xref: /linux/mm/internal.h (revision 1110ce6a1e34fe1fdc1bfe4ad52405f327d5083b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3  *
4  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9 
10 #include <linux/fs.h>
11 #include <linux/khugepaged.h>
12 #include <linux/mm.h>
13 #include <linux/mm_inline.h>
14 #include <linux/pagemap.h>
15 #include <linux/pagewalk.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/swap_cgroup.h>
20 #include <linux/tracepoint-defs.h>
21 
22 /* Internal core VMA manipulation functions. */
23 #include "vma.h"
24 
25 struct folio_batch;
26 
27 /*
28  * The set of flags that only affect watermark checking and reclaim
29  * behaviour. This is used by the MM to obey the caller constraints
30  * about IO, FS and watermark checking while ignoring placement
31  * hints such as HIGHMEM usage.
32  */
33 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
34 			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
35 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
36 			__GFP_NOLOCKDEP)
37 
38 /* The GFP flags allowed during early boot */
39 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
40 
41 /* Control allocation cpuset and node placement constraints */
42 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
43 
44 /* Do not use these with a slab allocator */
45 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
46 
47 /*
48  * Different from WARN_ON_ONCE(), no warning will be issued
49  * when we specify __GFP_NOWARN.
50  */
51 #define WARN_ON_ONCE_GFP(cond, gfp)	({				\
52 	static bool __section(".data..once") __warned;			\
53 	int __ret_warn_once = !!(cond);					\
54 									\
55 	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
56 		__warned = true;					\
57 		WARN_ON(1);						\
58 	}								\
59 	unlikely(__ret_warn_once);					\
60 })
61 
62 void page_writeback_init(void);
63 
64 /*
65  * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
66  * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
67  * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
68  * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
69  */
70 #define ENTIRELY_MAPPED		0x800000
71 #define FOLIO_PAGES_MAPPED	(ENTIRELY_MAPPED - 1)
72 
73 /*
74  * Flags passed to __show_mem() and show_free_areas() to suppress output in
75  * various contexts.
76  */
77 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
78 
79 /*
80  * How many individual pages have an elevated _mapcount.  Excludes
81  * the folio's entire_mapcount.
82  *
83  * Don't use this function outside of debugging code.
84  */
folio_nr_pages_mapped(const struct folio * folio)85 static inline int folio_nr_pages_mapped(const struct folio *folio)
86 {
87 	return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
88 }
89 
90 /*
91  * Retrieve the first entry of a folio based on a provided entry within the
92  * folio. We cannot rely on folio->swap as there is no guarantee that it has
93  * been initialized. Used for calling arch_swap_restore()
94  */
folio_swap(swp_entry_t entry,const struct folio * folio)95 static inline swp_entry_t folio_swap(swp_entry_t entry,
96 		const struct folio *folio)
97 {
98 	swp_entry_t swap = {
99 		.val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)),
100 	};
101 
102 	return swap;
103 }
104 
folio_raw_mapping(const struct folio * folio)105 static inline void *folio_raw_mapping(const struct folio *folio)
106 {
107 	unsigned long mapping = (unsigned long)folio->mapping;
108 
109 	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
110 }
111 
112 /*
113  * This is a file-backed mapping, and is about to be memory mapped - invoke its
114  * mmap hook and safely handle error conditions. On error, VMA hooks will be
115  * mutated.
116  *
117  * @file: File which backs the mapping.
118  * @vma:  VMA which we are mapping.
119  *
120  * Returns: 0 if success, error otherwise.
121  */
mmap_file(struct file * file,struct vm_area_struct * vma)122 static inline int mmap_file(struct file *file, struct vm_area_struct *vma)
123 {
124 	int err = call_mmap(file, vma);
125 
126 	if (likely(!err))
127 		return 0;
128 
129 	/*
130 	 * OK, we tried to call the file hook for mmap(), but an error
131 	 * arose. The mapping is in an inconsistent state and we most not invoke
132 	 * any further hooks on it.
133 	 */
134 	vma->vm_ops = &vma_dummy_vm_ops;
135 
136 	return err;
137 }
138 
139 /*
140  * If the VMA has a close hook then close it, and since closing it might leave
141  * it in an inconsistent state which makes the use of any hooks suspect, clear
142  * them down by installing dummy empty hooks.
143  */
vma_close(struct vm_area_struct * vma)144 static inline void vma_close(struct vm_area_struct *vma)
145 {
146 	if (vma->vm_ops && vma->vm_ops->close) {
147 		vma->vm_ops->close(vma);
148 
149 		/*
150 		 * The mapping is in an inconsistent state, and no further hooks
151 		 * may be invoked upon it.
152 		 */
153 		vma->vm_ops = &vma_dummy_vm_ops;
154 	}
155 }
156 
157 #ifdef CONFIG_MMU
158 
159 /* Flags for folio_pte_batch(). */
160 typedef int __bitwise fpb_t;
161 
162 /* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */
163 #define FPB_IGNORE_DIRTY		((__force fpb_t)BIT(0))
164 
165 /* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */
166 #define FPB_IGNORE_SOFT_DIRTY		((__force fpb_t)BIT(1))
167 
__pte_batch_clear_ignored(pte_t pte,fpb_t flags)168 static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
169 {
170 	if (flags & FPB_IGNORE_DIRTY)
171 		pte = pte_mkclean(pte);
172 	if (likely(flags & FPB_IGNORE_SOFT_DIRTY))
173 		pte = pte_clear_soft_dirty(pte);
174 	return pte_wrprotect(pte_mkold(pte));
175 }
176 
177 /**
178  * folio_pte_batch - detect a PTE batch for a large folio
179  * @folio: The large folio to detect a PTE batch for.
180  * @addr: The user virtual address the first page is mapped at.
181  * @start_ptep: Page table pointer for the first entry.
182  * @pte: Page table entry for the first page.
183  * @max_nr: The maximum number of table entries to consider.
184  * @flags: Flags to modify the PTE batch semantics.
185  * @any_writable: Optional pointer to indicate whether any entry except the
186  *		  first one is writable.
187  * @any_young: Optional pointer to indicate whether any entry except the
188  *		  first one is young.
189  * @any_dirty: Optional pointer to indicate whether any entry except the
190  *		  first one is dirty.
191  *
192  * Detect a PTE batch: consecutive (present) PTEs that map consecutive
193  * pages of the same large folio.
194  *
195  * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
196  * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and
197  * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY).
198  *
199  * start_ptep must map any page of the folio. max_nr must be at least one and
200  * must be limited by the caller so scanning cannot exceed a single page table.
201  *
202  * Return: the number of table entries in the batch.
