1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <linux/sched/mm.h>
50 #include <asm/pgalloc.h>
51 #include <asm/tlbflush.h>
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/filemap.h>
56
57 /*
58 * FIXME: remove all knowledge of the buffer layer from the core VM
59 */
60 #include <linux/buffer_head.h> /* for try_to_free_buffers */
61
62 #include <asm/mman.h>
63
64 #include "swap.h"
65
66 /*
67 * Shared mappings implemented 30.11.1994. It's not fully working yet,
68 * though.
69 *
70 * Shared mappings now work. 15.8.1995 Bruno.
71 *
72 * finished 'unifying' the page and buffer cache and SMP-threaded the
73 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
74 *
75 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
76 */
77
78 /*
79 * Lock ordering:
80 *
81 * ->i_mmap_rwsem (truncate_pagecache)
82 * ->private_lock (__free_pte->block_dirty_folio)
83 * ->swap_lock (exclusive_swap_page, others)
84 * ->i_pages lock
85 *
86 * ->i_rwsem
87 * ->invalidate_lock (acquired by fs in truncate path)
88 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
89 *
90 * ->mmap_lock
91 * ->i_mmap_rwsem
92 * ->page_table_lock or pte_lock (various, mainly in memory.c)
93 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
94 *
95 * ->mmap_lock
96 * ->invalidate_lock (filemap_fault)
97 * ->lock_page (filemap_fault, access_process_vm)
98 *
99 * ->i_rwsem (generic_perform_write)
100 * ->mmap_lock (fault_in_readable->do_page_fault)
101 *
102 * bdi->wb.list_lock
103 * sb_lock (fs/fs-writeback.c)
104 * ->i_pages lock (__sync_single_inode)
105 *
106 * ->i_mmap_rwsem
107 * ->anon_vma.lock (vma_merge)
108 *
109 * ->anon_vma.lock
110 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
111 *
112 * ->page_table_lock or pte_lock
113 * ->swap_lock (try_to_unmap_one)
114 * ->private_lock (try_to_unmap_one)
115 * ->i_pages lock (try_to_unmap_one)
116 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed)
117 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru)
118 * ->private_lock (folio_remove_rmap_pte->set_page_dirty)
119 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
120 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
121 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
122 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
123 * ->inode->i_lock (zap_pte_range->set_page_dirty)
124 * ->private_lock (zap_pte_range->block_dirty_folio)
125 */
126
page_cache_delete(struct address_space * mapping,struct folio * folio,void * shadow)127 static void page_cache_delete(struct address_space *mapping,
128 struct folio *folio, void *shadow)
129 {
130 XA_STATE(xas, &mapping->i_pages, folio->index);
131 long nr = 1;
132
133 mapping_set_update(&xas, mapping);
134
135 xas_set_order(&xas, folio->index, folio_order(folio));
136 nr = folio_nr_pages(folio);
137
138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
139
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
142
143 folio->mapping = NULL;
144 /* Leave page->index set: truncation lookup relies upon it */
145 mapping->nrpages -= nr;
146 }
147
filemap_unaccount_folio(struct address_space * mapping,struct folio * folio)148 static void filemap_unaccount_folio(struct address_space *mapping,
149 struct folio *folio)
150 {
151 long nr;
152
153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
156 current->comm, folio_pfn(folio));
157 dump_page(&folio->page, "still mapped when deleted");
158 dump_stack();
159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
160
161 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 int mapcount = folio_mapcount(folio);
163
164 if (folio_ref_count(folio) >= mapcount + 2) {
165 /*
166 * All vmas have already been torn down, so it's
167 * a good bet that actually the page is unmapped
168 * and we'd rather not leak it: if we're wrong,
169 * another bad page check should catch it later.
170 */
171 atomic_set(&folio->_mapcount, -1);
172 folio_ref_sub(folio, mapcount);
173 }
174 }
175 }
176
177 /* hugetlb folios do not participate in page cache accounting. */
178 if (folio_test_hugetlb(folio))
179 return;
180
181 nr = folio_nr_pages(folio);
182
183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 if (folio_test_swapbacked(folio)) {
185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 if (folio_test_pmd_mappable(folio))
187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 } else if (folio_test_pmd_mappable(folio)) {
189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 filemap_nr_thps_dec(mapping);
191 }
192
193 /*
194 * At this point folio must be either written or cleaned by
195 * truncate. Dirty folio here signals a bug and loss of
196 * unwritten data - on ordinary filesystems.
197 *
198 * But it's harmless on in-memory filesystems like tmpfs; and can
199 * occur when a driver which did get_user_pages() sets page dirty
200 * before putting it, while the inode is being finally evicted.
201 *
202 * Below fixes dirty accounting after removing the folio entirely
203 * but leaves the dirty flag set: it has no effect for truncated
204 * folio and anyway will be cleared before returning folio to
205 * buddy allocator.
206 */
207 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 mapping_can_writeback(mapping)))
209 folio_account_cleaned(folio, inode_to_wb(mapping->host));
210 }
211
212 /*
213 * Delete a page from the page cache and free it. Caller has to make
214 * sure the page is locked and that nobody else uses it - or that usage
215 * is safe. The caller must hold the i_pages lock.
216 */
__filemap_remove_folio(struct folio * folio,void * shadow)217 void __filemap_remove_folio(struct folio *folio, void *shadow)
218 {
219 struct address_space *mapping = folio->mapping;
220
221 trace_mm_filemap_delete_from_page_cache(folio);
222 filemap_unaccount_folio(mapping, folio);
223 page_cache_delete(mapping, folio, shadow);
224 }
225
filemap_free_folio(struct address_space * mapping,struct folio * folio)226 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
227 {
228 void (*free_folio)(struct folio *);
229 int refs = 1;
230
231 free_folio = mapping->a_ops->free_folio;
232 if (free_folio)
233 free_folio(folio);
234
235 if (folio_test_large(folio))
236 refs = folio_nr_pages(folio);
237 folio_put_refs(folio, refs);
238 }
239
240 /**
241 * filemap_remove_folio - Remove folio from page cache.
242 * @folio: The folio.
243 *
244 * This must be called only on folios that are locked and have been
245 * verified to be in the page cache. It will never put the folio into
246 * the free list because the caller has a reference on the page.
247 */
filemap_remove_folio(struct folio * folio)248 void filemap_remove_folio(struct folio *folio)
249 {
250 struct address_space *mapping = folio->mapping;
251
252 BUG_ON(!folio_test_locked(folio));
253 spin_lock(&mapping->host->i_lock);
254 xa_lock_irq(&mapping->i_pages);
255 __filemap_remove_folio(folio, NULL);
256 xa_unlock_irq(&mapping->i_pages);
257 if (mapping_shrinkable(mapping))
258 inode_add_lru(mapping->host);
259 spin_unlock(&mapping->host->i_lock);
260
261 filemap_free_folio(mapping, folio);
262 }
263
264 /*
265 * page_cache_delete_batch - delete several folios from page cache
266 * @mapping: the mapping to which folios belong
267 * @fbatch: batch of folios to delete
268 *
269 * The function walks over mapping->i_pages and removes folios passed in
270 * @fbatch from the mapping. The function expects @fbatch to be sorted
271 * by page index and is optimised for it to be dense.
272 * It tolerates holes in @fbatch (mapping entries at those indices are not
273 * modified).
274 *
275 * The function expects the i_pages lock to be held.
276 */
page_cache_delete_batch(struct address_space * mapping,struct folio_batch * fbatch)277 static void page_cache_delete_batch(struct address_space *mapping,
278 struct folio_batch *fbatch)
279 {
280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
281 long total_pages = 0;
282 int i = 0;
283 struct folio *folio;
284
285 mapping_set_update(&xas, mapping);
286 xas_for_each(&xas, folio, ULONG_MAX) {
287 if (i >= folio_batch_count(fbatch))
288 break;
289
290 /* A swap/dax/shadow entry got inserted? Skip it. */
291 if (xa_is_value(folio))
292 continue;
293 /*
294 * A page got inserted in our range? Skip it. We have our
295 * pages locked so they are protected from being removed.
296 * If we see a page whose index is higher than ours, it
297 * means our page has been removed, which shouldn't be
298 * possible because we're holding the PageLock.
299 */
300 if (folio != fbatch->folios[i]) {
301 VM_BUG_ON_FOLIO(folio->index >
302 fbatch->folios[i]->index, folio);
303 continue;
304 }
305
306 WARN_ON_ONCE(!folio_test_locked(folio));
307
308 folio->mapping = NULL;
309 /* Leave folio->index set: truncation lookup relies on it */
310
311 i++;
312 xas_store(&xas, NULL);
313 total_pages += folio_nr_pages(folio);
314 }
315 mapping->nrpages -= total_pages;
316 }
317
delete_from_page_cache_batch(struct address_space * mapping,struct folio_batch * fbatch)318 void delete_from_page_cache_batch(struct address_space *mapping,
319 struct folio_batch *fbatch)
320 {
321 int i;
322
323 if (!folio_batch_count(fbatch))
324 return;
325
326 spin_lock(&mapping->host->i_lock);
327 xa_lock_irq(&mapping->i_pages);
328 for (i = 0; i < folio_batch_count(fbatch); i++) {
329 struct folio *folio = fbatch->folios[i];
330
331 trace_mm_filemap_delete_from_page_cache(folio);
332 filemap_unaccount_folio(mapping, folio);
333 }
334 page_cache_delete_batch(mapping, fbatch);
335 xa_unlock_irq(&mapping->i_pages);
336 if (mapping_shrinkable(mapping))
337 inode_add_lru(mapping->host);
338 spin_unlock(&mapping->host->i_lock);
339
340 for (i = 0; i < folio_batch_count(fbatch); i++)
341 filemap_free_folio(mapping, fbatch->folios[i]);
342 }
343
filemap_check_errors(struct address_space * mapping)344 int filemap_check_errors(struct address_space *mapping)
345 {
346 int ret = 0;
347 /* Check for outstanding write errors */
348 if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
350 ret = -ENOSPC;
351 if (test_bit(AS_EIO, &mapping->flags) &&
352 test_and_clear_bit(AS_EIO, &mapping->flags))
353 ret = -EIO;
354 return ret;
355 }
356 EXPORT_SYMBOL(filemap_check_errors);
357
filemap_check_and_keep_errors(struct address_space * mapping)358 static int filemap_check_and_keep_errors(struct address_space *mapping)
359 {
360 /* Check for outstanding write errors */
361 if (test_bit(AS_EIO, &mapping->flags))
362 return -EIO;
363 if (test_bit(AS_ENOSPC, &mapping->flags))
364 return -ENOSPC;
365 return 0;
366 }
367
368 /**
369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370 * @mapping: address space structure to write
371 * @wbc: the writeback_control controlling the writeout
372 *
373 * Call writepages on the mapping using the provided wbc to control the
374 * writeout.
375 *
376 * Return: %0 on success, negative error code otherwise.
377 */
filemap_fdatawrite_wbc(struct address_space * mapping,struct writeback_control * wbc)378 int filemap_fdatawrite_wbc(struct address_space *mapping,
379 struct writeback_control *wbc)
380 {
381 int ret;
382
383 if (!mapping_can_writeback(mapping) ||
384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
385 return 0;
386
387 wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 ret = do_writepages(mapping, wbc);
389 wbc_detach_inode(wbc);
390 return ret;
391 }
392 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
393
394 /**
395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396 * @mapping: address space structure to write
397 * @start: offset in bytes where the range starts
398 * @end: offset in bytes where the range ends (inclusive)
399 * @sync_mode: enable synchronous operation
400 *
401 * Start writeback against all of a mapping's dirty pages that lie
402 * within the byte offsets <start, end> inclusive.
403 *
404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
405 * opposed to a regular memory cleansing writeback. The difference between
406 * these two operations is that if a dirty page/buffer is encountered, it must
407 * be waited upon, and not just skipped over.
408 *
409 * Return: %0 on success, negative error code otherwise.
410 */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 loff_t end, int sync_mode)
413 {
414 struct writeback_control wbc = {
415 .sync_mode = sync_mode,
416 .nr_to_write = LONG_MAX,
417 .range_start = start,
418 .range_end = end,
419 };
420
421 return filemap_fdatawrite_wbc(mapping, &wbc);
422 }
423
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)424 static inline int __filemap_fdatawrite(struct address_space *mapping,
425 int sync_mode)
426 {
427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
428 }
429
filemap_fdatawrite(struct address_space * mapping)430 int filemap_fdatawrite(struct address_space *mapping)
431 {
432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433 }
434 EXPORT_SYMBOL(filemap_fdatawrite);
435
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
437 loff_t end)
438 {
439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440 }
441 EXPORT_SYMBOL(filemap_fdatawrite_range);
442
443 /**
444 * filemap_fdatawrite_range_kick - start writeback on a range
445 * @mapping: target address_space
446 * @start: index to start writeback on
447 * @end: last (inclusive) index for writeback
448 *
449 * This is a non-integrity writeback helper, to start writing back folios
450 * for the indicated range.
451 *
452 * Return: %0 on success, negative error code otherwise.
453 */
filemap_fdatawrite_range_kick(struct address_space * mapping,loff_t start,loff_t end)454 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start,
455 loff_t end)
456 {
457 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE);
458 }
459 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick);
460
461 /**
462 * filemap_flush - mostly a non-blocking flush
463 * @mapping: target address_space
464 *
465 * This is a mostly non-blocking flush. Not suitable for data-integrity
466 * purposes - I/O may not be started against all dirty pages.
467 *
468 * Return: %0 on success, negative error code otherwise.
469 */
filemap_flush(struct address_space * mapping)470 int filemap_flush(struct address_space *mapping)
471 {
472 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
473 }
474 EXPORT_SYMBOL(filemap_flush);
475
476 /**
477 * filemap_range_has_page - check if a page exists in range.
478 * @mapping: address space within which to check
479 * @start_byte: offset in bytes where the range starts
480 * @end_byte: offset in bytes where the range ends (inclusive)
481 *
482 * Find at least one page in the range supplied, usually used to check if
483 * direct writing in this range will trigger a writeback.
484 *
485 * Return: %true if at least one page exists in the specified range,
486 * %false otherwise.
487 */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)488 bool filemap_range_has_page(struct address_space *mapping,
489 loff_t start_byte, loff_t end_byte)
490 {
491 struct folio *folio;
492 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
493 pgoff_t max = end_byte >> PAGE_SHIFT;
494
495 if (end_byte < start_byte)
496 return false;
497
498 rcu_read_lock();
499 for (;;) {
500 folio = xas_find(&xas, max);
501 if (xas_retry(&xas, folio))
502 continue;
503 /* Shadow entries don't count */
504 if (xa_is_value(folio))
505 continue;
506 /*
507 * We don't need to try to pin this page; we're about to
508 * release the RCU lock anyway. It is enough to know that
509 * there was a page here recently.
510 */
511 break;
512 }
513 rcu_read_unlock();
514
515 return folio != NULL;
516 }
517 EXPORT_SYMBOL(filemap_range_has_page);
518
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)519 static void __filemap_fdatawait_range(struct address_space *mapping,
520 loff_t start_byte, loff_t end_byte)
521 {
522 pgoff_t index = start_byte >> PAGE_SHIFT;
523 pgoff_t end = end_byte >> PAGE_SHIFT;
524 struct folio_batch fbatch;
525 unsigned nr_folios;
526
527 folio_batch_init(&fbatch);
528
529 while (index <= end) {
530 unsigned i;
531
532 nr_folios = filemap_get_folios_tag(mapping, &index, end,
533 PAGECACHE_TAG_WRITEBACK, &fbatch);
534
535 if (!nr_folios)
536 break;
537
538 for (i = 0; i < nr_folios; i++) {
539 struct folio *folio = fbatch.folios[i];
540
541 folio_wait_writeback(folio);
542 }
543 folio_batch_release(&fbatch);
544 cond_resched();
545 }
546 }
547
548 /**
549 * filemap_fdatawait_range - wait for writeback to complete
550 * @mapping: address space structure to wait for
551 * @start_byte: offset in bytes where the range starts
552 * @end_byte: offset in bytes where the range ends (inclusive)
553 *
554 * Walk the list of under-writeback pages of the given address space
555 * in the given range and wait for all of them. Check error status of
556 * the address space and return it.
557 *
558 * Since the error status of the address space is cleared by this function,
559 * callers are responsible for checking the return value and handling and/or
560 * reporting the error.
561 *
562 * Return: error status of the address space.
563 */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)564 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
565 loff_t end_byte)
566 {
567 __filemap_fdatawait_range(mapping, start_byte, end_byte);
568 return filemap_check_errors(mapping);
569 }
570 EXPORT_SYMBOL(filemap_fdatawait_range);
571
572 /**
573 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
574 * @mapping: address space structure to wait for
575 * @start_byte: offset in bytes where the range starts
576 * @end_byte: offset in bytes where the range ends (inclusive)
577 *
578 * Walk the list of under-writeback pages of the given address space in the
579 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
580 * this function does not clear error status of the address space.
581 *
582 * Use this function if callers don't handle errors themselves. Expected
583 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
584 * fsfreeze(8)
585 */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)586 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
587 loff_t start_byte, loff_t end_byte)
588 {
589 __filemap_fdatawait_range(mapping, start_byte, end_byte);
590 return filemap_check_and_keep_errors(mapping);
591 }
592 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
593
594 /**
595 * file_fdatawait_range - wait for writeback to complete
596 * @file: file pointing to address space structure to wait for
597 * @start_byte: offset in bytes where the range starts
598 * @end_byte: offset in bytes where the range ends (inclusive)
599 *
600 * Walk the list of under-writeback pages of the address space that file
601 * refers to, in the given range and wait for all of them. Check error
602 * status of the address space vs. the file->f_wb_err cursor and return it.
603 *
604 * Since the error status of the file is advanced by this function,
605 * callers are responsible for checking the return value and handling and/or
606 * reporting the error.
607 *
608 * Return: error status of the address space vs. the file->f_wb_err cursor.
609 */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)610 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
611 {
612 struct address_space *mapping = file->f_mapping;
613
614 __filemap_fdatawait_range(mapping, start_byte, end_byte);
615 return file_check_and_advance_wb_err(file);
616 }
617 EXPORT_SYMBOL(file_fdatawait_range);
618
619 /**
620 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
621 * @mapping: address space structure to wait for
622 *
623 * Walk the list of under-writeback pages of the given address space
624 * and wait for all of them. Unlike filemap_fdatawait(), this function
625 * does not clear error status of the address space.
