1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fprobe - Simple ftrace probe wrapper for function entry.
4 */
5 #define pr_fmt(fmt) "fprobe: " fmt
6
7 #include <linux/err.h>
8 #include <linux/fprobe.h>
9 #include <linux/kallsyms.h>
10 #include <linux/kprobes.h>
11 #include <linux/list.h>
12 #include <linux/mutex.h>
13 #include <linux/slab.h>
14 #include <linux/sort.h>
15
16 #include <asm/fprobe.h>
17
18 #include "trace.h"
19
20 #define FPROBE_IP_HASH_BITS 8
21 #define FPROBE_IP_TABLE_SIZE (1 << FPROBE_IP_HASH_BITS)
22
23 #define FPROBE_HASH_BITS 6
24 #define FPROBE_TABLE_SIZE (1 << FPROBE_HASH_BITS)
25
26 #define SIZE_IN_LONG(x) ((x + sizeof(long) - 1) >> (sizeof(long) == 8 ? 3 : 2))
27
28 /*
29 * fprobe_table: hold 'fprobe_hlist::hlist' for checking the fprobe still
30 * exists. The key is the address of fprobe instance.
31 * fprobe_ip_table: hold 'fprobe_hlist::array[*]' for searching the fprobe
32 * instance related to the funciton address. The key is the ftrace IP
33 * address.
34 *
35 * When unregistering the fprobe, fprobe_hlist::fp and fprobe_hlist::array[*].fp
36 * are set NULL and delete those from both hash tables (by hlist_del_rcu).
37 * After an RCU grace period, the fprobe_hlist itself will be released.
38 *
39 * fprobe_table and fprobe_ip_table can be accessed from either
40 * - Normal hlist traversal and RCU add/del under 'fprobe_mutex' is held.
41 * - RCU hlist traversal under disabling preempt
42 */
43 static struct hlist_head fprobe_table[FPROBE_TABLE_SIZE];
44 static struct hlist_head fprobe_ip_table[FPROBE_IP_TABLE_SIZE];
45 static DEFINE_MUTEX(fprobe_mutex);
46
47 /*
48 * Find first fprobe in the hlist. It will be iterated twice in the entry
49 * probe, once for correcting the total required size, the second time is
50 * calling back the user handlers.
51 * Thus the hlist in the fprobe_table must be sorted and new probe needs to
52 * be added *before* the first fprobe.
53 */
find_first_fprobe_node(unsigned long ip)54 static struct fprobe_hlist_node *find_first_fprobe_node(unsigned long ip)
55 {
56 struct fprobe_hlist_node *node;
57 struct hlist_head *head;
58
59 head = &fprobe_ip_table[hash_ptr((void *)ip, FPROBE_IP_HASH_BITS)];
60 hlist_for_each_entry_rcu(node, head, hlist,
61 lockdep_is_held(&fprobe_mutex)) {
62 if (node->addr == ip)
63 return node;
64 }
65 return NULL;
66 }
67 NOKPROBE_SYMBOL(find_first_fprobe_node);
68
69 /* Node insertion and deletion requires the fprobe_mutex */
insert_fprobe_node(struct fprobe_hlist_node * node)70 static void insert_fprobe_node(struct fprobe_hlist_node *node)
71 {
72 unsigned long ip = node->addr;
73 struct fprobe_hlist_node *next;
74 struct hlist_head *head;
75
76 lockdep_assert_held(&fprobe_mutex);
77
78 next = find_first_fprobe_node(ip);
79 if (next) {
80 hlist_add_before_rcu(&node->hlist, &next->hlist);
81 return;
82 }
83 head = &fprobe_ip_table[hash_ptr((void *)ip, FPROBE_IP_HASH_BITS)];
84 hlist_add_head_rcu(&node->hlist, head);
85 }
86
87 /* Return true if there are synonims */
delete_fprobe_node(struct fprobe_hlist_node * node)88 static bool delete_fprobe_node(struct fprobe_hlist_node *node)
89 {
90 lockdep_assert_held(&fprobe_mutex);
91
92 WRITE_ONCE(node->fp, NULL);
93 hlist_del_rcu(&node->hlist);
94 return !!find_first_fprobe_node(node->addr);
95 }
96
97 /* Check existence of the fprobe */
is_fprobe_still_exist(struct fprobe * fp)98 static bool is_fprobe_still_exist(struct fprobe *fp)
99 {
100 struct hlist_head *head;
