1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 A FORE Systems 200E-series driver for ATM on Linux.
4 Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
5
6 Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
7
8 This driver simultaneously supports PCA-200E and SBA-200E adapters
9 on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
10
11 */
12
13
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/capability.h>
18 #include <linux/interrupt.h>
19 #include <linux/bitops.h>
20 #include <linux/pci.h>
21 #include <linux/module.h>
22 #include <linux/atmdev.h>
23 #include <linux/sonet.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/delay.h>
26 #include <linux/firmware.h>
27 #include <linux/pgtable.h>
28 #include <asm/io.h>
29 #include <asm/string.h>
30 #include <asm/page.h>
31 #include <asm/irq.h>
32 #include <asm/dma.h>
33 #include <asm/byteorder.h>
34 #include <linux/uaccess.h>
35 #include <linux/atomic.h>
36
37 #ifdef CONFIG_SBUS
38 #include <linux/of.h>
39 #include <linux/platform_device.h>
40 #include <asm/idprom.h>
41 #include <asm/openprom.h>
42 #include <asm/oplib.h>
43 #endif
44
45 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
46 #define FORE200E_USE_TASKLET
47 #endif
48
49 #if 0 /* enable the debugging code of the buffer supply queues */
50 #define FORE200E_BSQ_DEBUG
51 #endif
52
53 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
54 #define FORE200E_52BYTE_AAL0_SDU
55 #endif
56
57 #include "fore200e.h"
58 #include "suni.h"
59
60 #define FORE200E_VERSION "0.3e"
61
62 #define FORE200E "fore200e: "
63
64 #if 0 /* override .config */
65 #define CONFIG_ATM_FORE200E_DEBUG 1
66 #endif
67 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
68 #define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
69 printk(FORE200E format, ##args); } while (0)
70 #else
71 #define DPRINTK(level, format, args...) do {} while (0)
72 #endif
73
74
75 #define FORE200E_ALIGN(addr, alignment) \
76 ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
77
78 #define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type))
79
80 #define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ])
81
82 #define FORE200E_NEXT_ENTRY(index, modulo) (index = ((index) + 1) % (modulo))
83
84 #if 1
85 #define ASSERT(expr) if (!(expr)) { \
86 printk(FORE200E "assertion failed! %s[%d]: %s\n", \
87 __func__, __LINE__, #expr); \
88 panic(FORE200E "%s", __func__); \
89 }
90 #else
91 #define ASSERT(expr) do {} while (0)
92 #endif
93
94
95 static const struct atmdev_ops fore200e_ops;
96
97 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
98 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
99
100 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
101 { BUFFER_S1_NBR, BUFFER_L1_NBR },
102 { BUFFER_S2_NBR, BUFFER_L2_NBR }
103 };
104
105 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
106 { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
107 { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
108 };
109
110
111 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
112 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
113 #endif
114
115
116 #if 0 /* currently unused */
117 static int
118 fore200e_fore2atm_aal(enum fore200e_aal aal)
119 {
120 switch(aal) {
121 case FORE200E_AAL0: return ATM_AAL0;
122 case FORE200E_AAL34: return ATM_AAL34;
123 case FORE200E_AAL5: return ATM_AAL5;
124 }
125
126 return -EINVAL;
127 }
128 #endif
129
130
131 static enum fore200e_aal
fore200e_atm2fore_aal(int aal)132 fore200e_atm2fore_aal(int aal)
133 {
134 switch(aal) {
135 case ATM_AAL0: return FORE200E_AAL0;
136 case ATM_AAL34: return FORE200E_AAL34;
137 case ATM_AAL1:
138 case ATM_AAL2:
139 case ATM_AAL5: return FORE200E_AAL5;
140 }
141
142 return -EINVAL;
143 }
144
145
146 static char*
fore200e_irq_itoa(int irq)147 fore200e_irq_itoa(int irq)
148 {
149 static char str[8];
150 sprintf(str, "%d", irq);
151 return str;
152 }
153
154
155 /* allocate and align a chunk of memory intended to hold the data behing exchanged
156 between the driver and the adapter (using streaming DVMA) */
157
158 static int
fore200e_chunk_alloc(struct fore200e * fore200e,struct chunk * chunk,int size,int alignment,int direction)159 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
160 {
161 unsigned long offset = 0;
162
163 if (alignment <= sizeof(int))
164 alignment = 0;
165
166 chunk->alloc_size = size + alignment;
167 chunk->direction = direction;
168
169 chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
170 if (chunk->alloc_addr == NULL)
171 return -ENOMEM;
172
173 if (alignment > 0)
174 offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
175
176 chunk->align_addr = chunk->alloc_addr + offset;
177
178 chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
179 size, direction);
180 if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
181 kfree(chunk->alloc_addr);
182 return -ENOMEM;
183 }
184 return 0;
185 }
186
187
188 /* free a chunk of memory */
189
190 static void
fore200e_chunk_free(struct fore200e * fore200e,struct chunk * chunk)191 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
192 {
193 dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
194 chunk->direction);
195 kfree(chunk->alloc_addr);
196 }
197
198 /*
199 * Allocate a DMA consistent chunk of memory intended to act as a communication
200 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
201 * and the adapter.
202 */
203 static int
fore200e_dma_chunk_alloc(struct fore200e * fore200e,struct chunk * chunk,int size,int nbr,int alignment)204 fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
205 int size, int nbr, int alignment)
206 {
207 /* returned chunks are page-aligned */
208 chunk->alloc_size = size * nbr;
209 chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
210 &chunk->dma_addr, GFP_KERNEL);
211 if (!chunk->alloc_addr)
212 return -ENOMEM;
213 chunk->align_addr = chunk->alloc_addr;
214 return 0;
215 }
216
217 /*
218 * Free a DMA consistent chunk of memory.
219 */
220 static void
fore200e_dma_chunk_free(struct fore200e * fore200e,struct chunk * chunk)221 fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
222 {
223 dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
224 chunk->dma_addr);
225 }
226
227 static void
fore200e_spin(int msecs)228 fore200e_spin(int msecs)
229 {
230 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
231 while (time_before(jiffies, timeout));
232 }
233
234
235 static int
fore200e_poll(struct fore200e * fore200e,volatile u32 * addr,u32 val,int msecs)236 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
237 {
238 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
239 int ok;
240
241 mb();
242 do {
243 if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
244 break;
245
246 } while (time_before(jiffies, timeout));
247
248 #if 1
249 if (!ok) {
250 printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
251 *addr, val);
252 }
253 #endif
254
255 return ok;
256 }
257
258
259 static int
fore200e_io_poll(struct fore200e * fore200e,volatile u32 __iomem * addr,u32 val,int msecs)260 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
261 {
262 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
263 int ok;
264
265 do {
266 if ((ok = (fore200e->bus->read(addr) == val)))
267 break;
268
269 } while (time_before(jiffies, timeout));
270
271 #if 1
272 if (!ok) {
273 printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
274 fore200e->bus->read(addr), val);
275 }
276 #endif
277
278 return ok;
279 }
280
281
282 static void
fore200e_free_rx_buf(struct fore200e * fore200e)283 fore200e_free_rx_buf(struct fore200e* fore200e)
284 {
285 int scheme, magn, nbr;
286 struct buffer* buffer;
287
288 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
289 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
290
291 if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
292
293 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
294
295 struct chunk* data = &buffer[ nbr ].data;
296
297 if (data->alloc_addr != NULL)
298 fore200e_chunk_free(fore200e, data);
299 }
300 }
301 }
302 }
303 }
304
305
306 static void
fore200e_uninit_bs_queue(struct fore200e * fore200e)307 fore200e_uninit_bs_queue(struct fore200e* fore200e)
308 {
309 int scheme, magn;
310
311 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
312 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
313
314 struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status;
315 struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
316
317 if (status->alloc_addr)
318 fore200e_dma_chunk_free(fore200e, status);
319
320 if (rbd_block->alloc_addr)
321 fore200e_dma_chunk_free(fore200e, rbd_block);
322 }
323 }
324 }
325
326
327 static int
fore200e_reset(struct fore200e * fore200e,int diag)328 fore200e_reset(struct fore200e* fore200e, int diag)
329 {
330 int ok;
331
332 fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
333
334 fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
335
336 fore200e->bus->reset(fore200e);
337
338 if (diag) {
339 ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
340 if (ok == 0) {
341
342 printk(FORE200E "device %s self-test failed\n", fore200e->name);
343 return -ENODEV;
344 }
345
346 printk(FORE200E "device %s self-test passed\n", fore200e->name);
347
348 fore200e->state = FORE200E_STATE_RESET;
349 }
350
351 return 0;
352 }
353
354
355 static void
fore200e_shutdown(struct fore200e * fore200e)356 fore200e_shutdown(struct fore200e* fore200e)
357 {
358 printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
359 fore200e->name, fore200e->phys_base,
360 fore200e_irq_itoa(fore200e->irq));
361
362 if (fore200e->state > FORE200E_STATE_RESET) {
363 /* first, reset the board to prevent further interrupts or data transfers */
364 fore200e_reset(fore200e, 0);
365 }
366
367 /* then, release all allocated resources */
368 switch(fore200e->state) {
369
370 case FORE200E_STATE_COMPLETE:
371 kfree(fore200e->stats);
372
373 fallthrough;
374 case FORE200E_STATE_IRQ:
375 free_irq(fore200e->irq, fore200e->atm_dev);
376
377 fallthrough;
378 case FORE200E_STATE_ALLOC_BUF:
379 fore200e_free_rx_buf(fore200e);
380
381 fallthrough;
382 case FORE200E_STATE_INIT_BSQ:
383 fore200e_uninit_bs_queue(fore200e);
384
385 fallthrough;
386 case FORE200E_STATE_INIT_RXQ:
387 fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
388 fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
389
390 fallthrough;
391 case FORE200E_STATE_INIT_TXQ:
392 fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
393 fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
394
395 fallthrough;
396 case FORE200E_STATE_INIT_CMDQ:
397 fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
398
399 fallthrough;
400 case FORE200E_STATE_INITIALIZE:
401 /* nothing to do for that state */
402
403 case FORE200E_STATE_START_FW:
404 /* nothing to do for that state */
405
406 case FORE200E_STATE_RESET:
407 /* nothing to do for that state */
408
409 case FORE200E_STATE_MAP:
410 fore200e->bus->unmap(fore200e);
411
412 fallthrough;
413 case FORE200E_STATE_CONFIGURE:
414 /* nothing to do for that state */
415
416 case FORE200E_STATE_REGISTER:
417 /* XXX shouldn't we *start* by deregistering the device? */
418 atm_dev_deregister(fore200e->atm_dev);
419
420 fallthrough;
421 case FORE200E_STATE_BLANK:
422 /* nothing to do for that state */
423 break;
424 }
425 }
426
427
428 #ifdef CONFIG_PCI
429
fore200e_pca_read(volatile u32 __iomem * addr)430 static u32 fore200e_pca_read(volatile u32 __iomem *addr)
431 {
432 /* on big-endian hosts, the board is configured to convert
433 the endianess of slave RAM accesses */
434 return le32_to_cpu(readl(addr));
435 }
436
437
fore200e_pca_write(u32 val,volatile u32 __iomem * addr)438 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
439 {
440 /* on big-endian hosts, the board is configured to convert
441 the endianess of slave RAM accesses */
442 writel(cpu_to_le32(val), addr);
443 }
444
445 static int
fore200e_pca_irq_check(struct fore200e * fore200e)446 fore200e_pca_irq_check(struct fore200e* fore200e)