203  */
folio_pte_batch(struct folio * folio,unsigned long addr,pte_t * start_ptep,pte_t pte,int max_nr,fpb_t flags,bool * any_writable,bool * any_young,bool * any_dirty)204 static inline int folio_pte_batch(struct folio *folio, unsigned long addr,
205 		pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags,
206 		bool *any_writable, bool *any_young, bool *any_dirty)
207 {
208 	unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio);
209 	const pte_t *end_ptep = start_ptep + max_nr;
210 	pte_t expected_pte, *ptep;
211 	bool writable, young, dirty;
212 	int nr;
213 
214 	if (any_writable)
215 		*any_writable = false;
216 	if (any_young)
217 		*any_young = false;
218 	if (any_dirty)
219 		*any_dirty = false;
220 
221 	VM_WARN_ON_FOLIO(!pte_present(pte), folio);
222 	VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
223 	VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
224 
225 	nr = pte_batch_hint(start_ptep, pte);
226 	expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
227 	ptep = start_ptep + nr;
228 
229 	while (ptep < end_ptep) {
230 		pte = ptep_get(ptep);
231 		if (any_writable)
232 			writable = !!pte_write(pte);
233 		if (any_young)
234 			young = !!pte_young(pte);
235 		if (any_dirty)
236 			dirty = !!pte_dirty(pte);
237 		pte = __pte_batch_clear_ignored(pte, flags);
238 
239 		if (!pte_same(pte, expected_pte))
240 			break;
241 
242 		/*
243 		 * Stop immediately once we reached the end of the folio. In
244 		 * corner cases the next PFN might fall into a different
245 		 * folio.
246 		 */
247 		if (pte_pfn(pte) >= folio_end_pfn)
248 			break;
249 
250 		if (any_writable)
251 			*any_writable |= writable;
252 		if (any_young)
253 			*any_young |= young;
254 		if (any_dirty)
255 			*any_dirty |= dirty;
256 
257 		nr = pte_batch_hint(ptep, pte);
258 		expected_pte = pte_advance_pfn(expected_pte, nr);
259 		ptep += nr;
260 	}
261 
262 	return min(ptep - start_ptep, max_nr);
263 }
264 
265 /**
266  * pte_move_swp_offset - Move the swap entry offset field of a swap pte
267  *	 forward or backward by delta
268  * @pte: The initial pte state; is_swap_pte(pte) must be true and
269  *	 non_swap_entry() must be false.
270  * @delta: The direction and the offset we are moving; forward if delta
271  *	 is positive; backward if delta is negative
272  *
273  * Moves the swap offset, while maintaining all other fields, including
274  * swap type, and any swp pte bits. The resulting pte is returned.
275  */
pte_move_swp_offset(pte_t pte,long delta)276 static inline pte_t pte_move_swp_offset(pte_t pte, long delta)
277 {
278 	swp_entry_t entry = pte_to_swp_entry(pte);
279 	pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry),
280 						   (swp_offset(entry) + delta)));
281 
282 	if (pte_swp_soft_dirty(pte))
283 		new = pte_swp_mksoft_dirty(new);
284 	if (pte_swp_exclusive(pte))
285 		new = pte_swp_mkexclusive(new);
286 	if (pte_swp_uffd_wp(pte))
287 		new = pte_swp_mkuffd_wp(new);
288 
289 	return new;
290 }
291 
292 
293 /**
294  * pte_next_swp_offset - Increment the swap entry offset field of a swap pte.
295  * @pte: The initial pte state; is_swap_pte(pte) must be true and
296  *	 non_swap_entry() must be false.
297  *
298  * Increments the swap offset, while maintaining all other fields, including
299  * swap type, and any swp pte bits. The resulting pte is returned.
300  */
pte_next_swp_offset(pte_t pte)301 static inline pte_t pte_next_swp_offset(pte_t pte)
302 {
303 	return pte_move_swp_offset(pte, 1);
304 }
305 
306 /**
307  * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries
308  * @start_ptep: Page table pointer for the first entry.
309  * @max_nr: The maximum number of table entries to consider.
310  * @pte: Page table entry for the first entry.
311  *
312  * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs
313  * containing swap entries all with consecutive offsets and targeting the same
314  * swap type, all with matching swp pte bits.
315  *
316  * max_nr must be at least one and must be limited by the caller so scanning
317  * cannot exceed a single page table.
318  *
319  * Return: the number of table entries in the batch.
320  */
swap_pte_batch(pte_t * start_ptep,int max_nr,pte_t pte)321 static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte)
322 {
323 	pte_t expected_pte = pte_next_swp_offset(pte);
324 	const pte_t *end_ptep = start_ptep + max_nr;
325 	swp_entry_t entry = pte_to_swp_entry(pte);
326 	pte_t *ptep = start_ptep + 1;
327 	unsigned short cgroup_id;
328 
329 	VM_WARN_ON(max_nr < 1);
330 	VM_WARN_ON(!is_swap_pte(pte));
331 	VM_WARN_ON(non_swap_entry(entry));
332 
333 	cgroup_id = lookup_swap_cgroup_id(entry);
334 	while (ptep < end_ptep) {
335 		pte = ptep_get(ptep);
336 
337 		if (!pte_same(pte, expected_pte))
338 			break;
339 		if (lookup_swap_cgroup_id(pte_to_swp_entry(pte)) != cgroup_id)
340 			break;
341 		expected_pte = pte_next_swp_offset(expected_pte);
342 		ptep++;
343 	}
344 
345 	return ptep - start_ptep;
346 }
347 #endif /* CONFIG_MMU */
348 
349 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
350 						int nr_throttled);
acct_reclaim_writeback(struct folio * folio)351 static inline void acct_reclaim_writeback(struct folio *folio)
352 {
353 	pg_data_t *pgdat = folio_pgdat(folio);
354 	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
355 
356 	if (nr_throttled)
357 		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
358 }
359 
wake_throttle_isolated(pg_data_t * pgdat)360 static inline void wake_throttle_isolated(pg_data_t *pgdat)
361 {
362 	wait_queue_head_t *wqh;
363 
364 	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
365 	if (waitqueue_active(wqh))
366 		wake_up(wqh);
367 }
368 
369 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf);
vmf_anon_prepare(struct vm_fault * vmf)370 static inline vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
371 {
372 	vm_fault_t ret = __vmf_anon_prepare(vmf);
373 
374 	if (unlikely(ret & VM_FAULT_RETRY))
375 		vma_end_read(vmf->vma);
376 	return ret;
377 }
378 
379 vm_fault_t do_swap_page(struct vm_fault *vmf);
380 void folio_rotate_reclaimable(struct folio *folio);
381 bool __folio_end_writeback(struct folio *folio);
382 void deactivate_file_folio(struct folio *folio);
383 void folio_activate(struct folio *folio);
384 
385 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
386 		   struct vm_area_struct *start_vma, unsigned long floor,
387 		   unsigned long ceiling, bool mm_wr_locked);
388 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
389 
390 struct zap_details;
391 void unmap_page_range(struct mmu_gather *tlb,
392 			     struct vm_area_struct *vma,
393 			     unsigned long addr, unsigned long end,
394 			     struct zap_details *details);
395 int folio_unmap_invalidate(struct address_space *mapping, struct folio *folio,
396 			   gfp_t gfp);
397 
398 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
399 		unsigned int order);
400 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
force_page_cache_readahead(struct address_space * mapping,struct file * file,pgoff_t index,unsigned long nr_to_read)401 static inline void force_page_cache_readahead(struct address_space *mapping,
402 		struct file *file, pgoff_t index, unsigned long nr_to_read)
403 {
404 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
405 	force_page_cache_ra(&ractl, nr_to_read);
406 }
407 
408 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
409 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
410 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
411 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
412 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
413 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
414 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
415 		loff_t end);
416 long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
417 unsigned long mapping_try_invalidate(struct address_space *mapping,
418 		pgoff_t start, pgoff_t end, unsigned long *nr_failed);
419 
420 /**
421  * folio_evictable - Test whether a folio is evictable.
