xref: /linux/drivers/hwtracing/coresight/coresight-etm-perf.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015 Linaro Limited. All rights reserved.
4  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/coresight.h>
9 #include <linux/coresight-pmu.h>
10 #include <linux/cpumask.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/perf_event.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/stringhash.h>
19 #include <linux/types.h>
20 #include <linux/workqueue.h>
21 
22 #include "coresight-config.h"
23 #include "coresight-etm-perf.h"
24 #include "coresight-priv.h"
25 #include "coresight-syscfg.h"
26 #include "coresight-trace-id.h"
27 
28 static struct pmu etm_pmu;
29 static bool etm_perf_up;
30 
31 /*
32  * An ETM context for a running event includes the perf aux handle
33  * and aux_data. For ETM, the aux_data (etm_event_data), consists of
34  * the trace path and the sink configuration. The event data is accessible
35  * via perf_get_aux(handle). However, a sink could "end" a perf output
36  * handle via the IRQ handler. And if the "sink" encounters a failure
37  * to "begin" another session (e.g due to lack of space in the buffer),
38  * the handle will be cleared. Thus, the event_data may not be accessible
39  * from the handle when we get to the etm_event_stop(), which is required
40  * for stopping the trace path. The event_data is guaranteed to stay alive
41  * until "free_aux()", which cannot happen as long as the event is active on
42  * the ETM. Thus the event_data for the session must be part of the ETM context
43  * to make sure we can disable the trace path.
44  */
45 struct etm_ctxt {
46 	struct perf_output_handle handle;
47 	struct etm_event_data *event_data;
48 };
49 
50 static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt);
51 static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
52 
53 /*
54  * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config';
55  * now take them as general formats and apply on all ETMs.
56  */
57 PMU_FORMAT_ATTR(branch_broadcast, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST));
58 PMU_FORMAT_ATTR(cycacc,		"config:" __stringify(ETM_OPT_CYCACC));
59 /* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */
60 PMU_FORMAT_ATTR(contextid1,	"config:" __stringify(ETM_OPT_CTXTID));
61 /* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */
62 PMU_FORMAT_ATTR(contextid2,	"config:" __stringify(ETM_OPT_CTXTID2));
63 PMU_FORMAT_ATTR(timestamp,	"config:" __stringify(ETM_OPT_TS));
64 PMU_FORMAT_ATTR(retstack,	"config:" __stringify(ETM_OPT_RETSTK));
65 /* preset - if sink ID is used as a configuration selector */
66 PMU_FORMAT_ATTR(preset,		"config:0-3");
67 /* Sink ID - same for all ETMs */
68 PMU_FORMAT_ATTR(sinkid,		"config2:0-31");
69 /* config ID - set if a system configuration is selected */
70 PMU_FORMAT_ATTR(configid,	"config2:32-63");
71 PMU_FORMAT_ATTR(cc_threshold,	"config3:0-11");
72 
73 
74 /*
75  * contextid always traces the "PID".  The PID is in CONTEXTIDR_EL1
76  * when the kernel is running at EL1; when the kernel is at EL2,
77  * the PID is in CONTEXTIDR_EL2.