626 *
627 * Use this function if callers don't handle errors themselves. Expected
628 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
629 * fsfreeze(8)
630 *
631 * Return: error status of the address space.
632 */
filemap_fdatawait_keep_errors(struct address_space * mapping)633 int filemap_fdatawait_keep_errors(struct address_space *mapping)
634 {
635 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
636 return filemap_check_and_keep_errors(mapping);
637 }
638 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
639
640 /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)641 static bool mapping_needs_writeback(struct address_space *mapping)
642 {
643 return mapping->nrpages;
644 }
645
filemap_range_has_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)646 bool filemap_range_has_writeback(struct address_space *mapping,
647 loff_t start_byte, loff_t end_byte)
648 {
649 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
650 pgoff_t max = end_byte >> PAGE_SHIFT;
651 struct folio *folio;
652
653 if (end_byte < start_byte)
654 return false;
655
656 rcu_read_lock();
657 xas_for_each(&xas, folio, max) {
658 if (xas_retry(&xas, folio))
659 continue;
660 if (xa_is_value(folio))
661 continue;
662 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
663 folio_test_writeback(folio))
664 break;
665 }
666 rcu_read_unlock();
667 return folio != NULL;
668 }
669 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
670
671 /**
672 * filemap_write_and_wait_range - write out & wait on a file range
673 * @mapping: the address_space for the pages
674 * @lstart: offset in bytes where the range starts
675 * @lend: offset in bytes where the range ends (inclusive)
676 *
677 * Write out and wait upon file offsets lstart->lend, inclusive.
678 *
679 * Note that @lend is inclusive (describes the last byte to be written) so
680 * that this function can be used to write to the very end-of-file (end = -1).
681 *
682 * Return: error status of the address space.
683 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)684 int filemap_write_and_wait_range(struct address_space *mapping,
685 loff_t lstart, loff_t lend)
686 {
687 int err = 0, err2;
688
689 if (lend < lstart)
690 return 0;
691
692 if (mapping_needs_writeback(mapping)) {
693 err = __filemap_fdatawrite_range(mapping, lstart, lend,
694 WB_SYNC_ALL);
695 /*
696 * Even if the above returned error, the pages may be
697 * written partially (e.g. -ENOSPC), so we wait for it.
698 * But the -EIO is special case, it may indicate the worst
699 * thing (e.g. bug) happened, so we avoid waiting for it.
700 */
701 if (err != -EIO)
702 __filemap_fdatawait_range(mapping, lstart, lend);
703 }
704 err2 = filemap_check_errors(mapping);
705 if (!err)
706 err = err2;
707 return err;
708 }
709 EXPORT_SYMBOL(filemap_write_and_wait_range);
710
__filemap_set_wb_err(struct address_space * mapping,int err)711 void __filemap_set_wb_err(struct address_space *mapping, int err)
712 {
713 errseq_t eseq = errseq_set(&mapping->wb_err, err);
714
715 trace_filemap_set_wb_err(mapping, eseq);
716 }
717 EXPORT_SYMBOL(__filemap_set_wb_err);
718
719 /**
720 * file_check_and_advance_wb_err - report wb error (if any) that was previously
721 * and advance wb_err to current one
722 * @file: struct file on which the error is being reported
723 *
724 * When userland calls fsync (or something like nfsd does the equivalent), we
725 * want to report any writeback errors that occurred since the last fsync (or
726 * since the file was opened if there haven't been any).
727 *
728 * Grab the wb_err from the mapping. If it matches what we have in the file,
729 * then just quickly return 0. The file is all caught up.
730 *
731 * If it doesn't match, then take the mapping value, set the "seen" flag in
732 * it and try to swap it into place. If it works, or another task beat us
733 * to it with the new value, then update the f_wb_err and return the error
734 * portion. The error at this point must be reported via proper channels
735 * (a'la fsync, or NFS COMMIT operation, etc.).
736 *
737 * While we handle mapping->wb_err with atomic operations, the f_wb_err
738 * value is protected by the f_lock since we must ensure that it reflects
739 * the latest value swapped in for this file descriptor.
740 *
741 * Return: %0 on success, negative error code otherwise.
742 */
file_check_and_advance_wb_err(struct file * file)743 int file_check_and_advance_wb_err(struct file *file)
744 {
745 int err = 0;
746 errseq_t old = READ_ONCE(file->f_wb_err);
747 struct address_space *mapping = file->f_mapping;
748
749 /* Locklessly handle the common case where nothing has changed */
750 if (errseq_check(&mapping->wb_err, old)) {
751 /* Something changed, must use slow path */
752 spin_lock(&file->f_lock);
753 old = file->f_wb_err;
754 err = errseq_check_and_advance(&mapping->wb_err,
755 &file->f_wb_err);
756 trace_file_check_and_advance_wb_err(file, old);
757 spin_unlock(&file->f_lock);
758 }
759
760 /*
761 * We're mostly using this function as a drop in replacement for
762 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
763 * that the legacy code would have had on these flags.
764 */
765 clear_bit(AS_EIO, &mapping->flags);
766 clear_bit(AS_ENOSPC, &mapping->flags);
767 return err;
768 }
769 EXPORT_SYMBOL(file_check_and_advance_wb_err);
770
771 /**
772 * file_write_and_wait_range - write out & wait on a file range
773 * @file: file pointing to address_space with pages
774 * @lstart: offset in bytes where the range starts
775 * @lend: offset in bytes where the range ends (inclusive)
776 *
777 * Write out and wait upon file offsets lstart->lend, inclusive.
778 *
779 * Note that @lend is inclusive (describes the last byte to be written) so
780 * that this function can be used to write to the very end-of-file (end = -1).
781 *
782 * After writing out and waiting on the data, we check and advance the
783 * f_wb_err cursor to the latest value, and return any errors detected there.
784 *
785 * Return: %0 on success, negative error code otherwise.
786 */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)787 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
788 {
789 int err = 0, err2;
790 struct address_space *mapping = file->f_mapping;
791
792 if (lend < lstart)
793 return 0;
794
795 if (mapping_needs_writeback(mapping)) {
796 err = __filemap_fdatawrite_range(mapping, lstart, lend,
797 WB_SYNC_ALL);
798 /* See comment of filemap_write_and_wait() */
799 if (err != -EIO)
800 __filemap_fdatawait_range(mapping, lstart, lend);
801 }
802 err2 = file_check_and_advance_wb_err(file);
803 if (!err)
804 err = err2;
805 return err;
806 }
807 EXPORT_SYMBOL(file_write_and_wait_range);
808
809 /**
810 * replace_page_cache_folio - replace a pagecache folio with a new one
811 * @old: folio to be replaced
812 * @new: folio to replace with
813 *
814 * This function replaces a folio in the pagecache with a new one. On
815 * success it acquires the pagecache reference for the new folio and
816 * drops it for the old folio. Both the old and new folios must be
817 * locked. This function does not add the new folio to the LRU, the
818 * caller must do that.
819 *
820 * The remove + add is atomic. This function cannot fail.
821 */
replace_page_cache_folio(struct folio * old,struct folio * new)822 void replace_page_cache_folio(struct folio *old, struct folio *new)
823 {
824 struct address_space *mapping = old->mapping;
825 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
826 pgoff_t offset = old->index;
827 XA_STATE(xas, &mapping->i_pages, offset);
828
829 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
830 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
831 VM_BUG_ON_FOLIO(new->mapping, new);
832
833 folio_get(new);
834 new->mapping = mapping;
835 new->index = offset;
836
837 mem_cgroup_replace_folio(old, new);
838
839 xas_lock_irq(&xas);
840 xas_store(&xas, new);
841
842 old->mapping = NULL;
843 /* hugetlb pages do not participate in page cache accounting. */
844 if (!folio_test_hugetlb(old))
845 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
846 if (!folio_test_hugetlb(new))
847 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
848 if (folio_test_swapbacked(old))
849 __lruvec_stat_sub_folio(old, NR_SHMEM);
850 if (folio_test_swapbacked(new))
851 __lruvec_stat_add_folio(new, NR_SHMEM);
852 xas_unlock_irq(&xas);
853 if (free_folio)
854 free_folio(old);
855 folio_put(old);
856 }
857 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
858
__filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp,void ** shadowp)859 noinline int __filemap_add_folio(struct address_space *mapping,
860 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
861 {
862 XA_STATE(xas, &mapping->i_pages, index);
863 void *alloced_shadow = NULL;
864 int alloced_order = 0;
865 bool huge;
866 long nr;
867
868 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
869 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
870 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
871 folio);
872 mapping_set_update(&xas, mapping);
873
874 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
875 xas_set_order(&xas, index, folio_order(folio));
876 huge = folio_test_hugetlb(folio);
877 nr = folio_nr_pages(folio);
878
879 gfp &= GFP_RECLAIM_MASK;
880 folio_ref_add(folio, nr);
881 folio->mapping = mapping;
882 folio->index = xas.xa_index;
883
884 for (;;) {
885 int order = -1, split_order = 0;
886 void *entry, *old = NULL;
887
888 xas_lock_irq(&xas);
889 xas_for_each_conflict(&xas, entry) {
890 old = entry;
891 if (!xa_is_value(entry)) {
892 xas_set_err(&xas, -EEXIST);
893 goto unlock;
894 }
895 /*
896 * If a larger entry exists,
897 * it will be the first and only entry iterated.
898 */
899 if (order == -1)
900 order = xas_get_order(&xas);
901 }
902
903 /* entry may have changed before we re-acquire the lock */
904 if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
905 xas_destroy(&xas);
906 alloced_order = 0;
907 }
908
909 if (old) {
910 if (order > 0 && order > folio_order(folio)) {
911 /* How to handle large swap entries? */
912 BUG_ON(shmem_mapping(mapping));
913 if (!alloced_order) {
914 split_order = order;
915 goto unlock;
916 }
917 xas_split(&xas, old, order);
918 xas_reset(&xas);
919 }
920 if (shadowp)
921 *shadowp = old;
922 }
923
924 xas_store(&xas, folio);
925 if (xas_error(&xas))
926 goto unlock;
927
928 mapping->nrpages += nr;
929
930 /* hugetlb pages do not participate in page cache accounting */
931 if (!huge) {
932 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
933 if (folio_test_pmd_mappable(folio))
934 __lruvec_stat_mod_folio(folio,
935 NR_FILE_THPS, nr);
936 }
937
938 unlock:
939 xas_unlock_irq(&xas);
940
941 /* split needed, alloc here and retry. */
942 if (split_order) {
943 xas_split_alloc(&xas, old, split_order, gfp);
944 if (xas_error(&xas))
945 goto error;
946 alloced_shadow = old;
947 alloced_order = split_order;
948 xas_reset(&xas);
949 continue;
950 }
951
952 if (!xas_nomem(&xas, gfp))
953 break;
954 }
955
956 if (xas_error(&xas))
957 goto error;
958
959 trace_mm_filemap_add_to_page_cache(folio);
960 return 0;
961 error:
962 folio->mapping = NULL;
963 /* Leave page->index set: truncation relies upon it */
964 folio_put_refs(folio, nr);
965 return xas_error(&xas);
966 }
967 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
968
filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp)969 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
970 pgoff_t index, gfp_t gfp)
971 {
972 void *shadow = NULL;
973 int ret;
974
975 ret = mem_cgroup_charge(folio, NULL, gfp);
976 if (ret)
977 return ret;
978
979 __folio_set_locked(folio);
980 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
981 if (unlikely(ret)) {
982 mem_cgroup_uncharge(folio);
983 __folio_clear_locked(folio);
984 } else {
985 /*
986 * The folio might have been evicted from cache only
987 * recently, in which case it should be activated like
988 * any other repeatedly accessed folio.
989 * The exception is folios getting rewritten; evicting other
990 * data from the working set, only to cache data that will
991 * get overwritten with something else, is a waste of memory.
992 */
993 WARN_ON_ONCE(folio_test_active(folio));
994 if (!(gfp & __GFP_WRITE) && shadow)
995 workingset_refault(folio, shadow);
996 folio_add_lru(folio);
997 }
998 return ret;
999 }
1000 EXPORT_SYMBOL_GPL(filemap_add_folio);
1001
1002 #ifdef CONFIG_NUMA
filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order)1003 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
1004 {
1005 int n;
1006 struct folio *folio;
1007
1008 if (cpuset_do_page_mem_spread()) {
1009 unsigned int cpuset_mems_cookie;
1010 do {
1011 cpuset_mems_cookie = read_mems_allowed_begin();
1012 n = cpuset_mem_spread_node();
1013 folio = __folio_alloc_node_noprof(gfp, order, n);
1014 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1015
1016 return folio;
1017 }
1018 return folio_alloc_noprof(gfp, order);
1019 }
1020 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1021 #endif
1022
1023 /*
1024 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1025 *
1026 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1027 *
1028 * @mapping1: the first mapping to lock
1029 * @mapping2: the second mapping to lock
1030 */
filemap_invalidate_lock_two(struct address_space * mapping1,struct address_space * mapping2)1031 void filemap_invalidate_lock_two(struct address_space *mapping1,
1032 struct address_space *mapping2)
1033 {
1034 if (mapping1 > mapping2)
1035 swap(mapping1, mapping2);
1036 if (mapping1)
1037 down_write(&mapping1->invalidate_lock);
1038 if (mapping2 && mapping1 != mapping2)
1039 down_write_nested(&mapping2->invalidate_lock, 1);
1040 }
1041 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1042
1043 /*
1044 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1045 *
1046 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1047 *
1048 * @mapping1: the first mapping to unlock
1049 * @mapping2: the second mapping to unlock
1050 */
filemap_invalidate_unlock_two(struct address_space * mapping1,struct address_space * mapping2)1051 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1052 struct address_space *mapping2)
1053 {
1054 if (mapping1)
1055 up_write(&mapping1->invalidate_lock);
1056 if (mapping2 && mapping1 != mapping2)
1057 up_write(&mapping2->invalidate_lock);
1058 }
1059 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1060
1061 /*
1062 * In order to wait for pages to become available there must be
1063 * waitqueues associated with pages. By using a hash table of
1064 * waitqueues where the bucket discipline is to maintain all
1065 * waiters on the same queue and wake all when any of the pages
1066 * become available, and for the woken contexts to check to be
1067 * sure the appropriate page became available, this saves space
1068 * at a cost of "thundering herd" phenomena during rare hash
1069 * collisions.
1070 */
1071 #define PAGE_WAIT_TABLE_BITS 8
1072 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1073 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1074
folio_waitqueue(struct folio * folio)1075 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1076 {
1077 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1078 }
1079
pagecache_init(void)1080 void __init pagecache_init(void)
1081 {
1082 int i;
1083
1084 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1085 init_waitqueue_head(&folio_wait_table[i]);
1086
1087 page_writeback_init();
1088 }
1089
1090 /*
1091 * The page wait code treats the "wait->flags" somewhat unusually, because
1092 * we have multiple different kinds of waits, not just the usual "exclusive"
1093 * one.
1094 *
1095 * We have:
1096 *
1097 * (a) no special bits set:
1098 *
1099 * We're just waiting for the bit to be released, and when a waker
1100 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1101 * and remove it from the wait queue.
1102 *
1103 * Simple and straightforward.
1104 *
1105 * (b) WQ_FLAG_EXCLUSIVE:
1106 *
1107 * The waiter is waiting to get the lock, and only one waiter should
1108 * be woken up to avoid any thundering herd behavior. We'll set the
1109 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1110 *
1111 * This is the traditional exclusive wait.
1112 *
1113 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1114 *
1115 * The waiter is waiting to get the bit, and additionally wants the
1116 * lock to be transferred to it for fair lock behavior. If the lock
1117 * cannot be taken, we stop walking the wait queue without waking
1118 * the waiter.
1119 *
1120 * This is the "fair lock handoff" case, and in addition to setting
1121 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1122 * that it now has the lock.
1123 */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1124 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1125 {
1126 unsigned int flags;
1127 struct wait_page_key *key = arg;
1128 struct wait_page_queue *wait_page
1129 = container_of(wait, struct wait_page_queue, wait);
1130
1131 if (!wake_page_match(wait_page, key))
1132 return 0;
1133
1134 /*
1135 * If it's a lock handoff wait, we get the bit for it, and
1136 * stop walking (and do not wake it up) if we can't.
1137 */
1138 flags = wait->flags;
1139 if (flags & WQ_FLAG_EXCLUSIVE) {
1140 if (test_bit(key->bit_nr, &key->folio->flags))
1141 return -1;
1142 if (flags & WQ_FLAG_CUSTOM) {
1143 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1144 return -1;
1145 flags |= WQ_FLAG_DONE;
1146 }
1147 }
1148
1149 /*
1150 * We are holding the wait-queue lock, but the waiter that
1151 * is waiting for this will be checking the flags without
1152 * any locking.
1153 *
1154 * So update the flags atomically, and wake up the waiter
1155 * afterwards to avoid any races. This store-release pairs
1156 * with the load-acquire in folio_wait_bit_common().
1157 */
1158 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1159 wake_up_state(wait->private, mode);
1160
1161 /*
1162 * Ok, we have successfully done what we're waiting for,
1163 * and we can unconditionally remove the wait entry.
1164 *
1165 * Note that this pairs with the "finish_wait()" in the
1166 * waiter, and has to be the absolute last thing we do.
1167 * After this list_del_init(&wait->entry) the wait entry
1168 * might be de-allocated and the process might even have
1169 * exited.
1170 */
1171 list_del_init_careful(&wait->entry);
1172 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1173 }
1174
folio_wake_bit(struct folio * folio,int bit_nr)1175 static void folio_wake_bit(struct folio *folio, int bit_nr)
1176 {
1177 wait_queue_head_t *q = folio_waitqueue(folio);
1178 struct wait_page_key key;
1179 unsigned long flags;
1180
1181 key.folio = folio;
1182 key.bit_nr = bit_nr;
1183 key.page_match = 0;
1184
1185 spin_lock_irqsave(&q->lock, flags);
1186 __wake_up_locked_key(q, TASK_NORMAL, &key);
1187
1188 /*
1189 * It's possible to miss clearing waiters here, when we woke our page
1190 * waiters, but the hashed waitqueue has waiters for other pages on it.
1191 * That's okay, it's a rare case. The next waker will clear it.
1192 *
1193 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1194 * other), the flag may be cleared in the course of freeing the page;
1195 * but that is not required for correctness.