422  * @folio: The folio to test.
423  *
424  * Test whether @folio is evictable -- i.e., should be placed on
425  * active/inactive lists vs unevictable list.
426  *
427  * Reasons folio might not be evictable:
428  * 1. folio's mapping marked unevictable
429  * 2. One of the pages in the folio is part of an mlocked VMA
430  */
folio_evictable(struct folio * folio)431 static inline bool folio_evictable(struct folio *folio)
432 {
433 	bool ret;
434 
435 	/* Prevent address_space of inode and swap cache from being freed */
436 	rcu_read_lock();
437 	ret = !mapping_unevictable(folio_mapping(folio)) &&
438 			!folio_test_mlocked(folio);
439 	rcu_read_unlock();
440 	return ret;
441 }
442 
443 /*
444  * Turn a non-refcounted page (->_refcount == 0) into refcounted with
445  * a count of one.
446  */
set_page_refcounted(struct page * page)447 static inline void set_page_refcounted(struct page *page)
448 {
449 	VM_BUG_ON_PAGE(PageTail(page), page);
450 	VM_BUG_ON_PAGE(page_ref_count(page), page);
451 	set_page_count(page, 1);
452 }
453 
454 /*
455  * Return true if a folio needs ->release_folio() calling upon it.
456  */
folio_needs_release(struct folio * folio)457 static inline bool folio_needs_release(struct folio *folio)
458 {
459 	struct address_space *mapping = folio_mapping(folio);
460 
461 	return folio_has_private(folio) ||
462 		(mapping && mapping_release_always(mapping));
463 }
464 
465 extern unsigned long highest_memmap_pfn;
466 
467 /*
468  * Maximum number of reclaim retries without progress before the OOM
469  * killer is consider the only way forward.
470  */
471 #define MAX_RECLAIM_RETRIES 16
472 
473 /*
474  * in mm/vmscan.c:
475  */
476 bool folio_isolate_lru(struct folio *folio);
477 void folio_putback_lru(struct folio *folio);
478 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
479 
480 /*
481  * in mm/rmap.c:
482  */
483 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
484 
485 /*
486  * in mm/page_alloc.c
487  */
488 #define K(x) ((x) << (PAGE_SHIFT-10))
489 
490 extern char * const zone_names[MAX_NR_ZONES];
491 
492 /* perform sanity checks on struct pages being allocated or freed */
493 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
494 
495 extern int min_free_kbytes;
496 
497 void setup_per_zone_wmarks(void);
498 void calculate_min_free_kbytes(void);
499 int __meminit init_per_zone_wmark_min(void);
500 void page_alloc_sysctl_init(void);
501 
502 /*
503  * Structure for holding the mostly immutable allocation parameters passed
504  * between functions involved in allocations, including the alloc_pages*
505  * family of functions.
506  *
507  * nodemask, migratetype and highest_zoneidx are initialized only once in
508  * __alloc_pages() and then never change.
509  *
510  * zonelist, preferred_zone and highest_zoneidx are set first in
511  * __alloc_pages() for the fast path, and might be later changed
512  * in __alloc_pages_slowpath(). All other functions pass the whole structure
513  * by a const pointer.
514  */
515 struct alloc_context {
516 	struct zonelist *zonelist;
517 	nodemask_t *nodemask;
518 	struct zoneref *preferred_zoneref;
519 	int migratetype;
520 
521 	/*
522 	 * highest_zoneidx represents highest usable zone index of
523 	 * the allocation request. Due to the nature of the zone,
524 	 * memory on lower zone than the highest_zoneidx will be
525 	 * protected by lowmem_reserve[highest_zoneidx].
526 	 *
527 	 * highest_zoneidx is also used by reclaim/compaction to limit
528 	 * the target zone since higher zone than this index cannot be
529 	 * usable for this allocation request.
530 	 */
531 	enum zone_type highest_zoneidx;
532 	bool spread_dirty_pages;
533 };
534 
535 /*
536  * This function returns the order of a free page in the buddy system. In
537  * general, page_zone(page)->lock must be held by the caller to prevent the
538  * page from being allocated in parallel and returning garbage as the order.
539  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
540  * page cannot be allocated or merged in parallel. Alternatively, it must
541  * handle invalid values gracefully, and use buddy_order_unsafe() below.
542  */
buddy_order(struct page * page)543 static inline unsigned int buddy_order(struct page *page)
544 {
545 	/* PageBuddy() must be checked by the caller */
546 	return page_private(page);
547 }
548 
549 /*
550  * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
551  * PageBuddy() should be checked first by the caller to minimize race window,
552  * and invalid values must be handled gracefully.
553  *
554  * READ_ONCE is used so that if the caller assigns the result into a local
555  * variable and e.g. tests it for valid range before using, the compiler cannot
556  * decide to remove the variable and inline the page_private(page) multiple
557  * times, potentially observing different values in the tests and the actual
558  * use of the result.
559  */
560 #define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
561 
562 /*
563  * This function checks whether a page is free && is the buddy
564  * we can coalesce a page and its buddy if
565  * (a) the buddy is not in a hole (check before calling!) &&
566  * (b) the buddy is in the buddy system &&
567  * (c) a page and its buddy have the same order &&
568  * (d) a page and its buddy are in the same zone.
569  *
570  * For recording whether a page is in the buddy system, we set PageBuddy.
571  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
572  *
573  * For recording page's order, we use page_private(page).
574  */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)575 static inline bool page_is_buddy(struct page *page, struct page *buddy,
576 				 unsigned int order)
577 {
578 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
579 		return false;
580 
581 	if (buddy_order(buddy) != order)
582 		return false;
583 
584 	/*
585 	 * zone check is done late to avoid uselessly calculating
586 	 * zone/node ids for pages that could never merge.
587 	 */
588 	if (page_zone_id(page) != page_zone_id(buddy))
589 		return false;
590 
591 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
592 
593 	return true;
594 }
595 
596 /*
597  * Locate the struct page for both the matching buddy in our
598  * pair (buddy1) and the combined O(n+1) page they form (page).
599  *
600  * 1) Any buddy B1 will have an order O twin B2 which satisfies
601  * the following equation:
602  *     B2 = B1 ^ (1 << O)
603  * For example, if the starting buddy (buddy2) is #8 its order
604  * 1 buddy is #10:
605  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
606  *
607  * 2) Any buddy B will have an order O+1 parent P which
608  * satisfies the following equation:
609  *     P = B & ~(1 << O)
610  *
611  * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
612  */
613 static inline unsigned long
__find_buddy_pfn(unsigned long page_pfn,unsigned int order)614 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
615 {
616 	return page_pfn ^ (1 << order);
617 }
618 
619 /*
620  * Find the buddy of @page and validate it.
