1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Pentium III FXSR, SSE support
6 * General FPU state handling cleanups
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9 #include <asm/fpu/api.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/sched.h>
12 #include <asm/fpu/signal.h>
13 #include <asm/fpu/types.h>
14 #include <asm/msr.h>
15 #include <asm/traps.h>
16 #include <asm/irq_regs.h>
17
18 #include <uapi/asm/kvm.h>
19
20 #include <linux/hardirq.h>
21 #include <linux/pkeys.h>
22 #include <linux/vmalloc.h>
23
24 #include "context.h"
25 #include "internal.h"
26 #include "legacy.h"
27 #include "xstate.h"
28
29 #define CREATE_TRACE_POINTS
30 #include <asm/trace/fpu.h>
31
32 #ifdef CONFIG_X86_64
33 DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic);
34 DEFINE_PER_CPU(u64, xfd_state);
35 #endif
36
37 /* The FPU state configuration data for kernel and user space */
38 struct fpu_state_config fpu_kernel_cfg __ro_after_init;
39 struct fpu_state_config fpu_user_cfg __ro_after_init;
40 struct vcpu_fpu_config guest_default_cfg __ro_after_init;
41
42 /*
43 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
44 * depending on the FPU hardware format:
45 */
46 struct fpstate init_fpstate __ro_after_init;
47
48 /*
49 * Track FPU initialization and kernel-mode usage. 'true' means the FPU is
50 * initialized and is not currently being used by the kernel:
51 */
52 DEFINE_PER_CPU(bool, kernel_fpu_allowed);
53
54 /*
55 * Track which context is using the FPU on the CPU:
56 */
57 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
58
59 #ifdef CONFIG_X86_DEBUG_FPU
x86_task_fpu(struct task_struct * task)60 struct fpu *x86_task_fpu(struct task_struct *task)
61 {
62 if (WARN_ON_ONCE(task->flags & PF_KTHREAD))
63 return NULL;
64
65 return (void *)task + sizeof(*task);
66 }
67 #endif
68
69 /*
70 * Can we use the FPU in kernel mode with the
71 * whole "kernel_fpu_begin/end()" sequence?
72 */
irq_fpu_usable(void)73 bool irq_fpu_usable(void)
74 {
75 if (WARN_ON_ONCE(in_nmi()))
76 return false;
77
78 /*
79 * Return false in the following cases:
80 *
81 * - FPU is not yet initialized. This can happen only when the call is
82 * coming from CPU onlining, for example for microcode checksumming.
83 * - The kernel is already using the FPU, either because of explicit
84 * nesting (which should never be done), or because of implicit
85 * nesting when a hardirq interrupted a kernel-mode FPU section.
86 *
87 * The single boolean check below handles both cases:
88 */
89 if (!this_cpu_read(kernel_fpu_allowed))
90 return false;
91
92 /*
93 * When not in NMI or hard interrupt context, FPU can be used in:
94 *
95 * - Task context except from within fpregs_lock()'ed critical
96 * regions.
97 *
98 * - Soft interrupt processing context which cannot happen
99 * while in a fpregs_lock()'ed critical region.
100 */
101 if (!in_hardirq())
102 return true;
103
104 /*
105 * In hard interrupt context it's safe when soft interrupts
106 * are enabled, which means the interrupt did not hit in
107 * a fpregs_lock()'ed critical region.
108 */
109 return !softirq_count();
110 }
111 EXPORT_SYMBOL(irq_fpu_usable);
112
113 /*
114 * Track AVX512 state use because it is known to slow the max clock
115 * speed of the core.
116 */
update_avx_timestamp(struct fpu * fpu)117 static void update_avx_timestamp(struct fpu *fpu)
118 {
119
120 #define AVX512_TRACKING_MASK (XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM)
121
122 if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK)
123 fpu->avx512_timestamp = jiffies;
124 }
125
126 /*
127 * Save the FPU register state in fpu->fpstate->regs. The register state is
128 * preserved.
129 *
130 * Must be called with fpregs_lock() held.
131 *
132 * The legacy FNSAVE instruction clears all FPU state unconditionally, so
133 * register state has to be reloaded. That might be a pointless exercise
134 * when the FPU is going to be used by another task right after that. But
135 * this only affects 20+ years old 32bit systems and avoids conditionals all
136 * over the place.
137 *
138 * FXSAVE and all XSAVE variants preserve the FPU register state.
