1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/readahead.c - address_space-level file readahead.
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 09Apr2002 Andrew Morton
8 * Initial version.
9 */
10
11 /**
12 * DOC: Readahead Overview
13 *
14 * Readahead is used to read content into the page cache before it is
15 * explicitly requested by the application. Readahead only ever
16 * attempts to read folios that are not yet in the page cache. If a
17 * folio is present but not up-to-date, readahead will not try to read
18 * it. In that case a simple ->read_folio() will be requested.
19 *
20 * Readahead is triggered when an application read request (whether a
21 * system call or a page fault) finds that the requested folio is not in
22 * the page cache, or that it is in the page cache and has the
23 * readahead flag set. This flag indicates that the folio was read
24 * as part of a previous readahead request and now that it has been
25 * accessed, it is time for the next readahead.
26 *
27 * Each readahead request is partly synchronous read, and partly async
28 * readahead. This is reflected in the struct file_ra_state which
29 * contains ->size being the total number of pages, and ->async_size
30 * which is the number of pages in the async section. The readahead
31 * flag will be set on the first folio in this async section to trigger
32 * a subsequent readahead. Once a series of sequential reads has been
33 * established, there should be no need for a synchronous component and
34 * all readahead request will be fully asynchronous.
35 *
36 * When either of the triggers causes a readahead, three numbers need
37 * to be determined: the start of the region to read, the size of the
38 * region, and the size of the async tail.
39 *
40 * The start of the region is simply the first page address at or after
41 * the accessed address, which is not currently populated in the page
42 * cache. This is found with a simple search in the page cache.
43 *
44 * The size of the async tail is determined by subtracting the size that
45 * was explicitly requested from the determined request size, unless
46 * this would be less than zero - then zero is used. NOTE THIS
47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
48 * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
49 *
50 * The size of the region is normally determined from the size of the
51 * previous readahead which loaded the preceding pages. This may be
52 * discovered from the struct file_ra_state for simple sequential reads,
53 * or from examining the state of the page cache when multiple
54 * sequential reads are interleaved. Specifically: where the readahead
55 * was triggered by the readahead flag, the size of the previous
56 * readahead is assumed to be the number of pages from the triggering
57 * page to the start of the new readahead. In these cases, the size of
58 * the previous readahead is scaled, often doubled, for the new
59 * readahead, though see get_next_ra_size() for details.
60 *
61 * If the size of the previous read cannot be determined, the number of
62 * preceding pages in the page cache is used to estimate the size of
63 * a previous read. This estimate could easily be misled by random
64 * reads being coincidentally adjacent, so it is ignored unless it is
65 * larger than the current request, and it is not scaled up, unless it
66 * is at the start of file.
67 *
68 * In general readahead is accelerated at the start of the file, as
69 * reads from there are often sequential. There are other minor
70 * adjustments to the readahead size in various special cases and these
71 * are best discovered by reading the code.
72 *
73 * The above calculation, based on the previous readahead size,
74 * determines the size of the readahead, to which any requested read
75 * size may be added.
76 *
77 * Readahead requests are sent to the filesystem using the ->readahead()
78 * address space operation, for which mpage_readahead() is a canonical
79 * implementation. ->readahead() should normally initiate reads on all
80 * folios, but may fail to read any or all folios without causing an I/O
81 * error. The page cache reading code will issue a ->read_folio() request
82 * for any folio which ->readahead() did not read, and only an error
83 * from this will be final.
84 *
85 * ->readahead() will generally call readahead_folio() repeatedly to get
86 * each folio from those prepared for readahead. It may fail to read a
87 * folio by:
88 *
89 * * not calling readahead_folio() sufficiently many times, effectively
90 * ignoring some folios, as might be appropriate if the path to
91 * storage is congested.
92 *
93 * * failing to actually submit a read request for a given folio,
94 * possibly due to insufficient resources, or
95 *
96 * * getting an error during subsequent processing of a request.
97 *
98 * In the last two cases, the folio should be unlocked by the filesystem
99 * to indicate that the read attempt has failed. In the first case the
100 * folio will be unlocked by the VFS.
101 *
102 * Those folios not in the final ``async_size`` of the request should be
103 * considered to be important and ->readahead() should not fail them due
104 * to congestion or temporary resource unavailability, but should wait
105 * for necessary resources (e.g. memory or indexing information) to
106 * become available. Folios in the final ``async_size`` may be
107 * considered less urgent and failure to read them is more acceptable.