621  * @page: The input page
622  * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
623  *       function is used in the performance-critical __free_one_page().
624  * @order: The order of the page
625  * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
626  *             page_to_pfn().
627  *
628  * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
629  * not the same as @page. The validation is necessary before use it.
630  *
631  * Return: the found buddy page or NULL if not found.
632  */
find_buddy_page_pfn(struct page * page,unsigned long pfn,unsigned int order,unsigned long * buddy_pfn)633 static inline struct page *find_buddy_page_pfn(struct page *page,
634 			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
635 {
636 	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
637 	struct page *buddy;
638 
639 	buddy = page + (__buddy_pfn - pfn);
640 	if (buddy_pfn)
641 		*buddy_pfn = __buddy_pfn;
642 
643 	if (page_is_buddy(page, buddy, order))
644 		return buddy;
645 	return NULL;
646 }
647 
648 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
649 				unsigned long end_pfn, struct zone *zone);
650 
pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)651 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
652 				unsigned long end_pfn, struct zone *zone)
653 {
654 	if (zone->contiguous)
655 		return pfn_to_page(start_pfn);
656 
657 	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
658 }
659 
660 void set_zone_contiguous(struct zone *zone);
661 
clear_zone_contiguous(struct zone * zone)662 static inline void clear_zone_contiguous(struct zone *zone)
663 {
664 	zone->contiguous = false;
665 }
666 
667 extern int __isolate_free_page(struct page *page, unsigned int order);
668 extern void __putback_isolated_page(struct page *page, unsigned int order,
669 				    int mt);
670 extern void memblock_free_pages(struct page *page, unsigned long pfn,
671 					unsigned int order);
672 extern void __free_pages_core(struct page *page, unsigned int order,
673 		enum meminit_context context);
674 
675 /*
676  * This will have no effect, other than possibly generating a warning, if the
677  * caller passes in a non-large folio.
678  */
folio_set_order(struct folio * folio,unsigned int order)679 static inline void folio_set_order(struct folio *folio, unsigned int order)
680 {
681 	if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
682 		return;
683 
684 	folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
685 #ifdef CONFIG_64BIT
686 	folio->_folio_nr_pages = 1U << order;
687 #endif
688 }
689 
690 bool __folio_unqueue_deferred_split(struct folio *folio);
folio_unqueue_deferred_split(struct folio * folio)691 static inline bool folio_unqueue_deferred_split(struct folio *folio)
692 {
693 	if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
694 		return false;
695 
696 	/*
697 	 * At this point, there is no one trying to add the folio to
698 	 * deferred_list. If folio is not in deferred_list, it's safe
699 	 * to check without acquiring the split_queue_lock.
700 	 */
701 	if (data_race(list_empty(&folio->_deferred_list)))
702 		return false;
703 
704 	return __folio_unqueue_deferred_split(folio);
705 }
706 
page_rmappable_folio(struct page * page)707 static inline struct folio *page_rmappable_folio(struct page *page)
708 {
709 	struct folio *folio = (struct folio *)page;
710 
711 	if (folio && folio_test_large(folio))
712 		folio_set_large_rmappable(folio);
713 	return folio;
714 }
715 
prep_compound_head(struct page * page,unsigned int order)716 static inline void prep_compound_head(struct page *page, unsigned int order)
717 {
718 	struct folio *folio = (struct folio *)page;
719 
720 	folio_set_order(folio, order);
721 	atomic_set(&folio->_large_mapcount, -1);
722 	atomic_set(&folio->_entire_mapcount, -1);
723 	atomic_set(&folio->_nr_pages_mapped, 0);
724 	atomic_set(&folio->_pincount, 0);
725 	if (order > 1)
726 		INIT_LIST_HEAD(&folio->_deferred_list);
727 }
728 
prep_compound_tail(struct page * head,int tail_idx)729 static inline void prep_compound_tail(struct page *head, int tail_idx)
730 {
731 	struct page *p = head + tail_idx;
732 
733 	p->mapping = TAIL_MAPPING;
734 	set_compound_head(p, head);
735 	set_page_private(p, 0);
736 }
737 
738 extern void prep_compound_page(struct page *page, unsigned int order);
739 
740 void post_alloc_hook(struct page *page, unsigned int order, gfp_t gfp_flags);
741 extern bool free_pages_prepare(struct page *page, unsigned int order);
742 
743 extern int user_min_free_kbytes;
744 
745 struct page *__alloc_frozen_pages_noprof(gfp_t, unsigned int order, int nid,
746 		nodemask_t *);
747 #define __alloc_frozen_pages(...) \
748 	alloc_hooks(__alloc_frozen_pages_noprof(__VA_ARGS__))
749 void free_frozen_pages(struct page *page, unsigned int order);
750 void free_unref_folios(struct folio_batch *fbatch);
751 
752 #ifdef CONFIG_NUMA
753 struct page *alloc_frozen_pages_noprof(gfp_t, unsigned int order);
754 #else
alloc_frozen_pages_noprof(gfp_t gfp,unsigned int order)755 static inline struct page *alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order)
756 {
757 	return __alloc_frozen_pages_noprof(gfp, order, numa_node_id(), NULL);
758 }
759 #endif
760 
761 #define alloc_frozen_pages(...) \
762 	alloc_hooks(alloc_frozen_pages_noprof(__VA_ARGS__))
763 
764 extern void zone_pcp_reset(struct zone *zone);
765 extern void zone_pcp_disable(struct zone *zone);
766 extern void zone_pcp_enable(struct zone *zone);
767 extern void zone_pcp_init(struct zone *zone);
768 
769 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
770 			  phys_addr_t min_addr,
771 			  int nid, bool exact_nid);
772 
773 void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
774 		unsigned long, enum meminit_context, struct vmem_altmap *, int);
775 
776 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
777 
778 /*
779  * in mm/compaction.c
780  */
781 /*
782  * compact_control is used to track pages being migrated and the free pages
783  * they are being migrated to during memory compaction. The free_pfn starts
784  * at the end of a zone and migrate_pfn begins at the start. Movable pages
785  * are moved to the end of a zone during a compaction run and the run
786  * completes when free_pfn <= migrate_pfn
787  */
788 struct compact_control {
789 	struct list_head freepages[NR_PAGE_ORDERS];	/* List of free pages to migrate to */
790 	struct list_head migratepages;	/* List of pages being migrated */
791 	unsigned int nr_freepages;	/* Number of isolated free pages */
792 	unsigned int nr_migratepages;	/* Number of pages to migrate */
793 	unsigned long free_pfn;		/* isolate_freepages search base */
794 	/*
795 	 * Acts as an in/out parameter to page isolation for migration.
796 	 * isolate_migratepages uses it as a search base.
797 	 * isolate_migratepages_block will update the value to the next pfn
798 	 * after the last isolated one.