139 */
save_fpregs_to_fpstate(struct fpu * fpu)140 void save_fpregs_to_fpstate(struct fpu *fpu)
141 {
142 if (likely(use_xsave())) {
143 os_xsave(fpu->fpstate);
144 update_avx_timestamp(fpu);
145 return;
146 }
147
148 if (likely(use_fxsr())) {
149 fxsave(&fpu->fpstate->regs.fxsave);
150 return;
151 }
152
153 /*
154 * Legacy FPU register saving, FNSAVE always clears FPU registers,
155 * so we have to reload them from the memory state.
156 */
157 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave));
158 frstor(&fpu->fpstate->regs.fsave);
159 }
160
restore_fpregs_from_fpstate(struct fpstate * fpstate,u64 mask)161 void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask)
162 {
163 /*
164 * AMD K7/K8 and later CPUs up to Zen don't save/restore
165 * FDP/FIP/FOP unless an exception is pending. Clear the x87 state
166 * here by setting it to fixed values. "m" is a random variable
167 * that should be in L1.
168 */
169 if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
170 asm volatile(
171 "fnclex\n\t"
172 "emms\n\t"
173 "fildl %[addr]" /* set F?P to defined value */
174 : : [addr] "m" (*fpstate));
175 }
176
177 if (use_xsave()) {
178 /*
179 * Dynamically enabled features are enabled in XCR0, but
180 * usage requires also that the corresponding bits in XFD
181 * are cleared. If the bits are set then using a related
182 * instruction will raise #NM. This allows to do the
183 * allocation of the larger FPU buffer lazy from #NM or if
184 * the task has no permission to kill it which would happen
185 * via #UD if the feature is disabled in XCR0.
186 *
187 * XFD state is following the same life time rules as
188 * XSTATE and to restore state correctly XFD has to be
189 * updated before XRSTORS otherwise the component would
190 * stay in or go into init state even if the bits are set
191 * in fpstate::regs::xsave::xfeatures.
192 */
193 xfd_update_state(fpstate);
194
195 /*
196 * Restoring state always needs to modify all features
197 * which are in @mask even if the current task cannot use
198 * extended features.
199 *
200 * So fpstate->xfeatures cannot be used here, because then
201 * a feature for which the task has no permission but was
202 * used by the previous task would not go into init state.
203 */
204 mask = fpu_kernel_cfg.max_features & mask;
205
206 os_xrstor(fpstate, mask);
207 } else {
208 if (use_fxsr())
209 fxrstor(&fpstate->regs.fxsave);
210 else
211 frstor(&fpstate->regs.fsave);
212 }
213 }
214
fpu_reset_from_exception_fixup(void)215 void fpu_reset_from_exception_fixup(void)
216 {
217 restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE);
218 }
219
220 #if IS_ENABLED(CONFIG_KVM)
221 static void __fpstate_reset(struct fpstate *fpstate);
222
fpu_lock_guest_permissions(void)223 static void fpu_lock_guest_permissions(void)
224 {
225 struct fpu_state_perm *fpuperm;
226 u64 perm;
227
228 if (!IS_ENABLED(CONFIG_X86_64))
229 return;
230
231 spin_lock_irq(¤t->sighand->siglock);
232 fpuperm = &x86_task_fpu(current->group_leader)->guest_perm;
233 perm = fpuperm->__state_perm;
234
235 /* First fpstate allocation locks down permissions. */
236 WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED);
237
238 spin_unlock_irq(¤t->sighand->siglock);
239 }
240
fpu_alloc_guest_fpstate(struct fpu_guest * gfpu)241 bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu)
242 {
243 struct fpstate *fpstate;
244 unsigned int size;
245
246 size = guest_default_cfg.size + ALIGN(offsetof(struct fpstate, regs), 64);
247
248 fpstate = vzalloc(size);
249 if (!fpstate)
250 return false;
251
252 /* Initialize indicators to reflect properties of the fpstate */
253 fpstate->is_valloc = true;
254 fpstate->is_guest = true;
255
256 __fpstate_reset(fpstate);
257 fpstate_init_user(fpstate);
258
259 gfpu->fpstate = fpstate;
260 gfpu->xfeatures = guest_default_cfg.features;
261
262 /*
263 * KVM sets the FP+SSE bits in the XSAVE header when copying FPU state
264 * to userspace, even when XSAVE is unsupported, so that restoring FPU
265 * state on a different CPU that does support XSAVE can cleanly load
266 * the incoming state using its natural XSAVE. In other words, KVM's
267 * uABI size may be larger than this host's default size. Conversely,
268 * the default size should never be larger than KVM's base uABI size;
269 * all features that can expand the uABI size must be opt-in.