78  */
format_attr_contextid_show(struct device * dev,struct device_attribute * attr,char * page)79 static ssize_t format_attr_contextid_show(struct device *dev,
80 					  struct device_attribute *attr,
81 					  char *page)
82 {
83 	int pid_fmt = ETM_OPT_CTXTID;
84 
85 #if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X)
86 	pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID;
87 #endif
88 	return sprintf(page, "config:%d\n", pid_fmt);
89 }
90 
91 static struct device_attribute format_attr_contextid =
92 	__ATTR(contextid, 0444, format_attr_contextid_show, NULL);
93 
94 static struct attribute *etm_config_formats_attr[] = {
95 	&format_attr_cycacc.attr,
96 	&format_attr_contextid.attr,
97 	&format_attr_contextid1.attr,
98 	&format_attr_contextid2.attr,
99 	&format_attr_timestamp.attr,
100 	&format_attr_retstack.attr,
101 	&format_attr_sinkid.attr,
102 	&format_attr_preset.attr,
103 	&format_attr_configid.attr,
104 	&format_attr_branch_broadcast.attr,
105 	&format_attr_cc_threshold.attr,
106 	NULL,
107 };
108 
109 static const struct attribute_group etm_pmu_format_group = {
110 	.name   = "format",
111 	.attrs  = etm_config_formats_attr,
112 };
113 
114 static struct attribute *etm_config_sinks_attr[] = {
115 	NULL,
116 };
117 
118 static const struct attribute_group etm_pmu_sinks_group = {
119 	.name   = "sinks",
120 	.attrs  = etm_config_sinks_attr,
121 };
122 
123 static struct attribute *etm_config_events_attr[] = {
124 	NULL,
125 };
126 
127 static const struct attribute_group etm_pmu_events_group = {
128 	.name   = "events",
129 	.attrs  = etm_config_events_attr,
130 };
131 
132 static const struct attribute_group *etm_pmu_attr_groups[] = {
133 	&etm_pmu_format_group,
134 	&etm_pmu_sinks_group,
135 	&etm_pmu_events_group,
136 	NULL,
137 };
138 
139 static inline struct list_head **
etm_event_cpu_path_ptr(struct etm_event_data * data,int cpu)140 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
141 {
142 	return per_cpu_ptr(data->path, cpu);
143 }
144 
145 static inline struct list_head *
etm_event_cpu_path(struct etm_event_data * data,int cpu)146 etm_event_cpu_path(struct etm_event_data *data, int cpu)
147 {
148 	return *etm_event_cpu_path_ptr(data, cpu);
149 }
150 
etm_event_read(struct perf_event * event)151 static void etm_event_read(struct perf_event *event) {}
152 
etm_addr_filters_alloc(struct perf_event * event)153 static int etm_addr_filters_alloc(struct perf_event *event)
154 {
155 	struct etm_filters *filters;
156 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
157 
158 	filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
159 	if (!filters)
160 		return -ENOMEM;
161 
162 	if (event->parent)
163 		memcpy(filters, event->parent->hw.addr_filters,
164 		       sizeof(*filters));
165 
166 	event->hw.addr_filters = filters;
167 
168 	return 0;
169 }
170 
etm_event_destroy(struct perf_event * event)171 static void etm_event_destroy(struct perf_event *event)
172 {
173 	kfree(event->hw.addr_filters);
174 	event->hw.addr_filters = NULL;
175 }
176 
etm_event_init(struct perf_event * event)177 static int etm_event_init(struct perf_event *event)
178 {
179 	int ret = 0;
180 
181 	if (event->attr.type != etm_pmu.type) {
182 		ret = -ENOENT;
183 		goto out;
184 	}
185 
186 	ret = etm_addr_filters_alloc(event);
187 	if (ret)
188 		goto out;
189 
190 	event->destroy = etm_event_destroy;
191 out:
192 	return ret;
193 }
194 
free_sink_buffer(struct etm_event_data * event_data)195 static void free_sink_buffer(struct etm_event_data *event_data)
196 {
197 	int cpu;
198 	cpumask_t *mask = &event_data->mask;
199 	struct coresight_device *sink;
200 
201 	if (!event_data->snk_config)
202 		return;
203 
204 	if (WARN_ON(cpumask_empty(mask)))
205 		return;
206 
207 	cpu = cpumask_first(mask);
208 	sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
209 	sink_ops(sink)->free_buffer(event_data->snk_config);
210 }
211 
free_event_data(struct work_struct * work)212 static void free_event_data(struct work_struct *work)
213 {
214 	int cpu;
215 	cpumask_t *mask;
216 	struct etm_event_data *event_data;
217 
218 	event_data = container_of(work, struct etm_event_data, work);
219 	mask = &event_data->mask;
220 
221 	/* Free the sink buffers, if there are any */
222 	free_sink_buffer(event_data);
223 
224 	/* clear any configuration we were using */
225 	if (event_data->cfg_hash)
226 		cscfg_deactivate_config(event_data->cfg_hash);
227 
228 	for_each_cpu(cpu, mask) {
229 		struct list_head **ppath;
230 
231 		ppath = etm_event_cpu_path_ptr(event_data, cpu);
232 		if (!(IS_ERR_OR_NULL(*ppath))) {
233 			struct coresight_device *sink = coresight_get_sink(*ppath);
234 
235 			/*
236 			 * Mark perf event as done for trace id allocator, but don't call
237 			 * coresight_trace_id_put_cpu_id_map() on individual IDs. Perf sessions
238 			 * never free trace IDs to ensure that the ID associated with a CPU
239 			 * cannot change during their and other's concurrent sessions. Instead,
240 			 * a refcount is used so that the last event to call
241 			 * coresight_trace_id_perf_stop() frees all IDs.