799 	 */
800 	unsigned long migrate_pfn;
801 	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
802 	struct zone *zone;
803 	unsigned long total_migrate_scanned;
804 	unsigned long total_free_scanned;
805 	unsigned short fast_search_fail;/* failures to use free list searches */
806 	short search_order;		/* order to start a fast search at */
807 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
808 	int order;			/* order a direct compactor needs */
809 	int migratetype;		/* migratetype of direct compactor */
810 	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
811 	const int highest_zoneidx;	/* zone index of a direct compactor */
812 	enum migrate_mode mode;		/* Async or sync migration mode */
813 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
814 	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
815 	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
816 	bool direct_compaction;		/* False from kcompactd or /proc/... */
817 	bool proactive_compaction;	/* kcompactd proactive compaction */
818 	bool whole_zone;		/* Whole zone should/has been scanned */
819 	bool contended;			/* Signal lock contention */
820 	bool finish_pageblock;		/* Scan the remainder of a pageblock. Used
821 					 * when there are potentially transient
822 					 * isolation or migration failures to
823 					 * ensure forward progress.
824 					 */
825 	bool alloc_contig;		/* alloc_contig_range allocation */
826 };
827 
828 /*
829  * Used in direct compaction when a page should be taken from the freelists
830  * immediately when one is created during the free path.
831  */
832 struct capture_control {
833 	struct compact_control *cc;
834 	struct page *page;
835 };
836 
837 unsigned long
838 isolate_freepages_range(struct compact_control *cc,
839 			unsigned long start_pfn, unsigned long end_pfn);
840 int
841 isolate_migratepages_range(struct compact_control *cc,
842 			   unsigned long low_pfn, unsigned long end_pfn);
843 
844 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
845 void init_cma_reserved_pageblock(struct page *page);
846 
847 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
848 
849 int find_suitable_fallback(struct free_area *area, unsigned int order,
850 			int migratetype, bool only_stealable, bool *can_steal);
851 
free_area_empty(struct free_area * area,int migratetype)852 static inline bool free_area_empty(struct free_area *area, int migratetype)
853 {
854 	return list_empty(&area->free_list[migratetype]);
855 }
856 
857 /* mm/util.c */
858 struct anon_vma *folio_anon_vma(const struct folio *folio);
859 
860 #ifdef CONFIG_MMU
861 void unmap_mapping_folio(struct folio *folio);
862 extern long populate_vma_page_range(struct vm_area_struct *vma,
863 		unsigned long start, unsigned long end, int *locked);
864 extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
865 		unsigned long end, bool write, int *locked);
866 extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
867 			       unsigned long bytes);
868 
869 /*
870  * NOTE: This function can't tell whether the folio is "fully mapped" in the
871  * range.
872  * "fully mapped" means all the pages of folio is associated with the page
873  * table of range while this function just check whether the folio range is
874  * within the range [start, end). Function caller needs to do page table
875  * check if it cares about the page table association.
876  *
877  * Typical usage (like mlock or madvise) is:
878  * Caller knows at least 1 page of folio is associated with page table of VMA
879  * and the range [start, end) is intersect with the VMA range. Caller wants
880  * to know whether the folio is fully associated with the range. It calls
881  * this function to check whether the folio is in the range first. Then checks
882  * the page table to know whether the folio is fully mapped to the range.
883  */
884 static inline bool
folio_within_range(struct folio * folio,struct vm_area_struct * vma,unsigned long start,unsigned long end)885 folio_within_range(struct folio *folio, struct vm_area_struct *vma,
886 		unsigned long start, unsigned long end)
887 {
888 	pgoff_t pgoff, addr;
889 	unsigned long vma_pglen = vma_pages(vma);
890 
891 	VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
892 	if (start > end)
893 		return false;
894 
895 	if (start < vma->vm_start)
896 		start = vma->vm_start;
897 
898 	if (end > vma->vm_end)
899 		end = vma->vm_end;
900 
901 	pgoff = folio_pgoff(folio);
902 
903 	/* if folio start address is not in vma range */
904 	if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
905 		return false;
906 
907 	addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
908 
909 	return !(addr < start || end - addr < folio_size(folio));
910 }
911 
912 static inline bool
folio_within_vma(struct folio * folio,struct vm_area_struct * vma)913 folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
914 {
915 	return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
916 }
917 
918 /*
919  * mlock_vma_folio() and munlock_vma_folio():
920  * should be called with vma's mmap_lock held for read or write,
921  * under page table lock for the pte/pmd being added or removed.
922  *
923  * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
924  * the end of folio_remove_rmap_*(); but new anon folios are managed by
925  * folio_add_lru_vma() calling mlock_new_folio().
926  */
927 void mlock_folio(struct folio *folio);
mlock_vma_folio(struct folio * folio,struct vm_area_struct * vma)928 static inline void mlock_vma_folio(struct folio *folio,
929 				struct vm_area_struct *vma)
930 {
931 	/*
932 	 * The VM_SPECIAL check here serves two purposes.
933 	 * 1) VM_IO check prevents migration from double-counting during mlock.
934 	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
935 	 *    is never left set on a VM_SPECIAL vma, there is an interval while
936 	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
937 	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
938 	 */
939 	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
940 		mlock_folio(folio);
941 }
942 
943 void munlock_folio(struct folio *folio);
munlock_vma_folio(struct folio * folio,struct vm_area_struct * vma)944 static inline void munlock_vma_folio(struct folio *folio,
945 					struct vm_area_struct *vma)
946 {
947 	/*
948 	 * munlock if the function is called. Ideally, we should only
949 	 * do munlock if any page of folio is unmapped from VMA and
950 	 * cause folio not fully mapped to VMA.
951 	 *
952 	 * But it's not easy to confirm that's the situation. So we
953 	 * always munlock the folio and page reclaim will correct it
954 	 * if it's wrong.
955 	 */
956 	if (unlikely(vma->vm_flags & VM_LOCKED))
957 		munlock_folio(folio);
958 }
959 
960 void mlock_new_folio(struct folio *folio);
961 bool need_mlock_drain(int cpu);
962 void mlock_drain_local(void);
963 void mlock_drain_remote(int cpu);
964 
965 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
966 
967 /**
968  * vma_address - Find the virtual address a page range is mapped at
969  * @vma: The vma which maps this object.
970  * @pgoff: The page offset within its object.
971  * @nr_pages: The number of pages to consider.
972  *
973  * If any page in this range is mapped by this VMA, return the first address
974  * where any of these pages appear.  Otherwise, return -EFAULT.
975  */
vma_address(const struct vm_area_struct * vma,pgoff_t pgoff,unsigned long nr_pages)976 static inline unsigned long vma_address(const struct vm_area_struct *vma,
977 		pgoff_t pgoff, unsigned long nr_pages)
978 {
979 	unsigned long address;
980 
981 	if (pgoff >= vma->vm_pgoff) {
982 		address = vma->vm_start +
983 			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
984 		/* Check for address beyond vma (or wrapped through 0?) */
985 		if (address < vma->vm_start || address >= vma->vm_end)
986 			address = -EFAULT;
987 	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
988 		/* Test above avoids possibility of wrap to 0 on 32-bit */
989 		address = vma->vm_start;
990 	} else {
991 		address = -EFAULT;
992 	}
993 	return address;
994 }
995 
996 /*
997  * Then at what user virtual address will none of the range be found in vma?
