1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Pentium III FXSR, SSE support
6 * General FPU state handling cleanups
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9 #include <asm/fpu/api.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/sched.h>
12 #include <asm/fpu/signal.h>
13 #include <asm/fpu/types.h>
14 #include <asm/msr.h>
15 #include <asm/traps.h>
16 #include <asm/irq_regs.h>
17
18 #include <uapi/asm/kvm.h>
19
20 #include <linux/hardirq.h>
21 #include <linux/kvm_types.h>
22 #include <linux/pkeys.h>
23 #include <linux/vmalloc.h>
24
25 #include "context.h"
26 #include "internal.h"
27 #include "legacy.h"
28 #include "xstate.h"
29
30 #define CREATE_TRACE_POINTS
31 #include <asm/trace/fpu.h>
32
33 #ifdef CONFIG_X86_64
34 DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic);
35 DEFINE_PER_CPU(u64, xfd_state);
36 #endif
37
38 /* The FPU state configuration data for kernel and user space */
39 struct fpu_state_config fpu_kernel_cfg __ro_after_init;
40 struct fpu_state_config fpu_user_cfg __ro_after_init;
41 struct vcpu_fpu_config guest_default_cfg __ro_after_init;
42
43 /*
44 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
45 * depending on the FPU hardware format:
46 */
47 struct fpstate init_fpstate __ro_after_init;
48
49 /*
50 * Track FPU initialization and kernel-mode usage. 'true' means the FPU is
51 * initialized and is not currently being used by the kernel:
52 */
53 DEFINE_PER_CPU(bool, kernel_fpu_allowed);
54
55 /*
56 * Track which context is using the FPU on the CPU:
57 */
58 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
59
60 #ifdef CONFIG_X86_DEBUG_FPU
x86_task_fpu(struct task_struct * task)61 struct fpu *x86_task_fpu(struct task_struct *task)
62 {
63 if (WARN_ON_ONCE(task->flags & PF_KTHREAD))
64 return NULL;
65
66 return (void *)task + sizeof(*task);
67 }
68 #endif
69
70 /*
71 * Can we use the FPU in kernel mode with the
72 * whole "kernel_fpu_begin/end()" sequence?
73 */
irq_fpu_usable(void)74 bool irq_fpu_usable(void)
75 {
76 if (WARN_ON_ONCE(in_nmi()))
77 return false;
78
79 /*
80 * Return false in the following cases:
81 *
82 * - FPU is not yet initialized. This can happen only when the call is
83 * coming from CPU onlining, for example for microcode checksumming.
84 * - The kernel is already using the FPU, either because of explicit
85 * nesting (which should never be done), or because of implicit
86 * nesting when a hardirq interrupted a kernel-mode FPU section.
87 *
88 * The single boolean check below handles both cases:
89 */
90 if (!this_cpu_read(kernel_fpu_allowed))
91 return false;
92
93 /*
94 * When not in NMI or hard interrupt context, FPU can be used in:
95 *
96 * - Task context except from within fpregs_lock()'ed critical
97 * regions.
98 *
99 * - Soft interrupt processing context which cannot happen
100 * while in a fpregs_lock()'ed critical region.
101 */
102 if (!in_hardirq())
103 return true;
104
105 /*
106 * In hard interrupt context it's safe when soft interrupts
107 * are enabled, which means the interrupt did not hit in
108 * a fpregs_lock()'ed critical region.
109 */
110 return !softirq_count();
111 }
112 EXPORT_SYMBOL(irq_fpu_usable);
113
114 /*
115 * Track AVX512 state use because it is known to slow the max clock
116 * speed of the core.
117 */
update_avx_timestamp(struct fpu * fpu)118 static void update_avx_timestamp(struct fpu *fpu)
119 {
120
121 #define AVX512_TRACKING_MASK (XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM)
122
123 if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK)
124 fpu->avx512_timestamp = jiffies;
125 }
126
127 /*
128 * Save the FPU register state in fpu->fpstate->regs. The register state is
129 * preserved.
130 *
131 * Must be called with fpregs_lock() held.
132 *
133 * The legacy FNSAVE instruction clears all FPU state unconditionally, so
134 * register state has to be reloaded. That might be a pointless exercise
135 * when the FPU is going to be used by another task right after that. But
136 * this only affects 20+ years old 32bit systems and avoids conditionals all
137 * over the place.
138 *
139 * FXSAVE and all XSAVE variants preserve the FPU register state.
