xref: /linux/include/linux/highmem.h (revision 5bebe8de19264946d398ead4e6c20c229454a552)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HIGHMEM_H
3 #define _LINUX_HIGHMEM_H
4 
5 #include <linux/fs.h>
6 #include <linux/kernel.h>
7 #include <linux/bug.h>
8 #include <linux/cacheflush.h>
9 #include <linux/kmsan.h>
10 #include <linux/mm.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 
14 #include "highmem-internal.h"
15 
16 /**
17  * kmap - Map a page for long term usage
18  * @page:	Pointer to the page to be mapped
19  *
20  * Returns: The virtual address of the mapping
21  *
22  * Can only be invoked from preemptible task context because on 32bit
23  * systems with CONFIG_HIGHMEM enabled this function might sleep.
24  *
25  * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area
26  * this returns the virtual address of the direct kernel mapping.
27  *
28  * The returned virtual address is globally visible and valid up to the
29  * point where it is unmapped via kunmap(). The pointer can be handed to
30  * other contexts.
31  *
32  * For highmem pages on 32bit systems this can be slow as the mapping space
33  * is limited and protected by a global lock. In case that there is no
34  * mapping slot available the function blocks until a slot is released via
35  * kunmap().
36  */
37 static inline void *kmap(struct page *page);
38 
39 /**
40  * kunmap - Unmap the virtual address mapped by kmap()
41  * @page:	Pointer to the page which was mapped by kmap()
42  *
43  * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of
44  * pages in the low memory area.
45  */
46 static inline void kunmap(const struct page *page);
47 
48 /**
49  * kmap_to_page - Get the page for a kmap'ed address
50  * @addr:	The address to look up
51  *
52  * Returns: The page which is mapped to @addr.
53  */
54 static inline struct page *kmap_to_page(void *addr);
55 
56 /**
57  * kmap_flush_unused - Flush all unused kmap mappings in order to
58  *		       remove stray mappings
59  */
60 static inline void kmap_flush_unused(void);
61 
62 /**
63  * kmap_local_page - Map a page for temporary usage
64  * @page: Pointer to the page to be mapped
65  *
66  * Returns: The virtual address of the mapping
67  *
68  * Can be invoked from any context, including interrupts.
69  *
70  * Requires careful handling when nesting multiple mappings because the map
71  * management is stack based. The unmap has to be in the reverse order of
72  * the map operation:
73  *
74  * addr1 = kmap_local_page(page1);
75  * addr2 = kmap_local_page(page2);
76  * ...
77  * kunmap_local(addr2);
78  * kunmap_local(addr1);
79  *
80  * Unmapping addr1 before addr2 is invalid and causes malfunction.
81  *
82  * Contrary to kmap() mappings the mapping is only valid in the context of
83  * the caller and cannot be handed to other contexts.
84  *
85  * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
86  * virtual address of the direct mapping. Only real highmem pages are
87  * temporarily mapped.
88  *
89  * While kmap_local_page() is significantly faster than kmap() for the highmem
90  * case it comes with restrictions about the pointer validity.
91  *
92  * On HIGHMEM enabled systems mapping a highmem page has the side effect of
93  * disabling migration in order to keep the virtual address stable across
94  * preemption. No caller of kmap_local_page() can rely on this side effect.
95  */
96 static inline void *kmap_local_page(const struct page *page);
97 
98 /**
99  * kmap_local_folio - Map a page in this folio for temporary usage
100  * @folio: The folio containing the page.
101  * @offset: The byte offset within the folio which identifies the page.
102  *
103  * Requires careful handling when nesting multiple mappings because the map
104  * management is stack based. The unmap has to be in the reverse order of
105  * the map operation::
106  *
107  *   addr1 = kmap_local_folio(folio1, offset1);
108  *   addr2 = kmap_local_folio(folio2, offset2);
109  *   ...
110  *   kunmap_local(addr2);
111  *   kunmap_local(addr1);
112  *
113  * Unmapping addr1 before addr2 is invalid and causes malfunction.
114  *
115  * Contrary to kmap() mappings the mapping is only valid in the context of
116  * the caller and cannot be handed to other contexts.
117  *
118  * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
119  * virtual address of the direct mapping. Only real highmem pages are
120  * temporarily mapped.
121  *
122  * While it is significantly faster than kmap() for the highmem case it
123  * comes with restrictions about the pointer validity.
