pfn_present(bm, decoded_pfn)) { 2376 memory_bm_set_bit(bm, decoded_pfn); 2377 if (zero) { 2378 memory_bm_set_bit(zero_bm, decoded_pfn); 2379 nr_zero_pages++; 2380 } 2381 } else { 2382 if (!pfn_valid(decoded_pfn)) 2383 pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n", 2384 (unsigned long long)PFN_PHYS(decoded_pfn)); 2385 return -EFAULT; 2386 } 2387 } 2388 2389 return 0; 2390 } 2391 2392 #ifdef CONFIG_HIGHMEM 2393 /* 2394 * struct highmem_pbe is used for creating the list of highmem pages that 2395 * should be restored atomically during the resume from disk, because the page 2396 * frames they have occupied before the suspend are in use. 2397 */ 2398 struct highmem_pbe { 2399 struct page *copy_page; /* data is here now */ 2400 struct page *orig_page; /* data was here before the suspend */ 2401 struct highmem_pbe *next; 2402 }; 2403 2404 /* 2405 * List of highmem PBEs needed for restoring the highmem pages that were 2406 * allocated before the suspend and included in the suspend image, but have 2407 * also been allocated by the "resume" kernel, so their contents cannot be 2408 * written directly to their "original" page frames. 2409 */ 2410 static struct highmem_pbe *highmem_pblist; 2411 2412 /** 2413 * count_highmem_image_pages - Compute the number of highmem pages in the image. 2414 * @bm: Memory bitmap. 2415 * 2416 * The bits in @bm that correspond to image pages are assumed to be set. 2417 */ 2418 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 2419 { 2420 unsigned long pfn; 2421 unsigned int cnt = 0; 2422 2423 memory_bm_position_reset(bm); 2424 pfn = memory_bm_next_pfn(bm); 2425 while (pfn != BM_END_OF_MAP) { 2426 if (PageHighMem(pfn_to_page(pfn))) 2427 cnt++; 2428 2429 pfn = memory_bm_next_pfn(bm); 2430 } 2431 return cnt; 2432 } 2433 2434 static unsigned int safe_highmem_pages; 2435 2436 static struct memory_bitmap *safe_highmem_bm; 2437 2438 /** 2439 * prepare_highmem_image - Allocate memory for loading highmem data from image. 2440 * @bm: Pointer to an uninitialized memory bitmap structure. 2441 * @nr_highmem_p: Pointer to the number of highmem image pages. 2442 * 2443 * Try to allocate as many highmem pages as there are highmem image pages 2444 * (@nr_highmem_p points to the variable containing the number of highmem image 2445 * pages). The pages that are "safe" (ie. will not be overwritten when the 2446 * hibernation image is restored entirely) have the corresponding bits set in 2447 * @bm (it must be uninitialized). 2448 * 2449 * NOTE: This function should not be called if there are no highmem image pages. 2450 */ 2451 static int prepare_highmem_image(struct memory_bitmap *bm, 2452 unsigned int *nr_highmem_p) 2453 { 2454 unsigned int to_alloc; 2455 2456 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 2457 return -ENOMEM; 2458 2459 if (get_highmem_buffer(PG_SAFE)) 2460 return -ENOMEM; 2461 2462 to_alloc = count_free_highmem_pages(); 2463 if (to_alloc > *nr_highmem_p) 2464 to_alloc = *nr_highmem_p; 2465 else 2466 *nr_highmem_p = to_alloc; 2467 2468 safe_highmem_pages = 0; 2469 while (to_alloc-- > 0) { 2470 struct page *page; 2471 2472 page = alloc_page(__GFP_HIGHMEM); 2473 if (!swsusp_page_is_free(page)) { 2474 /* The page is "safe", set its bit the bitmap */ 2475 memory_bm_set_bit(bm, page_to_pfn(page)); 2476 safe_highmem_pages++; 2477 } 2478 /* Mark the page as allocated */ 2479 swsusp_set_page_forbidden(page); 2480 swsusp_set_page_free(page); 2481 } 2482 memory_bm_position_reset(bm); 2483 safe_highmem_bm = bm; 2484 return 