1196 */
1197 if (!waitqueue_active(q) || !key.page_match)
1198 folio_clear_waiters(folio);
1199
1200 spin_unlock_irqrestore(&q->lock, flags);
1201 }
1202
1203 /*
1204 * A choice of three behaviors for folio_wait_bit_common():
1205 */
1206 enum behavior {
1207 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1208 * __folio_lock() waiting on then setting PG_locked.
1209 */
1210 SHARED, /* Hold ref to page and check the bit when woken, like
1211 * folio_wait_writeback() waiting on PG_writeback.
1212 */
1213 DROP, /* Drop ref to page before wait, no check when woken,
1214 * like folio_put_wait_locked() on PG_locked.
1215 */
1216 };
1217
1218 /*
1219 * Attempt to check (or get) the folio flag, and mark us done
1220 * if successful.
1221 */
folio_trylock_flag(struct folio * folio,int bit_nr,struct wait_queue_entry * wait)1222 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1223 struct wait_queue_entry *wait)
1224 {
1225 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1226 if (test_and_set_bit(bit_nr, &folio->flags))
1227 return false;
1228 } else if (test_bit(bit_nr, &folio->flags))
1229 return false;
1230
1231 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1232 return true;
1233 }
1234
1235 /* How many times do we accept lock stealing from under a waiter? */
1236 int sysctl_page_lock_unfairness = 5;
1237
folio_wait_bit_common(struct folio * folio,int bit_nr,int state,enum behavior behavior)1238 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1239 int state, enum behavior behavior)
1240 {
1241 wait_queue_head_t *q = folio_waitqueue(folio);
1242 int unfairness = sysctl_page_lock_unfairness;
1243 struct wait_page_queue wait_page;
1244 wait_queue_entry_t *wait = &wait_page.wait;
1245 bool thrashing = false;
1246 unsigned long pflags;
1247 bool in_thrashing;
1248
1249 if (bit_nr == PG_locked &&
1250 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1251 delayacct_thrashing_start(&in_thrashing);
1252 psi_memstall_enter(&pflags);
1253 thrashing = true;
1254 }
1255
1256 init_wait(wait);
1257 wait->func = wake_page_function;
1258 wait_page.folio = folio;
1259 wait_page.bit_nr = bit_nr;
1260
1261 repeat:
1262 wait->flags = 0;
1263 if (behavior == EXCLUSIVE) {
1264 wait->flags = WQ_FLAG_EXCLUSIVE;
1265 if (--unfairness < 0)
1266 wait->flags |= WQ_FLAG_CUSTOM;
1267 }
1268
1269 /*
1270 * Do one last check whether we can get the
1271 * page bit synchronously.
1272 *
1273 * Do the folio_set_waiters() marking before that
1274 * to let any waker we _just_ missed know they
1275 * need to wake us up (otherwise they'll never
1276 * even go to the slow case that looks at the
1277 * page queue), and add ourselves to the wait
1278 * queue if we need to sleep.
1279 *
1280 * This part needs to be done under the queue
1281 * lock to avoid races.
1282 */
1283 spin_lock_irq(&q->lock);
1284 folio_set_waiters(folio);
1285 if (!folio_trylock_flag(folio, bit_nr, wait))
1286 __add_wait_queue_entry_tail(q, wait);
1287 spin_unlock_irq(&q->lock);
1288
1289 /*
1290 * From now on, all the logic will be based on
1291 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1292 * see whether the page bit testing has already
1293 * been done by the wake function.
1294 *
1295 * We can drop our reference to the folio.
1296 */
1297 if (behavior == DROP)
1298 folio_put(folio);
1299
1300 /*
1301 * Note that until the "finish_wait()", or until
1302 * we see the WQ_FLAG_WOKEN flag, we need to
1303 * be very careful with the 'wait->flags', because
1304 * we may race with a waker that sets them.
1305 */
1306 for (;;) {
1307 unsigned int flags;
1308
1309 set_current_state(state);
1310
1311 /* Loop until we've been woken or interrupted */
1312 flags = smp_load_acquire(&wait->flags);
1313 if (!(flags & WQ_FLAG_WOKEN)) {
1314 if (signal_pending_state(state, current))
1315 break;
1316
1317 io_schedule();
1318 continue;
1319 }
1320
1321 /* If we were non-exclusive, we're done */
1322 if (behavior != EXCLUSIVE)
1323 break;
1324
1325 /* If the waker got the lock for us, we're done */
1326 if (flags & WQ_FLAG_DONE)
1327 break;
1328
1329 /*
1330 * Otherwise, if we're getting the lock, we need to
1331 * try to get it ourselves.
1332 *
1333 * And if that fails, we'll have to retry this all.
1334 */
1335 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1336 goto repeat;
1337
1338 wait->flags |= WQ_FLAG_DONE;
1339 break;
1340 }
1341
1342 /*
1343 * If a signal happened, this 'finish_wait()' may remove the last
1344 * waiter from the wait-queues, but the folio waiters bit will remain
1345 * set. That's ok. The next wakeup will take care of it, and trying
1346 * to do it here would be difficult and prone to races.
1347 */
1348 finish_wait(q, wait);
1349
1350 if (thrashing) {
1351 delayacct_thrashing_end(&in_thrashing);
1352 psi_memstall_leave(&pflags);
1353 }
1354
1355 /*
1356 * NOTE! The wait->flags weren't stable until we've done the
1357 * 'finish_wait()', and we could have exited the loop above due
1358 * to a signal, and had a wakeup event happen after the signal
1359 * test but before the 'finish_wait()'.
1360 *
1361 * So only after the finish_wait() can we reliably determine
1362 * if we got woken up or not, so we can now figure out the final
1363 * return value based on that state without races.
1364 *
1365 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1366 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1367 */
1368 if (behavior == EXCLUSIVE)
1369 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1370
1371 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1372 }
1373
1374 #ifdef CONFIG_MIGRATION
1375 /**
1376 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1377 * @entry: migration swap entry.
1378 * @ptl: already locked ptl. This function will drop the lock.
1379 *
1380 * Wait for a migration entry referencing the given page to be removed. This is
1381 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1382 * this can be called without taking a reference on the page. Instead this
1383 * should be called while holding the ptl for the migration entry referencing
1384 * the page.
1385 *
1386 * Returns after unlocking the ptl.
1387 *
1388 * This follows the same logic as folio_wait_bit_common() so see the comments
1389 * there.
1390 */
migration_entry_wait_on_locked(swp_entry_t entry,spinlock_t * ptl)1391 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1392 __releases(ptl)
1393 {
1394 struct wait_page_queue wait_page;
1395 wait_queue_entry_t *wait = &wait_page.wait;
1396 bool thrashing = false;
1397 unsigned long pflags;
1398 bool in_thrashing;
1399 wait_queue_head_t *q;
1400 struct folio *folio = pfn_swap_entry_folio(entry);
1401
1402 q = folio_waitqueue(folio);
1403 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1404 delayacct_thrashing_start(&in_thrashing);
1405 psi_memstall_enter(&pflags);
1406 thrashing = true;
1407 }
1408
1409 init_wait(wait);
1410 wait->func = wake_page_function;
1411 wait_page.folio = folio;
1412 wait_page.bit_nr = PG_locked;
1413 wait->flags = 0;
1414
1415 spin_lock_irq(&q->lock);
1416 folio_set_waiters(folio);
1417 if (!folio_trylock_flag(folio, PG_locked, wait))
1418 __add_wait_queue_entry_tail(q, wait);
1419 spin_unlock_irq(&q->lock);
1420
1421 /*
1422 * If a migration entry exists for the page the migration path must hold
1423 * a valid reference to the page, and it must take the ptl to remove the
1424 * migration entry. So the page is valid until the ptl is dropped.
1425 */
1426 spin_unlock(ptl);
1427
1428 for (;;) {
1429 unsigned int flags;
1430
1431 set_current_state(TASK_UNINTERRUPTIBLE);
1432
1433 /* Loop until we've been woken or interrupted */
1434 flags = smp_load_acquire(&wait->flags);
1435 if (!(flags & WQ_FLAG_WOKEN)) {
1436 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1437 break;
1438
1439 io_schedule();
1440 continue;
1441 }
1442 break;
1443 }
1444
1445 finish_wait(q, wait);
1446
1447 if (thrashing) {
1448 delayacct_thrashing_end(&in_thrashing);
1449 psi_memstall_leave(&pflags);
1450 }
1451 }
1452 #endif
1453
folio_wait_bit(struct folio * folio,int bit_nr)1454 void folio_wait_bit(struct folio *folio, int bit_nr)
1455 {
1456 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1457 }
1458 EXPORT_SYMBOL(folio_wait_bit);
1459
folio_wait_bit_killable(struct folio * folio,int bit_nr)1460 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1461 {
1462 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1463 }
1464 EXPORT_SYMBOL(folio_wait_bit_killable);
1465
1466 /**
1467 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1468 * @folio: The folio to wait for.
1469 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1470 *
1471 * The caller should hold a reference on @folio. They expect the page to
1472 * become unlocked relatively soon, but do not wish to hold up migration
1473 * (for example) by holding the reference while waiting for the folio to
1474 * come unlocked. After this function returns, the caller should not
1475 * dereference @folio.
1476 *
1477 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1478 */
folio_put_wait_locked(struct folio * folio,int state)1479 static int folio_put_wait_locked(struct folio *folio, int state)
1480 {
1481 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1482 }
1483
1484 /**
1485 * folio_unlock - Unlock a locked folio.
1486 * @folio: The folio.
1487 *
1488 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1489 *
1490 * Context: May be called from interrupt or process context. May not be
1491 * called from NMI context.
1492 */
folio_unlock(struct folio * folio)1493 void folio_unlock(struct folio *folio)
1494 {
1495 /* Bit 7 allows x86 to check the byte's sign bit */
1496 BUILD_BUG_ON(PG_waiters != 7);
1497 BUILD_BUG_ON(PG_locked > 7);
1498 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1499 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1500 folio_wake_bit(folio, PG_locked);
1501 }
1502 EXPORT_SYMBOL(folio_unlock);
1503
1504 /**
1505 * folio_end_read - End read on a folio.
1506 * @folio: The folio.
1507 * @success: True if all reads completed successfully.
1508 *
1509 * When all reads against a folio have completed, filesystems should
1510 * call this function to let the pagecache know that no more reads
1511 * are outstanding. This will unlock the folio and wake up any thread
1512 * sleeping on the lock. The folio will also be marked uptodate if all
1513 * reads succeeded.
1514 *
1515 * Context: May be called from interrupt or process context. May not be
1516 * called from NMI context.
1517 */
folio_end_read(struct folio * folio,bool success)1518 void folio_end_read(struct folio *folio, bool success)
1519 {
1520 unsigned long mask = 1 << PG_locked;
1521
1522 /* Must be in bottom byte for x86 to work */
1523 BUILD_BUG_ON(PG_uptodate > 7);
1524 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1525 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio);
1526
1527 if (likely(success))
1528 mask |= 1 << PG_uptodate;
1529 if (folio_xor_flags_has_waiters(folio, mask))
1530 folio_wake_bit(folio, PG_locked);
1531 }
1532 EXPORT_SYMBOL(folio_end_read);
1533
1534 /**
1535 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1536 * @folio: The folio.
1537 *
1538 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1539 * it. The folio reference held for PG_private_2 being set is released.
1540 *
1541 * This is, for example, used when a netfs folio is being written to a local
1542 * disk cache, thereby allowing writes to the cache for the same folio to be
1543 * serialised.
1544 */
folio_end_private_2(struct folio * folio)1545 void folio_end_private_2(struct folio *folio)
1546 {
1547 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1548 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1549 folio_wake_bit(folio, PG_private_2);
1550 folio_put(folio);
1551 }
1552 EXPORT_SYMBOL(folio_end_private_2);
1553
1554 /**
1555 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1556 * @folio: The folio to wait on.
1557 *
1558 * Wait for PG_private_2 to be cleared on a folio.
1559 */
folio_wait_private_2(struct folio * folio)1560 void folio_wait_private_2(struct folio *folio)
1561 {
1562 while (folio_test_private_2(folio))
1563 folio_wait_bit(folio, PG_private_2);
1564 }
1565 EXPORT_SYMBOL(folio_wait_private_2);
1566
1567 /**
1568 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1569 * @folio: The folio to wait on.
1570 *
1571 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1572 * received by the calling task.
1573 *
1574 * Return:
1575 * - 0 if successful.
1576 * - -EINTR if a fatal signal was encountered.
1577 */
folio_wait_private_2_killable(struct folio * folio)1578 int folio_wait_private_2_killable(struct folio *folio)
1579 {
1580 int ret = 0;
1581
1582 while (folio_test_private_2(folio)) {
1583 ret = folio_wait_bit_killable(folio, PG_private_2);
1584 if (ret < 0)
1585 break;
1586 }
1587
1588 return ret;
1589 }
1590 EXPORT_SYMBOL(folio_wait_private_2_killable);
1591
1592 /*
1593 * If folio was marked as dropbehind, then pages should be dropped when writeback
1594 * completes. Do that now. If we fail, it's likely because of a big folio -
1595 * just reset dropbehind for that case and latter completions should invalidate.
1596 */
folio_end_dropbehind_write(struct folio * folio)1597 static void folio_end_dropbehind_write(struct folio *folio)
1598 {
1599 /*
1600 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback,
1601 * but can happen if normal writeback just happens to find dirty folios
1602 * that were created as part of uncached writeback, and that writeback
1603 * would otherwise not need non-IRQ handling. Just skip the
1604 * invalidation in that case.
1605 */
1606 if (in_task() && folio_trylock(folio)) {
1607 if (folio->mapping)
1608 folio_unmap_invalidate(folio->mapping, folio, 0);
1609 folio_unlock(folio);
1610 }
1611 }
1612
1613 /**
1614 * folio_end_writeback - End writeback against a folio.
1615 * @folio: The folio.
1616 *
1617 * The folio must actually be under writeback.
1618 *
1619 * Context: May be called from process or interrupt context.
1620 */
folio_end_writeback(struct folio * folio)1621 void folio_end_writeback(struct folio *folio)
1622 {
1623 bool folio_dropbehind = false;
1624
1625 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1626
1627 /*
1628 * folio_test_clear_reclaim() could be used here but it is an
1629 * atomic operation and overkill in this particular case. Failing
1630 * to shuffle a folio marked for immediate reclaim is too mild
1631 * a gain to justify taking an atomic operation penalty at the
1632 * end of every folio writeback.
1633 */
1634 if (folio_test_reclaim(folio)) {
1635 folio_clear_reclaim(folio);
1636 folio_rotate_reclaimable(folio);
1637 }
1638
1639 /*
1640 * Writeback does not hold a folio reference of its own, relying
1641 * on truncation to wait for the clearing of PG_writeback.
1642 * But here we must make sure that the folio is not freed and
1643 * reused before the folio_wake_bit().
1644 */
1645 folio_get(folio);
1646 if (!folio_test_dirty(folio))
1647 folio_dropbehind = folio_test_clear_dropbehind(folio);
1648 if (__folio_end_writeback(folio))
1649 folio_wake_bit(folio, PG_writeback);
1650 acct_reclaim_writeback(folio);
1651
1652 if (folio_dropbehind)
1653 folio_end_dropbehind_write(folio);
1654 folio_put(folio);
1655 }
1656 EXPORT_SYMBOL(folio_end_writeback);
1657
1658 /**
1659 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1660 * @folio: The folio to lock
1661 */
__folio_lock(struct folio * folio)1662 void __folio_lock(struct folio *folio)
1663 {
1664 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1665 EXCLUSIVE);
1666 }
1667 EXPORT_SYMBOL(__folio_lock);
1668
__folio_lock_killable(struct folio * folio)1669 int __folio_lock_killable(struct folio *folio)
1670 {
1671 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1672 EXCLUSIVE);
1673 }
1674 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1675
__folio_lock_async(struct folio * folio,struct wait_page_queue * wait)1676 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1677 {
1678 struct wait_queue_head *q = folio_waitqueue(folio);
1679 int ret;
1680
1681 wait->folio = folio;
1682 wait->bit_nr = PG_locked;
1683
1684 spin_lock_irq(&q->lock);
1685 __add_wait_queue_entry_tail(q, &wait->wait);
1686 folio_set_waiters(folio);
1687 ret = !folio_trylock(folio);
1688 /*
1689 * If we were successful now, we know we're still on the
1690 * waitqueue as we're still under the lock. This means it's
1691 * safe to remove and return success, we know the callback
1692 * isn't going to trigger.
1693 */
1694 if (!ret)
1695 __remove_wait_queue(q, &wait->wait);
1696 else
1697 ret = -EIOCBQUEUED;
1698 spin_unlock_irq(&q->lock);
1699 return ret;
1700 }
1701
1702 /*
1703 * Return values:
1704 * 0 - folio is locked.
1705 * non-zero - folio is not locked.
1706 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1707 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1708 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1709 *
1710 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1711 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1712 */
__folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1713 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1714 {
1715 unsigned int flags = vmf->flags;
1716
1717 if (fault_flag_allow_retry_first(flags)) {
1718 /*
1719 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1720 * released even though returning VM_FAULT_RETRY.
1721 */
1722 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1723 return VM_FAULT_RETRY;
1724
1725 release_fault_lock(vmf);
1726 if (flags & FAULT_FLAG_KILLABLE)
1727 folio_wait_locked_killable(folio);
1728 else
1729 folio_wait_locked(folio);
1730 return VM_FAULT_RETRY;
1731 }
1732 if (flags & FAULT_FLAG_KILLABLE) {
1733 bool ret;
1734
1735 ret = __folio_lock_killable(folio);
1736 if (ret) {
1737 release_fault_lock(vmf);
1738 return VM_FAULT_RETRY;
1739 }
1740 } else {
1741 __folio_lock(folio);
1742 }
1743
1744 return 0;
1745 }
1746
1747 /**
1748 * page_cache_next_miss() - Find the next gap in the page cache.
1749 * @mapping: Mapping.
1750 * @index: Index.
1751 * @max_scan: Maximum range to search.
1752 *
1753 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1754 * gap with the lowest index.
1755 *
1756 * This function may be called under the rcu_read_lock. However, this will
1757 * not atomically search a snapshot of the cache at a single point in time.
1758 * For example, if a gap is created at index 5, then subsequently a gap is
1759 * created at index 10, page_cache_next_miss covering both indices may
1760 * return 10 if called under the rcu_read_lock.