108 * In this case it is best to use filemap_remove_folio() to remove the
109 * folios from the page cache as is automatically done for folios that
110 * were not fetched with readahead_folio(). This will allow a
111 * subsequent synchronous readahead request to try them again. If they
112 * are left in the page cache, then they will be read individually using
113 * ->read_folio() which may be less efficient.
114 */
115
116 #include <linux/blkdev.h>
117 #include <linux/kernel.h>
118 #include <linux/dax.h>
119 #include <linux/gfp.h>
120 #include <linux/export.h>
121 #include <linux/backing-dev.h>
122 #include <linux/task_io_accounting_ops.h>
123 #include <linux/pagemap.h>
124 #include <linux/psi.h>
125 #include <linux/syscalls.h>
126 #include <linux/file.h>
127 #include <linux/mm_inline.h>
128 #include <linux/blk-cgroup.h>
129 #include <linux/fadvise.h>
130 #include <linux/sched/mm.h>
131
132 #define CREATE_TRACE_POINTS
133 #include <trace/events/readahead.h>
134
135 #include "internal.h"
136
137 /*
138 * Initialise a struct file's readahead state. Assumes that the caller has
139 * memset *ra to zero.
140 */
141 void
file_ra_state_init(struct file_ra_state * ra,struct address_space * mapping)142 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
143 {
144 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
145 ra->prev_pos = -1;
146 }
147 EXPORT_SYMBOL_GPL(file_ra_state_init);
148
read_pages(struct readahead_control * rac)149 static void read_pages(struct readahead_control *rac)
150 {
151 const struct address_space_operations *aops = rac->mapping->a_ops;
152 struct folio *folio;
153 struct blk_plug plug;
154
155 if (!readahead_count(rac))
156 return;
157
158 if (unlikely(rac->_workingset))
159 psi_memstall_enter(&rac->_pflags);
160 blk_start_plug(&plug);
161
162 if (aops->readahead) {
163 aops->readahead(rac);
164 /* Clean up the remaining folios. */
165 while ((folio = readahead_folio(rac)) != NULL) {
166 folio_get(folio);
167 filemap_remove_folio(folio);
168 folio_unlock(folio);
169 folio_put(folio);
170 }
171 } else {
172 while ((folio = readahead_folio(rac)) != NULL)
173 aops->read_folio(rac->file, folio);
174 }
175
176 blk_finish_plug(&plug);
177 if (unlikely(rac->_workingset))
178 psi_memstall_leave(&rac->_pflags);
179 rac->_workingset = false;
180
181 BUG_ON(readahead_count(rac));
182 }
183
ractl_alloc_folio(struct readahead_control * ractl,gfp_t gfp_mask,unsigned int order)184 static struct folio *ractl_alloc_folio(struct readahead_control *ractl,
185 gfp_t gfp_mask, unsigned int order)
186 {
187 struct folio *folio;
188
189 folio = filemap_alloc_folio(gfp_mask, order);
190 if (folio && ractl->dropbehind)
191 __folio_set_dropbehind(folio);
192
193 return folio;
194 }
195
196 /**
197 * page_cache_ra_unbounded - Start unchecked readahead.
198 * @ractl: Readahead control.
199 * @nr_to_read: The number of pages to read.
200 * @lookahead_size: Where to start the next readahead.
201 *
202 * This function is for filesystems to call when they want to start
203 * readahead beyond a file's stated i_size. This is almost certainly
204 * not the function you want to call. Use page_cache_async_readahead()
205 * or page_cache_sync_readahead() instead.
206 *
207 * Context: File is referenced by caller. Mutexes may be held by caller.
208 * May sleep, but will not reenter filesystem to reclaim memory.
209 */
page_cache_ra_unbounded(struct readahead_control * ractl,unsigned long nr_to_read,unsigned long lookahead_size)210 void page_cache_ra_unbounded(struct readahead_control *ractl,
211 unsigned long nr_to_read, unsigned long lookahead_size)
212 {
213 struct address_space *mapping = ractl->mapping;
214 unsigned long index = readahead_index(ractl);
215 gfp_t gfp_mask = readahead_gfp_mask(mapping);
216 unsigned long mark = ULONG_MAX, i = 0;
217 unsigned int min_nrpages = mapping_min_folio_nrpages(mapping);
218
219 /*
220 * Partway through the readahead operation, we will have added
221 * locked pages to the page cache, but will not yet have submitted
222 * them for I/O. Adding another page may need to allocate memory,
223 * which can trigger memory reclaim. Telling the VM we're in
224 * the middle of a filesystem operation will cause it to not
225 * touch file-backed pages, preventing a deadlock. Most (all?)