0; 2485 } 2486 2487 static struct page *last_highmem_page; 2488 2489 /** 2490 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page. 2491 * 2492 * For a given highmem image page get a buffer that suspend_write_next() should 2493 * return to its caller to write to. 2494 * 2495 * If the page is to be saved to its "original" page frame or a copy of 2496 * the page is to be made in the highmem, @buffer is returned. Otherwise, 2497 * the copy of the page is to be made in normal memory, so the address of 2498 * the copy is returned. 2499 * 2500 * If @buffer is returned, the caller of suspend_write_next() will write 2501 * the page's contents to @buffer, so they will have to be copied to the 2502 * right location on the next call to suspend_write_next() and it is done 2503 * with the help of copy_last_highmem_page(). For this purpose, if 2504 * @buffer is returned, @last_highmem_page is set to the page to which 2505 * the data will have to be copied from @buffer. 2506 */ 2507 static void *get_highmem_page_buffer(struct page *page, 2508 struct chain_allocator *ca) 2509 { 2510 struct highmem_pbe *pbe; 2511 void *kaddr; 2512 2513 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 2514 /* 2515 * We have allocated the "original" page frame and we can 2516 * use it directly to store the loaded page. 2517 */ 2518 last_highmem_page = page; 2519 return buffer; 2520 } 2521 /* 2522 * The "original" page frame has not been allocated and we have to 2523 * use a "safe" page frame to store the loaded page. 2524 */ 2525 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 2526 if (!pbe) { 2527 swsusp_free(); 2528 return ERR_PTR(-ENOMEM); 2529 } 2530 pbe->orig_page = page; 2531 if (safe_highmem_pages > 0) { 2532 struct page *tmp; 2533 2534 /* Copy of the page will be stored in high memory */ 2535 kaddr = buffer; 2536 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 2537 safe_highmem_pages--; 2538 last_highmem_page = tmp; 2539 pbe->copy_page = tmp; 2540 } else { 2541 /* Copy of the page will be stored in normal memory */ 2542 kaddr = __get_safe_page(ca->gfp_mask); 2543 if (!kaddr) 2544 return ERR_PTR(-ENOMEM); 2545 pbe->copy_page = virt_to_page(kaddr); 2546 } 2547 pbe->next = highmem_pblist; 2548 highmem_pblist = pbe; 2549 return kaddr; 2550 } 2551 2552 /** 2553 * copy_last_highmem_page - Copy most the most recent highmem image page. 2554 * 2555 * Copy the contents of a highmem image from @buffer, where the caller of 2556 * snapshot_write_next() has stored them, to the right location represented by 2557 * @last_highmem_page . 2558 */ 2559 static void copy_last_highmem_page(void) 2560 { 2561 if (last_highmem_page) { 2562 void *dst; 2563 2564 dst = kmap_atomic(last_highmem_page); 2565 copy_page(dst, buffer); 2566 kunmap_atomic(dst); 2567 last_highmem_page = NULL; 2568 } 2569 } 2570 2571 static inline int last_highmem_page_copied(void) 2572 { 2573 return !last_highmem_page; 2574 } 2575 2576 static inline void free_highmem_data(void) 2577 { 2578 if (safe_highmem_bm) 2579 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 2580 2581 if (buffer) 2582 free_image_page(buffer, PG_UNSAFE_CLEAR); 2583 } 2584 #else 2585 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 2586 2587 static inline int prepare_highmem_image(struct memory_bitmap *bm, 2588 unsigned int *nr_highmem_p) { return 0; } 2589 2590 static inline void *get_highmem_page_buffer(struct page *page, 2591 struct chain_allocator *ca) 2592 { 2593 return ERR_PTR(-EINVAL); 2594 } 2595 2596 static inline void copy_last_highmem_page(void) {} 2597 static inline int last_highmem_page_copied(void) { return 1; } 2598 static inline void free_highmem_data(void) {} 2599 #endif /* CONFIG_HIGHMEM */ 2600 2601 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2602 2603 /** 2604 * prepare_image - Make room for loading hibernation image. 