xref: /linux/drivers/atm/fore200e.c (revision 1f5e808aa63af61ec0d6a14909056d6668813e86)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3   A FORE Systems 200E-series driver for ATM on Linux.
4   Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
5 
6   Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
7 
8   This driver simultaneously supports PCA-200E and SBA-200E adapters
9   on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
10 
11 */
12 
13 
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/capability.h>
18 #include <linux/interrupt.h>
19 #include <linux/bitops.h>
20 #include <linux/pci.h>
21 #include <linux/module.h>
22 #include <linux/atmdev.h>
23 #include <linux/sonet.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/delay.h>
26 #include <linux/firmware.h>
27 #include <linux/pgtable.h>
28 #include <asm/io.h>
29 #include <asm/string.h>
30 #include <asm/page.h>
31 #include <asm/irq.h>
32 #include <asm/dma.h>
33 #include <asm/byteorder.h>
34 #include <linux/uaccess.h>
35 #include <linux/atomic.h>
36 
37 #ifdef CONFIG_SBUS
38 #include <linux/of.h>
39 #include <linux/platform_device.h>
40 #include <asm/idprom.h>
41 #include <asm/openprom.h>
42 #include <asm/oplib.h>
43 #endif
44 
45 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
46 #define FORE200E_USE_TASKLET
47 #endif
48 
49 #if 0 /* enable the debugging code of the buffer supply queues */
50 #define FORE200E_BSQ_DEBUG
51 #endif
52 
53 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
54 #define FORE200E_52BYTE_AAL0_SDU
55 #endif
56 
57 #include "fore200e.h"
58 #include "suni.h"
59 
60 #define FORE200E_VERSION "0.3e"
61 
62 #define FORE200E         "fore200e: "
63 
64 #if 0 /* override .config */
65 #define CONFIG_ATM_FORE200E_DEBUG 1
66 #endif
67 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
68 #define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
69                                                   printk(FORE200E format, ##args); } while (0)
70 #else
71 #define DPRINTK(level, format, args...)  do {} while (0)
72 #endif
73 
74 
75 #define FORE200E_ALIGN(addr, alignment) \
76         ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
77 
78 #define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
79 
80 #define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
81 
82 #define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
83 
84 #if 1
85 #define ASSERT(expr)     if (!(expr)) { \
86 			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
87 				    __func__, __LINE__, #expr); \
88 			     panic(FORE200E "%s", __func__); \
89 			 }
90 #else
91 #define ASSERT(expr)     do {} while (0)
92 #endif
93 
94 
95 static const struct atmdev_ops   fore200e_ops;
96 
97 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
98 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
99 
100 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
101     { BUFFER_S1_NBR, BUFFER_L1_NBR },
102     { BUFFER_S2_NBR, BUFFER_L2_NBR }
103 };
104 
105 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
106     { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
107     { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
108 };
109 
110 
111 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
112 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
113 #endif
114 
115 
116 #if 0 /* currently unused */
117 static int
118 fore200e_fore2atm_aal(enum fore200e_aal aal)
119 {
120     switch(aal) {
121     case FORE200E_AAL0:  return ATM_AAL0;
122     case FORE200E_AAL34: return ATM_AAL34;
123     case FORE200E_AAL5:  return ATM_AAL5;
124     }
125 
126     return -EINVAL;
127 }
128 #endif
129 
130 
131 static enum fore200e_aal
fore200e_atm2fore_aal(int aal)132 fore200e_atm2fore_aal(int aal)
133 {
134     switch(aal) {
135     case ATM_AAL0:  return FORE200E_AAL0;
136     case ATM_AAL34: return FORE200E_AAL34;
137     case ATM_AAL1:
138     case ATM_AAL2:
139     case ATM_AAL5:  return FORE200E_AAL5;
140     }
141 
142     return -EINVAL;
143 }
144 
145 
146 static char*
fore200e_irq_itoa(int irq)147 fore200e_irq_itoa(int irq)
148 {
149     static char str[8];
150     sprintf(str, "%d", irq);
151     return str;
152 }
153 
154 
155 /* allocate and align a chunk of memory intended to hold the data behing exchanged
156    between the driver and the adapter (using streaming DVMA) */
157 
158 static int
fore200e_chunk_alloc(struct fore200e * fore200e,struct chunk * chunk,int size,int alignment,int direction)159 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
160 {
161     unsigned long offset = 0;
162 
163     if (alignment <= sizeof(int))
164 	alignment = 0;
165 
166     chunk->alloc_size = size + alignment;
167     chunk->direction  = direction;
168 
169     chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
170     if (chunk->alloc_addr == NULL)
171 	return -ENOMEM;
172 
173     if (alignment > 0)
174 	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
175 
176     chunk->align_addr = chunk->alloc_addr + offset;
177 
178     chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
179 				     size, direction);
180     if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
181 	kfree(chunk->alloc_addr);
182 	return -ENOMEM;
183     }
184     return 0;
185 }
186 
187 
188 /* free a chunk of memory */
189 
190 static void
fore200e_chunk_free(struct fore200e * fore200e,struct chunk * chunk)191 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
192 {
193     dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
194 		     chunk->direction);
195     kfree(chunk->alloc_addr);
196 }
197 
198 /*
199  * Allocate a DMA consistent chunk of memory intended to act as a communication
200  * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
201  * and the adapter.
202  */
203 static int
fore200e_dma_chunk_alloc(struct fore200e * fore200e,struct chunk * chunk,int size,int nbr,int alignment)204 fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
205 		int size, int nbr, int alignment)
206 {
207 	/* returned chunks are page-aligned */
208 	chunk->alloc_size = size * nbr;
209 	chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
210 					       &chunk->dma_addr, GFP_KERNEL);
211 	if (!chunk->alloc_addr)
212 		return -ENOMEM;
213 	chunk->align_addr = chunk->alloc_addr;
214 	return 0;
215 }
216 
217 /*
218  * Free a DMA consistent chunk of memory.
219  */
220 static void
fore200e_dma_chunk_free(struct fore200e * fore200e,struct chunk * chunk)221 fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
222 {
223 	dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
224 			  chunk->dma_addr);
225 }
226 
227 static void
fore200e_spin(int msecs)228 fore200e_spin(int msecs)
229 {
230     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
231     while (time_before(jiffies, timeout));
232 }
233 
234 
235 static int
fore200e_poll(struct fore200e * fore200e,volatile u32 * addr,u32 val,int msecs)236 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
237 {
238     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
239     int           ok;
240 
241     mb();
242     do {
243 	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
244 	    break;
245 
246     } while (time_before(jiffies, timeout));
247 
248 #if 1
249     if (!ok) {
250 	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
251 	       *addr, val);
252     }
253 #endif
254 
255     return ok;
256 }
257 
258 
259 static int
fore200e_io_poll(struct fore200e * fore200e,volatile u32 __iomem * addr,u32 val,int msecs)260 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
261 {
262     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
263     int           ok;
264 
265     do {
266 	if ((ok = (fore200e->bus->read(addr) == val)))
267 	    break;
268 
269     } while (time_before(jiffies, timeout));
270 
271 #if 1
272     if (!ok) {
273 	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
274 	       fore200e->bus->read(addr), val);
275     }
276 #endif
277 
278     return ok;
279 }
280 
281 
282 static void
fore200e_free_rx_buf(struct fore200e * fore200e)283 fore200e_free_rx_buf(struct fore200e* fore200e)
284 {
285     int scheme, magn, nbr;
286     struct buffer* buffer;
287 
288     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
289 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
290 
291 	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
292 
293 		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
294 
295 		    struct chunk* data = &buffer[ nbr ].data;
296 
297 		    if (data->alloc_addr != NULL)
298 			fore200e_chunk_free(fore200e, data);
299 		}
300 	    }
301 	}
302     }
303 }
304 
305 
306 static void
fore200e_uninit_bs_queue(struct fore200e * fore200e)307 fore200e_uninit_bs_queue(struct fore200e* fore200e)
308 {
309     int scheme, magn;
310 
311     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
312 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
313 
314 	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
315 	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
316 
317 	    if (status->alloc_addr)
318 		fore200e_dma_chunk_free(fore200e, status);
319 
320 	    if (rbd_block->alloc_addr)
321 		fore200e_dma_chunk_free(fore200e, rbd_block);
322 	}
323     }
324 }
325 
326 
327 static int
fore200e_reset(struct fore200e * fore200e,int diag)328 fore200e_reset(struct fore200e* fore200e, int diag)
329 {
330     int ok;
331 
332     fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
333 
334     fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
335 
336     fore200e->bus->reset(fore200e);
337 
338     if (diag) {
339 	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
340 	if (ok == 0) {
341 
342 	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
343 	    return -ENODEV;
344 	}
345 
346 	printk(FORE200E "device %s self-test passed\n", fore200e->name);
347 
348 	fore200e->state = FORE200E_STATE_RESET;
349     }
350 
351     return 0;
352 }
353 
354 
355 static void
fore200e_shutdown(struct fore200e * fore200e)356 fore200e_shutdown(struct fore200e* fore200e)
357 {
358     printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
359 	   fore200e->name, fore200e->phys_base,
360 	   fore200e_irq_itoa(fore200e->irq));
361 
362     if (fore200e->state > FORE200E_STATE_RESET) {
363 	/* first, reset the board to prevent further interrupts or data transfers */
364 	fore200e_reset(fore200e, 0);
365     }
366 
367     /* then, release all allocated resources */
368     switch(fore200e->state) {
369 
370     case FORE200E_STATE_COMPLETE:
371 	kfree(fore200e->stats);
372 
373 	fallthrough;
374     case FORE200E_STATE_IRQ:
375 	free_irq(fore200e->irq, fore200e->atm_dev);
376 
377 	fallthrough;
378     case FORE200E_STATE_ALLOC_BUF:
379 	fore200e_free_rx_buf(fore200e);
380 
381 	fallthrough;
382     case FORE200E_STATE_INIT_BSQ:
383 	fore200e_uninit_bs_queue(fore200e);
384 
385 	fallthrough;
386     case FORE200E_STATE_INIT_RXQ:
387 	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
388 	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
389 
390 	fallthrough;
391     case FORE200E_STATE_INIT_TXQ:
392 	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
393 	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
394 
395 	fallthrough;
396     case FORE200E_STATE_INIT_CMDQ:
397 	fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
398 
399 	fallthrough;
400     case FORE200E_STATE_INITIALIZE:
401 	/* nothing to do for that state */
402 
403     case FORE200E_STATE_START_FW:
404 	/* nothing to do for that state */
405 
406     case FORE200E_STATE_RESET:
407 	/* nothing to do for that state */
408 
409     case FORE200E_STATE_MAP:
410 	fore200e->bus->unmap(fore200e);
411 
412 	fallthrough;
413     case FORE200E_STATE_CONFIGURE:
414 	/* nothing to do for that state */
415 
416     case FORE200E_STATE_REGISTER:
417 	/* XXX shouldn't we *start* by deregistering the device? */
418 	atm_dev_deregister(fore200e->atm_dev);
419 
420 	fallthrough;
421     case FORE200E_STATE_BLANK:
422 	/* nothing to do for that state */
423 	break;
424     }
425 }
426 
427 
428 #ifdef CONFIG_PCI
429 
fore200e_pca_read(volatile u32 __iomem * addr)430 static u32 fore200e_pca_read(volatile u32 __iomem *addr)
431 {
432     /* on big-endian hosts, the board is configured to convert
433        the endianess of slave RAM accesses  */
434     return le32_to_cpu(readl(addr));
435 }
436 
437 
fore200e_pca_write(u32 val,volatile u32 __iomem * addr)438 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
439 {
440     /* on big-endian hosts, the board is configured to convert
441        the endianess of slave RAM accesses  */
442     writel(cpu_to_le32(val), addr);
443 }
444 
445 static int