226 * filesystems already specify __GFP_NOFS in their mapping's
227 * gfp_mask, but let's be explicit here.
228 */
229 unsigned int nofs = memalloc_nofs_save();
230
231 trace_page_cache_ra_unbounded(mapping->host, index, nr_to_read,
232 lookahead_size);
233 filemap_invalidate_lock_shared(mapping);
234 index = mapping_align_index(mapping, index);
235
236 /*
237 * As iterator `i` is aligned to min_nrpages, round_up the
238 * difference between nr_to_read and lookahead_size to mark the
239 * index that only has lookahead or "async_region" to set the
240 * readahead flag.
241 */
242 if (lookahead_size <= nr_to_read) {
243 unsigned long ra_folio_index;
244
245 ra_folio_index = round_up(readahead_index(ractl) +
246 nr_to_read - lookahead_size,
247 min_nrpages);
248 mark = ra_folio_index - index;
249 }
250 nr_to_read += readahead_index(ractl) - index;
251 ractl->_index = index;
252
253 /*
254 * Preallocate as many pages as we will need.
255 */
256 while (i < nr_to_read) {
257 struct folio *folio = xa_load(&mapping->i_pages, index + i);
258 int ret;
259
260 if (folio && !xa_is_value(folio)) {
261 /*
262 * Page already present? Kick off the current batch
263 * of contiguous pages before continuing with the
264 * next batch. This page may be the one we would
265 * have intended to mark as Readahead, but we don't
266 * have a stable reference to this page, and it's
267 * not worth getting one just for that.
268 */
269 read_pages(ractl);
270 ractl->_index += min_nrpages;
271 i = ractl->_index + ractl->_nr_pages - index;
272 continue;
273 }
274
275 folio = ractl_alloc_folio(ractl, gfp_mask,
276 mapping_min_folio_order(mapping));
277 if (!folio)
278 break;
279
280 ret = filemap_add_folio(mapping, folio, index + i, gfp_mask);
281 if (ret < 0) {
282 folio_put(folio);
283 if (ret == -ENOMEM)
284 break;
285 read_pages(ractl);
286 ractl->_index += min_nrpages;
287 i = ractl->_index + ractl->_nr_pages - index;
288 continue;
289 }
290 if (i == mark)
291 folio_set_readahead(folio);
292 ractl->_workingset |= folio_test_workingset(folio);
293 ractl->_nr_pages += min_nrpages;
294 i += min_nrpages;
295 }
296
297 /*
298 * Now start the IO. We ignore I/O errors - if the folio is not
299 * uptodate then the caller will launch read_folio again, and
300 * will then handle the error.
301 */
302 read_pages(ractl);
303 filemap_invalidate_unlock_shared(mapping);
304 memalloc_nofs_restore(nofs);
305 }
306 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
307
308 /*
309 * do_page_cache_ra() actually reads a chunk of disk. It allocates
310 * the pages first, then submits them for I/O. This avoids the very bad
311 * behaviour which would occur if page allocations are causing VM writeback.
312 * We really don't want to intermingle reads and writes like that.
313 */
do_page_cache_ra(struct readahead_control * ractl,unsigned long nr_to_read,unsigned long lookahead_size)314 static void do_page_cache_ra(struct readahead_control *ractl,
315 unsigned long nr_to_read, unsigned long lookahead_size)
316 {
317 struct inode *inode = ractl->mapping->host;
318 unsigned long index = readahead_index(ractl);
319 loff_t isize = i_size_read(inode);
320 pgoff_t end_index; /* The last page we want to read */
321
322 if (isize == 0)
323 return;
324
325 end_index = (isize - 1) >> PAGE_SHIFT;
326 if (index > end_index)
327 return;
328 /* Don't read past the page containing the last byte of the file */
329 if (nr_to_read > end_index - index)
330 nr_to_read = end_index - index + 1;
331
332 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
333 }
334
335 /*
336 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
337 * memory at once.