242 			 */
243 			coresight_trace_id_perf_stop(&sink->perf_sink_id_map);
244 
245 			coresight_release_path(*ppath);
246 		}
247 		*ppath = NULL;
248 	}
249 
250 	free_percpu(event_data->path);
251 	kfree(event_data);
252 }
253 
alloc_event_data(int cpu)254 static void *alloc_event_data(int cpu)
255 {
256 	cpumask_t *mask;
257 	struct etm_event_data *event_data;
258 
259 	/* First get memory for the session's data */
260 	event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
261 	if (!event_data)
262 		return NULL;
263 
264 
265 	mask = &event_data->mask;
266 	if (cpu != -1)
267 		cpumask_set_cpu(cpu, mask);
268 	else
269 		cpumask_copy(mask, cpu_present_mask);
270 
271 	/*
272 	 * Each CPU has a single path between source and destination.  As such
273 	 * allocate an array using CPU numbers as indexes.  That way a path
274 	 * for any CPU can easily be accessed at any given time.  We proceed
275 	 * the same way for sessions involving a single CPU.  The cost of
276 	 * unused memory when dealing with single CPU trace scenarios is small
277 	 * compared to the cost of searching through an optimized array.
278 	 */
279 	event_data->path = alloc_percpu(struct list_head *);
280 
281 	if (!event_data->path) {
282 		kfree(event_data);
283 		return NULL;
284 	}
285 
286 	return event_data;
287 }
288 
etm_free_aux(void * data)289 static void etm_free_aux(void *data)
290 {
291 	struct etm_event_data *event_data = data;
292 
293 	schedule_work(&event_data->work);
294 }
295 
296 /*
297  * Check if two given sinks are compatible with each other,
298  * so that they can use the same sink buffers, when an event
299  * moves around.
300  */
sinks_compatible(struct coresight_device * a,struct coresight_device * b)301 static bool sinks_compatible(struct coresight_device *a,
302 			     struct coresight_device *b)
303 {
304 	if (!a || !b)
305 		return false;
306 	/*
307 	 * If the sinks are of the same subtype and driven
308 	 * by the same driver, we can use the same buffer
309 	 * on these sinks.
310 	 */
311 	return (a->subtype.sink_subtype == b->subtype.sink_subtype) &&
312 	       (sink_ops(a) == sink_ops(b));
313 }
314 
etm_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool overwrite)315 static void *etm_setup_aux(struct perf_event *event, void **pages,
316 			   int nr_pages, bool overwrite)
317 {
318 	u32 id, cfg_hash;
319 	int cpu = event->cpu;
320 	int trace_id;
321 	cpumask_t *mask;
322 	struct coresight_device *sink = NULL;
323 	struct coresight_device *user_sink = NULL, *last_sink = NULL;
324 	struct etm_event_data *event_data = NULL;
325 
326 	event_data = alloc_event_data(cpu);
327 	if (!event_data)
328 		return NULL;
329 	INIT_WORK(&event_data->work, free_event_data);
330 
331 	/* First get the selected sink from user space. */
332 	if (event->attr.config2 & GENMASK_ULL(31, 0)) {
333 		id = (u32)event->attr.config2;
334 		sink = user_sink = coresight_get_sink_by_id(id);
335 	}
336 
337 	/* check if user wants a coresight configuration selected */
338 	cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32);
339 	if (cfg_hash) {
340 		if (cscfg_activate_config(cfg_hash))
341 			goto err;
342 		event_data->cfg_hash = cfg_hash;
343 	}
344 
345 	mask = &event_data->mask;
346 
347 	/*
348 	 * Setup the path for each CPU in a trace session. We try to build
349 	 * trace path for each CPU in the mask. If we don't find an ETM
350 	 * for the CPU or fail to build a path, we clear the CPU from the
351 	 * mask and continue with the rest. If ever we try to trace on those
352 	 * CPUs, we can handle it and fail the session.
