1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/fs.h>
5 #include <linux/file.h>
6 #include <linux/blk-mq.h>
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/fsnotify.h>
10 #include <linux/poll.h>
11 #include <linux/nospec.h>
12 #include <linux/compat.h>
13 #include <linux/io_uring/cmd.h>
14 #include <linux/indirect_call_wrapper.h>
15
16 #include <uapi/linux/io_uring.h>
17
18 #include "filetable.h"
19 #include "io_uring.h"
20 #include "opdef.h"
21 #include "kbuf.h"
22 #include "alloc_cache.h"
23 #include "rsrc.h"
24 #include "poll.h"
25 #include "rw.h"
26
27 static void io_complete_rw(struct kiocb *kiocb, long res);
28 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res);
29
30 struct io_rw {
31 /* NOTE: kiocb has the file as the first member, so don't do it here */
32 struct kiocb kiocb;
33 u64 addr;
34 u32 len;
35 rwf_t flags;
36 };
37
io_file_supports_nowait(struct io_kiocb * req,__poll_t mask)38 static bool io_file_supports_nowait(struct io_kiocb *req, __poll_t mask)
39 {
40 /* If FMODE_NOWAIT is set for a file, we're golden */
41 if (req->flags & REQ_F_SUPPORT_NOWAIT)
42 return true;
43 /* No FMODE_NOWAIT, if we can poll, check the status */
44 if (io_file_can_poll(req)) {
45 struct poll_table_struct pt = { ._key = mask };
46
47 return vfs_poll(req->file, &pt) & mask;
48 }
49 /* No FMODE_NOWAIT support, and file isn't pollable. Tough luck. */
50 return false;
51 }
52
io_iov_compat_buffer_select_prep(struct io_rw * rw)53 static int io_iov_compat_buffer_select_prep(struct io_rw *rw)
54 {
55 struct compat_iovec __user *uiov = u64_to_user_ptr(rw->addr);
56 struct compat_iovec iov;
57
58 if (copy_from_user(&iov, uiov, sizeof(iov)))
59 return -EFAULT;
60 rw->len = iov.iov_len;
61 return 0;
62 }
63
io_iov_buffer_select_prep(struct io_kiocb * req)64 static int io_iov_buffer_select_prep(struct io_kiocb *req)
65 {
66 struct iovec __user *uiov;
67 struct iovec iov;
68 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
69
70 if (rw->len != 1)
71 return -EINVAL;
72
73 if (io_is_compat(req->ctx))
74 return io_iov_compat_buffer_select_prep(rw);
75
76 uiov = u64_to_user_ptr(rw->addr);
77 if (copy_from_user(&iov, uiov, sizeof(*uiov)))
78 return -EFAULT;
79 rw->len = iov.iov_len;
80 return 0;
81 }
82
io_import_vec(int ddir,struct io_kiocb * req,struct io_async_rw * io,const struct iovec __user * uvec,size_t uvec_segs)83 static int io_import_vec(int ddir, struct io_kiocb *req,
84 struct io_async_rw *io,
85 const struct iovec __user *uvec,
86 size_t uvec_segs)
87 {
88 int ret, nr_segs;
89 struct iovec *iov;
90
91 if (io->vec.iovec) {
92 nr_segs = io->vec.nr;
93 iov = io->vec.iovec;
94 } else {
95 nr_segs = 1;
96 iov = &io->fast_iov;
97 }
98
99 ret = __import_iovec(ddir, uvec, uvec_segs, nr_segs, &iov, &io->iter,
100 io_is_compat(req->ctx));
101 if (unlikely(ret < 0))
102 return ret;
103 if (iov) {
104 req->flags |= REQ_F_NEED_CLEANUP;
105 io_vec_reset_iovec(&io->vec, iov, io->iter.nr_segs);
106 }
107 return 0;
108 }
109
__io_import_rw_buffer(int ddir,struct io_kiocb * req,struct io_async_rw * io,struct io_br_sel * sel,unsigned int issue_flags)110 static int __io_import_rw_buffer(int ddir, struct io_kiocb *req,
111 struct io_async_rw *io, struct io_br_sel *sel,
112 unsigned int issue_flags)
113 {
114 const struct io_issue_def *def = &io_issue_defs[req->opcode];
115 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
116 size_t sqe_len = rw->len;
117
118 sel->addr = u64_to_user_ptr(rw->addr);
119 if (def->vectored && !(req->flags & REQ_F_BUFFER_SELECT))
120 return io_import_vec(ddir, req, io, sel->addr, sqe_len);
121
122 if (io_do_buffer_select(req)) {
123 *sel = io_buffer_select(req, &sqe_len, io->buf_group, issue_flags);
124 if (!sel->addr)
125 return -ENOBUFS;
126 rw->addr = (unsigned long) sel->addr;
127 rw->len = sqe_len;
128 }
129 return import_ubuf(ddir, sel->addr, sqe_len, &io->iter);
130 }
131
io_import_rw_buffer(int rw,struct io_kiocb * req,struct io_async_rw * io,struct io_br_sel * sel,unsigned int issue_flags)132 static inline int io_import_rw_buffer(int rw, struct io_kiocb *req,
133 struct io_async_rw *io,
134 struct io_br_sel *sel,
135 unsigned int issue_flags)
136 {
137 int ret;
138
139 ret = __io_import_rw_buffer(rw, req, io, sel, issue_flags);
140 if (unlikely(ret < 0))
141 return ret;
142
143 iov_iter_save_state(&io->iter, &io->iter_state);
144 return 0;
145 }
146
io_rw_recycle(struct io_kiocb * req,unsigned int issue_flags)147 static bool io_rw_recycle(struct io_kiocb *req, unsigned int issue_flags)
148 {
149 struct io_async_rw *rw = req->async_data;
150
151 if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
152 return false;
153
154 io_alloc_cache_vec_kasan(&rw->vec);
155 if (rw->vec.nr > IO_VEC_CACHE_SOFT_CAP)
156 io_vec_free(&rw->vec);
157
158 if (io_alloc_cache_put(&req->ctx->rw_cache, rw)) {
159 io_req_async_data_clear(req, 0);
160 return true;
161 }
162 return false;
163 }
164
io_req_rw_cleanup(struct io_kiocb * req,unsigned int issue_flags)165 static void io_req_rw_cleanup(struct io_kiocb *req, unsigned int issue_flags)
166 {
167 /*
168 * Disable quick recycling for anything that's gone through io-wq.