338 */
force_page_cache_ra(struct readahead_control * ractl,unsigned long nr_to_read)339 void force_page_cache_ra(struct readahead_control *ractl,
340 unsigned long nr_to_read)
341 {
342 struct address_space *mapping = ractl->mapping;
343 struct file_ra_state *ra = ractl->ra;
344 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
345 unsigned long max_pages;
346
347 if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
348 return;
349
350 /*
351 * If the request exceeds the readahead window, allow the read to
352 * be up to the optimal hardware IO size
353 */
354 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
355 nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
356 while (nr_to_read) {
357 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
358
359 if (this_chunk > nr_to_read)
360 this_chunk = nr_to_read;
361 do_page_cache_ra(ractl, this_chunk, 0);
362
363 nr_to_read -= this_chunk;
364 }
365 }
366
367 /*
368 * Set the initial window size, round to next power of 2 and square
369 * for small size, x 4 for medium, and x 2 for large
370 * for 128k (32 page) max ra
371 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
372 */
get_init_ra_size(unsigned long size,unsigned long max)373 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
374 {
375 unsigned long newsize = roundup_pow_of_two(size);
376
377 if (newsize <= max / 32)
378 newsize = newsize * 4;
379 else if (newsize <= max / 4)
380 newsize = newsize * 2;
381 else
382 newsize = max;
383
384 return newsize;
385 }
386
387 /*
388 * Get the previous window size, ramp it up, and
389 * return it as the new window size.
390 */
get_next_ra_size(struct file_ra_state * ra,unsigned long max)391 static unsigned long get_next_ra_size(struct file_ra_state *ra,
392 unsigned long max)
393 {
394 unsigned long cur = ra->size;
395
396 if (cur < max / 16)
397 return 4 * cur;
398 if (cur <= max / 2)
399 return 2 * cur;
400 return max;
401 }
402
403 /*
404 * On-demand readahead design.
405 *
406 * The fields in struct file_ra_state represent the most-recently-executed
407 * readahead attempt:
408 *
409 * |<----- async_size ---------|
410 * |------------------- size -------------------->|
411 * |==================#===========================|
412 * ^start ^page marked with PG_readahead
413 *
414 * To overlap application thinking time and disk I/O time, we do
415 * `readahead pipelining': Do not wait until the application consumed all
416 * readahead pages and stalled on the missing page at readahead_index;
417 * Instead, submit an asynchronous readahead I/O as soon as there are
418 * only async_size pages left in the readahead window. Normally async_size
419 * will be equal to size, for maximum pipelining.
420 *
421 * In interleaved sequential reads, concurrent streams on the same fd can
422 * be invalidating each other's readahead state. So we flag the new readahead
423 * page at (start+size-async_size) with PG_readahead, and use it as readahead
424 * indicator. The flag won't be set on already cached pages, to avoid the
425 * readahead-for-nothing fuss, saving pointless page cache lookups.
426 *
427 * prev_pos tracks the last visited byte in the _previous_ read request.
428 * It should be maintained by the caller, and will be used for detecting
429 * small random reads. Note that the readahead algorithm checks loosely
430 * for sequential patterns. Hence interleaved reads might be served as
431 * sequential ones.
432 *
433 * There is a special-case: if the first page which the application tries to
434 * read happens to be the first page of the file, it is assumed that a linear
435 * read is about to happen and the window is immediately set to the initial size
436 * based on I/O request size and the max_readahead.
437 *
438 * The code ramps up the readahead size aggressively at first, but slow down as
439 * it approaches max_readhead.