fore200e_pca_irq_check(struct fore200e * fore200e)446 fore200e_pca_irq_check(struct fore200e* fore200e)
447 {
448     /* this is a 1 bit register */
449     int irq_posted = readl(fore200e->regs.pca.psr);
450 
451 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
452     if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
453 	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
454     }
455 #endif
456 
457     return irq_posted;
458 }
459 
460 
461 static void
fore200e_pca_irq_ack(struct fore200e * fore200e)462 fore200e_pca_irq_ack(struct fore200e* fore200e)
463 {
464     writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
465 }
466 
467 
468 static void
fore200e_pca_reset(struct fore200e * fore200e)469 fore200e_pca_reset(struct fore200e* fore200e)
470 {
471     writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
472     fore200e_spin(10);
473     writel(0, fore200e->regs.pca.hcr);
474 }
475 
476 
fore200e_pca_map(struct fore200e * fore200e)477 static int fore200e_pca_map(struct fore200e* fore200e)
478 {
479     DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
480 
481     fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
482 
483     if (fore200e->virt_base == NULL) {
484 	printk(FORE200E "can't map device %s\n", fore200e->name);
485 	return -EFAULT;
486     }
487 
488     DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
489 
490     /* gain access to the PCA specific registers  */
491     fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
492     fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
493     fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
494 
495     fore200e->state = FORE200E_STATE_MAP;
496     return 0;
497 }
498 
499 
500 static void
fore200e_pca_unmap(struct fore200e * fore200e)501 fore200e_pca_unmap(struct fore200e* fore200e)
502 {
503     DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
504 
505     if (fore200e->virt_base != NULL)
506 	iounmap(fore200e->virt_base);
507 }
508 
509 
fore200e_pca_configure(struct fore200e * fore200e)510 static int fore200e_pca_configure(struct fore200e *fore200e)
511 {
512     struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
513     u8              master_ctrl, latency;
514 
515     DPRINTK(2, "device %s being configured\n", fore200e->name);
516 
517     if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
518 	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
519 	return -EIO;
520     }
521 
522     pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
523 
524     master_ctrl = master_ctrl
525 #if defined(__BIG_ENDIAN)
526 	/* request the PCA board to convert the endianess of slave RAM accesses */
527 	| PCA200E_CTRL_CONVERT_ENDIAN
528 #endif
529 #if 0
530         | PCA200E_CTRL_DIS_CACHE_RD
531         | PCA200E_CTRL_DIS_WRT_INVAL
532         | PCA200E_CTRL_ENA_CONT_REQ_MODE
533         | PCA200E_CTRL_2_CACHE_WRT_INVAL
534 #endif
535 	| PCA200E_CTRL_LARGE_PCI_BURSTS;
536 
537     pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
538 
539     /* raise latency from 32 (default) to 192, as this seems to prevent NIC
540        lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
541        this may impact the performances of other PCI devices on the same bus, though */
542     latency = 192;
543     pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
544 
545     fore200e->state = FORE200E_STATE_CONFIGURE;
546     return 0;
547 }
548 
549 
550 static int __init
fore200e_pca_prom_read(struct fore200e * fore200e,struct prom_data * prom)551 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
552 {
553     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
554     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
555     struct prom_opcode      opcode;
556     int                     ok;
557     u32                     prom_dma;
558 
559     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
560 
561     opcode.opcode = OPCODE_GET_PROM;
562     opcode.pad    = 0;
563 
564     prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
565 			      DMA_FROM_DEVICE);
566     if (dma_mapping_error(fore200e->dev, prom_dma))
567 	return -ENOMEM;
568 
569     fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
570 
571     *entry->status = STATUS_PENDING;
572 
573     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
574 
575     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
576 
577     *entry->status = STATUS_FREE;
578 
579     dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
580 
581     if (ok == 0) {
582 	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
583 	return -EIO;
584     }
585 
586 #if defined(__BIG_ENDIAN)
587 
588 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
589 
590     /* MAC address is stored as little-endian */
591     swap_here(&prom->mac_addr[0]);
592     swap_here(&prom->mac_addr[4]);
593 #endif
594 
595     return 0;
596 }
597 
598 
599 static int
fore200e_pca_proc_read(struct fore200e * fore200e,char * page)600 fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
601 {
602     struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
603 
604     return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
605 		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
606 }
607 
608 static const struct fore200e_bus fore200e_pci_ops = {
609 	.model_name		= "PCA-200E",
610 	.proc_name		= "pca200e",
611 	.descr_alignment	= 32,
612 	.buffer_alignment	= 4,
613 	.status_alignment	= 32,
614 	.read			= fore200e_pca_read,
615 	.write			= fore200e_pca_write,
616 	.configure		= fore200e_pca_configure,
617 	.map			= fore200e_pca_map,
618 	.reset			= fore200e_pca_reset,
619 	.prom_read		= fore200e_pca_prom_read,
620 	.unmap			= fore200e_pca_unmap,
621 	.irq_check		= fore200e_pca_irq_check,
622 	.irq_ack		= fore200e_pca_irq_ack,
623 	.proc_read		= fore200e_pca_proc_read,
624 };
625 #endif /* CONFIG_PCI */
626 
627 #ifdef CONFIG_SBUS
628 
fore200e_sba_read(volatile u32 __iomem * addr)629 static u32 fore200e_sba_read(volatile u32 __iomem *addr)
630 {
631     return sbus_readl(addr);
632 }
633 
fore200e_sba_write(u32 val,volatile u32 __iomem * addr)634 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
635 {
636     sbus_writel(val, addr);
637 }
638 
fore200e_sba_irq_enable(struct fore200e * fore200e)639 static void fore200e_sba_irq_enable(struct fore200e *fore200e)
640 {
641 	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
642 	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
643 }
644 
fore200e_sba_irq_check(struct fore200e * fore200e)645 static int fore200e_sba_irq_check(struct fore200e *fore200e)
646 {
647 	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
648 }
649 
fore200e_sba_irq_ack(struct fore200e * fore200e)650 static void fore200e_sba_irq_ack(struct fore200e *fore200e)
651 {
652 	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
653 	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
654 }
655 
fore200e_sba_reset(struct fore200e * fore200e)656 static void fore200e_sba_reset(struct fore200e *fore200e)
657 {
658 	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
659 	fore200e_spin(10);
660 	fore200e->bus->write(0, fore200e->regs.sba.hcr);
661 }
662 
fore200e_sba_map(struct fore200e * fore200e)663 static int __init fore200e_sba_map(struct fore200e *fore200e)
664 {
665 	struct platform_device *op = to_platform_device(fore200e->dev);
666 	unsigned int bursts;
667 
668 	/* gain access to the SBA specific registers  */
669 	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
670 	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
671 	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
672 	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
673 
674 	if (!fore200e->virt_base) {
675 		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
676 		return -EFAULT;
677 	}
678 
679 	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
680 
681 	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
682 
683 	/* get the supported DVMA burst sizes */
684 	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
685 
686 	if (sbus_can_dma_64bit())
687 		sbus_set_sbus64(&op->dev, bursts);
688 
689 	fore200e->state = FORE200E_STATE_MAP;
690 	return 0;
691 }
692 
fore200e_sba_unmap(struct fore200e * fore200e)693 static void fore200e_sba_unmap(struct fore200e *fore200e)
694 {
695 	struct platform_device *op = to_platform_device(fore200e->dev);
696 
697 	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
698 	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
699 	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
700 	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
701 }
702 
fore200e_sba_configure(struct fore200e * fore200e)703 static int __init fore200e_sba_configure(struct fore200e *fore200e)
704 {
705 	fore200e->state = FORE200E_STATE_CONFIGURE;
706 	return 0;
707 }
708 
fore200e_sba_prom_read(struct fore200e * fore200e,struct prom_data * prom)709 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
710 {
711 	struct platform_device *op = to_platform_device(fore200e->dev);
712 	const u8 *prop;
713 	int len;
714 
715 	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
716 	if (!prop)
717 		return -ENODEV;
718 	memcpy(&prom->mac_addr[4], prop, 4);
719 
720 	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
721 	if (!prop)
722 		return -ENODEV;
723 	memcpy(&prom->mac_addr[2], prop, 4);
724 
725 	prom->serial_number = of_getintprop_default(op->dev.of_node,
726 						    "serialnumber", 0);
727 	prom->hw_revision = of_getintprop_default(op->dev.of_node,
728 						  "promversion", 0);
729 
730 	return 0;
731 }
732 
fore200e_sba_proc_read(struct fore200e * fore200e,char * page)733 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
734 {
735 	struct platform_device *op = to_platform_device(fore200e->dev);
736 	const struct linux_prom_registers *regs;
737 
738 	regs = of_get_property(op->dev.of_node, "reg", NULL);
739 
740 	return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
741 		       (regs ? regs->which_io : 0), op->dev.of_node);
742 }
743 
744 static const struct fore200e_bus fore200e_sbus_ops = {
745 	.model_name		= "SBA-200E",
746 	.proc_name		= "sba200e",
747 	.descr_alignment	= 32,
748 	.buffer_alignment	= 64,
749 	.status_alignment	= 32,
750 	.read			= fore200e_sba_read,
751 	.write			= fore200e_sba_write,
752 	.configure		= fore200e_sba_configure,
753 	.map			= fore200e_sba_map,
754 	.reset			= fore200e_sba_reset,
755 	.prom_read		= fore200e_sba_prom_read,
756 	.unmap			= fore200e_sba_unmap,
757 	.irq_enable		= fore200e_sba_irq_enable,
758 	.irq_check		= fore200e_sba_irq_check,
759 	.irq_ack		= fore200e_sba_irq_ack,
760 	.proc_read		= fore200e_sba_proc_read,
761 };
762 #endif /* CONFIG_SBUS */
763 
764 static void
fore200e_tx_irq(struct fore200e * fore200e)765 fore200e_tx_irq(struct fore200e* fore200e)
766 {
767     struct host_txq*        txq = &fore200e->host_txq;
768     struct host_txq_entry*  entry;
769     struct atm_vcc*         vcc;
770     struct fore200e_vc_map* vc_map;
771 
772     if (fore200e->host_txq.txing == 0)
773 	return;
774 
775     for (;;) {
776 
777 	entry = &txq->host_entry[ txq->tail ];
778 
779         if ((*entry->status & STATUS_COMPLETE) == 0) {
780 	    break;
781 	}
782 
783 	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
784 		entry, txq->tail, entry->vc_map, entry->skb);
785 
786 	/* free copy of misaligned data */
787 	kfree(entry->data);
788 
789 	/* remove DMA mapping */
790 	dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
791 				 DMA_TO_DEVICE);
792 
793 	vc_map = entry->vc_map;
794 
795 	/* vcc closed since the time the entry was submitted for tx? */
796 	if ((vc_map->vcc == NULL) ||
797 	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
798 
799 	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
800 		    fore200e->atm_dev->number);
801 
802 	    dev_kfree_skb_any(entry->skb);
803 	}
804 	else {
805 	    ASSERT(vc_map->vcc);
806 
807 	    /* vcc closed then immediately re-opened? */
808 	    if (vc_map->incarn != entry->incarn) {
809 
810 		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
811 		   if the same vcc is immediately re-opened, those pending PDUs must
812 		   not be popped after the completion of their emission, as they refer
813 		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
814 		   would be decremented by the size of the (unrelated) skb, possibly
815 		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
816 		   we thus bind the tx entry to the current incarnation of the vcc
817 		   when the entry is submitted for tx. When the tx later completes,
818 		   if the incarnation number of the tx entry does not match the one
819 		   of the vcc, then this implies that the vcc has been closed then re-opened.