169 * In theory, this should be fine to cleanup. However, some read or
170 * write iter handling touches the iovec AFTER having called into the
171 * handler, eg to reexpand or revert. This means we can have:
172 *
173 * task io-wq
174 * issue
175 * punt to io-wq
176 * issue
177 * blkdev_write_iter()
178 * ->ki_complete()
179 * io_complete_rw()
180 * queue tw complete
181 * run tw
182 * req_rw_cleanup
183 * iov_iter_count() <- look at iov_iter again
184 *
185 * which can lead to a UAF. This is only possible for io-wq offload
186 * as the cleanup can run in parallel. As io-wq is not the fast path,
187 * just leave cleanup to the end.
188 *
189 * This is really a bug in the core code that does this, any issue
190 * path should assume that a successful (or -EIOCBQUEUED) return can
191 * mean that the underlying data can be gone at any time. But that
192 * should be fixed separately, and then this check could be killed.
193 */
194 if (!(req->flags & (REQ_F_REISSUE | REQ_F_REFCOUNT))) {
195 req->flags &= ~REQ_F_NEED_CLEANUP;
196 if (!io_rw_recycle(req, issue_flags)) {
197 struct io_async_rw *rw = req->async_data;
198
199 io_vec_free(&rw->vec);
200 }
201 }
202 }
203
io_rw_alloc_async(struct io_kiocb * req)204 static int io_rw_alloc_async(struct io_kiocb *req)
205 {
206 struct io_ring_ctx *ctx = req->ctx;
207 struct io_async_rw *rw;
208
209 rw = io_uring_alloc_async_data(&ctx->rw_cache, req);
210 if (!rw)
211 return -ENOMEM;
212 if (rw->vec.iovec)
213 req->flags |= REQ_F_NEED_CLEANUP;
214 rw->bytes_done = 0;
215 return 0;
216 }
217
io_meta_save_state(struct io_async_rw * io)218 static inline void io_meta_save_state(struct io_async_rw *io)
219 {
220 io->meta_state.seed = io->meta.seed;
221 iov_iter_save_state(&io->meta.iter, &io->meta_state.iter_meta);
222 }
223
io_meta_restore(struct io_async_rw * io,struct kiocb * kiocb)224 static inline void io_meta_restore(struct io_async_rw *io, struct kiocb *kiocb)
225 {
226 if (kiocb->ki_flags & IOCB_HAS_METADATA) {
227 io->meta.seed = io->meta_state.seed;
228 iov_iter_restore(&io->meta.iter, &io->meta_state.iter_meta);
229 }
230 }
231
io_prep_rw_pi(struct io_kiocb * req,struct io_rw * rw,int ddir,u64 attr_ptr,u64 attr_type_mask)232 static int io_prep_rw_pi(struct io_kiocb *req, struct io_rw *rw, int ddir,
233 u64 attr_ptr, u64 attr_type_mask)
234 {
235 struct io_uring_attr_pi pi_attr;
236 struct io_async_rw *io;
237 int ret;
238
239 if (copy_from_user(&pi_attr, u64_to_user_ptr(attr_ptr),
240 sizeof(pi_attr)))
241 return -EFAULT;
242
243 if (pi_attr.rsvd)
244 return -EINVAL;
245
246 io = req->async_data;
247 io->meta.flags = pi_attr.flags;
248 io->meta.app_tag = pi_attr.app_tag;
249 io->meta.seed = pi_attr.seed;
250 ret = import_ubuf(ddir, u64_to_user_ptr(pi_attr.addr),
251 pi_attr.len, &io->meta.iter);
252 if (unlikely(ret < 0))
253 return ret;
254 req->flags |= REQ_F_HAS_METADATA;
255 io_meta_save_state(io);
256 return ret;
257 }
258
__io_prep_rw(struct io_kiocb * req,const struct io_uring_sqe * sqe,int ddir)259 static int __io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
260 int ddir)
261 {
262 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
263 struct io_async_rw *io;
264 unsigned ioprio;
265 u64 attr_type_mask;
266 int ret;
267
268 if (io_rw_alloc_async(req))
269 return -ENOMEM;
270 io = req->async_data;
271
272 rw->kiocb.ki_pos = READ_ONCE(sqe->off);
273 /* used for fixed read/write too - just read unconditionally */
274 req->buf_index = READ_ONCE(sqe->buf_index);
275 io->buf_group = req->buf_index;
276
277 ioprio = READ_ONCE(sqe->ioprio);
278 if (ioprio) {
279 ret = ioprio_check_cap(ioprio);
280 if (ret)
281 return ret;
282
283 rw->kiocb.ki_ioprio = ioprio;
284 } else {
285 rw->kiocb.ki_ioprio = get_current_ioprio();
286 }
287 rw->kiocb.ki_flags = 0;
288 rw->kiocb.ki_write_stream = READ_ONCE(sqe->write_stream);
289
290 if (req->ctx->flags & IORING_SETUP_IOPOLL)
291 rw->kiocb.ki_complete = io_complete_rw_iopoll;
292 else
293 rw->kiocb.ki_complete = io_complete_rw;
294
295 rw->addr = READ_ONCE(sqe->addr);
296 rw->len = READ_ONCE(sqe->len);
297 rw->flags = (__force rwf_t) READ_ONCE(sqe->rw_flags);
298
299 attr_type_mask = READ_ONCE(sqe->attr_type_mask);
300 if (attr_type_mask) {
301 u64 attr_ptr;
302
303 /* only PI attribute is supported currently */
304 if (attr_type_mask != IORING_RW_ATTR_FLAG_PI)
305 return -EINVAL;
306
307 attr_ptr = READ_ONCE(sqe->attr_ptr);
308 return io_prep_rw_pi(req, rw, ddir, attr_ptr, attr_type_mask);
309 }
310 return 0;
311 }
312
io_rw_do_import(struct io_kiocb * req,int ddir)313 static int io_rw_do_import(struct io_kiocb *req, int ddir)
314 {
315 struct io_br_sel sel = { };
316
317 if (io_do_buffer_select(req))
318 return 0;
319
320 return io_import_rw_buffer(ddir, req, req->async_data, &sel, 0);
321 }
322
io_prep_rw(struct io_kiocb * req,const struct io_uring_sqe * sqe,int ddir)323 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
324 int ddir)
325 {
326 int ret;
327
328 ret = __io_prep_rw(req, sqe, ddir);
329 if (unlikely(ret))
330 return ret;
331
332 return io_rw_do_import(req, ddir);
333 }
334
io_prep_read(struct io_kiocb * req,const struct io_uring_sqe * sqe)335 int io_prep_read(struct io_kiocb *req, const struct io_uring_sqe *sqe)
336 {
337 return io_prep_rw(req, sqe, ITER_DEST);
338 }
339
io_prep_write(struct io_kiocb * req,const struct io_uring_sqe * sqe)340 int io_prep_write(struct io_kiocb *req, const struct io_uring_sqe *sqe)
341 {
342 return io_prep_rw(req, sqe, ITER_SOURCE);
343 }
344
io_prep_rwv(struct io_kiocb * req,const struct io_uring_sqe * sqe,int ddir)345 static int io_prep_rwv(struct io_kiocb *req, const struct io_uring_sqe *sqe,
346 int ddir)
347 {
348 int ret;
349
350 ret = io_prep_rw(req, sqe, ddir);
351 if (unlikely(ret))
352 return ret;