140 */
save_fpregs_to_fpstate(struct fpu * fpu)141 void save_fpregs_to_fpstate(struct fpu *fpu)
142 {
143 if (likely(use_xsave())) {
144 os_xsave(fpu->fpstate);
145 update_avx_timestamp(fpu);
146 return;
147 }
148
149 if (likely(use_fxsr())) {
150 fxsave(&fpu->fpstate->regs.fxsave);
151 return;
152 }
153
154 /*
155 * Legacy FPU register saving, FNSAVE always clears FPU registers,
156 * so we have to reload them from the memory state.
157 */
158 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave));
159 frstor(&fpu->fpstate->regs.fsave);
160 }
161
restore_fpregs_from_fpstate(struct fpstate * fpstate,u64 mask)162 void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask)
163 {
164 /*
165 * AMD K7/K8 and later CPUs up to Zen don't save/restore
166 * FDP/FIP/FOP unless an exception is pending. Clear the x87 state
167 * here by setting it to fixed values. "m" is a random variable
168 * that should be in L1.
169 */
170 if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
171 asm volatile(
172 "fnclex\n\t"
173 "emms\n\t"
174 "fildl %[addr]" /* set F?P to defined value */
175 : : [addr] "m" (*fpstate));
176 }
177
178 if (use_xsave()) {
179 /*
180 * Dynamically enabled features are enabled in XCR0, but
181 * usage requires also that the corresponding bits in XFD
182 * are cleared. If the bits are set then using a related
183 * instruction will raise #NM. This allows to do the
184 * allocation of the larger FPU buffer lazy from #NM or if
185 * the task has no permission to kill it which would happen
186 * via #UD if the feature is disabled in XCR0.
187 *
188 * XFD state is following the same life time rules as
189 * XSTATE and to restore state correctly XFD has to be
190 * updated before XRSTORS otherwise the component would
191 * stay in or go into init state even if the bits are set
192 * in fpstate::regs::xsave::xfeatures.
193 */
194 xfd_update_state(fpstate);
195
196 /*
197 * Restoring state always needs to modify all features
198 * which are in @mask even if the current task cannot use
199 * extended features.
200 *
201 * So fpstate->xfeatures cannot be used here, because then
202 * a feature for which the task has no permission but was
203 * used by the previous task would not go into init state.
204 */
205 mask = fpu_kernel_cfg.max_features & mask;
206
207 os_xrstor(fpstate, mask);
208 } else {
209 if (use_fxsr())
210 fxrstor(&fpstate->regs.fxsave);
211 else
212 frstor(&fpstate->regs.fsave);
213 }
214 }
215
fpu_reset_from_exception_fixup(void)216 void fpu_reset_from_exception_fixup(void)
217 {
218 restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE);
219 }
220
221 #if IS_ENABLED(CONFIG_KVM)
222 static void __fpstate_reset(struct fpstate *fpstate);
223
fpu_lock_guest_permissions(void)224 static void fpu_lock_guest_permissions(void)
225 {
226 struct fpu_state_perm *fpuperm;
227 u64 perm;
228
229 if (!IS_ENABLED(CONFIG_X86_64))
230 return;
231
232 spin_lock_irq(¤t->sighand->siglock);
233 fpuperm = &x86_task_fpu(current->group_leader)->guest_perm;
234 perm = fpuperm->__state_perm;
235
236 /* First fpstate allocation locks down permissions. */
237 WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED);
238
239 spin_unlock_irq(¤t->sighand->siglock);
240 }
241
fpu_alloc_guest_fpstate(struct fpu_guest * gfpu)242 bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu)
243 {
244 struct fpstate *fpstate;
245 unsigned int size;
246
247 size = guest_default_cfg.size + ALIGN(offsetof(struct fpstate, regs), 64);
248
249 fpstate = vzalloc(size);
250 if (!fpstate)
251 return false;
252
253 /* Initialize indicators to reflect properties of the fpstate */
254 fpstate->is_valloc = true;
255 fpstate->is_guest = true;
256
257 __fpstate_reset(fpstate);
258 fpstate_init_user(fpstate);
259
260 gfpu->fpstate = fpstate;
261 gfpu->xfeatures = guest_default_cfg.features;
262
263 /*
264 * KVM sets the FP+SSE bits in the XSAVE header when copying FPU state
265 * to userspace, even when XSAVE is unsupported, so that restoring FPU
266 * state on a different CPU that does support XSAVE can cleanly load
267 * the incoming state using its natural XSAVE. In other words, KVM's
268 * uABI size may be larger than this host's default size. Conversely,
269 * the default size should never be larger than KVM's base uABI size;
270 * all features that can expand the uABI size must be opt-in.