447 {
448 /* this is a 1 bit register */
449 int irq_posted = readl(fore200e->regs.pca.psr);
450
451 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
452 if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
453 DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
454 }
455 #endif
456
457 return irq_posted;
458 }
459
460
461 static void
fore200e_pca_irq_ack(struct fore200e * fore200e)462 fore200e_pca_irq_ack(struct fore200e* fore200e)
463 {
464 writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
465 }
466
467
468 static void
fore200e_pca_reset(struct fore200e * fore200e)469 fore200e_pca_reset(struct fore200e* fore200e)
470 {
471 writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
472 fore200e_spin(10);
473 writel(0, fore200e->regs.pca.hcr);
474 }
475
476
fore200e_pca_map(struct fore200e * fore200e)477 static int fore200e_pca_map(struct fore200e* fore200e)
478 {
479 DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
480
481 fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
482
483 if (fore200e->virt_base == NULL) {
484 printk(FORE200E "can't map device %s\n", fore200e->name);
485 return -EFAULT;
486 }
487
488 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
489
490 /* gain access to the PCA specific registers */
491 fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
492 fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
493 fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
494
495 fore200e->state = FORE200E_STATE_MAP;
496 return 0;
497 }
498
499
500 static void
fore200e_pca_unmap(struct fore200e * fore200e)501 fore200e_pca_unmap(struct fore200e* fore200e)
502 {
503 DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
504
505 if (fore200e->virt_base != NULL)
506 iounmap(fore200e->virt_base);
507 }
508
509
fore200e_pca_configure(struct fore200e * fore200e)510 static int fore200e_pca_configure(struct fore200e *fore200e)
511 {
512 struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
513 u8 master_ctrl, latency;
514
515 DPRINTK(2, "device %s being configured\n", fore200e->name);
516
517 if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
518 printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
519 return -EIO;
520 }
521
522 pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
523
524 master_ctrl = master_ctrl
525 #if defined(__BIG_ENDIAN)
526 /* request the PCA board to convert the endianess of slave RAM accesses */
527 | PCA200E_CTRL_CONVERT_ENDIAN
528 #endif
529 #if 0
530 | PCA200E_CTRL_DIS_CACHE_RD
531 | PCA200E_CTRL_DIS_WRT_INVAL
532 | PCA200E_CTRL_ENA_CONT_REQ_MODE
533 | PCA200E_CTRL_2_CACHE_WRT_INVAL
534 #endif
535 | PCA200E_CTRL_LARGE_PCI_BURSTS;
536
537 pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
538
539 /* raise latency from 32 (default) to 192, as this seems to prevent NIC
540 lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
541 this may impact the performances of other PCI devices on the same bus, though */
542 latency = 192;
543 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
544
545 fore200e->state = FORE200E_STATE_CONFIGURE;
546 return 0;
547 }
548
549
550 static int __init
fore200e_pca_prom_read(struct fore200e * fore200e,struct prom_data * prom)551 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
552 {
553 struct host_cmdq* cmdq = &fore200e->host_cmdq;
554 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
555 struct prom_opcode opcode;
556 int ok;
557 u32 prom_dma;
558
559 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
560
561 opcode.opcode = OPCODE_GET_PROM;
562 opcode.pad = 0;
563
564 prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
565 DMA_FROM_DEVICE);
566 if (dma_mapping_error(fore200e->dev, prom_dma))
567 return -ENOMEM;
568
569 fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
570
571 *entry->status = STATUS_PENDING;
572
573 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
574
575 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
576
577 *entry->status = STATUS_FREE;
578
579 dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
580
581 if (ok == 0) {
582 printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
583 return -EIO;
584 }
585
586 #if defined(__BIG_ENDIAN)
587
588 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
589
590 /* MAC address is stored as little-endian */
591 swap_here(&prom->mac_addr[0]);
592 swap_here(&prom->mac_addr[4]);
593 #endif
594
595 return 0;
596 }
597
598
599 static int
fore200e_pca_proc_read(struct fore200e * fore200e,char * page)600 fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
601 {
602 struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
603
604 return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n",
605 pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
606 }
607
608 static const struct fore200e_bus fore200e_pci_ops = {
609 .model_name = "PCA-200E",
610 .proc_name = "pca200e",
611 .descr_alignment = 32,
612 .buffer_alignment = 4,
613 .status_alignment = 32,
614 .read = fore200e_pca_read,
615 .write = fore200e_pca_write,
616 .configure = fore200e_pca_configure,
617 .map = fore200e_pca_map,
618 .reset = fore200e_pca_reset,
619 .prom_read = fore200e_pca_prom_read,
620 .unmap = fore200e_pca_unmap,
621 .irq_check = fore200e_pca_irq_check,
622 .irq_ack = fore200e_pca_irq_ack,
623 .proc_read = fore200e_pca_proc_read,
624 };
625 #endif /* CONFIG_PCI */
626
627 #ifdef CONFIG_SBUS
628
fore200e_sba_read(volatile u32 __iomem * addr)629 static u32 fore200e_sba_read(volatile u32 __iomem *addr)
630 {
631 return sbus_readl(addr);
632 }
633
fore200e_sba_write(u32 val,volatile u32 __iomem * addr)634 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
635 {
636 sbus_writel(val, addr);
637 }
638
fore200e_sba_irq_enable(struct fore200e * fore200e)639 static void fore200e_sba_irq_enable(struct fore200e *fore200e)
640 {
641 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
642 fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
643 }
644
fore200e_sba_irq_check(struct fore200e * fore200e)645 static int fore200e_sba_irq_check(struct fore200e *fore200e)
646 {
647 return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
648 }
649
fore200e_sba_irq_ack(struct fore200e * fore200e)650 static void fore200e_sba_irq_ack(struct fore200e *fore200e)
651 {
652 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
653 fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
654 }
655
fore200e_sba_reset(struct fore200e * fore200e)656 static void fore200e_sba_reset(struct fore200e *fore200e)
657 {
658 fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
659 fore200e_spin(10);
660 fore200e->bus->write(0, fore200e->regs.sba.hcr);
661 }
662
fore200e_sba_map(struct fore200e * fore200e)663 static int __init fore200e_sba_map(struct fore200e *fore200e)
664 {
665 struct platform_device *op = to_platform_device(fore200e->dev);
666 unsigned int bursts;
667
668 /* gain access to the SBA specific registers */
669 fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
670 fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
671 fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
672 fore200e->virt_base = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
673
674 if (!fore200e->virt_base) {
675 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
676 return -EFAULT;
677 }
678
679 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
680
681 fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
682
683 /* get the supported DVMA burst sizes */
684 bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
685
686 if (sbus_can_dma_64bit())
687 sbus_set_sbus64(&op->dev, bursts);
688
689 fore200e->state = FORE200E_STATE_MAP;
690 return 0;
691 }
692
fore200e_sba_unmap(struct fore200e * fore200e)693 static void fore200e_sba_unmap(struct fore200e *fore200e)
694 {
695 struct platform_device *op = to_platform_device(fore200e->dev);
696
697 of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
698 of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
699 of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
700 of_iounmap(&op->resource[3], fore200e->virt_base, SBA200E_RAM_LENGTH);
701 }
702
fore200e_sba_configure(struct fore200e * fore200e)703 static int __init fore200e_sba_configure(struct fore200e *fore200e)
704 {
705 fore200e->state = FORE200E_STATE_CONFIGURE;
706 return 0;
707 }
708
fore200e_sba_prom_read(struct fore200e * fore200e,struct prom_data * prom)709 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
710 {
711 struct platform_device *op = to_platform_device(fore200e->dev);
712 const u8 *prop;
713 int len;
714
715 prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
716 if (!prop)
717 return -ENODEV;
718 memcpy(&prom->mac_addr[4], prop, 4);
719
720 prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
721 if (!prop)
722 return -ENODEV;
723 memcpy(&prom->mac_addr[2], prop, 4);
724
725 prom->serial_number = of_getintprop_default(op->dev.of_node,
726 "serialnumber", 0);
727 prom->hw_revision = of_getintprop_default(op->dev.of_node,
728 "promversion", 0);
729
730 return 0;
731 }
732
fore200e_sba_proc_read(struct fore200e * fore200e,char * page)733 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
734 {
735 struct platform_device *op = to_platform_device(fore200e->dev);
736 const struct linux_prom_registers *regs;
737
738 regs = of_get_property(op->dev.of_node, "reg", NULL);
739
740 return sprintf(page, " SBUS slot/device:\t\t%d/'%pOFn'\n",
741 (regs ? regs->which_io : 0), op->dev.of_node);
742 }
743
744 static const struct fore200e_bus fore200e_sbus_ops = {
745 .model_name = "SBA-200E",
746 .proc_name = "sba200e",
747 .descr_alignment = 32,
748 .buffer_alignment = 64,
749 .status_alignment = 32,
750 .read = fore200e_sba_read,
751 .write = fore200e_sba_write,
752 .configure = fore200e_sba_configure,
753 .map = fore200e_sba_map,
754 .reset = fore200e_sba_reset,
755 .prom_read = fore200e_sba_prom_read,
756 .unmap = fore200e_sba_unmap,
757 .irq_enable = fore200e_sba_irq_enable,
758 .irq_check = fore200e_sba_irq_check,
759 .irq_ack = fore200e_sba_irq_ack,
760 .proc_read = fore200e_sba_proc_read,
761 };
762 #endif /* CONFIG_SBUS */
763
764 static void
fore200e_tx_irq(struct fore200e * fore200e)765 fore200e_tx_irq(struct fore200e* fore200e)
766 {
767 struct host_txq* txq = &fore200e->host_txq;
768 struct host_txq_entry* entry;
769 struct atm_vcc* vcc;
770 struct fore200e_vc_map* vc_map;
771
772 if (fore200e->host_txq.txing == 0)
773 return;
774
775 for (;;) {
776
777 entry = &txq->host_entry[ txq->tail ];
778
779 if ((*entry->status & STATUS_COMPLETE) == 0) {
780 break;
781 }
782
783 DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
784 entry, txq->tail, entry->vc_map, entry->skb);
785
786 /* free copy of misaligned data */
787 kfree(entry->data);
788
789 /* remove DMA mapping */
790 dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
791 DMA_TO_DEVICE);
792
793 vc_map = entry->vc_map;
794
795 /* vcc closed since the time the entry was submitted for tx? */
796 if ((vc_map->vcc == NULL) ||
797 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
798
799 DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
800 fore200e->atm_dev->number);
801
802 dev_kfree_skb_any(entry->skb);
803 }
804 else {
805 ASSERT(vc_map->vcc);
806
807 /* vcc closed then immediately re-opened? */
808 if (vc_map->incarn != entry->incarn) {
809
810 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
811 if the same vcc is immediately re-opened, those pending PDUs must
812 not be popped after the completion of their emission, as they refer
813 to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
814 would be decremented by the size of the (unrelated) skb, possibly
815 leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
816 we thus bind the tx entry to the current incarnation of the vcc
817 when the entry is submitted for tx. When the tx later completes,
818 if the incarnation number of the tx entry does not match the one
819 of the vcc, then this implies that the vcc has been closed then re-opened.
