xref: /linux/arch/arm64/kernel/fpsimd.c (revision feafee284579d29537a5a56ba8f23894f0463f3d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FP/SIMD context switching and fault handling
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  * Author: Catalin Marinas <catalin.marinas@arm.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34 
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47 
48 #define FPEXC_IOF	(1 << 0)
49 #define FPEXC_DZF	(1 << 1)
50 #define FPEXC_OFF	(1 << 2)
51 #define FPEXC_UFF	(1 << 3)
52 #define FPEXC_IXF	(1 << 4)
53 #define FPEXC_IDF	(1 << 7)
54 
55 /*
56  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57  *
58  * In order to reduce the number of times the FPSIMD state is needlessly saved
59  * and restored, we need to keep track of two things:
60  * (a) for each task, we need to remember which CPU was the last one to have
61  *     the task's FPSIMD state loaded into its FPSIMD registers;
62  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63  *     been loaded into its FPSIMD registers most recently, or whether it has
64  *     been used to perform kernel mode NEON in the meantime.
65  *
66  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69  * address of the userland FPSIMD state of the task that was loaded onto the CPU
70  * the most recently, or NULL if kernel mode NEON has been performed after that.
71  *
72  * With this in place, we no longer have to restore the next FPSIMD state right
73  * when switching between tasks. Instead, we can defer this check to userland
74  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76  * can omit the FPSIMD restore.
77  *
78  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79  * indicate whether or not the userland FPSIMD state of the current task is
80  * present in the registers. The flag is set unless the FPSIMD registers of this
81  * CPU currently contain the most recent userland FPSIMD state of the current
82  * task. If the task is behaving as a VMM, then this is will be managed by
83  * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84  * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85  * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86  * flag the register state as invalid.
87  *
88  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may be
89  * called from softirq context, which will save the task's FPSIMD context back
90  * to task_struct. To prevent this from racing with the manipulation of the
91  * task's FPSIMD state from task context and thereby corrupting the state, it
92  * is necessary to protect any manipulation of a task's fpsimd_state or
93  * TIF_FOREIGN_FPSTATE flag with get_cpu_fpsimd_context(), which will suspend
94  * softirq servicing entirely until put_cpu_fpsimd_context() is called.
95  *
96  * For a certain task, the sequence may look something like this:
97  * - the task gets scheduled in; if both the task's fpsimd_cpu field
98  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100  *   cleared, otherwise it is set;
101  *
102  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103  *   userland FPSIMD state is copied from memory to the registers, the task's
104  *   fpsimd_cpu field is set to the id of the current CPU, the current
105  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106  *   TIF_FOREIGN_FPSTATE flag is cleared;
107  *
108  * - the task executes an ordinary syscall; upon return to userland, the
109  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110  *   restored;
111  *
112  * - the task executes a syscall which executes some NEON instructions; this is
113  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
115  *   and sets the TIF_FOREIGN_FPSTATE flag;
116  *
117  * - the task gets preempted after kernel_neon_end() is called; as we have not
118  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
120  */
121 
122 DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
123 
124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
125 #ifdef CONFIG_ARM64_SVE
126 	[ARM64_VEC_SVE] = {
127 		.type			= ARM64_VEC_SVE,
128 		.name			= "SVE",
129 		.min_vl			= SVE_VL_MIN,
130 		.max_vl			= SVE_VL_MIN,
131 		.max_virtualisable_vl	= SVE_VL_MIN,
132 	},
133 #endif
134 #ifdef CONFIG_ARM64_SME
135 	[ARM64_VEC_SME] = {
136 		.type			= ARM64_VEC_SME,
137 		.name			= "SME",
138 	},
139 #endif
140 };
141 
vec_vl_inherit_flag(enum vec_type type)142 static unsigned int vec_vl_inherit_flag(enum vec_type type)
143 {
144 	switch (type) {
145 	case ARM64_VEC_SVE:
146 		return TIF_SVE_VL_INHERIT;
147 	case ARM64_VEC_SME:
148 		return TIF_SME_VL_INHERIT;
149 	default:
150 		WARN_ON_ONCE(1);
151 		return 0;
152 	}
153 }
154 
155 struct vl_config {
156 	int __default_vl;		/* Default VL for tasks */
157 };
158 
159 static struct vl_config vl_config[ARM64_VEC_MAX];
160 
get_default_vl(enum vec_type type)161 static inline int get_default_vl(enum vec_type type)
162 {
163 	return READ_ONCE(vl_config[type].__default_vl);
164 }
165 
166 #ifdef CONFIG_ARM64_SVE
167 
get_sve_default_vl(void)168 static inline int get_sve_default_vl(void)
169 {
170 	return get_default_vl(ARM64_VEC_SVE);
171 }
172 
set_default_vl(enum vec_type type,int val)173 static inline void set_default_vl(enum vec_type type, int val)
174 {
175 	WRITE_ONCE(vl_config[type].__default_vl, val);
176 }
177 
set_sve_default_vl(int val)178 static inline void set_sve_default_vl(int val)
179 {
180 	set_default_vl(ARM64_VEC_SVE, val);
181 }
182 
183 static u8 *efi_sve_state;
184 
185 #else /* ! CONFIG_ARM64_SVE */
186 
187 /* Dummy declaration for code that will be optimised out: */
188 extern u8 *efi_sve_state;
189 
190 #endif /* ! CONFIG_ARM64_SVE */
191 
192 #ifdef CONFIG_ARM64_SME
193 
get_sme_default_vl(void)194 static int get_sme_default_vl(void)
195 {
196 	return get_default_vl(ARM64_VEC_SME);
197 }
198 
set_sme_default_vl(int val)199 static void set_sme_default_vl(int val)
200 {
201 	set_default_vl(ARM64_VEC_SME, val);
202 }
203 
204 static void sme_free(struct task_struct *);
205 
206 #else
207 
sme_free(struct task_struct * t)208 static inline void sme_free(struct task_struct *t) { }
209 
210 #endif
211 
212 static void fpsimd_bind_task_to_cpu(void);
213 
214 /*
215  * Claim ownership of the CPU FPSIMD context for use by the calling context.
216  *
217  * The caller may freely manipulate the FPSIMD context metadata until
218  * put_cpu_fpsimd_context() is called.
219  *
220  * On RT kernels local_bh_disable() is not sufficient because it only
221  * serializes soft interrupt related sections via a local lock, but stays
222  * preemptible. Disabling preemption is the right choice here as bottom
223  * half processing is always in thread context on RT kernels so it
224  * implicitly prevents bottom half processing as well.
225  */
get_cpu_fpsimd_context(void)226 static void get_cpu_fpsimd_context(void)
227 {
228 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
229 		local_bh_disable();
230 	else
231 		preempt_disable();
232 }
233 
234 /*
235  * Release the CPU FPSIMD context.
236  *
237  * Must be called from a context in which get_cpu_fpsimd_context() was
238  * previously called, with no call to put_cpu_fpsimd_context() in the
239  * meantime.
240  */
put_cpu_fpsimd_context(void)241 static void put_cpu_fpsimd_context(void)
242 {
243 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
244 		local_bh_enable();
245 	else
246 		preempt_enable();
247 }
248 
task_get_vl(const struct task_struct * task,enum vec_type type)249 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
250 {
251 	return task->thread.vl[type];
252 }
253 
task_set_vl(struct task_struct * task,enum vec_type type,unsigned long vl)254 void task_set_vl(struct task_struct *task, enum vec_type type,
255 		 unsigned long vl)
256 {
257 	task->thread.vl[type] = vl;
258 }
259 
task_get_vl_onexec(const struct task_struct * task,enum vec_type type)260 unsigned int task_get_vl_onexec(const struct task_struct *task,
261 				enum vec_type type)
262 {
263 	return task->thread.vl_onexec[type];
264 }
265 
task_set_vl_onexec(struct task_struct * task,enum vec_type type,unsigned long vl)266 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
267 			unsigned long vl)
268 {
269 	task->thread.vl_onexec[type] = vl;
270 }
271 
272 /*
273  * TIF_SME controls whether a task can use SME without trapping while
274  * in userspace, when TIF_SME is set then we must have storage
275  * allocated in sve_state and sme_state to store the contents of both ZA
276  * and the SVE registers for both streaming and non-streaming modes.
277  *
278  * If both SVCR.ZA and SVCR.SM are disabled then at any point we
279  * may disable TIF_SME and reenable traps.
280  */
281 
282 
283 /*
284  * TIF_SVE controls whether a task can use SVE without trapping while
285  * in userspace, and also (together with TIF_SME) the way a task's
286  * FPSIMD/SVE state is stored in thread_struct.
287  *
288  * The kernel uses this flag to track whether a user task is actively
289  * using SVE, and therefore whether full SVE register state needs to
290  * be tracked.  If not, the cheaper FPSIMD context handling code can
291  * be used instead of the more costly SVE equivalents.
292  *
293  *  * TIF_SVE or SVCR.SM set:
294  *
295  *    The task can execute SVE instructions while in userspace without
296  *    trapping to the kernel.
297  *
298  *    During any syscall, the kernel may optionally clear TIF_SVE and
299  *    discard the vector state except for the FPSIMD subset.