1761 *
1762 * Return: The index of the gap if found, otherwise an index outside the
1763 * range specified (in which case 'return - index >= max_scan' will be true).
1764 * In the rare case of index wrap-around, 0 will be returned.
1765 */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1766 pgoff_t page_cache_next_miss(struct address_space *mapping,
1767 pgoff_t index, unsigned long max_scan)
1768 {
1769 XA_STATE(xas, &mapping->i_pages, index);
1770
1771 while (max_scan--) {
1772 void *entry = xas_next(&xas);
1773 if (!entry || xa_is_value(entry))
1774 return xas.xa_index;
1775 if (xas.xa_index == 0)
1776 return 0;
1777 }
1778
1779 return index + max_scan;
1780 }
1781 EXPORT_SYMBOL(page_cache_next_miss);
1782
1783 /**
1784 * page_cache_prev_miss() - Find the previous gap in the page cache.
1785 * @mapping: Mapping.
1786 * @index: Index.
1787 * @max_scan: Maximum range to search.
1788 *
1789 * Search the range [max(index - max_scan + 1, 0), index] for the
1790 * gap with the highest index.
1791 *
1792 * This function may be called under the rcu_read_lock. However, this will
1793 * not atomically search a snapshot of the cache at a single point in time.
1794 * For example, if a gap is created at index 10, then subsequently a gap is
1795 * created at index 5, page_cache_prev_miss() covering both indices may
1796 * return 5 if called under the rcu_read_lock.
1797 *
1798 * Return: The index of the gap if found, otherwise an index outside the
1799 * range specified (in which case 'index - return >= max_scan' will be true).
1800 * In the rare case of wrap-around, ULONG_MAX will be returned.
1801 */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1802 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1803 pgoff_t index, unsigned long max_scan)
1804 {
1805 XA_STATE(xas, &mapping->i_pages, index);
1806
1807 while (max_scan--) {
1808 void *entry = xas_prev(&xas);
1809 if (!entry || xa_is_value(entry))
1810 break;
1811 if (xas.xa_index == ULONG_MAX)
1812 break;
1813 }
1814
1815 return xas.xa_index;
1816 }
1817 EXPORT_SYMBOL(page_cache_prev_miss);
1818
1819 /*
1820 * Lockless page cache protocol:
1821 * On the lookup side:
1822 * 1. Load the folio from i_pages
1823 * 2. Increment the refcount if it's not zero
1824 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1825 *
1826 * On the removal side:
1827 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1828 * B. Remove the page from i_pages
1829 * C. Return the page to the page allocator
1830 *
1831 * This means that any page may have its reference count temporarily
1832 * increased by a speculative page cache (or GUP-fast) lookup as it can
1833 * be allocated by another user before the RCU grace period expires.
1834 * Because the refcount temporarily acquired here may end up being the
1835 * last refcount on the page, any page allocation must be freeable by
1836 * folio_put().
1837 */
1838
1839 /*
1840 * filemap_get_entry - Get a page cache entry.
1841 * @mapping: the address_space to search
1842 * @index: The page cache index.
1843 *
1844 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1845 * it is returned with an increased refcount. If it is a shadow entry
1846 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1847 * it is returned without further action.
1848 *
1849 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1850 */
filemap_get_entry(struct address_space * mapping,pgoff_t index)1851 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1852 {
1853 XA_STATE(xas, &mapping->i_pages, index);
1854 struct folio *folio;
1855
1856 rcu_read_lock();
1857 repeat:
1858 xas_reset(&xas);
1859 folio = xas_load(&xas);
1860 if (xas_retry(&xas, folio))
1861 goto repeat;
1862 /*
1863 * A shadow entry of a recently evicted page, or a swap entry from
1864 * shmem/tmpfs. Return it without attempting to raise page count.
1865 */
1866 if (!folio || xa_is_value(folio))
1867 goto out;
1868
1869 if (!folio_try_get(folio))
1870 goto repeat;
1871
1872 if (unlikely(folio != xas_reload(&xas))) {
1873 folio_put(folio);
1874 goto repeat;
1875 }
1876 out:
1877 rcu_read_unlock();
1878
1879 return folio;
1880 }
1881
1882 /**
1883 * __filemap_get_folio - Find and get a reference to a folio.
1884 * @mapping: The address_space to search.
1885 * @index: The page index.
1886 * @fgp_flags: %FGP flags modify how the folio is returned.
1887 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1888 *
1889 * Looks up the page cache entry at @mapping & @index.
1890 *
1891 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1892 * if the %GFP flags specified for %FGP_CREAT are atomic.
1893 *
1894 * If this function returns a folio, it is returned with an increased refcount.
1895 *
1896 * Return: The found folio or an ERR_PTR() otherwise.
1897 */
__filemap_get_folio(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp)1898 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1899 fgf_t fgp_flags, gfp_t gfp)
1900 {
1901 struct folio *folio;
1902
1903 repeat:
1904 folio = filemap_get_entry(mapping, index);
1905 if (xa_is_value(folio))
1906 folio = NULL;
1907 if (!folio)
1908 goto no_page;
1909
1910 if (fgp_flags & FGP_LOCK) {
1911 if (fgp_flags & FGP_NOWAIT) {
1912 if (!folio_trylock(folio)) {
1913 folio_put(folio);
1914 return ERR_PTR(-EAGAIN);
1915 }
1916 } else {
1917 folio_lock(folio);
1918 }
1919
1920 /* Has the page been truncated? */
1921 if (unlikely(folio->mapping != mapping)) {
1922 folio_unlock(folio);
1923 folio_put(folio);
1924 goto repeat;
1925 }
1926 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1927 }
1928
1929 if (fgp_flags & FGP_ACCESSED)
1930 folio_mark_accessed(folio);
1931 else if (fgp_flags & FGP_WRITE) {
1932 /* Clear idle flag for buffer write */
1933 if (folio_test_idle(folio))
1934 folio_clear_idle(folio);
1935 }
1936
1937 if (fgp_flags & FGP_STABLE)
1938 folio_wait_stable(folio);
1939 no_page:
1940 if (!folio && (fgp_flags & FGP_CREAT)) {
1941 unsigned int min_order = mapping_min_folio_order(mapping);
1942 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1943 int err;
1944 index = mapping_align_index(mapping, index);
1945
1946 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1947 gfp |= __GFP_WRITE;
1948 if (fgp_flags & FGP_NOFS)
1949 gfp &= ~__GFP_FS;
1950 if (fgp_flags & FGP_NOWAIT) {
1951 gfp &= ~GFP_KERNEL;
1952 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1953 }
1954 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1955 fgp_flags |= FGP_LOCK;
1956
1957 if (order > mapping_max_folio_order(mapping))
1958 order = mapping_max_folio_order(mapping);
1959 /* If we're not aligned, allocate a smaller folio */
1960 if (index & ((1UL << order) - 1))
1961 order = __ffs(index);
1962
1963 do {
1964 gfp_t alloc_gfp = gfp;
1965
1966 err = -ENOMEM;
1967 if (order > min_order)
1968 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1969 folio = filemap_alloc_folio(alloc_gfp, order);
1970 if (!folio)
1971 continue;
1972
1973 /* Init accessed so avoid atomic mark_page_accessed later */
1974 if (fgp_flags & FGP_ACCESSED)
1975 __folio_set_referenced(folio);
1976 if (fgp_flags & FGP_DONTCACHE)
1977 __folio_set_dropbehind(folio);
1978
1979 err = filemap_add_folio(mapping, folio, index, gfp);
1980 if (!err)
1981 break;
1982 folio_put(folio);
1983 folio = NULL;
1984 } while (order-- > min_order);
1985
1986 if (err == -EEXIST)
1987 goto repeat;
1988 if (err) {
1989 /*
1990 * When NOWAIT I/O fails to allocate folios this could
1991 * be due to a nonblocking memory allocation and not
1992 * because the system actually is out of memory.
1993 * Return -EAGAIN so that there caller retries in a
1994 * blocking fashion instead of propagating -ENOMEM
1995 * to the application.
1996 */
1997 if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM)
1998 err = -EAGAIN;
1999 return ERR_PTR(err);
2000 }
2001 /*
2002 * filemap_add_folio locks the page, and for mmap
2003 * we expect an unlocked page.
2004 */
2005 if (folio && (fgp_flags & FGP_FOR_MMAP))
2006 folio_unlock(folio);
2007 }
2008
2009 if (!folio)
2010 return ERR_PTR(-ENOENT);
2011 /* not an uncached lookup, clear uncached if set */
2012 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE))
2013 folio_clear_dropbehind(folio);
2014 return folio;
2015 }
2016 EXPORT_SYMBOL(__filemap_get_folio);
2017
find_get_entry(struct xa_state * xas,pgoff_t max,xa_mark_t mark)2018 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2019 xa_mark_t mark)
2020 {
2021 struct folio *folio;
2022
2023 retry:
2024 if (mark == XA_PRESENT)
2025 folio = xas_find(xas, max);
2026 else
2027 folio = xas_find_marked(xas, max, mark);
2028
2029 if (xas_retry(xas, folio))
2030 goto retry;
2031 /*
2032 * A shadow entry of a recently evicted page, a swap
2033 * entry from shmem/tmpfs or a DAX entry. Return it
2034 * without attempting to raise page count.
2035 */
2036 if (!folio || xa_is_value(folio))
2037 return folio;
2038
2039 if (!folio_try_get(folio))
2040 goto reset;
2041
2042 if (unlikely(folio != xas_reload(xas))) {
2043 folio_put(folio);
2044 goto reset;
2045 }
2046
2047 return folio;
2048 reset:
2049 xas_reset(xas);
2050 goto retry;
2051 }
2052
2053 /**
2054 * find_get_entries - gang pagecache lookup
2055 * @mapping: The address_space to search
2056 * @start: The starting page cache index
2057 * @end: The final page index (inclusive).
2058 * @fbatch: Where the resulting entries are placed.
2059 * @indices: The cache indices corresponding to the entries in @entries
2060 *
2061 * find_get_entries() will search for and return a batch of entries in
2062 * the mapping. The entries are placed in @fbatch. find_get_entries()
2063 * takes a reference on any actual folios it returns.
2064 *
2065 * The entries have ascending indexes. The indices may not be consecutive
2066 * due to not-present entries or large folios.
2067 *
2068 * Any shadow entries of evicted folios, or swap entries from
2069 * shmem/tmpfs, are included in the returned array.
2070 *
2071 * Return: The number of entries which were found.
2072 */
find_get_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2073 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2074 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2075 {
2076 XA_STATE(xas, &mapping->i_pages, *start);
2077 struct folio *folio;
2078
2079 rcu_read_lock();
2080 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2081 indices[fbatch->nr] = xas.xa_index;
2082 if (!folio_batch_add(fbatch, folio))
2083 break;
2084 }
2085
2086 if (folio_batch_count(fbatch)) {
2087 unsigned long nr;
2088 int idx = folio_batch_count(fbatch) - 1;
2089
2090 folio = fbatch->folios[idx];
2091 if (!xa_is_value(folio))
2092 nr = folio_nr_pages(folio);
2093 else
2094 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2095 *start = round_down(indices[idx] + nr, nr);
2096 }
2097 rcu_read_unlock();
2098
2099 return folio_batch_count(fbatch);
2100 }
2101
2102 /**
2103 * find_lock_entries - Find a batch of pagecache entries.
2104 * @mapping: The address_space to search.
2105 * @start: The starting page cache index.
2106 * @end: The final page index (inclusive).
2107 * @fbatch: Where the resulting entries are placed.
2108 * @indices: The cache indices of the entries in @fbatch.
2109 *
2110 * find_lock_entries() will return a batch of entries from @mapping.
2111 * Swap, shadow and DAX entries are included. Folios are returned
2112 * locked and with an incremented refcount. Folios which are locked
2113 * by somebody else or under writeback are skipped. Folios which are
2114 * partially outside the range are not returned.
2115 *
2116 * The entries have ascending indexes. The indices may not be consecutive
2117 * due to not-present entries, large folios, folios which could not be
2118 * locked or folios under writeback.
2119 *
2120 * Return: The number of entries which were found.
2121 */
find_lock_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2122 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2123 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2124 {
2125 XA_STATE(xas, &mapping->i_pages, *start);
2126 struct folio *folio;
2127
2128 rcu_read_lock();
2129 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2130 unsigned long base;
2131 unsigned long nr;
2132
2133 if (!xa_is_value(folio)) {
2134 nr = folio_nr_pages(folio);
2135 base = folio->index;
2136 /* Omit large folio which begins before the start */
2137 if (base < *start)
2138 goto put;
2139 /* Omit large folio which extends beyond the end */
2140 if (base + nr - 1 > end)
2141 goto put;
2142 if (!folio_trylock(folio))
2143 goto put;
2144 if (folio->mapping != mapping ||
2145 folio_test_writeback(folio))
2146 goto unlock;
2147 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2148 folio);
2149 } else {
2150 nr = 1 << xas_get_order(&xas);
2151 base = xas.xa_index & ~(nr - 1);
2152 /* Omit order>0 value which begins before the start */
2153 if (base < *start)
2154 continue;
2155 /* Omit order>0 value which extends beyond the end */
2156 if (base + nr - 1 > end)
2157 break;
2158 }
2159
2160 /* Update start now so that last update is correct on return */
2161 *start = base + nr;
2162 indices[fbatch->nr] = xas.xa_index;
2163 if (!folio_batch_add(fbatch, folio))
2164 break;
2165 continue;
2166 unlock:
2167 folio_unlock(folio);
2168 put:
2169 folio_put(folio);
2170 }
2171 rcu_read_unlock();
2172
2173 return folio_batch_count(fbatch);
2174 }
2175
2176 /**
2177 * filemap_get_folios - Get a batch of folios
2178 * @mapping: The address_space to search
2179 * @start: The starting page index
2180 * @end: The final page index (inclusive)
2181 * @fbatch: The batch to fill.
2182 *
2183 * Search for and return a batch of folios in the mapping starting at
2184 * index @start and up to index @end (inclusive). The folios are returned
2185 * in @fbatch with an elevated reference count.
2186 *
2187 * Return: The number of folios which were found.
2188 * We also update @start to index the next folio for the traversal.
2189 */
filemap_get_folios(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2190 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2191 pgoff_t end, struct folio_batch *fbatch)
2192 {
2193 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2194 }
2195 EXPORT_SYMBOL(filemap_get_folios);
2196
2197 /**
2198 * filemap_get_folios_contig - Get a batch of contiguous folios
2199 * @mapping: The address_space to search
2200 * @start: The starting page index
2201 * @end: The final page index (inclusive)
2202 * @fbatch: The batch to fill
2203 *
2204 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2205 * except the returned folios are guaranteed to be contiguous. This may
2206 * not return all contiguous folios if the batch gets filled up.
2207 *
2208 * Return: The number of folios found.
2209 * Also update @start to be positioned for traversal of the next folio.
2210 */
2211
filemap_get_folios_contig(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2212 unsigned filemap_get_folios_contig(struct address_space *mapping,
2213 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2214 {
2215 XA_STATE(xas, &mapping->i_pages, *start);
2216 unsigned long nr;
2217 struct folio *folio;
2218
2219 rcu_read_lock();
2220
2221 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2222 folio = xas_next(&xas)) {
2223 if (xas_retry(&xas, folio))
2224 continue;
2225 /*
2226 * If the entry has been swapped out, we can stop looking.
2227 * No current caller is looking for DAX entries.
2228 */
2229 if (xa_is_value(folio))
2230 goto update_start;
2231
2232 /* If we landed in the middle of a THP, continue at its end. */
2233 if (xa_is_sibling(folio))
2234 goto update_start;
2235
2236 if (!folio_try_get(folio))
2237 goto retry;
2238
2239 if (unlikely(folio != xas_reload(&xas)))
2240 goto put_folio;
2241
2242 if (!folio_batch_add(fbatch, folio)) {
2243 nr = folio_nr_pages(folio);
2244 *start = folio->index + nr;
2245 goto out;
2246 }
2247 continue;
2248 put_folio:
2249 folio_put(folio);
2250
2251 retry:
2252 xas_reset(&xas);
2253 }
2254
2255 update_start:
2256 nr = folio_batch_count(fbatch);
2257
2258 if (nr) {
2259 folio = fbatch->folios[nr - 1];
2260 *start = folio_next_index(folio);
2261 }
2262 out:
2263 rcu_read_unlock();
2264 return folio_batch_count(fbatch);
2265 }
2266 EXPORT_SYMBOL(filemap_get_folios_contig);
2267
2268 /**
2269 * filemap_get_folios_tag - Get a batch of folios matching @tag
2270 * @mapping: The address_space to search
2271 * @start: The starting page index
2272 * @end: The final page index (inclusive)
2273 * @tag: The tag index
2274 * @fbatch: The batch to fill
2275 *
2276 * The first folio may start before @start; if it does, it will contain
2277 * @start. The final folio may extend beyond @end; if it does, it will
2278 * contain @end. The folios have ascending indices. There may be gaps
2279 * between the folios if there are indices which have no folio in the
2280 * page cache. If folios are added to or removed from the page cache
2281 * while this is running, they may or may not be found by this call.
2282 * Only returns folios that are tagged with @tag.
2283 *
2284 * Return: The number of folios found.
2285 * Also update @start to index the next folio for traversal.
2286 */
filemap_get_folios_tag(struct address_space * mapping,pgoff_t * start,pgoff_t end,xa_mark_t tag,struct folio_batch * fbatch)2287 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2288 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2289 {
2290 XA_STATE(xas, &mapping->i_pages, *start);
2291 struct folio *folio;
2292
2293 rcu_read_lock();
2294 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2295 /*
2296 * Shadow entries should never be tagged, but this iteration
2297 * is lockless so there is a window for page reclaim to evict
2298 * a page we saw tagged. Skip over it.
2299 */
2300 if (xa_is_value(folio))
2301 continue;
2302 if (!folio_batch_add(fbatch, folio)) {
2303 unsigned long nr = folio_nr_pages(folio);
2304 *start = folio->index + nr;
2305 goto out;
2306 }
2307 }
2308 /*
2309 * We come here when there is no page beyond @end. We take care to not
2310 * overflow the index @start as it confuses some of the callers. This
2311 * breaks the iteration when there is a page at index -1 but that is
2312 * already broke anyway.