101 struct fprobe_hlist *fph;
102
103 head = &fprobe_table[hash_ptr(fp, FPROBE_HASH_BITS)];
104 hlist_for_each_entry_rcu(fph, head, hlist,
105 lockdep_is_held(&fprobe_mutex)) {
106 if (fph->fp == fp)
107 return true;
108 }
109 return false;
110 }
111 NOKPROBE_SYMBOL(is_fprobe_still_exist);
112
add_fprobe_hash(struct fprobe * fp)113 static int add_fprobe_hash(struct fprobe *fp)
114 {
115 struct fprobe_hlist *fph = fp->hlist_array;
116 struct hlist_head *head;
117
118 lockdep_assert_held(&fprobe_mutex);
119
120 if (WARN_ON_ONCE(!fph))
121 return -EINVAL;
122
123 if (is_fprobe_still_exist(fp))
124 return -EEXIST;
125
126 head = &fprobe_table[hash_ptr(fp, FPROBE_HASH_BITS)];
127 hlist_add_head_rcu(&fp->hlist_array->hlist, head);
128 return 0;
129 }
130
del_fprobe_hash(struct fprobe * fp)131 static int del_fprobe_hash(struct fprobe *fp)
132 {
133 struct fprobe_hlist *fph = fp->hlist_array;
134
135 lockdep_assert_held(&fprobe_mutex);
136
137 if (WARN_ON_ONCE(!fph))
138 return -EINVAL;
139
140 if (!is_fprobe_still_exist(fp))
141 return -ENOENT;
142
143 fph->fp = NULL;
144 hlist_del_rcu(&fph->hlist);
145 return 0;
146 }
147
148 #ifdef ARCH_DEFINE_ENCODE_FPROBE_HEADER
149
150 /* The arch should encode fprobe_header info into one unsigned long */
151 #define FPROBE_HEADER_SIZE_IN_LONG 1
152
write_fprobe_header(unsigned long * stack,struct fprobe * fp,unsigned int size_words)153 static inline bool write_fprobe_header(unsigned long *stack,
154 struct fprobe *fp, unsigned int size_words)
155 {
156 if (WARN_ON_ONCE(size_words > MAX_FPROBE_DATA_SIZE_WORD ||
157 !arch_fprobe_header_encodable(fp)))
158 return false;
159
160 *stack = arch_encode_fprobe_header(fp, size_words);
161 return true;
162 }
163
read_fprobe_header(unsigned long * stack,struct fprobe ** fp,unsigned int * size_words)164 static inline void read_fprobe_header(unsigned long *stack,
165 struct fprobe **fp, unsigned int *size_words)
166 {
167 *fp = arch_decode_fprobe_header_fp(*stack);
168 *size_words = arch_decode_fprobe_header_size(*stack);
169 }
170
171 #else
172
173 /* Generic fprobe_header */
174 struct __fprobe_header {
175 struct fprobe *fp;
176 unsigned long size_words;
177 } __packed;
178
179 #define FPROBE_HEADER_SIZE_IN_LONG SIZE_IN_LONG(sizeof(struct __fprobe_header))
180
write_fprobe_header(unsigned long * stack,struct fprobe * fp,unsigned int size_words)181 static inline bool write_fprobe_header(unsigned long *stack,
182 struct fprobe *fp, unsigned int size_words)
183 {
184 struct __fprobe_header *fph = (struct __fprobe_header *)stack;
185
186 if (WARN_ON_ONCE(size_words > MAX_FPROBE_DATA_SIZE_WORD))
187 return false;
188
189 fph->fp = fp;
190 fph->size_words = size_words;
191 return true;
192 }
193
read_fprobe_header(unsigned long * stack,struct fprobe ** fp,unsigned int * size_words)194 static inline void read_fprobe_header(unsigned long *stack,
195 struct fprobe **fp, unsigned int *size_words)
196 {
197 struct __fprobe_header *fph = (struct __fprobe_header *)stack;
198
199 *fp = fph->fp;
200 *size_words = fph->size_words;
201 }
202
203 #endif
204
205 /*
206 * fprobe shadow stack management:
207 * Since fprobe shares a single fgraph_ops, it needs to share the stack entry
208 * among the probes on the same function exit. Note that a new probe can be
209 * registered before a target function is returning, we can not use the hash
210 * table to find the corresponding probes. Thus the probe address is stored on
211 * the shadow stack with its entry data size.