353 if (!(req->flags & REQ_F_BUFFER_SELECT))
354 return 0;
355
356 /*
357 * Have to do this validation here, as this is in io_read() rw->len
358 * might have changed due to buffer selection
359 */
360 return io_iov_buffer_select_prep(req);
361 }
362
io_prep_readv(struct io_kiocb * req,const struct io_uring_sqe * sqe)363 int io_prep_readv(struct io_kiocb *req, const struct io_uring_sqe *sqe)
364 {
365 return io_prep_rwv(req, sqe, ITER_DEST);
366 }
367
io_prep_writev(struct io_kiocb * req,const struct io_uring_sqe * sqe)368 int io_prep_writev(struct io_kiocb *req, const struct io_uring_sqe *sqe)
369 {
370 return io_prep_rwv(req, sqe, ITER_SOURCE);
371 }
372
io_init_rw_fixed(struct io_kiocb * req,unsigned int issue_flags,int ddir)373 static int io_init_rw_fixed(struct io_kiocb *req, unsigned int issue_flags,
374 int ddir)
375 {
376 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
377 struct io_async_rw *io = req->async_data;
378 int ret;
379
380 if (io->bytes_done)
381 return 0;
382
383 ret = io_import_reg_buf(req, &io->iter, rw->addr, rw->len, ddir,
384 issue_flags);
385 iov_iter_save_state(&io->iter, &io->iter_state);
386 return ret;
387 }
388
io_prep_read_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe)389 int io_prep_read_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
390 {
391 return __io_prep_rw(req, sqe, ITER_DEST);
392 }
393
io_prep_write_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe)394 int io_prep_write_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
395 {
396 return __io_prep_rw(req, sqe, ITER_SOURCE);
397 }
398
io_rw_import_reg_vec(struct io_kiocb * req,struct io_async_rw * io,int ddir,unsigned int issue_flags)399 static int io_rw_import_reg_vec(struct io_kiocb *req,
400 struct io_async_rw *io,
401 int ddir, unsigned int issue_flags)
402 {
403 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
404 unsigned uvec_segs = rw->len;
405 int ret;
406
407 ret = io_import_reg_vec(ddir, &io->iter, req, &io->vec,
408 uvec_segs, issue_flags);
409 if (unlikely(ret))
410 return ret;
411 iov_iter_save_state(&io->iter, &io->iter_state);
412 req->flags &= ~REQ_F_IMPORT_BUFFER;
413 return 0;
414 }
415
io_rw_prep_reg_vec(struct io_kiocb * req)416 static int io_rw_prep_reg_vec(struct io_kiocb *req)
417 {
418 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
419 struct io_async_rw *io = req->async_data;
420 const struct iovec __user *uvec;
421
422 uvec = u64_to_user_ptr(rw->addr);
423 return io_prep_reg_iovec(req, &io->vec, uvec, rw->len);
424 }
425
io_prep_readv_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe)426 int io_prep_readv_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
427 {
428 int ret;
429
430 ret = __io_prep_rw(req, sqe, ITER_DEST);
431 if (unlikely(ret))
432 return ret;
433 return io_rw_prep_reg_vec(req);
434 }
435
io_prep_writev_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe)436 int io_prep_writev_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
437 {
438 int ret;
439
440 ret = __io_prep_rw(req, sqe, ITER_SOURCE);
441 if (unlikely(ret))
442 return ret;
443 return io_rw_prep_reg_vec(req);
444 }
445
446 /*
447 * Multishot read is prepared just like a normal read/write request, only
448 * difference is that we set the MULTISHOT flag.
449 */
io_read_mshot_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)450 int io_read_mshot_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
451 {
452 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
453 int ret;
454
455 /* must be used with provided buffers */
456 if (!(req->flags & REQ_F_BUFFER_SELECT))
457 return -EINVAL;
458
459 ret = __io_prep_rw(req, sqe, ITER_DEST);
460 if (unlikely(ret))
461 return ret;
462
463 if (rw->addr || rw->len)
464 return -EINVAL;
465
466 req->flags |= REQ_F_APOLL_MULTISHOT;
467 return 0;
468 }
469
io_readv_writev_cleanup(struct io_kiocb * req)470 void io_readv_writev_cleanup(struct io_kiocb *req)
471 {
472 struct io_async_rw *rw = req->async_data;
473
474 lockdep_assert_held(&req->ctx->uring_lock);
475 io_vec_free(&rw->vec);
476 io_rw_recycle(req, 0);
477 }
478
io_kiocb_update_pos(struct io_kiocb * req)479 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
480 {
481 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
482
483 if (rw->kiocb.ki_pos != -1)
484 return &rw->kiocb.ki_pos;
485
486 if (!(req->file->f_mode & FMODE_STREAM)) {
487 req->flags |= REQ_F_CUR_POS;
488 rw->kiocb.ki_pos = req->file->f_pos;
489 return &rw->kiocb.ki_pos;
490 }
491
492 rw->kiocb.ki_pos = 0;
493 return NULL;
494 }
495
io_rw_should_reissue(struct io_kiocb * req)496 static bool io_rw_should_reissue(struct io_kiocb *req)
497 {
498 #ifdef CONFIG_BLOCK
499 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
500 umode_t mode = file_inode(req->file)->i_mode;
501 struct io_async_rw *io = req->async_data;
502 struct io_ring_ctx *ctx = req->ctx;
503
504 if (!S_ISBLK(mode) && !S_ISREG(mode))
505 return false;
506 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
507 !(ctx->flags & IORING_SETUP_IOPOLL)))
508 return false;
509 /*
510 * If ref is dying, we might be running poll reap from the exit work.
511 * Don't attempt to reissue from that path, just let it fail with
512 * -EAGAIN.
513 */
514 if (percpu_ref_is_dying(&ctx->refs))
515 return false;
516
517 io_meta_restore(io, &rw->kiocb);
518 iov_iter_restore(&io->iter, &io->iter_state);
519 return true;
520 #else
521 return false;
522 #endif
523 }
524
io_req_end_write(struct io_kiocb * req)525 static void io_req_end_write(struct io_kiocb *req)
526 {
527 if (req->flags & REQ_F_ISREG) {
528 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
529
530 kiocb_end_write(&rw->kiocb);
531 }
532 }
533
534 /*
535 * Trigger the notifications after having done some IO, and finish the write
536 * accounting, if any.