2313 */
2314 if (end == (pgoff_t)-1)
2315 *start = (pgoff_t)-1;
2316 else
2317 *start = end + 1;
2318 out:
2319 rcu_read_unlock();
2320
2321 return folio_batch_count(fbatch);
2322 }
2323 EXPORT_SYMBOL(filemap_get_folios_tag);
2324
2325 /*
2326 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2327 * a _large_ part of the i/o request. Imagine the worst scenario:
2328 *
2329 * ---R__________________________________________B__________
2330 * ^ reading here ^ bad block(assume 4k)
2331 *
2332 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2333 * => failing the whole request => read(R) => read(R+1) =>
2334 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2335 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2336 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2337 *
2338 * It is going insane. Fix it by quickly scaling down the readahead size.
2339 */
shrink_readahead_size_eio(struct file_ra_state * ra)2340 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2341 {
2342 ra->ra_pages /= 4;
2343 }
2344
2345 /*
2346 * filemap_get_read_batch - Get a batch of folios for read
2347 *
2348 * Get a batch of folios which represent a contiguous range of bytes in
2349 * the file. No exceptional entries will be returned. If @index is in
2350 * the middle of a folio, the entire folio will be returned. The last
2351 * folio in the batch may have the readahead flag set or the uptodate flag
2352 * clear so that the caller can take the appropriate action.
2353 */
filemap_get_read_batch(struct address_space * mapping,pgoff_t index,pgoff_t max,struct folio_batch * fbatch)2354 static void filemap_get_read_batch(struct address_space *mapping,
2355 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2356 {
2357 XA_STATE(xas, &mapping->i_pages, index);
2358 struct folio *folio;
2359
2360 rcu_read_lock();
2361 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2362 if (xas_retry(&xas, folio))
2363 continue;
2364 if (xas.xa_index > max || xa_is_value(folio))
2365 break;
2366 if (xa_is_sibling(folio))
2367 break;
2368 if (!folio_try_get(folio))
2369 goto retry;
2370
2371 if (unlikely(folio != xas_reload(&xas)))
2372 goto put_folio;
2373
2374 if (!folio_batch_add(fbatch, folio))
2375 break;
2376 if (!folio_test_uptodate(folio))
2377 break;
2378 if (folio_test_readahead(folio))
2379 break;
2380 xas_advance(&xas, folio_next_index(folio) - 1);
2381 continue;
2382 put_folio:
2383 folio_put(folio);
2384 retry:
2385 xas_reset(&xas);
2386 }
2387 rcu_read_unlock();
2388 }
2389
filemap_read_folio(struct file * file,filler_t filler,struct folio * folio)2390 static int filemap_read_folio(struct file *file, filler_t filler,
2391 struct folio *folio)
2392 {
2393 bool workingset = folio_test_workingset(folio);
2394 unsigned long pflags;
2395 int error;
2396
2397 /* Start the actual read. The read will unlock the page. */
2398 if (unlikely(workingset))
2399 psi_memstall_enter(&pflags);
2400 error = filler(file, folio);
2401 if (unlikely(workingset))
2402 psi_memstall_leave(&pflags);
2403 if (error)
2404 return error;
2405
2406 error = folio_wait_locked_killable(folio);
2407 if (error)
2408 return error;
2409 if (folio_test_uptodate(folio))
2410 return 0;
2411 if (file)
2412 shrink_readahead_size_eio(&file->f_ra);
2413 return -EIO;
2414 }
2415
filemap_range_uptodate(struct address_space * mapping,loff_t pos,size_t count,struct folio * folio,bool need_uptodate)2416 static bool filemap_range_uptodate(struct address_space *mapping,
2417 loff_t pos, size_t count, struct folio *folio,
2418 bool need_uptodate)
2419 {
2420 if (folio_test_uptodate(folio))
2421 return true;
2422 /* pipes can't handle partially uptodate pages */
2423 if (need_uptodate)
2424 return false;
2425 if (!mapping->a_ops->is_partially_uptodate)
2426 return false;
2427 if (mapping->host->i_blkbits >= folio_shift(folio))
2428 return false;
2429
2430 if (folio_pos(folio) > pos) {
2431 count -= folio_pos(folio) - pos;
2432 pos = 0;
2433 } else {
2434 pos -= folio_pos(folio);
2435 }
2436
2437 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2438 }
2439
filemap_update_page(struct kiocb * iocb,struct address_space * mapping,size_t count,struct folio * folio,bool need_uptodate)2440 static int filemap_update_page(struct kiocb *iocb,
2441 struct address_space *mapping, size_t count,
2442 struct folio *folio, bool need_uptodate)
2443 {
2444 int error;
2445
2446 if (iocb->ki_flags & IOCB_NOWAIT) {
2447 if (!filemap_invalidate_trylock_shared(mapping))
2448 return -EAGAIN;
2449 } else {
2450 filemap_invalidate_lock_shared(mapping);
2451 }
2452
2453 if (!folio_trylock(folio)) {
2454 error = -EAGAIN;
2455 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2456 goto unlock_mapping;
2457 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2458 filemap_invalidate_unlock_shared(mapping);
2459 /*
2460 * This is where we usually end up waiting for a
2461 * previously submitted readahead to finish.
2462 */
2463 folio_put_wait_locked(folio, TASK_KILLABLE);
2464 return AOP_TRUNCATED_PAGE;
2465 }
2466 error = __folio_lock_async(folio, iocb->ki_waitq);
2467 if (error)
2468 goto unlock_mapping;
2469 }
2470
2471 error = AOP_TRUNCATED_PAGE;
2472 if (!folio->mapping)
2473 goto unlock;
2474
2475 error = 0;
2476 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2477 need_uptodate))
2478 goto unlock;
2479
2480 error = -EAGAIN;
2481 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2482 goto unlock;
2483
2484 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2485 folio);
2486 goto unlock_mapping;
2487 unlock:
2488 folio_unlock(folio);
2489 unlock_mapping:
2490 filemap_invalidate_unlock_shared(mapping);
2491 if (error == AOP_TRUNCATED_PAGE)
2492 folio_put(folio);
2493 return error;
2494 }
2495
filemap_create_folio(struct kiocb * iocb,struct folio_batch * fbatch)2496 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch)
2497 {
2498 struct address_space *mapping = iocb->ki_filp->f_mapping;
2499 struct folio *folio;
2500 int error;
2501 unsigned int min_order = mapping_min_folio_order(mapping);
2502 pgoff_t index;
2503
2504 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2505 return -EAGAIN;
2506
2507 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2508 if (!folio)
2509 return -ENOMEM;
2510 if (iocb->ki_flags & IOCB_DONTCACHE)
2511 __folio_set_dropbehind(folio);
2512
2513 /*
2514 * Protect against truncate / hole punch. Grabbing invalidate_lock
2515 * here assures we cannot instantiate and bring uptodate new
2516 * pagecache folios after evicting page cache during truncate
2517 * and before actually freeing blocks. Note that we could
2518 * release invalidate_lock after inserting the folio into
2519 * the page cache as the locked folio would then be enough to
2520 * synchronize with hole punching. But there are code paths
2521 * such as filemap_update_page() filling in partially uptodate
2522 * pages or ->readahead() that need to hold invalidate_lock
2523 * while mapping blocks for IO so let's hold the lock here as
2524 * well to keep locking rules simple.
2525 */
2526 filemap_invalidate_lock_shared(mapping);
2527 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order;
2528 error = filemap_add_folio(mapping, folio, index,
2529 mapping_gfp_constraint(mapping, GFP_KERNEL));
2530 if (error == -EEXIST)
2531 error = AOP_TRUNCATED_PAGE;
2532 if (error)
2533 goto error;
2534
2535 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2536 folio);
2537 if (error)
2538 goto error;
2539
2540 filemap_invalidate_unlock_shared(mapping);
2541 folio_batch_add(fbatch, folio);
2542 return 0;
2543 error:
2544 filemap_invalidate_unlock_shared(mapping);
2545 folio_put(folio);
2546 return error;
2547 }
2548
filemap_readahead(struct kiocb * iocb,struct file * file,struct address_space * mapping,struct folio * folio,pgoff_t last_index)2549 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2550 struct address_space *mapping, struct folio *folio,
2551 pgoff_t last_index)
2552 {
2553 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2554
2555 if (iocb->ki_flags & IOCB_NOIO)
2556 return -EAGAIN;
2557 if (iocb->ki_flags & IOCB_DONTCACHE)
2558 ractl.dropbehind = 1;
2559 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2560 return 0;
2561 }
2562
filemap_get_pages(struct kiocb * iocb,size_t count,struct folio_batch * fbatch,bool need_uptodate)2563 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2564 struct folio_batch *fbatch, bool need_uptodate)
2565 {
2566 struct file *filp = iocb->ki_filp;
2567 struct address_space *mapping = filp->f_mapping;
2568 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2569 pgoff_t last_index;
2570 struct folio *folio;
2571 unsigned int flags;
2572 int err = 0;
2573
2574 /* "last_index" is the index of the page beyond the end of the read */
2575 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2576 retry:
2577 if (fatal_signal_pending(current))
2578 return -EINTR;
2579
2580 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2581 if (!folio_batch_count(fbatch)) {
2582 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index);
2583
2584 if (iocb->ki_flags & IOCB_NOIO)
2585 return -EAGAIN;
2586 if (iocb->ki_flags & IOCB_NOWAIT)
2587 flags = memalloc_noio_save();
2588 if (iocb->ki_flags & IOCB_DONTCACHE)
2589 ractl.dropbehind = 1;
2590 page_cache_sync_ra(&ractl, last_index - index);
2591 if (iocb->ki_flags & IOCB_NOWAIT)
2592 memalloc_noio_restore(flags);
2593 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2594 }
2595 if (!folio_batch_count(fbatch)) {
2596 err = filemap_create_folio(iocb, fbatch);
2597 if (err == AOP_TRUNCATED_PAGE)
2598 goto retry;
2599 return err;
2600 }
2601
2602 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2603 if (folio_test_readahead(folio)) {
2604 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2605 if (err)
2606 goto err;
2607 }
2608 if (!folio_test_uptodate(folio)) {
2609 if ((iocb->ki_flags & IOCB_WAITQ) &&
2610 folio_batch_count(fbatch) > 1)
2611 iocb->ki_flags |= IOCB_NOWAIT;
2612 err = filemap_update_page(iocb, mapping, count, folio,
2613 need_uptodate);
2614 if (err)
2615 goto err;
2616 }
2617
2618 trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2619 return 0;
2620 err:
2621 if (err < 0)
2622 folio_put(folio);
2623 if (likely(--fbatch->nr))
2624 return 0;
2625 if (err == AOP_TRUNCATED_PAGE)
2626 goto retry;
2627 return err;
2628 }
2629
pos_same_folio(loff_t pos1,loff_t pos2,struct folio * folio)2630 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2631 {
2632 unsigned int shift = folio_shift(folio);
2633
2634 return (pos1 >> shift == pos2 >> shift);
2635 }
2636
filemap_end_dropbehind_read(struct address_space * mapping,struct folio * folio)2637 static void filemap_end_dropbehind_read(struct address_space *mapping,
2638 struct folio *folio)
2639 {
2640 if (!folio_test_dropbehind(folio))
2641 return;
2642 if (folio_test_writeback(folio) || folio_test_dirty(folio))
2643 return;
2644 if (folio_trylock(folio)) {
2645 if (folio_test_clear_dropbehind(folio))
2646 folio_unmap_invalidate(mapping, folio, 0);
2647 folio_unlock(folio);
2648 }
2649 }
2650
2651 /**
2652 * filemap_read - Read data from the page cache.
2653 * @iocb: The iocb to read.
2654 * @iter: Destination for the data.
2655 * @already_read: Number of bytes already read by the caller.
2656 *
2657 * Copies data from the page cache. If the data is not currently present,
2658 * uses the readahead and read_folio address_space operations to fetch it.
2659 *
2660 * Return: Total number of bytes copied, including those already read by
2661 * the caller. If an error happens before any bytes are copied, returns
2662 * a negative error number.
2663 */
filemap_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t already_read)2664 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2665 ssize_t already_read)
2666 {
2667 struct file *filp = iocb->ki_filp;
2668 struct file_ra_state *ra = &filp->f_ra;
2669 struct address_space *mapping = filp->f_mapping;
2670 struct inode *inode = mapping->host;
2671 struct folio_batch fbatch;
2672 int i, error = 0;
2673 bool writably_mapped;
2674 loff_t isize, end_offset;
2675 loff_t last_pos = ra->prev_pos;
2676
2677 if (unlikely(iocb->ki_pos < 0))
2678 return -EINVAL;
2679 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2680 return 0;
2681 if (unlikely(!iov_iter_count(iter)))
2682 return 0;
2683
2684 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2685 folio_batch_init(&fbatch);
2686
2687 do {
2688 cond_resched();
2689
2690 /*
2691 * If we've already successfully copied some data, then we
2692 * can no longer safely return -EIOCBQUEUED. Hence mark
2693 * an async read NOWAIT at that point.
2694 */
2695 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2696 iocb->ki_flags |= IOCB_NOWAIT;
2697
2698 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2699 break;
2700
2701 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2702 if (error < 0)
2703 break;
2704
2705 /*
2706 * i_size must be checked after we know the pages are Uptodate.
2707 *
2708 * Checking i_size after the check allows us to calculate
2709 * the correct value for "nr", which means the zero-filled
2710 * part of the page is not copied back to userspace (unless
2711 * another truncate extends the file - this is desired though).
2712 */
2713 isize = i_size_read(inode);
2714 if (unlikely(iocb->ki_pos >= isize))
2715 goto put_folios;
2716 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2717
2718 /*
2719 * Once we start copying data, we don't want to be touching any
2720 * cachelines that might be contended:
2721 */
2722 writably_mapped = mapping_writably_mapped(mapping);
2723
2724 /*
2725 * When a read accesses the same folio several times, only
2726 * mark it as accessed the first time.
2727 */
2728 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2729 fbatch.folios[0]))
2730 folio_mark_accessed(fbatch.folios[0]);
2731
2732 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2733 struct folio *folio = fbatch.folios[i];
2734 size_t fsize = folio_size(folio);
2735 size_t offset = iocb->ki_pos & (fsize - 1);
2736 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2737 fsize - offset);
2738 size_t copied;
2739
2740 if (end_offset < folio_pos(folio))
2741 break;
2742 if (i > 0)
2743 folio_mark_accessed(folio);
2744 /*
2745 * If users can be writing to this folio using arbitrary
2746 * virtual addresses, take care of potential aliasing
2747 * before reading the folio on the kernel side.
2748 */
2749 if (writably_mapped)
2750 flush_dcache_folio(folio);
2751
2752 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2753
2754 already_read += copied;
2755 iocb->ki_pos += copied;
2756 last_pos = iocb->ki_pos;
2757
2758 if (copied < bytes) {
2759 error = -EFAULT;
2760 break;
2761 }
2762 }
2763 put_folios:
2764 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2765 struct folio *folio = fbatch.folios[i];
2766
2767 filemap_end_dropbehind_read(mapping, folio);
2768 folio_put(folio);
2769 }
2770 folio_batch_init(&fbatch);
2771 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2772
2773 file_accessed(filp);
2774 ra->prev_pos = last_pos;
2775 return already_read ? already_read : error;
2776 }
2777 EXPORT_SYMBOL_GPL(filemap_read);
2778
kiocb_write_and_wait(struct kiocb * iocb,size_t count)2779 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2780 {
2781 struct address_space *mapping = iocb->ki_filp->f_mapping;
2782 loff_t pos = iocb->ki_pos;
2783 loff_t end = pos + count - 1;
2784
2785 if (iocb->ki_flags & IOCB_NOWAIT) {
2786 if (filemap_range_needs_writeback(mapping, pos, end))
2787 return -EAGAIN;
2788 return 0;
2789 }
2790
2791 return filemap_write_and_wait_range(mapping, pos, end);
2792 }
2793 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2794
filemap_invalidate_pages(struct address_space * mapping,loff_t pos,loff_t end,bool nowait)2795 int filemap_invalidate_pages(struct address_space *mapping,
2796 loff_t pos, loff_t end, bool nowait)
2797 {
2798 int ret;
2799
2800 if (nowait) {
2801 /* we could block if there are any pages in the range */
2802 if (filemap_range_has_page(mapping, pos, end))
2803 return -EAGAIN;
2804 } else {
2805 ret = filemap_write_and_wait_range(mapping, pos, end);
2806 if (ret)
2807 return ret;
2808 }
2809
2810 /*
2811 * After a write we want buffered reads to be sure to go to disk to get
2812 * the new data. We invalidate clean cached page from the region we're
2813 * about to write. We do this *before* the write so that we can return
2814 * without clobbering -EIOCBQUEUED from ->direct_IO().
2815 */
2816 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2817 end >> PAGE_SHIFT);
2818 }
2819
kiocb_invalidate_pages(struct kiocb * iocb,size_t count)2820 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2821 {
2822 struct address_space *mapping = iocb->ki_filp->f_mapping;
2823
2824 return filemap_invalidate_pages(mapping, iocb->ki_pos,
2825 iocb->ki_pos + count - 1,
2826 iocb->ki_flags & IOCB_NOWAIT);
2827 }
2828 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2829
2830 /**
2831 * generic_file_read_iter - generic filesystem read routine
2832 * @iocb: kernel I/O control block
2833 * @iter: destination for the data read
2834 *
2835 * This is the "read_iter()" routine for all filesystems
2836 * that can use the page cache directly.
2837 *
2838 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2839 * be returned when no data can be read without waiting for I/O requests
2840 * to complete; it doesn't prevent readahead.
2841 *
2842 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2843 * requests shall be made for the read or for readahead. When no data
2844 * can be read, -EAGAIN shall be returned. When readahead would be
2845 * triggered, a partial, possibly empty read shall be returned.