212 *
213 */
__fprobe_handler(unsigned long ip,unsigned long parent_ip,struct fprobe * fp,struct ftrace_regs * fregs,void * data)214 static inline int __fprobe_handler(unsigned long ip, unsigned long parent_ip,
215 struct fprobe *fp, struct ftrace_regs *fregs,
216 void *data)
217 {
218 if (!fp->entry_handler)
219 return 0;
220
221 return fp->entry_handler(fp, ip, parent_ip, fregs, data);
222 }
223
__fprobe_kprobe_handler(unsigned long ip,unsigned long parent_ip,struct fprobe * fp,struct ftrace_regs * fregs,void * data)224 static inline int __fprobe_kprobe_handler(unsigned long ip, unsigned long parent_ip,
225 struct fprobe *fp, struct ftrace_regs *fregs,
226 void *data)
227 {
228 int ret;
229 /*
230 * This user handler is shared with other kprobes and is not expected to be
231 * called recursively. So if any other kprobe handler is running, this will
232 * exit as kprobe does. See the section 'Share the callbacks with kprobes'
233 * in Documentation/trace/fprobe.rst for more information.
234 */
235 if (unlikely(kprobe_running())) {
236 fp->nmissed++;
237 return 0;
238 }
239
240 kprobe_busy_begin();
241 ret = __fprobe_handler(ip, parent_ip, fp, fregs, data);
242 kprobe_busy_end();
243 return ret;
244 }
245
fprobe_entry(struct ftrace_graph_ent * trace,struct fgraph_ops * gops,struct ftrace_regs * fregs)246 static int fprobe_entry(struct ftrace_graph_ent *trace, struct fgraph_ops *gops,
247 struct ftrace_regs *fregs)
248 {
249 struct fprobe_hlist_node *node, *first;
250 unsigned long *fgraph_data = NULL;
251 unsigned long func = trace->func;
252 unsigned long ret_ip;
253 int reserved_words;
254 struct fprobe *fp;
255 int used, ret;
256
257 if (WARN_ON_ONCE(!fregs))
258 return 0;
259
260 first = node = find_first_fprobe_node(func);
261 if (unlikely(!first))
262 return 0;
263
264 reserved_words = 0;
265 hlist_for_each_entry_from_rcu(node, hlist) {
266 if (node->addr != func)
267 break;
268 fp = READ_ONCE(node->fp);
269 if (!fp || !fp->exit_handler)
270 continue;
271 /*
272 * Since fprobe can be enabled until the next loop, we ignore the
273 * fprobe's disabled flag in this loop.
274 */
275 reserved_words +=
276 FPROBE_HEADER_SIZE_IN_LONG + SIZE_IN_LONG(fp->entry_data_size);
277 }
278 node = first;
279 if (reserved_words) {
280 fgraph_data = fgraph_reserve_data(gops->idx, reserved_words * sizeof(long));
281 if (unlikely(!fgraph_data)) {
282 hlist_for_each_entry_from_rcu(node, hlist) {
283 if (node->addr != func)
284 break;
285 fp = READ_ONCE(node->fp);
286 if (fp && !fprobe_disabled(fp))
287 fp->nmissed++;
288 }
289 return 0;
290 }
291 }
292
293 /*
294 * TODO: recursion detection has been done in the fgraph. Thus we need
295 * to add a callback to increment missed counter.
