1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sysctl.h>
51 #include <asm/pgalloc.h>
52 #include <asm/tlbflush.h>
53 #include "internal.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/filemap.h>
57
58 /*
59 * FIXME: remove all knowledge of the buffer layer from the core VM
60 */
61 #include <linux/buffer_head.h> /* for try_to_free_buffers */
62
63 #include <asm/mman.h>
64
65 #include "swap.h"
66
67 /*
68 * Shared mappings implemented 30.11.1994. It's not fully working yet,
69 * though.
70 *
71 * Shared mappings now work. 15.8.1995 Bruno.
72 *
73 * finished 'unifying' the page and buffer cache and SMP-threaded the
74 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
75 *
76 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
77 */
78
79 /*
80 * Lock ordering:
81 *
82 * ->i_mmap_rwsem (truncate_pagecache)
83 * ->private_lock (__free_pte->block_dirty_folio)
84 * ->swap_lock (exclusive_swap_page, others)
85 * ->i_pages lock
86 *
87 * ->i_rwsem
88 * ->invalidate_lock (acquired by fs in truncate path)
89 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
90 *
91 * ->mmap_lock
92 * ->i_mmap_rwsem
93 * ->page_table_lock or pte_lock (various, mainly in memory.c)
94 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
95 *
96 * ->mmap_lock
97 * ->invalidate_lock (filemap_fault)
98 * ->lock_page (filemap_fault, access_process_vm)
99 *
100 * ->i_rwsem (generic_perform_write)
101 * ->mmap_lock (fault_in_readable->do_page_fault)
102 *
103 * bdi->wb.list_lock
104 * sb_lock (fs/fs-writeback.c)
105 * ->i_pages lock (__sync_single_inode)
106 *
107 * ->i_mmap_rwsem
108 * ->anon_vma.lock (vma_merge)
109 *
110 * ->anon_vma.lock
111 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
112 *
113 * ->page_table_lock or pte_lock
114 * ->swap_lock (try_to_unmap_one)
115 * ->private_lock (try_to_unmap_one)
116 * ->i_pages lock (try_to_unmap_one)
117 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed)
118 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru)
119 * ->private_lock (folio_remove_rmap_pte->set_page_dirty)
120 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
121 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
122 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
123 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
124 * ->inode->i_lock (zap_pte_range->set_page_dirty)
125 * ->private_lock (zap_pte_range->block_dirty_folio)
126 */
127
page_cache_delete(struct address_space * mapping,struct folio * folio,void * shadow)128 static void page_cache_delete(struct address_space *mapping,
129 struct folio *folio, void *shadow)
130 {
131 XA_STATE(xas, &mapping->i_pages, folio->index);
132 long nr = 1;
133
134 mapping_set_update(&xas, mapping);
135
136 xas_set_order(&xas, folio->index, folio_order(folio));
137 nr = folio_nr_pages(folio);
138
139 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
140
141 xas_store(&xas, shadow);
142 xas_init_marks(&xas);
143
144 folio->mapping = NULL;
145 /* Leave folio->index set: truncation lookup relies upon it */
146 mapping->nrpages -= nr;
147 }
148
filemap_unaccount_folio(struct address_space * mapping,struct folio * folio)149 static void filemap_unaccount_folio(struct address_space *mapping,
150 struct folio *folio)
151 {
152 long nr;
153
154 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
155 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
156 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
157 current->comm, folio_pfn(folio));
158 dump_page(&folio->page, "still mapped when deleted");
159 dump_stack();
160 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
161
162 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
163 int mapcount = folio_mapcount(folio);
164
165 if (folio_ref_count(folio) >= mapcount + 2) {
166 /*
167 * All vmas have already been torn down, so it's
168 * a good bet that actually the page is unmapped
169 * and we'd rather not leak it: if we're wrong,
170 * another bad page check should catch it later.
171 */
172 atomic_set(&folio->_mapcount, -1);
173 folio_ref_sub(folio, mapcount);
174 }
175 }
176 }
177
178 /* hugetlb folios do not participate in page cache accounting. */
179 if (folio_test_hugetlb(folio))
180 return;
181
182 nr = folio_nr_pages(folio);
183
184 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
185 if (folio_test_swapbacked(folio)) {
186 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
187 if (folio_test_pmd_mappable(folio))
188 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
189 } else if (folio_test_pmd_mappable(folio)) {
190 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
191 filemap_nr_thps_dec(mapping);
192 }
193 if (test_bit(AS_KERNEL_FILE, &folio->mapping->flags))
194 mod_node_page_state(folio_pgdat(folio),
195 NR_KERNEL_FILE_PAGES, -nr);
196
197 /*
198 * At this point folio must be either written or cleaned by
199 * truncate. Dirty folio here signals a bug and loss of
200 * unwritten data - on ordinary filesystems.
201 *
202 * But it's harmless on in-memory filesystems like tmpfs; and can
203 * occur when a driver which did get_user_pages() sets page dirty
204 * before putting it, while the inode is being finally evicted.
205 *
206 * Below fixes dirty accounting after removing the folio entirely
207 * but leaves the dirty flag set: it has no effect for truncated
208 * folio and anyway will be cleared before returning folio to
209 * buddy allocator.
210 */
211 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
212 mapping_can_writeback(mapping)))
213 folio_account_cleaned(folio, inode_to_wb(mapping->host));
214 }
215
216 /*
217 * Delete a page from the page cache and free it. Caller has to make
218 * sure the page is locked and that nobody else uses it - or that usage
219 * is safe. The caller must hold the i_pages lock.
220 */
__filemap_remove_folio(struct folio * folio,void * shadow)221 void __filemap_remove_folio(struct folio *folio, void *shadow)
222 {
223 struct address_space *mapping = folio->mapping;
224
225 trace_mm_filemap_delete_from_page_cache(folio);
226 filemap_unaccount_folio(mapping, folio);
227 page_cache_delete(mapping, folio, shadow);
228 }
229
filemap_free_folio(struct address_space * mapping,struct folio * folio)230 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
231 {
232 void (*free_folio)(struct folio *);
233
234 free_folio = mapping->a_ops->free_folio;
235 if (free_folio)
236 free_folio(folio);
237
238 folio_put_refs(folio, folio_nr_pages(folio));
239 }
240
241 /**
242 * filemap_remove_folio - Remove folio from page cache.
243 * @folio: The folio.
244 *
245 * This must be called only on folios that are locked and have been
246 * verified to be in the page cache. It will never put the folio into
247 * the free list because the caller has a reference on the page.