271 */
272 gfpu->uabi_size = sizeof(struct kvm_xsave);
273 if (WARN_ON_ONCE(fpu_user_cfg.default_size > gfpu->uabi_size))
274 gfpu->uabi_size = fpu_user_cfg.default_size;
275
276 fpu_lock_guest_permissions();
277
278 return true;
279 }
280 EXPORT_SYMBOL_FOR_KVM(fpu_alloc_guest_fpstate);
281
fpu_free_guest_fpstate(struct fpu_guest * gfpu)282 void fpu_free_guest_fpstate(struct fpu_guest *gfpu)
283 {
284 struct fpstate *fpstate = gfpu->fpstate;
285
286 if (!fpstate)
287 return;
288
289 if (WARN_ON_ONCE(!fpstate->is_valloc || !fpstate->is_guest || fpstate->in_use))
290 return;
291
292 gfpu->fpstate = NULL;
293 vfree(fpstate);
294 }
295 EXPORT_SYMBOL_FOR_KVM(fpu_free_guest_fpstate);
296
297 /*
298 * fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable
299 * @guest_fpu: Pointer to the guest FPU container
300 * @xfeatures: Features requested by guest CPUID
301 *
302 * Enable all dynamic xfeatures according to guest perm and requested CPUID.
303 *
304 * Return: 0 on success, error code otherwise
305 */
fpu_enable_guest_xfd_features(struct fpu_guest * guest_fpu,u64 xfeatures)306 int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures)
307 {
308 lockdep_assert_preemption_enabled();
309
310 /* Nothing to do if all requested features are already enabled. */
311 xfeatures &= ~guest_fpu->xfeatures;
312 if (!xfeatures)
313 return 0;
314
315 return __xfd_enable_feature(xfeatures, guest_fpu);
316 }
317 EXPORT_SYMBOL_FOR_KVM(fpu_enable_guest_xfd_features);
318
319 #ifdef CONFIG_X86_64
fpu_update_guest_xfd(struct fpu_guest * guest_fpu,u64 xfd)320 void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd)
321 {
322 fpregs_lock();
323 guest_fpu->fpstate->xfd = xfd;
324 if (guest_fpu->fpstate->in_use)
325 xfd_update_state(guest_fpu->fpstate);
326 fpregs_unlock();
327 }
328 EXPORT_SYMBOL_FOR_KVM(fpu_update_guest_xfd);
329
330 /**
331 * fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state
332 *
333 * Must be invoked from KVM after a VMEXIT before enabling interrupts when
334 * XFD write emulation is disabled. This is required because the guest can
335 * freely modify XFD and the state at VMEXIT is not guaranteed to be the
336 * same as the state on VMENTER. So software state has to be updated before
337 * any operation which depends on it can take place.
338 *
339 * Note: It can be invoked unconditionally even when write emulation is
340 * enabled for the price of a then pointless MSR read.
341 */
fpu_sync_guest_vmexit_xfd_state(void)342 void fpu_sync_guest_vmexit_xfd_state(void)
343 {
344 struct fpstate *fpstate = x86_task_fpu(current)->fpstate;
345
346 lockdep_assert_irqs_disabled();
347 if (fpu_state_size_dynamic()) {
348 rdmsrq(MSR_IA32_XFD, fpstate->xfd);
349 __this_cpu_write(xfd_state, fpstate->xfd);
350 }
351 }
352 EXPORT_SYMBOL_FOR_KVM(fpu_sync_guest_vmexit_xfd_state);
353 #endif /* CONFIG_X86_64 */
354
fpu_swap_kvm_fpstate(struct fpu_guest * guest_fpu,bool enter_guest)355 int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest)
356 {
357 struct fpstate *guest_fps = guest_fpu->fpstate;
358 struct fpu *fpu = x86_task_fpu(current);
359 struct fpstate *cur_fps = fpu->fpstate;
360
361 fpregs_lock();
362 if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD))
363 save_fpregs_to_fpstate(fpu);
364
365 /* Swap fpstate */
366 if (enter_guest) {
367 fpu->__task_fpstate = cur_fps;
368 fpu->fpstate = guest_fps;
369 guest_fps->in_use = true;
370 } else {
371 guest_fps->in_use = false;
372 fpu->fpstate = fpu->__task_fpstate;
373 fpu->__task_fpstate = NULL;
374 }
375
376 cur_fps = fpu->fpstate;
377
378 if (!cur_fps->is_confidential) {
379 /* Includes XFD update */