820 		   we thus just drop the skb here. */
821 
822 		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
823 			fore200e->atm_dev->number);
824 
825 		dev_kfree_skb_any(entry->skb);
826 	    }
827 	    else {
828 		vcc = vc_map->vcc;
829 		ASSERT(vcc);
830 
831 		/* notify tx completion */
832 		if (vcc->pop) {
833 		    vcc->pop(vcc, entry->skb);
834 		}
835 		else {
836 		    dev_kfree_skb_any(entry->skb);
837 		}
838 
839 		/* check error condition */
840 		if (*entry->status & STATUS_ERROR)
841 		    atomic_inc(&vcc->stats->tx_err);
842 		else
843 		    atomic_inc(&vcc->stats->tx);
844 	    }
845 	}
846 
847 	*entry->status = STATUS_FREE;
848 
849 	fore200e->host_txq.txing--;
850 
851 	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
852     }
853 }
854 
855 
856 #ifdef FORE200E_BSQ_DEBUG
bsq_audit(int where,struct host_bsq * bsq,int scheme,int magn)857 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
858 {
859     struct buffer* buffer;
860     int count = 0;
861 
862     buffer = bsq->freebuf;
863     while (buffer) {
864 
865 	if (buffer->supplied) {
866 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
867 		   where, scheme, magn, buffer->index);
868 	}
869 
870 	if (buffer->magn != magn) {
871 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
872 		   where, scheme, magn, buffer->index, buffer->magn);
873 	}
874 
875 	if (buffer->scheme != scheme) {
876 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
877 		   where, scheme, magn, buffer->index, buffer->scheme);
878 	}
879 
880 	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
881 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
882 		   where, scheme, magn, buffer->index);
883 	}
884 
885 	count++;
886 	buffer = buffer->next;
887     }
888 
889     if (count != bsq->freebuf_count) {
890 	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
891 	       where, scheme, magn, count, bsq->freebuf_count);
892     }
893     return 0;
894 }
895 #endif
896 
897 
898 static void
fore200e_supply(struct fore200e * fore200e)899 fore200e_supply(struct fore200e* fore200e)
900 {
901     int  scheme, magn, i;
902 
903     struct host_bsq*       bsq;
904     struct host_bsq_entry* entry;
905     struct buffer*         buffer;
906 
907     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
908 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
909 
910 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
911 
912 #ifdef FORE200E_BSQ_DEBUG
913 	    bsq_audit(1, bsq, scheme, magn);
914 #endif
915 	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
916 
917 		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
918 			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
919 
920 		entry = &bsq->host_entry[ bsq->head ];
921 
922 		for (i = 0; i < RBD_BLK_SIZE; i++) {
923 
924 		    /* take the first buffer in the free buffer list */
925 		    buffer = bsq->freebuf;
926 		    if (!buffer) {
927 			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
928 			       scheme, magn, bsq->freebuf_count);
929 			return;
930 		    }
931 		    bsq->freebuf = buffer->next;
932 
933 #ifdef FORE200E_BSQ_DEBUG
934 		    if (buffer->supplied)
935 			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
936 			       scheme, magn, buffer->index);
937 		    buffer->supplied = 1;
938 #endif
939 		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
940 		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
941 		}
942 
943 		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
944 
945  		/* decrease accordingly the number of free rx buffers */
946 		bsq->freebuf_count -= RBD_BLK_SIZE;
947 
948 		*entry->status = STATUS_PENDING;
949 		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
950 	    }
951 	}
952     }
953 }
954 
955 
956 static int
fore200e_push_rpd(struct fore200e * fore200e,struct atm_vcc * vcc,struct rpd * rpd)957 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
958 {
959     struct sk_buff*      skb;
960     struct buffer*       buffer;
961     struct fore200e_vcc* fore200e_vcc;
962     int                  i, pdu_len = 0;
963 #ifdef FORE200E_52BYTE_AAL0_SDU
964     u32                  cell_header = 0;
965 #endif
966 
967     ASSERT(vcc);
968 
969     fore200e_vcc = FORE200E_VCC(vcc);
970     ASSERT(fore200e_vcc);
971 
972 #ifdef FORE200E_52BYTE_AAL0_SDU
973     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
974 
975 	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
976 	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
977                       (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
978                       (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
979                        rpd->atm_header.clp;
980 	pdu_len = 4;
981     }
982 #endif
983 
984     /* compute total PDU length */
985     for (i = 0; i < rpd->nseg; i++)
986 	pdu_len += rpd->rsd[ i ].length;
987 
988     skb = alloc_skb(pdu_len, GFP_ATOMIC);
989     if (skb == NULL) {
990 	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
991 
992 	atomic_inc(&vcc->stats->rx_drop);
993 	return -ENOMEM;
994     }
995 
996     __net_timestamp(skb);
997 
998 #ifdef FORE200E_52BYTE_AAL0_SDU
999     if (cell_header) {
1000 	*((u32*)skb_put(skb, 4)) = cell_header;
1001     }
1002 #endif
1003 
1004     /* reassemble segments */
1005     for (i = 0; i < rpd->nseg; i++) {
1006 
1007 	/* rebuild rx buffer address from rsd handle */
1008 	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1009 
1010 	/* Make device DMA transfer visible to CPU.  */
1011 	dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1012 				rpd->rsd[i].length, DMA_FROM_DEVICE);
1013 
1014 	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1015 
1016 	/* Now let the device get at it again.  */
1017 	dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1018 				   rpd->rsd[i].length, DMA_FROM_DEVICE);
1019     }
1020 
1021     DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1022 
1023     if (pdu_len < fore200e_vcc->rx_min_pdu)
1024 	fore200e_vcc->rx_min_pdu = pdu_len;
1025     if (pdu_len > fore200e_vcc->rx_max_pdu)
1026 	fore200e_vcc->rx_max_pdu = pdu_len;
1027     fore200e_vcc->rx_pdu++;
1028 
1029     /* push PDU */
1030     if (atm_charge(vcc, skb->truesize) == 0) {
1031 
1032 	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1033 		vcc->itf, vcc->vpi, vcc->vci);
1034 
1035 	dev_kfree_skb_any(skb);
1036 
1037 	atomic_inc(&vcc->stats->rx_drop);
1038 	return -ENOMEM;
1039     }
1040 
1041     vcc->push(vcc, skb);
1042     atomic_inc(&vcc->stats->rx);
1043 
1044     return 0;
1045 }
1046 
1047 
1048 static void
fore200e_collect_rpd(struct fore200e * fore200e,struct rpd * rpd)1049 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1050 {
1051     struct host_bsq* bsq;
1052     struct buffer*   buffer;
1053     int              i;
1054 
1055     for (i = 0; i < rpd->nseg; i++) {
1056 
1057 	/* rebuild rx buffer address from rsd handle */
1058 	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1059 
1060 	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1061 
1062 #ifdef FORE200E_BSQ_DEBUG
1063 	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1064 
1065 	if (buffer->supplied == 0)
1066 	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1067 		   buffer->scheme, buffer->magn, buffer->index);
1068 	buffer->supplied = 0;
1069 #endif
1070 
1071 	/* re-insert the buffer into the free buffer list */
1072 	buffer->next = bsq->freebuf;
1073 	bsq->freebuf = buffer;
1074 
1075 	/* then increment the number of free rx buffers */
1076 	bsq->freebuf_count++;
1077     }
1078 }
1079 
1080 
1081 static void
fore200e_rx_irq(struct fore200e * fore200e)1082 fore200e_rx_irq(struct fore200e* fore200e)
1083 {
1084     struct host_rxq*        rxq = &fore200e->host_rxq;
1085     struct host_rxq_entry*  entry;
1086     struct atm_vcc*         vcc;
1087     struct fore200e_vc_map* vc_map;
1088 
1089     for (;;) {
1090 
1091 	entry = &rxq->host_entry[ rxq->head ];
1092 
1093 	/* no more received PDUs */
1094 	if ((*entry->status & STATUS_COMPLETE) == 0)
1095 	    break;
1096 
1097 	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1098 
1099 	if ((vc_map->vcc == NULL) ||
1100 	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1101 
1102 	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1103 		    fore200e->atm_dev->number,
1104 		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1105 	}
1106 	else {
1107 	    vcc = vc_map->vcc;
1108 	    ASSERT(vcc);
1109 
1110 	    if ((*entry->status & STATUS_ERROR) == 0) {
1111 
1112 		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1113 	    }
1114 	    else {
1115 		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1116 			fore200e->atm_dev->number,
1117 			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1118 		atomic_inc(&vcc->stats->rx_err);
1119 	    }
1120 	}
1121 
1122 	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1123 
1124 	fore200e_collect_rpd(fore200e, entry->rpd);
1125 
1126 	/* rewrite the rpd address to ack the received PDU */
1127 	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1128 	*entry->status = STATUS_FREE;
1129 
1130 	fore200e_supply(fore200e);
1131     }
1132 }
1133 
1134 
1135 #ifndef FORE200E_USE_TASKLET
1136 static void
fore200e_irq(struct fore200e * fore200e)1137 fore200e_irq(struct fore200e* fore200e)
1138 {
1139     unsigned long flags;
1140 
1141     spin_lock_irqsave(&fore200e->q_lock, flags);
1142     fore200e_rx_irq(fore200e);
1143     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1144 
1145     spin_lock_irqsave(&fore200e->q_lock, flags);
1146     fore200e_tx_irq(fore200e);
1147     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1148 }
1149 #endif
1150 
1151 
1152 static irqreturn_t
fore200e_interrupt(int irq,void * dev)1153 fore200e_interrupt(int irq, void* dev)
1154 {
1155     struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1156 
1157     if (fore200e->bus->irq_check(fore200e) == 0) {
1158 
1159 	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1160 	return IRQ_NONE;
1161     }
1162     DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1163 
1164 #ifdef FORE200E_USE_TASKLET
1165     tasklet_schedule(&fore200e->tx_tasklet);
1166     tasklet_schedule(&fore200e->rx_tasklet);
1167 #else
1168     fore200e_irq(fore200e);
1169 #endif
1170 
1171     fore200e->bus->irq_ack(fore200e);
1172     return IRQ_HANDLED;
1173 }
1174 
1175 
1176 #ifdef FORE200E_USE_TASKLET
1177 static void
fore200e_tx_tasklet(unsigned long data)1178 fore200e_tx_tasklet(unsigned long data)
1179 {
1180     struct fore200e* fore200e = (struct fore200e*) data;
1181     unsigned long flags;
1182 
1183     DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1184 
1185     spin_lock_irqsave(&fore200e->q_lock, flags);
1186     fore200e_tx_irq(fore200e);
1187     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1188 }
1189 
1190 
1191 static void
fore200e_rx_tasklet(unsigned long data)1192 fore200e_rx_tasklet(unsigned long data)
1193 {
1194     struct fore200e* fore200e = (struct fore200e*) data;
1195     unsigned long    flags;
1196 
1197     DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1198 
1199     spin_lock_irqsave(&fore200e->q_lock, flags);
1200     fore200e_rx_irq((struct fore200e*) data);
1201     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1202 }
1203 #endif
1204 
1205 
1206 static int
fore200e_select_scheme(struct atm_vcc * vcc)1207 fore200e_select_scheme(struct atm_vcc* vcc)
1208 {
1209     /* fairly balance the VCs over (identical) buffer schemes */
1210     int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1211 
1212     DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1213 	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1214 
1215     return scheme;
1216 }
1217 
1218 
1219 static int
fore200e_activate_vcin(struct fore200e * fore200e,int activate,struct atm_vcc * vcc,int mtu)1220 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1221 {
1222     struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1223     struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1224     struct activate_opcode   activ_opcode;