353 	 */
354 	for_each_cpu(cpu, mask) {
355 		struct list_head *path;
356 		struct coresight_device *csdev;
357 
358 		csdev = per_cpu(csdev_src, cpu);
359 		/*
360 		 * If there is no ETM associated with this CPU clear it from
361 		 * the mask and continue with the rest. If ever we try to trace
362 		 * on this CPU, we handle it accordingly.
363 		 */
364 		if (!csdev) {
365 			cpumask_clear_cpu(cpu, mask);
366 			continue;
367 		}
368 
369 		/*
370 		 * No sink provided - look for a default sink for all the ETMs,
371 		 * where this event can be scheduled.
372 		 * We allocate the sink specific buffers only once for this
373 		 * event. If the ETMs have different default sink devices, we
374 		 * can only use a single "type" of sink as the event can carry
375 		 * only one sink specific buffer. Thus we have to make sure
376 		 * that the sinks are of the same type and driven by the same
377 		 * driver, as the one we allocate the buffer for. As such
378 		 * we choose the first sink and check if the remaining ETMs
379 		 * have a compatible default sink. We don't trace on a CPU
380 		 * if the sink is not compatible.
381 		 */
382 		if (!user_sink) {
383 			/* Find the default sink for this ETM */
384 			sink = coresight_find_default_sink(csdev);
385 			if (!sink) {
386 				cpumask_clear_cpu(cpu, mask);
387 				continue;
388 			}
389 
390 			/* Check if this sink compatible with the last sink */
391 			if (last_sink && !sinks_compatible(last_sink, sink)) {
392 				cpumask_clear_cpu(cpu, mask);
393 				continue;
394 			}
395 			last_sink = sink;
396 		}
397 
398 		/*
399 		 * Building a path doesn't enable it, it simply builds a
400 		 * list of devices from source to sink that can be
401 		 * referenced later when the path is actually needed.
402 		 */
403 		path = coresight_build_path(csdev, sink);
404 		if (IS_ERR(path)) {
405 			cpumask_clear_cpu(cpu, mask);
406 			continue;
407 		}
408 
409 		/* ensure we can allocate a trace ID for this CPU */
410 		trace_id = coresight_trace_id_get_cpu_id_map(cpu, &sink->perf_sink_id_map);
411 		if (!IS_VALID_CS_TRACE_ID(trace_id)) {
412 			cpumask_clear_cpu(cpu, mask);
413 			coresight_release_path(path);
414 			continue;
415 		}
416 
417 		coresight_trace_id_perf_start(&sink->perf_sink_id_map);
418 		*etm_event_cpu_path_ptr(event_data, cpu) = path;
419 	}
420 
421 	/* no sink found for any CPU - cannot trace */
422 	if (!sink)
423 		goto err;
424 
425 	/* If we don't have any CPUs ready for tracing, abort */
426 	cpu = cpumask_first(mask);
427 	if (cpu >= nr_cpu_ids)
428 		goto err;
429 
430 	if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
431 		goto err;
432 
433 	/*
434 	 * Allocate the sink buffer for this session. All the sinks
435 	 * where this event can be scheduled are ensured to be of the
436 	 * same type. Thus the same sink configuration is used by the
437 	 * sinks.
438 	 */
439 	event_data->snk_config =
440 			sink_ops(sink)->alloc_buffer(sink, event, pages,
441 						     nr_pages, overwrite);
442 	if (!event_data->snk_config)
443 		goto err;
444 
445 out:
446 	return event_data;
447 
448 err:
449 	etm_free_aux(event_data);
450 	event_data = NULL;
451 	goto out;
452 }
453 
etm_event_start(struct perf_event * event,int flags)454 static void etm_event_start(struct perf_event *event, int flags)
455 {
456 	int cpu = smp_processor_id();
457 	struct etm_event_data *event_data;
458 	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
459 	struct perf_output_handle *handle = &ctxt->handle;
460 	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
461 	struct list_head *path;
462 	u64 hw_id;
463 	u8 trace_id;
464 
465 	if (!csdev)
466 		goto fail;
467 
468 	/* Have we messed up our tracking ? */
469 	if (WARN_ON(ctxt->event_data))
470 		goto fail;
471 
472 	/*
473 	 * Deal with the ring buffer API and get a handle on the
474 	 * session's information.