820 we thus just drop the skb here. */
821
822 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
823 fore200e->atm_dev->number);
824
825 dev_kfree_skb_any(entry->skb);
826 }
827 else {
828 vcc = vc_map->vcc;
829 ASSERT(vcc);
830
831 /* notify tx completion */
832 if (vcc->pop) {
833 vcc->pop(vcc, entry->skb);
834 }
835 else {
836 dev_kfree_skb_any(entry->skb);
837 }
838
839 /* check error condition */
840 if (*entry->status & STATUS_ERROR)
841 atomic_inc(&vcc->stats->tx_err);
842 else
843 atomic_inc(&vcc->stats->tx);
844 }
845 }
846
847 *entry->status = STATUS_FREE;
848
849 fore200e->host_txq.txing--;
850
851 FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
852 }
853 }
854
855
856 #ifdef FORE200E_BSQ_DEBUG
bsq_audit(int where,struct host_bsq * bsq,int scheme,int magn)857 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
858 {
859 struct buffer* buffer;
860 int count = 0;
861
862 buffer = bsq->freebuf;
863 while (buffer) {
864
865 if (buffer->supplied) {
866 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
867 where, scheme, magn, buffer->index);
868 }
869
870 if (buffer->magn != magn) {
871 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
872 where, scheme, magn, buffer->index, buffer->magn);
873 }
874
875 if (buffer->scheme != scheme) {
876 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
877 where, scheme, magn, buffer->index, buffer->scheme);
878 }
879
880 if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
881 printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
882 where, scheme, magn, buffer->index);
883 }
884
885 count++;
886 buffer = buffer->next;
887 }
888
889 if (count != bsq->freebuf_count) {
890 printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
891 where, scheme, magn, count, bsq->freebuf_count);
892 }
893 return 0;
894 }
895 #endif
896
897
898 static void
fore200e_supply(struct fore200e * fore200e)899 fore200e_supply(struct fore200e* fore200e)
900 {
901 int scheme, magn, i;
902
903 struct host_bsq* bsq;
904 struct host_bsq_entry* entry;
905 struct buffer* buffer;
906
907 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
908 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
909
910 bsq = &fore200e->host_bsq[ scheme ][ magn ];
911
912 #ifdef FORE200E_BSQ_DEBUG
913 bsq_audit(1, bsq, scheme, magn);
914 #endif
915 while (bsq->freebuf_count >= RBD_BLK_SIZE) {
916
917 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
918 RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
919
920 entry = &bsq->host_entry[ bsq->head ];
921
922 for (i = 0; i < RBD_BLK_SIZE; i++) {
923
924 /* take the first buffer in the free buffer list */
925 buffer = bsq->freebuf;
926 if (!buffer) {
927 printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
928 scheme, magn, bsq->freebuf_count);
929 return;
930 }
931 bsq->freebuf = buffer->next;
932
933 #ifdef FORE200E_BSQ_DEBUG
934 if (buffer->supplied)
935 printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
936 scheme, magn, buffer->index);
937 buffer->supplied = 1;
938 #endif
939 entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
940 entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer);
941 }
942
943 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
944
945 /* decrease accordingly the number of free rx buffers */
946 bsq->freebuf_count -= RBD_BLK_SIZE;
947
948 *entry->status = STATUS_PENDING;
949 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
950 }
951 }
952 }
953 }
954
955
956 static int
fore200e_push_rpd(struct fore200e * fore200e,struct atm_vcc * vcc,struct rpd * rpd)957 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
958 {
959 struct sk_buff* skb;
960 struct buffer* buffer;
961 struct fore200e_vcc* fore200e_vcc;
962 int i, pdu_len = 0;
963 #ifdef FORE200E_52BYTE_AAL0_SDU
964 u32 cell_header = 0;
965 #endif
966
967 ASSERT(vcc);
968
969 fore200e_vcc = FORE200E_VCC(vcc);
970 ASSERT(fore200e_vcc);
971
972 #ifdef FORE200E_52BYTE_AAL0_SDU
973 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
974
975 cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
976 (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
977 (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
978 (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
979 rpd->atm_header.clp;
980 pdu_len = 4;
981 }
982 #endif
983
984 /* compute total PDU length */
985 for (i = 0; i < rpd->nseg; i++)
986 pdu_len += rpd->rsd[ i ].length;
987
988 skb = alloc_skb(pdu_len, GFP_ATOMIC);
989 if (skb == NULL) {
990 DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
991
992 atomic_inc(&vcc->stats->rx_drop);
993 return -ENOMEM;
994 }
995
996 __net_timestamp(skb);
997
998 #ifdef FORE200E_52BYTE_AAL0_SDU
999 if (cell_header) {
1000 *((u32*)skb_put(skb, 4)) = cell_header;
1001 }
1002 #endif
1003
1004 /* reassemble segments */
1005 for (i = 0; i < rpd->nseg; i++) {
1006
1007 /* rebuild rx buffer address from rsd handle */
1008 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1009
1010 /* Make device DMA transfer visible to CPU. */
1011 dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1012 rpd->rsd[i].length, DMA_FROM_DEVICE);
1013
1014 skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1015
1016 /* Now let the device get at it again. */
1017 dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1018 rpd->rsd[i].length, DMA_FROM_DEVICE);
1019 }
1020
1021 DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1022
1023 if (pdu_len < fore200e_vcc->rx_min_pdu)
1024 fore200e_vcc->rx_min_pdu = pdu_len;
1025 if (pdu_len > fore200e_vcc->rx_max_pdu)
1026 fore200e_vcc->rx_max_pdu = pdu_len;
1027 fore200e_vcc->rx_pdu++;
1028
1029 /* push PDU */
1030 if (atm_charge(vcc, skb->truesize) == 0) {
1031
1032 DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1033 vcc->itf, vcc->vpi, vcc->vci);
1034
1035 dev_kfree_skb_any(skb);
1036
1037 atomic_inc(&vcc->stats->rx_drop);
1038 return -ENOMEM;
1039 }
1040
1041 vcc->push(vcc, skb);
1042 atomic_inc(&vcc->stats->rx);
1043
1044 return 0;
1045 }
1046
1047
1048 static void
fore200e_collect_rpd(struct fore200e * fore200e,struct rpd * rpd)1049 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1050 {
1051 struct host_bsq* bsq;
1052 struct buffer* buffer;
1053 int i;
1054
1055 for (i = 0; i < rpd->nseg; i++) {
1056
1057 /* rebuild rx buffer address from rsd handle */
1058 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1059
1060 bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1061
1062 #ifdef FORE200E_BSQ_DEBUG
1063 bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1064
1065 if (buffer->supplied == 0)
1066 printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1067 buffer->scheme, buffer->magn, buffer->index);
1068 buffer->supplied = 0;
1069 #endif
1070
1071 /* re-insert the buffer into the free buffer list */
1072 buffer->next = bsq->freebuf;
1073 bsq->freebuf = buffer;
1074
1075 /* then increment the number of free rx buffers */
1076 bsq->freebuf_count++;
1077 }
1078 }
1079
1080
1081 static void
fore200e_rx_irq(struct fore200e * fore200e)1082 fore200e_rx_irq(struct fore200e* fore200e)
1083 {
1084 struct host_rxq* rxq = &fore200e->host_rxq;
1085 struct host_rxq_entry* entry;
1086 struct atm_vcc* vcc;
1087 struct fore200e_vc_map* vc_map;
1088
1089 for (;;) {
1090
1091 entry = &rxq->host_entry[ rxq->head ];
1092
1093 /* no more received PDUs */
1094 if ((*entry->status & STATUS_COMPLETE) == 0)
1095 break;
1096
1097 vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1098
1099 if ((vc_map->vcc == NULL) ||
1100 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1101
1102 DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1103 fore200e->atm_dev->number,
1104 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1105 }
1106 else {
1107 vcc = vc_map->vcc;
1108 ASSERT(vcc);
1109
1110 if ((*entry->status & STATUS_ERROR) == 0) {
1111
1112 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1113 }
1114 else {
1115 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1116 fore200e->atm_dev->number,
1117 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1118 atomic_inc(&vcc->stats->rx_err);
1119 }
1120 }
1121
1122 FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1123
1124 fore200e_collect_rpd(fore200e, entry->rpd);
1125
1126 /* rewrite the rpd address to ack the received PDU */
1127 fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1128 *entry->status = STATUS_FREE;
1129
1130 fore200e_supply(fore200e);
1131 }
1132 }
1133
1134
1135 #ifndef FORE200E_USE_TASKLET
1136 static void
fore200e_irq(struct fore200e * fore200e)1137 fore200e_irq(struct fore200e* fore200e)
1138 {
1139 unsigned long flags;
1140
1141 spin_lock_irqsave(&fore200e->q_lock, flags);
1142 fore200e_rx_irq(fore200e);
1143 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1144
1145 spin_lock_irqsave(&fore200e->q_lock, flags);
1146 fore200e_tx_irq(fore200e);
1147 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1148 }
1149 #endif
1150
1151
1152 static irqreturn_t
fore200e_interrupt(int irq,void * dev)1153 fore200e_interrupt(int irq, void* dev)
1154 {
1155 struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1156
1157 if (fore200e->bus->irq_check(fore200e) == 0) {
1158
1159 DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1160 return IRQ_NONE;
1161 }
1162 DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1163
1164 #ifdef FORE200E_USE_TASKLET
1165 tasklet_schedule(&fore200e->tx_tasklet);
1166 tasklet_schedule(&fore200e->rx_tasklet);
1167 #else
1168 fore200e_irq(fore200e);
1169 #endif
1170
1171 fore200e->bus->irq_ack(fore200e);
1172 return IRQ_HANDLED;
1173 }
1174
1175
1176 #ifdef FORE200E_USE_TASKLET
1177 static void
fore200e_tx_tasklet(unsigned long data)1178 fore200e_tx_tasklet(unsigned long data)
1179 {
1180 struct fore200e* fore200e = (struct fore200e*) data;
1181 unsigned long flags;
1182
1183 DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1184
1185 spin_lock_irqsave(&fore200e->q_lock, flags);
1186 fore200e_tx_irq(fore200e);
1187 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1188 }
1189
1190
1191 static void
fore200e_rx_tasklet(unsigned long data)1192 fore200e_rx_tasklet(unsigned long data)
1193 {
1194 struct fore200e* fore200e = (struct fore200e*) data;
1195 unsigned long flags;
1196
1197 DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1198
1199 spin_lock_irqsave(&fore200e->q_lock, flags);
1200 fore200e_rx_irq((struct fore200e*) data);
1201 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1202 }
1203 #endif
1204
1205
1206 static int
fore200e_select_scheme(struct atm_vcc * vcc)1207 fore200e_select_scheme(struct atm_vcc* vcc)
1208 {
1209 /* fairly balance the VCs over (identical) buffer schemes */
1210 int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1211
1212 DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1213 vcc->itf, vcc->vpi, vcc->vci, scheme);
1214
1215 return scheme;
1216 }
1217
1218
1219 static int
fore200e_activate_vcin(struct fore200e * fore200e,int activate,struct atm_vcc * vcc,int mtu)1220 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1221 {