300  *
301  *  * TIF_SVE clear:
302  *
303  *    An attempt by the user task to execute an SVE instruction causes
304  *    do_sve_acc() to be called, which does some preparation and then
305  *    sets TIF_SVE.
306  *
307  * During any syscall, the kernel may optionally clear TIF_SVE and
308  * discard the vector state except for the FPSIMD subset.
309  *
310  * The data will be stored in one of two formats:
311  *
312  *  * FPSIMD only - FP_STATE_FPSIMD:
313  *
314  *    When the FPSIMD only state stored task->thread.fp_type is set to
315  *    FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
316  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
317  *    logically zero but not stored anywhere; P0-P15 and FFR are not
318  *    stored and have unspecified values from userspace's point of
319  *    view.  For hygiene purposes, the kernel zeroes them on next use,
320  *    but userspace is discouraged from relying on this.
321  *
322  *    task->thread.sve_state does not need to be non-NULL, valid or any
323  *    particular size: it must not be dereferenced and any data stored
324  *    there should be considered stale and not referenced.
325  *
326  *  * SVE state - FP_STATE_SVE:
327  *
328  *    When the full SVE state is stored task->thread.fp_type is set to
329  *    FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
330  *    corresponding Zn), P0-P15 and FFR are encoded in in
331  *    task->thread.sve_state, formatted appropriately for vector
332  *    length task->thread.sve_vl or, if SVCR.SM is set,
333  *    task->thread.sme_vl. The storage for the vector registers in
334  *    task->thread.uw.fpsimd_state should be ignored.
335  *
336  *    task->thread.sve_state must point to a valid buffer at least
337  *    sve_state_size(task) bytes in size. The data stored in
338  *    task->thread.uw.fpsimd_state.vregs should be considered stale
339  *    and not referenced.
340  *
341  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
342  *    irrespective of whether TIF_SVE is clear or set, since these are
343  *    not vector length dependent.
344  */
345 
346 /*
347  * Update current's FPSIMD/SVE registers from thread_struct.
348  *
349  * This function should be called only when the FPSIMD/SVE state in
350  * thread_struct is known to be up to date, when preparing to enter
351  * userspace.
352  */
task_fpsimd_load(void)353 static void task_fpsimd_load(void)
354 {
355 	bool restore_sve_regs = false;
356 	bool restore_ffr;
357 
358 	WARN_ON(!system_supports_fpsimd());
359 	WARN_ON(preemptible());
360 	WARN_ON(test_thread_flag(TIF_KERNEL_FPSTATE));
361 
362 	if (system_supports_sve() || system_supports_sme()) {
363 		switch (current->thread.fp_type) {
364 		case FP_STATE_FPSIMD:
365 			/* Stop tracking SVE for this task until next use. */
366 			clear_thread_flag(TIF_SVE);
367 			break;
368 		case FP_STATE_SVE:
369 			if (!thread_sm_enabled(&current->thread))
370 				WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE));
371 
372 			if (test_thread_flag(TIF_SVE))
373 				sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
374 
375 			restore_sve_regs = true;
376 			restore_ffr = true;
377 			break;
378 		default:
379 			/*
380 			 * This indicates either a bug in
381 			 * fpsimd_save_user_state() or memory corruption, we
382 			 * should always record an explicit format
383 			 * when we save. We always at least have the
384 			 * memory allocated for FPSIMD registers so
385 			 * try that and hope for the best.
386 			 */
387 			WARN_ON_ONCE(1);
388 			clear_thread_flag(TIF_SVE);
389 			break;
390 		}
391 	}
392 
393 	/* Restore SME, override SVE register configuration if needed */
394 	if (system_supports_sme()) {
395 		unsigned long sme_vl = task_get_sme_vl(current);
396 
397 		/* Ensure VL is set up for restoring data */
398 		if (test_thread_flag(TIF_SME))
399 			sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
400 
401 		write_sysreg_s(current->thread.svcr, SYS_SVCR);
402 
403 		if (thread_za_enabled(&current->thread))
404 			sme_load_state(current->thread.sme_state,
405 				       system_supports_sme2());
406 
407 		if (thread_sm_enabled(&current->thread))
408 			restore_ffr = system_supports_fa64();
409 	}
410 
411 	if (system_supports_fpmr())
412 		write_sysreg_s(current->thread.uw.fpmr, SYS_FPMR);
413 
414 	if (restore_sve_regs) {
415 		WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
416 		sve_load_state(sve_pffr(&current->thread),
417 			       &current->thread.uw.fpsimd_state.fpsr,
418 			       restore_ffr);
419 	} else {
420 		WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
421 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
422 	}
423 }
424 
425 /*
426  * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
427  * date with respect to the CPU registers. Note carefully that the
428  * current context is the context last bound to the CPU stored in
429  * last, if KVM is involved this may be the guest VM context rather
430  * than the host thread for the VM pointed to by current. This means
431  * that we must always reference the state storage via last rather
432  * than via current, if we are saving KVM state then it will have
433  * ensured that the type of registers to save is set in last->to_save.
434  */
fpsimd_save_user_state(void)435 static void fpsimd_save_user_state(void)
436 {
437 	struct cpu_fp_state const *last =
438 		this_cpu_ptr(&fpsimd_last_state);
439 	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
440 	bool save_sve_regs = false;
441 	bool save_ffr;
442 	unsigned int vl;
443 
444 	WARN_ON(!system_supports_fpsimd());
445 	WARN_ON(preemptible());
446 
447 	if (test_thread_flag(TIF_FOREIGN_FPSTATE))
448 		return;
449 
450 	if (system_supports_fpmr())
451 		*(last->fpmr) = read_sysreg_s(SYS_FPMR);
452 
453 	/*
454 	 * Save SVE state if it is live.
455 	 *
456 	 * The syscall ABI discards live SVE state at syscall entry. When
457 	 * entering a syscall, fpsimd_syscall_enter() sets to_save to
458 	 * FP_STATE_FPSIMD to allow the SVE state to be lazily discarded until
459 	 * either new SVE state is loaded+bound or fpsimd_syscall_exit() is
460 	 * called prior to a return to userspace.
461 	 */
462 	if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE)) ||
463 	    last->to_save == FP_STATE_SVE) {
464 		save_sve_regs = true;
465 		save_ffr = true;
466 		vl = last->sve_vl;
467 	}
468 
469 	if (system_supports_sme()) {
470 		u64 *svcr = last->svcr;
471 
472 		*svcr = read_sysreg_s(SYS_SVCR);
473 
474 		if (*svcr & SVCR_ZA_MASK)
475 			sme_save_state(last->sme_state,
476 				       system_supports_sme2());
477 
478 		/* If we are in streaming mode override regular SVE. */
479 		if (*svcr & SVCR_SM_MASK) {
480 			save_sve_regs = true;
481 			save_ffr = system_supports_fa64();
482 			vl = last->sme_vl;
483 		}
484 	}
485 
486 	if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
487 		/* Get the configured VL from RDVL, will account for SM */
488 		if (WARN_ON(sve_get_vl() != vl)) {
489 			/*
490 			 * Can't save the user regs, so current would
491 			 * re-enter user with corrupt state.
492 			 * There's no way to recover, so kill it:
493 			 */
494 			force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
495 			return;
496 		}
497 
498 		sve_save_state((char *)last->sve_state +
499 					sve_ffr_offset(vl),
500 			       &last->st->fpsr, save_ffr);
501 		*last->fp_type = FP_STATE_SVE;
502 	} else {
503 		fpsimd_save_state(last->st);
504 		*last->fp_type = FP_STATE_FPSIMD;
505 	}
506 }
507 
508 /*
509  * All vector length selection from userspace comes through here.
510  * We're on a slow path, so some sanity-checks are included.
511  * If things go wrong there's a bug somewhere, but try to fall back to a
512  * safe choice.