537 */
io_req_io_end(struct io_kiocb * req)538 static void io_req_io_end(struct io_kiocb *req)
539 {
540 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
541
542 if (rw->kiocb.ki_flags & IOCB_WRITE) {
543 io_req_end_write(req);
544 fsnotify_modify(req->file);
545 } else {
546 fsnotify_access(req->file);
547 }
548 }
549
__io_complete_rw_common(struct io_kiocb * req,long res)550 static void __io_complete_rw_common(struct io_kiocb *req, long res)
551 {
552 if (res == req->cqe.res)
553 return;
554 if ((res == -EOPNOTSUPP || res == -EAGAIN) && io_rw_should_reissue(req)) {
555 req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
556 } else {
557 req_set_fail(req);
558 req->cqe.res = res;
559 }
560 }
561
io_fixup_rw_res(struct io_kiocb * req,long res)562 static inline int io_fixup_rw_res(struct io_kiocb *req, long res)
563 {
564 struct io_async_rw *io = req->async_data;
565
566 /* add previously done IO, if any */
567 if (req_has_async_data(req) && io->bytes_done > 0) {
568 if (res < 0)
569 res = io->bytes_done;
570 else
571 res += io->bytes_done;
572 }
573 return res;
574 }
575
io_req_rw_complete(struct io_tw_req tw_req,io_tw_token_t tw)576 void io_req_rw_complete(struct io_tw_req tw_req, io_tw_token_t tw)
577 {
578 struct io_kiocb *req = tw_req.req;
579
580 io_req_io_end(req);
581
582 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING))
583 req->cqe.flags |= io_put_kbuf(req, req->cqe.res, NULL);
584
585 io_req_rw_cleanup(req, 0);
586 io_req_task_complete(tw_req, tw);
587 }
588
io_complete_rw(struct kiocb * kiocb,long res)589 static void io_complete_rw(struct kiocb *kiocb, long res)
590 {
591 struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
592 struct io_kiocb *req = cmd_to_io_kiocb(rw);
593
594 __io_complete_rw_common(req, res);
595 io_req_set_res(req, io_fixup_rw_res(req, res), 0);
596 req->io_task_work.func = io_req_rw_complete;
597 __io_req_task_work_add(req, IOU_F_TWQ_LAZY_WAKE);
598 }
599
io_complete_rw_iopoll(struct kiocb * kiocb,long res)600 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res)
601 {
602 struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
603 struct io_kiocb *req = cmd_to_io_kiocb(rw);
604
605 if (kiocb->ki_flags & IOCB_WRITE)
606 io_req_end_write(req);
607 if (unlikely(res != req->cqe.res)) {
608 if (res == -EAGAIN && io_rw_should_reissue(req))
609 req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
610 else
611 req->cqe.res = res;
612 }
613
614 /* order with io_iopoll_complete() checking ->iopoll_completed */
615 smp_store_release(&req->iopoll_completed, 1);
616 }
617
io_rw_done(struct io_kiocb * req,ssize_t ret)618 static inline void io_rw_done(struct io_kiocb *req, ssize_t ret)
619 {
620 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
621
622 /* IO was queued async, completion will happen later */
623 if (ret == -EIOCBQUEUED)
624 return;
625
626 /* transform internal restart error codes */
627 if (unlikely(ret < 0)) {
628 switch (ret) {
629 case -ERESTARTSYS:
630 case -ERESTARTNOINTR:
631 case -ERESTARTNOHAND:
632 case -ERESTART_RESTARTBLOCK:
633 /*
634 * We can't just restart the syscall, since previously
635 * submitted sqes may already be in progress. Just fail
636 * this IO with EINTR.
637 */
638 ret = -EINTR;
639 break;
640 }
641 }
642
643 if (req->ctx->flags & IORING_SETUP_IOPOLL)
644 io_complete_rw_iopoll(&rw->kiocb, ret);
645 else
646 io_complete_rw(&rw->kiocb, ret);
647 }
648
kiocb_done(struct io_kiocb * req,ssize_t ret,struct io_br_sel * sel,unsigned int issue_flags)649 static int kiocb_done(struct io_kiocb *req, ssize_t ret,
650 struct io_br_sel *sel, unsigned int issue_flags)
651 {
652 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
653 unsigned final_ret = io_fixup_rw_res(req, ret);
654
655 if (ret >= 0 && req->flags & REQ_F_CUR_POS)
656 req->file->f_pos = rw->kiocb.ki_pos;
657 if (ret >= 0 && !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
658 u32 cflags = 0;
659
660 __io_complete_rw_common(req, ret);
661 /*
662 * Safe to call io_end from here as we're inline
663 * from the submission path.
664 */
665 io_req_io_end(req);
666 if (sel)
667 cflags = io_put_kbuf(req, ret, sel->buf_list);
668 io_req_set_res(req, final_ret, cflags);
669 io_req_rw_cleanup(req, issue_flags);
670 return IOU_COMPLETE;
671 } else {
672 io_rw_done(req, ret);
673 }
674
675 return IOU_ISSUE_SKIP_COMPLETE;
676 }
677
io_kiocb_ppos(struct kiocb * kiocb)678 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
679 {
680 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
681 }
682
683 /*
684 * For files that don't have ->read_iter() and ->write_iter(), handle them
685 * by looping over ->read() or ->write() manually.
686 */
loop_rw_iter(int ddir,struct io_rw * rw,struct iov_iter * iter)687 static ssize_t loop_rw_iter(int ddir, struct io_rw *rw, struct iov_iter *iter)
688 {
689 struct io_kiocb *req = cmd_to_io_kiocb(rw);
690 struct kiocb *kiocb = &rw->kiocb;
691 struct file *file = kiocb->ki_filp;
692 ssize_t ret = 0;
693 loff_t *ppos;
694
695 /*
696 * Don't support polled IO through this interface, and we can't
697 * support non-blocking either. For the latter, this just causes
698 * the kiocb to be handled from an async context.