248 */
filemap_remove_folio(struct folio * folio)249 void filemap_remove_folio(struct folio *folio)
250 {
251 struct address_space *mapping = folio->mapping;
252
253 BUG_ON(!folio_test_locked(folio));
254 spin_lock(&mapping->host->i_lock);
255 xa_lock_irq(&mapping->i_pages);
256 __filemap_remove_folio(folio, NULL);
257 xa_unlock_irq(&mapping->i_pages);
258 if (mapping_shrinkable(mapping))
259 inode_add_lru(mapping->host);
260 spin_unlock(&mapping->host->i_lock);
261
262 filemap_free_folio(mapping, folio);
263 }
264
265 /*
266 * page_cache_delete_batch - delete several folios from page cache
267 * @mapping: the mapping to which folios belong
268 * @fbatch: batch of folios to delete
269 *
270 * The function walks over mapping->i_pages and removes folios passed in
271 * @fbatch from the mapping. The function expects @fbatch to be sorted
272 * by page index and is optimised for it to be dense.
273 * It tolerates holes in @fbatch (mapping entries at those indices are not
274 * modified).
275 *
276 * The function expects the i_pages lock to be held.
277 */
page_cache_delete_batch(struct address_space * mapping,struct folio_batch * fbatch)278 static void page_cache_delete_batch(struct address_space *mapping,
279 struct folio_batch *fbatch)
280 {
281 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
282 long total_pages = 0;
283 int i = 0;
284 struct folio *folio;
285
286 mapping_set_update(&xas, mapping);
287 xas_for_each(&xas, folio, ULONG_MAX) {
288 if (i >= folio_batch_count(fbatch))
289 break;
290
291 /* A swap/dax/shadow entry got inserted? Skip it. */
292 if (xa_is_value(folio))
293 continue;
294 /*
295 * A page got inserted in our range? Skip it. We have our
296 * pages locked so they are protected from being removed.
297 * If we see a page whose index is higher than ours, it
298 * means our page has been removed, which shouldn't be
299 * possible because we're holding the PageLock.
300 */
301 if (folio != fbatch->folios[i]) {
302 VM_BUG_ON_FOLIO(folio->index >
303 fbatch->folios[i]->index, folio);
304 continue;
305 }
306
307 WARN_ON_ONCE(!folio_test_locked(folio));
308
309 folio->mapping = NULL;
310 /* Leave folio->index set: truncation lookup relies on it */
311
312 i++;
313 xas_store(&xas, NULL);
314 total_pages += folio_nr_pages(folio);
315 }
316 mapping->nrpages -= total_pages;
317 }
318
delete_from_page_cache_batch(struct address_space * mapping,struct folio_batch * fbatch)319 void delete_from_page_cache_batch(struct address_space *mapping,
320 struct folio_batch *fbatch)
321 {
322 int i;
323
324 if (!folio_batch_count(fbatch))
325 return;
326
327 spin_lock(&mapping->host->i_lock);
328 xa_lock_irq(&mapping->i_pages);
329 for (i = 0; i < folio_batch_count(fbatch); i++) {
330 struct folio *folio = fbatch->folios[i];
331
332 trace_mm_filemap_delete_from_page_cache(folio);
333 filemap_unaccount_folio(mapping, folio);
334 }
335 page_cache_delete_batch(mapping, fbatch);
336 xa_unlock_irq(&mapping->i_pages);
337 if (mapping_shrinkable(mapping))
338 inode_add_lru(mapping->host);
339 spin_unlock(&mapping->host->i_lock);
340
341 for (i = 0; i < folio_batch_count(fbatch); i++)
342 filemap_free_folio(mapping, fbatch->folios[i]);
343 }
344
filemap_check_errors(struct address_space * mapping)345 int filemap_check_errors(struct address_space *mapping)
346 {
347 int ret = 0;
348 /* Check for outstanding write errors */
349 if (test_bit(AS_ENOSPC, &mapping->flags) &&
350 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
351 ret = -ENOSPC;
352 if (test_bit(AS_EIO, &mapping->flags) &&
353 test_and_clear_bit(AS_EIO, &mapping->flags))
354 ret = -EIO;
355 return ret;
356 }
357 EXPORT_SYMBOL(filemap_check_errors);
358
filemap_check_and_keep_errors(struct address_space * mapping)359 static int filemap_check_and_keep_errors(struct address_space *mapping)
360 {
361 /* Check for outstanding write errors */
362 if (test_bit(AS_EIO, &mapping->flags))
363 return -EIO;
364 if (test_bit(AS_ENOSPC, &mapping->flags))
365 return -ENOSPC;
366 return 0;
367 }
368
369 /**
370 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
371 * @mapping: address space structure to write
372 * @wbc: the writeback_control controlling the writeout
373 *
374 * Call writepages on the mapping using the provided wbc to control the
375 * writeout.
376 *
377 * Return: %0 on success, negative error code otherwise.
378 */
filemap_fdatawrite_wbc(struct address_space * mapping,struct writeback_control * wbc)379 int filemap_fdatawrite_wbc(struct address_space *mapping,
380 struct writeback_control *wbc)
381 {
382 int ret;
383
384 if (!mapping_can_writeback(mapping) ||
385 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
386 return 0;
387
388 wbc_attach_fdatawrite_inode(wbc, mapping->host);
389 ret = do_writepages(mapping, wbc);
390 wbc_detach_inode(wbc);
391 return ret;
392 }
393 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
394
395 /**
396 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
397 * @mapping: address space structure to write
398 * @start: offset in bytes where the range starts
399 * @end: offset in bytes where the range ends (inclusive)
400 * @sync_mode: enable synchronous operation
401 *
402 * Start writeback against all of a mapping's dirty pages that lie
403 * within the byte offsets <start, end> inclusive.
404 *
405 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
406 * opposed to a regular memory cleansing writeback. The difference between
407 * these two operations is that if a dirty page/buffer is encountered, it must
408 * be waited upon, and not just skipped over.
409 *
410 * Return: %0 on success, negative error code otherwise.