513  */
find_supported_vector_length(enum vec_type type,unsigned int vl)514 static unsigned int find_supported_vector_length(enum vec_type type,
515 						 unsigned int vl)
516 {
517 	struct vl_info *info = &vl_info[type];
518 	int bit;
519 	int max_vl = info->max_vl;
520 
521 	if (WARN_ON(!sve_vl_valid(vl)))
522 		vl = info->min_vl;
523 
524 	if (WARN_ON(!sve_vl_valid(max_vl)))
525 		max_vl = info->min_vl;
526 
527 	if (vl > max_vl)
528 		vl = max_vl;
529 	if (vl < info->min_vl)
530 		vl = info->min_vl;
531 
532 	bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
533 			    __vq_to_bit(sve_vq_from_vl(vl)));
534 	return sve_vl_from_vq(__bit_to_vq(bit));
535 }
536 
537 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
538 
vec_proc_do_default_vl(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)539 static int vec_proc_do_default_vl(const struct ctl_table *table, int write,
540 				  void *buffer, size_t *lenp, loff_t *ppos)
541 {
542 	struct vl_info *info = table->extra1;
543 	enum vec_type type = info->type;
544 	int ret;
545 	int vl = get_default_vl(type);
546 	struct ctl_table tmp_table = {
547 		.data = &vl,
548 		.maxlen = sizeof(vl),
549 	};
550 
551 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
552 	if (ret || !write)
553 		return ret;
554 
555 	/* Writing -1 has the special meaning "set to max": */
556 	if (vl == -1)
557 		vl = info->max_vl;
558 
559 	if (!sve_vl_valid(vl))
560 		return -EINVAL;
561 
562 	set_default_vl(type, find_supported_vector_length(type, vl));
563 	return 0;
564 }
565 
566 static const struct ctl_table sve_default_vl_table[] = {
567 	{
568 		.procname	= "sve_default_vector_length",
569 		.mode		= 0644,
570 		.proc_handler	= vec_proc_do_default_vl,
571 		.extra1		= &vl_info[ARM64_VEC_SVE],
572 	},
573 };
574 
sve_sysctl_init(void)575 static int __init sve_sysctl_init(void)
576 {
577 	if (system_supports_sve())
578 		if (!register_sysctl("abi", sve_default_vl_table))
579 			return -EINVAL;
580 
581 	return 0;
582 }
583 
584 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
sve_sysctl_init(void)585 static int __init sve_sysctl_init(void) { return 0; }
586 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
587 
588 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
589 static const struct ctl_table sme_default_vl_table[] = {
590 	{
591 		.procname	= "sme_default_vector_length",
592 		.mode		= 0644,
593 		.proc_handler	= vec_proc_do_default_vl,
594 		.extra1		= &vl_info[ARM64_VEC_SME],
595 	},
596 };
597 
sme_sysctl_init(void)598 static int __init sme_sysctl_init(void)
599 {
600 	if (system_supports_sme())
601 		if (!register_sysctl("abi", sme_default_vl_table))
602 			return -EINVAL;
603 
604 	return 0;
605 }
606 
607 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
sme_sysctl_init(void)608 static int __init sme_sysctl_init(void) { return 0; }
609 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
610 
611 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
612 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
613 
614 #ifdef CONFIG_CPU_BIG_ENDIAN
arm64_cpu_to_le128(__uint128_t x)615 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
616 {
617 	u64 a = swab64(x);
618 	u64 b = swab64(x >> 64);
619 
620 	return ((__uint128_t)a << 64) | b;
621 }
622 #else
arm64_cpu_to_le128(__uint128_t x)623 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
624 {
625 	return x;
626 }
627 #endif
628 
629 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
630 
__fpsimd_to_sve(void * sst,struct user_fpsimd_state const * fst,unsigned int vq)631 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
632 			    unsigned int vq)
633 {
634 	unsigned int i;
635 	__uint128_t *p;
636 
637 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
638 		p = (__uint128_t *)ZREG(sst, vq, i);
639 		*p = arm64_cpu_to_le128(fst->vregs[i]);
640 	}
641 }
642 
643 /*
644  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
645  * task->thread.sve_state.
646  *
647  * Task can be a non-runnable task, or current.  In the latter case,
648  * the caller must have ownership of the cpu FPSIMD context before calling
649  * this function.
650  * task->thread.sve_state must point to at least sve_state_size(task)
651  * bytes of allocated kernel memory.
652  * task->thread.uw.fpsimd_state must be up to date before calling this
653  * function.
654  */
fpsimd_to_sve(struct task_struct * task)655 static inline void fpsimd_to_sve(struct task_struct *task)
656 {
657 	unsigned int vq;
658 	void *sst = task->thread.sve_state;
659 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
660 
661 	if (!system_supports_sve() && !system_supports_sme())
662 		return;
663 
664 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
665 	__fpsimd_to_sve(sst, fst, vq);
666 }
667 
668 /*
669  * Transfer the SVE state in task->thread.sve_state to
670  * task->thread.uw.fpsimd_state.
671  *
672  * Task can be a non-runnable task, or current.  In the latter case,
673  * the caller must have ownership of the cpu FPSIMD context before calling
674  * this function.
675  * task->thread.sve_state must point to at least sve_state_size(task)
676  * bytes of allocated kernel memory.
677  * task->thread.sve_state must be up to date before calling this function.
678  */
sve_to_fpsimd(struct task_struct * task)679 static inline void sve_to_fpsimd(struct task_struct *task)
680 {
681 	unsigned int vq, vl;
682 	void const *sst = task->thread.sve_state;
683 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
684 	unsigned int i;
685 	__uint128_t const *p;
686 
687 	if (!system_supports_sve() && !system_supports_sme())
688 		return;
689 
690 	vl = thread_get_cur_vl(&task->thread);
691 	vq = sve_vq_from_vl(vl);
692 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
693 		p = (__uint128_t const *)ZREG(sst, vq, i);
694 		fst->vregs[i] = arm64_le128_to_cpu(*p);
695 	}
696 }
697 
__fpsimd_zero_vregs(struct user_fpsimd_state * fpsimd)698 static inline void __fpsimd_zero_vregs(struct user_fpsimd_state *fpsimd)
699 {
700 	memset(&fpsimd->vregs, 0, sizeof(fpsimd->vregs));
701 }
702 
703 /*
704  * Simulate the effects of an SMSTOP SM instruction.
705  */
task_smstop_sm(struct task_struct * task)706 void task_smstop_sm(struct task_struct *task)
707 {
708 	if (!thread_sm_enabled(&task->thread))
709 		return;
710 
711 	__fpsimd_zero_vregs(&task->thread.uw.fpsimd_state);
712 	task->thread.uw.fpsimd_state.fpsr = 0x0800009f;
713 	if (system_supports_fpmr())
714 		task->thread.uw.fpmr = 0;
715 
716 	task->thread.svcr &= ~SVCR_SM_MASK;
717 	task->thread.fp_type = FP_STATE_FPSIMD;
718 }
719 
cpu_enable_fpmr(const struct arm64_cpu_capabilities * __always_unused p)720 void cpu_enable_fpmr(const struct arm64_cpu_capabilities *__always_unused p)
721 {
722 	write_sysreg_s(read_sysreg_s(SYS_SCTLR_EL1) | SCTLR_EL1_EnFPM_MASK,
723 		       SYS_SCTLR_EL1);
724 }
725 
726 #ifdef CONFIG_ARM64_SVE
sve_free(struct task_struct * task)727 static void sve_free(struct task_struct *task)
728 {
729 	kfree(task->thread.sve_state);
730 	task->thread.sve_state = NULL;
731 }
732 
733 /*
734  * Ensure that task->thread.sve_state is allocated and sufficiently large.
735  *
736  * This function should be used only in preparation for replacing
737  * task->thread.sve_state with new data.  The memory is always zeroed
738  * here to prevent stale data from showing through: this is done in
739  * the interest of testability and predictability: except in the
740  * do_sve_acc() case, there is no ABI requirement to hide stale data
741  * written previously be task.
742  */
sve_alloc(struct task_struct * task,bool flush)743 void sve_alloc(struct task_struct *task, bool flush)
744 {
745 	if (task->thread.sve_state) {
746 		if (flush)
747 			memset(task->thread.sve_state, 0,
748 			       sve_state_size(task));
749 		return;
750 	}
751 
752 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
753 	task->thread.sve_state =
754 		kzalloc(sve_state_size(task), GFP_KERNEL);
755 }
756 
757 /*
758  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to the
759  * task's currently effective FPSIMD/SVE state.
760  *
761  * The task's FPSIMD/SVE/SME state must not be subject to concurrent
762  * manipulation.
763  */
fpsimd_sync_from_effective_state(struct task_struct * task)764 void fpsimd_sync_from_effective_state(struct task_struct *task)
765 {
766 	if (task->thread.fp_type == FP_STATE_SVE)
767 		sve_to_fpsimd(task);
768 }
769 
770 /*
771  * Ensure that the task's currently effective FPSIMD/SVE state is up to date
772  * with respect to task->thread.uw.fpsimd_state, zeroing any effective
773  * non-FPSIMD (S)SVE state.
774  *
775  * The task's FPSIMD/SVE/SME state must not be subject to concurrent
776  * manipulation.
777  */
fpsimd_sync_to_effective_state_zeropad(struct task_struct * task)778 void fpsimd_sync_to_effective_state_zeropad(struct task_struct *task)
779 {
780 	unsigned int vq;
781 	void *sst = task->thread.sve_state;
782 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
783 
784 	if (task->thread.fp_type != FP_STATE_SVE)
785 		return;
786 
787 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
788 
789 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
790 	__fpsimd_to_sve(sst, fst, vq);
791 }
792 
change_live_vector_length(struct task_struct * task,enum vec_type type,unsigned long vl)793 static int change_live_vector_length(struct task_struct *task,
794 				     enum vec_type type,
795 				     unsigned long vl)
796 {
797 	unsigned int sve_vl = task_get_sve_vl(task);
798 	unsigned int sme_vl = task_get_sme_vl(task);
799 	void *sve_state = NULL, *sme_state = NULL;
800 
801 	if (type == ARM64_VEC_SME)
802 		sme_vl = vl;
803 	else
804 		sve_vl = vl;
805 
806 	/*
807 	 * Allocate the new sve_state and sme_state before freeing the old
808 	 * copies so that allocation failure can be handled without needing to
809 	 * mutate the task's state in any way.
810 	 *
811 	 * Changes to the SVE vector length must not discard live ZA state or
812 	 * clear PSTATE.ZA, as userspace code which is unaware of the AAPCS64
813 	 * ZA lazy saving scheme may attempt to change the SVE vector length
814 	 * while unsaved/dormant ZA state exists.