124  *
125  * On HIGHMEM enabled systems mapping a highmem page has the side effect of
126  * disabling migration in order to keep the virtual address stable across
127  * preemption. No caller of kmap_local_folio() can rely on this side effect.
128  *
129  * Context: Can be invoked from any context.
130  * Return: The virtual address of @offset.
131  */
132 static inline void *kmap_local_folio(const struct folio *folio, size_t offset);
133 
134 /**
135  * kmap_atomic - Atomically map a page for temporary usage - Deprecated!
136  * @page:	Pointer to the page to be mapped
137  *
138  * Returns: The virtual address of the mapping
139  *
140  * In fact a wrapper around kmap_local_page() which also disables pagefaults
141  * and, depending on PREEMPT_RT configuration, also CPU migration and
142  * preemption. Therefore users should not count on the latter two side effects.
143  *
144  * Mappings should always be released by kunmap_atomic().
145  *
146  * Do not use in new code. Use kmap_local_page() instead.
147  *
148  * It is used in atomic context when code wants to access the contents of a
149  * page that might be allocated from high memory (see __GFP_HIGHMEM), for
150  * example a page in the pagecache.  The API has two functions, and they
151  * can be used in a manner similar to the following::
152  *
153  *   // Find the page of interest.
154  *   struct page *page = find_get_page(mapping, offset);
155  *
156  *   // Gain access to the contents of that page.
157  *   void *vaddr = kmap_atomic(page);
158  *
159  *   // Do something to the contents of that page.
160  *   memset(vaddr, 0, PAGE_SIZE);
161  *
162  *   // Unmap that page.
163  *   kunmap_atomic(vaddr);
164  *
165  * Note that the kunmap_atomic() call takes the result of the kmap_atomic()
166  * call, not the argument.
167  *
168  * If you need to map two pages because you want to copy from one page to
169  * another you need to keep the kmap_atomic calls strictly nested, like:
170  *
171  * vaddr1 = kmap_atomic(page1);
172  * vaddr2 = kmap_atomic(page2);
173  *
174  * memcpy(vaddr1, vaddr2, PAGE_SIZE);
175  *
176  * kunmap_atomic(vaddr2);
177  * kunmap_atomic(vaddr1);
178  */
179 static inline void *kmap_atomic(const struct page *page);
180 
181 /* Highmem related interfaces for management code */
182 static inline unsigned long nr_free_highpages(void);
183 static inline unsigned long totalhigh_pages(void);
184 
185 #ifndef ARCH_HAS_FLUSH_ANON_PAGE
flush_anon_page(struct vm_area_struct * vma,struct page * page,unsigned long vmaddr)186 static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
187 {
188 }
189 #endif
190 
191 #ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
flush_kernel_vmap_range(void * vaddr,int size)192 static inline void flush_kernel_vmap_range(void *vaddr, int size)
193 {
194 }
invalidate_kernel_vmap_range(void * vaddr,int size)195 static inline void invalidate_kernel_vmap_range(void *vaddr, int size)
196 {
197 }
198 #endif
199 
200 /* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */
201 #ifndef clear_user_highpage
clear_user_highpage(struct page * page,unsigned long vaddr)202 static inline void clear_user_highpage(struct page *page, unsigned long vaddr)
203 {
204 	void *addr = kmap_local_page(page);
205 	clear_user_page(addr, vaddr, page);
206 	kunmap_local(addr);
207 }
208 #endif
209 
210 #ifndef vma_alloc_zeroed_movable_folio
211 /**
212  * vma_alloc_zeroed_movable_folio - Allocate a zeroed page for a VMA.
213  * @vma: The VMA the page is to be allocated for.
214  * @vaddr: The virtual address the page will be inserted into.
215  *
216  * This function will allocate a page suitable for inserting into this
217  * VMA at this virtual address.  It may be allocated from highmem or
218  * the movable zone.  An architecture may provide its own implementation.
219  *
220  * Return: A folio containing one allocated and zeroed page or NULL if
221  * we are out of memory.