2846 *
2847 * Return:
2848 * * number of bytes copied, even for partial reads
2849 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2850 */
2851 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2852 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2853 {
2854 size_t count = iov_iter_count(iter);
2855 ssize_t retval = 0;
2856
2857 if (!count)
2858 return 0; /* skip atime */
2859
2860 if (iocb->ki_flags & IOCB_DIRECT) {
2861 struct file *file = iocb->ki_filp;
2862 struct address_space *mapping = file->f_mapping;
2863 struct inode *inode = mapping->host;
2864
2865 retval = kiocb_write_and_wait(iocb, count);
2866 if (retval < 0)
2867 return retval;
2868 file_accessed(file);
2869
2870 retval = mapping->a_ops->direct_IO(iocb, iter);
2871 if (retval >= 0) {
2872 iocb->ki_pos += retval;
2873 count -= retval;
2874 }
2875 if (retval != -EIOCBQUEUED)
2876 iov_iter_revert(iter, count - iov_iter_count(iter));
2877
2878 /*
2879 * Btrfs can have a short DIO read if we encounter
2880 * compressed extents, so if there was an error, or if
2881 * we've already read everything we wanted to, or if
2882 * there was a short read because we hit EOF, go ahead
2883 * and return. Otherwise fallthrough to buffered io for
2884 * the rest of the read. Buffered reads will not work for
2885 * DAX files, so don't bother trying.
2886 */
2887 if (retval < 0 || !count || IS_DAX(inode))
2888 return retval;
2889 if (iocb->ki_pos >= i_size_read(inode))
2890 return retval;
2891 }
2892
2893 return filemap_read(iocb, iter, retval);
2894 }
2895 EXPORT_SYMBOL(generic_file_read_iter);
2896
2897 /*
2898 * Splice subpages from a folio into a pipe.
2899 */
splice_folio_into_pipe(struct pipe_inode_info * pipe,struct folio * folio,loff_t fpos,size_t size)2900 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2901 struct folio *folio, loff_t fpos, size_t size)
2902 {
2903 struct page *page;
2904 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2905
2906 page = folio_page(folio, offset / PAGE_SIZE);
2907 size = min(size, folio_size(folio) - offset);
2908 offset %= PAGE_SIZE;
2909
2910 while (spliced < size && !pipe_is_full(pipe)) {
2911 struct pipe_buffer *buf = pipe_head_buf(pipe);
2912 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2913
2914 *buf = (struct pipe_buffer) {
2915 .ops = &page_cache_pipe_buf_ops,
2916 .page = page,
2917 .offset = offset,
2918 .len = part,
2919 };
2920 folio_get(folio);
2921 pipe->head++;
2922 page++;
2923 spliced += part;
2924 offset = 0;
2925 }
2926
2927 return spliced;
2928 }
2929
2930 /**
2931 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2932 * @in: The file to read from
2933 * @ppos: Pointer to the file position to read from
2934 * @pipe: The pipe to splice into
2935 * @len: The amount to splice
2936 * @flags: The SPLICE_F_* flags
2937 *
2938 * This function gets folios from a file's pagecache and splices them into the
2939 * pipe. Readahead will be called as necessary to fill more folios. This may
2940 * be used for blockdevs also.
2941 *
2942 * Return: On success, the number of bytes read will be returned and *@ppos
2943 * will be updated if appropriate; 0 will be returned if there is no more data
2944 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2945 * other negative error code will be returned on error. A short read may occur
2946 * if the pipe has insufficient space, we reach the end of the data or we hit a
2947 * hole.
2948 */
filemap_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2949 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2950 struct pipe_inode_info *pipe,
2951 size_t len, unsigned int flags)
2952 {
2953 struct folio_batch fbatch;
2954 struct kiocb iocb;
2955 size_t total_spliced = 0, used, npages;
2956 loff_t isize, end_offset;
2957 bool writably_mapped;
2958 int i, error = 0;
2959
2960 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2961 return 0;
2962
2963 init_sync_kiocb(&iocb, in);
2964 iocb.ki_pos = *ppos;
2965
2966 /* Work out how much data we can actually add into the pipe */
2967 used = pipe_buf_usage(pipe);
2968 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2969 len = min_t(size_t, len, npages * PAGE_SIZE);
2970
2971 folio_batch_init(&fbatch);
2972
2973 do {
2974 cond_resched();
2975
2976 if (*ppos >= i_size_read(in->f_mapping->host))
2977 break;
2978
2979 iocb.ki_pos = *ppos;
2980 error = filemap_get_pages(&iocb, len, &fbatch, true);
2981 if (error < 0)
2982 break;
2983
2984 /*
2985 * i_size must be checked after we know the pages are Uptodate.
2986 *
2987 * Checking i_size after the check allows us to calculate
2988 * the correct value for "nr", which means the zero-filled
2989 * part of the page is not copied back to userspace (unless
2990 * another truncate extends the file - this is desired though).
2991 */
2992 isize = i_size_read(in->f_mapping->host);
2993 if (unlikely(*ppos >= isize))
2994 break;
2995 end_offset = min_t(loff_t, isize, *ppos + len);
2996
2997 /*
2998 * Once we start copying data, we don't want to be touching any
2999 * cachelines that might be contended:
3000 */
3001 writably_mapped = mapping_writably_mapped(in->f_mapping);
3002
3003 for (i = 0; i < folio_batch_count(&fbatch); i++) {
3004 struct folio *folio = fbatch.folios[i];
3005 size_t n;
3006
3007 if (folio_pos(folio) >= end_offset)
3008 goto out;
3009 folio_mark_accessed(folio);
3010
3011 /*
3012 * If users can be writing to this folio using arbitrary
3013 * virtual addresses, take care of potential aliasing
3014 * before reading the folio on the kernel side.
3015 */
3016 if (writably_mapped)
3017 flush_dcache_folio(folio);
3018
3019 n = min_t(loff_t, len, isize - *ppos);
3020 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
3021 if (!n)
3022 goto out;
3023 len -= n;
3024 total_spliced += n;
3025 *ppos += n;
3026 in->f_ra.prev_pos = *ppos;
3027 if (pipe_is_full(pipe))
3028 goto out;
3029 }
3030
3031 folio_batch_release(&fbatch);
3032 } while (len);
3033
3034 out:
3035 folio_batch_release(&fbatch);
3036 file_accessed(in);
3037
3038 return total_spliced ? total_spliced : error;
3039 }
3040 EXPORT_SYMBOL(filemap_splice_read);
3041
folio_seek_hole_data(struct xa_state * xas,struct address_space * mapping,struct folio * folio,loff_t start,loff_t end,bool seek_data)3042 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
3043 struct address_space *mapping, struct folio *folio,
3044 loff_t start, loff_t end, bool seek_data)
3045 {
3046 const struct address_space_operations *ops = mapping->a_ops;
3047 size_t offset, bsz = i_blocksize(mapping->host);
3048
3049 if (xa_is_value(folio) || folio_test_uptodate(folio))
3050 return seek_data ? start : end;
3051 if (!ops->is_partially_uptodate)
3052 return seek_data ? end : start;
3053
3054 xas_pause(xas);
3055 rcu_read_unlock();
3056 folio_lock(folio);
3057 if (unlikely(folio->mapping != mapping))
3058 goto unlock;
3059
3060 offset = offset_in_folio(folio, start) & ~(bsz - 1);
3061
3062 do {
3063 if (ops->is_partially_uptodate(folio, offset, bsz) ==
3064 seek_data)
3065 break;
3066 start = (start + bsz) & ~((u64)bsz - 1);
3067 offset += bsz;
3068 } while (offset < folio_size(folio));
3069 unlock:
3070 folio_unlock(folio);
3071 rcu_read_lock();
3072 return start;
3073 }
3074
seek_folio_size(struct xa_state * xas,struct folio * folio)3075 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3076 {
3077 if (xa_is_value(folio))
3078 return PAGE_SIZE << xas_get_order(xas);
3079 return folio_size(folio);
3080 }
3081
3082 /**
3083 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3084 * @mapping: Address space to search.
3085 * @start: First byte to consider.
3086 * @end: Limit of search (exclusive).
3087 * @whence: Either SEEK_HOLE or SEEK_DATA.
3088 *
3089 * If the page cache knows which blocks contain holes and which blocks
3090 * contain data, your filesystem can use this function to implement
3091 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3092 * entirely memory-based such as tmpfs, and filesystems which support
3093 * unwritten extents.
3094 *
3095 * Return: The requested offset on success, or -ENXIO if @whence specifies
3096 * SEEK_DATA and there is no data after @start. There is an implicit hole
3097 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3098 * and @end contain data.
3099 */
mapping_seek_hole_data(struct address_space * mapping,loff_t start,loff_t end,int whence)3100 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3101 loff_t end, int whence)
3102 {
3103 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3104 pgoff_t max = (end - 1) >> PAGE_SHIFT;
3105 bool seek_data = (whence == SEEK_DATA);
3106 struct folio *folio;
3107
3108 if (end <= start)
3109 return -ENXIO;
3110
3111 rcu_read_lock();
3112 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3113 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3114 size_t seek_size;
3115
3116 if (start < pos) {
3117 if (!seek_data)
3118 goto unlock;
3119 start = pos;
3120 }
3121
3122 seek_size = seek_folio_size(&xas, folio);
3123 pos = round_up((u64)pos + 1, seek_size);
3124 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3125 seek_data);
3126 if (start < pos)
3127 goto unlock;
3128 if (start >= end)
3129 break;
3130 if (seek_size > PAGE_SIZE)
3131 xas_set(&xas, pos >> PAGE_SHIFT);
3132 if (!xa_is_value(folio))
3133 folio_put(folio);
3134 }
3135 if (seek_data)
3136 start = -ENXIO;
3137 unlock:
3138 rcu_read_unlock();
3139 if (folio && !xa_is_value(folio))
3140 folio_put(folio);
3141 if (start > end)
3142 return end;
3143 return start;
3144 }
3145
3146 #ifdef CONFIG_MMU
3147 #define MMAP_LOTSAMISS (100)
3148 /*
3149 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3150 * @vmf - the vm_fault for this fault.
3151 * @folio - the folio to lock.
3152 * @fpin - the pointer to the file we may pin (or is already pinned).
3153 *
3154 * This works similar to lock_folio_or_retry in that it can drop the
3155 * mmap_lock. It differs in that it actually returns the folio locked
3156 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3157 * to drop the mmap_lock then fpin will point to the pinned file and
3158 * needs to be fput()'ed at a later point.
3159 */
lock_folio_maybe_drop_mmap(struct vm_fault * vmf,struct folio * folio,struct file ** fpin)3160 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3161 struct file **fpin)
3162 {
3163 if (folio_trylock(folio))
3164 return 1;
3165
3166 /*
3167 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3168 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3169 * is supposed to work. We have way too many special cases..
3170 */
3171 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3172 return 0;
3173
3174 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3175 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3176 if (__folio_lock_killable(folio)) {
3177 /*
3178 * We didn't have the right flags to drop the
3179 * fault lock, but all fault_handlers only check
3180 * for fatal signals if we return VM_FAULT_RETRY,
3181 * so we need to drop the fault lock here and
3182 * return 0 if we don't have a fpin.
3183 */
3184 if (*fpin == NULL)
3185 release_fault_lock(vmf);
3186 return 0;
3187 }
3188 } else
3189 __folio_lock(folio);
3190
3191 return 1;
3192 }
3193
3194 /*
3195 * Synchronous readahead happens when we don't even find a page in the page
3196 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3197 * to drop the mmap sem we return the file that was pinned in order for us to do
3198 * that. If we didn't pin a file then we return NULL. The file that is
3199 * returned needs to be fput()'ed when we're done with it.
3200 */
do_sync_mmap_readahead(struct vm_fault * vmf)3201 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3202 {
3203 struct file *file = vmf->vma->vm_file;
3204 struct file_ra_state *ra = &file->f_ra;
3205 struct address_space *mapping = file->f_mapping;
3206 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3207 struct file *fpin = NULL;
3208 unsigned long vm_flags = vmf->vma->vm_flags;
3209 unsigned int mmap_miss;
3210
3211 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3212 /* Use the readahead code, even if readahead is disabled */
3213 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3214 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3215 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3216 ra->size = HPAGE_PMD_NR;
3217 /*
3218 * Fetch two PMD folios, so we get the chance to actually
3219 * readahead, unless we've been told not to.
3220 */
3221 if (!(vm_flags & VM_RAND_READ))
3222 ra->size *= 2;
3223 ra->async_size = HPAGE_PMD_NR;
3224 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3225 return fpin;
3226 }
3227 #endif
3228
3229 /* If we don't want any read-ahead, don't bother */
3230 if (vm_flags & VM_RAND_READ)
3231 return fpin;
3232 if (!ra->ra_pages)
3233 return fpin;
3234
3235 if (vm_flags & VM_SEQ_READ) {
3236 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3237 page_cache_sync_ra(&ractl, ra->ra_pages);
3238 return fpin;
3239 }
3240
3241 /* Avoid banging the cache line if not needed */
3242 mmap_miss = READ_ONCE(ra->mmap_miss);
3243 if (mmap_miss < MMAP_LOTSAMISS * 10)
3244 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3245
3246 /*
3247 * Do we miss much more than hit in this file? If so,
3248 * stop bothering with read-ahead. It will only hurt.
3249 */
3250 if (mmap_miss > MMAP_LOTSAMISS)
3251 return fpin;
3252
3253 /*
3254 * mmap read-around
3255 */
3256 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3257 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3258 ra->size = ra->ra_pages;
3259 ra->async_size = ra->ra_pages / 4;
3260 ractl._index = ra->start;
3261 page_cache_ra_order(&ractl, ra, 0);
3262 return fpin;
3263 }
3264
3265 /*
3266 * Asynchronous readahead happens when we find the page and PG_readahead,
3267 * so we want to possibly extend the readahead further. We return the file that
3268 * was pinned if we have to drop the mmap_lock in order to do IO.
3269 */
do_async_mmap_readahead(struct vm_fault * vmf,struct folio * folio)3270 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3271 struct folio *folio)
3272 {
3273 struct file *file = vmf->vma->vm_file;
3274 struct file_ra_state *ra = &file->f_ra;
3275 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3276 struct file *fpin = NULL;
3277 unsigned int mmap_miss;
3278
3279 /* If we don't want any read-ahead, don't bother */
3280 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3281 return fpin;
3282
3283 mmap_miss = READ_ONCE(ra->mmap_miss);
3284 if (mmap_miss)
3285 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3286
3287 if (folio_test_readahead(folio)) {
3288 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3289 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3290 }
3291 return fpin;
3292 }
3293
filemap_fault_recheck_pte_none(struct vm_fault * vmf)3294 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3295 {
3296 struct vm_area_struct *vma = vmf->vma;
3297 vm_fault_t ret = 0;
3298 pte_t *ptep;
3299
3300 /*
3301 * We might have COW'ed a pagecache folio and might now have an mlocked
3302 * anon folio mapped. The original pagecache folio is not mlocked and
3303 * might have been evicted. During a read+clear/modify/write update of
3304 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3305 * temporarily clear the PTE under PT lock and might detect it here as
3306 * "none" when not holding the PT lock.
3307 *
3308 * Not rechecking the PTE under PT lock could result in an unexpected
3309 * major fault in an mlock'ed region. Recheck only for this special
3310 * scenario while holding the PT lock, to not degrade non-mlocked
3311 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3312 * the number of times we hold PT lock.
3313 */
3314 if (!(vma->vm_flags & VM_LOCKED))
3315 return 0;
3316
3317 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3318 return 0;
3319
3320 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3321 &vmf->ptl);
3322 if (unlikely(!ptep))
3323 return VM_FAULT_NOPAGE;
3324
3325 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3326 ret = VM_FAULT_NOPAGE;
3327 } else {
3328 spin_lock(vmf->ptl);
3329 if (unlikely(!pte_none(ptep_get(ptep))))
3330 ret = VM_FAULT_NOPAGE;
3331 spin_unlock(vmf->ptl);
3332 }
3333 pte_unmap(ptep);
3334 return ret;
3335 }
3336
3337 /**
3338 * filemap_fault - read in file data for page fault handling
3339 * @vmf: struct vm_fault containing details of the fault
3340 *
3341 * filemap_fault() is invoked via the vma operations vector for a
3342 * mapped memory region to read in file data during a page fault.
3343 *
3344 * The goto's are kind of ugly, but this streamlines the normal case of having
3345 * it in the page cache, and handles the special cases reasonably without
3346 * having a lot of duplicated code.
3347 *
3348 * vma->vm_mm->mmap_lock must be held on entry.
3349 *
3350 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3351 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3352 *
3353 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3354 * has not been released.
3355 *
3356 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3357 *
3358 * Return: bitwise-OR of %VM_FAULT_ codes.
3359 */
filemap_fault(struct vm_fault * vmf)3360 vm_fault_t filemap_fault(struct vm_fault *vmf)
3361 {
3362 int error;
3363 struct file *file = vmf->vma->vm_file;
3364 struct file *fpin = NULL;
3365 struct address_space *mapping = file->f_mapping;
3366 struct inode *inode = mapping->host;
3367 pgoff_t max_idx, index = vmf->pgoff;
3368 struct folio *folio;
3369 vm_fault_t ret = 0;
3370 bool mapping_locked = false;
3371
3372 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3373 if (unlikely(index >= max_idx))
3374 return VM_FAULT_SIGBUS;
3375
3376 trace_mm_filemap_fault(mapping, index);
3377
3378 /*
3379 * Do we have something in the page cache already?
3380 */
3381 folio = filemap_get_folio(mapping, index);
3382 if (likely(!IS_ERR(folio))) {
3383 /*
3384 * We found the page, so try async readahead before waiting for
3385 * the lock.
3386 */
3387 if (!(vmf->flags & FAULT_FLAG_TRIED))
3388 fpin = do_async_mmap_readahead(vmf, folio);
3389 if (unlikely(!folio_test_uptodate(folio))) {
3390 filemap_invalidate_lock_shared(mapping);
3391 mapping_locked = true;
3392 }
3393 } else {
3394 ret = filemap_fault_recheck_pte_none(vmf);
3395 if (unlikely(ret))
3396 return ret;
3397
3398 /* No page in the page cache at all */
3399 count_vm_event(PGMAJFAULT);
3400 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3401 ret = VM_FAULT_MAJOR;
3402 fpin = do_sync_mmap_readahead(vmf);
3403 retry_find:
3404 /*
3405 * See comment in filemap_create_folio() why we need
3406 * invalidate_lock
3407 */
3408 if (!mapping_locked) {
3409 filemap_invalidate_lock_shared(mapping);
3410 mapping_locked = true;
3411 }
3412 folio = __filemap_get_folio(mapping, index,
3413 FGP_CREAT|FGP_FOR_MMAP,
3414 vmf->gfp_mask);
3415 if (IS_ERR(folio)) {
3416 if (fpin)
3417 goto out_retry;
3418 filemap_invalidate_unlock_shared(mapping);
3419 return VM_FAULT_OOM;
3420 }
3421 }
3422
3423 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3424 goto out_retry;
3425
3426 /* Did it get truncated? */
3427 if (unlikely(folio->mapping != mapping)) {
3428 folio_unlock(folio);
3429 folio_put(folio);
3430 goto retry_find;
3431 }
3432 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3433
3434 /*
3435 * We have a locked folio in the page cache, now we need to check
3436 * that it's up-to-date. If not, it is going to be due to an error,
3437 * or because readahead was otherwise unable to retrieve it.