1222 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1223 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1224 struct activate_opcode activ_opcode;
1225 struct deactivate_opcode deactiv_opcode;
1226 struct vpvc vpvc;
1227 int ok;
1228 enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal);
1229
1230 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1231
1232 if (activate) {
1233 FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1234
1235 activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1236 activ_opcode.aal = aal;
1237 activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1238 activ_opcode.pad = 0;
1239 }
1240 else {
1241 deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1242 deactiv_opcode.pad = 0;
1243 }
1244
1245 vpvc.vci = vcc->vci;
1246 vpvc.vpi = vcc->vpi;
1247
1248 *entry->status = STATUS_PENDING;
1249
1250 if (activate) {
1251
1252 #ifdef FORE200E_52BYTE_AAL0_SDU
1253 mtu = 48;
1254 #endif
1255 /* the MTU is not used by the cp, except in the case of AAL0 */
1256 fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu);
1257 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1258 fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1259 }
1260 else {
1261 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1262 fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1263 }
1264
1265 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1266
1267 *entry->status = STATUS_FREE;
1268
1269 if (ok == 0) {
1270 printk(FORE200E "unable to %s VC %d.%d.%d\n",
1271 activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1272 return -EIO;
1273 }
1274
1275 DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1276 activate ? "open" : "clos");
1277
1278 return 0;
1279 }
1280
1281
1282 #define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */
1283
1284 static void
fore200e_rate_ctrl(struct atm_qos * qos,struct tpd_rate * rate)1285 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1286 {
1287 if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1288
1289 /* compute the data cells to idle cells ratio from the tx PCR */
1290 rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1291 rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1292 }
1293 else {
1294 /* disable rate control */
1295 rate->data_cells = rate->idle_cells = 0;
1296 }
1297 }
1298
1299
1300 static int
fore200e_open(struct atm_vcc * vcc)1301 fore200e_open(struct atm_vcc *vcc)
1302 {
1303 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1304 struct fore200e_vcc* fore200e_vcc;
1305 struct fore200e_vc_map* vc_map;
1306 unsigned long flags;
1307 int vci = vcc->vci;
1308 short vpi = vcc->vpi;
1309
1310 ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1311 ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1312
1313 spin_lock_irqsave(&fore200e->q_lock, flags);
1314
1315 vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1316 if (vc_map->vcc) {
1317
1318 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1319
1320 printk(FORE200E "VC %d.%d.%d already in use\n",
1321 fore200e->atm_dev->number, vpi, vci);
1322
1323 return -EINVAL;
1324 }
1325
1326 vc_map->vcc = vcc;
1327
1328 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1329
1330 fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1331 if (fore200e_vcc == NULL) {
1332 vc_map->vcc = NULL;
1333 return -ENOMEM;
1334 }
1335
1336 DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1337 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1338 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1339 fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1340 vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1341 fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1342 vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1343
1344 /* pseudo-CBR bandwidth requested? */
1345 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1346
1347 mutex_lock(&fore200e->rate_mtx);
1348 if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1349 mutex_unlock(&fore200e->rate_mtx);
1350
1351 kfree(fore200e_vcc);
1352 vc_map->vcc = NULL;
1353 return -EAGAIN;
1354 }
1355
1356 /* reserve bandwidth */
1357 fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1358 mutex_unlock(&fore200e->rate_mtx);
1359 }
1360
1361 vcc->itf = vcc->dev->number;
1362
1363 set_bit(ATM_VF_PARTIAL,&vcc->flags);
1364 set_bit(ATM_VF_ADDR, &vcc->flags);
1365
1366 vcc->dev_data = fore200e_vcc;
1367
1368 if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1369
1370 vc_map->vcc = NULL;
1371
1372 clear_bit(ATM_VF_ADDR, &vcc->flags);
1373 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1374
1375 vcc->dev_data = NULL;
1376
1377 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1378
1379 kfree(fore200e_vcc);
1380 return -EINVAL;
1381 }
1382
1383 /* compute rate control parameters */
1384 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1385
1386 fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1387 set_bit(ATM_VF_HASQOS, &vcc->flags);
1388
1389 DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1390 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1391 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1392 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1393 }
1394
1395 fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1396 fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1397 fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0;
1398
1399 /* new incarnation of the vcc */
1400 vc_map->incarn = ++fore200e->incarn_count;
1401
1402 /* VC unusable before this flag is set */
1403 set_bit(ATM_VF_READY, &vcc->flags);
1404
1405 return 0;
1406 }
1407
1408
1409 static void
fore200e_close(struct atm_vcc * vcc)1410 fore200e_close(struct atm_vcc* vcc)
1411 {
1412 struct fore200e_vcc* fore200e_vcc;
1413 struct fore200e* fore200e;
1414 struct fore200e_vc_map* vc_map;
1415 unsigned long flags;
1416
1417 ASSERT(vcc);
1418 fore200e = FORE200E_DEV(vcc->dev);
1419
1420 ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1421 ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1422
1423 DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1424
1425 clear_bit(ATM_VF_READY, &vcc->flags);
1426
1427 fore200e_activate_vcin(fore200e, 0, vcc, 0);
1428
1429 spin_lock_irqsave(&fore200e->q_lock, flags);
1430
1431 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1432
1433 /* the vc is no longer considered as "in use" by fore200e_open() */
1434 vc_map->vcc = NULL;
1435
1436 vcc->itf = vcc->vci = vcc->vpi = 0;
1437
1438 fore200e_vcc = FORE200E_VCC(vcc);
1439 vcc->dev_data = NULL;
1440
1441 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1442
1443 /* release reserved bandwidth, if any */
1444 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1445
1446 mutex_lock(&fore200e->rate_mtx);
1447 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1448 mutex_unlock(&fore200e->rate_mtx);
1449
1450 clear_bit(ATM_VF_HASQOS, &vcc->flags);
1451 }
1452
1453 clear_bit(ATM_VF_ADDR, &vcc->flags);
1454 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1455
1456 ASSERT(fore200e_vcc);
1457 kfree(fore200e_vcc);
1458 }
1459
1460
1461 static int
fore200e_send(struct atm_vcc * vcc,struct sk_buff * skb)1462 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1463 {
1464 struct fore200e* fore200e;
1465 struct fore200e_vcc* fore200e_vcc;
1466 struct fore200e_vc_map* vc_map;
1467 struct host_txq* txq;
1468 struct host_txq_entry* entry;
1469 struct tpd* tpd;
1470 struct tpd_haddr tpd_haddr;
1471 int retry = CONFIG_ATM_FORE200E_TX_RETRY;
1472 int tx_copy = 0;
1473 int tx_len = skb->len;
1474 u32* cell_header = NULL;
1475 unsigned char* skb_data;
1476 int skb_len;
1477 unsigned char* data;
1478 unsigned long flags;
1479
1480 if (!vcc)
1481 return -EINVAL;
1482
1483 fore200e = FORE200E_DEV(vcc->dev);
1484 fore200e_vcc = FORE200E_VCC(vcc);
1485
1486 if (!fore200e)
1487 return -EINVAL;
1488
1489 txq = &fore200e->host_txq;
1490 if (!fore200e_vcc)
1491 return -EINVAL;
1492
1493 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1494 DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1495 dev_kfree_skb_any(skb);
1496 return -EINVAL;
1497 }
1498
1499 #ifdef FORE200E_52BYTE_AAL0_SDU
1500 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1501 cell_header = (u32*) skb->data;
1502 skb_data = skb->data + 4; /* skip 4-byte cell header */
1503 skb_len = tx_len = skb->len - 4;
1504
1505 DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1506 }
1507 else
1508 #endif
1509 {
1510 skb_data = skb->data;
1511 skb_len = skb->len;
1512 }
1513
1514 if (((unsigned long)skb_data) & 0x3) {
1515
1516 DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1517 tx_copy = 1;
1518 tx_len = skb_len;
1519 }
1520
1521 if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1522
1523 /* this simply NUKES the PCA board */
1524 DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1525 tx_copy = 1;
1526 tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1527 }
1528
1529 if (tx_copy) {
1530 data = kmalloc(tx_len, GFP_ATOMIC);
1531 if (data == NULL) {
1532 if (vcc->pop) {
1533 vcc->pop(vcc, skb);
1534 }
1535 else {
1536 dev_kfree_skb_any(skb);
1537 }
1538 return -ENOMEM;
1539 }
1540
1541 memcpy(data, skb_data, skb_len);
1542 if (skb_len < tx_len)
1543 memset(data + skb_len, 0x00, tx_len - skb_len);
1544 }
1545 else {
1546 data = skb_data;
1547 }
1548
1549 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1550 ASSERT(vc_map->vcc == vcc);
1551
1552 retry_here:
1553
1554 spin_lock_irqsave(&fore200e->q_lock, flags);
1555
1556 entry = &txq->host_entry[ txq->head ];
1557
1558 if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1559
1560 /* try to free completed tx queue entries */
1561 fore200e_tx_irq(fore200e);
1562
1563 if (*entry->status != STATUS_FREE) {
1564
1565 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1566
1567 /* retry once again? */
1568 if (--retry > 0) {
1569 udelay(50);
1570 goto retry_here;
1571 }
1572
1573 atomic_inc(&vcc->stats->tx_err);
1574
1575 fore200e->tx_sat++;
1576 DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1577 fore200e->name, fore200e->cp_queues->heartbeat);
1578 if (vcc->pop) {
1579 vcc->pop(vcc, skb);
1580 }
1581 else {
1582 dev_kfree_skb_any(skb);
1583 }
1584
1585 if (tx_copy)
1586 kfree(data);
1587
1588 return -ENOBUFS;
1589 }
1590 }
1591
1592 entry->incarn = vc_map->incarn;
1593 entry->vc_map = vc_map;
1594 entry->skb = skb;
1595 entry->data = tx_copy ? data : NULL;
1596
1597 tpd = entry->tpd;
1598 tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1599 DMA_TO_DEVICE);
1600 if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1601 if (tx_copy)
1602 kfree(data);
1603 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1604 return -ENOMEM;
1605 }
1606 tpd->tsd[ 0 ].length = tx_len;
1607
1608 FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1609 txq->txing++;
1610
1611 /* The dma_map call above implies a dma_sync so the device can use it,
1612 * thus no explicit dma_sync call is necessary here.