699 */
700 if (kiocb->ki_flags & IOCB_HIPRI)
701 return -EOPNOTSUPP;
702 if ((kiocb->ki_flags & IOCB_NOWAIT) &&
703 !(kiocb->ki_filp->f_flags & O_NONBLOCK))
704 return -EAGAIN;
705 if ((req->flags & REQ_F_BUF_NODE) && req->buf_node->buf->is_kbuf)
706 return -EFAULT;
707
708 ppos = io_kiocb_ppos(kiocb);
709
710 while (iov_iter_count(iter)) {
711 void __user *addr;
712 size_t len;
713 ssize_t nr;
714
715 if (iter_is_ubuf(iter)) {
716 addr = iter->ubuf + iter->iov_offset;
717 len = iov_iter_count(iter);
718 } else if (!iov_iter_is_bvec(iter)) {
719 addr = iter_iov_addr(iter);
720 len = iter_iov_len(iter);
721 } else {
722 addr = u64_to_user_ptr(rw->addr);
723 len = rw->len;
724 }
725
726 if (ddir == READ)
727 nr = file->f_op->read(file, addr, len, ppos);
728 else
729 nr = file->f_op->write(file, addr, len, ppos);
730
731 if (nr < 0) {
732 if (!ret)
733 ret = nr;
734 break;
735 }
736 ret += nr;
737 if (!iov_iter_is_bvec(iter)) {
738 iov_iter_advance(iter, nr);
739 } else {
740 rw->addr += nr;
741 rw->len -= nr;
742 if (!rw->len)
743 break;
744 }
745 if (nr != len)
746 break;
747 }
748
749 return ret;
750 }
751
752 /*
753 * This is our waitqueue callback handler, registered through __folio_lock_async()
754 * when we initially tried to do the IO with the iocb armed our waitqueue.
755 * This gets called when the page is unlocked, and we generally expect that to
756 * happen when the page IO is completed and the page is now uptodate. This will
757 * queue a task_work based retry of the operation, attempting to copy the data
758 * again. If the latter fails because the page was NOT uptodate, then we will
759 * do a thread based blocking retry of the operation. That's the unexpected
760 * slow path.
761 */
io_async_buf_func(struct wait_queue_entry * wait,unsigned mode,int sync,void * arg)762 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
763 int sync, void *arg)
764 {
765 struct wait_page_queue *wpq;
766 struct io_kiocb *req = wait->private;
767 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
768 struct wait_page_key *key = arg;
769
770 wpq = container_of(wait, struct wait_page_queue, wait);
771
772 if (!wake_page_match(wpq, key))
773 return 0;
774
775 rw->kiocb.ki_flags &= ~IOCB_WAITQ;
776 list_del_init(&wait->entry);
777 io_req_task_queue(req);
778 return 1;
779 }
780
781 /*
782 * This controls whether a given IO request should be armed for async page
783 * based retry. If we return false here, the request is handed to the async
784 * worker threads for retry. If we're doing buffered reads on a regular file,
785 * we prepare a private wait_page_queue entry and retry the operation. This
786 * will either succeed because the page is now uptodate and unlocked, or it
787 * will register a callback when the page is unlocked at IO completion. Through
788 * that callback, io_uring uses task_work to setup a retry of the operation.
789 * That retry will attempt the buffered read again. The retry will generally
790 * succeed, or in rare cases where it fails, we then fall back to using the
791 * async worker threads for a blocking retry.
792 */
io_rw_should_retry(struct io_kiocb * req)793 static bool io_rw_should_retry(struct io_kiocb *req)
794 {
795 struct io_async_rw *io = req->async_data;
796 struct wait_page_queue *wait = &io->wpq;
797 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
798 struct kiocb *kiocb = &rw->kiocb;
799
800 /*
801 * Never retry for NOWAIT or a request with metadata, we just complete
802 * with -EAGAIN.
803 */
804 if (req->flags & (REQ_F_NOWAIT | REQ_F_HAS_METADATA))
805 return false;
806
807 /* Only for buffered IO */
808 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
809 return false;
810
811 /*
812 * just use poll if we can, and don't attempt if the fs doesn't
813 * support callback based unlocks
814 */
815 if (io_file_can_poll(req) ||
816 !(req->file->f_op->fop_flags & FOP_BUFFER_RASYNC))
817 return false;
818
819 wait->wait.func = io_async_buf_func;
820 wait->wait.private = req;
821 wait->wait.flags = 0;
822 INIT_LIST_HEAD(&wait->wait.entry);
823 kiocb->ki_flags |= IOCB_WAITQ;
824 kiocb->ki_flags &= ~IOCB_NOWAIT;
825 kiocb->ki_waitq = wait;
826 return true;
827 }
828
io_iter_do_read(struct io_rw * rw,struct iov_iter * iter)829 static inline int io_iter_do_read(struct io_rw *rw, struct iov_iter *iter)
830 {
831 struct file *file = rw->kiocb.ki_filp;
832
833 if (likely(file->f_op->read_iter))
834 return file->f_op->read_iter(&rw->kiocb, iter);
835 else if (file->f_op->read)
836 return loop_rw_iter(READ, rw, iter);
837 else
838 return -EINVAL;
839 }
840
need_complete_io(struct io_kiocb * req)841 static bool need_complete_io(struct io_kiocb *req)
842 {
843 return req->flags & REQ_F_ISREG ||
844 S_ISBLK(file_inode(req->file)->i_mode);
845 }
846
io_rw_init_file(struct io_kiocb * req,fmode_t mode,int rw_type)847 static int io_rw_init_file(struct io_kiocb *req, fmode_t mode, int rw_type)
848 {
849 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
850 struct kiocb *kiocb = &rw->kiocb;
851 struct io_ring_ctx *ctx = req->ctx;
852 struct file *file = req->file;
853 int ret;
854
855 if (unlikely(!(file->f_mode & mode)))
856 return -EBADF;
857
858 if (!(req->flags & REQ_F_FIXED_FILE))
859 req->flags |= io_file_get_flags(file);
860
861 kiocb->ki_flags = file->f_iocb_flags;
862 ret = kiocb_set_rw_flags(kiocb, rw->flags, rw_type);
863 if (unlikely(ret))
864 return ret;
865
866 /*
867 * If the file is marked O_NONBLOCK, still allow retry for it if it
868 * supports async. Otherwise it's impossible to use O_NONBLOCK files
869 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
870 */
871 if (kiocb->ki_flags & IOCB_NOWAIT ||
872 ((file->f_flags & O_NONBLOCK && !(req->flags & REQ_F_SUPPORT_NOWAIT))))
873 req->flags |= REQ_F_NOWAIT;
874
875 if (ctx->flags & IORING_SETUP_IOPOLL) {
876 if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll)
877 return -EOPNOTSUPP;
878 kiocb->private = NULL;
879 kiocb->ki_flags |= IOCB_HIPRI;
880 req->iopoll_completed = 0;
881 if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) {
882 /* make sure every req only blocks once*/
883 req->flags &= ~REQ_F_IOPOLL_STATE;
884 req->iopoll_start = ktime_get_ns();
885 }
886 } else {
887 if (kiocb->ki_flags & IOCB_HIPRI)
888 return -EINVAL;
889 }
890
891 if (req->flags & REQ_F_HAS_METADATA) {
892 struct io_async_rw *io = req->async_data;
893
894 if (!(file->f_mode & FMODE_HAS_METADATA))
895 return -EINVAL;
896
897 /*
898 * We have a union of meta fields with wpq used for buffered-io
899 * in io_async_rw, so fail it here.