475 	 */
476 	event_data = perf_aux_output_begin(handle, event);
477 	if (!event_data)
478 		goto fail;
479 
480 	/*
481 	 * Check if this ETM is allowed to trace, as decided
482 	 * at etm_setup_aux(). This could be due to an unreachable
483 	 * sink from this ETM. We can't do much in this case if
484 	 * the sink was specified or hinted to the driver. For
485 	 * now, simply don't record anything on this ETM.
486 	 *
487 	 * As such we pretend that everything is fine, and let
488 	 * it continue without actually tracing. The event could
489 	 * continue tracing when it moves to a CPU where it is
490 	 * reachable to a sink.
491 	 */
492 	if (!cpumask_test_cpu(cpu, &event_data->mask))
493 		goto out;
494 
495 	path = etm_event_cpu_path(event_data, cpu);
496 	/* We need a sink, no need to continue without one */
497 	sink = coresight_get_sink(path);
498 	if (WARN_ON_ONCE(!sink))
499 		goto fail_end_stop;
500 
501 	/* Nothing will happen without a path */
502 	if (coresight_enable_path(path, CS_MODE_PERF, handle))
503 		goto fail_end_stop;
504 
505 	/* Finally enable the tracer */
506 	if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF,
507 				      &sink->perf_sink_id_map))
508 		goto fail_disable_path;
509 
510 	/*
511 	 * output cpu / trace ID in perf record, once for the lifetime
512 	 * of the event.
513 	 */
514 	if (!cpumask_test_cpu(cpu, &event_data->aux_hwid_done)) {
515 		cpumask_set_cpu(cpu, &event_data->aux_hwid_done);
516 
517 		trace_id = coresight_trace_id_read_cpu_id_map(cpu, &sink->perf_sink_id_map);
518 
519 		hw_id = FIELD_PREP(CS_AUX_HW_ID_MAJOR_VERSION_MASK,
520 				CS_AUX_HW_ID_MAJOR_VERSION);
521 		hw_id |= FIELD_PREP(CS_AUX_HW_ID_MINOR_VERSION_MASK,
522 				CS_AUX_HW_ID_MINOR_VERSION);
523 		hw_id |= FIELD_PREP(CS_AUX_HW_ID_TRACE_ID_MASK, trace_id);
524 		hw_id |= FIELD_PREP(CS_AUX_HW_ID_SINK_ID_MASK, coresight_get_sink_id(sink));
525 
526 		perf_report_aux_output_id(event, hw_id);
527 	}
528 
529 out:
530 	/* Tell the perf core the event is alive */
531 	event->hw.state = 0;
532 	/* Save the event_data for this ETM */
533 	ctxt->event_data = event_data;
534 	return;
535 
536 fail_disable_path:
537 	coresight_disable_path(path);
538 fail_end_stop:
539 	/*
540 	 * Check if the handle is still associated with the event,
541 	 * to handle cases where if the sink failed to start the
542 	 * trace and TRUNCATED the handle already.
543 	 */
544 	if (READ_ONCE(handle->event)) {
545 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
546 		perf_aux_output_end(handle, 0);
547 	}
548 fail:
549 	event->hw.state = PERF_HES_STOPPED;
550 	return;
551 }
552 
etm_event_stop(struct perf_event * event,int mode)553 static void etm_event_stop(struct perf_event *event, int mode)
554 {
555 	int cpu = smp_processor_id();
556 	unsigned long size;
557 	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
558 	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
559 	struct perf_output_handle *handle = &ctxt->handle;
560 	struct etm_event_data *event_data;
561 	struct list_head *path;
562 
563 	/*
564 	 * If we still have access to the event_data via handle,
565 	 * confirm that we haven't messed up the tracking.
566 	 */
567 	if (handle->event &&
568 	    WARN_ON(perf_get_aux(handle) != ctxt->event_data))
569 		return;
570 
571 	event_data = ctxt->event_data;
572 	/* Clear the event_data as this ETM is stopping the trace. */
573 	ctxt->event_data = NULL;
574 
575 	if (event->hw.state == PERF_HES_STOPPED)
576 		return;
577 
578 	/* We must have a valid event_data for a running event */
579 	if (WARN_ON(!event_data))
580 		return;
581 
582 	/*
583 	 * Check if this ETM was allowed to trace, as decided at
584 	 * etm_setup_aux(). If it wasn't allowed to trace, then
585 	 * nothing needs to be torn down other than outputting a
586 	 * zero sized record.