998  * Assumes that vma_address() already returned a good starting address.
999  */
vma_address_end(struct page_vma_mapped_walk * pvmw)1000 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
1001 {
1002 	struct vm_area_struct *vma = pvmw->vma;
1003 	pgoff_t pgoff;
1004 	unsigned long address;
1005 
1006 	/* Common case, plus ->pgoff is invalid for KSM */
1007 	if (pvmw->nr_pages == 1)
1008 		return pvmw->address + PAGE_SIZE;
1009 
1010 	pgoff = pvmw->pgoff + pvmw->nr_pages;
1011 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1012 	/* Check for address beyond vma (or wrapped through 0?) */
1013 	if (address < vma->vm_start || address > vma->vm_end)
1014 		address = vma->vm_end;
1015 	return address;
1016 }
1017 
maybe_unlock_mmap_for_io(struct vm_fault * vmf,struct file * fpin)1018 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
1019 						    struct file *fpin)
1020 {
1021 	int flags = vmf->flags;
1022 
1023 	if (fpin)
1024 		return fpin;
1025 
1026 	/*
1027 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
1028 	 * anything, so we only pin the file and drop the mmap_lock if only
1029 	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
1030 	 */
1031 	if (fault_flag_allow_retry_first(flags) &&
1032 	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
1033 		fpin = get_file(vmf->vma->vm_file);
1034 		release_fault_lock(vmf);
1035 	}
1036 	return fpin;
1037 }
1038 #else /* !CONFIG_MMU */
unmap_mapping_folio(struct folio * folio)1039 static inline void unmap_mapping_folio(struct folio *folio) { }
mlock_new_folio(struct folio * folio)1040 static inline void mlock_new_folio(struct folio *folio) { }
need_mlock_drain(int cpu)1041 static inline bool need_mlock_drain(int cpu) { return false; }
mlock_drain_local(void)1042 static inline void mlock_drain_local(void) { }
mlock_drain_remote(int cpu)1043 static inline void mlock_drain_remote(int cpu) { }
vunmap_range_noflush(unsigned long start,unsigned long end)1044 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
1045 {
1046 }
1047 #endif /* !CONFIG_MMU */
1048 
1049 /* Memory initialisation debug and verification */
1050 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1051 DECLARE_STATIC_KEY_TRUE(deferred_pages);
1052 
1053 bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
1054 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1055 
1056 enum mminit_level {
1057 	MMINIT_WARNING,
1058 	MMINIT_VERIFY,
1059 	MMINIT_TRACE
1060 };
1061 
1062 #ifdef CONFIG_DEBUG_MEMORY_INIT
1063 
1064 extern int mminit_loglevel;
1065 
1066 #define mminit_dprintk(level, prefix, fmt, arg...) \
1067 do { \
1068 	if (level < mminit_loglevel) { \
1069 		if (level <= MMINIT_WARNING) \
1070 			pr_warn("mminit::" prefix " " fmt, ##arg);	\
1071 		else \
1072 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
1073 	} \
1074 } while (0)
1075 
1076 extern void mminit_verify_pageflags_layout(void);
1077 extern void mminit_verify_zonelist(void);
1078 #else
1079 
mminit_dprintk(enum mminit_level level,const char * prefix,const char * fmt,...)1080 static inline void mminit_dprintk(enum mminit_level level,
1081 				const char *prefix, const char *fmt, ...)
1082 {
1083 }
1084 
mminit_verify_pageflags_layout(void)1085 static inline void mminit_verify_pageflags_layout(void)
1086 {
1087 }
1088 
mminit_verify_zonelist(void)1089 static inline void mminit_verify_zonelist(void)
1090 {
1091 }
1092 #endif /* CONFIG_DEBUG_MEMORY_INIT */
1093 
1094 #define NODE_RECLAIM_NOSCAN	-2
1095 #define NODE_RECLAIM_FULL	-1
1096 #define NODE_RECLAIM_SOME	0
1097 #define NODE_RECLAIM_SUCCESS	1
1098 
1099 #ifdef CONFIG_NUMA
1100 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
1101 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
1102 #else
node_reclaim(struct pglist_data * pgdat,gfp_t mask,unsigned int order)1103 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
1104 				unsigned int order)
1105 {
1106 	return NODE_RECLAIM_NOSCAN;
1107 }
find_next_best_node(int node,nodemask_t * used_node_mask)1108 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
1109 {
1110 	return NUMA_NO_NODE;
1111 }
1112 #endif
1113 
1114 /*
1115  * mm/memory-failure.c
1116  */
1117 #ifdef CONFIG_MEMORY_FAILURE
1118 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill);
1119 void shake_folio(struct folio *folio);
1120 extern int hwpoison_filter(struct page *p);
1121 
1122 extern u32 hwpoison_filter_dev_major;
1123 extern u32 hwpoison_filter_dev_minor;
1124 extern u64 hwpoison_filter_flags_mask;
1125 extern u64 hwpoison_filter_flags_value;
1126 extern u64 hwpoison_filter_memcg;
1127 extern u32 hwpoison_filter_enable;
1128 #define MAGIC_HWPOISON	0x48575053U	/* HWPS */
1129 void SetPageHWPoisonTakenOff(struct page *page);
1130 void ClearPageHWPoisonTakenOff(struct page *page);
1131 bool take_page_off_buddy(struct page *page);
1132 bool put_page_back_buddy(struct page *page);
1133 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
1134 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
1135 		     struct vm_area_struct *vma, struct list_head *to_kill,
1136 		     unsigned long ksm_addr);
1137 unsigned long page_mapped_in_vma(const struct page *page,
1138 		struct vm_area_struct *vma);
1139 
1140 #else
unmap_poisoned_folio(struct folio * folio,unsigned long pfn,bool must_kill)1141 static inline int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1142 {
1143 	return -EBUSY;
1144 }
1145 #endif
1146 
1147 extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
1148         unsigned long, unsigned long,
1149         unsigned long, unsigned long);
1150 
1151 extern void set_pageblock_order(void);
1152 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private);
1153 unsigned long reclaim_pages(struct list_head *folio_list);
1154 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1155 					    struct list_head *folio_list);
1156 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1157 #define ALLOC_WMARK_MIN		WMARK_MIN
1158 #define ALLOC_WMARK_LOW		WMARK_LOW
1159 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1160 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1161 
1162 /* Mask to get the watermark bits */
1163 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1164 
1165 /*
1166  * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
1167  * cannot assume a reduced access to memory reserves is sufficient for
1168  * !MMU
1169  */
1170 #ifdef CONFIG_MMU
1171 #define ALLOC_OOM		0x08
1172 #else
1173 #define ALLOC_OOM		ALLOC_NO_WATERMARKS
1174 #endif
1175 
1176 #define ALLOC_NON_BLOCK		 0x10 /* Caller cannot block. Allow access
1177 				       * to 25% of the min watermark or
1178 				       * 62.5% if __GFP_HIGH is set.