440 */
441
ra_alloc_folio(struct readahead_control * ractl,pgoff_t index,pgoff_t mark,unsigned int order,gfp_t gfp)442 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
443 pgoff_t mark, unsigned int order, gfp_t gfp)
444 {
445 int err;
446 struct folio *folio = ractl_alloc_folio(ractl, gfp, order);
447
448 if (!folio)
449 return -ENOMEM;
450 mark = round_down(mark, 1UL << order);
451 if (index == mark)
452 folio_set_readahead(folio);
453 err = filemap_add_folio(ractl->mapping, folio, index, gfp);
454 if (err) {
455 folio_put(folio);
456 return err;
457 }
458
459 ractl->_nr_pages += 1UL << order;
460 ractl->_workingset |= folio_test_workingset(folio);
461 return 0;
462 }
463
page_cache_ra_order(struct readahead_control * ractl,struct file_ra_state * ra)464 void page_cache_ra_order(struct readahead_control *ractl,
465 struct file_ra_state *ra)
466 {
467 struct address_space *mapping = ractl->mapping;
468 pgoff_t start = readahead_index(ractl);
469 pgoff_t index = start;
470 unsigned int min_order = mapping_min_folio_order(mapping);
471 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
472 pgoff_t mark = index + ra->size - ra->async_size;
473 unsigned int nofs;
474 int err = 0;
475 gfp_t gfp = readahead_gfp_mask(mapping);
476 unsigned int new_order = ra->order;
477
478 trace_page_cache_ra_order(mapping->host, start, ra);
479 if (!mapping_large_folio_support(mapping)) {
480 ra->order = 0;
481 goto fallback;
482 }
483
484 limit = min(limit, index + ra->size - 1);
485
486 new_order = min(mapping_max_folio_order(mapping), new_order);
487 new_order = min_t(unsigned int, new_order, ilog2(ra->size));
488 new_order = max(new_order, min_order);
489
490 ra->order = new_order;
491
492 /* See comment in page_cache_ra_unbounded() */
493 nofs = memalloc_nofs_save();
494 filemap_invalidate_lock_shared(mapping);
495 /*
496 * If the new_order is greater than min_order and index is
497 * already aligned to new_order, then this will be noop as index
498 * aligned to new_order should also be aligned to min_order.
499 */
500 ractl->_index = mapping_align_index(mapping, index);
501 index = readahead_index(ractl);
502
503 while (index <= limit) {
504 unsigned int order = new_order;
505
506 /* Align with smaller pages if needed */
507 if (index & ((1UL << order) - 1))
508 order = __ffs(index);
509 /* Don't allocate pages past EOF */
510 while (order > min_order && index + (1UL << order) - 1 > limit)
511 order--;
512 err = ra_alloc_folio(ractl, index, mark, order, gfp);
513 if (err)
514 break;
515 index += 1UL << order;
516 }
517
518 read_pages(ractl);
519 filemap_invalidate_unlock_shared(mapping);
520 memalloc_nofs_restore(nofs);
521
522 /*
523 * If there were already pages in the page cache, then we may have
524 * left some gaps. Let the regular readahead code take care of this
525 * situation below.
526 */
527 if (!err)
528 return;
529 fallback:
530 /*
531 * ->readahead() may have updated readahead window size so we have to
532 * check there's still something to read.
533 */
534 if (ra->size > index - start)
535 do_page_cache_ra(ractl, ra->size - (index - start),
536 ra->async_size);
537 }
538
ractl_max_pages(struct readahead_control * ractl,unsigned long req_size)539 static unsigned long ractl_max_pages(struct readahead_control *ractl,
540 unsigned long req_size)
541 {
542 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
543 unsigned long max_pages = ractl->ra->ra_pages;
544
545 /*
546 * If the request exceeds the readahead window, allow the read to
547 * be up to the optimal hardware IO size
548 */
549 if (req_size > max_pages && bdi->io_pages > max_pages)
550 max_pages = min(req_size, bdi->io_pages);
551 return max_pages;
552 }
553
page_cache_sync_ra(struct readahead_control * ractl,unsigned long req_count)554 void page_cache_sync_ra(struct readahead_control *ractl,
555 unsigned long req_count)
556 {
557 pgoff_t index = readahead_index(ractl);
558 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
559 struct file_ra_state *ra = ractl->ra;
560 unsigned long max_pages, contig_count;
561 pgoff_t prev_index, miss;
562
563 trace_page_cache_sync_ra(ractl->mapping->host, index, ra, req_count);
564 /*
565 * Even if readahead is disabled, issue this request as readahead
566 * as we'll need it to satisfy the requested range. The forced
567 * readahead will do the right thing and limit the read to just the
568 * requested range, which we'll set to 1 page for this case.
569 */
570 if (!ra->ra_pages || blk_cgroup_congested()) {
571 if (!ractl->file)
572 return;
573 req_count = 1;
574 do_forced_ra = true;
575 }
576
577 /* be dumb */
578 if (do_forced_ra) {
579 force_page_cache_ra(ractl, req_count);
580 return;
581 }
582
583 max_pages = ractl_max_pages(ractl, req_count);
584 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
585 /*
586 * A start of file, oversized read, or sequential cache miss:
587 * trivial case: (index - prev_index) == 1
588 * unaligned reads: (index - prev_index) == 0
589 */
590 if (!index || req_count > max_pages || index - prev_index <= 1UL) {
591 ra->start = index;
592 ra->size = get_init_ra_size(req_count, max_pages);
593 ra->async_size = ra->size > req_count ? ra->size - req_count :
594 ra->size >> 1;
595 goto readit;
596 }
597
598 /*
599 * Query the page cache and look for the traces(cached history pages)
600 * that a sequential stream would leave behind.