222  */
223 static inline
vma_alloc_zeroed_movable_folio(struct vm_area_struct * vma,unsigned long vaddr)224 struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
225 				   unsigned long vaddr)
226 {
227 	struct folio *folio;
228 
229 	folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vaddr);
230 	if (folio && user_alloc_needs_zeroing())
231 		clear_user_highpage(&folio->page, vaddr);
232 
233 	return folio;
234 }
235 #endif
236 
clear_highpage(struct page * page)237 static inline void clear_highpage(struct page *page)
238 {
239 	void *kaddr = kmap_local_page(page);
240 	clear_page(kaddr);
241 	kunmap_local(kaddr);
242 }
243 
clear_highpage_kasan_tagged(struct page * page)244 static inline void clear_highpage_kasan_tagged(struct page *page)
245 {
246 	void *kaddr = kmap_local_page(page);
247 
248 	clear_page(kasan_reset_tag(kaddr));
249 	kunmap_local(kaddr);
250 }
251 
252 #ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGES
253 
254 /* Return false to let people know we did not initialize the pages */
tag_clear_highpages(struct page * page,int numpages)255 static inline bool tag_clear_highpages(struct page *page, int numpages)
256 {
257 	return false;
258 }
259 
260 #endif
261 
262 /*
263  * If we pass in a base or tail page, we can zero up to PAGE_SIZE.
264  * If we pass in a head page, we can zero up to the size of the compound page.
265  */
266 #ifdef CONFIG_HIGHMEM
267 void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
268 		unsigned start2, unsigned end2);
269 #else
zero_user_segments(struct page * page,unsigned start1,unsigned end1,unsigned start2,unsigned end2)270 static inline void zero_user_segments(struct page *page,
271 		unsigned start1, unsigned end1,
272 		unsigned start2, unsigned end2)
273 {
274 	void *kaddr = kmap_local_page(page);
275 	unsigned int i;
276 
277 	BUG_ON(end1 > page_size(page) || end2 > page_size(page));
278 
279 	if (end1 > start1)
280 		memset(kaddr + start1, 0, end1 - start1);
281 
282 	if (end2 > start2)
283 		memset(kaddr + start2, 0, end2 - start2);
284 
285 	kunmap_local(kaddr);
286 	for (i = 0; i < compound_nr(page); i++)
287 		flush_dcache_page(page + i);
288 }
289 #endif
290 
zero_user_segment(struct page * page,unsigned start,unsigned end)291 static inline void zero_user_segment(struct page *page,
292 	unsigned start, unsigned end)
293 {
294 	zero_user_segments(page, start, end, 0, 0);
295 }
296 
297 #ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE
298 
copy_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)299 static inline void copy_user_highpage(struct page *to, struct page *from,
300 	unsigned long vaddr, struct vm_area_struct *vma)
301 {
302 	char *vfrom, *vto;
303 
304 	vfrom = kmap_local_page(from);
305 	vto = kmap_local_page(to);
306 	copy_user_page(vto, vfrom, vaddr, to);
307 	kmsan_unpoison_memory(page_address(to), PAGE_SIZE);
308 	kunmap_local(vto);
309 	kunmap_local(vfrom);
310 }
311 
312 #endif
313 
314 #ifndef __HAVE_ARCH_COPY_HIGHPAGE
315 
copy_highpage(struct page * to,struct page * from)316 static inline void copy_highpage(struct page *to, struct page *from)
317 {
318 	char *vfrom, *vto;
319 
320 	vfrom = kmap_local_page(from);
321 	vto = kmap_local_page(to);
322 	copy_page(vto, vfrom);
323 	kmsan_copy_page_meta(to, from);
324 	kunmap_local(vto);
325 	kunmap_local(vfrom);
326 }
327 
328 #endif
329 
330 #ifdef copy_mc_to_kernel
331 /*
332  * If architecture supports machine check exception handling, define the
333  * #MC versions of copy_user_highpage and copy_highpage. They copy a memory
334  * page with #MC in source page (@from) handled, and return the number
335  * of bytes not copied if there was a #MC, otherwise 0 for success.