900 */
901 if (!(req->file->f_flags & O_DIRECT))
902 return -EOPNOTSUPP;
903 kiocb->ki_flags |= IOCB_HAS_METADATA;
904 kiocb->private = &io->meta;
905 }
906
907 return 0;
908 }
909
__io_read(struct io_kiocb * req,struct io_br_sel * sel,unsigned int issue_flags)910 static int __io_read(struct io_kiocb *req, struct io_br_sel *sel,
911 unsigned int issue_flags)
912 {
913 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
914 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
915 struct io_async_rw *io = req->async_data;
916 struct kiocb *kiocb = &rw->kiocb;
917 ssize_t ret;
918 loff_t *ppos;
919
920 if (req->flags & REQ_F_IMPORT_BUFFER) {
921 ret = io_rw_import_reg_vec(req, io, ITER_DEST, issue_flags);
922 if (unlikely(ret))
923 return ret;
924 } else if (io_do_buffer_select(req)) {
925 ret = io_import_rw_buffer(ITER_DEST, req, io, sel, issue_flags);
926 if (unlikely(ret < 0))
927 return ret;
928 }
929 ret = io_rw_init_file(req, FMODE_READ, READ);
930 if (unlikely(ret))
931 return ret;
932 req->cqe.res = iov_iter_count(&io->iter);
933
934 if (force_nonblock) {
935 /* If the file doesn't support async, just async punt */
936 if (unlikely(!io_file_supports_nowait(req, EPOLLIN)))
937 return -EAGAIN;
938 kiocb->ki_flags |= IOCB_NOWAIT;
939 } else {
940 /* Ensure we clear previously set non-block flag */
941 kiocb->ki_flags &= ~IOCB_NOWAIT;
942 }
943
944 ppos = io_kiocb_update_pos(req);
945
946 ret = rw_verify_area(READ, req->file, ppos, req->cqe.res);
947 if (unlikely(ret))
948 return ret;
949
950 ret = io_iter_do_read(rw, &io->iter);
951
952 /*
953 * Some file systems like to return -EOPNOTSUPP for an IOCB_NOWAIT
954 * issue, even though they should be returning -EAGAIN. To be safe,
955 * retry from blocking context for either.
956 */
957 if (ret == -EOPNOTSUPP && force_nonblock)
958 ret = -EAGAIN;
959
960 if (ret == -EAGAIN) {
961 /* If we can poll, just do that. */
962 if (io_file_can_poll(req))
963 return -EAGAIN;
964 /* IOPOLL retry should happen for io-wq threads */
965 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
966 goto done;
967 /* no retry on NONBLOCK nor RWF_NOWAIT */
968 if (req->flags & REQ_F_NOWAIT)
969 goto done;
970 ret = 0;
971 } else if (ret == -EIOCBQUEUED) {
972 return IOU_ISSUE_SKIP_COMPLETE;
973 } else if (ret == req->cqe.res || ret <= 0 || !force_nonblock ||
974 (req->flags & REQ_F_NOWAIT) || !need_complete_io(req) ||
975 (issue_flags & IO_URING_F_MULTISHOT)) {
976 /* read all, failed, already did sync or don't want to retry */
977 goto done;
978 }
979
980 /*
981 * Don't depend on the iter state matching what was consumed, or being
982 * untouched in case of error. Restore it and we'll advance it
983 * manually if we need to.
984 */
985 iov_iter_restore(&io->iter, &io->iter_state);
986 io_meta_restore(io, kiocb);
987
988 do {
989 /*
990 * We end up here because of a partial read, either from
991 * above or inside this loop. Advance the iter by the bytes
992 * that were consumed.
993 */
994 iov_iter_advance(&io->iter, ret);
995 if (!iov_iter_count(&io->iter))
996 break;
997 io->bytes_done += ret;
998 iov_iter_save_state(&io->iter, &io->iter_state);
999
1000 /* if we can retry, do so with the callbacks armed */
1001 if (!io_rw_should_retry(req)) {
1002 kiocb->ki_flags &= ~IOCB_WAITQ;
1003 return -EAGAIN;
1004 }
1005
1006 req->cqe.res = iov_iter_count(&io->iter);
1007 /*
1008 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
1009 * we get -EIOCBQUEUED, then we'll get a notification when the
1010 * desired page gets unlocked. We can also get a partial read
1011 * here, and if we do, then just retry at the new offset.
1012 */
1013 ret = io_iter_do_read(rw, &io->iter);
1014 if (ret == -EIOCBQUEUED)
1015 return IOU_ISSUE_SKIP_COMPLETE;
1016 /* we got some bytes, but not all. retry. */
1017 kiocb->ki_flags &= ~IOCB_WAITQ;
1018 iov_iter_restore(&io->iter, &io->iter_state);
1019 } while (ret > 0);
1020 done:
1021 /* it's faster to check here than delegate to kfree */
1022 return ret;
1023 }
1024
io_read(struct io_kiocb * req,unsigned int issue_flags)1025 int io_read(struct io_kiocb *req, unsigned int issue_flags)
1026 {
1027 struct io_br_sel sel = { };
1028 int ret;
1029
1030 ret = __io_read(req, &sel, issue_flags);
1031 if (ret >= 0)
1032 return kiocb_done(req, ret, &sel, issue_flags);
1033
1034 if (req->flags & REQ_F_BUFFERS_COMMIT)
1035 io_kbuf_recycle(req, sel.buf_list, issue_flags);
1036 return ret;
1037 }
1038
io_read_mshot(struct io_kiocb * req,unsigned int issue_flags)1039 int io_read_mshot(struct io_kiocb *req, unsigned int issue_flags)
1040 {
1041 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1042 struct io_br_sel sel = { };
1043 unsigned int cflags = 0;
1044 int ret;
1045
1046 /*
1047 * Multishot MUST be used on a pollable file
1048 */
1049 if (!io_file_can_poll(req))
1050 return -EBADFD;
1051
1052 /* make it sync, multishot doesn't support async execution */
1053 rw->kiocb.ki_complete = NULL;
1054 ret = __io_read(req, &sel, issue_flags);
1055
1056 /*
1057 * If we get -EAGAIN, recycle our buffer and just let normal poll
1058 * handling arm it.
1059 */
1060 if (ret == -EAGAIN) {
1061 /*
1062 * Reset rw->len to 0 again to avoid clamping future mshot
1063 * reads, in case the buffer size varies.