1179 				       */
1180 #define ALLOC_MIN_RESERVE	 0x20 /* __GFP_HIGH set. Allow access to 50%
1181 				       * of the min watermark.
1182 				       */
1183 #define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
1184 #define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
1185 #ifdef CONFIG_ZONE_DMA32
1186 #define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
1187 #else
1188 #define ALLOC_NOFRAGMENT	  0x0
1189 #endif
1190 #define ALLOC_HIGHATOMIC	0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1191 #define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1192 
1193 /* Flags that allow allocations below the min watermark. */
1194 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1195 
1196 enum ttu_flags;
1197 struct tlbflush_unmap_batch;
1198 
1199 
1200 /*
1201  * only for MM internal work items which do not depend on
1202  * any allocations or locks which might depend on allocations
1203  */
1204 extern struct workqueue_struct *mm_percpu_wq;
1205 
1206 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1207 void try_to_unmap_flush(void);
1208 void try_to_unmap_flush_dirty(void);
1209 void flush_tlb_batched_pending(struct mm_struct *mm);
1210 #else
try_to_unmap_flush(void)1211 static inline void try_to_unmap_flush(void)
1212 {
1213 }
try_to_unmap_flush_dirty(void)1214 static inline void try_to_unmap_flush_dirty(void)
1215 {
1216 }
flush_tlb_batched_pending(struct mm_struct * mm)1217 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1218 {
1219 }
1220 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1221 
1222 extern const struct trace_print_flags pageflag_names[];
1223 extern const struct trace_print_flags vmaflag_names[];
1224 extern const struct trace_print_flags gfpflag_names[];
1225 
is_migrate_highatomic(enum migratetype migratetype)1226 static inline bool is_migrate_highatomic(enum migratetype migratetype)
1227 {
1228 	return migratetype == MIGRATE_HIGHATOMIC;
1229 }
1230 
1231 void setup_zone_pageset(struct zone *zone);
1232 
1233 struct migration_target_control {
1234 	int nid;		/* preferred node id */
1235 	nodemask_t *nmask;
1236 	gfp_t gfp_mask;
1237 	enum migrate_reason reason;
1238 };
1239 
1240 /*
1241  * mm/filemap.c
1242  */
1243 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1244 			      struct folio *folio, loff_t fpos, size_t size);
1245 
1246 /*
1247  * mm/vmalloc.c
1248  */
1249 #ifdef CONFIG_MMU
1250 void __init vmalloc_init(void);
1251 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1252                 pgprot_t prot, struct page **pages, unsigned int page_shift);
1253 unsigned int get_vm_area_page_order(struct vm_struct *vm);
1254 #else
vmalloc_init(void)1255 static inline void vmalloc_init(void)
1256 {
1257 }
1258 
1259 static inline
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)1260 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1261                 pgprot_t prot, struct page **pages, unsigned int page_shift)
1262 {
1263 	return -EINVAL;
1264 }
1265 #endif
1266 
1267 int __must_check __vmap_pages_range_noflush(unsigned long addr,
1268 			       unsigned long end, pgprot_t prot,
1269 			       struct page **pages, unsigned int page_shift);
1270 
1271 void vunmap_range_noflush(unsigned long start, unsigned long end);
1272 
1273 void __vunmap_range_noflush(unsigned long start, unsigned long end);
1274 
1275 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
1276 		      unsigned long addr, int *flags, bool writable,
1277 		      int *last_cpupid);
1278 
1279 void free_zone_device_folio(struct folio *folio);
1280 int migrate_device_coherent_folio(struct folio *folio);
1281 
1282 struct vm_struct *__get_vm_area_node(unsigned long size,
1283 				     unsigned long align, unsigned long shift,
1284 				     unsigned long flags, unsigned long start,
1285 				     unsigned long end, int node, gfp_t gfp_mask,
1286 				     const void *caller);
1287 
1288 /*
1289  * mm/gup.c
1290  */
1291 int __must_check try_grab_folio(struct folio *folio, int refs,
1292 				unsigned int flags);
1293 
1294 /*
1295  * mm/huge_memory.c
1296  */
1297 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1298 	       pud_t *pud, bool write);
1299 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1300 	       pmd_t *pmd, bool write);
1301 
1302 /*
1303  * Parses a string with mem suffixes into its order. Useful to parse kernel
1304  * parameters.
1305  */
get_order_from_str(const char * size_str,unsigned long valid_orders)1306 static inline int get_order_from_str(const char *size_str,
1307 				     unsigned long valid_orders)
1308 {
1309 	unsigned long size;
1310 	char *endptr;
1311 	int order;
1312 
1313 	size = memparse(size_str, &endptr);
1314 
1315 	if (!is_power_of_2(size))
1316 		return -EINVAL;
1317 	order = get_order(size);
1318 	if (BIT(order) & ~valid_orders)
1319 		return -EINVAL;
1320 
1321 	return order;
1322 }
1323 
1324 enum {
1325 	/* mark page accessed */
1326 	FOLL_TOUCH = 1 << 16,
1327 	/* a retry, previous pass started an IO */
1328 	FOLL_TRIED = 1 << 17,
1329 	/* we are working on non-current tsk/mm */
1330 	FOLL_REMOTE = 1 << 18,
1331 	/* pages must be released via unpin_user_page */
1332 	FOLL_PIN = 1 << 19,
1333 	/* gup_fast: prevent fall-back to slow gup */
1334 	FOLL_FAST_ONLY = 1 << 20,
1335 	/* allow unlocking the mmap lock */
1336 	FOLL_UNLOCKABLE = 1 << 21,
1337 	/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1338 	FOLL_MADV_POPULATE = 1 << 22,
1339 };
1340 
1341 #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1342 			    FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1343 			    FOLL_MADV_POPULATE)
1344 
1345 /*
1346  * Indicates for which pages that are write-protected in the page table,
1347  * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1348  * GUP pin will remain consistent with the pages mapped into the page tables
1349  * of the MM.
1350  *
1351  * Temporary unmapping of PageAnonExclusive() pages or clearing of
1352  * PageAnonExclusive() has to protect against concurrent GUP:
1353  * * Ordinary GUP: Using the PT lock
1354  * * GUP-fast and fork(): mm->write_protect_seq
1355  * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1356  *    folio_try_share_anon_rmap_*()
1357  *
1358  * Must be called with the (sub)page that's actually referenced via the
1359  * page table entry, which might not necessarily be the head page for a
1360  * PTE-mapped THP.
1361  *
1362  * If the vma is NULL, we're coming from the GUP-fast path and might have
1363  * to fallback to the slow path just to lookup the vma.
1364  */
gup_must_unshare(struct vm_area_struct * vma,unsigned int flags,struct page * page)1365 static inline bool gup_must_unshare(struct vm_area_struct *vma,
1366 				    unsigned int flags, struct page *page)
1367 {
1368 	/*
1369 	 * FOLL_WRITE is implicitly handled correctly as the page table entry
1370 	 * has to be writable -- and if it references (part of) an anonymous
1371 	 * folio, that part is required to be marked exclusive.