380 restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE);
381 } else {
382 /*
383 * XSTATE is restored by firmware from encrypted
384 * memory. Make sure XFD state is correct while
385 * running with guest fpstate
386 */
387 xfd_update_state(cur_fps);
388 }
389
390 fpregs_mark_activate();
391 fpregs_unlock();
392 return 0;
393 }
394 EXPORT_SYMBOL_FOR_KVM(fpu_swap_kvm_fpstate);
395
fpu_copy_guest_fpstate_to_uabi(struct fpu_guest * gfpu,void * buf,unsigned int size,u64 xfeatures,u32 pkru)396 void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf,
397 unsigned int size, u64 xfeatures, u32 pkru)
398 {
399 struct fpstate *kstate = gfpu->fpstate;
400 union fpregs_state *ustate = buf;
401 struct membuf mb = { .p = buf, .left = size };
402
403 if (cpu_feature_enabled(X86_FEATURE_XSAVE)) {
404 __copy_xstate_to_uabi_buf(mb, kstate, xfeatures, pkru,
405 XSTATE_COPY_XSAVE);
406 } else {
407 memcpy(&ustate->fxsave, &kstate->regs.fxsave,
408 sizeof(ustate->fxsave));
409 /* Make it restorable on a XSAVE enabled host */
410 ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE;
411 }
412 }
413 EXPORT_SYMBOL_FOR_KVM(fpu_copy_guest_fpstate_to_uabi);
414
fpu_copy_uabi_to_guest_fpstate(struct fpu_guest * gfpu,const void * buf,u64 xcr0,u32 * vpkru)415 int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf,
416 u64 xcr0, u32 *vpkru)
417 {
418 struct fpstate *kstate = gfpu->fpstate;
419 const union fpregs_state *ustate = buf;
420
421 if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) {
422 if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE)
423 return -EINVAL;
424 if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask)
425 return -EINVAL;
426 memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave));
427 return 0;
428 }
429
430 if (ustate->xsave.header.xfeatures & ~xcr0)
431 return -EINVAL;
432
433 /*
434 * Nullify @vpkru to preserve its current value if PKRU's bit isn't set
435 * in the header. KVM's odd ABI is to leave PKRU untouched in this
436 * case (all other components are eventually re-initialized).
437 */
438 if (!(ustate->xsave.header.xfeatures & XFEATURE_MASK_PKRU))
439 vpkru = NULL;
440
441 return copy_uabi_from_kernel_to_xstate(kstate, ustate, vpkru);
442 }
443 EXPORT_SYMBOL_FOR_KVM(fpu_copy_uabi_to_guest_fpstate);
444 #endif /* CONFIG_KVM */
445
kernel_fpu_begin_mask(unsigned int kfpu_mask)446 void kernel_fpu_begin_mask(unsigned int kfpu_mask)
447 {
448 if (!irqs_disabled())
449 fpregs_lock();
450
451 WARN_ON_FPU(!irq_fpu_usable());
452
453 /* Toggle kernel_fpu_allowed to false: */
454 WARN_ON_FPU(!this_cpu_read(kernel_fpu_allowed));
455 this_cpu_write(kernel_fpu_allowed, false);
456
457 if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER)) &&
458 !test_thread_flag(TIF_NEED_FPU_LOAD)) {
459 set_thread_flag(TIF_NEED_FPU_LOAD);
460 save_fpregs_to_fpstate(x86_task_fpu(current));
461 }
462 __cpu_invalidate_fpregs_state();
463
464 /* Put sane initial values into the control registers. */
465 if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
466 ldmxcsr(MXCSR_DEFAULT);
467
468 if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
469 asm volatile ("fninit");
470 }
471 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
472
kernel_fpu_end(void)473 void kernel_fpu_end(void)
474 {
475 /* Toggle kernel_fpu_allowed back to true: */
476 WARN_ON_FPU(this_cpu_read(kernel_fpu_allowed));
477 this_cpu_write(kernel_fpu_allowed, true);
478
479 if (!irqs_disabled())
480 fpregs_unlock();
481 }
482 EXPORT_SYMBOL_GPL(kernel_fpu_end);
483
484 /*
485 * Sync the FPU register state to current's memory register state when the
486 * current task owns the FPU. The hardware register state is preserved.