411 */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)412 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
413 loff_t end, int sync_mode)
414 {
415 struct writeback_control wbc = {
416 .sync_mode = sync_mode,
417 .nr_to_write = LONG_MAX,
418 .range_start = start,
419 .range_end = end,
420 };
421
422 return filemap_fdatawrite_wbc(mapping, &wbc);
423 }
424
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)425 static inline int __filemap_fdatawrite(struct address_space *mapping,
426 int sync_mode)
427 {
428 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
429 }
430
filemap_fdatawrite(struct address_space * mapping)431 int filemap_fdatawrite(struct address_space *mapping)
432 {
433 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
434 }
435 EXPORT_SYMBOL(filemap_fdatawrite);
436
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)437 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
438 loff_t end)
439 {
440 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
441 }
442 EXPORT_SYMBOL(filemap_fdatawrite_range);
443
444 /**
445 * filemap_fdatawrite_range_kick - start writeback on a range
446 * @mapping: target address_space
447 * @start: index to start writeback on
448 * @end: last (inclusive) index for writeback
449 *
450 * This is a non-integrity writeback helper, to start writing back folios
451 * for the indicated range.
452 *
453 * Return: %0 on success, negative error code otherwise.
454 */
filemap_fdatawrite_range_kick(struct address_space * mapping,loff_t start,loff_t end)455 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start,
456 loff_t end)
457 {
458 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE);
459 }
460 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick);
461
462 /**
463 * filemap_flush - mostly a non-blocking flush
464 * @mapping: target address_space
465 *
466 * This is a mostly non-blocking flush. Not suitable for data-integrity
467 * purposes - I/O may not be started against all dirty pages.
468 *
469 * Return: %0 on success, negative error code otherwise.
470 */
filemap_flush(struct address_space * mapping)471 int filemap_flush(struct address_space *mapping)
472 {
473 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
474 }
475 EXPORT_SYMBOL(filemap_flush);
476
477 /**
478 * filemap_range_has_page - check if a page exists in range.
479 * @mapping: address space within which to check
480 * @start_byte: offset in bytes where the range starts
481 * @end_byte: offset in bytes where the range ends (inclusive)
482 *
483 * Find at least one page in the range supplied, usually used to check if
484 * direct writing in this range will trigger a writeback.
485 *
486 * Return: %true if at least one page exists in the specified range,
487 * %false otherwise.
488 */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)489 bool filemap_range_has_page(struct address_space *mapping,
490 loff_t start_byte, loff_t end_byte)
491 {
492 struct folio *folio;
493 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
494 pgoff_t max = end_byte >> PAGE_SHIFT;
495
496 if (end_byte < start_byte)
497 return false;
498
499 rcu_read_lock();
500 for (;;) {
501 folio = xas_find(&xas, max);
502 if (xas_retry(&xas, folio))
503 continue;
504 /* Shadow entries don't count */
505 if (xa_is_value(folio))
506 continue;
507 /*
508 * We don't need to try to pin this page; we're about to
509 * release the RCU lock anyway. It is enough to know that
510 * there was a page here recently.
511 */
512 break;
513 }
514 rcu_read_unlock();
515
516 return folio != NULL;
517 }
518 EXPORT_SYMBOL(filemap_range_has_page);
519
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)520 static void __filemap_fdatawait_range(struct address_space *mapping,
521 loff_t start_byte, loff_t end_byte)
522 {
523 pgoff_t index = start_byte >> PAGE_SHIFT;
524 pgoff_t end = end_byte >> PAGE_SHIFT;
525 struct folio_batch fbatch;
526 unsigned nr_folios;
527
528 folio_batch_init(&fbatch);
529
530 while (index <= end) {
531 unsigned i;
532
533 nr_folios = filemap_get_folios_tag(mapping, &index, end,
534 PAGECACHE_TAG_WRITEBACK, &fbatch);
535
536 if (!nr_folios)
537 break;
538
539 for (i = 0; i < nr_folios; i++) {
540 struct folio *folio = fbatch.folios[i];
541
542 folio_wait_writeback(folio);
543 }
544 folio_batch_release(&fbatch);
545 cond_resched();
546 }
547 }
548
549 /**
550 * filemap_fdatawait_range - wait for writeback to complete
551 * @mapping: address space structure to wait for
552 * @start_byte: offset in bytes where the range starts
553 * @end_byte: offset in bytes where the range ends (inclusive)
554 *
555 * Walk the list of under-writeback pages of the given address space
556 * in the given range and wait for all of them. Check error status of
557 * the address space and return it.
558 *
559 * Since the error status of the address space is cleared by this function,
560 * callers are responsible for checking the return value and handling and/or
561 * reporting the error.
562 *
563 * Return: error status of the address space.
564 */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)565 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
566 loff_t end_byte)
567 {
568 __filemap_fdatawait_range(mapping, start_byte, end_byte);
569 return filemap_check_errors(mapping);
570 }
571 EXPORT_SYMBOL(filemap_fdatawait_range);
572
573 /**
574 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
575 * @mapping: address space structure to wait for
576 * @start_byte: offset in bytes where the range starts
577 * @end_byte: offset in bytes where the range ends (inclusive)
578 *
579 * Walk the list of under-writeback pages of the given address space in the
580 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
581 * this function does not clear error status of the address space.
582 *
583 * Use this function if callers don't handle errors themselves. Expected
584 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
585 * fsfreeze(8)
586 */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)587 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
588 loff_t start_byte, loff_t end_byte)
589 {
590 __filemap_fdatawait_range(mapping, start_byte, end_byte);
591 return filemap_check_and_keep_errors(mapping);
592 }
593 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
594
595 /**
596 * file_fdatawait_range - wait for writeback to complete
597 * @file: file pointing to address space structure to wait for
598 * @start_byte: offset in bytes where the range starts
599 * @end_byte: offset in bytes where the range ends (inclusive)
600 *
601 * Walk the list of under-writeback pages of the address space that file
602 * refers to, in the given range and wait for all of them. Check error
603 * status of the address space vs. the file->f_wb_err cursor and return it.
604 *
605 * Since the error status of the file is advanced by this function,
606 * callers are responsible for checking the return value and handling and/or
607 * reporting the error.
608 *
609 * Return: error status of the address space vs. the file->f_wb_err cursor.
610 */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)611 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
612 {
613 struct address_space *mapping = file->f_mapping;
614
615 __filemap_fdatawait_range(mapping, start_byte, end_byte);
616 return file_check_and_advance_wb_err(file);
617 }
618 EXPORT_SYMBOL(file_fdatawait_range);
619
620 /**
621 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
622 * @mapping: address space structure to wait for
623 *
624 * Walk the list of under-writeback pages of the given address space
625 * and wait for all of them. Unlike filemap_fdatawait(), this function
626 * does not clear error status of the address space.