2605 * @new_bm: Uninitialized memory bitmap structure. 2606 * @bm: Memory bitmap with unsafe pages marked. 2607 * @zero_bm: Memory bitmap containing the zero pages. 2608 * 2609 * Use @bm to mark the pages that will be overwritten in the process of 2610 * restoring the system memory state from the suspend image ("unsafe" pages) 2611 * and allocate memory for the image. 2612 * 2613 * The idea is to allocate a new memory bitmap first and then allocate 2614 * as many pages as needed for image data, but without specifying what those 2615 * pages will be used for just yet. Instead, we mark them all as allocated and 2616 * create a lists of "safe" pages to be used later. On systems with high 2617 * memory a list of "safe" highmem pages is created too. 2618 * 2619 * Because it was not known which pages were unsafe when @zero_bm was created, 2620 * make a copy of it and recreate it within safe pages. 2621 */ 2622 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm, 2623 struct memory_bitmap *zero_bm) 2624 { 2625 unsigned int nr_pages, nr_highmem; 2626 struct memory_bitmap tmp; 2627 struct linked_page *lp; 2628 int error; 2629 2630 /* If there is no highmem, the buffer will not be necessary */ 2631 free_image_page(buffer, PG_UNSAFE_CLEAR); 2632 buffer = NULL; 2633 2634 nr_highmem = count_highmem_image_pages(bm); 2635 mark_unsafe_pages(bm); 2636 2637 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2638 if (error) 2639 goto Free; 2640 2641 duplicate_memory_bitmap(new_bm, bm); 2642 memory_bm_free(bm, PG_UNSAFE_KEEP); 2643 2644 /* Make a copy of zero_bm so it can be created in safe pages */ 2645 error = memory_bm_create(&tmp, GFP_ATOMIC, PG_SAFE); 2646 if (error) 2647 goto Free; 2648 2649 duplicate_memory_bitmap(&tmp, zero_bm); 2650 memory_bm_free(zero_bm, PG_UNSAFE_KEEP); 2651 2652 /* Recreate zero_bm in safe pages */ 2653 error = memory_bm_create(zero_bm, GFP_ATOMIC, PG_SAFE); 2654 if (error) 2655 goto Free; 2656 2657 duplicate_memory_bitmap(zero_bm, &tmp); 2658 memory_bm_free(&tmp, PG_UNSAFE_CLEAR); 2659 /* At this point zero_bm is in safe pages and it can be used for restoring. */ 2660 2661 if (nr_highmem > 0) { 2662 error = prepare_highmem_image(bm, &nr_highmem); 2663 if (error) 2664 goto Free; 2665 } 2666 /* 2667 * Reserve some safe pages for potential later use. 2668 * 2669 * NOTE: This way we make sure there will be enough safe pages for the 2670 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2671 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2672 * 2673 * nr_copy_pages cannot be less than allocated_unsafe_pages too. 2674 */ 2675 nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages; 2676 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2677 while (nr_pages > 0) { 2678 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2679 if (!lp) { 2680 error = -ENOMEM; 2681 goto Free; 2682 } 2683 lp->next = safe_pages_list; 2684 safe_pages_list = lp; 2685 nr_pages--; 2686 } 2687 /* Preallocate memory for the image */ 2688 nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages; 2689 while (nr_pages > 0) { 2690 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2691 if (!lp) { 2692 error = -ENOMEM; 2693 goto Free; 2694 } 2695 if (!swsusp_page_is_free(virt_to_page(lp))) { 2696 /* The page is "safe", add it to the list */ 2697 lp->next = safe_pages_list; 2698 safe_pages_list = lp; 2699 } 2700 /* Mark the page as allocated */ 2701 swsusp_set_page_forbidden(virt_to_page(lp)); 2702 swsusp_set_page_free(virt_to_page(lp)); 2703 nr_pages--; 2704 } 2705 return 0; 2706 2707 Free: 2708 swsusp_free(); 2709 return error; 2710 } 2711 2712 /** 2713 * get_buffer - Get the address to store the next image data page. 2714 * 2715 * Get the address that snapshot_write_next() should return to its caller to 2716 * write to. 2717 */ 2718 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2719 { 2720 struct pbe *pbe; 2721 struct page *page; 2722 unsigned long pfn = memory_bm_next_pfn(bm); 2723 2724 if (pfn == BM_END_OF_MAP) 2725 return ERR_PTR(-EFAULT); 2726 2727 page = pfn_to_page(pfn); 2728 if (PageHighMem(page)) 2729 return get_highmem_page_buffer(page, ca); 2730 2731 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2732 /* 2733 * We have allocated the "original" page frame and we can 2734 * use it directly to store the loaded page. 2735 */ 2736 return page_address(page); 2737 2738 /* 2739 * The "original" page frame has not been allocated and we have to 2740 * use a "safe" page frame to store the loaded page. 2741 */ 2742 pbe = chain_alloc(ca, sizeof(struct pbe)); 2743 if (!pbe) { 2744 swsusp_free(); 2745 return ERR_PTR(-ENOMEM); 2746 } 2747 pbe->orig_address = page_address(page); 2748 pbe->address = __get_safe_page(ca->gfp_mask); 2749 if (!pbe->address) 2750 return ERR_PTR(-ENOMEM); 2751 pbe->next = restore_pblist; 2752 restore_pblist = pbe; 2753 return pbe->address; 2754 } 2755 2756 /** 2757 * snapshot_write_next - Get the address to store the next image page. 2758 * @handle: Snapshot handle structure to guide the writing. 2759 * 2760 * On the first call, @handle should point to a zeroed snapshot_handle 2761 * structure. The structure gets populated then and a pointer to it should be 2762 * passed to this function every next time. 2763 * 2764 * On success, the function returns a positive number. Then, the caller 2765 * is allowed to write up to the returned number of bytes to the memory 2766 * location computed by the data_of() macro. 2767 * 2768 * The function returns 0 to indicate the "end of file" condition. Negative 2769 * numbers are returned on errors, in which cases the structure pointed to by 2770 * @handle is not updated and should not be used any more. 2771 */ 2772 int snapshot_write_next(struct snapshot_handle *handle) 2773 { 2774 static struct chain_allocator ca; 2775 int error; 2776 2777 next: 2778 /* Check if we have already loaded the entire image */ 2779 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages) 2780 return 0; 2781 2782 if (!handle->cur) { 2783 if (!buffer) 2784 /* This makes the buffer be freed by swsusp_free() */ 2785 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2786 2787 if (!buffer) 2788 return -ENOMEM; 2789 2790 handle->buffer = buffer; 2791 } else if (handle->cur == 1) { 2792 error = load_header(buffer); 2793 if (error) 2794 return error; 2795 2796 safe_pages_list = NULL; 2797 2798 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2799 if (error) 2800 return error; 2801 2802 error = memory_bm_create(&zero_bm, GFP_ATOMIC, PG_ANY); 2803 if (error) 2804 return error; 2805 2806 nr_zero_pages = 0; 2807 2808 hibernate_restore_protection_begin(); 2809 } else if (handle->cur <= nr_meta_pages + 1) { 2810 error = unpack_orig_pfns(buffer, ©_bm, &zero_bm); 