815 	 */
816 	sve_state = kzalloc(__sve_state_size(sve_vl, sme_vl), GFP_KERNEL);
817 	if (!sve_state)
818 		goto out_mem;
819 
820 	if (type == ARM64_VEC_SME) {
821 		sme_state = kzalloc(__sme_state_size(sme_vl), GFP_KERNEL);
822 		if (!sme_state)
823 			goto out_mem;
824 	}
825 
826 	if (task == current)
827 		fpsimd_save_and_flush_current_state();
828 	else
829 		fpsimd_flush_task_state(task);
830 
831 	/*
832 	 * Always preserve PSTATE.SM and the effective FPSIMD state, zeroing
833 	 * other SVE state.
834 	 */
835 	fpsimd_sync_from_effective_state(task);
836 	task_set_vl(task, type, vl);
837 	kfree(task->thread.sve_state);
838 	task->thread.sve_state = sve_state;
839 	fpsimd_sync_to_effective_state_zeropad(task);
840 
841 	if (type == ARM64_VEC_SME) {
842 		task->thread.svcr &= ~SVCR_ZA_MASK;
843 		kfree(task->thread.sme_state);
844 		task->thread.sme_state = sme_state;
845 	}
846 
847 	return 0;
848 
849 out_mem:
850 	kfree(sve_state);
851 	kfree(sme_state);
852 	return -ENOMEM;
853 }
854 
vec_set_vector_length(struct task_struct * task,enum vec_type type,unsigned long vl,unsigned long flags)855 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
856 			  unsigned long vl, unsigned long flags)
857 {
858 	bool onexec = flags & PR_SVE_SET_VL_ONEXEC;
859 	bool inherit = flags & PR_SVE_VL_INHERIT;
860 
861 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
862 				     PR_SVE_SET_VL_ONEXEC))
863 		return -EINVAL;
864 
865 	if (!sve_vl_valid(vl))
866 		return -EINVAL;
867 
868 	/*
869 	 * Clamp to the maximum vector length that VL-agnostic code
870 	 * can work with.  A flag may be assigned in the future to
871 	 * allow setting of larger vector lengths without confusing
872 	 * older software.
873 	 */
874 	if (vl > VL_ARCH_MAX)
875 		vl = VL_ARCH_MAX;
876 
877 	vl = find_supported_vector_length(type, vl);
878 
879 	if (!onexec && vl != task_get_vl(task, type)) {
880 		if (change_live_vector_length(task, type, vl))
881 			return -ENOMEM;
882 	}
883 
884 	if (onexec || inherit)
885 		task_set_vl_onexec(task, type, vl);
886 	else
887 		/* Reset VL to system default on next exec: */
888 		task_set_vl_onexec(task, type, 0);
889 
890 	update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
891 			       flags & PR_SVE_VL_INHERIT);
892 
893 	return 0;
894 }
895 
896 /*
897  * Encode the current vector length and flags for return.
898  * This is only required for prctl(): ptrace has separate fields.
899  * SVE and SME use the same bits for _ONEXEC and _INHERIT.
900  *
901  * flags are as for vec_set_vector_length().
902  */
vec_prctl_status(enum vec_type type,unsigned long flags)903 static int vec_prctl_status(enum vec_type type, unsigned long flags)
904 {
905 	int ret;
906 
907 	if (flags & PR_SVE_SET_VL_ONEXEC)
908 		ret = task_get_vl_onexec(current, type);
909 	else
910 		ret = task_get_vl(current, type);
911 
912 	if (test_thread_flag(vec_vl_inherit_flag(type)))
913 		ret |= PR_SVE_VL_INHERIT;
914 
915 	return ret;
916 }
917 
918 /* PR_SVE_SET_VL */
sve_set_current_vl(unsigned long arg)919 int sve_set_current_vl(unsigned long arg)
920 {
921 	unsigned long vl, flags;
922 	int ret;
923 
924 	vl = arg & PR_SVE_VL_LEN_MASK;
925 	flags = arg & ~vl;
926 
927 	if (!system_supports_sve() || is_compat_task())
928 		return -EINVAL;
929 
930 	ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
931 	if (ret)
932 		return ret;
933 
934 	return vec_prctl_status(ARM64_VEC_SVE, flags);
935 }
936 
937 /* PR_SVE_GET_VL */
sve_get_current_vl(void)938 int sve_get_current_vl(void)
939 {
940 	if (!system_supports_sve() || is_compat_task())
941 		return -EINVAL;
942 
943 	return vec_prctl_status(ARM64_VEC_SVE, 0);
944 }
945 
946 #ifdef CONFIG_ARM64_SME
947 /* PR_SME_SET_VL */
sme_set_current_vl(unsigned long arg)948 int sme_set_current_vl(unsigned long arg)
949 {
950 	unsigned long vl, flags;
951 	int ret;
952 
953 	vl = arg & PR_SME_VL_LEN_MASK;
954 	flags = arg & ~vl;
955 
956 	if (!system_supports_sme() || is_compat_task())
957 		return -EINVAL;
958 
959 	ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
960 	if (ret)
961 		return ret;
962 
963 	return vec_prctl_status(ARM64_VEC_SME, flags);
964 }
965 
966 /* PR_SME_GET_VL */
sme_get_current_vl(void)967 int sme_get_current_vl(void)
968 {
969 	if (!system_supports_sme() || is_compat_task())
970 		return -EINVAL;
971 
972 	return vec_prctl_status(ARM64_VEC_SME, 0);
973 }
974 #endif /* CONFIG_ARM64_SME */
975 
vec_probe_vqs(struct vl_info * info,DECLARE_BITMAP (map,SVE_VQ_MAX))976 static void vec_probe_vqs(struct vl_info *info,
977 			  DECLARE_BITMAP(map, SVE_VQ_MAX))
978 {
979 	unsigned int vq, vl;
980 
981 	bitmap_zero(map, SVE_VQ_MAX);
982 
983 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
984 		write_vl(info->type, vq - 1); /* self-syncing */
985 
986 		switch (info->type) {
987 		case ARM64_VEC_SVE:
988 			vl = sve_get_vl();
989 			break;
990 		case ARM64_VEC_SME:
991 			vl = sme_get_vl();
992 			break;
993 		default:
994 			vl = 0;
995 			break;
996 		}
997 
998 		/* Minimum VL identified? */
999 		if (sve_vq_from_vl(vl) > vq)
1000 			break;
1001 
1002 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
1003 		set_bit(__vq_to_bit(vq), map);
1004 	}
1005 }
1006 
1007 /*
1008  * Initialise the set of known supported VQs for the boot CPU.
1009  * This is called during kernel boot, before secondary CPUs are brought up.
1010  */
vec_init_vq_map(enum vec_type type)1011 void __init vec_init_vq_map(enum vec_type type)
1012 {
1013 	struct vl_info *info = &vl_info[type];
1014 	vec_probe_vqs(info, info->vq_map);
1015 	bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1016 }
1017 
1018 /*
1019  * If we haven't committed to the set of supported VQs yet, filter out
1020  * those not supported by the current CPU.
1021  * This function is called during the bring-up of early secondary CPUs only.
1022  */
vec_update_vq_map(enum vec_type type)1023 void vec_update_vq_map(enum vec_type type)
1024 {
1025 	struct vl_info *info = &vl_info[type];
1026 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1027 
1028 	vec_probe_vqs(info, tmp_map);
1029 	bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1030 	bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1031 		  SVE_VQ_MAX);
1032 }
1033 
1034 /*
1035  * Check whether the current CPU supports all VQs in the committed set.
1036  * This function is called during the bring-up of late secondary CPUs only.
1037  */
vec_verify_vq_map(enum vec_type type)1038 int vec_verify_vq_map(enum vec_type type)
1039 {
1040 	struct vl_info *info = &vl_info[type];
1041 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1042 	unsigned long b;
1043 
1044 	vec_probe_vqs(info, tmp_map);
1045 
1046 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1047 	if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1048 		pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1049 			info->name, smp_processor_id());
1050 		return -EINVAL;
1051 	}
1052 
1053 	if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1054 		return 0;
1055 
1056 	/*
1057 	 * For KVM, it is necessary to ensure that this CPU doesn't
1058 	 * support any vector length that guests may have probed as
1059 	 * unsupported.
1060 	 */
1061 
1062 	/* Recover the set of supported VQs: */
1063 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1064 	/* Find VQs supported that are not globally supported: */
1065 	bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1066 
1067 	/* Find the lowest such VQ, if any: */
1068 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1069 	if (b >= SVE_VQ_MAX)
1070 		return 0; /* no mismatches */
1071 
1072 	/*
1073 	 * Mismatches above sve_max_virtualisable_vl are fine, since
1074 	 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1075 	 */
1076 	if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1077 		pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1078 			info->name, smp_processor_id());
1079 		return -EINVAL;
1080 	}
1081 
1082 	return 0;
1083 }
1084 
sve_efi_setup(void)1085 static void __init sve_efi_setup(void)
1086 {
1087 	int max_vl = 0;
1088 	int i;
1089 
1090 	if (!IS_ENABLED(CONFIG_EFI))
1091 		return;
1092 
1093 	for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1094 		max_vl = max(vl_info[i].max_vl, max_vl);
1095 
1096 	/*
1097 	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1098 	 * This is evidence of a crippled system and we are returning void,
1099 	 * so no attempt is made to handle this situation here.