487 */
fpu_sync_fpstate(struct fpu * fpu)488 void fpu_sync_fpstate(struct fpu *fpu)
489 {
490 WARN_ON_FPU(fpu != x86_task_fpu(current));
491
492 fpregs_lock();
493 trace_x86_fpu_before_save(fpu);
494
495 if (!test_thread_flag(TIF_NEED_FPU_LOAD))
496 save_fpregs_to_fpstate(fpu);
497
498 trace_x86_fpu_after_save(fpu);
499 fpregs_unlock();
500 }
501
init_fpstate_copy_size(void)502 static inline unsigned int init_fpstate_copy_size(void)
503 {
504 if (!use_xsave())
505 return fpu_kernel_cfg.default_size;
506
507 /* XSAVE(S) just needs the legacy and the xstate header part */
508 return sizeof(init_fpstate.regs.xsave);
509 }
510
fpstate_init_fxstate(struct fpstate * fpstate)511 static inline void fpstate_init_fxstate(struct fpstate *fpstate)
512 {
513 fpstate->regs.fxsave.cwd = 0x37f;
514 fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT;
515 }
516
517 /*
518 * Legacy x87 fpstate state init:
519 */
fpstate_init_fstate(struct fpstate * fpstate)520 static inline void fpstate_init_fstate(struct fpstate *fpstate)
521 {
522 fpstate->regs.fsave.cwd = 0xffff037fu;
523 fpstate->regs.fsave.swd = 0xffff0000u;
524 fpstate->regs.fsave.twd = 0xffffffffu;
525 fpstate->regs.fsave.fos = 0xffff0000u;
526 }
527
528 /*
529 * Used in two places:
530 * 1) Early boot to setup init_fpstate for non XSAVE systems
531 * 2) fpu_alloc_guest_fpstate() which is invoked from KVM
532 */
fpstate_init_user(struct fpstate * fpstate)533 void fpstate_init_user(struct fpstate *fpstate)
534 {
535 if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
536 fpstate_init_soft(&fpstate->regs.soft);
537 return;
538 }
539
540 xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures);
541
542 if (cpu_feature_enabled(X86_FEATURE_FXSR))
543 fpstate_init_fxstate(fpstate);
544 else
545 fpstate_init_fstate(fpstate);
546 }
547
__fpstate_reset(struct fpstate * fpstate)548 static void __fpstate_reset(struct fpstate *fpstate)
549 {
550 /*
551 * Supervisor features (and thus sizes) may diverge between guest
552 * FPUs and host FPUs, as some supervisor features are supported
553 * for guests despite not being utilized by the host. User
554 * features and sizes are always identical, which allows for
555 * common guest and userspace ABI.
556 *
557 * For the host, set XFD to the kernel's desired initialization
558 * value. For guests, set XFD to its architectural RESET value.
559 */
560 if (fpstate->is_guest) {
561 fpstate->size = guest_default_cfg.size;
562 fpstate->xfeatures = guest_default_cfg.features;
563 fpstate->xfd = 0;
564 } else {
565 fpstate->size = fpu_kernel_cfg.default_size;
566 fpstate->xfeatures = fpu_kernel_cfg.default_features;
567 fpstate->xfd = init_fpstate.xfd;
568 }
569
570 fpstate->user_size = fpu_user_cfg.default_size;
571 fpstate->user_xfeatures = fpu_user_cfg.default_features;
572 }
573
fpstate_reset(struct fpu * fpu)574 void fpstate_reset(struct fpu *fpu)
575 {
576 /* Set the fpstate pointer to the default fpstate */
577 fpu->fpstate = &fpu->__fpstate;
578 __fpstate_reset(fpu->fpstate);
579
580 /* Initialize the permission related info in fpu */
581 fpu->perm.__state_perm = fpu_kernel_cfg.default_features;
582 fpu->perm.__state_size = fpu_kernel_cfg.default_size;
583 fpu->perm.__user_state_size = fpu_user_cfg.default_size;
584
585 fpu->guest_perm.__state_perm = guest_default_cfg.features;
586 fpu->guest_perm.__state_size = guest_default_cfg.size;
587 /*
588 * User features and sizes are always identical between host and
589 * guest FPUs, which allows for common guest and userspace ABI.