1064 */
1065 if (io_kbuf_recycle(req, sel.buf_list, issue_flags))
1066 rw->len = 0;
1067 return IOU_RETRY;
1068 } else if (ret <= 0) {
1069 io_kbuf_recycle(req, sel.buf_list, issue_flags);
1070 if (ret < 0)
1071 req_set_fail(req);
1072 } else if (!(req->flags & REQ_F_APOLL_MULTISHOT)) {
1073 cflags = io_put_kbuf(req, ret, sel.buf_list);
1074 } else {
1075 /*
1076 * Any successful return value will keep the multishot read
1077 * armed, if it's still set. Put our buffer and post a CQE. If
1078 * we fail to post a CQE, or multishot is no longer set, then
1079 * jump to the termination path. This request is then done.
1080 */
1081 cflags = io_put_kbuf(req, ret, sel.buf_list);
1082 rw->len = 0; /* similarly to above, reset len to 0 */
1083
1084 if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) {
1085 if (issue_flags & IO_URING_F_MULTISHOT)
1086 /*
1087 * Force retry, as we might have more data to
1088 * be read and otherwise it won't get retried
1089 * until (if ever) another poll is triggered.
1090 */
1091 io_poll_multishot_retry(req);
1092
1093 return IOU_RETRY;
1094 }
1095 }
1096
1097 /*
1098 * Either an error, or we've hit overflow posting the CQE. For any
1099 * multishot request, hitting overflow will terminate it.
1100 */
1101 io_req_set_res(req, ret, cflags);
1102 io_req_rw_cleanup(req, issue_flags);
1103 return IOU_COMPLETE;
1104 }
1105
io_kiocb_start_write(struct io_kiocb * req,struct kiocb * kiocb)1106 static bool io_kiocb_start_write(struct io_kiocb *req, struct kiocb *kiocb)
1107 {
1108 struct inode *inode;
1109 bool ret;
1110
1111 if (!(req->flags & REQ_F_ISREG))
1112 return true;
1113 if (!(kiocb->ki_flags & IOCB_NOWAIT)) {
1114 kiocb_start_write(kiocb);
1115 return true;
1116 }
1117
1118 inode = file_inode(kiocb->ki_filp);
1119 ret = sb_start_write_trylock(inode->i_sb);
1120 if (ret)
1121 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
1122 return ret;
1123 }
1124
io_write(struct io_kiocb * req,unsigned int issue_flags)1125 int io_write(struct io_kiocb *req, unsigned int issue_flags)
1126 {
1127 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
1128 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1129 struct io_async_rw *io = req->async_data;
1130 struct kiocb *kiocb = &rw->kiocb;
1131 ssize_t ret, ret2;
1132 loff_t *ppos;
1133
1134 if (req->flags & REQ_F_IMPORT_BUFFER) {
1135 ret = io_rw_import_reg_vec(req, io, ITER_SOURCE, issue_flags);
1136 if (unlikely(ret))
1137 return ret;
1138 }
1139
1140 ret = io_rw_init_file(req, FMODE_WRITE, WRITE);
1141 if (unlikely(ret))
1142 return ret;
1143 req->cqe.res = iov_iter_count(&io->iter);
1144
1145 if (force_nonblock) {
1146 /* If the file doesn't support async, just async punt */
1147 if (unlikely(!io_file_supports_nowait(req, EPOLLOUT)))
1148 goto ret_eagain;
1149
1150 /* Check if we can support NOWAIT. */
1151 if (!(kiocb->ki_flags & IOCB_DIRECT) &&
1152 !(req->file->f_op->fop_flags & FOP_BUFFER_WASYNC) &&
1153 (req->flags & REQ_F_ISREG))
1154 goto ret_eagain;
1155
1156 kiocb->ki_flags |= IOCB_NOWAIT;
1157 } else {
1158 /* Ensure we clear previously set non-block flag */
1159 kiocb->ki_flags &= ~IOCB_NOWAIT;
1160 }
1161
1162 ppos = io_kiocb_update_pos(req);
1163
1164 ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res);
1165 if (unlikely(ret))
1166 return ret;
1167
1168 if (unlikely(!io_kiocb_start_write(req, kiocb)))
1169 return -EAGAIN;
1170 kiocb->ki_flags |= IOCB_WRITE;
1171
1172 if (likely(req->file->f_op->write_iter))
1173 ret2 = req->file->f_op->write_iter(kiocb, &io->iter);
1174 else if (req->file->f_op->write)
1175 ret2 = loop_rw_iter(WRITE, rw, &io->iter);
1176 else
1177 ret2 = -EINVAL;
1178
1179 /*
1180 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
1181 * retry them without IOCB_NOWAIT.
1182 */
1183 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
1184 ret2 = -EAGAIN;
1185 /* no retry on NONBLOCK nor RWF_NOWAIT */
1186 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
1187 goto done;
1188 if (!force_nonblock || ret2 != -EAGAIN) {
1189 /* IOPOLL retry should happen for io-wq threads */
1190 if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL))
1191 goto ret_eagain;
1192
1193 if (ret2 != req->cqe.res && ret2 >= 0 && need_complete_io(req)) {
1194 trace_io_uring_short_write(req->ctx, kiocb->ki_pos - ret2,
1195 req->cqe.res, ret2);
1196
1197 /* This is a partial write. The file pos has already been
1198 * updated, setup the async struct to complete the request
1199 * in the worker. Also update bytes_done to account for
1200 * the bytes already written.