1613 */
1614
1615 DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1616 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1617 tpd->tsd[0].length, skb_len);
1618
1619 if (skb_len < fore200e_vcc->tx_min_pdu)
1620 fore200e_vcc->tx_min_pdu = skb_len;
1621 if (skb_len > fore200e_vcc->tx_max_pdu)
1622 fore200e_vcc->tx_max_pdu = skb_len;
1623 fore200e_vcc->tx_pdu++;
1624
1625 /* set tx rate control information */
1626 tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1627 tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1628
1629 if (cell_header) {
1630 tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1631 tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1632 tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1633 tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1634 tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1635 }
1636 else {
1637 /* set the ATM header, common to all cells conveying the PDU */
1638 tpd->atm_header.clp = 0;
1639 tpd->atm_header.plt = 0;
1640 tpd->atm_header.vci = vcc->vci;
1641 tpd->atm_header.vpi = vcc->vpi;
1642 tpd->atm_header.gfc = 0;
1643 }
1644
1645 tpd->spec.length = tx_len;
1646 tpd->spec.nseg = 1;
1647 tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal);
1648 tpd->spec.intr = 1;
1649
1650 tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */
1651 tpd_haddr.pad = 0;
1652 tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */
1653
1654 *entry->status = STATUS_PENDING;
1655 fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1656
1657 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1658
1659 return 0;
1660 }
1661
1662
1663 static int
fore200e_getstats(struct fore200e * fore200e)1664 fore200e_getstats(struct fore200e* fore200e)
1665 {
1666 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1667 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1668 struct stats_opcode opcode;
1669 int ok;
1670 u32 stats_dma_addr;
1671
1672 if (fore200e->stats == NULL) {
1673 fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1674 if (fore200e->stats == NULL)
1675 return -ENOMEM;
1676 }
1677
1678 stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1679 sizeof(struct stats), DMA_FROM_DEVICE);
1680 if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1681 return -ENOMEM;
1682
1683 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1684
1685 opcode.opcode = OPCODE_GET_STATS;
1686 opcode.pad = 0;
1687
1688 fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1689
1690 *entry->status = STATUS_PENDING;
1691
1692 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1693
1694 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1695
1696 *entry->status = STATUS_FREE;
1697
1698 dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1699
1700 if (ok == 0) {
1701 printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1702 return -EIO;
1703 }
1704
1705 return 0;
1706 }
1707
1708 #if 0 /* currently unused */
1709 static int
1710 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1711 {
1712 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1713 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1714 struct oc3_opcode opcode;
1715 int ok;
1716 u32 oc3_regs_dma_addr;
1717
1718 oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1719
1720 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1721
1722 opcode.opcode = OPCODE_GET_OC3;
1723 opcode.reg = 0;
1724 opcode.value = 0;
1725 opcode.mask = 0;
1726
1727 fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1728
1729 *entry->status = STATUS_PENDING;
1730
1731 fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1732
1733 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1734
1735 *entry->status = STATUS_FREE;
1736
1737 fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1738
1739 if (ok == 0) {
1740 printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1741 return -EIO;
1742 }
1743
1744 return 0;
1745 }
1746 #endif
1747
1748
1749 static int
fore200e_set_oc3(struct fore200e * fore200e,u32 reg,u32 value,u32 mask)1750 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1751 {
1752 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1753 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1754 struct oc3_opcode opcode;
1755 int ok;
1756
1757 DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1758
1759 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1760
1761 opcode.opcode = OPCODE_SET_OC3;
1762 opcode.reg = reg;
1763 opcode.value = value;
1764 opcode.mask = mask;
1765
1766 fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1767
1768 *entry->status = STATUS_PENDING;
1769
1770 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1771
1772 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1773
1774 *entry->status = STATUS_FREE;
1775
1776 if (ok == 0) {
1777 printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1778 return -EIO;
1779 }
1780
1781 return 0;
1782 }
1783
1784
1785 static int
fore200e_setloop(struct fore200e * fore200e,int loop_mode)1786 fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1787 {
1788 u32 mct_value, mct_mask;
1789 int error;
1790
1791 if (!capable(CAP_NET_ADMIN))
1792 return -EPERM;
1793
1794 switch (loop_mode) {
1795
1796 case ATM_LM_NONE:
1797 mct_value = 0;
1798 mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE;
1799 break;
1800
1801 case ATM_LM_LOC_PHY:
1802 mct_value = mct_mask = SUNI_MCT_DLE;
1803 break;
1804
1805 case ATM_LM_RMT_PHY:
1806 mct_value = mct_mask = SUNI_MCT_LLE;
1807 break;
1808
1809 default:
1810 return -EINVAL;
1811 }
1812
1813 error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1814 if (error == 0)
1815 fore200e->loop_mode = loop_mode;
1816
1817 return error;
1818 }
1819
1820
1821 static int
fore200e_fetch_stats(struct fore200e * fore200e,struct sonet_stats __user * arg)1822 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1823 {
1824 struct sonet_stats tmp;
1825
1826 if (fore200e_getstats(fore200e) < 0)
1827 return -EIO;
1828
1829 tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1830 tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1831 tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1832 tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1833 tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1834 tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1835 tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1836 tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) +
1837 be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1838 be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1839 tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) +
1840 be32_to_cpu(fore200e->stats->aal34.cells_received) +
1841 be32_to_cpu(fore200e->stats->aal5.cells_received);
1842
1843 if (arg)
1844 return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1845
1846 return 0;
1847 }
1848
1849
1850 static int
fore200e_ioctl(struct atm_dev * dev,unsigned int cmd,void __user * arg)1851 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1852 {
1853 struct fore200e* fore200e = FORE200E_DEV(dev);
1854
1855 DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1856
1857 switch (cmd) {
1858
1859 case SONET_GETSTAT:
1860 return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1861
1862 case SONET_GETDIAG:
1863 return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1864
1865 case ATM_SETLOOP:
1866 return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1867
1868 case ATM_GETLOOP:
1869 return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1870
1871 case ATM_QUERYLOOP:
1872 return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1873 }
1874
1875 return -ENOSYS; /* not implemented */
1876 }
1877
1878
1879 static int
fore200e_change_qos(struct atm_vcc * vcc,struct atm_qos * qos,int flags)1880 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1881 {
1882 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1883 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1884
1885 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1886 DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1887 return -EINVAL;
1888 }
1889
1890 DPRINTK(2, "change_qos %d.%d.%d, "
1891 "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1892 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1893 "available_cell_rate = %u",
1894 vcc->itf, vcc->vpi, vcc->vci,
1895 fore200e_traffic_class[ qos->txtp.traffic_class ],
1896 qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1897 fore200e_traffic_class[ qos->rxtp.traffic_class ],
1898 qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1899 flags, fore200e->available_cell_rate);
1900
1901 if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1902
1903 mutex_lock(&fore200e->rate_mtx);
1904 if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1905 mutex_unlock(&fore200e->rate_mtx);
1906 return -EAGAIN;
1907 }
1908
1909 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1910 fore200e->available_cell_rate -= qos->txtp.max_pcr;
1911
1912 mutex_unlock(&fore200e->rate_mtx);
1913
1914 memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1915
1916 /* update rate control parameters */
1917 fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1918
1919 set_bit(ATM_VF_HASQOS, &vcc->flags);
1920
1921 return 0;
1922 }
1923
1924 return -EINVAL;
1925 }
1926
1927
fore200e_irq_request(struct fore200e * fore200e)1928 static int fore200e_irq_request(struct fore200e *fore200e)
1929 {
1930 if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1931
1932 printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1933 fore200e_irq_itoa(fore200e->irq), fore200e->name);
1934 return -EBUSY;
1935 }
1936
1937 printk(FORE200E "IRQ %s reserved for device %s\n",
1938 fore200e_irq_itoa(fore200e->irq), fore200e->name);
1939
1940 #ifdef FORE200E_USE_TASKLET
1941 tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1942 tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1943 #endif
1944
1945 fore200e->state = FORE200E_STATE_IRQ;
1946 return 0;
1947 }
1948
1949
fore200e_get_esi(struct fore200e * fore200e)1950 static int fore200e_get_esi(struct fore200e *fore200e)
1951 {
1952 struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1953 int ok, i;
1954
1955 if (!prom)
1956 return -ENOMEM;
1957
1958 ok = fore200e->bus->prom_read(fore200e, prom);
1959 if (ok < 0) {
1960 kfree(prom);
1961 return -EBUSY;
1962 }
1963
1964 printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1965 fore200e->name,