627 *
628 * Use this function if callers don't handle errors themselves. Expected
629 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
630 * fsfreeze(8)
631 *
632 * Return: error status of the address space.
633 */
filemap_fdatawait_keep_errors(struct address_space * mapping)634 int filemap_fdatawait_keep_errors(struct address_space *mapping)
635 {
636 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
637 return filemap_check_and_keep_errors(mapping);
638 }
639 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
640
641 /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)642 static bool mapping_needs_writeback(struct address_space *mapping)
643 {
644 return mapping->nrpages;
645 }
646
filemap_range_has_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)647 bool filemap_range_has_writeback(struct address_space *mapping,
648 loff_t start_byte, loff_t end_byte)
649 {
650 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
651 pgoff_t max = end_byte >> PAGE_SHIFT;
652 struct folio *folio;
653
654 if (end_byte < start_byte)
655 return false;
656
657 rcu_read_lock();
658 xas_for_each(&xas, folio, max) {
659 if (xas_retry(&xas, folio))
660 continue;
661 if (xa_is_value(folio))
662 continue;
663 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
664 folio_test_writeback(folio))
665 break;
666 }
667 rcu_read_unlock();
668 return folio != NULL;
669 }
670 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
671
672 /**
673 * filemap_write_and_wait_range - write out & wait on a file range
674 * @mapping: the address_space for the pages
675 * @lstart: offset in bytes where the range starts
676 * @lend: offset in bytes where the range ends (inclusive)
677 *
678 * Write out and wait upon file offsets lstart->lend, inclusive.
679 *
680 * Note that @lend is inclusive (describes the last byte to be written) so
681 * that this function can be used to write to the very end-of-file (end = -1).
682 *
683 * Return: error status of the address space.
684 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)685 int filemap_write_and_wait_range(struct address_space *mapping,
686 loff_t lstart, loff_t lend)
687 {
688 int err = 0, err2;
689
690 if (lend < lstart)
691 return 0;
692
693 if (mapping_needs_writeback(mapping)) {
694 err = __filemap_fdatawrite_range(mapping, lstart, lend,
695 WB_SYNC_ALL);
696 /*
697 * Even if the above returned error, the pages may be
698 * written partially (e.g. -ENOSPC), so we wait for it.
699 * But the -EIO is special case, it may indicate the worst
700 * thing (e.g. bug) happened, so we avoid waiting for it.
701 */
702 if (err != -EIO)
703 __filemap_fdatawait_range(mapping, lstart, lend);
704 }
705 err2 = filemap_check_errors(mapping);
706 if (!err)
707 err = err2;
708 return err;
709 }
710 EXPORT_SYMBOL(filemap_write_and_wait_range);
711
__filemap_set_wb_err(struct address_space * mapping,int err)712 void __filemap_set_wb_err(struct address_space *mapping, int err)
713 {
714 errseq_t eseq = errseq_set(&mapping->wb_err, err);
715
716 trace_filemap_set_wb_err(mapping, eseq);
717 }
718 EXPORT_SYMBOL(__filemap_set_wb_err);
719
720 /**
721 * file_check_and_advance_wb_err - report wb error (if any) that was previously
722 * and advance wb_err to current one
723 * @file: struct file on which the error is being reported
724 *
725 * When userland calls fsync (or something like nfsd does the equivalent), we
726 * want to report any writeback errors that occurred since the last fsync (or
727 * since the file was opened if there haven't been any).
728 *
729 * Grab the wb_err from the mapping. If it matches what we have in the file,
730 * then just quickly return 0. The file is all caught up.
731 *
732 * If it doesn't match, then take the mapping value, set the "seen" flag in
733 * it and try to swap it into place. If it works, or another task beat us
734 * to it with the new value, then update the f_wb_err and return the error
735 * portion. The error at this point must be reported via proper channels
736 * (a'la fsync, or NFS COMMIT operation, etc.).
737 *
738 * While we handle mapping->wb_err with atomic operations, the f_wb_err
739 * value is protected by the f_lock since we must ensure that it reflects
740 * the latest value swapped in for this file descriptor.
741 *
742 * Return: %0 on success, negative error code otherwise.
743 */
file_check_and_advance_wb_err(struct file * file)744 int file_check_and_advance_wb_err(struct file *file)
745 {
746 int err = 0;
747 errseq_t old = READ_ONCE(file->f_wb_err);
748 struct address_space *mapping = file->f_mapping;
749
750 /* Locklessly handle the common case where nothing has changed */
751 if (errseq_check(&mapping->wb_err, old)) {
752 /* Something changed, must use slow path */
753 spin_lock(&file->f_lock);
754 old = file->f_wb_err;
755 err = errseq_check_and_advance(&mapping->wb_err,
756 &file->f_wb_err);
757 trace_file_check_and_advance_wb_err(file, old);
758 spin_unlock(&file->f_lock);
759 }
760
761 /*
762 * We're mostly using this function as a drop in replacement for
763 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
764 * that the legacy code would have had on these flags.
765 */
766 clear_bit(AS_EIO, &mapping->flags);
767 clear_bit(AS_ENOSPC, &mapping->flags);
768 return err;
769 }
770 EXPORT_SYMBOL(file_check_and_advance_wb_err);
771
772 /**
773 * file_write_and_wait_range - write out & wait on a file range
774 * @file: file pointing to address_space with pages
775 * @lstart: offset in bytes where the range starts
776 * @lend: offset in bytes where the range ends (inclusive)
777 *
778 * Write out and wait upon file offsets lstart->lend, inclusive.
779 *
780 * Note that @lend is inclusive (describes the last byte to be written) so
781 * that this function can be used to write to the very end-of-file (end = -1).
782 *
783 * After writing out and waiting on the data, we check and advance the
784 * f_wb_err cursor to the latest value, and return any errors detected there.
785 *
786 * Return: %0 on success, negative error code otherwise.
787 */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)788 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
789 {
790 int err = 0, err2;
791 struct address_space *mapping = file->f_mapping;
792
793 if (lend < lstart)
794 return 0;
795
796 if (mapping_needs_writeback(mapping)) {
797 err = __filemap_fdatawrite_range(mapping, lstart, lend,
798 WB_SYNC_ALL);
799 /* See comment of filemap_write_and_wait() */
800 if (err != -EIO)
801 __filemap_fdatawait_range(mapping, lstart, lend);
802 }
803 err2 = file_check_and_advance_wb_err(file);
804 if (!err)
805 err = err2;
806 return err;
807 }
808 EXPORT_SYMBOL(file_write_and_wait_range);
809
810 /**
811 * replace_page_cache_folio - replace a pagecache folio with a new one
812 * @old: folio to be replaced
813 * @new: folio to replace with
814 *
815 * This function replaces a folio in the pagecache with a new one. On
816 * success it acquires the pagecache reference for the new folio and
817 * drops it for the old folio. Both the old and new folios must be
818 * locked. This function does not add the new folio to the LRU, the
819 * caller must do that.