1372 	 */
1373 	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1374 		return false;
1375 	/*
1376 	 * Note: PageAnon(page) is stable until the page is actually getting
1377 	 * freed.
1378 	 */
1379 	if (!PageAnon(page)) {
1380 		/*
1381 		 * We only care about R/O long-term pining: R/O short-term
1382 		 * pinning does not have the semantics to observe successive
1383 		 * changes through the process page tables.
1384 		 */
1385 		if (!(flags & FOLL_LONGTERM))
1386 			return false;
1387 
1388 		/* We really need the vma ... */
1389 		if (!vma)
1390 			return true;
1391 
1392 		/*
1393 		 * ... because we only care about writable private ("COW")
1394 		 * mappings where we have to break COW early.
1395 		 */
1396 		return is_cow_mapping(vma->vm_flags);
1397 	}
1398 
1399 	/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1400 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
1401 		smp_rmb();
1402 
1403 	/*
1404 	 * Note that KSM pages cannot be exclusive, and consequently,
1405 	 * cannot get pinned.
1406 	 */
1407 	return !PageAnonExclusive(page);
1408 }
1409 
1410 extern bool mirrored_kernelcore;
1411 extern bool memblock_has_mirror(void);
1412 
vma_set_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff)1413 static __always_inline void vma_set_range(struct vm_area_struct *vma,
1414 					  unsigned long start, unsigned long end,
1415 					  pgoff_t pgoff)
1416 {
1417 	vma->vm_start = start;
1418 	vma->vm_end = end;
1419 	vma->vm_pgoff = pgoff;
1420 }
1421 
vma_soft_dirty_enabled(struct vm_area_struct * vma)1422 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1423 {
1424 	/*
1425 	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1426 	 * enablements, because when without soft-dirty being compiled in,
1427 	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1428 	 * will be constantly true.
1429 	 */
1430 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1431 		return false;
1432 
1433 	/*
1434 	 * Soft-dirty is kind of special: its tracking is enabled when the
1435 	 * vma flags not set.
1436 	 */
1437 	return !(vma->vm_flags & VM_SOFTDIRTY);
1438 }
1439 
pmd_needs_soft_dirty_wp(struct vm_area_struct * vma,pmd_t pmd)1440 static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd)
1441 {
1442 	return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd);
1443 }
1444 
pte_needs_soft_dirty_wp(struct vm_area_struct * vma,pte_t pte)1445 static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte)
1446 {
1447 	return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte);
1448 }
1449 
1450 void __meminit __init_single_page(struct page *page, unsigned long pfn,
1451 				unsigned long zone, int nid);
1452 
1453 /* shrinker related functions */
1454 unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1455 			  int priority);
1456 
1457 #ifdef CONFIG_SHRINKER_DEBUG
shrinker_debugfs_name_alloc(struct shrinker * shrinker,const char * fmt,va_list ap)1458 static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1459 			struct shrinker *shrinker, const char *fmt, va_list ap)
1460 {
1461 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1462 
1463 	return shrinker->name ? 0 : -ENOMEM;
1464 }
1465 
shrinker_debugfs_name_free(struct shrinker * shrinker)1466 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1467 {
1468 	kfree_const(shrinker->name);
1469 	shrinker->name = NULL;
1470 }
1471 
1472 extern int shrinker_debugfs_add(struct shrinker *shrinker);
1473 extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1474 					      int *debugfs_id);
1475 extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1476 				    int debugfs_id);
1477 #else /* CONFIG_SHRINKER_DEBUG */
shrinker_debugfs_add(struct shrinker * shrinker)1478 static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1479 {
1480 	return 0;
1481 }
shrinker_debugfs_name_alloc(struct shrinker * shrinker,const char * fmt,va_list ap)1482 static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1483 					      const char *fmt, va_list ap)
1484 {
1485 	return 0;
1486 }
shrinker_debugfs_name_free(struct shrinker * shrinker)1487 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1488 {
1489 }
shrinker_debugfs_detach(struct shrinker * shrinker,int * debugfs_id)1490 static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1491 						     int *debugfs_id)
1492 {
1493 	*debugfs_id = -1;
1494 	return NULL;
1495 }
shrinker_debugfs_remove(struct dentry * debugfs_entry,int debugfs_id)1496 static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1497 					   int debugfs_id)
1498 {
1499 }
1500 #endif /* CONFIG_SHRINKER_DEBUG */
1501 
1502 /* Only track the nodes of mappings with shadow entries */
1503 void workingset_update_node(struct xa_node *node);
1504 extern struct list_lru shadow_nodes;
1505 #define mapping_set_update(xas, mapping) do {			\
1506 	if (!dax_mapping(mapping) && !shmem_mapping(mapping)) {	\
1507 		xas_set_update(xas, workingset_update_node);	\
1508 		xas_set_lru(xas, &shadow_nodes);		\
1509 	}							\
1510 } while (0)
1511 
1512 /* mremap.c */
1513 unsigned long move_page_tables(struct vm_area_struct *vma,
1514 	unsigned long old_addr, struct vm_area_struct *new_vma,
1515 	unsigned long new_addr, unsigned long len,
1516 	bool need_rmap_locks, bool for_stack);
1517 
1518 #ifdef CONFIG_UNACCEPTED_MEMORY
1519 void accept_page(struct page *page);
1520 #else /* CONFIG_UNACCEPTED_MEMORY */
accept_page(struct page * page)1521 static inline void accept_page(struct page *page)
1522 {
1523 }
1524 #endif /* CONFIG_UNACCEPTED_MEMORY */
1525 
1526 /* pagewalk.c */
1527 int walk_page_range_mm(struct mm_struct *mm, unsigned long start,
1528 		unsigned long end, const struct mm_walk_ops *ops,
1529 		void *private);
1530 
1531 /* pt_reclaim.c */
1532 bool try_get_and_clear_pmd(struct mm_struct *mm, pmd_t *pmd, pmd_t *pmdval);
1533 void free_pte(struct mm_struct *mm, unsigned long addr, struct mmu_gather *tlb,
1534 	      pmd_t pmdval);
1535 void try_to_free_pte(struct mm_struct *mm, pmd_t *pmd, unsigned long addr,
1536 		     struct mmu_gather *tlb);
1537 
1538 #ifdef CONFIG_PT_RECLAIM
1539 bool reclaim_pt_is_enabled(unsigned long start, unsigned long end,
1540 			   struct zap_details *details);
1541 #else
reclaim_pt_is_enabled(unsigned long start,unsigned long end,struct zap_details * details)1542 static inline bool reclaim_pt_is_enabled(unsigned long start, unsigned long end,
1543 					 struct zap_details *details)
1544 {
1545 	return false;
1546 }
1547 #endif /* CONFIG_PT_RECLAIM */
1548 
1549 
1550 #endif	/* __MM_INTERNAL_H */
1551