1225     struct deactivate_opcode deactiv_opcode;
1226     struct vpvc              vpvc;
1227     int                      ok;
1228     enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1229 
1230     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1231 
1232     if (activate) {
1233 	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1234 
1235 	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1236 	activ_opcode.aal    = aal;
1237 	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1238 	activ_opcode.pad    = 0;
1239     }
1240     else {
1241 	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1242 	deactiv_opcode.pad    = 0;
1243     }
1244 
1245     vpvc.vci = vcc->vci;
1246     vpvc.vpi = vcc->vpi;
1247 
1248     *entry->status = STATUS_PENDING;
1249 
1250     if (activate) {
1251 
1252 #ifdef FORE200E_52BYTE_AAL0_SDU
1253 	mtu = 48;
1254 #endif
1255 	/* the MTU is not used by the cp, except in the case of AAL0 */
1256 	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1257 	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1258 	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1259     }
1260     else {
1261 	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1262 	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1263     }
1264 
1265     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1266 
1267     *entry->status = STATUS_FREE;
1268 
1269     if (ok == 0) {
1270 	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1271 	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1272 	return -EIO;
1273     }
1274 
1275     DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1276 	    activate ? "open" : "clos");
1277 
1278     return 0;
1279 }
1280 
1281 
1282 #define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1283 
1284 static void
fore200e_rate_ctrl(struct atm_qos * qos,struct tpd_rate * rate)1285 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1286 {
1287     if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1288 
1289 	/* compute the data cells to idle cells ratio from the tx PCR */
1290 	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1291 	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1292     }
1293     else {
1294 	/* disable rate control */
1295 	rate->data_cells = rate->idle_cells = 0;
1296     }
1297 }
1298 
1299 
1300 static int
fore200e_open(struct atm_vcc * vcc)1301 fore200e_open(struct atm_vcc *vcc)
1302 {
1303     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1304     struct fore200e_vcc*    fore200e_vcc;
1305     struct fore200e_vc_map* vc_map;
1306     unsigned long	    flags;
1307     int			    vci = vcc->vci;
1308     short		    vpi = vcc->vpi;
1309 
1310     ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1311     ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1312 
1313     spin_lock_irqsave(&fore200e->q_lock, flags);
1314 
1315     vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1316     if (vc_map->vcc) {
1317 
1318 	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1319 
1320 	printk(FORE200E "VC %d.%d.%d already in use\n",
1321 	       fore200e->atm_dev->number, vpi, vci);
1322 
1323 	return -EINVAL;
1324     }
1325 
1326     vc_map->vcc = vcc;
1327 
1328     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1329 
1330     fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1331     if (fore200e_vcc == NULL) {
1332 	vc_map->vcc = NULL;
1333 	return -ENOMEM;
1334     }
1335 
1336     DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1337 	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1338 	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1339 	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1340 	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1341 	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1342 	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1343 
1344     /* pseudo-CBR bandwidth requested? */
1345     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1346 
1347 	mutex_lock(&fore200e->rate_mtx);
1348 	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1349 	    mutex_unlock(&fore200e->rate_mtx);
1350 
1351 	    kfree(fore200e_vcc);
1352 	    vc_map->vcc = NULL;
1353 	    return -EAGAIN;
1354 	}
1355 
1356 	/* reserve bandwidth */
1357 	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1358 	mutex_unlock(&fore200e->rate_mtx);
1359     }
1360 
1361     vcc->itf = vcc->dev->number;
1362 
1363     set_bit(ATM_VF_PARTIAL,&vcc->flags);
1364     set_bit(ATM_VF_ADDR, &vcc->flags);
1365 
1366     vcc->dev_data = fore200e_vcc;
1367 
1368     if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1369 
1370 	vc_map->vcc = NULL;
1371 
1372 	clear_bit(ATM_VF_ADDR, &vcc->flags);
1373 	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1374 
1375 	vcc->dev_data = NULL;
1376 
1377 	mutex_lock(&fore200e->rate_mtx);
1378 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1379 	mutex_unlock(&fore200e->rate_mtx);
1380 
1381 	kfree(fore200e_vcc);
1382 	return -EINVAL;
1383     }
1384 
1385     /* compute rate control parameters */
1386     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1387 
1388 	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1389 	set_bit(ATM_VF_HASQOS, &vcc->flags);
1390 
1391 	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1392 		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1393 		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1394 		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1395     }
1396 
1397     fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1398     fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1399     fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1400 
1401     /* new incarnation of the vcc */
1402     vc_map->incarn = ++fore200e->incarn_count;
1403 
1404     /* VC unusable before this flag is set */
1405     set_bit(ATM_VF_READY, &vcc->flags);
1406 
1407     return 0;
1408 }
1409 
1410 
1411 static void
fore200e_close(struct atm_vcc * vcc)1412 fore200e_close(struct atm_vcc* vcc)
1413 {
1414     struct fore200e_vcc*    fore200e_vcc;
1415     struct fore200e*        fore200e;
1416     struct fore200e_vc_map* vc_map;
1417     unsigned long           flags;
1418 
1419     ASSERT(vcc);
1420     fore200e = FORE200E_DEV(vcc->dev);
1421 
1422     ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1423     ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1424 
1425     DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1426 
1427     clear_bit(ATM_VF_READY, &vcc->flags);
1428 
1429     fore200e_activate_vcin(fore200e, 0, vcc, 0);
1430 
1431     spin_lock_irqsave(&fore200e->q_lock, flags);
1432 
1433     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1434 
1435     /* the vc is no longer considered as "in use" by fore200e_open() */
1436     vc_map->vcc = NULL;
1437 
1438     vcc->itf = vcc->vci = vcc->vpi = 0;
1439 
1440     fore200e_vcc = FORE200E_VCC(vcc);
1441     vcc->dev_data = NULL;
1442 
1443     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1444 
1445     /* release reserved bandwidth, if any */
1446     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1447 
1448 	mutex_lock(&fore200e->rate_mtx);
1449 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1450 	mutex_unlock(&fore200e->rate_mtx);
1451 
1452 	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1453     }
1454 
1455     clear_bit(ATM_VF_ADDR, &vcc->flags);
1456     clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1457 
1458     ASSERT(fore200e_vcc);
1459     kfree(fore200e_vcc);
1460 }
1461 
1462 
1463 static int
fore200e_send(struct atm_vcc * vcc,struct sk_buff * skb)1464 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1465 {
1466     struct fore200e*        fore200e;
1467     struct fore200e_vcc*    fore200e_vcc;
1468     struct fore200e_vc_map* vc_map;
1469     struct host_txq*        txq;
1470     struct host_txq_entry*  entry;
1471     struct tpd*             tpd;
1472     struct tpd_haddr        tpd_haddr;
1473     int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1474     int                     tx_copy      = 0;
1475     int                     tx_len       = skb->len;
1476     u32*                    cell_header  = NULL;
1477     unsigned char*          skb_data;
1478     int                     skb_len;
1479     unsigned char*          data;
1480     unsigned long           flags;
1481 
1482     if (!vcc)
1483         return -EINVAL;
1484 
1485     fore200e = FORE200E_DEV(vcc->dev);
1486     fore200e_vcc = FORE200E_VCC(vcc);
1487 
1488     if (!fore200e)
1489         return -EINVAL;
1490 
1491     txq = &fore200e->host_txq;
1492     if (!fore200e_vcc)
1493         return -EINVAL;
1494 
1495     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1496 	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1497 	dev_kfree_skb_any(skb);
1498 	return -EINVAL;
1499     }
1500 
1501 #ifdef FORE200E_52BYTE_AAL0_SDU
1502     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1503 	cell_header = (u32*) skb->data;
1504 	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1505 	skb_len     = tx_len = skb->len  - 4;
1506 
1507 	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1508     }
1509     else
1510 #endif
1511     {
1512 	skb_data = skb->data;
1513 	skb_len  = skb->len;
1514     }
1515 
1516     if (((unsigned long)skb_data) & 0x3) {
1517 
1518 	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1519 	tx_copy = 1;
1520 	tx_len  = skb_len;
1521     }
1522 
1523     if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1524 
1525         /* this simply NUKES the PCA board */
1526 	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1527 	tx_copy = 1;
1528 	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1529     }
1530 
1531     if (tx_copy) {
1532 	data = kmalloc(tx_len, GFP_ATOMIC);
1533 	if (data == NULL) {
1534 	    if (vcc->pop) {
1535 		vcc->pop(vcc, skb);
1536 	    }
1537 	    else {
1538 		dev_kfree_skb_any(skb);
1539 	    }
1540 	    return -ENOMEM;
1541 	}
1542 
1543 	memcpy(data, skb_data, skb_len);
1544 	if (skb_len < tx_len)
1545 	    memset(data + skb_len, 0x00, tx_len - skb_len);
1546     }
1547     else {
1548 	data = skb_data;
1549     }
1550 
1551     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1552     ASSERT(vc_map->vcc == vcc);
1553 
1554   retry_here:
1555 
1556     spin_lock_irqsave(&fore200e->q_lock, flags);
1557 
1558     entry = &txq->host_entry[ txq->head ];
1559 
1560     if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1561 
1562 	/* try to free completed tx queue entries */
1563 	fore200e_tx_irq(fore200e);
1564 
1565 	if (*entry->status != STATUS_FREE) {
1566 
1567 	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1568 
1569 	    /* retry once again? */
1570 	    if (--retry > 0) {
1571 		udelay(50);
1572 		goto retry_here;
1573 	    }
1574 
1575 	    atomic_inc(&vcc->stats->tx_err);
1576 
1577 	    fore200e->tx_sat++;
1578 	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1579 		    fore200e->name, fore200e->cp_queues->heartbeat);
1580 	    if (vcc->pop) {
1581 		vcc->pop(vcc, skb);
1582 	    }
1583 	    else {
1584 		dev_kfree_skb_any(skb);
1585 	    }
1586 
1587 	    if (tx_copy)
1588 		kfree(data);
1589 
1590 	    return -ENOBUFS;
1591 	}
1592     }
1593 
1594     entry->incarn = vc_map->incarn;
1595     entry->vc_map = vc_map;
1596     entry->skb    = skb;
1597     entry->data   = tx_copy ? data : NULL;
1598 
1599     tpd = entry->tpd;
1600     tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1601 					  DMA_TO_DEVICE);
1602     if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1603 	if (tx_copy)
1604 	    kfree(data);
1605 	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1606 	return -ENOMEM;
1607     }
1608     tpd->tsd[ 0 ].length = tx_len;
1609 
1610     FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1611     txq->txing++;
1612 
1613     /* The dma_map call above implies a dma_sync so the device can use it,
1614      * thus no explicit dma_sync call is necessary here.