820 *
821 * The remove + add is atomic. This function cannot fail.
822 */
replace_page_cache_folio(struct folio * old,struct folio * new)823 void replace_page_cache_folio(struct folio *old, struct folio *new)
824 {
825 struct address_space *mapping = old->mapping;
826 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
827 pgoff_t offset = old->index;
828 XA_STATE(xas, &mapping->i_pages, offset);
829
830 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
831 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
832 VM_BUG_ON_FOLIO(new->mapping, new);
833
834 folio_get(new);
835 new->mapping = mapping;
836 new->index = offset;
837
838 mem_cgroup_replace_folio(old, new);
839
840 xas_lock_irq(&xas);
841 xas_store(&xas, new);
842
843 old->mapping = NULL;
844 /* hugetlb pages do not participate in page cache accounting. */
845 if (!folio_test_hugetlb(old))
846 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
847 if (!folio_test_hugetlb(new))
848 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
849 if (folio_test_swapbacked(old))
850 __lruvec_stat_sub_folio(old, NR_SHMEM);
851 if (folio_test_swapbacked(new))
852 __lruvec_stat_add_folio(new, NR_SHMEM);
853 xas_unlock_irq(&xas);
854 if (free_folio)
855 free_folio(old);
856 folio_put(old);
857 }
858 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
859
__filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp,void ** shadowp)860 noinline int __filemap_add_folio(struct address_space *mapping,
861 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
862 {
863 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
864 bool huge;
865 long nr;
866 unsigned int forder = folio_order(folio);
867
868 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
869 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
870 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
871 folio);
872 mapping_set_update(&xas, mapping);
873
874 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
875 huge = folio_test_hugetlb(folio);
876 nr = folio_nr_pages(folio);
877
878 gfp &= GFP_RECLAIM_MASK;
879 folio_ref_add(folio, nr);
880 folio->mapping = mapping;
881 folio->index = xas.xa_index;
882
883 for (;;) {
884 int order = -1;
885 void *entry, *old = NULL;
886
887 xas_lock_irq(&xas);
888 xas_for_each_conflict(&xas, entry) {
889 old = entry;
890 if (!xa_is_value(entry)) {
891 xas_set_err(&xas, -EEXIST);
892 goto unlock;
893 }
894 /*
895 * If a larger entry exists,
896 * it will be the first and only entry iterated.
897 */
898 if (order == -1)
899 order = xas_get_order(&xas);
900 }
901
902 if (old) {
903 if (order > 0 && order > forder) {
904 unsigned int split_order = max(forder,
905 xas_try_split_min_order(order));
906
907 /* How to handle large swap entries? */
908 BUG_ON(shmem_mapping(mapping));
909
910 while (order > forder) {
911 xas_set_order(&xas, index, split_order);
912 xas_try_split(&xas, old, order);
913 if (xas_error(&xas))
914 goto unlock;
915 order = split_order;
916 split_order =
917 max(xas_try_split_min_order(
918 split_order),
919 forder);
920 }
921 xas_reset(&xas);
922 }
923 if (shadowp)
924 *shadowp = old;
925 }
926
927 xas_store(&xas, folio);
928 if (xas_error(&xas))
929 goto unlock;
930
931 mapping->nrpages += nr;
932
933 /* hugetlb pages do not participate in page cache accounting */
934 if (!huge) {
935 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
936 if (folio_test_pmd_mappable(folio))
937 __lruvec_stat_mod_folio(folio,
938 NR_FILE_THPS, nr);
939 }
940
941 unlock:
942 xas_unlock_irq(&xas);
943
944 if (!xas_nomem(&xas, gfp))
945 break;
946 }
947
948 if (xas_error(&xas))
949 goto error;
950
951 trace_mm_filemap_add_to_page_cache(folio);
952 return 0;
953 error:
954 folio->mapping = NULL;
955 /* Leave folio->index set: truncation relies upon it */
956 folio_put_refs(folio, nr);
957 return xas_error(&xas);
958 }
959 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
960
filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp)961 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
962 pgoff_t index, gfp_t gfp)
963 {
964 void *shadow = NULL;
965 int ret;
966 struct mem_cgroup *tmp;
967 bool kernel_file = test_bit(AS_KERNEL_FILE, &mapping->flags);
968
969 if (kernel_file)
970 tmp = set_active_memcg(root_mem_cgroup);
971 ret = mem_cgroup_charge(folio, NULL, gfp);
972 if (kernel_file)
973 set_active_memcg(tmp);
974 if (ret)
975 return ret;
976
977 __folio_set_locked(folio);
978 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
979 if (unlikely(ret)) {
980 mem_cgroup_uncharge(folio);
981 __folio_clear_locked(folio);
982 } else {
983 /*
984 * The folio might have been evicted from cache only
985 * recently, in which case it should be activated like
986 * any other repeatedly accessed folio.
987 * The exception is folios getting rewritten; evicting other
988 * data from the working set, only to cache data that will
989 * get overwritten with something else, is a waste of memory.