1100 	 */
1101 	if (!sve_vl_valid(max_vl))
1102 		goto fail;
1103 
1104 	efi_sve_state = kmalloc(SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)),
1105 				GFP_KERNEL);
1106 	if (!efi_sve_state)
1107 		goto fail;
1108 
1109 	return;
1110 
1111 fail:
1112 	panic("Cannot allocate memory for EFI SVE save/restore");
1113 }
1114 
cpu_enable_sve(const struct arm64_cpu_capabilities * __always_unused p)1115 void cpu_enable_sve(const struct arm64_cpu_capabilities *__always_unused p)
1116 {
1117 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1118 	isb();
1119 
1120 	write_sysreg_s(0, SYS_ZCR_EL1);
1121 }
1122 
sve_setup(void)1123 void __init sve_setup(void)
1124 {
1125 	struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1126 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1127 	unsigned long b;
1128 	int max_bit;
1129 
1130 	if (!system_supports_sve())
1131 		return;
1132 
1133 	/*
1134 	 * The SVE architecture mandates support for 128-bit vectors,
1135 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
1136 	 * If something went wrong, at least try to patch it up:
1137 	 */
1138 	if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1139 		set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1140 
1141 	max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
1142 	info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
1143 
1144 	/*
1145 	 * For the default VL, pick the maximum supported value <= 64.
1146 	 * VL == 64 is guaranteed not to grow the signal frame.
1147 	 */
1148 	set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1149 
1150 	bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1151 		      SVE_VQ_MAX);
1152 
1153 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1154 	if (b >= SVE_VQ_MAX)
1155 		/* No non-virtualisable VLs found */
1156 		info->max_virtualisable_vl = SVE_VQ_MAX;
1157 	else if (WARN_ON(b == SVE_VQ_MAX - 1))
1158 		/* No virtualisable VLs?  This is architecturally forbidden. */
1159 		info->max_virtualisable_vl = SVE_VQ_MIN;
1160 	else /* b + 1 < SVE_VQ_MAX */
1161 		info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1162 
1163 	if (info->max_virtualisable_vl > info->max_vl)
1164 		info->max_virtualisable_vl = info->max_vl;
1165 
1166 	pr_info("%s: maximum available vector length %u bytes per vector\n",
1167 		info->name, info->max_vl);
1168 	pr_info("%s: default vector length %u bytes per vector\n",
1169 		info->name, get_sve_default_vl());
1170 
1171 	/* KVM decides whether to support mismatched systems. Just warn here: */
1172 	if (sve_max_virtualisable_vl() < sve_max_vl())
1173 		pr_warn("%s: unvirtualisable vector lengths present\n",
1174 			info->name);
1175 
1176 	sve_efi_setup();
1177 }
1178 
1179 /*
1180  * Called from the put_task_struct() path, which cannot get here
1181  * unless dead_task is really dead and not schedulable.
1182  */
fpsimd_release_task(struct task_struct * dead_task)1183 void fpsimd_release_task(struct task_struct *dead_task)
1184 {
1185 	sve_free(dead_task);
1186 	sme_free(dead_task);
1187 }
1188 
1189 #endif /* CONFIG_ARM64_SVE */
1190 
1191 #ifdef CONFIG_ARM64_SME
1192 
1193 /*
1194  * Ensure that task->thread.sme_state is allocated and sufficiently large.
1195  *
1196  * This function should be used only in preparation for replacing
1197  * task->thread.sme_state with new data.  The memory is always zeroed
1198  * here to prevent stale data from showing through: this is done in
1199  * the interest of testability and predictability, the architecture
1200  * guarantees that when ZA is enabled it will be zeroed.
1201  */
sme_alloc(struct task_struct * task,bool flush)1202 void sme_alloc(struct task_struct *task, bool flush)
1203 {
1204 	if (task->thread.sme_state) {
1205 		if (flush)
1206 			memset(task->thread.sme_state, 0,
1207 			       sme_state_size(task));
1208 		return;
1209 	}
1210 
1211 	/* This could potentially be up to 64K. */
1212 	task->thread.sme_state =
1213 		kzalloc(sme_state_size(task), GFP_KERNEL);
1214 }
1215 
sme_free(struct task_struct * task)1216 static void sme_free(struct task_struct *task)
1217 {
1218 	kfree(task->thread.sme_state);
1219 	task->thread.sme_state = NULL;
1220 }
1221 
cpu_enable_sme(const struct arm64_cpu_capabilities * __always_unused p)1222 void cpu_enable_sme(const struct arm64_cpu_capabilities *__always_unused p)
1223 {
1224 	/* Set priority for all PEs to architecturally defined minimum */
1225 	write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1226 		       SYS_SMPRI_EL1);
1227 
1228 	/* Allow SME in kernel */
1229 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1230 	isb();
1231 
1232 	/* Ensure all bits in SMCR are set to known values */
1233 	write_sysreg_s(0, SYS_SMCR_EL1);
1234 
1235 	/* Allow EL0 to access TPIDR2 */
1236 	write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1237 	isb();
1238 }
1239 
cpu_enable_sme2(const struct arm64_cpu_capabilities * __always_unused p)1240 void cpu_enable_sme2(const struct arm64_cpu_capabilities *__always_unused p)
1241 {
1242 	/* This must be enabled after SME */
1243 	BUILD_BUG_ON(ARM64_SME2 <= ARM64_SME);
1244 
1245 	/* Allow use of ZT0 */
1246 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK,
1247 		       SYS_SMCR_EL1);
1248 }
1249 
cpu_enable_fa64(const struct arm64_cpu_capabilities * __always_unused p)1250 void cpu_enable_fa64(const struct arm64_cpu_capabilities *__always_unused p)
1251 {
1252 	/* This must be enabled after SME */
1253 	BUILD_BUG_ON(ARM64_SME_FA64 <= ARM64_SME);
1254 
1255 	/* Allow use of FA64 */
1256 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1257 		       SYS_SMCR_EL1);
1258 }
1259 
sme_setup(void)1260 void __init sme_setup(void)
1261 {
1262 	struct vl_info *info = &vl_info[ARM64_VEC_SME];
1263 	int min_bit, max_bit;
1264 
1265 	if (!system_supports_sme())
1266 		return;
1267 
1268 	min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1269 
1270 	/*
1271 	 * SME doesn't require any particular vector length be
1272 	 * supported but it does require at least one.  We should have
1273 	 * disabled the feature entirely while bringing up CPUs but
1274 	 * let's double check here.  The bitmap is SVE_VQ_MAP sized for
1275 	 * sharing with SVE.
1276 	 */
1277 	WARN_ON(min_bit >= SVE_VQ_MAX);
1278 
1279 	info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1280 
1281 	max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
1282 	info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
1283 
1284 	WARN_ON(info->min_vl > info->max_vl);
1285 
1286 	/*
1287 	 * For the default VL, pick the maximum supported value <= 32
1288 	 * (256 bits) if there is one since this is guaranteed not to
1289 	 * grow the signal frame when in streaming mode, otherwise the
1290 	 * minimum available VL will be used.
1291 	 */
1292 	set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1293 
1294 	pr_info("SME: minimum available vector length %u bytes per vector\n",
1295 		info->min_vl);
1296 	pr_info("SME: maximum available vector length %u bytes per vector\n",
1297 		info->max_vl);
1298 	pr_info("SME: default vector length %u bytes per vector\n",
1299 		get_sme_default_vl());
1300 }
1301 
sme_suspend_exit(void)1302 void sme_suspend_exit(void)
1303 {
1304 	u64 smcr = 0;
1305 
1306 	if (!system_supports_sme())
1307 		return;
1308 
1309 	if (system_supports_fa64())
1310 		smcr |= SMCR_ELx_FA64;
1311 	if (system_supports_sme2())
1312 		smcr |= SMCR_ELx_EZT0;
1313 
1314 	write_sysreg_s(smcr, SYS_SMCR_EL1);
1315 	write_sysreg_s(0, SYS_SMPRI_EL1);
1316 }
1317 
1318 #endif /* CONFIG_ARM64_SME */
1319 
sve_init_regs(void)1320 static void sve_init_regs(void)
1321 {
1322 	/*
1323 	 * Convert the FPSIMD state to SVE, zeroing all the state that
1324 	 * is not shared with FPSIMD. If (as is likely) the current
1325 	 * state is live in the registers then do this there and
1326 	 * update our metadata for the current task including
1327 	 * disabling the trap, otherwise update our in-memory copy.
1328 	 * We are guaranteed to not be in streaming mode, we can only
1329 	 * take a SVE trap when not in streaming mode and we can't be
1330 	 * in streaming mode when taking a SME trap.
1331 	 */
1332 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1333 		unsigned long vq_minus_one =
1334 			sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1335 		sve_set_vq(vq_minus_one);
1336 		sve_flush_live(true, vq_minus_one);
1337 		fpsimd_bind_task_to_cpu();
1338 	} else {
1339 		fpsimd_to_sve(current);
1340 		current->thread.fp_type = FP_STATE_SVE;
1341 		fpsimd_flush_task_state(current);
1342 	}
1343 }
1344 
1345 /*
1346  * Trapped SVE access
1347  *
1348  * Storage is allocated for the full SVE state, the current FPSIMD
1349  * register contents are migrated across, and the access trap is
1350  * disabled.