587 	 */
588 	if (handle->event && (mode & PERF_EF_UPDATE) &&
589 	    !cpumask_test_cpu(cpu, &event_data->mask)) {
590 		event->hw.state = PERF_HES_STOPPED;
591 		perf_aux_output_end(handle, 0);
592 		return;
593 	}
594 
595 	if (!csdev)
596 		return;
597 
598 	path = etm_event_cpu_path(event_data, cpu);
599 	if (!path)
600 		return;
601 
602 	sink = coresight_get_sink(path);
603 	if (!sink)
604 		return;
605 
606 	/* stop tracer */
607 	coresight_disable_source(csdev, event);
608 
609 	/* tell the core */
610 	event->hw.state = PERF_HES_STOPPED;
611 
612 	/*
613 	 * If the handle is not bound to an event anymore
614 	 * (e.g, the sink driver was unable to restart the
615 	 * handle due to lack of buffer space), we don't
616 	 * have to do anything here.
617 	 */
618 	if (handle->event && (mode & PERF_EF_UPDATE)) {
619 		if (WARN_ON_ONCE(handle->event != event))
620 			return;
621 
622 		/* update trace information */
623 		if (!sink_ops(sink)->update_buffer)
624 			return;
625 
626 		size = sink_ops(sink)->update_buffer(sink, handle,
627 					      event_data->snk_config);
628 		/*
629 		 * Make sure the handle is still valid as the
630 		 * sink could have closed it from an IRQ.
631 		 * The sink driver must handle the race with
632 		 * update_buffer() and IRQ. Thus either we
633 		 * should get a valid handle and valid size
634 		 * (which may be 0).
635 		 *
636 		 * But we should never get a non-zero size with
637 		 * an invalid handle.
638 		 */
639 		if (READ_ONCE(handle->event))
640 			perf_aux_output_end(handle, size);
641 		else
642 			WARN_ON(size);
643 	}
644 
645 	/* Disabling the path make its elements available to other sessions */
646 	coresight_disable_path(path);
647 }
648 
etm_event_add(struct perf_event * event,int mode)649 static int etm_event_add(struct perf_event *event, int mode)
650 {
651 	int ret = 0;
652 	struct hw_perf_event *hwc = &event->hw;
653 
654 	if (mode & PERF_EF_START) {
655 		etm_event_start(event, 0);
656 		if (hwc->state & PERF_HES_STOPPED)
657 			ret = -EINVAL;
658 	} else {
659 		hwc->state = PERF_HES_STOPPED;
660 	}
661 
662 	return ret;
663 }
664 
etm_event_del(struct perf_event * event,int mode)665 static void etm_event_del(struct perf_event *event, int mode)
666 {
667 	etm_event_stop(event, PERF_EF_UPDATE);
668 }
669 
etm_addr_filters_validate(struct list_head * filters)670 static int etm_addr_filters_validate(struct list_head *filters)
671 {
672 	bool range = false, address = false;
673 	int index = 0;
674 	struct perf_addr_filter *filter;
675 
676 	list_for_each_entry(filter, filters, entry) {
677 		/*
678 		 * No need to go further if there's no more
679 		 * room for filters.
680 		 */
681 		if (++index > ETM_ADDR_CMP_MAX)
682 			return -EOPNOTSUPP;
683 
684 		/* filter::size==0 means single address trigger */
685 		if (filter->size) {
686 			/*
687 			 * The existing code relies on START/STOP filters
688 			 * being address filters.
689 			 */
690 			if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
691 			    filter->action == PERF_ADDR_FILTER_ACTION_STOP)
692 				return -EOPNOTSUPP;
693 
694 			range = true;
695 		} else
696 			address = true;
697 
698 		/*
699 		 * At this time we don't allow range and start/stop filtering
700 		 * to cohabitate, they have to be mutually exclusive.