296 */
297 ret_ip = ftrace_regs_get_return_address(fregs);
298 used = 0;
299 hlist_for_each_entry_from_rcu(node, hlist) {
300 int data_size;
301 void *data;
302
303 if (node->addr != func)
304 break;
305 fp = READ_ONCE(node->fp);
306 if (!fp || fprobe_disabled(fp))
307 continue;
308
309 data_size = fp->entry_data_size;
310 if (data_size && fp->exit_handler)
311 data = fgraph_data + used + FPROBE_HEADER_SIZE_IN_LONG;
312 else
313 data = NULL;
314
315 if (fprobe_shared_with_kprobes(fp))
316 ret = __fprobe_kprobe_handler(func, ret_ip, fp, fregs, data);
317 else
318 ret = __fprobe_handler(func, ret_ip, fp, fregs, data);
319
320 /* If entry_handler returns !0, nmissed is not counted but skips exit_handler. */
321 if (!ret && fp->exit_handler) {
322 int size_words = SIZE_IN_LONG(data_size);
323
324 if (write_fprobe_header(&fgraph_data[used], fp, size_words))
325 used += FPROBE_HEADER_SIZE_IN_LONG + size_words;
326 }
327 }
328 if (used < reserved_words)
329 memset(fgraph_data + used, 0, reserved_words - used);
330
331 /* If any exit_handler is set, data must be used. */
332 return used != 0;
333 }
334 NOKPROBE_SYMBOL(fprobe_entry);
335
fprobe_return(struct ftrace_graph_ret * trace,struct fgraph_ops * gops,struct ftrace_regs * fregs)336 static void fprobe_return(struct ftrace_graph_ret *trace,
337 struct fgraph_ops *gops,
338 struct ftrace_regs *fregs)
339 {
340 unsigned long *fgraph_data = NULL;
341 unsigned long ret_ip;
342 struct fprobe *fp;
343 int size, curr;
344 int size_words;
345
346 fgraph_data = (unsigned long *)fgraph_retrieve_data(gops->idx, &size);
347 if (WARN_ON_ONCE(!fgraph_data))
348 return;
349 size_words = SIZE_IN_LONG(size);
350 ret_ip = ftrace_regs_get_instruction_pointer(fregs);
351
352 preempt_disable();
353
354 curr = 0;
355 while (size_words > curr) {
356 read_fprobe_header(&fgraph_data[curr], &fp, &size);
357 if (!fp)
358 break;
359 curr += FPROBE_HEADER_SIZE_IN_LONG;
360 if (is_fprobe_still_exist(fp) && !fprobe_disabled(fp)) {
361 if (WARN_ON_ONCE(curr + size > size_words))
362 break;
363 fp->exit_handler(fp, trace->func, ret_ip, fregs,
364 size ? fgraph_data + curr : NULL);
365 }
366 curr += size;
367 }
368 preempt_enable();
369 }
370 NOKPROBE_SYMBOL(fprobe_return);
371
372 static struct fgraph_ops fprobe_graph_ops = {
373 .entryfunc = fprobe_entry,
374 .retfunc = fprobe_return,
375 };
376 static int fprobe_graph_active;
377
378 /* Add @addrs to the ftrace filter and register fgraph if needed. */
fprobe_graph_add_ips(unsigned long * addrs,int num)379 static int fprobe_graph_add_ips(unsigned long *addrs, int num)
380 {
381 int ret;
382
383 lockdep_assert_held(&fprobe_mutex);
384
385 ret = ftrace_set_filter_ips(&fprobe_graph_ops.ops, addrs, num, 0, 0);
386 if (ret)
387 return ret;
388
389 if (!fprobe_graph_active) {
390 ret = register_ftrace_graph(&fprobe_graph_ops);
391 if (WARN_ON_ONCE(ret)) {
392 ftrace_free_filter(&fprobe_graph_ops.ops);
393 return ret;
394 }
395 }
396 fprobe_graph_active++;
397 return 0;
398 }
399
400 /* Remove @addrs from the ftrace filter and unregister fgraph if possible. */
fprobe_graph_remove_ips(unsigned long * addrs,int num)401 static void fprobe_graph_remove_ips(unsigned long *addrs, int num)
402 {
403 lockdep_assert_held(&fprobe_mutex);
404
405 fprobe_graph_active--;
406 /* Q: should we unregister it ? */
407 if (!fprobe_graph_active)
408 unregister_ftrace_graph(&fprobe_graph_ops);
409
410 if (num)
411 ftrace_set_filter_ips(&fprobe_graph_ops.ops, addrs, num, 1, 0);
412 }
413
symbols_cmp(const void * a,const void * b)414 static int symbols_cmp(const void *a, const void *b)
415 {
416 const char **str_a = (const char **) a;
417 const char **str_b = (const char **) b;
418
419 return strcmp(*str_a, *str_b);
420 }
421
422 /* Convert ftrace location address from symbols */
get_ftrace_locations(const char ** syms,int num)423 static unsigned long *get_ftrace_locations(const char **syms, int num)
424 {
425 unsigned long *addrs;
426
427 /* Convert symbols to symbol address */
428 addrs = kcalloc(num, sizeof(*addrs), GFP_KERNEL);
429 if (!addrs)
430 return ERR_PTR(-ENOMEM);
431
432 /* ftrace_lookup_symbols expects sorted symbols */
433 sort(syms, num, sizeof(*syms), symbols_cmp, NULL);
434
435 if (!ftrace_lookup_symbols(syms, num, addrs))
436 return addrs;
437
438 kfree(addrs);
439 return ERR_PTR(-ENOENT);
440 }
441
442 struct filter_match_data {
443 const char *filter;
444 const char *notfilter;
445 size_t index;
446 size_t size;
447 unsigned long *addrs;
448 };
449
filter_match_callback(void * data,const char * name,unsigned long addr)450 static int filter_match_callback(void *data, const char *name, unsigned long addr)
451 {
452 struct filter_match_data *match = data;
453
454 if (!glob_match(match->filter, name) ||
455 (match->notfilter && glob_match(match->notfilter, name)))
456 return 0;
457
458 if (!ftrace_location(addr))
459 return 0;
460
461 if (match->addrs)
462 match->addrs[match->index] = addr;
463
464 match->index++;
465 return match->index == match->size;
466 }
467
468 /*
469 * Make IP list from the filter/no-filter glob patterns.