270 */
271 gfpu->uabi_size = sizeof(struct kvm_xsave);
272 if (WARN_ON_ONCE(fpu_user_cfg.default_size > gfpu->uabi_size))
273 gfpu->uabi_size = fpu_user_cfg.default_size;
274
275 fpu_lock_guest_permissions();
276
277 return true;
278 }
279 EXPORT_SYMBOL_GPL(fpu_alloc_guest_fpstate);
280
fpu_free_guest_fpstate(struct fpu_guest * gfpu)281 void fpu_free_guest_fpstate(struct fpu_guest *gfpu)
282 {
283 struct fpstate *fpstate = gfpu->fpstate;
284
285 if (!fpstate)
286 return;
287
288 if (WARN_ON_ONCE(!fpstate->is_valloc || !fpstate->is_guest || fpstate->in_use))
289 return;
290
291 gfpu->fpstate = NULL;
292 vfree(fpstate);
293 }
294 EXPORT_SYMBOL_GPL(fpu_free_guest_fpstate);
295
296 /*
297 * fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable
298 * @guest_fpu: Pointer to the guest FPU container
299 * @xfeatures: Features requested by guest CPUID
300 *
301 * Enable all dynamic xfeatures according to guest perm and requested CPUID.
302 *
303 * Return: 0 on success, error code otherwise
304 */
fpu_enable_guest_xfd_features(struct fpu_guest * guest_fpu,u64 xfeatures)305 int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures)
306 {
307 lockdep_assert_preemption_enabled();
308
309 /* Nothing to do if all requested features are already enabled. */
310 xfeatures &= ~guest_fpu->xfeatures;
311 if (!xfeatures)
312 return 0;
313
314 return __xfd_enable_feature(xfeatures, guest_fpu);
315 }
316 EXPORT_SYMBOL_GPL(fpu_enable_guest_xfd_features);
317
318 #ifdef CONFIG_X86_64
fpu_update_guest_xfd(struct fpu_guest * guest_fpu,u64 xfd)319 void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd)
320 {
321 fpregs_lock();
322 guest_fpu->fpstate->xfd = xfd;
323 if (guest_fpu->fpstate->in_use)
324 xfd_update_state(guest_fpu->fpstate);
325 fpregs_unlock();
326 }
327 EXPORT_SYMBOL_GPL(fpu_update_guest_xfd);
328
329 /**
330 * fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state
331 *
332 * Must be invoked from KVM after a VMEXIT before enabling interrupts when
333 * XFD write emulation is disabled. This is required because the guest can
334 * freely modify XFD and the state at VMEXIT is not guaranteed to be the
335 * same as the state on VMENTER. So software state has to be updated before
336 * any operation which depends on it can take place.
337 *
338 * Note: It can be invoked unconditionally even when write emulation is
339 * enabled for the price of a then pointless MSR read.
340 */
fpu_sync_guest_vmexit_xfd_state(void)341 void fpu_sync_guest_vmexit_xfd_state(void)
342 {
343 struct fpstate *fpstate = x86_task_fpu(current)->fpstate;
344
345 lockdep_assert_irqs_disabled();
346 if (fpu_state_size_dynamic()) {
347 rdmsrq(MSR_IA32_XFD, fpstate->xfd);
348 __this_cpu_write(xfd_state, fpstate->xfd);
349 }
350 }
351 EXPORT_SYMBOL_GPL(fpu_sync_guest_vmexit_xfd_state);
352 #endif /* CONFIG_X86_64 */
353
fpu_swap_kvm_fpstate(struct fpu_guest * guest_fpu,bool enter_guest)354 int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest)
355 {
356 struct fpstate *guest_fps = guest_fpu->fpstate;
357 struct fpu *fpu = x86_task_fpu(current);
358 struct fpstate *cur_fps = fpu->fpstate;
359
360 fpregs_lock();
361 if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD))
362 save_fpregs_to_fpstate(fpu);
363
364 /* Swap fpstate */
365 if (enter_guest) {
366 fpu->__task_fpstate = cur_fps;
367 fpu->fpstate = guest_fps;
368 guest_fps->in_use = true;
369 } else {
370 guest_fps->in_use = false;
371 fpu->fpstate = fpu->__task_fpstate;
372 fpu->__task_fpstate = NULL;
373 }
374
375 cur_fps = fpu->fpstate;
376
377 if (!cur_fps->is_confidential) {
378 /* Includes XFD update */
379 restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE);