990 */
991 WARN_ON_ONCE(folio_test_active(folio));
992 if (!(gfp & __GFP_WRITE) && shadow)
993 workingset_refault(folio, shadow);
994 folio_add_lru(folio);
995 if (kernel_file)
996 mod_node_page_state(folio_pgdat(folio),
997 NR_KERNEL_FILE_PAGES,
998 folio_nr_pages(folio));
999 }
1000 return ret;
1001 }
1002 EXPORT_SYMBOL_GPL(filemap_add_folio);
1003
1004 #ifdef CONFIG_NUMA
filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order)1005 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
1006 {
1007 int n;
1008 struct folio *folio;
1009
1010 if (cpuset_do_page_mem_spread()) {
1011 unsigned int cpuset_mems_cookie;
1012 do {
1013 cpuset_mems_cookie = read_mems_allowed_begin();
1014 n = cpuset_mem_spread_node();
1015 folio = __folio_alloc_node_noprof(gfp, order, n);
1016 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1017
1018 return folio;
1019 }
1020 return folio_alloc_noprof(gfp, order);
1021 }
1022 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1023 #endif
1024
1025 /*
1026 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1027 *
1028 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1029 *
1030 * @mapping1: the first mapping to lock
1031 * @mapping2: the second mapping to lock
1032 */
filemap_invalidate_lock_two(struct address_space * mapping1,struct address_space * mapping2)1033 void filemap_invalidate_lock_two(struct address_space *mapping1,
1034 struct address_space *mapping2)
1035 {
1036 if (mapping1 > mapping2)
1037 swap(mapping1, mapping2);
1038 if (mapping1)
1039 down_write(&mapping1->invalidate_lock);
1040 if (mapping2 && mapping1 != mapping2)
1041 down_write_nested(&mapping2->invalidate_lock, 1);
1042 }
1043 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1044
1045 /*
1046 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1047 *
1048 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1049 *
1050 * @mapping1: the first mapping to unlock
1051 * @mapping2: the second mapping to unlock
1052 */
filemap_invalidate_unlock_two(struct address_space * mapping1,struct address_space * mapping2)1053 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1054 struct address_space *mapping2)
1055 {
1056 if (mapping1)
1057 up_write(&mapping1->invalidate_lock);
1058 if (mapping2 && mapping1 != mapping2)
1059 up_write(&mapping2->invalidate_lock);
1060 }
1061 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1062
1063 /*
1064 * In order to wait for pages to become available there must be
1065 * waitqueues associated with pages. By using a hash table of
1066 * waitqueues where the bucket discipline is to maintain all
1067 * waiters on the same queue and wake all when any of the pages
1068 * become available, and for the woken contexts to check to be
1069 * sure the appropriate page became available, this saves space
1070 * at a cost of "thundering herd" phenomena during rare hash
1071 * collisions.
1072 */
1073 #define PAGE_WAIT_TABLE_BITS 8
1074 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1075 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1076
folio_waitqueue(struct folio * folio)1077 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1078 {
1079 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1080 }
1081
1082 /* How many times do we accept lock stealing from under a waiter? */
1083 static int sysctl_page_lock_unfairness = 5;
1084 static const struct ctl_table filemap_sysctl_table[] = {
1085 {
1086 .procname = "page_lock_unfairness",
1087 .data = &sysctl_page_lock_unfairness,
1088 .maxlen = sizeof(sysctl_page_lock_unfairness),
1089 .mode = 0644,
1090 .proc_handler = proc_dointvec_minmax,
1091 .extra1 = SYSCTL_ZERO,
1092 }
1093 };
1094
pagecache_init(void)1095 void __init pagecache_init(void)
1096 {
1097 int i;
1098
1099 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1100 init_waitqueue_head(&folio_wait_table[i]);
1101
1102 page_writeback_init();
1103 register_sysctl_init("vm", filemap_sysctl_table);
1104 }
1105
1106 /*
1107 * The page wait code treats the "wait->flags" somewhat unusually, because
1108 * we have multiple different kinds of waits, not just the usual "exclusive"
1109 * one.
1110 *
1111 * We have:
1112 *
1113 * (a) no special bits set:
1114 *
1115 * We're just waiting for the bit to be released, and when a waker
1116 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1117 * and remove it from the wait queue.
1118 *
1119 * Simple and straightforward.
1120 *
1121 * (b) WQ_FLAG_EXCLUSIVE:
1122 *
1123 * The waiter is waiting to get the lock, and only one waiter should
1124 * be woken up to avoid any thundering herd behavior. We'll set the
1125 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1126 *
1127 * This is the traditional exclusive wait.
1128 *
1129 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1130 *
1131 * The waiter is waiting to get the bit, and additionally wants the
1132 * lock to be transferred to it for fair lock behavior. If the lock
1133 * cannot be taken, we stop walking the wait queue without waking
1134 * the waiter.
1135 *
1136 * This is the "fair lock handoff" case, and in addition to setting
1137 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1138 * that it now has the lock.
1139 */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1140 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1141 {
1142 unsigned int flags;
1143 struct wait_page_key *key = arg;
1144 struct wait_page_queue *wait_page
1145 = container_of(wait, struct wait_page_queue, wait);
1146
1147 if (!wake_page_match(wait_page, key))
1148 return 0;
1149
1150 /*
1151 * If it's a lock handoff wait, we get the bit for it, and
1152 * stop walking (and do not wake it up) if we can't.
1153 */
1154 flags = wait->flags;
1155 if (flags & WQ_FLAG_EXCLUSIVE) {
1156 if (test_bit(key->bit_nr, &key->folio->flags.f))
1157 return -1;
1158 if (flags & WQ_FLAG_CUSTOM) {
1159 if (test_and_set_bit(key->bit_nr, &key->folio->flags.f))
1160 return -1;
1161 flags |= WQ_FLAG_DONE;
1162 }
1163 }
1164
1165 /*
1166 * We are holding the wait-queue lock, but the waiter that
1167 * is waiting for this will be checking the flags without
1168 * any locking.
1169 *
1170 * So update the flags atomically, and wake up the waiter
1171 * afterwards to avoid any races. This store-release pairs
1172 * with the load-acquire in folio_wait_bit_common().
1173 */
1174 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1175 wake_up_state(wait->private, mode);
1176
1177 /*
1178 * Ok, we have successfully done what we're waiting for,
1179 * and we can unconditionally remove the wait entry.
1180 *
1181 * Note that this pairs with the "finish_wait()" in the
1182 * waiter, and has to be the absolute last thing we do.
1183 * After this list_del_init(&wait->entry) the wait entry
1184 * might be de-allocated and the process might even have
1185 * exited.
1186 */
1187 list_del_init_careful(&wait->entry);
1188 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1189 }
1190
folio_wake_bit(struct folio * folio,int bit_nr)1191 static void folio_wake_bit(struct folio *folio, int bit_nr)
1192 {
1193 wait_queue_head_t *q = folio_waitqueue(folio);
1194 struct wait_page_key key;
1195 unsigned long flags;
1196
1197 key.folio = folio;
1198 key.bit_nr = bit_nr;
1199 key.page_match = 0;
1200
1201 spin_lock_irqsave(&q->lock, flags);
1202 __wake_up_locked_key(q, TASK_NORMAL, &key);
1203
1204 /*
1205 * It's possible to miss clearing waiters here, when we woke our page
1206 * waiters, but the hashed waitqueue has waiters for other pages on it.