601 */
602 rcu_read_lock();
603 miss = page_cache_prev_miss(ractl->mapping, index - 1, max_pages);
604 rcu_read_unlock();
605 contig_count = index - miss - 1;
606 /*
607 * Standalone, small random read. Read as is, and do not pollute the
608 * readahead state.
609 */
610 if (contig_count <= req_count) {
611 do_page_cache_ra(ractl, req_count, 0);
612 return;
613 }
614 /*
615 * File cached from the beginning:
616 * it is a strong indication of long-run stream (or whole-file-read)
617 */
618 if (miss == ULONG_MAX)
619 contig_count *= 2;
620 ra->start = index;
621 ra->size = min(contig_count + req_count, max_pages);
622 ra->async_size = 1;
623 readit:
624 ra->order = 0;
625 ractl->_index = ra->start;
626 page_cache_ra_order(ractl, ra);
627 }
628 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
629
page_cache_async_ra(struct readahead_control * ractl,struct folio * folio,unsigned long req_count)630 void page_cache_async_ra(struct readahead_control *ractl,
631 struct folio *folio, unsigned long req_count)
632 {
633 unsigned long max_pages;
634 struct file_ra_state *ra = ractl->ra;
635 pgoff_t index = readahead_index(ractl);
636 pgoff_t expected, start, end, aligned_end, align;
637
638 /* no readahead */
639 if (!ra->ra_pages)
640 return;
641
642 /*
643 * Same bit is used for PG_readahead and PG_reclaim.
644 */
645 if (folio_test_writeback(folio))
646 return;
647
648 trace_page_cache_async_ra(ractl->mapping->host, index, ra, req_count);
649 folio_clear_readahead(folio);
650
651 if (blk_cgroup_congested())
652 return;
653
654 max_pages = ractl_max_pages(ractl, req_count);
655 /*
656 * It's the expected callback index, assume sequential access.
657 * Ramp up sizes, and push forward the readahead window.
658 */
659 expected = round_down(ra->start + ra->size - ra->async_size,
660 folio_nr_pages(folio));
661 if (index == expected) {
662 ra->start += ra->size;
663 /*
664 * In the case of MADV_HUGEPAGE, the actual size might exceed
665 * the readahead window.
666 */
667 ra->size = max(ra->size, get_next_ra_size(ra, max_pages));
668 goto readit;
669 }
670
671 /*
672 * Hit a marked folio without valid readahead state.
673 * E.g. interleaved reads.
674 * Query the pagecache for async_size, which normally equals to
675 * readahead size. Ramp it up and use it as the new readahead size.
676 */
677 rcu_read_lock();
678 start = page_cache_next_miss(ractl->mapping, index + 1, max_pages);
679 rcu_read_unlock();
680
681 if (!start || start - index > max_pages)
682 return;
683
684 ra->start = start;
685 ra->size = start - index; /* old async_size */
686 ra->size += req_count;
687 ra->size = get_next_ra_size(ra, max_pages);
688 readit:
689 ra->order += 2;
690 align = 1UL << min(ra->order, ffs(max_pages) - 1);
691 end = ra->start + ra->size;
692 aligned_end = round_down(end, align);
693 if (aligned_end > ra->start)
694 ra->size -= end - aligned_end;
695 ra->async_size = ra->size;
696 ractl->_index = ra->start;
697 page_cache_ra_order(ractl, ra);
698 }
699 EXPORT_SYMBOL_GPL(page_cache_async_ra);
700
ksys_readahead(int fd,loff_t offset,size_t count)701 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
702 {
703 struct file *file;
704 const struct inode *inode;
705
706 CLASS(fd, f)(fd);
707 if (fd_empty(f))
708 return -EBADF;
709
710 file = fd_file(f);
711 if (!(file->f_mode & FMODE_READ))
712 return -EBADF;
713
714 /*
715 * The readahead() syscall is intended to run only on files
716 * that can execute readahead. If readahead is not possible
717 * on this file, then we must return -EINVAL.