380 } else {
381 /*
382 * XSTATE is restored by firmware from encrypted
383 * memory. Make sure XFD state is correct while
384 * running with guest fpstate
385 */
386 xfd_update_state(cur_fps);
387 }
388
389 fpregs_mark_activate();
390 fpregs_unlock();
391 return 0;
392 }
393 EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpstate);
394
fpu_copy_guest_fpstate_to_uabi(struct fpu_guest * gfpu,void * buf,unsigned int size,u64 xfeatures,u32 pkru)395 void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf,
396 unsigned int size, u64 xfeatures, u32 pkru)
397 {
398 struct fpstate *kstate = gfpu->fpstate;
399 union fpregs_state *ustate = buf;
400 struct membuf mb = { .p = buf, .left = size };
401
402 if (cpu_feature_enabled(X86_FEATURE_XSAVE)) {
403 __copy_xstate_to_uabi_buf(mb, kstate, xfeatures, pkru,
404 XSTATE_COPY_XSAVE);
405 } else {
406 memcpy(&ustate->fxsave, &kstate->regs.fxsave,
407 sizeof(ustate->fxsave));
408 /* Make it restorable on a XSAVE enabled host */
409 ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE;
410 }
411 }
412 EXPORT_SYMBOL_GPL(fpu_copy_guest_fpstate_to_uabi);
413
fpu_copy_uabi_to_guest_fpstate(struct fpu_guest * gfpu,const void * buf,u64 xcr0,u32 * vpkru)414 int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf,
415 u64 xcr0, u32 *vpkru)
416 {
417 struct fpstate *kstate = gfpu->fpstate;
418 const union fpregs_state *ustate = buf;
419
420 if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) {
421 if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE)
422 return -EINVAL;
423 if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask)
424 return -EINVAL;
425 memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave));
426 return 0;
427 }
428
429 if (ustate->xsave.header.xfeatures & ~xcr0)
430 return -EINVAL;
431
432 /*
433 * Nullify @vpkru to preserve its current value if PKRU's bit isn't set
434 * in the header. KVM's odd ABI is to leave PKRU untouched in this
435 * case (all other components are eventually re-initialized).
436 */
437 if (!(ustate->xsave.header.xfeatures & XFEATURE_MASK_PKRU))
438 vpkru = NULL;
439
440 return copy_uabi_from_kernel_to_xstate(kstate, ustate, vpkru);
441 }
442 EXPORT_SYMBOL_GPL(fpu_copy_uabi_to_guest_fpstate);
443 #endif /* CONFIG_KVM */
444
kernel_fpu_begin_mask(unsigned int kfpu_mask)445 void kernel_fpu_begin_mask(unsigned int kfpu_mask)
446 {
447 if (!irqs_disabled())
448 fpregs_lock();
449
450 WARN_ON_FPU(!irq_fpu_usable());
451
452 /* Toggle kernel_fpu_allowed to false: */
453 WARN_ON_FPU(!this_cpu_read(kernel_fpu_allowed));
454 this_cpu_write(kernel_fpu_allowed, false);
455
456 if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER)) &&
457 !test_thread_flag(TIF_NEED_FPU_LOAD)) {
458 set_thread_flag(TIF_NEED_FPU_LOAD);
459 save_fpregs_to_fpstate(x86_task_fpu(current));
460 }
461 __cpu_invalidate_fpregs_state();
462
463 /* Put sane initial values into the control registers. */
464 if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
465 ldmxcsr(MXCSR_DEFAULT);
466
467 if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
468 asm volatile ("fninit");
469 }
470 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
471
kernel_fpu_end(void)472 void kernel_fpu_end(void)
473 {
474 /* Toggle kernel_fpu_allowed back to true: */
475 WARN_ON_FPU(this_cpu_read(kernel_fpu_allowed));
476 this_cpu_write(kernel_fpu_allowed, true);
477
478 if (!irqs_disabled())
479 fpregs_unlock();
480 }
481 EXPORT_SYMBOL_GPL(kernel_fpu_end);
482
483 /*
484 * Sync the FPU register state to current's memory register state when the
485 * current task owns the FPU. The hardware register state is preserved.