1615      */
1616 
1617     DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1618 	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1619 	    tpd->tsd[0].length, skb_len);
1620 
1621     if (skb_len < fore200e_vcc->tx_min_pdu)
1622 	fore200e_vcc->tx_min_pdu = skb_len;
1623     if (skb_len > fore200e_vcc->tx_max_pdu)
1624 	fore200e_vcc->tx_max_pdu = skb_len;
1625     fore200e_vcc->tx_pdu++;
1626 
1627     /* set tx rate control information */
1628     tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1629     tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1630 
1631     if (cell_header) {
1632 	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1633 	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1634 	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1635 	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1636 	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1637     }
1638     else {
1639 	/* set the ATM header, common to all cells conveying the PDU */
1640 	tpd->atm_header.clp = 0;
1641 	tpd->atm_header.plt = 0;
1642 	tpd->atm_header.vci = vcc->vci;
1643 	tpd->atm_header.vpi = vcc->vpi;
1644 	tpd->atm_header.gfc = 0;
1645     }
1646 
1647     tpd->spec.length = tx_len;
1648     tpd->spec.nseg   = 1;
1649     tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1650     tpd->spec.intr   = 1;
1651 
1652     tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1653     tpd_haddr.pad   = 0;
1654     tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1655 
1656     *entry->status = STATUS_PENDING;
1657     fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1658 
1659     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1660 
1661     return 0;
1662 }
1663 
1664 
1665 static int
fore200e_getstats(struct fore200e * fore200e)1666 fore200e_getstats(struct fore200e* fore200e)
1667 {
1668     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1669     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1670     struct stats_opcode     opcode;
1671     int                     ok;
1672     u32                     stats_dma_addr;
1673 
1674     if (fore200e->stats == NULL) {
1675 	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1676 	if (fore200e->stats == NULL)
1677 	    return -ENOMEM;
1678     }
1679 
1680     stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1681 				    sizeof(struct stats), DMA_FROM_DEVICE);
1682     if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1683     	return -ENOMEM;
1684 
1685     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1686 
1687     opcode.opcode = OPCODE_GET_STATS;
1688     opcode.pad    = 0;
1689 
1690     fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1691 
1692     *entry->status = STATUS_PENDING;
1693 
1694     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1695 
1696     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1697 
1698     *entry->status = STATUS_FREE;
1699 
1700     dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1701 
1702     if (ok == 0) {
1703 	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1704 	return -EIO;
1705     }
1706 
1707     return 0;
1708 }
1709 
1710 #if 0 /* currently unused */
1711 static int
1712 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1713 {
1714     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1715     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1716     struct oc3_opcode       opcode;
1717     int                     ok;
1718     u32                     oc3_regs_dma_addr;
1719 
1720     oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1721 
1722     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1723 
1724     opcode.opcode = OPCODE_GET_OC3;
1725     opcode.reg    = 0;
1726     opcode.value  = 0;
1727     opcode.mask   = 0;
1728 
1729     fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1730 
1731     *entry->status = STATUS_PENDING;
1732 
1733     fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1734 
1735     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1736 
1737     *entry->status = STATUS_FREE;
1738 
1739     fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1740 
1741     if (ok == 0) {
1742 	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1743 	return -EIO;
1744     }
1745 
1746     return 0;
1747 }
1748 #endif
1749 
1750 
1751 static int
fore200e_set_oc3(struct fore200e * fore200e,u32 reg,u32 value,u32 mask)1752 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1753 {
1754     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1755     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1756     struct oc3_opcode       opcode;
1757     int                     ok;
1758 
1759     DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1760 
1761     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1762 
1763     opcode.opcode = OPCODE_SET_OC3;
1764     opcode.reg    = reg;
1765     opcode.value  = value;
1766     opcode.mask   = mask;
1767 
1768     fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1769 
1770     *entry->status = STATUS_PENDING;
1771 
1772     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1773 
1774     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1775 
1776     *entry->status = STATUS_FREE;
1777 
1778     if (ok == 0) {
1779 	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1780 	return -EIO;
1781     }
1782 
1783     return 0;
1784 }
1785 
1786 
1787 static int
fore200e_setloop(struct fore200e * fore200e,int loop_mode)1788 fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1789 {
1790     u32 mct_value, mct_mask;
1791     int error;
1792 
1793     if (!capable(CAP_NET_ADMIN))
1794 	return -EPERM;
1795 
1796     switch (loop_mode) {
1797 
1798     case ATM_LM_NONE:
1799 	mct_value = 0;
1800 	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1801 	break;
1802 
1803     case ATM_LM_LOC_PHY:
1804 	mct_value = mct_mask = SUNI_MCT_DLE;
1805 	break;
1806 
1807     case ATM_LM_RMT_PHY:
1808 	mct_value = mct_mask = SUNI_MCT_LLE;
1809 	break;
1810 
1811     default:
1812 	return -EINVAL;
1813     }
1814 
1815     error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1816     if (error == 0)
1817 	fore200e->loop_mode = loop_mode;
1818 
1819     return error;
1820 }
1821 
1822 
1823 static int
fore200e_fetch_stats(struct fore200e * fore200e,struct sonet_stats __user * arg)1824 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1825 {
1826     struct sonet_stats tmp;
1827 
1828     if (fore200e_getstats(fore200e) < 0)
1829 	return -EIO;
1830 
1831     tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1832     tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1833     tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1834     tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1835     tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1836     tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1837     tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1838     tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1839 	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1840 	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1841     tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1842 	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1843 	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1844 
1845     if (arg)
1846 	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1847 
1848     return 0;
1849 }
1850 
1851 
1852 static int
fore200e_ioctl(struct atm_dev * dev,unsigned int cmd,void __user * arg)1853 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1854 {
1855     struct fore200e* fore200e = FORE200E_DEV(dev);
1856 
1857     DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1858 
1859     switch (cmd) {
1860 
1861     case SONET_GETSTAT:
1862 	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1863 
1864     case SONET_GETDIAG:
1865 	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1866 
1867     case ATM_SETLOOP:
1868 	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1869 
1870     case ATM_GETLOOP:
1871 	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1872 
1873     case ATM_QUERYLOOP:
1874 	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1875     }
1876 
1877     return -ENOSYS; /* not implemented */
1878 }
1879 
1880 
1881 static int
fore200e_change_qos(struct atm_vcc * vcc,struct atm_qos * qos,int flags)1882 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1883 {
1884     struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1885     struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1886 
1887     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1888 	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1889 	return -EINVAL;
1890     }
1891 
1892     DPRINTK(2, "change_qos %d.%d.%d, "
1893 	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1894 	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1895 	    "available_cell_rate = %u",
1896 	    vcc->itf, vcc->vpi, vcc->vci,
1897 	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1898 	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1899 	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1900 	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1901 	    flags, fore200e->available_cell_rate);
1902 
1903     if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1904 
1905 	mutex_lock(&fore200e->rate_mtx);
1906 	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1907 	    mutex_unlock(&fore200e->rate_mtx);
1908 	    return -EAGAIN;
1909 	}
1910 
1911 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1912 	fore200e->available_cell_rate -= qos->txtp.max_pcr;
1913 
1914 	mutex_unlock(&fore200e->rate_mtx);
1915 
1916 	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1917 
1918 	/* update rate control parameters */
1919 	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1920 
1921 	set_bit(ATM_VF_HASQOS, &vcc->flags);
1922 
1923 	return 0;
1924     }
1925 
1926     return -EINVAL;
1927 }
1928 
1929 
fore200e_irq_request(struct fore200e * fore200e)1930 static int fore200e_irq_request(struct fore200e *fore200e)
1931 {
1932     if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1933 
1934 	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1935 	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
1936 	return -EBUSY;
1937     }
1938 
1939     printk(FORE200E "IRQ %s reserved for device %s\n",
1940 	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
1941 
1942 #ifdef FORE200E_USE_TASKLET
1943     tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1944     tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1945 #endif
1946 
1947     fore200e->state = FORE200E_STATE_IRQ;
1948     return 0;
1949 }
1950 
1951 
fore200e_get_esi(struct fore200e * fore200e)1952 static int fore200e_get_esi(struct fore200e *fore200e)
1953 {
1954     struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1955     int ok, i;
1956 
1957     if (!prom)
1958 	return -ENOMEM;
1959 
1960     ok = fore200e->bus->prom_read(fore200e, prom);
1961     if (ok < 0) {
1962 	kfree(prom);
1963 	return -EBUSY;
1964     }
1965 
1966     printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1967 	   fore200e->name,
1968 	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1969 	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1970 
1971     for (i = 0; i < ESI_LEN; i++) {
1972 	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1973     }