3438 */
3439 if (unlikely(!folio_test_uptodate(folio))) {
3440 /*
3441 * If the invalidate lock is not held, the folio was in cache
3442 * and uptodate and now it is not. Strange but possible since we
3443 * didn't hold the page lock all the time. Let's drop
3444 * everything, get the invalidate lock and try again.
3445 */
3446 if (!mapping_locked) {
3447 folio_unlock(folio);
3448 folio_put(folio);
3449 goto retry_find;
3450 }
3451
3452 /*
3453 * OK, the folio is really not uptodate. This can be because the
3454 * VMA has the VM_RAND_READ flag set, or because an error
3455 * arose. Let's read it in directly.
3456 */
3457 goto page_not_uptodate;
3458 }
3459
3460 /*
3461 * We've made it this far and we had to drop our mmap_lock, now is the
3462 * time to return to the upper layer and have it re-find the vma and
3463 * redo the fault.
3464 */
3465 if (fpin) {
3466 folio_unlock(folio);
3467 goto out_retry;
3468 }
3469 if (mapping_locked)
3470 filemap_invalidate_unlock_shared(mapping);
3471
3472 /*
3473 * Found the page and have a reference on it.
3474 * We must recheck i_size under page lock.
3475 */
3476 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3477 if (unlikely(index >= max_idx)) {
3478 folio_unlock(folio);
3479 folio_put(folio);
3480 return VM_FAULT_SIGBUS;
3481 }
3482
3483 vmf->page = folio_file_page(folio, index);
3484 return ret | VM_FAULT_LOCKED;
3485
3486 page_not_uptodate:
3487 /*
3488 * Umm, take care of errors if the page isn't up-to-date.
3489 * Try to re-read it _once_. We do this synchronously,
3490 * because there really aren't any performance issues here
3491 * and we need to check for errors.
3492 */
3493 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3494 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3495 if (fpin)
3496 goto out_retry;
3497 folio_put(folio);
3498
3499 if (!error || error == AOP_TRUNCATED_PAGE)
3500 goto retry_find;
3501 filemap_invalidate_unlock_shared(mapping);
3502
3503 return VM_FAULT_SIGBUS;
3504
3505 out_retry:
3506 /*
3507 * We dropped the mmap_lock, we need to return to the fault handler to
3508 * re-find the vma and come back and find our hopefully still populated
3509 * page.
3510 */
3511 if (!IS_ERR(folio))
3512 folio_put(folio);
3513 if (mapping_locked)
3514 filemap_invalidate_unlock_shared(mapping);
3515 if (fpin)
3516 fput(fpin);
3517 return ret | VM_FAULT_RETRY;
3518 }
3519 EXPORT_SYMBOL(filemap_fault);
3520
filemap_map_pmd(struct vm_fault * vmf,struct folio * folio,pgoff_t start)3521 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3522 pgoff_t start)
3523 {
3524 struct mm_struct *mm = vmf->vma->vm_mm;
3525
3526 /* Huge page is mapped? No need to proceed. */
3527 if (pmd_trans_huge(*vmf->pmd)) {
3528 folio_unlock(folio);
3529 folio_put(folio);
3530 return true;
3531 }
3532
3533 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3534 struct page *page = folio_file_page(folio, start);
3535 vm_fault_t ret = do_set_pmd(vmf, page);
3536 if (!ret) {
3537 /* The page is mapped successfully, reference consumed. */
3538 folio_unlock(folio);
3539 return true;
3540 }
3541 }
3542
3543 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3544 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3545
3546 return false;
3547 }
3548
next_uptodate_folio(struct xa_state * xas,struct address_space * mapping,pgoff_t end_pgoff)3549 static struct folio *next_uptodate_folio(struct xa_state *xas,
3550 struct address_space *mapping, pgoff_t end_pgoff)
3551 {
3552 struct folio *folio = xas_next_entry(xas, end_pgoff);
3553 unsigned long max_idx;
3554
3555 do {
3556 if (!folio)
3557 return NULL;
3558 if (xas_retry(xas, folio))
3559 continue;
3560 if (xa_is_value(folio))
3561 continue;
3562 if (!folio_try_get(folio))
3563 continue;
3564 if (folio_test_locked(folio))
3565 goto skip;
3566 /* Has the page moved or been split? */
3567 if (unlikely(folio != xas_reload(xas)))
3568 goto skip;
3569 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3570 goto skip;
3571 if (!folio_trylock(folio))
3572 goto skip;
3573 if (folio->mapping != mapping)
3574 goto unlock;
3575 if (!folio_test_uptodate(folio))
3576 goto unlock;
3577 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3578 if (xas->xa_index >= max_idx)
3579 goto unlock;
3580 return folio;
3581 unlock:
3582 folio_unlock(folio);
3583 skip:
3584 folio_put(folio);
3585 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3586
3587 return NULL;
3588 }
3589
3590 /*
3591 * Map page range [start_page, start_page + nr_pages) of folio.
3592 * start_page is gotten from start by folio_page(folio, start)
3593 */
filemap_map_folio_range(struct vm_fault * vmf,struct folio * folio,unsigned long start,unsigned long addr,unsigned int nr_pages,unsigned long * rss,unsigned int * mmap_miss)3594 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3595 struct folio *folio, unsigned long start,
3596 unsigned long addr, unsigned int nr_pages,
3597 unsigned long *rss, unsigned int *mmap_miss)
3598 {
3599 vm_fault_t ret = 0;
3600 struct page *page = folio_page(folio, start);
3601 unsigned int count = 0;
3602 pte_t *old_ptep = vmf->pte;
3603
3604 do {
3605 if (PageHWPoison(page + count))
3606 goto skip;
3607
3608 /*
3609 * If there are too many folios that are recently evicted
3610 * in a file, they will probably continue to be evicted.
3611 * In such situation, read-ahead is only a waste of IO.
3612 * Don't decrease mmap_miss in this scenario to make sure
3613 * we can stop read-ahead.
3614 */
3615 if (!folio_test_workingset(folio))
3616 (*mmap_miss)++;
3617
3618 /*
3619 * NOTE: If there're PTE markers, we'll leave them to be
3620 * handled in the specific fault path, and it'll prohibit the
3621 * fault-around logic.
3622 */
3623 if (!pte_none(ptep_get(&vmf->pte[count])))
3624 goto skip;
3625
3626 count++;
3627 continue;
3628 skip:
3629 if (count) {
3630 set_pte_range(vmf, folio, page, count, addr);
3631 *rss += count;
3632 folio_ref_add(folio, count);
3633 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3634 ret = VM_FAULT_NOPAGE;
3635 }
3636
3637 count++;
3638 page += count;
3639 vmf->pte += count;
3640 addr += count * PAGE_SIZE;
3641 count = 0;
3642 } while (--nr_pages > 0);
3643
3644 if (count) {
3645 set_pte_range(vmf, folio, page, count, addr);
3646 *rss += count;
3647 folio_ref_add(folio, count);
3648 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3649 ret = VM_FAULT_NOPAGE;
3650 }
3651
3652 vmf->pte = old_ptep;
3653
3654 return ret;
3655 }
3656
filemap_map_order0_folio(struct vm_fault * vmf,struct folio * folio,unsigned long addr,unsigned long * rss,unsigned int * mmap_miss)3657 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3658 struct folio *folio, unsigned long addr,
3659 unsigned long *rss, unsigned int *mmap_miss)
3660 {
3661 vm_fault_t ret = 0;
3662 struct page *page = &folio->page;
3663
3664 if (PageHWPoison(page))
3665 return ret;
3666
3667 /* See comment of filemap_map_folio_range() */
3668 if (!folio_test_workingset(folio))
3669 (*mmap_miss)++;
3670
3671 /*
3672 * NOTE: If there're PTE markers, we'll leave them to be
3673 * handled in the specific fault path, and it'll prohibit
3674 * the fault-around logic.
3675 */
3676 if (!pte_none(ptep_get(vmf->pte)))
3677 return ret;
3678
3679 if (vmf->address == addr)
3680 ret = VM_FAULT_NOPAGE;
3681
3682 set_pte_range(vmf, folio, page, 1, addr);
3683 (*rss)++;
3684 folio_ref_inc(folio);
3685
3686 return ret;
3687 }
3688
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3689 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3690 pgoff_t start_pgoff, pgoff_t end_pgoff)
3691 {
3692 struct vm_area_struct *vma = vmf->vma;
3693 struct file *file = vma->vm_file;
3694 struct address_space *mapping = file->f_mapping;
3695 pgoff_t file_end, last_pgoff = start_pgoff;
3696 unsigned long addr;
3697 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3698 struct folio *folio;
3699 vm_fault_t ret = 0;
3700 unsigned long rss = 0;
3701 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type;
3702
3703 rcu_read_lock();
3704 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3705 if (!folio)
3706 goto out;
3707
3708 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3709 ret = VM_FAULT_NOPAGE;
3710 goto out;
3711 }
3712
3713 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3714 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3715 if (!vmf->pte) {
3716 folio_unlock(folio);
3717 folio_put(folio);
3718 goto out;
3719 }
3720
3721 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3722 if (end_pgoff > file_end)
3723 end_pgoff = file_end;
3724
3725 folio_type = mm_counter_file(folio);
3726 do {
3727 unsigned long end;
3728
3729 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3730 vmf->pte += xas.xa_index - last_pgoff;
3731 last_pgoff = xas.xa_index;
3732 end = folio_next_index(folio) - 1;
3733 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3734
3735 if (!folio_test_large(folio))
3736 ret |= filemap_map_order0_folio(vmf,
3737 folio, addr, &rss, &mmap_miss);
3738 else
3739 ret |= filemap_map_folio_range(vmf, folio,
3740 xas.xa_index - folio->index, addr,
3741 nr_pages, &rss, &mmap_miss);
3742
3743 folio_unlock(folio);
3744 folio_put(folio);
3745 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3746 add_mm_counter(vma->vm_mm, folio_type, rss);
3747 pte_unmap_unlock(vmf->pte, vmf->ptl);
3748 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3749 out:
3750 rcu_read_unlock();
3751
3752 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3753 if (mmap_miss >= mmap_miss_saved)
3754 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3755 else
3756 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3757
3758 return ret;
3759 }
3760 EXPORT_SYMBOL(filemap_map_pages);
3761
filemap_page_mkwrite(struct vm_fault * vmf)3762 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3763 {
3764 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3765 struct folio *folio = page_folio(vmf->page);
3766 vm_fault_t ret = VM_FAULT_LOCKED;
3767
3768 sb_start_pagefault(mapping->host->i_sb);
3769 file_update_time(vmf->vma->vm_file);
3770 folio_lock(folio);
3771 if (folio->mapping != mapping) {
3772 folio_unlock(folio);
3773 ret = VM_FAULT_NOPAGE;
3774 goto out;
3775 }
3776 /*
3777 * We mark the folio dirty already here so that when freeze is in
3778 * progress, we are guaranteed that writeback during freezing will
3779 * see the dirty folio and writeprotect it again.
3780 */
3781 folio_mark_dirty(folio);
3782 folio_wait_stable(folio);
3783 out:
3784 sb_end_pagefault(mapping->host->i_sb);
3785 return ret;
3786 }
3787
3788 const struct vm_operations_struct generic_file_vm_ops = {
3789 .fault = filemap_fault,
3790 .map_pages = filemap_map_pages,
3791 .page_mkwrite = filemap_page_mkwrite,
3792 };
3793
3794 /* This is used for a general mmap of a disk file */
3795
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3796 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3797 {
3798 struct address_space *mapping = file->f_mapping;
3799
3800 if (!mapping->a_ops->read_folio)
3801 return -ENOEXEC;
3802 file_accessed(file);
3803 vma->vm_ops = &generic_file_vm_ops;
3804 return 0;
3805 }
3806
3807 /*
3808 * This is for filesystems which do not implement ->writepage.
3809 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3810 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3811 {
3812 if (vma_is_shared_maywrite(vma))
3813 return -EINVAL;
3814 return generic_file_mmap(file, vma);
3815 }
3816 #else
filemap_page_mkwrite(struct vm_fault * vmf)3817 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3818 {
3819 return VM_FAULT_SIGBUS;
3820 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3821 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3822 {
3823 return -ENOSYS;
3824 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3825 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3826 {
3827 return -ENOSYS;
3828 }
3829 #endif /* CONFIG_MMU */
3830
3831 EXPORT_SYMBOL(filemap_page_mkwrite);
3832 EXPORT_SYMBOL(generic_file_mmap);
3833 EXPORT_SYMBOL(generic_file_readonly_mmap);
3834
do_read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file,gfp_t gfp)3835 static struct folio *do_read_cache_folio(struct address_space *mapping,
3836 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3837 {
3838 struct folio *folio;
3839 int err;
3840
3841 if (!filler)
3842 filler = mapping->a_ops->read_folio;
3843 repeat:
3844 folio = filemap_get_folio(mapping, index);
3845 if (IS_ERR(folio)) {
3846 folio = filemap_alloc_folio(gfp,
3847 mapping_min_folio_order(mapping));
3848 if (!folio)
3849 return ERR_PTR(-ENOMEM);
3850 index = mapping_align_index(mapping, index);
3851 err = filemap_add_folio(mapping, folio, index, gfp);
3852 if (unlikely(err)) {
3853 folio_put(folio);
3854 if (err == -EEXIST)
3855 goto repeat;
3856 /* Presumably ENOMEM for xarray node */
3857 return ERR_PTR(err);
3858 }
3859
3860 goto filler;
3861 }
3862 if (folio_test_uptodate(folio))
3863 goto out;
3864
3865 if (!folio_trylock(folio)) {
3866 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3867 goto repeat;
3868 }
3869
3870 /* Folio was truncated from mapping */
3871 if (!folio->mapping) {
3872 folio_unlock(folio);
3873 folio_put(folio);
3874 goto repeat;
3875 }
3876
3877 /* Someone else locked and filled the page in a very small window */
3878 if (folio_test_uptodate(folio)) {
3879 folio_unlock(folio);
3880 goto out;
3881 }
3882
3883 filler:
3884 err = filemap_read_folio(file, filler, folio);
3885 if (err) {
3886 folio_put(folio);
3887 if (err == AOP_TRUNCATED_PAGE)
3888 goto repeat;
3889 return ERR_PTR(err);
3890 }
3891
3892 out:
3893 folio_mark_accessed(folio);
3894 return folio;
3895 }
3896
3897 /**
3898 * read_cache_folio - Read into page cache, fill it if needed.
3899 * @mapping: The address_space to read from.
3900 * @index: The index to read.
3901 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3902 * @file: Passed to filler function, may be NULL if not required.
3903 *
3904 * Read one page into the page cache. If it succeeds, the folio returned
3905 * will contain @index, but it may not be the first page of the folio.
3906 *
3907 * If the filler function returns an error, it will be returned to the
3908 * caller.
3909 *
3910 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3911 * Return: An uptodate folio on success, ERR_PTR() on failure.
3912 */
read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file)3913 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3914 filler_t filler, struct file *file)
3915 {
3916 return do_read_cache_folio(mapping, index, filler, file,
3917 mapping_gfp_mask(mapping));
3918 }
3919 EXPORT_SYMBOL(read_cache_folio);
3920
3921 /**
3922 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3923 * @mapping: The address_space for the folio.
3924 * @index: The index that the allocated folio will contain.
3925 * @gfp: The page allocator flags to use if allocating.
3926 *
3927 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3928 * any new memory allocations done using the specified allocation flags.
3929 *
3930 * The most likely error from this function is EIO, but ENOMEM is
3931 * possible and so is EINTR. If ->read_folio returns another error,
3932 * that will be returned to the caller.
3933 *
3934 * The function expects mapping->invalidate_lock to be already held.
3935 *
3936 * Return: Uptodate folio on success, ERR_PTR() on failure.
3937 */
mapping_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3938 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3939 pgoff_t index, gfp_t gfp)
3940 {
3941 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3942 }
3943 EXPORT_SYMBOL(mapping_read_folio_gfp);
3944
do_read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file,gfp_t gfp)3945 static struct page *do_read_cache_page(struct address_space *mapping,
3946 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3947 {
3948 struct folio *folio;
3949
3950 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3951 if (IS_ERR(folio))
3952 return &folio->page;
3953 return folio_file_page(folio, index);
3954 }
3955
read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file)3956 struct page *read_cache_page(struct address_space *mapping,
3957 pgoff_t index, filler_t *filler, struct file *file)
3958 {
3959 return do_read_cache_page(mapping, index, filler, file,
3960 mapping_gfp_mask(mapping));
3961 }
3962 EXPORT_SYMBOL(read_cache_page);
3963
3964 /**
3965 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3966 * @mapping: the page's address_space
3967 * @index: the page index
3968 * @gfp: the page allocator flags to use if allocating
3969 *
3970 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3971 * any new page allocations done using the specified allocation flags.
3972 *
3973 * If the page does not get brought uptodate, return -EIO.
3974 *
3975 * The function expects mapping->invalidate_lock to be already held.
3976 *
3977 * Return: up to date page on success, ERR_PTR() on failure.
3978 */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3979 struct page *read_cache_page_gfp(struct address_space *mapping,
3980 pgoff_t index,
3981 gfp_t gfp)
3982 {
3983 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3984 }
3985 EXPORT_SYMBOL(read_cache_page_gfp);
3986
3987 /*
3988 * Warn about a page cache invalidation failure during a direct I/O write.