1201 */
1202 iov_iter_save_state(&io->iter, &io->iter_state);
1203 io->bytes_done += ret2;
1204
1205 if (kiocb->ki_flags & IOCB_WRITE)
1206 io_req_end_write(req);
1207 return -EAGAIN;
1208 }
1209 done:
1210 return kiocb_done(req, ret2, NULL, issue_flags);
1211 } else {
1212 ret_eagain:
1213 iov_iter_restore(&io->iter, &io->iter_state);
1214 io_meta_restore(io, kiocb);
1215 if (kiocb->ki_flags & IOCB_WRITE)
1216 io_req_end_write(req);
1217 return -EAGAIN;
1218 }
1219 }
1220
io_read_fixed(struct io_kiocb * req,unsigned int issue_flags)1221 int io_read_fixed(struct io_kiocb *req, unsigned int issue_flags)
1222 {
1223 int ret;
1224
1225 ret = io_init_rw_fixed(req, issue_flags, ITER_DEST);
1226 if (unlikely(ret))
1227 return ret;
1228
1229 return io_read(req, issue_flags);
1230 }
1231
io_write_fixed(struct io_kiocb * req,unsigned int issue_flags)1232 int io_write_fixed(struct io_kiocb *req, unsigned int issue_flags)
1233 {
1234 int ret;
1235
1236 ret = io_init_rw_fixed(req, issue_flags, ITER_SOURCE);
1237 if (unlikely(ret))
1238 return ret;
1239
1240 return io_write(req, issue_flags);
1241 }
1242
io_rw_fail(struct io_kiocb * req)1243 void io_rw_fail(struct io_kiocb *req)
1244 {
1245 int res;
1246
1247 res = io_fixup_rw_res(req, req->cqe.res);
1248 io_req_set_res(req, res, req->cqe.flags);
1249 }
1250
io_uring_classic_poll(struct io_kiocb * req,struct io_comp_batch * iob,unsigned int poll_flags)1251 static int io_uring_classic_poll(struct io_kiocb *req, struct io_comp_batch *iob,
1252 unsigned int poll_flags)
1253 {
1254 struct file *file = req->file;
1255
1256 if (req->opcode == IORING_OP_URING_CMD) {
1257 struct io_uring_cmd *ioucmd;
1258
1259 ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd);
1260 return file->f_op->uring_cmd_iopoll(ioucmd, iob, poll_flags);
1261 } else {
1262 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1263
1264 return file->f_op->iopoll(&rw->kiocb, iob, poll_flags);
1265 }
1266 }
1267
io_hybrid_iopoll_delay(struct io_ring_ctx * ctx,struct io_kiocb * req)1268 static u64 io_hybrid_iopoll_delay(struct io_ring_ctx *ctx, struct io_kiocb *req)
1269 {
1270 struct hrtimer_sleeper timer;
1271 enum hrtimer_mode mode;
1272 ktime_t kt;
1273 u64 sleep_time;
1274
1275 if (req->flags & REQ_F_IOPOLL_STATE)
1276 return 0;
1277
1278 if (ctx->hybrid_poll_time == LLONG_MAX)
1279 return 0;
1280
1281 /* Using half the running time to do schedule */
1282 sleep_time = ctx->hybrid_poll_time / 2;
1283
1284 kt = ktime_set(0, sleep_time);
1285 req->flags |= REQ_F_IOPOLL_STATE;
1286
1287 mode = HRTIMER_MODE_REL;
1288 hrtimer_setup_sleeper_on_stack(&timer, CLOCK_MONOTONIC, mode);
1289 hrtimer_set_expires(&timer.timer, kt);
1290 set_current_state(TASK_INTERRUPTIBLE);
1291 hrtimer_sleeper_start_expires(&timer, mode);
1292
1293 if (timer.task)
1294 io_schedule();
1295
1296 hrtimer_cancel(&timer.timer);
1297 __set_current_state(TASK_RUNNING);
1298 destroy_hrtimer_on_stack(&timer.timer);
1299 return sleep_time;
1300 }
1301
io_uring_hybrid_poll(struct io_kiocb * req,struct io_comp_batch * iob,unsigned int poll_flags)1302 static int io_uring_hybrid_poll(struct io_kiocb *req,
1303 struct io_comp_batch *iob, unsigned int poll_flags)
1304 {
1305 struct io_ring_ctx *ctx = req->ctx;
1306 u64 runtime, sleep_time;
1307 int ret;
1308
1309 sleep_time = io_hybrid_iopoll_delay(ctx, req);
1310 ret = io_uring_classic_poll(req, iob, poll_flags);
1311 runtime = ktime_get_ns() - req->iopoll_start - sleep_time;
1312
1313 /*
1314 * Use minimum sleep time if we're polling devices with different
1315 * latencies. We could get more completions from the faster ones.
1316 */
1317 if (ctx->hybrid_poll_time > runtime)
1318 ctx->hybrid_poll_time = runtime;
1319
1320 return ret;
1321 }
1322
io_do_iopoll(struct io_ring_ctx * ctx,bool force_nonspin)1323 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin)
1324 {
1325 struct io_wq_work_node *pos, *start, *prev;
1326 unsigned int poll_flags = 0;
1327 DEFINE_IO_COMP_BATCH(iob);
1328 int nr_events = 0;
1329
1330 /*
1331 * Only spin for completions if we don't have multiple devices hanging
1332 * off our complete list.
1333 */
1334 if (ctx->poll_multi_queue || force_nonspin)
1335 poll_flags |= BLK_POLL_ONESHOT;
1336
1337 wq_list_for_each(pos, start, &ctx->iopoll_list) {
1338 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1339 int ret;
1340
1341 /*
1342 * Move completed and retryable entries to our local lists.
1343 * If we find a request that requires polling, break out
1344 * and complete those lists first, if we have entries there.
1345 */
1346 if (READ_ONCE(req->iopoll_completed))
1347 break;
1348
1349 if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL)
1350 ret = io_uring_hybrid_poll(req, &iob, poll_flags);
1351 else
1352 ret = io_uring_classic_poll(req, &iob, poll_flags);
1353
1354 if (unlikely(ret < 0))
1355 return ret;
1356 else if (ret)
1357 poll_flags |= BLK_POLL_ONESHOT;
1358
1359 /* iopoll may have completed current req */
1360 if (!rq_list_empty(&iob.req_list) ||
1361 READ_ONCE(req->iopoll_completed))
1362 break;
1363 }
1364
1365 if (!rq_list_empty(&iob.req_list))
1366 iob.complete(&iob);
1367 else if (!pos)
1368 return 0;
1369
1370 prev = start;
1371 wq_list_for_each_resume(pos, prev) {
1372 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1373
1374 /* order with io_complete_rw_iopoll(), e.g. ->result updates */
1375 if (!smp_load_acquire(&req->iopoll_completed))
1376 break;
1377 nr_events++;
1378 req->cqe.flags = io_put_kbuf(req, req->cqe.res, NULL);
1379 if (req->opcode != IORING_OP_URING_CMD)
1380 io_req_rw_cleanup(req, 0);
1381 }
1382 if (unlikely(!nr_events))
1383 return 0;
1384
1385 pos = start ? start->next : ctx->iopoll_list.first;
1386 wq_list_cut(&ctx->iopoll_list, prev, start);
1387
1388 if (WARN_ON_ONCE(!wq_list_empty(&ctx->submit_state.compl_reqs)))
1389 return 0;
1390 ctx->submit_state.compl_reqs.first = pos;
1391 __io_submit_flush_completions(ctx);
1392 return nr_events;
1393 }
1394
io_rw_cache_free(const void * entry)1395 void io_rw_cache_free(const void *entry)
1396 {
1397 struct io_async_rw *rw = (struct io_async_rw *) entry;
1398
1399 io_vec_free(&rw->vec);
1400 kfree(rw);
1401 }
1402