1351  *
1352  * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1353  * would have disabled the SVE access trap for userspace during
1354  * ret_to_user, making an SVE access trap impossible in that case.
1355  */
do_sve_acc(unsigned long esr,struct pt_regs * regs)1356 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1357 {
1358 	/* Even if we chose not to use SVE, the hardware could still trap: */
1359 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1360 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1361 		return;
1362 	}
1363 
1364 	sve_alloc(current, true);
1365 	if (!current->thread.sve_state) {
1366 		force_sig(SIGKILL);
1367 		return;
1368 	}
1369 
1370 	get_cpu_fpsimd_context();
1371 
1372 	if (test_and_set_thread_flag(TIF_SVE))
1373 		WARN_ON(1); /* SVE access shouldn't have trapped */
1374 
1375 	/*
1376 	 * Even if the task can have used streaming mode we can only
1377 	 * generate SVE access traps in normal SVE mode and
1378 	 * transitioning out of streaming mode may discard any
1379 	 * streaming mode state.  Always clear the high bits to avoid
1380 	 * any potential errors tracking what is properly initialised.
1381 	 */
1382 	sve_init_regs();
1383 
1384 	put_cpu_fpsimd_context();
1385 }
1386 
1387 /*
1388  * Trapped SME access
1389  *
1390  * Storage is allocated for the full SVE and SME state, the current
1391  * FPSIMD register contents are migrated to SVE if SVE is not already
1392  * active, and the access trap is disabled.
1393  *
1394  * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1395  * would have disabled the SME access trap for userspace during
1396  * ret_to_user, making an SME access trap impossible in that case.
1397  */
do_sme_acc(unsigned long esr,struct pt_regs * regs)1398 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1399 {
1400 	/* Even if we chose not to use SME, the hardware could still trap: */
1401 	if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1402 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1403 		return;
1404 	}
1405 
1406 	/*
1407 	 * If this not a trap due to SME being disabled then something
1408 	 * is being used in the wrong mode, report as SIGILL.
1409 	 */
1410 	if (ESR_ELx_SME_ISS_SMTC(esr) != ESR_ELx_SME_ISS_SMTC_SME_DISABLED) {
1411 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1412 		return;
1413 	}
1414 
1415 	sve_alloc(current, false);
1416 	sme_alloc(current, true);
1417 	if (!current->thread.sve_state || !current->thread.sme_state) {
1418 		force_sig(SIGKILL);
1419 		return;
1420 	}
1421 
1422 	get_cpu_fpsimd_context();
1423 
1424 	/* With TIF_SME userspace shouldn't generate any traps */
1425 	if (test_and_set_thread_flag(TIF_SME))
1426 		WARN_ON(1);
1427 
1428 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1429 		unsigned long vq_minus_one =
1430 			sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1431 		sme_set_vq(vq_minus_one);
1432 
1433 		fpsimd_bind_task_to_cpu();
1434 	} else {
1435 		fpsimd_flush_task_state(current);
1436 	}
1437 
1438 	put_cpu_fpsimd_context();
1439 }
1440 
1441 /*
1442  * Trapped FP/ASIMD access.
1443  */
do_fpsimd_acc(unsigned long esr,struct pt_regs * regs)1444 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1445 {
1446 	/* Even if we chose not to use FPSIMD, the hardware could still trap: */
1447 	if (!system_supports_fpsimd()) {
1448 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1449 		return;
1450 	}
1451 
1452 	/*
1453 	 * When FPSIMD is enabled, we should never take a trap unless something
1454 	 * has gone very wrong.
1455 	 */
1456 	BUG();
1457 }
1458 
1459 /*
1460  * Raise a SIGFPE for the current process.
1461  */
do_fpsimd_exc(unsigned long esr,struct pt_regs * regs)1462 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1463 {
1464 	unsigned int si_code = FPE_FLTUNK;
1465 
1466 	if (esr & ESR_ELx_FP_EXC_TFV) {
1467 		if (esr & FPEXC_IOF)
1468 			si_code = FPE_FLTINV;
1469 		else if (esr & FPEXC_DZF)
1470 			si_code = FPE_FLTDIV;
1471 		else if (esr & FPEXC_OFF)
1472 			si_code = FPE_FLTOVF;
1473 		else if (esr & FPEXC_UFF)
1474 			si_code = FPE_FLTUND;
1475 		else if (esr & FPEXC_IXF)
1476 			si_code = FPE_FLTRES;
1477 	}
1478 
1479 	send_sig_fault(SIGFPE, si_code,
1480 		       (void __user *)instruction_pointer(regs),
1481 		       current);
1482 }
1483 
fpsimd_load_kernel_state(struct task_struct * task)1484 static void fpsimd_load_kernel_state(struct task_struct *task)
1485 {
1486 	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1487 
1488 	/*
1489 	 * Elide the load if this CPU holds the most recent kernel mode
1490 	 * FPSIMD context of the current task.
1491 	 */
1492 	if (last->st == &task->thread.kernel_fpsimd_state &&
1493 	    task->thread.kernel_fpsimd_cpu == smp_processor_id())
1494 		return;
1495 
1496 	fpsimd_load_state(&task->thread.kernel_fpsimd_state);
1497 }
1498 
fpsimd_save_kernel_state(struct task_struct * task)1499 static void fpsimd_save_kernel_state(struct task_struct *task)
1500 {
1501 	struct cpu_fp_state cpu_fp_state = {
1502 		.st		= &task->thread.kernel_fpsimd_state,
1503 		.to_save	= FP_STATE_FPSIMD,
1504 	};
1505 
1506 	fpsimd_save_state(&task->thread.kernel_fpsimd_state);
1507 	fpsimd_bind_state_to_cpu(&cpu_fp_state);
1508 
1509 	task->thread.kernel_fpsimd_cpu = smp_processor_id();
1510 }
1511 
1512 /*
1513  * Invalidate any task's FPSIMD state that is present on this cpu.
1514  * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1515  * before calling this function.
1516  */
fpsimd_flush_cpu_state(void)1517 static void fpsimd_flush_cpu_state(void)
1518 {
1519 	WARN_ON(!system_supports_fpsimd());
1520 	__this_cpu_write(fpsimd_last_state.st, NULL);
1521 
1522 	/*
1523 	 * Leaving streaming mode enabled will cause issues for any kernel
1524 	 * NEON and leaving streaming mode or ZA enabled may increase power
1525 	 * consumption.
1526 	 */
1527 	if (system_supports_sme())
1528 		sme_smstop();
1529 
1530 	set_thread_flag(TIF_FOREIGN_FPSTATE);
1531 }
1532 
fpsimd_thread_switch(struct task_struct * next)1533 void fpsimd_thread_switch(struct task_struct *next)
1534 {
1535 	bool wrong_task, wrong_cpu;
1536 
1537 	if (!system_supports_fpsimd())
1538 		return;
1539 
1540 	WARN_ON_ONCE(!irqs_disabled());
1541 
1542 	/* Save unsaved fpsimd state, if any: */
1543 	if (test_thread_flag(TIF_KERNEL_FPSTATE))
1544 		fpsimd_save_kernel_state(current);
1545 	else
1546 		fpsimd_save_user_state();
1547 
1548 	if (test_tsk_thread_flag(next, TIF_KERNEL_FPSTATE)) {
1549 		fpsimd_flush_cpu_state();
1550 		fpsimd_load_kernel_state(next);
1551 	} else {
1552 		/*
1553 		 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1554 		 * state.  For kernel threads, FPSIMD registers are never
1555 		 * loaded with user mode FPSIMD state and so wrong_task and
1556 		 * wrong_cpu will always be true.
1557 		 */
1558 		wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1559 			&next->thread.uw.fpsimd_state;
1560 		wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1561 
1562 		update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1563 				       wrong_task || wrong_cpu);
1564 	}
1565 }
1566 
fpsimd_flush_thread_vl(enum vec_type type)1567 static void fpsimd_flush_thread_vl(enum vec_type type)
1568 {
1569 	int vl, supported_vl;
1570 
1571 	/*
1572 	 * Reset the task vector length as required.  This is where we
1573 	 * ensure that all user tasks have a valid vector length
1574 	 * configured: no kernel task can become a user task without
1575 	 * an exec and hence a call to this function.  By the time the
1576 	 * first call to this function is made, all early hardware
1577 	 * probing is complete, so __sve_default_vl should be valid.
1578 	 * If a bug causes this to go wrong, we make some noise and
1579 	 * try to fudge thread.sve_vl to a safe value here.