1207 * That's okay, it's a rare case. The next waker will clear it.
1208 *
1209 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1210 * other), the flag may be cleared in the course of freeing the page;
1211 * but that is not required for correctness.
1212 */
1213 if (!waitqueue_active(q) || !key.page_match)
1214 folio_clear_waiters(folio);
1215
1216 spin_unlock_irqrestore(&q->lock, flags);
1217 }
1218
1219 /*
1220 * A choice of three behaviors for folio_wait_bit_common():
1221 */
1222 enum behavior {
1223 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1224 * __folio_lock() waiting on then setting PG_locked.
1225 */
1226 SHARED, /* Hold ref to page and check the bit when woken, like
1227 * folio_wait_writeback() waiting on PG_writeback.
1228 */
1229 DROP, /* Drop ref to page before wait, no check when woken,
1230 * like folio_put_wait_locked() on PG_locked.
1231 */
1232 };
1233
1234 /*
1235 * Attempt to check (or get) the folio flag, and mark us done
1236 * if successful.
1237 */
folio_trylock_flag(struct folio * folio,int bit_nr,struct wait_queue_entry * wait)1238 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1239 struct wait_queue_entry *wait)
1240 {
1241 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1242 if (test_and_set_bit(bit_nr, &folio->flags.f))
1243 return false;
1244 } else if (test_bit(bit_nr, &folio->flags.f))
1245 return false;
1246
1247 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1248 return true;
1249 }
1250
folio_wait_bit_common(struct folio * folio,int bit_nr,int state,enum behavior behavior)1251 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1252 int state, enum behavior behavior)
1253 {
1254 wait_queue_head_t *q = folio_waitqueue(folio);
1255 int unfairness = sysctl_page_lock_unfairness;
1256 struct wait_page_queue wait_page;
1257 wait_queue_entry_t *wait = &wait_page.wait;
1258 bool thrashing = false;
1259 unsigned long pflags;
1260 bool in_thrashing;
1261
1262 if (bit_nr == PG_locked &&
1263 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1264 delayacct_thrashing_start(&in_thrashing);
1265 psi_memstall_enter(&pflags);
1266 thrashing = true;
1267 }
1268
1269 init_wait(wait);
1270 wait->func = wake_page_function;
1271 wait_page.folio = folio;
1272 wait_page.bit_nr = bit_nr;
1273
1274 repeat:
1275 wait->flags = 0;
1276 if (behavior == EXCLUSIVE) {
1277 wait->flags = WQ_FLAG_EXCLUSIVE;
1278 if (--unfairness < 0)
1279 wait->flags |= WQ_FLAG_CUSTOM;
1280 }
1281
1282 /*
1283 * Do one last check whether we can get the
1284 * page bit synchronously.
1285 *
1286 * Do the folio_set_waiters() marking before that
1287 * to let any waker we _just_ missed know they
1288 * need to wake us up (otherwise they'll never
1289 * even go to the slow case that looks at the
1290 * page queue), and add ourselves to the wait
1291 * queue if we need to sleep.
1292 *
1293 * This part needs to be done under the queue
1294 * lock to avoid races.
1295 */
1296 spin_lock_irq(&q->lock);
1297 folio_set_waiters(folio);
1298 if (!folio_trylock_flag(folio, bit_nr, wait))
1299 __add_wait_queue_entry_tail(q, wait);
1300 spin_unlock_irq(&q->lock);
1301
1302 /*
1303 * From now on, all the logic will be based on
1304 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1305 * see whether the page bit testing has already
1306 * been done by the wake function.
1307 *
1308 * We can drop our reference to the folio.
1309 */
1310 if (behavior == DROP)
1311 folio_put(folio);
1312
1313 /*
1314 * Note that until the "finish_wait()", or until
1315 * we see the WQ_FLAG_WOKEN flag, we need to
1316 * be very careful with the 'wait->flags', because
1317 * we may race with a waker that sets them.
1318 */
1319 for (;;) {
1320 unsigned int flags;
1321
1322 set_current_state(state);
1323
1324 /* Loop until we've been woken or interrupted */
1325 flags = smp_load_acquire(&wait->flags);
1326 if (!(flags & WQ_FLAG_WOKEN)) {
1327 if (signal_pending_state(state, current))
1328 break;
1329
1330 io_schedule();
1331 continue;
1332 }
1333
1334 /* If we were non-exclusive, we're done */
1335 if (behavior != EXCLUSIVE)
1336 break;
1337
1338 /* If the waker got the lock for us, we're done */
1339 if (flags & WQ_FLAG_DONE)
1340 break;
1341
1342 /*
1343 * Otherwise, if we're getting the lock, we need to
1344 * try to get it ourselves.
1345 *
1346 * And if that fails, we'll have to retry this all.
1347 */
1348 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1349 goto repeat;
1350
1351 wait->flags |= WQ_FLAG_DONE;
1352 break;
1353 }
1354
1355 /*
1356 * If a signal happened, this 'finish_wait()' may remove the last
1357 * waiter from the wait-queues, but the folio waiters bit will remain
1358 * set. That's ok. The next wakeup will take care of it, and trying
1359 * to do it here would be difficult and prone to races.
1360 */
1361 finish_wait(q, wait);
1362
1363 if (thrashing) {
1364 delayacct_thrashing_end(&in_thrashing);
1365 psi_memstall_leave(&pflags);
1366 }
1367
1368 /*
1369 * NOTE! The wait->flags weren't stable until we've done the
1370 * 'finish_wait()', and we could have exited the loop above due
1371 * to a signal, and had a wakeup event happen after the signal
1372 * test but before the 'finish_wait()'.
1373 *
1374 * So only after the finish_wait() can we reliably determine
1375 * if we got woken up or not, so we can now figure out the final
1376 * return value based on that state without races.
1377 *
1378 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1379 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1380 */
1381 if (behavior == EXCLUSIVE)
1382 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1383
1384 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1385 }
1386
1387 #ifdef CONFIG_MIGRATION
1388 /**
1389 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1390 * @entry: migration swap entry.
1391 * @ptl: already locked ptl. This function will drop the lock.
1392 *
1393 * Wait for a migration entry referencing the given page to be removed. This is
1394 * equivalent to folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE) except
1395 * this can be called without taking a reference on the page. Instead this
1396 * should be called while holding the ptl for the migration entry referencing
1397 * the page.
1398 *
1399 * Returns after unlocking the ptl.