1966 (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */
1967 prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1968
1969 for (i = 0; i < ESI_LEN; i++) {
1970 fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1971 }
1972
1973 kfree(prom);
1974
1975 return 0;
1976 }
1977
1978
fore200e_alloc_rx_buf(struct fore200e * fore200e)1979 static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1980 {
1981 int scheme, magn, nbr, size, i;
1982
1983 struct host_bsq* bsq;
1984 struct buffer* buffer;
1985
1986 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1987 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1988
1989 bsq = &fore200e->host_bsq[ scheme ][ magn ];
1990
1991 nbr = fore200e_rx_buf_nbr[ scheme ][ magn ];
1992 size = fore200e_rx_buf_size[ scheme ][ magn ];
1993
1994 DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
1995
1996 /* allocate the array of receive buffers */
1997 buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
1998 GFP_KERNEL);
1999
2000 if (buffer == NULL)
2001 return -ENOMEM;
2002
2003 bsq->freebuf = NULL;
2004
2005 for (i = 0; i < nbr; i++) {
2006
2007 buffer[ i ].scheme = scheme;
2008 buffer[ i ].magn = magn;
2009 #ifdef FORE200E_BSQ_DEBUG
2010 buffer[ i ].index = i;
2011 buffer[ i ].supplied = 0;
2012 #endif
2013
2014 /* allocate the receive buffer body */
2015 if (fore200e_chunk_alloc(fore200e,
2016 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2017 DMA_FROM_DEVICE) < 0) {
2018
2019 while (i > 0)
2020 fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2021 kfree(buffer);
2022
2023 return -ENOMEM;
2024 }
2025
2026 /* insert the buffer into the free buffer list */
2027 buffer[ i ].next = bsq->freebuf;
2028 bsq->freebuf = &buffer[ i ];
2029 }
2030 /* all the buffers are free, initially */
2031 bsq->freebuf_count = nbr;
2032
2033 #ifdef FORE200E_BSQ_DEBUG
2034 bsq_audit(3, bsq, scheme, magn);
2035 #endif
2036 }
2037 }
2038
2039 fore200e->state = FORE200E_STATE_ALLOC_BUF;
2040 return 0;
2041 }
2042
2043
fore200e_init_bs_queue(struct fore200e * fore200e)2044 static int fore200e_init_bs_queue(struct fore200e *fore200e)
2045 {
2046 int scheme, magn, i;
2047
2048 struct host_bsq* bsq;
2049 struct cp_bsq_entry __iomem * cp_entry;
2050
2051 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2052 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2053
2054 DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2055
2056 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2057
2058 /* allocate and align the array of status words */
2059 if (fore200e_dma_chunk_alloc(fore200e,
2060 &bsq->status,
2061 sizeof(enum status),
2062 QUEUE_SIZE_BS,
2063 fore200e->bus->status_alignment) < 0) {
2064 return -ENOMEM;
2065 }
2066
2067 /* allocate and align the array of receive buffer descriptors */
2068 if (fore200e_dma_chunk_alloc(fore200e,
2069 &bsq->rbd_block,
2070 sizeof(struct rbd_block),
2071 QUEUE_SIZE_BS,
2072 fore200e->bus->descr_alignment) < 0) {
2073
2074 fore200e_dma_chunk_free(fore200e, &bsq->status);
2075 return -ENOMEM;
2076 }
2077
2078 /* get the base address of the cp resident buffer supply queue entries */
2079 cp_entry = fore200e->virt_base +
2080 fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2081
2082 /* fill the host resident and cp resident buffer supply queue entries */
2083 for (i = 0; i < QUEUE_SIZE_BS; i++) {
2084
2085 bsq->host_entry[ i ].status =
2086 FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2087 bsq->host_entry[ i ].rbd_block =
2088 FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2089 bsq->host_entry[ i ].rbd_block_dma =
2090 FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2091 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2092
2093 *bsq->host_entry[ i ].status = STATUS_FREE;
2094
2095 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2096 &cp_entry[ i ].status_haddr);
2097 }
2098 }
2099 }
2100
2101 fore200e->state = FORE200E_STATE_INIT_BSQ;
2102 return 0;
2103 }
2104
2105
fore200e_init_rx_queue(struct fore200e * fore200e)2106 static int fore200e_init_rx_queue(struct fore200e *fore200e)
2107 {
2108 struct host_rxq* rxq = &fore200e->host_rxq;
2109 struct cp_rxq_entry __iomem * cp_entry;
2110 int i;
2111
2112 DPRINTK(2, "receive queue is being initialized\n");
2113
2114 /* allocate and align the array of status words */
2115 if (fore200e_dma_chunk_alloc(fore200e,
2116 &rxq->status,
2117 sizeof(enum status),
2118 QUEUE_SIZE_RX,
2119 fore200e->bus->status_alignment) < 0) {
2120 return -ENOMEM;
2121 }
2122
2123 /* allocate and align the array of receive PDU descriptors */
2124 if (fore200e_dma_chunk_alloc(fore200e,
2125 &rxq->rpd,
2126 sizeof(struct rpd),
2127 QUEUE_SIZE_RX,
2128 fore200e->bus->descr_alignment) < 0) {
2129
2130 fore200e_dma_chunk_free(fore200e, &rxq->status);
2131 return -ENOMEM;
2132 }
2133
2134 /* get the base address of the cp resident rx queue entries */
2135 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2136
2137 /* fill the host resident and cp resident rx entries */
2138 for (i=0; i < QUEUE_SIZE_RX; i++) {
2139
2140 rxq->host_entry[ i ].status =
2141 FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2142 rxq->host_entry[ i ].rpd =
2143 FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2144 rxq->host_entry[ i ].rpd_dma =
2145 FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2146 rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2147
2148 *rxq->host_entry[ i ].status = STATUS_FREE;
2149
2150 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2151 &cp_entry[ i ].status_haddr);
2152
2153 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2154 &cp_entry[ i ].rpd_haddr);
2155 }
2156
2157 /* set the head entry of the queue */
2158 rxq->head = 0;
2159
2160 fore200e->state = FORE200E_STATE_INIT_RXQ;
2161 return 0;
2162 }
2163
2164
fore200e_init_tx_queue(struct fore200e * fore200e)2165 static int fore200e_init_tx_queue(struct fore200e *fore200e)
2166 {
2167 struct host_txq* txq = &fore200e->host_txq;
2168 struct cp_txq_entry __iomem * cp_entry;
2169 int i;
2170
2171 DPRINTK(2, "transmit queue is being initialized\n");
2172
2173 /* allocate and align the array of status words */
2174 if (fore200e_dma_chunk_alloc(fore200e,
2175 &txq->status,
2176 sizeof(enum status),
2177 QUEUE_SIZE_TX,
2178 fore200e->bus->status_alignment) < 0) {
2179 return -ENOMEM;
2180 }
2181
2182 /* allocate and align the array of transmit PDU descriptors */
2183 if (fore200e_dma_chunk_alloc(fore200e,
2184 &txq->tpd,
2185 sizeof(struct tpd),
2186 QUEUE_SIZE_TX,
2187 fore200e->bus->descr_alignment) < 0) {
2188
2189 fore200e_dma_chunk_free(fore200e, &txq->status);
2190 return -ENOMEM;
2191 }
2192
2193 /* get the base address of the cp resident tx queue entries */
2194 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2195
2196 /* fill the host resident and cp resident tx entries */
2197 for (i=0; i < QUEUE_SIZE_TX; i++) {
2198
2199 txq->host_entry[ i ].status =
2200 FORE200E_INDEX(txq->status.align_addr, enum status, i);
2201 txq->host_entry[ i ].tpd =
2202 FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2203 txq->host_entry[ i ].tpd_dma =
2204 FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2205 txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2206
2207 *txq->host_entry[ i ].status = STATUS_FREE;
2208
2209 fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2210 &cp_entry[ i ].status_haddr);
2211
2212 /* although there is a one-to-one mapping of tx queue entries and tpds,
2213 we do not write here the DMA (physical) base address of each tpd into
2214 the related cp resident entry, because the cp relies on this write
2215 operation to detect that a new pdu has been submitted for tx */
2216 }
2217
2218 /* set the head and tail entries of the queue */
2219 txq->head = 0;
2220 txq->tail = 0;
2221
2222 fore200e->state = FORE200E_STATE_INIT_TXQ;
2223 return 0;
2224 }
2225
2226
fore200e_init_cmd_queue(struct fore200e * fore200e)2227 static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2228 {
2229 struct host_cmdq* cmdq = &fore200e->host_cmdq;
2230 struct cp_cmdq_entry __iomem * cp_entry;
2231 int i;
2232
2233 DPRINTK(2, "command queue is being initialized\n");
2234
2235 /* allocate and align the array of status words */
2236 if (fore200e_dma_chunk_alloc(fore200e,
2237 &cmdq->status,
2238 sizeof(enum status),
2239 QUEUE_SIZE_CMD,
2240 fore200e->bus->status_alignment) < 0) {
2241 return -ENOMEM;
2242 }
2243
2244 /* get the base address of the cp resident cmd queue entries */
2245 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2246
2247 /* fill the host resident and cp resident cmd entries */
2248 for (i=0; i < QUEUE_SIZE_CMD; i++) {
2249
2250 cmdq->host_entry[ i ].status =
2251 FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2252 cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2253
2254 *cmdq->host_entry[ i ].status = STATUS_FREE;
2255
2256 fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2257 &cp_entry[ i ].status_haddr);
2258 }
2259
2260 /* set the head entry of the queue */
2261 cmdq->head = 0;
2262
2263 fore200e->state = FORE200E_STATE_INIT_CMDQ;
2264 return 0;
2265 }
2266
2267
fore200e_param_bs_queue(struct fore200e * fore200e,enum buffer_scheme scheme,enum buffer_magn magn,int queue_length,int pool_size,int supply_blksize)2268 static void fore200e_param_bs_queue(struct fore200e *fore200e,
2269 enum buffer_scheme scheme,
2270 enum buffer_magn magn, int queue_length,
2271 int pool_size, int supply_blksize)
2272 {
2273 struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2274
2275 fore200e->bus->write(queue_length, &bs_spec->queue_length);
2276 fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2277 fore200e->bus->write(pool_size, &bs_spec->pool_size);
2278 fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize);
2279 }
2280
2281
fore200e_initialize(struct fore200e * fore200e)2282 static int fore200e_initialize(struct fore200e *fore200e)
2283 {
2284 struct cp_queues __iomem * cpq;
2285 int ok, scheme, magn;
2286
2287 DPRINTK(2, "device %s being initialized\n", fore200e->name);
2288
2289 mutex_init(&fore200e->rate_mtx);
2290 spin_lock_init(&fore200e->q_lock);
2291
2292 cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2293
2294 /* enable cp to host interrupts */
2295 fore200e->bus->write(1, &cpq->imask);
2296
2297 if (fore200e->bus->irq_enable)
2298 fore200e->bus->irq_enable(fore200e);
2299