486 */
fpu_sync_fpstate(struct fpu * fpu)487 void fpu_sync_fpstate(struct fpu *fpu)
488 {
489 WARN_ON_FPU(fpu != x86_task_fpu(current));
490
491 fpregs_lock();
492 trace_x86_fpu_before_save(fpu);
493
494 if (!test_thread_flag(TIF_NEED_FPU_LOAD))
495 save_fpregs_to_fpstate(fpu);
496
497 trace_x86_fpu_after_save(fpu);
498 fpregs_unlock();
499 }
500
init_fpstate_copy_size(void)501 static inline unsigned int init_fpstate_copy_size(void)
502 {
503 if (!use_xsave())
504 return fpu_kernel_cfg.default_size;
505
506 /* XSAVE(S) just needs the legacy and the xstate header part */
507 return sizeof(init_fpstate.regs.xsave);
508 }
509
fpstate_init_fxstate(struct fpstate * fpstate)510 static inline void fpstate_init_fxstate(struct fpstate *fpstate)
511 {
512 fpstate->regs.fxsave.cwd = 0x37f;
513 fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT;
514 }
515
516 /*
517 * Legacy x87 fpstate state init:
518 */
fpstate_init_fstate(struct fpstate * fpstate)519 static inline void fpstate_init_fstate(struct fpstate *fpstate)
520 {
521 fpstate->regs.fsave.cwd = 0xffff037fu;
522 fpstate->regs.fsave.swd = 0xffff0000u;
523 fpstate->regs.fsave.twd = 0xffffffffu;
524 fpstate->regs.fsave.fos = 0xffff0000u;
525 }
526
527 /*
528 * Used in two places:
529 * 1) Early boot to setup init_fpstate for non XSAVE systems
530 * 2) fpu_alloc_guest_fpstate() which is invoked from KVM
531 */
fpstate_init_user(struct fpstate * fpstate)532 void fpstate_init_user(struct fpstate *fpstate)
533 {
534 if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
535 fpstate_init_soft(&fpstate->regs.soft);
536 return;
537 }
538
539 xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures);
540
541 if (cpu_feature_enabled(X86_FEATURE_FXSR))
542 fpstate_init_fxstate(fpstate);
543 else
544 fpstate_init_fstate(fpstate);
545 }
546
__fpstate_reset(struct fpstate * fpstate)547 static void __fpstate_reset(struct fpstate *fpstate)
548 {
549 /*
550 * Supervisor features (and thus sizes) may diverge between guest
551 * FPUs and host FPUs, as some supervisor features are supported
552 * for guests despite not being utilized by the host. User
553 * features and sizes are always identical, which allows for
554 * common guest and userspace ABI.
555 *
556 * For the host, set XFD to the kernel's desired initialization
557 * value. For guests, set XFD to its architectural RESET value.
558 */
559 if (fpstate->is_guest) {
560 fpstate->size = guest_default_cfg.size;
561 fpstate->xfeatures = guest_default_cfg.features;
562 fpstate->xfd = 0;
563 } else {
564 fpstate->size = fpu_kernel_cfg.default_size;
565 fpstate->xfeatures = fpu_kernel_cfg.default_features;
566 fpstate->xfd = init_fpstate.xfd;
567 }
568
569 fpstate->user_size = fpu_user_cfg.default_size;
570 fpstate->user_xfeatures = fpu_user_cfg.default_features;
571 }
572
fpstate_reset(struct fpu * fpu)573 void fpstate_reset(struct fpu *fpu)
574 {
575 /* Set the fpstate pointer to the default fpstate */
576 fpu->fpstate = &fpu->__fpstate;
577 __fpstate_reset(fpu->fpstate);
578
579 /* Initialize the permission related info in fpu */
580 fpu->perm.__state_perm = fpu_kernel_cfg.default_features;
581 fpu->perm.__state_size = fpu_kernel_cfg.default_size;
582 fpu->perm.__user_state_size = fpu_user_cfg.default_size;
583
584 fpu->guest_perm.__state_perm = guest_default_cfg.features;
585 fpu->guest_perm.__state_size = guest_default_cfg.size;
586 /*
587 * User features and sizes are always identical between host and
588 * guest FPUs, which allows for common guest and userspace ABI.