470 * Return the number of matched symbols, or -ENOENT.
471 */
ip_list_from_filter(const char * filter,const char * notfilter,unsigned long * addrs,size_t size)472 static int ip_list_from_filter(const char *filter, const char *notfilter,
473 unsigned long *addrs, size_t size)
474 {
475 struct filter_match_data match = { .filter = filter, .notfilter = notfilter,
476 .index = 0, .size = size, .addrs = addrs};
477 int ret;
478
479 ret = kallsyms_on_each_symbol(filter_match_callback, &match);
480 if (ret < 0)
481 return ret;
482 ret = module_kallsyms_on_each_symbol(NULL, filter_match_callback, &match);
483 if (ret < 0)
484 return ret;
485
486 return match.index ?: -ENOENT;
487 }
488
fprobe_fail_cleanup(struct fprobe * fp)489 static void fprobe_fail_cleanup(struct fprobe *fp)
490 {
491 kfree(fp->hlist_array);
492 fp->hlist_array = NULL;
493 }
494
495 /* Initialize the fprobe data structure. */
fprobe_init(struct fprobe * fp,unsigned long * addrs,int num)496 static int fprobe_init(struct fprobe *fp, unsigned long *addrs, int num)
497 {
498 struct fprobe_hlist *hlist_array;
499 unsigned long addr;
500 int size, i;
501
502 if (!fp || !addrs || num <= 0)
503 return -EINVAL;
504
505 size = ALIGN(fp->entry_data_size, sizeof(long));
506 if (size > MAX_FPROBE_DATA_SIZE)
507 return -E2BIG;
508 fp->entry_data_size = size;
509
510 hlist_array = kzalloc(struct_size(hlist_array, array, num), GFP_KERNEL);
511 if (!hlist_array)
512 return -ENOMEM;
513
514 fp->nmissed = 0;
515
516 hlist_array->size = num;
517 fp->hlist_array = hlist_array;
518 hlist_array->fp = fp;
519 for (i = 0; i < num; i++) {
520 hlist_array->array[i].fp = fp;
521 addr = ftrace_location(addrs[i]);
522 if (!addr) {
523 fprobe_fail_cleanup(fp);
524 return -ENOENT;
525 }
526 hlist_array->array[i].addr = addr;
527 }
528 return 0;
529 }
530
531 #define FPROBE_IPS_MAX INT_MAX
532
533 /**
534 * register_fprobe() - Register fprobe to ftrace by pattern.
535 * @fp: A fprobe data structure to be registered.
536 * @filter: A wildcard pattern of probed symbols.
537 * @notfilter: A wildcard pattern of NOT probed symbols.
538 *
539 * Register @fp to ftrace for enabling the probe on the symbols matched to @filter.
540 * If @notfilter is not NULL, the symbols matched the @notfilter are not probed.
541 *
542 * Return 0 if @fp is registered successfully, -errno if not.
543 */
register_fprobe(struct fprobe * fp,const char * filter,const char * notfilter)544 int register_fprobe(struct fprobe *fp, const char *filter, const char *notfilter)
545 {
546 unsigned long *addrs;
547 int ret;
548
549 if (!fp || !filter)
550 return -EINVAL;
551
552 ret = ip_list_from_filter(filter, notfilter, NULL, FPROBE_IPS_MAX);
553 if (ret < 0)
554 return ret;
555
556 addrs = kcalloc(ret, sizeof(unsigned long), GFP_KERNEL);
557 if (!addrs)
558 return -ENOMEM;
559 ret = ip_list_from_filter(filter, notfilter, addrs, ret);
560 if (ret > 0)
561 ret = register_fprobe_ips(fp, addrs, ret);
562
563 kfree(addrs);
564 return ret;
565 }
566 EXPORT_SYMBOL_GPL(register_fprobe);
567
568 /**
569 * register_fprobe_ips() - Register fprobe to ftrace by address.