701 		 */
702 		if (range && address)
703 			return -EOPNOTSUPP;
704 	}
705 
706 	return 0;
707 }
708 
etm_addr_filters_sync(struct perf_event * event)709 static void etm_addr_filters_sync(struct perf_event *event)
710 {
711 	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
712 	unsigned long start, stop;
713 	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
714 	struct etm_filters *filters = event->hw.addr_filters;
715 	struct etm_filter *etm_filter;
716 	struct perf_addr_filter *filter;
717 	int i = 0;
718 
719 	list_for_each_entry(filter, &head->list, entry) {
720 		start = fr[i].start;
721 		stop = start + fr[i].size;
722 		etm_filter = &filters->etm_filter[i];
723 
724 		switch (filter->action) {
725 		case PERF_ADDR_FILTER_ACTION_FILTER:
726 			etm_filter->start_addr = start;
727 			etm_filter->stop_addr = stop;
728 			etm_filter->type = ETM_ADDR_TYPE_RANGE;
729 			break;
730 		case PERF_ADDR_FILTER_ACTION_START:
731 			etm_filter->start_addr = start;
732 			etm_filter->type = ETM_ADDR_TYPE_START;
733 			break;
734 		case PERF_ADDR_FILTER_ACTION_STOP:
735 			etm_filter->stop_addr = stop;
736 			etm_filter->type = ETM_ADDR_TYPE_STOP;
737 			break;
738 		}
739 		i++;
740 	}
741 
742 	filters->nr_filters = i;
743 }
744 
etm_perf_symlink(struct coresight_device * csdev,bool link)745 int etm_perf_symlink(struct coresight_device *csdev, bool link)
746 {
747 	char entry[sizeof("cpu9999999")];
748 	int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
749 	struct device *pmu_dev = etm_pmu.dev;
750 	struct device *cs_dev = &csdev->dev;
751 
752 	sprintf(entry, "cpu%d", cpu);
753 
754 	if (!etm_perf_up)
755 		return -EPROBE_DEFER;
756 
757 	if (link) {
758 		ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
759 		if (ret)
760 			return ret;
761 		per_cpu(csdev_src, cpu) = csdev;
762 	} else {
763 		sysfs_remove_link(&pmu_dev->kobj, entry);
764 		per_cpu(csdev_src, cpu) = NULL;
765 	}
766 
767 	return 0;
768 }
769 EXPORT_SYMBOL_GPL(etm_perf_symlink);
770 
etm_perf_sink_name_show(struct device * dev,struct device_attribute * dattr,char * buf)771 static ssize_t etm_perf_sink_name_show(struct device *dev,
772 				       struct device_attribute *dattr,
773 				       char *buf)
774 {
775 	struct dev_ext_attribute *ea;
776 
777 	ea = container_of(dattr, struct dev_ext_attribute, attr);
778 	return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var));
779 }
780 
781 static struct dev_ext_attribute *
etm_perf_add_symlink_group(struct device * dev,const char * name,const char * group_name)782 etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name)
783 {
784 	struct dev_ext_attribute *ea;
785 	unsigned long hash;
786 	int ret;
787 	struct device *pmu_dev = etm_pmu.dev;
788 
789 	if (!etm_perf_up)
790 		return ERR_PTR(-EPROBE_DEFER);
791 
792 	ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL);
793 	if (!ea)
794 		return ERR_PTR(-ENOMEM);
795 
796 	/*
797 	 * If this function is called adding a sink then the hash is used for
798 	 * sink selection - see function coresight_get_sink_by_id().