336  */
copy_mc_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)337 static inline int copy_mc_user_highpage(struct page *to, struct page *from,
338 					unsigned long vaddr, struct vm_area_struct *vma)
339 {
340 	unsigned long ret;
341 	char *vfrom, *vto;
342 
343 	vfrom = kmap_local_page(from);
344 	vto = kmap_local_page(to);
345 	ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE);
346 	if (!ret)
347 		kmsan_unpoison_memory(page_address(to), PAGE_SIZE);
348 	kunmap_local(vto);
349 	kunmap_local(vfrom);
350 
351 	if (ret)
352 		memory_failure_queue(page_to_pfn(from), 0);
353 
354 	return ret;
355 }
356 
copy_mc_highpage(struct page * to,struct page * from)357 static inline int copy_mc_highpage(struct page *to, struct page *from)
358 {
359 	unsigned long ret;
360 	char *vfrom, *vto;
361 
362 	vfrom = kmap_local_page(from);
363 	vto = kmap_local_page(to);
364 	ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE);
365 	if (!ret)
366 		kmsan_copy_page_meta(to, from);
367 	kunmap_local(vto);
368 	kunmap_local(vfrom);
369 
370 	if (ret)
371 		memory_failure_queue(page_to_pfn(from), 0);
372 
373 	return ret;
374 }
375 #else
copy_mc_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)376 static inline int copy_mc_user_highpage(struct page *to, struct page *from,
377 					unsigned long vaddr, struct vm_area_struct *vma)
378 {
379 	copy_user_highpage(to, from, vaddr, vma);
380 	return 0;
381 }
382 
copy_mc_highpage(struct page * to,struct page * from)383 static inline int copy_mc_highpage(struct page *to, struct page *from)
384 {
385 	copy_highpage(to, from);
386 	return 0;
387 }
388 #endif
389 
memcpy_page(struct page * dst_page,size_t dst_off,struct page * src_page,size_t src_off,size_t len)390 static inline void memcpy_page(struct page *dst_page, size_t dst_off,
391 			       struct page *src_page, size_t src_off,
392 			       size_t len)
393 {
394 	char *dst = kmap_local_page(dst_page);
395 	char *src = kmap_local_page(src_page);
396 
397 	VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
398 	memcpy(dst + dst_off, src + src_off, len);
399 	kunmap_local(src);
400 	kunmap_local(dst);
401 }
402 
memcpy_folio(struct folio * dst_folio,size_t dst_off,struct folio * src_folio,size_t src_off,size_t len)403 static inline void memcpy_folio(struct folio *dst_folio, size_t dst_off,
404 		struct folio *src_folio, size_t src_off, size_t len)
405 {
406 	VM_BUG_ON(dst_off + len > folio_size(dst_folio));
407 	VM_BUG_ON(src_off + len > folio_size(src_folio));
408 
409 	do {
410 		char *dst = kmap_local_folio(dst_folio, dst_off);
411 		const char *src = kmap_local_folio(src_folio, src_off);
412 		size_t chunk = len;
413 
414 		if (folio_test_highmem(dst_folio) &&
415 		    chunk > PAGE_SIZE - offset_in_page(dst_off))
416 			chunk = PAGE_SIZE - offset_in_page(dst_off);
417 		if (folio_test_highmem(src_folio) &&
418 		    chunk > PAGE_SIZE - offset_in_page(src_off))
419 			chunk = PAGE_SIZE - offset_in_page(src_off);
420 		memcpy(dst, src, chunk);
421 		kunmap_local(src);
422 		kunmap_local(dst);
423 
424 		dst_off += chunk;
425 		src_off += chunk;
426 		len -= chunk;
427 	} while (len > 0);
428 }
429 
memset_page(struct page * page,size_t offset,int val,size_t len)430 static inline void memset_page(struct page *page, size_t offset, int val,
431 			       size_t len)
432 {
433 	char *addr = kmap_local_page(page);
434 
435 	VM_BUG_ON(offset + len > PAGE_SIZE);
436 	memset(addr + offset, val, len);
437 	kunmap_local(addr);
438 }
439 
memcpy_from_page(char * to,struct page * page,size_t offset,size_t len)440 static inline void memcpy_from_page(char *to, struct page *page,
441 				    size_t offset, size_t len)
442 {
443 	char *from = kmap_local_page(page);
444 
445 	VM_BUG_ON(offset + len > PAGE_SIZE);
446 	memcpy(to, from + offset, len);
447 	kunmap_local(from);
448 }
449 
memcpy_to_page(struct page * page,size_t offset,const char * from,size_t len)450 static inline void memcpy_to_page(struct page *page, size_t offset,
451 				  const char *from, size_t len)
452 {
453 	char *to = kmap_local_page(page);
454 
455 	VM_BUG_ON(offset + len > PAGE_SIZE);
456 	memcpy(to + offset, from, len);
457 	flush_dcache_page(page);
458 	kunmap_local(to);
459 }
460 
memzero_page(struct page * page,size_t offset,size_t len)461 static inline void memzero_page(struct page *page, size_t offset, size_t len)
462 {
463 	char *addr = kmap_local_page(page);
464 
465 	VM_BUG_ON(offset + len > PAGE_SIZE);
466 	memset(addr + offset, 0, len);
467 	flush_dcache_page(page);
468 	kunmap_local(addr);
469 }
470 
471 /**
472  * memcpy_from_folio - Copy a range of bytes from a folio.