1974 
1975     kfree(prom);
1976 
1977     return 0;
1978 }
1979 
1980 
fore200e_alloc_rx_buf(struct fore200e * fore200e)1981 static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1982 {
1983     int scheme, magn, nbr, size, i;
1984 
1985     struct host_bsq* bsq;
1986     struct buffer*   buffer;
1987 
1988     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1989 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1990 
1991 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1992 
1993 	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1994 	    size = fore200e_rx_buf_size[ scheme ][ magn ];
1995 
1996 	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
1997 
1998 	    /* allocate the array of receive buffers */
1999 	    buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2000                                            GFP_KERNEL);
2001 
2002 	    if (buffer == NULL)
2003 		return -ENOMEM;
2004 
2005 	    bsq->freebuf = NULL;
2006 
2007 	    for (i = 0; i < nbr; i++) {
2008 
2009 		buffer[ i ].scheme = scheme;
2010 		buffer[ i ].magn   = magn;
2011 #ifdef FORE200E_BSQ_DEBUG
2012 		buffer[ i ].index  = i;
2013 		buffer[ i ].supplied = 0;
2014 #endif
2015 
2016 		/* allocate the receive buffer body */
2017 		if (fore200e_chunk_alloc(fore200e,
2018 					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2019 					 DMA_FROM_DEVICE) < 0) {
2020 
2021 		    while (i > 0)
2022 			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2023 		    kfree(buffer);
2024 
2025 		    return -ENOMEM;
2026 		}
2027 
2028 		/* insert the buffer into the free buffer list */
2029 		buffer[ i ].next = bsq->freebuf;
2030 		bsq->freebuf = &buffer[ i ];
2031 	    }
2032 	    /* all the buffers are free, initially */
2033 	    bsq->freebuf_count = nbr;
2034 
2035 #ifdef FORE200E_BSQ_DEBUG
2036 	    bsq_audit(3, bsq, scheme, magn);
2037 #endif
2038 	}
2039     }
2040 
2041     fore200e->state = FORE200E_STATE_ALLOC_BUF;
2042     return 0;
2043 }
2044 
2045 
fore200e_init_bs_queue(struct fore200e * fore200e)2046 static int fore200e_init_bs_queue(struct fore200e *fore200e)
2047 {
2048     int scheme, magn, i;
2049 
2050     struct host_bsq*     bsq;
2051     struct cp_bsq_entry __iomem * cp_entry;
2052 
2053     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2054 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2055 
2056 	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2057 
2058 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2059 
2060 	    /* allocate and align the array of status words */
2061 	    if (fore200e_dma_chunk_alloc(fore200e,
2062 					       &bsq->status,
2063 					       sizeof(enum status),
2064 					       QUEUE_SIZE_BS,
2065 					       fore200e->bus->status_alignment) < 0) {
2066 		return -ENOMEM;
2067 	    }
2068 
2069 	    /* allocate and align the array of receive buffer descriptors */
2070 	    if (fore200e_dma_chunk_alloc(fore200e,
2071 					       &bsq->rbd_block,
2072 					       sizeof(struct rbd_block),
2073 					       QUEUE_SIZE_BS,
2074 					       fore200e->bus->descr_alignment) < 0) {
2075 
2076 		fore200e_dma_chunk_free(fore200e, &bsq->status);
2077 		return -ENOMEM;
2078 	    }
2079 
2080 	    /* get the base address of the cp resident buffer supply queue entries */
2081 	    cp_entry = fore200e->virt_base +
2082 		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2083 
2084 	    /* fill the host resident and cp resident buffer supply queue entries */
2085 	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2086 
2087 		bsq->host_entry[ i ].status =
2088 		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2089 	        bsq->host_entry[ i ].rbd_block =
2090 		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2091 		bsq->host_entry[ i ].rbd_block_dma =
2092 		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2093 		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2094 
2095 		*bsq->host_entry[ i ].status = STATUS_FREE;
2096 
2097 		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2098 				     &cp_entry[ i ].status_haddr);
2099 	    }
2100 	}
2101     }
2102 
2103     fore200e->state = FORE200E_STATE_INIT_BSQ;
2104     return 0;
2105 }
2106 
2107 
fore200e_init_rx_queue(struct fore200e * fore200e)2108 static int fore200e_init_rx_queue(struct fore200e *fore200e)
2109 {
2110     struct host_rxq*     rxq =  &fore200e->host_rxq;
2111     struct cp_rxq_entry __iomem * cp_entry;
2112     int i;
2113 
2114     DPRINTK(2, "receive queue is being initialized\n");
2115 
2116     /* allocate and align the array of status words */
2117     if (fore200e_dma_chunk_alloc(fore200e,
2118 				       &rxq->status,
2119 				       sizeof(enum status),
2120 				       QUEUE_SIZE_RX,
2121 				       fore200e->bus->status_alignment) < 0) {
2122 	return -ENOMEM;
2123     }
2124 
2125     /* allocate and align the array of receive PDU descriptors */
2126     if (fore200e_dma_chunk_alloc(fore200e,
2127 				       &rxq->rpd,
2128 				       sizeof(struct rpd),
2129 				       QUEUE_SIZE_RX,
2130 				       fore200e->bus->descr_alignment) < 0) {
2131 
2132 	fore200e_dma_chunk_free(fore200e, &rxq->status);
2133 	return -ENOMEM;
2134     }
2135 
2136     /* get the base address of the cp resident rx queue entries */
2137     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2138 
2139     /* fill the host resident and cp resident rx entries */
2140     for (i=0; i < QUEUE_SIZE_RX; i++) {
2141 
2142 	rxq->host_entry[ i ].status =
2143 	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2144 	rxq->host_entry[ i ].rpd =
2145 	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2146 	rxq->host_entry[ i ].rpd_dma =
2147 	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2148 	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2149 
2150 	*rxq->host_entry[ i ].status = STATUS_FREE;
2151 
2152 	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2153 			     &cp_entry[ i ].status_haddr);
2154 
2155 	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2156 			     &cp_entry[ i ].rpd_haddr);
2157     }
2158 
2159     /* set the head entry of the queue */
2160     rxq->head = 0;
2161 
2162     fore200e->state = FORE200E_STATE_INIT_RXQ;
2163     return 0;
2164 }
2165 
2166 
fore200e_init_tx_queue(struct fore200e * fore200e)2167 static int fore200e_init_tx_queue(struct fore200e *fore200e)
2168 {
2169     struct host_txq*     txq =  &fore200e->host_txq;
2170     struct cp_txq_entry __iomem * cp_entry;
2171     int i;
2172 
2173     DPRINTK(2, "transmit queue is being initialized\n");
2174 
2175     /* allocate and align the array of status words */
2176     if (fore200e_dma_chunk_alloc(fore200e,
2177 				       &txq->status,
2178 				       sizeof(enum status),
2179 				       QUEUE_SIZE_TX,
2180 				       fore200e->bus->status_alignment) < 0) {
2181 	return -ENOMEM;
2182     }
2183 
2184     /* allocate and align the array of transmit PDU descriptors */
2185     if (fore200e_dma_chunk_alloc(fore200e,
2186 				       &txq->tpd,
2187 				       sizeof(struct tpd),
2188 				       QUEUE_SIZE_TX,
2189 				       fore200e->bus->descr_alignment) < 0) {
2190 
2191 	fore200e_dma_chunk_free(fore200e, &txq->status);
2192 	return -ENOMEM;
2193     }
2194 
2195     /* get the base address of the cp resident tx queue entries */
2196     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2197 
2198     /* fill the host resident and cp resident tx entries */
2199     for (i=0; i < QUEUE_SIZE_TX; i++) {
2200 
2201 	txq->host_entry[ i ].status =
2202 	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2203 	txq->host_entry[ i ].tpd =
2204 	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2205 	txq->host_entry[ i ].tpd_dma  =
2206                              FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2207 	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2208 
2209 	*txq->host_entry[ i ].status = STATUS_FREE;
2210 
2211 	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2212 			     &cp_entry[ i ].status_haddr);
2213 
2214         /* although there is a one-to-one mapping of tx queue entries and tpds,
2215 	   we do not write here the DMA (physical) base address of each tpd into
2216 	   the related cp resident entry, because the cp relies on this write
2217 	   operation to detect that a new pdu has been submitted for tx */
2218     }
2219 
2220     /* set the head and tail entries of the queue */
2221     txq->head = 0;
2222     txq->tail = 0;
2223 
2224     fore200e->state = FORE200E_STATE_INIT_TXQ;
2225     return 0;
2226 }
2227 
2228 
fore200e_init_cmd_queue(struct fore200e * fore200e)2229 static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2230 {
2231     struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2232     struct cp_cmdq_entry __iomem * cp_entry;
2233     int i;
2234 
2235     DPRINTK(2, "command queue is being initialized\n");
2236 
2237     /* allocate and align the array of status words */
2238     if (fore200e_dma_chunk_alloc(fore200e,
2239 				       &cmdq->status,
2240 				       sizeof(enum status),
2241 				       QUEUE_SIZE_CMD,
2242 				       fore200e->bus->status_alignment) < 0) {
2243 	return -ENOMEM;
2244     }
2245 
2246     /* get the base address of the cp resident cmd queue entries */
2247     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2248 
2249     /* fill the host resident and cp resident cmd entries */
2250     for (i=0; i < QUEUE_SIZE_CMD; i++) {
2251 
2252 	cmdq->host_entry[ i ].status   =
2253                               FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2254 	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2255 
2256 	*cmdq->host_entry[ i ].status = STATUS_FREE;
2257 
2258 	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2259                              &cp_entry[ i ].status_haddr);
2260     }
2261 
2262     /* set the head entry of the queue */
2263     cmdq->head = 0;
2264 
2265     fore200e->state = FORE200E_STATE_INIT_CMDQ;
2266     return 0;
2267 }
2268 
2269 
fore200e_param_bs_queue(struct fore200e * fore200e,enum buffer_scheme scheme,enum buffer_magn magn,int queue_length,int pool_size,int supply_blksize)2270 static void fore200e_param_bs_queue(struct fore200e *fore200e,
2271 				    enum buffer_scheme scheme,
2272 				    enum buffer_magn magn, int queue_length,
2273 				    int pool_size, int supply_blksize)
2274 {
2275     struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2276 
2277     fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2278     fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2279     fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2280     fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2281 }
2282 
2283 
fore200e_initialize(struct fore200e * fore200e)2284 static int fore200e_initialize(struct fore200e *fore200e)
2285 {
2286     struct cp_queues __iomem * cpq;
2287     int               ok, scheme, magn;
2288 
2289     DPRINTK(2, "device %s being initialized\n", fore200e->name);
2290 
2291     mutex_init(&fore200e->rate_mtx);
2292     spin_lock_init(&fore200e->q_lock);
2293 
2294     cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2295 
2296     /* enable cp to host interrupts */
2297     fore200e->bus->write(1, &cpq->imask);
2298 
2299     if (fore200e->bus->irq_enable)
2300 	fore200e->bus->irq_enable(fore200e);
2301 
2302     fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2303 