799 	 * If adding a configuration then the hash is used for selection in
800 	 * cscfg_activate_config()
801 	 */
802 	hash = hashlen_hash(hashlen_string(NULL, name));
803 
804 	sysfs_attr_init(&ea->attr.attr);
805 	ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL);
806 	if (!ea->attr.attr.name)
807 		return ERR_PTR(-ENOMEM);
808 
809 	ea->attr.attr.mode = 0444;
810 	ea->var = (unsigned long *)hash;
811 
812 	ret = sysfs_add_file_to_group(&pmu_dev->kobj,
813 				      &ea->attr.attr, group_name);
814 
815 	return ret ? ERR_PTR(ret) : ea;
816 }
817 
etm_perf_add_symlink_sink(struct coresight_device * csdev)818 int etm_perf_add_symlink_sink(struct coresight_device *csdev)
819 {
820 	const char *name;
821 	struct device *dev = &csdev->dev;
822 	int err = 0;
823 
824 	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
825 	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
826 		return -EINVAL;
827 
828 	if (csdev->ea != NULL)
829 		return -EINVAL;
830 
831 	name = dev_name(dev);
832 	csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks");
833 	if (IS_ERR(csdev->ea)) {
834 		err = PTR_ERR(csdev->ea);
835 		csdev->ea = NULL;
836 	} else
837 		csdev->ea->attr.show = etm_perf_sink_name_show;
838 
839 	return err;
840 }
841 
etm_perf_del_symlink_group(struct dev_ext_attribute * ea,const char * group_name)842 static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name)
843 {
844 	struct device *pmu_dev = etm_pmu.dev;
845 
846 	sysfs_remove_file_from_group(&pmu_dev->kobj,
847 				     &ea->attr.attr, group_name);
848 }
849 
etm_perf_del_symlink_sink(struct coresight_device * csdev)850 void etm_perf_del_symlink_sink(struct coresight_device *csdev)
851 {
852 	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
853 	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
854 		return;
855 
856 	if (!csdev->ea)
857 		return;
858 
859 	etm_perf_del_symlink_group(csdev->ea, "sinks");
860 	csdev->ea = NULL;
861 }
862 
etm_perf_cscfg_event_show(struct device * dev,struct device_attribute * dattr,char * buf)863 static ssize_t etm_perf_cscfg_event_show(struct device *dev,
864 					 struct device_attribute *dattr,
865 					 char *buf)
866 {
867 	struct dev_ext_attribute *ea;
868 
869 	ea = container_of(dattr, struct dev_ext_attribute, attr);
870 	return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var));
871 }
872 
etm_perf_add_symlink_cscfg(struct device * dev,struct cscfg_config_desc * config_desc)873 int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc)
874 {
875 	int err = 0;
876 
877 	if (config_desc->event_ea != NULL)
878 		return 0;
879 
880 	config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events");
881 
882 	/* set the show function to the custom cscfg event */
883 	if (!IS_ERR(config_desc->event_ea))
884 		config_desc->event_ea->attr.show = etm_perf_cscfg_event_show;
885 	else {
886 		err = PTR_ERR(config_desc->event_ea);
887 		config_desc->event_ea = NULL;
888 	}
889 
890 	return err;
891 }
892 
etm_perf_del_symlink_cscfg(struct cscfg_config_desc * config_desc)893 void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc)
894 {
895 	if (!config_desc->event_ea)
896 		return;
897 
898 	etm_perf_del_symlink_group(config_desc->event_ea, "events");
899 	config_desc->event_ea = NULL;
900 }
901 
etm_perf_init(void)902 int __init etm_perf_init(void)
903 {
904 	int ret;
905 
906 	etm_pmu.capabilities		= (PERF_PMU_CAP_EXCLUSIVE |
907 					   PERF_PMU_CAP_ITRACE);
908 
909 	etm_pmu.attr_groups		= etm_pmu_attr_groups;
910 	etm_pmu.task_ctx_nr		= perf_sw_context;
911 	etm_pmu.read			= etm_event_read;
912 	etm_pmu.event_init		= etm_event_init;
913 	etm_pmu.setup_aux		= etm_setup_aux;
914 	etm_pmu.free_aux		= etm_free_aux;
915 	etm_pmu.start			= etm_event_start;
916 	etm_pmu.stop			= etm_event_stop;
917 	etm_pmu.add			= etm_event_add;
918 	etm_pmu.del			= etm_event_del;
919 	etm_pmu.addr_filters_sync	= etm_addr_filters_sync;
920 	etm_pmu.addr_filters_validate	= etm_addr_filters_validate;
921 	etm_pmu.nr_addr_filters		= ETM_ADDR_CMP_MAX;
922 	etm_pmu.module			= THIS_MODULE;
923 
924 	ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
925 	if (ret == 0)
926 		etm_perf_up = true;
927 
928 	return ret;
929 }
930 
etm_perf_exit(void)931 void etm_perf_exit(void)
932 {
933 	perf_pmu_unregister(&etm_pmu);
934 }
935