590 */
591 fpu->guest_perm.__user_state_size = fpu_user_cfg.default_size;
592 }
593
fpu_inherit_perms(struct fpu * dst_fpu)594 static inline void fpu_inherit_perms(struct fpu *dst_fpu)
595 {
596 if (fpu_state_size_dynamic()) {
597 struct fpu *src_fpu = x86_task_fpu(current->group_leader);
598
599 spin_lock_irq(¤t->sighand->siglock);
600 /* Fork also inherits the permissions of the parent */
601 dst_fpu->perm = src_fpu->perm;
602 dst_fpu->guest_perm = src_fpu->guest_perm;
603 spin_unlock_irq(¤t->sighand->siglock);
604 }
605 }
606
607 /* A passed ssp of zero will not cause any update */
update_fpu_shstk(struct task_struct * dst,unsigned long ssp)608 static int update_fpu_shstk(struct task_struct *dst, unsigned long ssp)
609 {
610 #ifdef CONFIG_X86_USER_SHADOW_STACK
611 struct cet_user_state *xstate;
612
613 /* If ssp update is not needed. */
614 if (!ssp)
615 return 0;
616
617 xstate = get_xsave_addr(&x86_task_fpu(dst)->fpstate->regs.xsave,
618 XFEATURE_CET_USER);
619
620 /*
621 * If there is a non-zero ssp, then 'dst' must be configured with a shadow
622 * stack and the fpu state should be up to date since it was just copied
623 * from the parent in fpu_clone(). So there must be a valid non-init CET
624 * state location in the buffer.
625 */
626 if (WARN_ON_ONCE(!xstate))
627 return 1;
628
629 xstate->user_ssp = (u64)ssp;
630 #endif
631 return 0;
632 }
633
634 /* Clone current's FPU state on fork */
fpu_clone(struct task_struct * dst,u64 clone_flags,bool minimal,unsigned long ssp)635 int fpu_clone(struct task_struct *dst, u64 clone_flags, bool minimal,
636 unsigned long ssp)
637 {
638 /*
639 * We allocate the new FPU structure right after the end of the task struct.
640 * task allocation size already took this into account.
641 *
642 * This is safe because task_struct size is a multiple of cacheline size,
643 * thus x86_task_fpu() will always be cacheline aligned as well.
644 */
645 struct fpu *dst_fpu = (void *)dst + sizeof(*dst);
646
647 BUILD_BUG_ON(sizeof(*dst) % SMP_CACHE_BYTES != 0);
648
649 /* The new task's FPU state cannot be valid in the hardware. */
650 dst_fpu->last_cpu = -1;
651
652 fpstate_reset(dst_fpu);
653
654 if (!cpu_feature_enabled(X86_FEATURE_FPU))
655 return 0;
656
657 /*
658 * Enforce reload for user space tasks and prevent kernel threads
659 * from trying to save the FPU registers on context switch.
660 */
661 set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
662
663 /*
664 * No FPU state inheritance for kernel threads and IO
665 * worker threads.
666 */
667 if (minimal) {
668 /* Clear out the minimal state */
669 memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs,
670 init_fpstate_copy_size());
671 return 0;
672 }
673
674 /*
675 * If a new feature is added, ensure all dynamic features are
676 * caller-saved from here!
677 */
678 BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
679
680 /*
681 * Save the default portion of the current FPU state into the
682 * clone. Assume all dynamic features to be defined as caller-
683 * saved, which enables skipping both the expansion of fpstate
684 * and the copying of any dynamic state.
685 *
686 * Do not use memcpy() when TIF_NEED_FPU_LOAD is set because
687 * copying is not valid when current uses non-default states.
688 */
689 fpregs_lock();
690 if (test_thread_flag(TIF_NEED_FPU_LOAD))
691 fpregs_restore_userregs();
692 save_fpregs_to_fpstate(dst_fpu);
693 fpregs_unlock();
694 if (!(clone_flags & CLONE_THREAD))
695 fpu_inherit_perms(dst_fpu);
696
697 /*
698 * Children never inherit PASID state.
699 * Force it to have its init value:
700 */
701 if (use_xsave())
702 dst_fpu->fpstate->regs.xsave.header.xfeatures &= ~XFEATURE_MASK_PASID;
703
704 /*
705 * Update shadow stack pointer, in case it changed during clone.
706 */
707 if (update_fpu_shstk(dst, ssp))
708 return 1;
709
710 trace_x86_fpu_copy_dst(dst_fpu);
711
712 return 0;
713 }
714
715 /*
716 * While struct fpu is no longer part of struct thread_struct, it is still
717 * allocated after struct task_struct in the "task_struct" kmem cache. But
718 * since FPU is expected to be part of struct thread_struct, we have to
719 * adjust for it here.
720 */
fpu_thread_struct_whitelist(unsigned long * offset,unsigned long * size)721 void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size)
722 {
723 /* The allocation follows struct task_struct. */
724 *offset = sizeof(struct task_struct) - offsetof(struct task_struct, thread);
725 *offset += offsetof(struct fpu, __fpstate.regs);
726 *size = fpu_kernel_cfg.default_size;
727 }
728
729 /*
730 * Drops current FPU state: deactivates the fpregs and
731 * the fpstate. NOTE: it still leaves previous contents
732 * in the fpregs in the eager-FPU case.