1580 	 */
1581 	vl = task_get_vl_onexec(current, type);
1582 	if (!vl)
1583 		vl = get_default_vl(type);
1584 
1585 	if (WARN_ON(!sve_vl_valid(vl)))
1586 		vl = vl_info[type].min_vl;
1587 
1588 	supported_vl = find_supported_vector_length(type, vl);
1589 	if (WARN_ON(supported_vl != vl))
1590 		vl = supported_vl;
1591 
1592 	task_set_vl(current, type, vl);
1593 
1594 	/*
1595 	 * If the task is not set to inherit, ensure that the vector
1596 	 * length will be reset by a subsequent exec:
1597 	 */
1598 	if (!test_thread_flag(vec_vl_inherit_flag(type)))
1599 		task_set_vl_onexec(current, type, 0);
1600 }
1601 
fpsimd_flush_thread(void)1602 void fpsimd_flush_thread(void)
1603 {
1604 	void *sve_state = NULL;
1605 	void *sme_state = NULL;
1606 
1607 	if (!system_supports_fpsimd())
1608 		return;
1609 
1610 	get_cpu_fpsimd_context();
1611 
1612 	fpsimd_flush_task_state(current);
1613 	memset(&current->thread.uw.fpsimd_state, 0,
1614 	       sizeof(current->thread.uw.fpsimd_state));
1615 
1616 	if (system_supports_sve()) {
1617 		clear_thread_flag(TIF_SVE);
1618 
1619 		/* Defer kfree() while in atomic context */
1620 		sve_state = current->thread.sve_state;
1621 		current->thread.sve_state = NULL;
1622 
1623 		fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1624 	}
1625 
1626 	if (system_supports_sme()) {
1627 		clear_thread_flag(TIF_SME);
1628 
1629 		/* Defer kfree() while in atomic context */
1630 		sme_state = current->thread.sme_state;
1631 		current->thread.sme_state = NULL;
1632 
1633 		fpsimd_flush_thread_vl(ARM64_VEC_SME);
1634 		current->thread.svcr = 0;
1635 	}
1636 
1637 	if (system_supports_fpmr())
1638 		current->thread.uw.fpmr = 0;
1639 
1640 	current->thread.fp_type = FP_STATE_FPSIMD;
1641 
1642 	put_cpu_fpsimd_context();
1643 	kfree(sve_state);
1644 	kfree(sme_state);
1645 }
1646 
1647 /*
1648  * Save the userland FPSIMD state of 'current' to memory, but only if the state
1649  * currently held in the registers does in fact belong to 'current'
1650  */
fpsimd_preserve_current_state(void)1651 void fpsimd_preserve_current_state(void)
1652 {
1653 	if (!system_supports_fpsimd())
1654 		return;
1655 
1656 	get_cpu_fpsimd_context();
1657 	fpsimd_save_user_state();
1658 	put_cpu_fpsimd_context();
1659 }
1660 
1661 /*
1662  * Associate current's FPSIMD context with this cpu
1663  * The caller must have ownership of the cpu FPSIMD context before calling
1664  * this function.
1665  */
fpsimd_bind_task_to_cpu(void)1666 static void fpsimd_bind_task_to_cpu(void)
1667 {
1668 	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1669 
1670 	WARN_ON(!system_supports_fpsimd());
1671 	last->st = &current->thread.uw.fpsimd_state;
1672 	last->sve_state = current->thread.sve_state;
1673 	last->sme_state = current->thread.sme_state;
1674 	last->sve_vl = task_get_sve_vl(current);
1675 	last->sme_vl = task_get_sme_vl(current);
1676 	last->svcr = &current->thread.svcr;
1677 	last->fpmr = &current->thread.uw.fpmr;
1678 	last->fp_type = &current->thread.fp_type;
1679 	last->to_save = FP_STATE_CURRENT;
1680 	current->thread.fpsimd_cpu = smp_processor_id();
1681 
1682 	/*
1683 	 * Toggle SVE and SME trapping for userspace if needed, these
1684 	 * are serialsied by ret_to_user().
1685 	 */
1686 	if (system_supports_sme()) {
1687 		if (test_thread_flag(TIF_SME))
1688 			sme_user_enable();
1689 		else
1690 			sme_user_disable();
1691 	}
1692 
1693 	if (system_supports_sve()) {
1694 		if (test_thread_flag(TIF_SVE))
1695 			sve_user_enable();
1696 		else
1697 			sve_user_disable();
1698 	}
1699 }
1700 
fpsimd_bind_state_to_cpu(struct cpu_fp_state * state)1701 void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
1702 {
1703 	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1704 
1705 	WARN_ON(!system_supports_fpsimd());
1706 	WARN_ON(!in_softirq() && !irqs_disabled());
1707 
1708 	*last = *state;
1709 }
1710 
1711 /*
1712  * Load the userland FPSIMD state of 'current' from memory, but only if the
1713  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1714  * state of 'current'.  This is called when we are preparing to return to
1715  * userspace to ensure that userspace sees a good register state.
1716  */
fpsimd_restore_current_state(void)1717 void fpsimd_restore_current_state(void)
1718 {
1719 	/*
1720 	 * TIF_FOREIGN_FPSTATE is set on the init task and copied by
1721 	 * arch_dup_task_struct() regardless of whether FP/SIMD is detected.
1722 	 * Thus user threads can have this set even when FP/SIMD hasn't been
1723 	 * detected.
1724 	 *
1725 	 * When FP/SIMD is detected, begin_new_exec() will set
1726 	 * TIF_FOREIGN_FPSTATE via flush_thread() -> fpsimd_flush_thread(),
1727 	 * and fpsimd_thread_switch() will set TIF_FOREIGN_FPSTATE when
1728 	 * switching tasks. We detect FP/SIMD before we exec the first user
1729 	 * process, ensuring this has TIF_FOREIGN_FPSTATE set and
1730 	 * do_notify_resume() will call fpsimd_restore_current_state() to
1731 	 * install the user FP/SIMD context.
1732 	 *
1733 	 * When FP/SIMD is not detected, nothing else will clear or set
1734 	 * TIF_FOREIGN_FPSTATE prior to the first return to userspace, and
1735 	 * we must clear TIF_FOREIGN_FPSTATE to avoid do_notify_resume()
1736 	 * looping forever calling fpsimd_restore_current_state().
1737 	 */
1738 	if (!system_supports_fpsimd()) {
1739 		clear_thread_flag(TIF_FOREIGN_FPSTATE);
1740 		return;
1741 	}
1742 
1743 	get_cpu_fpsimd_context();
1744 
1745 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1746 		task_fpsimd_load();
1747 		fpsimd_bind_task_to_cpu();
1748 	}
1749 
1750 	put_cpu_fpsimd_context();
1751 }
1752 
fpsimd_update_current_state(struct user_fpsimd_state const * state)1753 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1754 {
1755 	if (WARN_ON(!system_supports_fpsimd()))
1756 		return;
1757 
1758 	current->thread.uw.fpsimd_state = *state;
1759 	if (current->thread.fp_type == FP_STATE_SVE)
1760 		fpsimd_to_sve(current);
1761 }
1762 
1763 /*
1764  * Invalidate live CPU copies of task t's FPSIMD state
1765  *
1766  * This function may be called with preemption enabled.  The barrier()
1767  * ensures that the assignment to fpsimd_cpu is visible to any
1768  * preemption/softirq that could race with set_tsk_thread_flag(), so
1769  * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1770  *
1771  * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1772  * subsequent code.
1773  */
fpsimd_flush_task_state(struct task_struct * t)1774 void fpsimd_flush_task_state(struct task_struct *t)
1775 {
1776 	t->thread.fpsimd_cpu = NR_CPUS;
1777 	/*
1778 	 * If we don't support fpsimd, bail out after we have
1779 	 * reset the fpsimd_cpu for this task and clear the
1780 	 * FPSTATE.
1781 	 */
1782 	if (!system_supports_fpsimd())
1783 		return;
1784 	barrier();
1785 	set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1786 
1787 	barrier();
1788 }
1789 
fpsimd_save_and_flush_current_state(void)1790 void fpsimd_save_and_flush_current_state(void)
1791 {
1792 	if (!system_supports_fpsimd())
1793 		return;
1794 
1795 	get_cpu_fpsimd_context();
1796 	fpsimd_save_user_state();
1797 	fpsimd_flush_task_state(current);
1798 	put_cpu_fpsimd_context();
1799 }
1800 
1801 /*
1802  * Save the FPSIMD state to memory and invalidate cpu view.
1803  * This function must be called with preemption disabled.
1804  */
fpsimd_save_and_flush_cpu_state(void)1805 void fpsimd_save_and_flush_cpu_state(void)
1806 {
1807 	unsigned long flags;
1808 
1809 	if (!system_supports_fpsimd())
1810 		return;
1811 	WARN_ON(preemptible());
1812 	local_irq_save(flags);
1813 	fpsimd_save_user_state();
1814 	fpsimd_flush_cpu_state();
1815 	local_irq_restore(flags);
1816 }
1817 
1818 #ifdef CONFIG_KERNEL_MODE_NEON
1819 
1820 /*
1821  * Kernel-side NEON support functions
1822  */
1823 
1824 /*
1825  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1826  * context
1827  *
1828  * Must not be called unless may_use_simd() returns true.
1829  * Task context in the FPSIMD registers is saved back to memory as necessary.
1830  *
1831  * A matching call to kernel_neon_end() must be made before returning from the
1832  * calling context.
1833  *
1834  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1835  * called.