473  * @to: The memory to copy to.
474  * @folio: The folio to read from.
475  * @offset: The first byte in the folio to read.
476  * @len: The number of bytes to copy.
477  */
memcpy_from_folio(char * to,struct folio * folio,size_t offset,size_t len)478 static inline void memcpy_from_folio(char *to, struct folio *folio,
479 		size_t offset, size_t len)
480 {
481 	VM_BUG_ON(offset + len > folio_size(folio));
482 
483 	do {
484 		const char *from = kmap_local_folio(folio, offset);
485 		size_t chunk = len;
486 
487 		if (folio_test_partial_kmap(folio) &&
488 		    chunk > PAGE_SIZE - offset_in_page(offset))
489 			chunk = PAGE_SIZE - offset_in_page(offset);
490 		memcpy(to, from, chunk);
491 		kunmap_local(from);
492 
493 		to += chunk;
494 		offset += chunk;
495 		len -= chunk;
496 	} while (len > 0);
497 }
498 
499 /**
500  * memcpy_to_folio - Copy a range of bytes to a folio.
501  * @folio: The folio to write to.
502  * @offset: The first byte in the folio to store to.
503  * @from: The memory to copy from.
504  * @len: The number of bytes to copy.
505  */
memcpy_to_folio(struct folio * folio,size_t offset,const char * from,size_t len)506 static inline void memcpy_to_folio(struct folio *folio, size_t offset,
507 		const char *from, size_t len)
508 {
509 	VM_BUG_ON(offset + len > folio_size(folio));
510 
511 	do {
512 		char *to = kmap_local_folio(folio, offset);
513 		size_t chunk = len;
514 
515 		if (folio_test_partial_kmap(folio) &&
516 		    chunk > PAGE_SIZE - offset_in_page(offset))
517 			chunk = PAGE_SIZE - offset_in_page(offset);
518 		memcpy(to, from, chunk);
519 		kunmap_local(to);
520 
521 		from += chunk;
522 		offset += chunk;
523 		len -= chunk;
524 	} while (len > 0);
525 
526 	flush_dcache_folio(folio);
527 }
528 
529 /**
530  * folio_zero_tail - Zero the tail of a folio.
531  * @folio: The folio to zero.
532  * @offset: The byte offset in the folio to start zeroing at.
533  * @kaddr: The address the folio is currently mapped to.
534  *
535  * If you have already used kmap_local_folio() to map a folio, written
536  * some data to it and now need to zero the end of the folio (and flush
537  * the dcache), you can use this function.  If you do not have the
538  * folio kmapped (eg the folio has been partially populated by DMA),
539  * use folio_zero_range() or folio_zero_segment() instead.
540  *
541  * Return: An address which can be passed to kunmap_local().
542  */
folio_zero_tail(struct folio * folio,size_t offset,void * kaddr)543 static inline __must_check void *folio_zero_tail(struct folio *folio,
544 		size_t offset, void *kaddr)
545 {
546 	size_t len = folio_size(folio) - offset;
547 
548 	if (folio_test_partial_kmap(folio)) {
549 		size_t max = PAGE_SIZE - offset_in_page(offset);
550 
551 		while (len > max) {
552 			memset(kaddr, 0, max);
553 			kunmap_local(kaddr);
554 			len -= max;
555 			offset += max;
556 			max = PAGE_SIZE;
557 			kaddr = kmap_local_folio(folio, offset);
558 		}
559 	}
560 
561 	memset(kaddr, 0, len);
562 	flush_dcache_folio(folio);
563 
564 	return kaddr;
565 }
566 
567 /**
568  * folio_fill_tail - Copy some data to a folio and pad with zeroes.
569  * @folio: The destination folio.
570  * @offset: The offset into @folio at which to start copying.
571  * @from: The data to copy.
572  * @len: How many bytes of data to copy.
573  *
574  * This function is most useful for filesystems which support inline data.
575  * When they want to copy data from the inode into the page cache, this
576  * function does everything for them.  It supports large folios even on
577  * HIGHMEM configurations.