589 */
590 fpu->guest_perm.__user_state_size = fpu_user_cfg.default_size;
591 }
592
fpu_inherit_perms(struct fpu * dst_fpu)593 static inline void fpu_inherit_perms(struct fpu *dst_fpu)
594 {
595 if (fpu_state_size_dynamic()) {
596 struct fpu *src_fpu = x86_task_fpu(current->group_leader);
597
598 spin_lock_irq(¤t->sighand->siglock);
599 /* Fork also inherits the permissions of the parent */
600 dst_fpu->perm = src_fpu->perm;
601 dst_fpu->guest_perm = src_fpu->guest_perm;
602 spin_unlock_irq(¤t->sighand->siglock);
603 }
604 }
605
606 /* A passed ssp of zero will not cause any update */
update_fpu_shstk(struct task_struct * dst,unsigned long ssp)607 static int update_fpu_shstk(struct task_struct *dst, unsigned long ssp)
608 {
609 #ifdef CONFIG_X86_USER_SHADOW_STACK
610 struct cet_user_state *xstate;
611
612 /* If ssp update is not needed. */
613 if (!ssp)
614 return 0;
615
616 xstate = get_xsave_addr(&x86_task_fpu(dst)->fpstate->regs.xsave,
617 XFEATURE_CET_USER);
618
619 /*
620 * If there is a non-zero ssp, then 'dst' must be configured with a shadow
621 * stack and the fpu state should be up to date since it was just copied
622 * from the parent in fpu_clone(). So there must be a valid non-init CET
623 * state location in the buffer.
624 */
625 if (WARN_ON_ONCE(!xstate))
626 return 1;
627
628 xstate->user_ssp = (u64)ssp;
629 #endif
630 return 0;
631 }
632
633 /* Clone current's FPU state on fork */
fpu_clone(struct task_struct * dst,unsigned long clone_flags,bool minimal,unsigned long ssp)634 int fpu_clone(struct task_struct *dst, unsigned long clone_flags, bool minimal,
635 unsigned long ssp)
636 {
637 /*
638 * We allocate the new FPU structure right after the end of the task struct.
639 * task allocation size already took this into account.
640 *
641 * This is safe because task_struct size is a multiple of cacheline size,
642 * thus x86_task_fpu() will always be cacheline aligned as well.
643 */
644 struct fpu *dst_fpu = (void *)dst + sizeof(*dst);
645
646 BUILD_BUG_ON(sizeof(*dst) % SMP_CACHE_BYTES != 0);
647
648 /* The new task's FPU state cannot be valid in the hardware. */
649 dst_fpu->last_cpu = -1;
650
651 fpstate_reset(dst_fpu);
652
653 if (!cpu_feature_enabled(X86_FEATURE_FPU))
654 return 0;
655
656 /*
657 * Enforce reload for user space tasks and prevent kernel threads
658 * from trying to save the FPU registers on context switch.
659 */
660 set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
661
662 /*
663 * No FPU state inheritance for kernel threads and IO
664 * worker threads.
665 */
666 if (minimal) {
667 /* Clear out the minimal state */
668 memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs,
669 init_fpstate_copy_size());
670 return 0;
671 }
672
673 /*
674 * If a new feature is added, ensure all dynamic features are
675 * caller-saved from here!
676 */
677 BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
678
679 /*
680 * Save the default portion of the current FPU state into the
681 * clone. Assume all dynamic features to be defined as caller-
682 * saved, which enables skipping both the expansion of fpstate
683 * and the copying of any dynamic state.
684 *
685 * Do not use memcpy() when TIF_NEED_FPU_LOAD is set because
686 * copying is not valid when current uses non-default states.
687 */
688 fpregs_lock();
689 if (test_thread_flag(TIF_NEED_FPU_LOAD))
690 fpregs_restore_userregs();
691 save_fpregs_to_fpstate(dst_fpu);
692 fpregs_unlock();
693 if (!(clone_flags & CLONE_THREAD))
694 fpu_inherit_perms(dst_fpu);
695
696 /*
697 * Children never inherit PASID state.
698 * Force it to have its init value:
699 */
700 if (use_xsave())
701 dst_fpu->fpstate->regs.xsave.header.xfeatures &= ~XFEATURE_MASK_PASID;
702
703 /*
704 * Update shadow stack pointer, in case it changed during clone.
705 */
706 if (update_fpu_shstk(dst, ssp))
707 return 1;
708
709 trace_x86_fpu_copy_dst(dst_fpu);
710
711 return 0;
712 }
713
714 /*
715 * While struct fpu is no longer part of struct thread_struct, it is still
716 * allocated after struct task_struct in the "task_struct" kmem cache. But
717 * since FPU is expected to be part of struct thread_struct, we have to
718 * adjust for it here.
719 */
fpu_thread_struct_whitelist(unsigned long * offset,unsigned long * size)720 void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size)
721 {
722 /* The allocation follows struct task_struct. */
723 *offset = sizeof(struct task_struct) - offsetof(struct task_struct, thread);
724 *offset += offsetof(struct fpu, __fpstate.regs);
725 *size = fpu_kernel_cfg.default_size;
726 }
727
728 /*
729 * Drops current FPU state: deactivates the fpregs and
730 * the fpstate. NOTE: it still leaves previous contents
731 * in the fpregs in the eager-FPU case.