3989 */
dio_warn_stale_pagecache(struct file * filp)3990 static void dio_warn_stale_pagecache(struct file *filp)
3991 {
3992 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3993 char pathname[128];
3994 char *path;
3995
3996 errseq_set(&filp->f_mapping->wb_err, -EIO);
3997 if (__ratelimit(&_rs)) {
3998 path = file_path(filp, pathname, sizeof(pathname));
3999 if (IS_ERR(path))
4000 path = "(unknown)";
4001 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
4002 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
4003 current->comm);
4004 }
4005 }
4006
kiocb_invalidate_post_direct_write(struct kiocb * iocb,size_t count)4007 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
4008 {
4009 struct address_space *mapping = iocb->ki_filp->f_mapping;
4010
4011 if (mapping->nrpages &&
4012 invalidate_inode_pages2_range(mapping,
4013 iocb->ki_pos >> PAGE_SHIFT,
4014 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
4015 dio_warn_stale_pagecache(iocb->ki_filp);
4016 }
4017
4018 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)4019 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
4020 {
4021 struct address_space *mapping = iocb->ki_filp->f_mapping;
4022 size_t write_len = iov_iter_count(from);
4023 ssize_t written;
4024
4025 /*
4026 * If a page can not be invalidated, return 0 to fall back
4027 * to buffered write.
4028 */
4029 written = kiocb_invalidate_pages(iocb, write_len);
4030 if (written) {
4031 if (written == -EBUSY)
4032 return 0;
4033 return written;
4034 }
4035
4036 written = mapping->a_ops->direct_IO(iocb, from);
4037
4038 /*
4039 * Finally, try again to invalidate clean pages which might have been
4040 * cached by non-direct readahead, or faulted in by get_user_pages()
4041 * if the source of the write was an mmap'ed region of the file
4042 * we're writing. Either one is a pretty crazy thing to do,
4043 * so we don't support it 100%. If this invalidation
4044 * fails, tough, the write still worked...
4045 *
4046 * Most of the time we do not need this since dio_complete() will do
4047 * the invalidation for us. However there are some file systems that
4048 * do not end up with dio_complete() being called, so let's not break
4049 * them by removing it completely.
4050 *
4051 * Noticeable example is a blkdev_direct_IO().
4052 *
4053 * Skip invalidation for async writes or if mapping has no pages.
4054 */
4055 if (written > 0) {
4056 struct inode *inode = mapping->host;
4057 loff_t pos = iocb->ki_pos;
4058
4059 kiocb_invalidate_post_direct_write(iocb, written);
4060 pos += written;
4061 write_len -= written;
4062 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
4063 i_size_write(inode, pos);
4064 mark_inode_dirty(inode);
4065 }
4066 iocb->ki_pos = pos;
4067 }
4068 if (written != -EIOCBQUEUED)
4069 iov_iter_revert(from, write_len - iov_iter_count(from));
4070 return written;
4071 }
4072 EXPORT_SYMBOL(generic_file_direct_write);
4073
generic_perform_write(struct kiocb * iocb,struct iov_iter * i)4074 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4075 {
4076 struct file *file = iocb->ki_filp;
4077 loff_t pos = iocb->ki_pos;
4078 struct address_space *mapping = file->f_mapping;
4079 const struct address_space_operations *a_ops = mapping->a_ops;
4080 size_t chunk = mapping_max_folio_size(mapping);
4081 long status = 0;
4082 ssize_t written = 0;
4083
4084 do {
4085 struct folio *folio;
4086 size_t offset; /* Offset into folio */
4087 size_t bytes; /* Bytes to write to folio */
4088 size_t copied; /* Bytes copied from user */
4089 void *fsdata = NULL;
4090
4091 bytes = iov_iter_count(i);
4092 retry:
4093 offset = pos & (chunk - 1);
4094 bytes = min(chunk - offset, bytes);
4095 balance_dirty_pages_ratelimited(mapping);
4096
4097 if (fatal_signal_pending(current)) {
4098 status = -EINTR;
4099 break;
4100 }
4101
4102 status = a_ops->write_begin(file, mapping, pos, bytes,
4103 &folio, &fsdata);
4104 if (unlikely(status < 0))
4105 break;
4106
4107 offset = offset_in_folio(folio, pos);
4108 if (bytes > folio_size(folio) - offset)
4109 bytes = folio_size(folio) - offset;
4110
4111 if (mapping_writably_mapped(mapping))
4112 flush_dcache_folio(folio);
4113
4114 /*
4115 * Faults here on mmap()s can recurse into arbitrary
4116 * filesystem code. Lots of locks are held that can
4117 * deadlock. Use an atomic copy to avoid deadlocking
4118 * in page fault handling.
4119 */
4120 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4121 flush_dcache_folio(folio);
4122
4123 status = a_ops->write_end(file, mapping, pos, bytes, copied,
4124 folio, fsdata);
4125 if (unlikely(status != copied)) {
4126 iov_iter_revert(i, copied - max(status, 0L));
4127 if (unlikely(status < 0))
4128 break;
4129 }
4130 cond_resched();
4131
4132 if (unlikely(status == 0)) {
4133 /*
4134 * A short copy made ->write_end() reject the
4135 * thing entirely. Might be memory poisoning
4136 * halfway through, might be a race with munmap,
4137 * might be severe memory pressure.
4138 */
4139 if (chunk > PAGE_SIZE)
4140 chunk /= 2;
4141 if (copied) {
4142 bytes = copied;
4143 goto retry;
4144 }
4145
4146 /*
4147 * 'folio' is now unlocked and faults on it can be
4148 * handled. Ensure forward progress by trying to
4149 * fault it in now.
4150 */
4151 if (fault_in_iov_iter_readable(i, bytes) == bytes) {
4152 status = -EFAULT;
4153 break;
4154 }
4155 } else {
4156 pos += status;
4157 written += status;
4158 }
4159 } while (iov_iter_count(i));
4160
4161 if (!written)
4162 return status;
4163 iocb->ki_pos += written;
4164 return written;
4165 }
4166 EXPORT_SYMBOL(generic_perform_write);
4167
4168 /**
4169 * __generic_file_write_iter - write data to a file
4170 * @iocb: IO state structure (file, offset, etc.)
4171 * @from: iov_iter with data to write
4172 *
4173 * This function does all the work needed for actually writing data to a
4174 * file. It does all basic checks, removes SUID from the file, updates
4175 * modification times and calls proper subroutines depending on whether we
4176 * do direct IO or a standard buffered write.
4177 *
4178 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4179 * object which does not need locking at all.
4180 *
4181 * This function does *not* take care of syncing data in case of O_SYNC write.
4182 * A caller has to handle it. This is mainly due to the fact that we want to
4183 * avoid syncing under i_rwsem.
4184 *
4185 * Return:
4186 * * number of bytes written, even for truncated writes
4187 * * negative error code if no data has been written at all
4188 */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4189 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4190 {
4191 struct file *file = iocb->ki_filp;
4192 struct address_space *mapping = file->f_mapping;
4193 struct inode *inode = mapping->host;
4194 ssize_t ret;
4195
4196 ret = file_remove_privs(file);
4197 if (ret)
4198 return ret;
4199
4200 ret = file_update_time(file);
4201 if (ret)
4202 return ret;
4203
4204 if (iocb->ki_flags & IOCB_DIRECT) {
4205 ret = generic_file_direct_write(iocb, from);
4206 /*
4207 * If the write stopped short of completing, fall back to
4208 * buffered writes. Some filesystems do this for writes to
4209 * holes, for example. For DAX files, a buffered write will
4210 * not succeed (even if it did, DAX does not handle dirty
4211 * page-cache pages correctly).
4212 */
4213 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4214 return ret;
4215 return direct_write_fallback(iocb, from, ret,
4216 generic_perform_write(iocb, from));
4217 }
4218
4219 return generic_perform_write(iocb, from);
4220 }
4221 EXPORT_SYMBOL(__generic_file_write_iter);
4222
4223 /**
4224 * generic_file_write_iter - write data to a file
4225 * @iocb: IO state structure
4226 * @from: iov_iter with data to write
4227 *
4228 * This is a wrapper around __generic_file_write_iter() to be used by most
4229 * filesystems. It takes care of syncing the file in case of O_SYNC file
4230 * and acquires i_rwsem as needed.
4231 * Return:
4232 * * negative error code if no data has been written at all of
4233 * vfs_fsync_range() failed for a synchronous write
4234 * * number of bytes written, even for truncated writes
4235 */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4236 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4237 {
4238 struct file *file = iocb->ki_filp;
4239 struct inode *inode = file->f_mapping->host;
4240 ssize_t ret;
4241
4242 inode_lock(inode);
4243 ret = generic_write_checks(iocb, from);
4244 if (ret > 0)
4245 ret = __generic_file_write_iter(iocb, from);
4246 inode_unlock(inode);
4247
4248 if (ret > 0)
4249 ret = generic_write_sync(iocb, ret);
4250 return ret;
4251 }
4252 EXPORT_SYMBOL(generic_file_write_iter);
4253
4254 /**
4255 * filemap_release_folio() - Release fs-specific metadata on a folio.
4256 * @folio: The folio which the kernel is trying to free.
4257 * @gfp: Memory allocation flags (and I/O mode).
4258 *
4259 * The address_space is trying to release any data attached to a folio
4260 * (presumably at folio->private).
4261 *
4262 * This will also be called if the private_2 flag is set on a page,
4263 * indicating that the folio has other metadata associated with it.
4264 *
4265 * The @gfp argument specifies whether I/O may be performed to release
4266 * this page (__GFP_IO), and whether the call may block
4267 * (__GFP_RECLAIM & __GFP_FS).
4268 *
4269 * Return: %true if the release was successful, otherwise %false.
4270 */
filemap_release_folio(struct folio * folio,gfp_t gfp)4271 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4272 {
4273 struct address_space * const mapping = folio->mapping;
4274
4275 BUG_ON(!folio_test_locked(folio));
4276 if (!folio_needs_release(folio))
4277 return true;
4278 if (folio_test_writeback(folio))
4279 return false;
4280
4281 if (mapping && mapping->a_ops->release_folio)
4282 return mapping->a_ops->release_folio(folio, gfp);
4283 return try_to_free_buffers(folio);
4284 }
4285 EXPORT_SYMBOL(filemap_release_folio);
4286
4287 /**
4288 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4289 * @inode: The inode to flush
4290 * @flush: Set to write back rather than simply invalidate.
4291 * @start: First byte to in range.
4292 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4293 * onwards.
4294 *
4295 * Invalidate all the folios on an inode that contribute to the specified
4296 * range, possibly writing them back first. Whilst the operation is
4297 * undertaken, the invalidate lock is held to prevent new folios from being
4298 * installed.
4299 */
filemap_invalidate_inode(struct inode * inode,bool flush,loff_t start,loff_t end)4300 int filemap_invalidate_inode(struct inode *inode, bool flush,
4301 loff_t start, loff_t end)
4302 {
4303 struct address_space *mapping = inode->i_mapping;
4304 pgoff_t first = start >> PAGE_SHIFT;
4305 pgoff_t last = end >> PAGE_SHIFT;
4306 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4307
4308 if (!mapping || !mapping->nrpages || end < start)
4309 goto out;
4310
4311 /* Prevent new folios from being added to the inode. */
4312 filemap_invalidate_lock(mapping);
4313
4314 if (!mapping->nrpages)
4315 goto unlock;
4316
4317 unmap_mapping_pages(mapping, first, nr, false);
4318
4319 /* Write back the data if we're asked to. */
4320 if (flush) {
4321 struct writeback_control wbc = {
4322 .sync_mode = WB_SYNC_ALL,
4323 .nr_to_write = LONG_MAX,
4324 .range_start = start,
4325 .range_end = end,
4326 };
4327
4328 filemap_fdatawrite_wbc(mapping, &wbc);
4329 }
4330
4331 /* Wait for writeback to complete on all folios and discard. */
4332 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4333
4334 unlock:
4335 filemap_invalidate_unlock(mapping);
4336 out:
4337 return filemap_check_errors(mapping);
4338 }
4339 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4340
4341 #ifdef CONFIG_CACHESTAT_SYSCALL
4342 /**
4343 * filemap_cachestat() - compute the page cache statistics of a mapping
4344 * @mapping: The mapping to compute the statistics for.
4345 * @first_index: The starting page cache index.
4346 * @last_index: The final page index (inclusive).
4347 * @cs: the cachestat struct to write the result to.
4348 *
4349 * This will query the page cache statistics of a mapping in the
4350 * page range of [first_index, last_index] (inclusive). The statistics
4351 * queried include: number of dirty pages, number of pages marked for
4352 * writeback, and the number of (recently) evicted pages.
4353 */
filemap_cachestat(struct address_space * mapping,pgoff_t first_index,pgoff_t last_index,struct cachestat * cs)4354 static void filemap_cachestat(struct address_space *mapping,
4355 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4356 {
4357 XA_STATE(xas, &mapping->i_pages, first_index);
4358 struct folio *folio;
4359
4360 /* Flush stats (and potentially sleep) outside the RCU read section. */
4361 mem_cgroup_flush_stats_ratelimited(NULL);
4362
4363 rcu_read_lock();
4364 xas_for_each(&xas, folio, last_index) {
4365 int order;
4366 unsigned long nr_pages;
4367 pgoff_t folio_first_index, folio_last_index;
4368
4369 /*
4370 * Don't deref the folio. It is not pinned, and might
4371 * get freed (and reused) underneath us.
4372 *
4373 * We *could* pin it, but that would be expensive for
4374 * what should be a fast and lightweight syscall.
4375 *
4376 * Instead, derive all information of interest from
4377 * the rcu-protected xarray.
4378 */
4379
4380 if (xas_retry(&xas, folio))
4381 continue;
4382
4383 order = xas_get_order(&xas);
4384 nr_pages = 1 << order;
4385 folio_first_index = round_down(xas.xa_index, 1 << order);
4386 folio_last_index = folio_first_index + nr_pages - 1;
4387
4388 /* Folios might straddle the range boundaries, only count covered pages */
4389 if (folio_first_index < first_index)
4390 nr_pages -= first_index - folio_first_index;
4391
4392 if (folio_last_index > last_index)
4393 nr_pages -= folio_last_index - last_index;
4394
4395 if (xa_is_value(folio)) {
4396 /* page is evicted */
4397 void *shadow = (void *)folio;
4398 bool workingset; /* not used */
4399
4400 cs->nr_evicted += nr_pages;
4401
4402 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4403 if (shmem_mapping(mapping)) {
4404 /* shmem file - in swap cache */
4405 swp_entry_t swp = radix_to_swp_entry(folio);
4406
4407 /* swapin error results in poisoned entry */
4408 if (non_swap_entry(swp))
4409 goto resched;
4410
4411 /*
4412 * Getting a swap entry from the shmem
4413 * inode means we beat
4414 * shmem_unuse(). rcu_read_lock()
4415 * ensures swapoff waits for us before
4416 * freeing the swapper space. However,
4417 * we can race with swapping and
4418 * invalidation, so there might not be
4419 * a shadow in the swapcache (yet).
4420 */
4421 shadow = get_shadow_from_swap_cache(swp);
4422 if (!shadow)
4423 goto resched;
4424 }
4425 #endif
4426 if (workingset_test_recent(shadow, true, &workingset, false))
4427 cs->nr_recently_evicted += nr_pages;
4428
4429 goto resched;
4430 }
4431
4432 /* page is in cache */
4433 cs->nr_cache += nr_pages;
4434
4435 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4436 cs->nr_dirty += nr_pages;
4437
4438 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4439 cs->nr_writeback += nr_pages;
4440
4441 resched:
4442 if (need_resched()) {
4443 xas_pause(&xas);
4444 cond_resched_rcu();
4445 }
4446 }
4447 rcu_read_unlock();
4448 }
4449
4450 /*
4451 * See mincore: reveal pagecache information only for files
4452 * that the calling process has write access to, or could (if
4453 * tried) open for writing.
4454 */
can_do_cachestat(struct file * f)4455 static inline bool can_do_cachestat(struct file *f)
4456 {
4457 if (f->f_mode & FMODE_WRITE)
4458 return true;
4459 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f)))
4460 return true;
4461 return file_permission(f, MAY_WRITE) == 0;
4462 }
4463
4464 /*
4465 * The cachestat(2) system call.
4466 *
4467 * cachestat() returns the page cache statistics of a file in the
4468 * bytes range specified by `off` and `len`: number of cached pages,
4469 * number of dirty pages, number of pages marked for writeback,
4470 * number of evicted pages, and number of recently evicted pages.
4471 *
4472 * An evicted page is a page that is previously in the page cache
4473 * but has been evicted since. A page is recently evicted if its last
4474 * eviction was recent enough that its reentry to the cache would
4475 * indicate that it is actively being used by the system, and that
4476 * there is memory pressure on the system.
4477 *
4478 * `off` and `len` must be non-negative integers. If `len` > 0,
4479 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4480 * we will query in the range from `off` to the end of the file.
4481 *
4482 * The `flags` argument is unused for now, but is included for future
4483 * extensibility. User should pass 0 (i.e no flag specified).
4484 *
4485 * Currently, hugetlbfs is not supported.
4486 *
4487 * Because the status of a page can change after cachestat() checks it
4488 * but before it returns to the application, the returned values may
4489 * contain stale information.
4490 *
4491 * return values:
4492 * zero - success
4493 * -EFAULT - cstat or cstat_range points to an illegal address
4494 * -EINVAL - invalid flags
4495 * -EBADF - invalid file descriptor
4496 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4497 */
SYSCALL_DEFINE4(cachestat,unsigned int,fd,struct cachestat_range __user *,cstat_range,struct cachestat __user *,cstat,unsigned int,flags)4498 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4499 struct cachestat_range __user *, cstat_range,
4500 struct cachestat __user *, cstat, unsigned int, flags)
4501 {
4502 CLASS(fd, f)(fd);
4503 struct address_space *mapping;
4504 struct cachestat_range csr;
4505 struct cachestat cs;
4506 pgoff_t first_index, last_index;
4507
4508 if (fd_empty(f))
4509 return -EBADF;
4510
4511 if (copy_from_user(&csr, cstat_range,
4512 sizeof(struct cachestat_range)))
4513 return -EFAULT;
4514
4515 /* hugetlbfs is not supported */
4516 if (is_file_hugepages(fd_file(f)))
4517 return -EOPNOTSUPP;
4518
4519 if (!can_do_cachestat(fd_file(f)))
4520 return -EPERM;
4521
4522 if (flags != 0)
4523 return -EINVAL;
4524
4525 first_index = csr.off >> PAGE_SHIFT;
4526 last_index =
4527 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4528 memset(&cs, 0, sizeof(struct cachestat));
4529 mapping = fd_file(f)->f_mapping;
4530 filemap_cachestat(mapping, first_index, last_index, &cs);
4531
4532 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4533 return -EFAULT;
4534
4535 return 0;
4536 }
4537 #endif /* CONFIG_CACHESTAT_SYSCALL */
4538