2304     fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2305     fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2306     fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2307 
2308     fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2309     fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2310 
2311     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2312 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2313 	    fore200e_param_bs_queue(fore200e, scheme, magn,
2314 				    QUEUE_SIZE_BS,
2315 				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2316 				    RBD_BLK_SIZE);
2317 
2318     /* issue the initialize command */
2319     fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2320     fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2321 
2322     ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2323     if (ok == 0) {
2324 	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2325 	return -ENODEV;
2326     }
2327 
2328     printk(FORE200E "device %s initialized\n", fore200e->name);
2329 
2330     fore200e->state = FORE200E_STATE_INITIALIZE;
2331     return 0;
2332 }
2333 
2334 
fore200e_monitor_putc(struct fore200e * fore200e,char c)2335 static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2336 {
2337     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2338 
2339 #if 0
2340     printk("%c", c);
2341 #endif
2342     fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2343 }
2344 
2345 
fore200e_monitor_getc(struct fore200e * fore200e)2346 static int fore200e_monitor_getc(struct fore200e *fore200e)
2347 {
2348     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2349     unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2350     int                c;
2351 
2352     while (time_before(jiffies, timeout)) {
2353 
2354 	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2355 
2356 	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2357 
2358 	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2359 #if 0
2360 	    printk("%c", c & 0xFF);
2361 #endif
2362 	    return c & 0xFF;
2363 	}
2364     }
2365 
2366     return -1;
2367 }
2368 
2369 
fore200e_monitor_puts(struct fore200e * fore200e,char * str)2370 static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2371 {
2372     while (*str) {
2373 
2374 	/* the i960 monitor doesn't accept any new character if it has something to say */
2375 	while (fore200e_monitor_getc(fore200e) >= 0);
2376 
2377 	fore200e_monitor_putc(fore200e, *str++);
2378     }
2379 
2380     while (fore200e_monitor_getc(fore200e) >= 0);
2381 }
2382 
2383 #ifdef __LITTLE_ENDIAN
2384 #define FW_EXT ".bin"
2385 #else
2386 #define FW_EXT "_ecd.bin2"
2387 #endif
2388 
fore200e_load_and_start_fw(struct fore200e * fore200e)2389 static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2390 {
2391     const struct firmware *firmware;
2392     const struct fw_header *fw_header;
2393     const __le32 *fw_data;
2394     u32 fw_size;
2395     u32 __iomem *load_addr;
2396     char buf[48];
2397     int err;
2398 
2399     sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2400     if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2401 	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2402 	return err;
2403     }
2404 
2405     fw_data = (const __le32 *)firmware->data;
2406     fw_size = firmware->size / sizeof(u32);
2407     fw_header = (const struct fw_header *)firmware->data;
2408     load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2409 
2410     DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2411 	    fore200e->name, load_addr, fw_size);
2412 
2413     if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2414 	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2415 	goto release;
2416     }
2417 
2418     for (; fw_size--; fw_data++, load_addr++)
2419 	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2420 
2421     DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2422 
2423 #if defined(__sparc_v9__)
2424     /* reported to be required by SBA cards on some sparc64 hosts */
2425     fore200e_spin(100);
2426 #endif
2427 
2428     sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2429     fore200e_monitor_puts(fore200e, buf);
2430 
2431     if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2432 	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2433 	goto release;
2434     }
2435 
2436     printk(FORE200E "device %s firmware started\n", fore200e->name);
2437 
2438     fore200e->state = FORE200E_STATE_START_FW;
2439     err = 0;
2440 
2441 release:
2442     release_firmware(firmware);
2443     return err;
2444 }
2445 
2446 
fore200e_register(struct fore200e * fore200e,struct device * parent)2447 static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2448 {
2449     struct atm_dev* atm_dev;
2450 
2451     DPRINTK(2, "device %s being registered\n", fore200e->name);
2452 
2453     atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2454                                -1, NULL);
2455     if (atm_dev == NULL) {
2456 	printk(FORE200E "unable to register device %s\n", fore200e->name);
2457 	return -ENODEV;
2458     }
2459 
2460     atm_dev->dev_data = fore200e;
2461     fore200e->atm_dev = atm_dev;
2462 
2463     atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2464     atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2465 
2466     fore200e->available_cell_rate = ATM_OC3_PCR;
2467 
2468     fore200e->state = FORE200E_STATE_REGISTER;
2469     return 0;
2470 }
2471 
2472 
fore200e_init(struct fore200e * fore200e,struct device * parent)2473 static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2474 {
2475     if (fore200e_register(fore200e, parent) < 0)
2476 	return -ENODEV;
2477 
2478     if (fore200e->bus->configure(fore200e) < 0)
2479 	return -ENODEV;
2480 
2481     if (fore200e->bus->map(fore200e) < 0)
2482 	return -ENODEV;
2483 
2484     if (fore200e_reset(fore200e, 1) < 0)
2485 	return -ENODEV;
2486 
2487     if (fore200e_load_and_start_fw(fore200e) < 0)
2488 	return -ENODEV;
2489 
2490     if (fore200e_initialize(fore200e) < 0)
2491 	return -ENODEV;
2492 
2493     if (fore200e_init_cmd_queue(fore200e) < 0)
2494 	return -ENOMEM;
2495 
2496     if (fore200e_init_tx_queue(fore200e) < 0)
2497 	return -ENOMEM;
2498 
2499     if (fore200e_init_rx_queue(fore200e) < 0)
2500 	return -ENOMEM;
2501 
2502     if (fore200e_init_bs_queue(fore200e) < 0)
2503 	return -ENOMEM;
2504 
2505     if (fore200e_alloc_rx_buf(fore200e) < 0)
2506 	return -ENOMEM;
2507 
2508     if (fore200e_get_esi(fore200e) < 0)
2509 	return -EIO;
2510 
2511     if (fore200e_irq_request(fore200e) < 0)
2512 	return -EBUSY;
2513 
2514     fore200e_supply(fore200e);
2515 
2516     /* all done, board initialization is now complete */
2517     fore200e->state = FORE200E_STATE_COMPLETE;
2518     return 0;
2519 }
2520 
2521 #ifdef CONFIG_SBUS
fore200e_sba_probe(struct platform_device * op)2522 static int fore200e_sba_probe(struct platform_device *op)
2523 {
2524 	struct fore200e *fore200e;
2525 	static int index = 0;
2526 	int err;
2527 
2528 	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2529 	if (!fore200e)
2530 		return -ENOMEM;
2531 
2532 	fore200e->bus = &fore200e_sbus_ops;
2533 	fore200e->dev = &op->dev;
2534 	fore200e->irq = op->archdata.irqs[0];
2535 	fore200e->phys_base = op->resource[0].start;
2536 
2537 	sprintf(fore200e->name, "SBA-200E-%d", index);
2538 
2539 	err = fore200e_init(fore200e, &op->dev);
2540 	if (err < 0) {
2541 		fore200e_shutdown(fore200e);
2542 		kfree(fore200e);
2543 		return err;
2544 	}
2545 
2546 	index++;
2547 	dev_set_drvdata(&op->dev, fore200e);
2548 
2549 	return 0;
2550 }
2551 
fore200e_sba_remove(struct platform_device * op)2552 static void fore200e_sba_remove(struct platform_device *op)
2553 {
2554 	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2555 
2556 	fore200e_shutdown(fore200e);
2557 	kfree(fore200e);
2558 }
2559 
2560 static const struct of_device_id fore200e_sba_match[] = {
2561 	{
2562 		.name = SBA200E_PROM_NAME,
2563 	},
2564 	{},
2565 };
2566 MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2567 
2568 static struct platform_driver fore200e_sba_driver = {
2569 	.driver = {
2570 		.name = "fore_200e",
2571 		.of_match_table = fore200e_sba_match,
2572 	},
2573 	.probe		= fore200e_sba_probe,
2574 	.remove		= fore200e_sba_remove,
2575 };
2576 #endif
2577 
2578 #ifdef CONFIG_PCI
fore200e_pca_detect(struct pci_dev * pci_dev,const struct pci_device_id * pci_ent)2579 static int fore200e_pca_detect(struct pci_dev *pci_dev,
2580 			       const struct pci_device_id *pci_ent)
2581 {
2582     struct fore200e* fore200e;
2583     int err = 0;
2584     static int index = 0;
2585 
2586     if (pci_enable_device(pci_dev)) {
2587 	err = -EINVAL;
2588 	goto out;
2589     }
2590 
2591     if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2592 	err = -EINVAL;
2593 	goto out;
2594     }
2595 
2596     fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2597     if (fore200e == NULL) {
2598 	err = -ENOMEM;
2599 	goto out_disable;
2600     }
2601 
2602     fore200e->bus       = &fore200e_pci_ops;
2603     fore200e->dev	= &pci_dev->dev;
2604     fore200e->irq       = pci_dev->irq;
2605     fore200e->phys_base = pci_resource_start(pci_dev, 0);
2606 
2607     sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2608 
2609     pci_set_master(pci_dev);
2610 
2611     printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2612 	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2613 
2614     sprintf(fore200e->name, "PCA-200E-%d", index);
2615 
2616     err = fore200e_init(fore200e, &pci_dev->dev);
2617     if (err < 0) {
2618 	fore200e_shutdown(fore200e);
2619 	goto out_free;
2620     }
2621 
2622     ++index;
2623     pci_set_drvdata(pci_dev, fore200e);
2624 
2625 out:
2626     return err;
2627 
2628 out_free:
2629     kfree(fore200e);
2630 out_disable:
2631     pci_disable_device(pci_dev);
2632     goto out;
2633 }
2634 
2635 
fore200e_pca_remove_one(struct pci_dev * pci_dev)2636 static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2637 {
2638     struct fore200e *fore200e;
2639 
2640     fore200e = pci_get_drvdata(pci_dev);
2641 
2642     fore200e_shutdown(fore200e);
2643     kfree(fore200e);
2644     pci_disable_device(pci_dev);
2645 }
2646 
2647 
2648 static const struct pci_device_id fore200e_pca_tbl[] = {
2649     { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2650     { 0, }
2651 };
2652 
2653 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2654 
2655 static struct pci_driver fore200e_pca_driver = {
2656     .name =     "fore_200e",
2657     .probe =    fore200e_pca_detect,
2658     .remove =   fore200e_pca_remove_one,
2659     .id_table = fore200e_pca_tbl,
2660 };
2661 #endif
2662 
fore200e_module_init(void)2663 static int __init fore200e_module_init(void)
2664 {
2665 	int err = 0;
2666 
2667 	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2668 
2669 #ifdef CONFIG_SBUS
2670 	err = platform_driver_register(&fore200e_sba_driver);
2671 	if (err)
2672 		return err;
2673 #endif
2674 
2675 #ifdef CONFIG_PCI
2676 	err = pci_register_driver(&fore200e_pca_driver);
2677 #endif
2678 
2679 #ifdef CONFIG_SBUS
2680 	if (err)
2681 		platform_driver_unregister(&fore200e_sba_driver);
2682 #endif
2683 
2684 	return err;
2685 }
2686 
fore200e_module_cleanup(void)2687 static void __exit fore200e_module_cleanup(void)
2688 {
2689 #ifdef CONFIG_PCI
2690 	pci_unregister_driver(&fore200e_pca_driver);
2691 #endif
2692 #ifdef CONFIG_SBUS
2693 	platform_driver_unregister(&fore200e_sba_driver);