578  */
folio_fill_tail(struct folio * folio,size_t offset,const char * from,size_t len)579 static inline void folio_fill_tail(struct folio *folio, size_t offset,
580 		const char *from, size_t len)
581 {
582 	char *to = kmap_local_folio(folio, offset);
583 
584 	VM_BUG_ON(offset + len > folio_size(folio));
585 
586 	if (folio_test_partial_kmap(folio)) {
587 		size_t max = PAGE_SIZE - offset_in_page(offset);
588 
589 		while (len > max) {
590 			memcpy(to, from, max);
591 			kunmap_local(to);
592 			len -= max;
593 			from += max;
594 			offset += max;
595 			max = PAGE_SIZE;
596 			to = kmap_local_folio(folio, offset);
597 		}
598 	}
599 
600 	memcpy(to, from, len);
601 	to = folio_zero_tail(folio, offset + len, to + len);
602 	kunmap_local(to);
603 }
604 
605 /**
606  * memcpy_from_file_folio - Copy some bytes from a file folio.
607  * @to: The destination buffer.
608  * @folio: The folio to copy from.
609  * @pos: The position in the file.
610  * @len: The maximum number of bytes to copy.
611  *
612  * Copy up to @len bytes from this folio.  This may be limited by PAGE_SIZE
613  * if the folio comes from HIGHMEM, and by the size of the folio.
614  *
615  * Return: The number of bytes copied from the folio.
616  */
memcpy_from_file_folio(char * to,struct folio * folio,loff_t pos,size_t len)617 static inline size_t memcpy_from_file_folio(char *to, struct folio *folio,
618 		loff_t pos, size_t len)
619 {
620 	size_t offset = offset_in_folio(folio, pos);
621 	char *from = kmap_local_folio(folio, offset);
622 
623 	if (folio_test_partial_kmap(folio)) {
624 		offset = offset_in_page(offset);
625 		len = min_t(size_t, len, PAGE_SIZE - offset);
626 	} else
627 		len = min(len, folio_size(folio) - offset);
628 
629 	memcpy(to, from, len);
630 	kunmap_local(from);
631 
632 	return len;
633 }
634 
635 /**
636  * folio_zero_segments() - Zero two byte ranges in a folio.
637  * @folio: The folio to write to.
638  * @start1: The first byte to zero.
639  * @xend1: One more than the last byte in the first range.
640  * @start2: The first byte to zero in the second range.
641  * @xend2: One more than the last byte in the second range.
642  */
folio_zero_segments(struct folio * folio,size_t start1,size_t xend1,size_t start2,size_t xend2)643 static inline void folio_zero_segments(struct folio *folio,
644 		size_t start1, size_t xend1, size_t start2, size_t xend2)
645 {
646 	zero_user_segments(&folio->page, start1, xend1, start2, xend2);
647 }
648 
649 /**
650  * folio_zero_segment() - Zero a byte range in a folio.
651  * @folio: The folio to write to.
652  * @start: The first byte to zero.
653  * @xend: One more than the last byte to zero.
654  */
folio_zero_segment(struct folio * folio,size_t start,size_t xend)655 static inline void folio_zero_segment(struct folio *folio,
656 		size_t start, size_t xend)
657 {
658 	zero_user_segments(&folio->page, start, xend, 0, 0);
659 }
660 
661 /**
662  * folio_zero_range() - Zero a byte range in a folio.
663  * @folio: The folio to write to.
664  * @start: The first byte to zero.
665  * @length: The number of bytes to zero.
666  */
folio_zero_range(struct folio * folio,size_t start,size_t length)667 static inline void folio_zero_range(struct folio *folio,
668 		size_t start, size_t length)
669 {
670 	zero_user_segments(&folio->page, start, start + length, 0, 0);
671 }
672 
673 /**
674  * folio_release_kmap - Unmap a folio and drop a refcount.
675  * @folio: The folio to release.
676  * @addr: The address previously returned by a call to kmap_local_folio().
677  *
678  * It is common, eg in directory handling to kmap a folio.  This function
679  * unmaps the folio and drops the refcount that was being held to keep the
680  * folio alive while we accessed it.
681  */
folio_release_kmap(struct folio * folio,void * addr)682 static inline void folio_release_kmap(struct folio *folio, void *addr)
683 {
684 	kunmap_local(addr);
685 	folio_put(folio);
686 }
687 #endif /* _LINUX_HIGHMEM_H */
688