2300 fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2301
2302 fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2303 fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len);
2304 fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len);
2305
2306 fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension);
2307 fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension);
2308
2309 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2310 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2311 fore200e_param_bs_queue(fore200e, scheme, magn,
2312 QUEUE_SIZE_BS,
2313 fore200e_rx_buf_nbr[ scheme ][ magn ],
2314 RBD_BLK_SIZE);
2315
2316 /* issue the initialize command */
2317 fore200e->bus->write(STATUS_PENDING, &cpq->init.status);
2318 fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2319
2320 ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2321 if (ok == 0) {
2322 printk(FORE200E "device %s initialization failed\n", fore200e->name);
2323 return -ENODEV;
2324 }
2325
2326 printk(FORE200E "device %s initialized\n", fore200e->name);
2327
2328 fore200e->state = FORE200E_STATE_INITIALIZE;
2329 return 0;
2330 }
2331
2332
fore200e_monitor_putc(struct fore200e * fore200e,char c)2333 static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2334 {
2335 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2336
2337 #if 0
2338 printk("%c", c);
2339 #endif
2340 fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2341 }
2342
2343
fore200e_monitor_getc(struct fore200e * fore200e)2344 static int fore200e_monitor_getc(struct fore200e *fore200e)
2345 {
2346 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2347 unsigned long timeout = jiffies + msecs_to_jiffies(50);
2348 int c;
2349
2350 while (time_before(jiffies, timeout)) {
2351
2352 c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2353
2354 if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2355
2356 fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2357 #if 0
2358 printk("%c", c & 0xFF);
2359 #endif
2360 return c & 0xFF;
2361 }
2362 }
2363
2364 return -1;
2365 }
2366
2367
fore200e_monitor_puts(struct fore200e * fore200e,char * str)2368 static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2369 {
2370 while (*str) {
2371
2372 /* the i960 monitor doesn't accept any new character if it has something to say */
2373 while (fore200e_monitor_getc(fore200e) >= 0);
2374
2375 fore200e_monitor_putc(fore200e, *str++);
2376 }
2377
2378 while (fore200e_monitor_getc(fore200e) >= 0);
2379 }
2380
2381 #ifdef __LITTLE_ENDIAN
2382 #define FW_EXT ".bin"
2383 #else
2384 #define FW_EXT "_ecd.bin2"
2385 #endif
2386
fore200e_load_and_start_fw(struct fore200e * fore200e)2387 static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2388 {
2389 const struct firmware *firmware;
2390 const struct fw_header *fw_header;
2391 const __le32 *fw_data;
2392 u32 fw_size;
2393 u32 __iomem *load_addr;
2394 char buf[48];
2395 int err;
2396
2397 sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2398 if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2399 printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2400 return err;
2401 }
2402
2403 fw_data = (const __le32 *)firmware->data;
2404 fw_size = firmware->size / sizeof(u32);
2405 fw_header = (const struct fw_header *)firmware->data;
2406 load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2407
2408 DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2409 fore200e->name, load_addr, fw_size);
2410
2411 if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2412 printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2413 goto release;
2414 }
2415
2416 for (; fw_size--; fw_data++, load_addr++)
2417 fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2418
2419 DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2420
2421 #if defined(__sparc_v9__)
2422 /* reported to be required by SBA cards on some sparc64 hosts */
2423 fore200e_spin(100);
2424 #endif
2425
2426 sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2427 fore200e_monitor_puts(fore200e, buf);
2428
2429 if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2430 printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2431 goto release;
2432 }
2433
2434 printk(FORE200E "device %s firmware started\n", fore200e->name);
2435
2436 fore200e->state = FORE200E_STATE_START_FW;
2437 err = 0;
2438
2439 release:
2440 release_firmware(firmware);
2441 return err;
2442 }
2443
2444
fore200e_register(struct fore200e * fore200e,struct device * parent)2445 static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2446 {
2447 struct atm_dev* atm_dev;
2448
2449 DPRINTK(2, "device %s being registered\n", fore200e->name);
2450
2451 atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2452 -1, NULL);
2453 if (atm_dev == NULL) {
2454 printk(FORE200E "unable to register device %s\n", fore200e->name);
2455 return -ENODEV;
2456 }
2457
2458 atm_dev->dev_data = fore200e;
2459 fore200e->atm_dev = atm_dev;
2460
2461 atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2462 atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2463
2464 fore200e->available_cell_rate = ATM_OC3_PCR;
2465
2466 fore200e->state = FORE200E_STATE_REGISTER;
2467 return 0;
2468 }
2469
2470
fore200e_init(struct fore200e * fore200e,struct device * parent)2471 static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2472 {
2473 if (fore200e_register(fore200e, parent) < 0)
2474 return -ENODEV;
2475
2476 if (fore200e->bus->configure(fore200e) < 0)
2477 return -ENODEV;
2478
2479 if (fore200e->bus->map(fore200e) < 0)
2480 return -ENODEV;
2481
2482 if (fore200e_reset(fore200e, 1) < 0)
2483 return -ENODEV;
2484
2485 if (fore200e_load_and_start_fw(fore200e) < 0)
2486 return -ENODEV;
2487
2488 if (fore200e_initialize(fore200e) < 0)
2489 return -ENODEV;
2490
2491 if (fore200e_init_cmd_queue(fore200e) < 0)
2492 return -ENOMEM;
2493
2494 if (fore200e_init_tx_queue(fore200e) < 0)
2495 return -ENOMEM;
2496
2497 if (fore200e_init_rx_queue(fore200e) < 0)
2498 return -ENOMEM;
2499
2500 if (fore200e_init_bs_queue(fore200e) < 0)
2501 return -ENOMEM;
2502
2503 if (fore200e_alloc_rx_buf(fore200e) < 0)
2504 return -ENOMEM;
2505
2506 if (fore200e_get_esi(fore200e) < 0)
2507 return -EIO;
2508
2509 if (fore200e_irq_request(fore200e) < 0)
2510 return -EBUSY;
2511
2512 fore200e_supply(fore200e);
2513
2514 /* all done, board initialization is now complete */
2515 fore200e->state = FORE200E_STATE_COMPLETE;
2516 return 0;
2517 }
2518
2519 #ifdef CONFIG_SBUS
fore200e_sba_probe(struct platform_device * op)2520 static int fore200e_sba_probe(struct platform_device *op)
2521 {
2522 struct fore200e *fore200e;
2523 static int index = 0;
2524 int err;
2525
2526 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2527 if (!fore200e)
2528 return -ENOMEM;
2529
2530 fore200e->bus = &fore200e_sbus_ops;
2531 fore200e->dev = &op->dev;
2532 fore200e->irq = op->archdata.irqs[0];
2533 fore200e->phys_base = op->resource[0].start;
2534
2535 sprintf(fore200e->name, "SBA-200E-%d", index);
2536
2537 err = fore200e_init(fore200e, &op->dev);
2538 if (err < 0) {
2539 fore200e_shutdown(fore200e);
2540 kfree(fore200e);
2541 return err;
2542 }
2543
2544 index++;
2545 dev_set_drvdata(&op->dev, fore200e);
2546
2547 return 0;
2548 }
2549
fore200e_sba_remove(struct platform_device * op)2550 static void fore200e_sba_remove(struct platform_device *op)
2551 {
2552 struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2553
2554 fore200e_shutdown(fore200e);
2555 kfree(fore200e);
2556 }
2557
2558 static const struct of_device_id fore200e_sba_match[] = {
2559 {
2560 .name = SBA200E_PROM_NAME,
2561 },
2562 {},
2563 };
2564 MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2565
2566 static struct platform_driver fore200e_sba_driver = {
2567 .driver = {
2568 .name = "fore_200e",
2569 .of_match_table = fore200e_sba_match,
2570 },
2571 .probe = fore200e_sba_probe,
2572 .remove = fore200e_sba_remove,
2573 };
2574 #endif
2575
2576 #ifdef CONFIG_PCI
fore200e_pca_detect(struct pci_dev * pci_dev,const struct pci_device_id * pci_ent)2577 static int fore200e_pca_detect(struct pci_dev *pci_dev,
2578 const struct pci_device_id *pci_ent)
2579 {
2580 struct fore200e* fore200e;
2581 int err = 0;
2582 static int index = 0;
2583
2584 if (pci_enable_device(pci_dev)) {
2585 err = -EINVAL;
2586 goto out;
2587 }
2588
2589 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2590 err = -EINVAL;
2591 goto out;
2592 }
2593
2594 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2595 if (fore200e == NULL) {
2596 err = -ENOMEM;
2597 goto out_disable;
2598 }
2599
2600 fore200e->bus = &fore200e_pci_ops;
2601 fore200e->dev = &pci_dev->dev;
2602 fore200e->irq = pci_dev->irq;
2603 fore200e->phys_base = pci_resource_start(pci_dev, 0);
2604
2605 sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2606
2607 pci_set_master(pci_dev);
2608
2609 printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2610 fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2611
2612 sprintf(fore200e->name, "PCA-200E-%d", index);
2613
2614 err = fore200e_init(fore200e, &pci_dev->dev);
2615 if (err < 0) {
2616 fore200e_shutdown(fore200e);
2617 goto out_free;
2618 }
2619
2620 ++index;
2621 pci_set_drvdata(pci_dev, fore200e);
2622
2623 out:
2624 return err;
2625
2626 out_free:
2627 kfree(fore200e);
2628 out_disable:
2629 pci_disable_device(pci_dev);
2630 goto out;
2631 }
2632
2633
fore200e_pca_remove_one(struct pci_dev * pci_dev)2634 static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2635 {
2636 struct fore200e *fore200e;
2637
2638 fore200e = pci_get_drvdata(pci_dev);
2639
2640 fore200e_shutdown(fore200e);
2641 kfree(fore200e);
2642 pci_disable_device(pci_dev);
2643 }
2644
2645
2646 static const struct pci_device_id fore200e_pca_tbl[] = {
2647 { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2648 { 0, }
2649 };
2650
2651 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2652
2653 static struct pci_driver fore200e_pca_driver = {
2654 .name = "fore_200e",
2655 .probe = fore200e_pca_detect,
2656 .remove = fore200e_pca_remove_one,
2657 .id_table = fore200e_pca_tbl,
2658 };
2659 #endif
2660
fore200e_module_init(void)2661 static int __init fore200e_module_init(void)
2662 {
2663 int err = 0;
2664
2665 printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2666
2667 #ifdef CONFIG_SBUS
2668 err = platform_driver_register(&fore200e_sba_driver);
2669 if (err)
2670 return err;
2671 #endif