732 *
733 * This function can be used in cases where we know that
734 * a state-restore is coming: either an explicit one,
735 * or a reschedule.
736 */
fpu__drop(struct task_struct * tsk)737 void fpu__drop(struct task_struct *tsk)
738 {
739 struct fpu *fpu;
740
741 if (test_tsk_thread_flag(tsk, TIF_NEED_FPU_LOAD))
742 return;
743
744 fpu = x86_task_fpu(tsk);
745
746 preempt_disable();
747
748 if (fpu == x86_task_fpu(current)) {
749 /* Ignore delayed exceptions from user space */
750 asm volatile("1: fwait\n"
751 "2:\n"
752 _ASM_EXTABLE(1b, 2b));
753 fpregs_deactivate(fpu);
754 }
755
756 trace_x86_fpu_dropped(fpu);
757
758 preempt_enable();
759 }
760
761 /*
762 * Clear FPU registers by setting them up from the init fpstate.
763 * Caller must do fpregs_[un]lock() around it.
764 */
restore_fpregs_from_init_fpstate(u64 features_mask)765 static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
766 {
767 if (use_xsave())
768 os_xrstor(&init_fpstate, features_mask);
769 else if (use_fxsr())
770 fxrstor(&init_fpstate.regs.fxsave);
771 else
772 frstor(&init_fpstate.regs.fsave);
773
774 pkru_write_default();
775 }
776
777 /*
778 * Reset current->fpu memory state to the init values.
779 */
fpu_reset_fpstate_regs(void)780 static void fpu_reset_fpstate_regs(void)
781 {
782 struct fpu *fpu = x86_task_fpu(current);
783
784 fpregs_lock();
785 __fpu_invalidate_fpregs_state(fpu);
786 /*
787 * This does not change the actual hardware registers. It just
788 * resets the memory image and sets TIF_NEED_FPU_LOAD so a
789 * subsequent return to usermode will reload the registers from the
790 * task's memory image.
791 *
792 * Do not use fpstate_init() here. Just copy init_fpstate which has
793 * the correct content already except for PKRU.
794 *
795 * PKRU handling does not rely on the xstate when restoring for
796 * user space as PKRU is eagerly written in switch_to() and
797 * flush_thread().
798 */
799 memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size());
800 set_thread_flag(TIF_NEED_FPU_LOAD);
801 fpregs_unlock();
802 }
803
804 /*
805 * Reset current's user FPU states to the init states. current's
806 * supervisor states, if any, are not modified by this function. The
807 * caller guarantees that the XSTATE header in memory is intact.
808 */
fpu__clear_user_states(struct fpu * fpu)809 void fpu__clear_user_states(struct fpu *fpu)
810 {
811 WARN_ON_FPU(fpu != x86_task_fpu(current));
812
813 fpregs_lock();
814 if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
815 fpu_reset_fpstate_regs();
816 fpregs_unlock();
817 return;
818 }
819
820 /*
821 * Ensure that current's supervisor states are loaded into their
822 * corresponding registers.
823 */
824 if (xfeatures_mask_supervisor() &&
825 !fpregs_state_valid(fpu, smp_processor_id()))
826 os_xrstor_supervisor(fpu->fpstate);
827
828 /* Reset user states in registers. */
829 restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE);
830
831 /*
832 * Now all FPU registers have their desired values. Inform the FPU
833 * state machine that current's FPU registers are in the hardware
834 * registers. The memory image does not need to be updated because
835 * any operation relying on it has to save the registers first when
836 * current's FPU is marked active.
837 */
838 fpregs_mark_activate();
839 fpregs_unlock();
840 }
841
fpu_flush_thread(void)842 void fpu_flush_thread(void)
843 {
844 fpstate_reset(x86_task_fpu(current));
845 fpu_reset_fpstate_regs();
846 }
847 /*
848 * Load FPU context before returning to userspace.
849 */
switch_fpu_return(void)850 void switch_fpu_return(void)
851 {
852 if (!static_cpu_has(X86_FEATURE_FPU))
853 return;
854
855 fpregs_restore_userregs();
856 }
857 EXPORT_SYMBOL_GPL(switch_fpu_return);
858
fpregs_lock_and_load(void)859 void fpregs_lock_and_load(void)
860 {
861 /*
862 * fpregs_lock() only disables preemption (mostly). So modifying state
863 * in an interrupt could screw up some in progress fpregs operation.