1836  */
kernel_neon_begin(void)1837 void kernel_neon_begin(void)
1838 {
1839 	if (WARN_ON(!system_supports_fpsimd()))
1840 		return;
1841 
1842 	BUG_ON(!may_use_simd());
1843 
1844 	get_cpu_fpsimd_context();
1845 
1846 	/* Save unsaved fpsimd state, if any: */
1847 	if (test_thread_flag(TIF_KERNEL_FPSTATE)) {
1848 		BUG_ON(IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq());
1849 		fpsimd_save_kernel_state(current);
1850 	} else {
1851 		fpsimd_save_user_state();
1852 
1853 		/*
1854 		 * Set the thread flag so that the kernel mode FPSIMD state
1855 		 * will be context switched along with the rest of the task
1856 		 * state.
1857 		 *
1858 		 * On non-PREEMPT_RT, softirqs may interrupt task level kernel
1859 		 * mode FPSIMD, but the task will not be preemptible so setting
1860 		 * TIF_KERNEL_FPSTATE for those would be both wrong (as it
1861 		 * would mark the task context FPSIMD state as requiring a
1862 		 * context switch) and unnecessary.
1863 		 *
1864 		 * On PREEMPT_RT, softirqs are serviced from a separate thread,
1865 		 * which is scheduled as usual, and this guarantees that these
1866 		 * softirqs are not interrupting use of the FPSIMD in kernel
1867 		 * mode in task context. So in this case, setting the flag here
1868 		 * is always appropriate.
1869 		 */
1870 		if (IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq())
1871 			set_thread_flag(TIF_KERNEL_FPSTATE);
1872 	}
1873 
1874 	/* Invalidate any task state remaining in the fpsimd regs: */
1875 	fpsimd_flush_cpu_state();
1876 
1877 	put_cpu_fpsimd_context();
1878 }
1879 EXPORT_SYMBOL_GPL(kernel_neon_begin);
1880 
1881 /*
1882  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1883  *
1884  * Must be called from a context in which kernel_neon_begin() was previously
1885  * called, with no call to kernel_neon_end() in the meantime.
1886  *
1887  * The caller must not use the FPSIMD registers after this function is called,
1888  * unless kernel_neon_begin() is called again in the meantime.
1889  */
kernel_neon_end(void)1890 void kernel_neon_end(void)
1891 {
1892 	if (!system_supports_fpsimd())
1893 		return;
1894 
1895 	/*
1896 	 * If we are returning from a nested use of kernel mode FPSIMD, restore
1897 	 * the task context kernel mode FPSIMD state. This can only happen when
1898 	 * running in softirq context on non-PREEMPT_RT.
1899 	 */
1900 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) && in_serving_softirq() &&
1901 	    test_thread_flag(TIF_KERNEL_FPSTATE))
1902 		fpsimd_load_kernel_state(current);
1903 	else
1904 		clear_thread_flag(TIF_KERNEL_FPSTATE);
1905 }
1906 EXPORT_SYMBOL_GPL(kernel_neon_end);
1907 
1908 #ifdef CONFIG_EFI
1909 
1910 static struct user_fpsimd_state efi_fpsimd_state;
1911 static bool efi_fpsimd_state_used;
1912 static bool efi_sve_state_used;
1913 static bool efi_sm_state;
1914 
1915 /*
1916  * EFI runtime services support functions
1917  *
1918  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1919  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1920  * is always used rather than being an optional accelerator.
1921  *
1922  * These functions provide the necessary support for ensuring FPSIMD
1923  * save/restore in the contexts from which EFI is used.
1924  *
1925  * Do not use them for any other purpose -- if tempted to do so, you are
1926  * either doing something wrong or you need to propose some refactoring.
1927  */
1928 
1929 /*
1930  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1931  */
__efi_fpsimd_begin(void)1932 void __efi_fpsimd_begin(void)
1933 {
1934 	if (!system_supports_fpsimd())
1935 		return;
1936 
1937 	WARN_ON(preemptible());
1938 
1939 	if (may_use_simd()) {
1940 		kernel_neon_begin();
1941 	} else {
1942 		/*
1943 		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1944 		 * preserving:
1945 		 */
1946 		if (system_supports_sve() && efi_sve_state != NULL) {
1947 			bool ffr = true;
1948 			u64 svcr;
1949 
1950 			efi_sve_state_used = true;
1951 
1952 			if (system_supports_sme()) {
1953 				svcr = read_sysreg_s(SYS_SVCR);
1954 
1955 				efi_sm_state = svcr & SVCR_SM_MASK;
1956 
1957 				/*
1958 				 * Unless we have FA64 FFR does not
1959 				 * exist in streaming mode.
1960 				 */
1961 				if (!system_supports_fa64())
1962 					ffr = !(svcr & SVCR_SM_MASK);
1963 			}
1964 
1965 			sve_save_state(efi_sve_state + sve_ffr_offset(sve_max_vl()),
1966 				       &efi_fpsimd_state.fpsr, ffr);
1967 
1968 			if (system_supports_sme())
1969 				sysreg_clear_set_s(SYS_SVCR,
1970 						   SVCR_SM_MASK, 0);
1971 
1972 		} else {
1973 			fpsimd_save_state(&efi_fpsimd_state);
1974 		}
1975 
1976 		efi_fpsimd_state_used = true;
1977 	}
1978 }
1979 
1980 /*
1981  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1982  */
__efi_fpsimd_end(void)1983 void __efi_fpsimd_end(void)
1984 {
1985 	if (!system_supports_fpsimd())
1986 		return;
1987 
1988 	if (!efi_fpsimd_state_used) {
1989 		kernel_neon_end();
1990 	} else {
1991 		if (system_supports_sve() && efi_sve_state_used) {
1992 			bool ffr = true;
1993 
1994 			/*
1995 			 * Restore streaming mode; EFI calls are
1996 			 * normal function calls so should not return in
1997 			 * streaming mode.
1998 			 */
1999 			if (system_supports_sme()) {
2000 				if (efi_sm_state) {
2001 					sysreg_clear_set_s(SYS_SVCR,
2002 							   0,
2003 							   SVCR_SM_MASK);
2004 
2005 					/*
2006 					 * Unless we have FA64 FFR does not
2007 					 * exist in streaming mode.
2008 					 */
2009 					if (!system_supports_fa64())
2010 						ffr = false;
2011 				}
2012 			}
2013 
2014 			sve_load_state(efi_sve_state + sve_ffr_offset(sve_max_vl()),
2015 				       &efi_fpsimd_state.fpsr, ffr);
2016 
2017 			efi_sve_state_used = false;
2018 		} else {
2019 			fpsimd_load_state(&efi_fpsimd_state);
2020 		}
2021 
2022 		efi_fpsimd_state_used = false;
2023 	}
2024 }
2025 
2026 #endif /* CONFIG_EFI */
2027 
2028 #endif /* CONFIG_KERNEL_MODE_NEON */
2029 
2030 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2031 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
2032 				  unsigned long cmd, void *v)
2033 {
2034 	switch (cmd) {
2035 	case CPU_PM_ENTER:
2036 		fpsimd_save_and_flush_cpu_state();
2037 		break;
2038 	case CPU_PM_EXIT:
2039 		break;
2040 	case CPU_PM_ENTER_FAILED:
2041 	default:
2042 		return NOTIFY_DONE;
2043 	}
2044 	return NOTIFY_OK;
2045 }
2046 
2047 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2048 	.notifier_call = fpsimd_cpu_pm_notifier,
2049 };
2050 
fpsimd_pm_init(void)2051 static void __init fpsimd_pm_init(void)
2052 {
2053 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2054 }
2055 
2056 #else
fpsimd_pm_init(void)2057 static inline void fpsimd_pm_init(void) { }
2058 #endif /* CONFIG_CPU_PM */
2059 
2060 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)2061 static int fpsimd_cpu_dead(unsigned int cpu)
2062 {
2063 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
2064 	return 0;
2065 }
2066 
fpsimd_hotplug_init(void)2067 static inline void fpsimd_hotplug_init(void)
2068 {
2069 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2070 				  NULL, fpsimd_cpu_dead);
2071 }
2072 
2073 #else
fpsimd_hotplug_init(void)2074 static inline void fpsimd_hotplug_init(void) { }
2075 #endif
2076 
cpu_enable_fpsimd(const struct arm64_cpu_capabilities * __always_unused p)2077 void cpu_enable_fpsimd(const struct arm64_cpu_capabilities *__always_unused p)
2078 {
2079 	unsigned long enable = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_FPEN_EL0EN;
2080 	write_sysreg(read_sysreg(CPACR_EL1) | enable, CPACR_EL1);
2081 	isb();
2082 }
2083 
2084 /*
2085  * FP/SIMD support code initialisation.
2086  */
fpsimd_init(void)2087 static int __init fpsimd_init(void)
2088 {
2089 	if (cpu_have_named_feature(FP)) {
2090 		fpsimd_pm_init();
2091 		fpsimd_hotplug_init();
2092 	} else {
2093 		pr_notice("Floating-point is not implemented\n");
2094 	}
2095 
2096 	if (!cpu_have_named_feature(ASIMD))
2097 		pr_notice("Advanced SIMD is not implemented\n");
2098 
2099 
2100 	sve_sysctl_init();
2101 	sme_sysctl_init();
2102 
2103 	return 0;
2104 }
2105 core_initcall(fpsimd_init);
2106