570 * @fp: A fprobe data structure to be registered.
571 * @addrs: An array of target function address.
572 * @num: The number of entries of @addrs.
573 *
574 * Register @fp to ftrace for enabling the probe on the address given by @addrs.
575 * The @addrs must be the addresses of ftrace location address, which may be
576 * the symbol address + arch-dependent offset.
577 * If you unsure what this mean, please use other registration functions.
578 *
579 * Return 0 if @fp is registered successfully, -errno if not.
580 */
register_fprobe_ips(struct fprobe * fp,unsigned long * addrs,int num)581 int register_fprobe_ips(struct fprobe *fp, unsigned long *addrs, int num)
582 {
583 struct fprobe_hlist *hlist_array;
584 int ret, i;
585
586 ret = fprobe_init(fp, addrs, num);
587 if (ret)
588 return ret;
589
590 mutex_lock(&fprobe_mutex);
591
592 hlist_array = fp->hlist_array;
593 ret = fprobe_graph_add_ips(addrs, num);
594 if (!ret) {
595 add_fprobe_hash(fp);
596 for (i = 0; i < hlist_array->size; i++)
597 insert_fprobe_node(&hlist_array->array[i]);
598 }
599 mutex_unlock(&fprobe_mutex);
600
601 if (ret)
602 fprobe_fail_cleanup(fp);
603
604 return ret;
605 }
606 EXPORT_SYMBOL_GPL(register_fprobe_ips);
607
608 /**
609 * register_fprobe_syms() - Register fprobe to ftrace by symbols.
610 * @fp: A fprobe data structure to be registered.
611 * @syms: An array of target symbols.
612 * @num: The number of entries of @syms.
613 *
614 * Register @fp to the symbols given by @syms array. This will be useful if
615 * you are sure the symbols exist in the kernel.
616 *
617 * Return 0 if @fp is registered successfully, -errno if not.
618 */
register_fprobe_syms(struct fprobe * fp,const char ** syms,int num)619 int register_fprobe_syms(struct fprobe *fp, const char **syms, int num)
620 {
621 unsigned long *addrs;
622 int ret;
623
624 if (!fp || !syms || num <= 0)
625 return -EINVAL;
626
627 addrs = get_ftrace_locations(syms, num);
628 if (IS_ERR(addrs))
629 return PTR_ERR(addrs);
630
631 ret = register_fprobe_ips(fp, addrs, num);
632
633 kfree(addrs);
634
635 return ret;
636 }
637 EXPORT_SYMBOL_GPL(register_fprobe_syms);
638
fprobe_is_registered(struct fprobe * fp)639 bool fprobe_is_registered(struct fprobe *fp)
640 {
641 if (!fp || !fp->hlist_array)
642 return false;
643 return true;
644 }
645
646 /**
647 * unregister_fprobe() - Unregister fprobe.
648 * @fp: A fprobe data structure to be unregistered.
649 *
650 * Unregister fprobe (and remove ftrace hooks from the function entries).
651 *
652 * Return 0 if @fp is unregistered successfully, -errno if not.
653 */
unregister_fprobe(struct fprobe * fp)654 int unregister_fprobe(struct fprobe *fp)
655 {
656 struct fprobe_hlist *hlist_array;
657 unsigned long *addrs = NULL;
658 int ret = 0, i, count;
659
660 mutex_lock(&fprobe_mutex);
661 if (!fp || !is_fprobe_still_exist(fp)) {
662 ret = -EINVAL;
663 goto out;
664 }
665
666 hlist_array = fp->hlist_array;
667 addrs = kcalloc(hlist_array->size, sizeof(unsigned long), GFP_KERNEL);
668 if (!addrs) {
669 ret = -ENOMEM; /* TODO: Fallback to one-by-one loop */
670 goto out;
671 }
672
673 /* Remove non-synonim ips from table and hash */
674 count = 0;
675 for (i = 0; i < hlist_array->size; i++) {
676 if (!delete_fprobe_node(&hlist_array->array[i]))
677 addrs[count++] = hlist_array->array[i].addr;
678 }
679 del_fprobe_hash(fp);
680
681 fprobe_graph_remove_ips(addrs, count);
682
683 kfree_rcu(hlist_array, rcu);
684 fp->hlist_array = NULL;
685
686 out:
687 mutex_unlock(&fprobe_mutex);
688
689 kfree(addrs);
690 return ret;
691 }
692 EXPORT_SYMBOL_GPL(unregister_fprobe);
693