864 * Warn about it.
865 */
866 WARN_ON_ONCE(!irq_fpu_usable());
867 WARN_ON_ONCE(current->flags & PF_KTHREAD);
868
869 fpregs_lock();
870
871 fpregs_assert_state_consistent();
872
873 if (test_thread_flag(TIF_NEED_FPU_LOAD))
874 fpregs_restore_userregs();
875 }
876
877 #ifdef CONFIG_X86_DEBUG_FPU
878 /*
879 * If current FPU state according to its tracking (loaded FPU context on this
880 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
881 * loaded on return to userland.
882 */
fpregs_assert_state_consistent(void)883 void fpregs_assert_state_consistent(void)
884 {
885 struct fpu *fpu = x86_task_fpu(current);
886
887 if (test_thread_flag(TIF_NEED_FPU_LOAD))
888 return;
889
890 WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
891 }
892 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
893 #endif
894
fpregs_mark_activate(void)895 void fpregs_mark_activate(void)
896 {
897 struct fpu *fpu = x86_task_fpu(current);
898
899 fpregs_activate(fpu);
900 fpu->last_cpu = smp_processor_id();
901 clear_thread_flag(TIF_NEED_FPU_LOAD);
902 }
903
904 /*
905 * x87 math exception handling:
906 */
907
fpu__exception_code(struct fpu * fpu,int trap_nr)908 int fpu__exception_code(struct fpu *fpu, int trap_nr)
909 {
910 int err;
911
912 if (trap_nr == X86_TRAP_MF) {
913 unsigned short cwd, swd;
914 /*
915 * (~cwd & swd) will mask out exceptions that are not set to unmasked
916 * status. 0x3f is the exception bits in these regs, 0x200 is the
917 * C1 reg you need in case of a stack fault, 0x040 is the stack
918 * fault bit. We should only be taking one exception at a time,
919 * so if this combination doesn't produce any single exception,
920 * then we have a bad program that isn't synchronizing its FPU usage
921 * and it will suffer the consequences since we won't be able to
922 * fully reproduce the context of the exception.
923 */
924 if (boot_cpu_has(X86_FEATURE_FXSR)) {
925 cwd = fpu->fpstate->regs.fxsave.cwd;
926 swd = fpu->fpstate->regs.fxsave.swd;
927 } else {
928 cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd;
929 swd = (unsigned short)fpu->fpstate->regs.fsave.swd;
930 }
931
932 err = swd & ~cwd;
933 } else {
934 /*
935 * The SIMD FPU exceptions are handled a little differently, as there
936 * is only a single status/control register. Thus, to determine which
937 * unmasked exception was caught we must mask the exception mask bits
938 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
939 */
940 unsigned short mxcsr = MXCSR_DEFAULT;
941
942 if (boot_cpu_has(X86_FEATURE_XMM))
943 mxcsr = fpu->fpstate->regs.fxsave.mxcsr;
944
945 err = ~(mxcsr >> 7) & mxcsr;
946 }
947
948 if (err & 0x001) { /* Invalid op */
949 /*
950 * swd & 0x240 == 0x040: Stack Underflow
951 * swd & 0x240 == 0x240: Stack Overflow
952 * User must clear the SF bit (0x40) if set
953 */
954 return FPE_FLTINV;
955 } else if (err & 0x004) { /* Divide by Zero */
956 return FPE_FLTDIV;
957 } else if (err & 0x008) { /* Overflow */
958 return FPE_FLTOVF;
959 } else if (err & 0x012) { /* Denormal, Underflow */
960 return FPE_FLTUND;
961 } else if (err & 0x020) { /* Precision */
962 return FPE_FLTRES;
963 }
964
965 /*
966 * If we're using IRQ 13, or supposedly even some trap
967 * X86_TRAP_MF implementations, it's possible
968 * we get a spurious trap, which is not an error.
969 */
970 return 0;
971 }
972
973 /*
974 * Initialize register state that may prevent from entering low-power idle.
975 * This function will be invoked from the cpuidle driver only when needed.
976 */
fpu_idle_fpregs(void)977 noinstr void fpu_idle_fpregs(void)
978 {
979 /* Note: AMX_TILE being enabled implies XGETBV1 support */
980 if (cpu_feature_enabled(X86_FEATURE_AMX_TILE) &&
981 (xfeatures_in_use() & XFEATURE_MASK_XTILE)) {
982 tile_release();
983 __this_cpu_write(fpu_fpregs_owner_ctx, NULL);
984 }
985 }
986