718 */
719 if (!file->f_mapping)
720 return -EINVAL;
721 if (!file->f_mapping->a_ops)
722 return -EINVAL;
723
724 inode = file_inode(file);
725 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
726 return -EINVAL;
727 if (IS_ANON_FILE(inode))
728 return -EINVAL;
729
730 return vfs_fadvise(fd_file(f), offset, count, POSIX_FADV_WILLNEED);
731 }
732
SYSCALL_DEFINE3(readahead,int,fd,loff_t,offset,size_t,count)733 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
734 {
735 return ksys_readahead(fd, offset, count);
736 }
737
738 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
COMPAT_SYSCALL_DEFINE4(readahead,int,fd,compat_arg_u64_dual (offset),size_t,count)739 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
740 {
741 return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
742 }
743 #endif
744
745 /**
746 * readahead_expand - Expand a readahead request
747 * @ractl: The request to be expanded
748 * @new_start: The revised start
749 * @new_len: The revised size of the request
750 *
751 * Attempt to expand a readahead request outwards from the current size to the
752 * specified size by inserting locked pages before and after the current window
753 * to increase the size to the new window. This may involve the insertion of
754 * THPs, in which case the window may get expanded even beyond what was
755 * requested.
756 *
757 * The algorithm will stop if it encounters a conflicting page already in the
758 * pagecache and leave a smaller expansion than requested.
759 *
760 * The caller must check for this by examining the revised @ractl object for a
761 * different expansion than was requested.
762 */
readahead_expand(struct readahead_control * ractl,loff_t new_start,size_t new_len)763 void readahead_expand(struct readahead_control *ractl,
764 loff_t new_start, size_t new_len)
765 {
766 struct address_space *mapping = ractl->mapping;
767 struct file_ra_state *ra = ractl->ra;
768 pgoff_t new_index, new_nr_pages;
769 gfp_t gfp_mask = readahead_gfp_mask(mapping);
770 unsigned long min_nrpages = mapping_min_folio_nrpages(mapping);
771 unsigned int min_order = mapping_min_folio_order(mapping);
772
773 new_index = new_start / PAGE_SIZE;
774 /*
775 * Readahead code should have aligned the ractl->_index to
776 * min_nrpages before calling readahead aops.
777 */
778 VM_BUG_ON(!IS_ALIGNED(ractl->_index, min_nrpages));
779
780 /* Expand the leading edge downwards */
781 while (ractl->_index > new_index) {
782 unsigned long index = ractl->_index - 1;
783 struct folio *folio = xa_load(&mapping->i_pages, index);
784
785 if (folio && !xa_is_value(folio))
786 return; /* Folio apparently present */
787
788 folio = ractl_alloc_folio(ractl, gfp_mask, min_order);
789 if (!folio)
790 return;
791
792 index = mapping_align_index(mapping, index);
793 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
794 folio_put(folio);
795 return;
796 }
797 if (unlikely(folio_test_workingset(folio)) &&
798 !ractl->_workingset) {
799 ractl->_workingset = true;
800 psi_memstall_enter(&ractl->_pflags);
801 }
802 ractl->_nr_pages += min_nrpages;
803 ractl->_index = folio->index;
804 }
805
806 new_len += new_start - readahead_pos(ractl);
807 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
808
809 /* Expand the trailing edge upwards */
810 while (ractl->_nr_pages < new_nr_pages) {
811 unsigned long index = ractl->_index + ractl->_nr_pages;
812 struct folio *folio = xa_load(&mapping->i_pages, index);
813
814 if (folio && !xa_is_value(folio))
815 return; /* Folio apparently present */
816
817 folio = ractl_alloc_folio(ractl, gfp_mask, min_order);
818 if (!folio)
819 return;
820
821 index = mapping_align_index(mapping, index);
822 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
823 folio_put(folio);
824 return;
825 }
826 if (unlikely(folio_test_workingset(folio)) &&
827 !ractl->_workingset) {
828 ractl->_workingset = true;
829 psi_memstall_enter(&ractl->_pflags);
830 }
831 ractl->_nr_pages += min_nrpages;
832 if (ra) {
833 ra->size += min_nrpages;
834 ra->async_size += min_nrpages;
835 }
836 }
837 }
838 EXPORT_SYMBOL(readahead_expand);
839