2811 if (error) 2812 return error; 2813 2814 if (handle->cur == nr_meta_pages + 1) { 2815 error = prepare_image(&orig_bm, ©_bm, &zero_bm); 2816 if (error) 2817 return error; 2818 2819 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2820 memory_bm_position_reset(&orig_bm); 2821 memory_bm_position_reset(&zero_bm); 2822 restore_pblist = NULL; 2823 handle->buffer = get_buffer(&orig_bm, &ca); 2824 if (IS_ERR(handle->buffer)) 2825 return PTR_ERR(handle->buffer); 2826 } 2827 } else { 2828 copy_last_highmem_page(); 2829 error = hibernate_restore_protect_page(handle->buffer); 2830 if (error) 2831 return error; 2832 handle->buffer = get_buffer(&orig_bm, &ca); 2833 if (IS_ERR(handle->buffer)) 2834 return PTR_ERR(handle->buffer); 2835 } 2836 handle->sync_read = (handle->buffer == buffer); 2837 handle->cur++; 2838 2839 /* Zero pages were not included in the image, memset it and move on. */ 2840 if (handle->cur > nr_meta_pages + 1 && 2841 memory_bm_test_bit(&zero_bm, memory_bm_get_current(&orig_bm))) { 2842 memset(handle->buffer, 0, PAGE_SIZE); 2843 goto next; 2844 } 2845 2846 return PAGE_SIZE; 2847 } 2848 2849 /** 2850 * snapshot_write_finalize - Complete the loading of a hibernation image. 2851 * 2852 * Must be called after the last call to snapshot_write_next() in case the last 2853 * page in the image happens to be a highmem page and its contents should be 2854 * stored in highmem. Additionally, it recycles bitmap memory that's not 2855 * necessary any more. 2856 */ 2857 int snapshot_write_finalize(struct snapshot_handle *handle) 2858 { 2859 int error; 2860 2861 copy_last_highmem_page(); 2862 error = hibernate_restore_protect_page(handle->buffer); 2863 /* Do that only if we have loaded the image entirely */ 2864 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages) { 2865 memory_bm_recycle(&orig_bm); 2866 free_highmem_data(); 2867 } 2868 return error; 2869 } 2870 2871 int snapshot_image_loaded(struct snapshot_handle *handle) 2872 { 2873 return !(!nr_copy_pages || !last_highmem_page_copied() || 2874 handle->cur <= nr_meta_pages + nr_copy_pages + nr_zero_pages); 2875 } 2876 2877 #ifdef CONFIG_HIGHMEM 2878 /* Assumes that @buf is ready and points to a "safe" page */ 2879 static inline void swap_two_pages_data(struct page *p1, struct page *p2, 2880 void *buf) 2881 { 2882 void *kaddr1, *kaddr2; 2883 2884 kaddr1 = kmap_atomic(p1); 2885 kaddr2 = kmap_atomic(p2); 2886 copy_page(buf, kaddr1); 2887 copy_page(kaddr1, kaddr2); 2888 copy_page(kaddr2, buf); 2889 kunmap_atomic(kaddr2); 2890 kunmap_atomic(kaddr1); 2891 } 2892 2893 /** 2894 * restore_highmem - Put highmem image pages into their original locations. 2895 * 2896 * For each highmem page that was in use before hibernation and is included in 2897 * the image, and also has been allocated by the "restore" kernel, swap its 2898 * current contents with the previous (ie. "before hibernation") ones. 2899 * 2900 * If the restore eventually fails, we can call this function once again and 2901 * restore the highmem state as seen by the restore kernel. 2902 */ 2903 int restore_highmem(void) 2904 { 2905 struct highmem_pbe *pbe = highmem_pblist; 2906 void *buf; 2907 2908 if (!pbe) 2909 return 0; 2910 2911 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2912 if (!buf) 2913 return -ENOMEM; 2914 2915 while (pbe) { 2916 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2917 pbe = pbe->next; 2918 } 2919 free_image_page(buf, PG_UNSAFE_CLEAR); 2920 return 0; 2921 } 2922 #endif /* CONFIG_HIGHMEM */ 2923