733 *
734 * This function can be used in cases where we know that
735 * a state-restore is coming: either an explicit one,
736 * or a reschedule.
737 */
fpu__drop(struct task_struct * tsk)738 void fpu__drop(struct task_struct *tsk)
739 {
740 struct fpu *fpu;
741
742 if (test_tsk_thread_flag(tsk, TIF_NEED_FPU_LOAD))
743 return;
744
745 fpu = x86_task_fpu(tsk);
746
747 preempt_disable();
748
749 if (fpu == x86_task_fpu(current)) {
750 /* Ignore delayed exceptions from user space */
751 asm volatile("1: fwait\n"
752 "2:\n"
753 _ASM_EXTABLE(1b, 2b));
754 fpregs_deactivate(fpu);
755 }
756
757 trace_x86_fpu_dropped(fpu);
758
759 preempt_enable();
760 }
761
762 /*
763 * Clear FPU registers by setting them up from the init fpstate.
764 * Caller must do fpregs_[un]lock() around it.
765 */
restore_fpregs_from_init_fpstate(u64 features_mask)766 static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
767 {
768 if (use_xsave())
769 os_xrstor(&init_fpstate, features_mask);
770 else if (use_fxsr())
771 fxrstor(&init_fpstate.regs.fxsave);
772 else
773 frstor(&init_fpstate.regs.fsave);
774
775 pkru_write_default();
776 }
777
778 /*
779 * Reset current->fpu memory state to the init values.
780 */
fpu_reset_fpstate_regs(void)781 static void fpu_reset_fpstate_regs(void)
782 {
783 struct fpu *fpu = x86_task_fpu(current);
784
785 fpregs_lock();
786 __fpu_invalidate_fpregs_state(fpu);
787 /*
788 * This does not change the actual hardware registers. It just
789 * resets the memory image and sets TIF_NEED_FPU_LOAD so a
790 * subsequent return to usermode will reload the registers from the
791 * task's memory image.
792 *
793 * Do not use fpstate_init() here. Just copy init_fpstate which has
794 * the correct content already except for PKRU.
795 *
796 * PKRU handling does not rely on the xstate when restoring for
797 * user space as PKRU is eagerly written in switch_to() and
798 * flush_thread().
799 */
800 memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size());
801 set_thread_flag(TIF_NEED_FPU_LOAD);
802 fpregs_unlock();
803 }
804
805 /*
806 * Reset current's user FPU states to the init states. current's
807 * supervisor states, if any, are not modified by this function. The
808 * caller guarantees that the XSTATE header in memory is intact.
809 */
fpu__clear_user_states(struct fpu * fpu)810 void fpu__clear_user_states(struct fpu *fpu)
811 {
812 WARN_ON_FPU(fpu != x86_task_fpu(current));
813
814 fpregs_lock();
815 if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
816 fpu_reset_fpstate_regs();
817 fpregs_unlock();
818 return;
819 }
820
821 /*
822 * Ensure that current's supervisor states are loaded into their
823 * corresponding registers.
824 */
825 if (xfeatures_mask_supervisor() &&
826 !fpregs_state_valid(fpu, smp_processor_id()))
827 os_xrstor_supervisor(fpu->fpstate);
828
829 /* Ensure XFD state is in sync before reloading XSTATE */
830 xfd_update_state(fpu->fpstate);
831
832 /* Reset user states in registers. */
833 restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE);
834
835 /*
836 * Now all FPU registers have their desired values. Inform the FPU
837 * state machine that current's FPU registers are in the hardware
838 * registers. The memory image does not need to be updated because
839 * any operation relying on it has to save the registers first when
840 * current's FPU is marked active.
841 */
842 fpregs_mark_activate();
843 fpregs_unlock();
844 }
845
fpu_flush_thread(void)846 void fpu_flush_thread(void)
847 {
848 fpstate_reset(x86_task_fpu(current));
849 fpu_reset_fpstate_regs();
850 }
851 /*
852 * Load FPU context before returning to userspace.
853 */
switch_fpu_return(void)854 void switch_fpu_return(void)
855 {
856 if (!static_cpu_has(X86_FEATURE_FPU))
857 return;
858
859 fpregs_restore_userregs();
860 }
861 EXPORT_SYMBOL_FOR_KVM(switch_fpu_return);
862
fpregs_lock_and_load(void)863 void fpregs_lock_and_load(void)
864 {
865 /*
866 * fpregs_lock() only disables preemption (mostly). So modifying state
867 * in an interrupt could screw up some in progress fpregs operation.