2672
2673 #ifdef CONFIG_PCI
2674 err = pci_register_driver(&fore200e_pca_driver);
2675 #endif
2676
2677 #ifdef CONFIG_SBUS
2678 if (err)
2679 platform_driver_unregister(&fore200e_sba_driver);
2680 #endif
2681
2682 return err;
2683 }
2684
fore200e_module_cleanup(void)2685 static void __exit fore200e_module_cleanup(void)
2686 {
2687 #ifdef CONFIG_PCI
2688 pci_unregister_driver(&fore200e_pca_driver);
2689 #endif
2690 #ifdef CONFIG_SBUS
2691 platform_driver_unregister(&fore200e_sba_driver);
2692 #endif
2693 }
2694
2695 static int
fore200e_proc_read(struct atm_dev * dev,loff_t * pos,char * page)2696 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2697 {
2698 struct fore200e* fore200e = FORE200E_DEV(dev);
2699 struct fore200e_vcc* fore200e_vcc;
2700 struct atm_vcc* vcc;
2701 int i, len, left = *pos;
2702 unsigned long flags;
2703
2704 if (!left--) {
2705
2706 if (fore200e_getstats(fore200e) < 0)
2707 return -EIO;
2708
2709 len = sprintf(page,"\n"
2710 " device:\n"
2711 " internal name:\t\t%s\n", fore200e->name);
2712
2713 /* print bus-specific information */
2714 if (fore200e->bus->proc_read)
2715 len += fore200e->bus->proc_read(fore200e, page + len);
2716
2717 len += sprintf(page + len,
2718 " interrupt line:\t\t%s\n"
2719 " physical base address:\t0x%p\n"
2720 " virtual base address:\t0x%p\n"
2721 " factory address (ESI):\t%pM\n"
2722 " board serial number:\t\t%d\n\n",
2723 fore200e_irq_itoa(fore200e->irq),
2724 (void*)fore200e->phys_base,
2725 fore200e->virt_base,
2726 fore200e->esi,
2727 fore200e->esi[4] * 256 + fore200e->esi[5]);
2728
2729 return len;
2730 }
2731
2732 if (!left--)
2733 return sprintf(page,
2734 " free small bufs, scheme 1:\t%d\n"
2735 " free large bufs, scheme 1:\t%d\n"
2736 " free small bufs, scheme 2:\t%d\n"
2737 " free large bufs, scheme 2:\t%d\n",
2738 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2739 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2740 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2741 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2742
2743 if (!left--) {
2744 u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2745
2746 len = sprintf(page,"\n\n"
2747 " cell processor:\n"
2748 " heartbeat state:\t\t");
2749
2750 if (hb >> 16 != 0xDEAD)
2751 len += sprintf(page + len, "0x%08x\n", hb);
2752 else
2753 len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2754
2755 return len;
2756 }
2757
2758 if (!left--) {
2759 static const char* media_name[] = {
2760 "unshielded twisted pair",
2761 "multimode optical fiber ST",
2762 "multimode optical fiber SC",
2763 "single-mode optical fiber ST",
2764 "single-mode optical fiber SC",
2765 "unknown"
2766 };
2767
2768 static const char* oc3_mode[] = {
2769 "normal operation",
2770 "diagnostic loopback",
2771 "line loopback",
2772 "unknown"
2773 };
2774
2775 u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2776 u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2777 u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2778 u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2779 u32 oc3_index;
2780
2781 if (media_index > 4)
2782 media_index = 5;
2783
2784 switch (fore200e->loop_mode) {
2785 case ATM_LM_NONE: oc3_index = 0;
2786 break;
2787 case ATM_LM_LOC_PHY: oc3_index = 1;
2788 break;
2789 case ATM_LM_RMT_PHY: oc3_index = 2;
2790 break;
2791 default: oc3_index = 3;
2792 }
2793
2794 return sprintf(page,
2795 " firmware release:\t\t%d.%d.%d\n"
2796 " monitor release:\t\t%d.%d\n"
2797 " media type:\t\t\t%s\n"
2798 " OC-3 revision:\t\t0x%x\n"
2799 " OC-3 mode:\t\t\t%s",
2800 fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24,
2801 mon960_release >> 16, mon960_release << 16 >> 16,
2802 media_name[ media_index ],
2803 oc3_revision,
2804 oc3_mode[ oc3_index ]);
2805 }
2806
2807 if (!left--) {
2808 struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2809
2810 return sprintf(page,
2811 "\n\n"
2812 " monitor:\n"
2813 " version number:\t\t%d\n"
2814 " boot status word:\t\t0x%08x\n",
2815 fore200e->bus->read(&cp_monitor->mon_version),
2816 fore200e->bus->read(&cp_monitor->bstat));
2817 }
2818
2819 if (!left--)
2820 return sprintf(page,
2821 "\n"
2822 " device statistics:\n"
2823 " 4b5b:\n"
2824 " crc_header_errors:\t\t%10u\n"
2825 " framing_errors:\t\t%10u\n",
2826 be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2827 be32_to_cpu(fore200e->stats->phy.framing_errors));
2828
2829 if (!left--)
2830 return sprintf(page, "\n"
2831 " OC-3:\n"
2832 " section_bip8_errors:\t%10u\n"
2833 " path_bip8_errors:\t\t%10u\n"
2834 " line_bip24_errors:\t\t%10u\n"
2835 " line_febe_errors:\t\t%10u\n"
2836 " path_febe_errors:\t\t%10u\n"
2837 " corr_hcs_errors:\t\t%10u\n"
2838 " ucorr_hcs_errors:\t\t%10u\n",
2839 be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2840 be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2841 be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2842 be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2843 be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2844 be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2845 be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2846
2847 if (!left--)
2848 return sprintf(page,"\n"
2849 " ATM:\t\t\t\t cells\n"
2850 " TX:\t\t\t%10u\n"
2851 " RX:\t\t\t%10u\n"
2852 " vpi out of range:\t\t%10u\n"
2853 " vpi no conn:\t\t%10u\n"
2854 " vci out of range:\t\t%10u\n"
2855 " vci no conn:\t\t%10u\n",
2856 be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2857 be32_to_cpu(fore200e->stats->atm.cells_received),
2858 be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2859 be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2860 be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2861 be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2862
2863 if (!left--)
2864 return sprintf(page,"\n"
2865 " AAL0:\t\t\t cells\n"
2866 " TX:\t\t\t%10u\n"
2867 " RX:\t\t\t%10u\n"
2868 " dropped:\t\t\t%10u\n",
2869 be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2870 be32_to_cpu(fore200e->stats->aal0.cells_received),
2871 be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2872
2873 if (!left--)
2874 return sprintf(page,"\n"
2875 " AAL3/4:\n"
2876 " SAR sublayer:\t\t cells\n"
2877 " TX:\t\t\t%10u\n"
2878 " RX:\t\t\t%10u\n"
2879 " dropped:\t\t\t%10u\n"
2880 " CRC errors:\t\t%10u\n"
2881 " protocol errors:\t\t%10u\n\n"
2882 " CS sublayer:\t\t PDUs\n"
2883 " TX:\t\t\t%10u\n"
2884 " RX:\t\t\t%10u\n"
2885 " dropped:\t\t\t%10u\n"
2886 " protocol errors:\t\t%10u\n",
2887 be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2888 be32_to_cpu(fore200e->stats->aal34.cells_received),
2889 be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2890 be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2891 be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2892 be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2893 be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2894 be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2895 be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2896
2897 if (!left--)
2898 return sprintf(page,"\n"
2899 " AAL5:\n"
2900 " SAR sublayer:\t\t cells\n"
2901 " TX:\t\t\t%10u\n"
2902 " RX:\t\t\t%10u\n"
2903 " dropped:\t\t\t%10u\n"
2904 " congestions:\t\t%10u\n\n"
2905 " CS sublayer:\t\t PDUs\n"
2906 " TX:\t\t\t%10u\n"
2907 " RX:\t\t\t%10u\n"
2908 " dropped:\t\t\t%10u\n"
2909 " CRC errors:\t\t%10u\n"
2910 " protocol errors:\t\t%10u\n",
2911 be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2912 be32_to_cpu(fore200e->stats->aal5.cells_received),
2913 be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2914 be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2915 be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2916 be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2917 be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2918 be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2919 be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2920
2921 if (!left--)
2922 return sprintf(page,"\n"
2923 " AUX:\t\t allocation failures\n"
2924 " small b1:\t\t\t%10u\n"
2925 " large b1:\t\t\t%10u\n"
2926 " small b2:\t\t\t%10u\n"
2927 " large b2:\t\t\t%10u\n"
2928 " RX PDUs:\t\t\t%10u\n"
2929 " TX PDUs:\t\t\t%10lu\n",
2930 be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2931 be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2932 be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2933 be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2934 be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2935 fore200e->tx_sat);
2936
2937 if (!left--)
2938 return sprintf(page,"\n"
2939 " receive carrier:\t\t\t%s\n",
2940 fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2941
2942 if (!left--) {
2943 return sprintf(page,"\n"
2944 " VCCs:\n address VPI VCI AAL "
2945 "TX PDUs TX min/max size RX PDUs RX min/max size\n");
2946 }
2947
2948 for (i = 0; i < NBR_CONNECT; i++) {
2949
2950 vcc = fore200e->vc_map[i].vcc;
2951
2952 if (vcc == NULL)
2953 continue;
2954
2955 spin_lock_irqsave(&fore200e->q_lock, flags);
2956
2957 if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2958
2959 fore200e_vcc = FORE200E_VCC(vcc);
2960 ASSERT(fore200e_vcc);
2961
2962 len = sprintf(page,
2963 " %pK %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n",
2964 vcc,
2965 vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2966 fore200e_vcc->tx_pdu,
2967 fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2968 fore200e_vcc->tx_max_pdu,
2969 fore200e_vcc->rx_pdu,
2970 fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2971 fore200e_vcc->rx_max_pdu);
2972
2973 spin_unlock_irqrestore(&fore200e->q_lock, flags);
2974 return len;
2975 }
2976
2977 spin_unlock_irqrestore(&fore200e->q_lock, flags);
2978 }
2979
2980 return 0;
2981 }
2982
2983 module_init(fore200e_module_init);
2984 module_exit(fore200e_module_cleanup);
2985
2986
2987 static const struct atmdev_ops fore200e_ops = {
2988 .open = fore200e_open,
2989 .close = fore200e_close,
2990 .ioctl = fore200e_ioctl,
2991 .send = fore200e_send,
2992 .change_qos = fore200e_change_qos,
2993 .proc_read = fore200e_proc_read,
2994 .owner = THIS_MODULE
2995 };
2996
2997 MODULE_LICENSE("GPL");
2998 #ifdef CONFIG_PCI
2999 #ifdef __LITTLE_ENDIAN__
3000 MODULE_FIRMWARE("pca200e.bin");
3001 #else
3002 MODULE_FIRMWARE("pca200e_ecd.bin2");
3003 #endif
3004 #endif /* CONFIG_PCI */
3005 #ifdef CONFIG_SBUS
3006 MODULE_FIRMWARE("sba200e_ecd.bin2");
3007 #endif
3008