2694 #endif
2695 }
2696 
2697 static int
fore200e_proc_read(struct atm_dev * dev,loff_t * pos,char * page)2698 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2699 {
2700     struct fore200e*     fore200e  = FORE200E_DEV(dev);
2701     struct fore200e_vcc* fore200e_vcc;
2702     struct atm_vcc*      vcc;
2703     int                  i, len, left = *pos;
2704     unsigned long        flags;
2705 
2706     if (!left--) {
2707 
2708 	if (fore200e_getstats(fore200e) < 0)
2709 	    return -EIO;
2710 
2711 	len = sprintf(page,"\n"
2712 		       " device:\n"
2713 		       "   internal name:\t\t%s\n", fore200e->name);
2714 
2715 	/* print bus-specific information */
2716 	if (fore200e->bus->proc_read)
2717 	    len += fore200e->bus->proc_read(fore200e, page + len);
2718 
2719 	len += sprintf(page + len,
2720 		"   interrupt line:\t\t%s\n"
2721 		"   physical base address:\t0x%p\n"
2722 		"   virtual base address:\t0x%p\n"
2723 		"   factory address (ESI):\t%pM\n"
2724 		"   board serial number:\t\t%d\n\n",
2725 		fore200e_irq_itoa(fore200e->irq),
2726 		(void*)fore200e->phys_base,
2727 		fore200e->virt_base,
2728 		fore200e->esi,
2729 		fore200e->esi[4] * 256 + fore200e->esi[5]);
2730 
2731 	return len;
2732     }
2733 
2734     if (!left--)
2735 	return sprintf(page,
2736 		       "   free small bufs, scheme 1:\t%d\n"
2737 		       "   free large bufs, scheme 1:\t%d\n"
2738 		       "   free small bufs, scheme 2:\t%d\n"
2739 		       "   free large bufs, scheme 2:\t%d\n",
2740 		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2741 		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2742 		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2743 		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2744 
2745     if (!left--) {
2746 	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2747 
2748 	len = sprintf(page,"\n\n"
2749 		      " cell processor:\n"
2750 		      "   heartbeat state:\t\t");
2751 
2752 	if (hb >> 16 != 0xDEAD)
2753 	    len += sprintf(page + len, "0x%08x\n", hb);
2754 	else
2755 	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2756 
2757 	return len;
2758     }
2759 
2760     if (!left--) {
2761 	static const char* media_name[] = {
2762 	    "unshielded twisted pair",
2763 	    "multimode optical fiber ST",
2764 	    "multimode optical fiber SC",
2765 	    "single-mode optical fiber ST",
2766 	    "single-mode optical fiber SC",
2767 	    "unknown"
2768 	};
2769 
2770 	static const char* oc3_mode[] = {
2771 	    "normal operation",
2772 	    "diagnostic loopback",
2773 	    "line loopback",
2774 	    "unknown"
2775 	};
2776 
2777 	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2778 	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2779 	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2780 	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2781 	u32 oc3_index;
2782 
2783 	if (media_index > 4)
2784 		media_index = 5;
2785 
2786 	switch (fore200e->loop_mode) {
2787 	    case ATM_LM_NONE:    oc3_index = 0;
2788 		                 break;
2789 	    case ATM_LM_LOC_PHY: oc3_index = 1;
2790 		                 break;
2791 	    case ATM_LM_RMT_PHY: oc3_index = 2;
2792 		                 break;
2793 	    default:             oc3_index = 3;
2794 	}
2795 
2796 	return sprintf(page,
2797 		       "   firmware release:\t\t%d.%d.%d\n"
2798 		       "   monitor release:\t\t%d.%d\n"
2799 		       "   media type:\t\t\t%s\n"
2800 		       "   OC-3 revision:\t\t0x%x\n"
2801                        "   OC-3 mode:\t\t\t%s",
2802 		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2803 		       mon960_release >> 16, mon960_release << 16 >> 16,
2804 		       media_name[ media_index ],
2805 		       oc3_revision,
2806 		       oc3_mode[ oc3_index ]);
2807     }
2808 
2809     if (!left--) {
2810 	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2811 
2812 	return sprintf(page,
2813 		       "\n\n"
2814 		       " monitor:\n"
2815 		       "   version number:\t\t%d\n"
2816 		       "   boot status word:\t\t0x%08x\n",
2817 		       fore200e->bus->read(&cp_monitor->mon_version),
2818 		       fore200e->bus->read(&cp_monitor->bstat));
2819     }
2820 
2821     if (!left--)
2822 	return sprintf(page,
2823 		       "\n"
2824 		       " device statistics:\n"
2825 		       "  4b5b:\n"
2826 		       "     crc_header_errors:\t\t%10u\n"
2827 		       "     framing_errors:\t\t%10u\n",
2828 		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2829 		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2830 
2831     if (!left--)
2832 	return sprintf(page, "\n"
2833 		       "  OC-3:\n"
2834 		       "     section_bip8_errors:\t%10u\n"
2835 		       "     path_bip8_errors:\t\t%10u\n"
2836 		       "     line_bip24_errors:\t\t%10u\n"
2837 		       "     line_febe_errors:\t\t%10u\n"
2838 		       "     path_febe_errors:\t\t%10u\n"
2839 		       "     corr_hcs_errors:\t\t%10u\n"
2840 		       "     ucorr_hcs_errors:\t\t%10u\n",
2841 		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2842 		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2843 		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2844 		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2845 		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2846 		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2847 		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2848 
2849     if (!left--)
2850 	return sprintf(page,"\n"
2851 		       "   ATM:\t\t\t\t     cells\n"
2852 		       "     TX:\t\t\t%10u\n"
2853 		       "     RX:\t\t\t%10u\n"
2854 		       "     vpi out of range:\t\t%10u\n"
2855 		       "     vpi no conn:\t\t%10u\n"
2856 		       "     vci out of range:\t\t%10u\n"
2857 		       "     vci no conn:\t\t%10u\n",
2858 		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2859 		       be32_to_cpu(fore200e->stats->atm.cells_received),
2860 		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2861 		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2862 		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2863 		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2864 
2865     if (!left--)
2866 	return sprintf(page,"\n"
2867 		       "   AAL0:\t\t\t     cells\n"
2868 		       "     TX:\t\t\t%10u\n"
2869 		       "     RX:\t\t\t%10u\n"
2870 		       "     dropped:\t\t\t%10u\n",
2871 		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2872 		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2873 		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2874 
2875     if (!left--)
2876 	return sprintf(page,"\n"
2877 		       "   AAL3/4:\n"
2878 		       "     SAR sublayer:\t\t     cells\n"
2879 		       "       TX:\t\t\t%10u\n"
2880 		       "       RX:\t\t\t%10u\n"
2881 		       "       dropped:\t\t\t%10u\n"
2882 		       "       CRC errors:\t\t%10u\n"
2883 		       "       protocol errors:\t\t%10u\n\n"
2884 		       "     CS  sublayer:\t\t      PDUs\n"
2885 		       "       TX:\t\t\t%10u\n"
2886 		       "       RX:\t\t\t%10u\n"
2887 		       "       dropped:\t\t\t%10u\n"
2888 		       "       protocol errors:\t\t%10u\n",
2889 		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2890 		       be32_to_cpu(fore200e->stats->aal34.cells_received),
2891 		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2892 		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2893 		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2894 		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2895 		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2896 		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2897 		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2898 
2899     if (!left--)
2900 	return sprintf(page,"\n"
2901 		       "   AAL5:\n"
2902 		       "     SAR sublayer:\t\t     cells\n"
2903 		       "       TX:\t\t\t%10u\n"
2904 		       "       RX:\t\t\t%10u\n"
2905 		       "       dropped:\t\t\t%10u\n"
2906 		       "       congestions:\t\t%10u\n\n"
2907 		       "     CS  sublayer:\t\t      PDUs\n"
2908 		       "       TX:\t\t\t%10u\n"
2909 		       "       RX:\t\t\t%10u\n"
2910 		       "       dropped:\t\t\t%10u\n"
2911 		       "       CRC errors:\t\t%10u\n"
2912 		       "       protocol errors:\t\t%10u\n",
2913 		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2914 		       be32_to_cpu(fore200e->stats->aal5.cells_received),
2915 		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2916 		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2917 		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2918 		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2919 		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2920 		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2921 		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2922 
2923     if (!left--)
2924 	return sprintf(page,"\n"
2925 		       "   AUX:\t\t       allocation failures\n"
2926 		       "     small b1:\t\t\t%10u\n"
2927 		       "     large b1:\t\t\t%10u\n"
2928 		       "     small b2:\t\t\t%10u\n"
2929 		       "     large b2:\t\t\t%10u\n"
2930 		       "     RX PDUs:\t\t\t%10u\n"
2931 		       "     TX PDUs:\t\t\t%10lu\n",
2932 		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2933 		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2934 		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2935 		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2936 		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2937 		       fore200e->tx_sat);
2938 
2939     if (!left--)
2940 	return sprintf(page,"\n"
2941 		       " receive carrier:\t\t\t%s\n",
2942 		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2943 
2944     if (!left--) {
2945         return sprintf(page,"\n"
2946 		       " VCCs:\n  address   VPI VCI   AAL "
2947 		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2948     }
2949 
2950     for (i = 0; i < NBR_CONNECT; i++) {
2951 
2952 	vcc = fore200e->vc_map[i].vcc;
2953 
2954 	if (vcc == NULL)
2955 	    continue;
2956 
2957 	spin_lock_irqsave(&fore200e->q_lock, flags);
2958 
2959 	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2960 
2961 	    fore200e_vcc = FORE200E_VCC(vcc);
2962 	    ASSERT(fore200e_vcc);
2963 
2964 	    len = sprintf(page,
2965 			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2966 			  vcc,
2967 			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2968 			  fore200e_vcc->tx_pdu,
2969 			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2970 			  fore200e_vcc->tx_max_pdu,
2971 			  fore200e_vcc->rx_pdu,
2972 			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2973 			  fore200e_vcc->rx_max_pdu);
2974 
2975 	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
2976 	    return len;
2977 	}
2978 
2979 	spin_unlock_irqrestore(&fore200e->q_lock, flags);
2980     }
2981 
2982     return 0;
2983 }
2984 
2985 module_init(fore200e_module_init);
2986 module_exit(fore200e_module_cleanup);
2987 
2988 
2989 static const struct atmdev_ops fore200e_ops = {
2990 	.open       = fore200e_open,
2991 	.close      = fore200e_close,
2992 	.ioctl      = fore200e_ioctl,
2993 	.send       = fore200e_send,
2994 	.change_qos = fore200e_change_qos,
2995 	.proc_read  = fore200e_proc_read,
2996 	.owner      = THIS_MODULE
2997 };
2998 
2999 MODULE_LICENSE("GPL");
3000 #ifdef CONFIG_PCI
3001 #ifdef __LITTLE_ENDIAN__
3002 MODULE_FIRMWARE("pca200e.bin");
3003 #else
3004 MODULE_FIRMWARE("pca200e_ecd.bin2");
3005 #endif
3006 #endif /* CONFIG_PCI */
3007 #ifdef CONFIG_SBUS
3008 MODULE_FIRMWARE("sba200e_ecd.bin2");
3009 #endif
3010