868 * Warn about it.
869 */
870 WARN_ON_ONCE(!irq_fpu_usable());
871 WARN_ON_ONCE(current->flags & PF_KTHREAD);
872
873 fpregs_lock();
874
875 fpregs_assert_state_consistent();
876
877 if (test_thread_flag(TIF_NEED_FPU_LOAD))
878 fpregs_restore_userregs();
879 }
880
881 #ifdef CONFIG_X86_DEBUG_FPU
882 /*
883 * If current FPU state according to its tracking (loaded FPU context on this
884 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
885 * loaded on return to userland.
886 */
fpregs_assert_state_consistent(void)887 void fpregs_assert_state_consistent(void)
888 {
889 struct fpu *fpu = x86_task_fpu(current);
890
891 if (test_thread_flag(TIF_NEED_FPU_LOAD))
892 return;
893
894 WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
895 }
896 EXPORT_SYMBOL_FOR_KVM(fpregs_assert_state_consistent);
897 #endif
898
fpregs_mark_activate(void)899 void fpregs_mark_activate(void)
900 {
901 struct fpu *fpu = x86_task_fpu(current);
902
903 fpregs_activate(fpu);
904 fpu->last_cpu = smp_processor_id();
905 clear_thread_flag(TIF_NEED_FPU_LOAD);
906 }
907
908 /*
909 * x87 math exception handling:
910 */
911
fpu__exception_code(struct fpu * fpu,int trap_nr)912 int fpu__exception_code(struct fpu *fpu, int trap_nr)
913 {
914 int err;
915
916 if (trap_nr == X86_TRAP_MF) {
917 unsigned short cwd, swd;
918 /*
919 * (~cwd & swd) will mask out exceptions that are not set to unmasked
920 * status. 0x3f is the exception bits in these regs, 0x200 is the
921 * C1 reg you need in case of a stack fault, 0x040 is the stack
922 * fault bit. We should only be taking one exception at a time,
923 * so if this combination doesn't produce any single exception,
924 * then we have a bad program that isn't synchronizing its FPU usage
925 * and it will suffer the consequences since we won't be able to
926 * fully reproduce the context of the exception.
927 */
928 if (boot_cpu_has(X86_FEATURE_FXSR)) {
929 cwd = fpu->fpstate->regs.fxsave.cwd;
930 swd = fpu->fpstate->regs.fxsave.swd;
931 } else {
932 cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd;
933 swd = (unsigned short)fpu->fpstate->regs.fsave.swd;
934 }
935
936 err = swd & ~cwd;
937 } else {
938 /*
939 * The SIMD FPU exceptions are handled a little differently, as there
940 * is only a single status/control register. Thus, to determine which
941 * unmasked exception was caught we must mask the exception mask bits
942 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
943 */
944 unsigned short mxcsr = MXCSR_DEFAULT;
945
946 if (boot_cpu_has(X86_FEATURE_XMM))
947 mxcsr = fpu->fpstate->regs.fxsave.mxcsr;
948
949 err = ~(mxcsr >> 7) & mxcsr;
950 }
951
952 if (err & 0x001) { /* Invalid op */
953 /*
954 * swd & 0x240 == 0x040: Stack Underflow
955 * swd & 0x240 == 0x240: Stack Overflow
956 * User must clear the SF bit (0x40) if set
957 */
958 return FPE_FLTINV;
959 } else if (err & 0x004) { /* Divide by Zero */
960 return FPE_FLTDIV;
961 } else if (err & 0x008) { /* Overflow */
962 return FPE_FLTOVF;
963 } else if (err & 0x012) { /* Denormal, Underflow */
964 return FPE_FLTUND;
965 } else if (err & 0x020) { /* Precision */
966 return FPE_FLTRES;
967 }
968
969 /*
970 * If we're using IRQ 13, or supposedly even some trap
971 * X86_TRAP_MF implementations, it's possible
972 * we get a spurious trap, which is not an error.
973 */
974 return 0;
975 }
976
977 /*
978 * Initialize register state that may prevent from entering low-power idle.
979 * This function will be invoked from the cpuidle driver only when needed.
980 */
fpu_idle_fpregs(void)981 noinstr void fpu_idle_fpregs(void)
982 {
983 /* Note: AMX_TILE being enabled implies XGETBV1 support */
984 if (cpu_feature_enabled(X86_FEATURE_AMX_TILE) &&
985 (xfeatures_in_use() & XFEATURE_MASK_XTILE)) {
986 tile_release();
987 __this_cpu_write(fpu_fpregs_owner_ctx, NULL);
988 }
989 }
990