1400 *
1401 * This follows the same logic as folio_wait_bit_common() so see the comments
1402 * there.
1403 */
migration_entry_wait_on_locked(swp_entry_t entry,spinlock_t * ptl)1404 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1405 __releases(ptl)
1406 {
1407 struct wait_page_queue wait_page;
1408 wait_queue_entry_t *wait = &wait_page.wait;
1409 bool thrashing = false;
1410 unsigned long pflags;
1411 bool in_thrashing;
1412 wait_queue_head_t *q;
1413 struct folio *folio = pfn_swap_entry_folio(entry);
1414
1415 q = folio_waitqueue(folio);
1416 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1417 delayacct_thrashing_start(&in_thrashing);
1418 psi_memstall_enter(&pflags);
1419 thrashing = true;
1420 }
1421
1422 init_wait(wait);
1423 wait->func = wake_page_function;
1424 wait_page.folio = folio;
1425 wait_page.bit_nr = PG_locked;
1426 wait->flags = 0;
1427
1428 spin_lock_irq(&q->lock);
1429 folio_set_waiters(folio);
1430 if (!folio_trylock_flag(folio, PG_locked, wait))
1431 __add_wait_queue_entry_tail(q, wait);
1432 spin_unlock_irq(&q->lock);
1433
1434 /*
1435 * If a migration entry exists for the page the migration path must hold
1436 * a valid reference to the page, and it must take the ptl to remove the
1437 * migration entry. So the page is valid until the ptl is dropped.
1438 */
1439 spin_unlock(ptl);
1440
1441 for (;;) {
1442 unsigned int flags;
1443
1444 set_current_state(TASK_UNINTERRUPTIBLE);
1445
1446 /* Loop until we've been woken or interrupted */
1447 flags = smp_load_acquire(&wait->flags);
1448 if (!(flags & WQ_FLAG_WOKEN)) {
1449 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1450 break;
1451
1452 io_schedule();
1453 continue;
1454 }
1455 break;
1456 }
1457
1458 finish_wait(q, wait);
1459
1460 if (thrashing) {
1461 delayacct_thrashing_end(&in_thrashing);
1462 psi_memstall_leave(&pflags);
1463 }
1464 }
1465 #endif
1466
folio_wait_bit(struct folio * folio,int bit_nr)1467 void folio_wait_bit(struct folio *folio, int bit_nr)
1468 {
1469 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1470 }
1471 EXPORT_SYMBOL(folio_wait_bit);
1472
folio_wait_bit_killable(struct folio * folio,int bit_nr)1473 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1474 {
1475 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1476 }
1477 EXPORT_SYMBOL(folio_wait_bit_killable);
1478
1479 /**
1480 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1481 * @folio: The folio to wait for.
1482 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1483 *
1484 * The caller should hold a reference on @folio. They expect the page to
1485 * become unlocked relatively soon, but do not wish to hold up migration
1486 * (for example) by holding the reference while waiting for the folio to
1487 * come unlocked. After this function returns, the caller should not
1488 * dereference @folio.
1489 *
1490 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1491 */
folio_put_wait_locked(struct folio * folio,int state)1492 static int folio_put_wait_locked(struct folio *folio, int state)
1493 {
1494 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1495 }
1496
1497 /**
1498 * folio_unlock - Unlock a locked folio.
1499 * @folio: The folio.
1500 *
1501 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1502 *
1503 * Context: May be called from interrupt or process context. May not be
1504 * called from NMI context.
1505 */
folio_unlock(struct folio * folio)1506 void folio_unlock(struct folio *folio)
1507 {
1508 /* Bit 7 allows x86 to check the byte's sign bit */
1509 BUILD_BUG_ON(PG_waiters != 7);
1510 BUILD_BUG_ON(PG_locked > 7);
1511 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1512 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1513 folio_wake_bit(folio, PG_locked);
1514 }
1515 EXPORT_SYMBOL(folio_unlock);
1516
1517 /**
1518 * folio_end_read - End read on a folio.
1519 * @folio: The folio.
1520 * @success: True if all reads completed successfully.
1521 *
1522 * When all reads against a folio have completed, filesystems should
1523 * call this function to let the pagecache know that no more reads
1524 * are outstanding. This will unlock the folio and wake up any thread
1525 * sleeping on the lock. The folio will also be marked uptodate if all
1526 * reads succeeded.
1527 *
1528 * Context: May be called from interrupt or process context. May not be
1529 * called from NMI context.
1530 */
folio_end_read(struct folio * folio,bool success)1531 void folio_end_read(struct folio *folio, bool success)
1532 {
1533 unsigned long mask = 1 << PG_locked;
1534
1535 /* Must be in bottom byte for x86 to work */
1536 BUILD_BUG_ON(PG_uptodate > 7);
1537 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1538 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio);
1539
1540 if (likely(success))
1541 mask |= 1 << PG_uptodate;
1542 if (folio_xor_flags_has_waiters(folio, mask))
1543 folio_wake_bit(folio, PG_locked);
1544 }
1545 EXPORT_SYMBOL(folio_end_read);
1546
1547 /**
1548 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1549 * @folio: The folio.
1550 *
1551 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1552 * it. The folio reference held for PG_private_2 being set is released.
1553 *
1554 * This is, for example, used when a netfs folio is being written to a local
1555 * disk cache, thereby allowing writes to the cache for the same folio to be
1556 * serialised.
1557 */
folio_end_private_2(struct folio * folio)1558 void folio_end_private_2(struct folio *folio)
1559 {
1560 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1561 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1562 folio_wake_bit(folio, PG_private_2);
1563 folio_put(folio);
1564 }
1565 EXPORT_SYMBOL(folio_end_private_2);
1566
1567 /**
1568 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1569 * @folio: The folio to wait on.
1570 *
1571 * Wait for PG_private_2 to be cleared on a folio.
1572 */
folio_wait_private_2(struct folio * folio)1573 void folio_wait_private_2(struct folio *folio)
1574 {
1575 while (folio_test_private_2(folio))
1576 folio_wait_bit(folio, PG_private_2);
1577 }
1578 EXPORT_SYMBOL(folio_wait_private_2);
1579
1580 /**
1581 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1582 * @folio: The folio to wait on.
1583 *
1584 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1585 * received by the calling task.
1586 *
1587 * Return:
1588 * - 0 if successful.
1589 * - -EINTR if a fatal signal was encountered.
1590 */
folio_wait_private_2_killable(struct folio * folio)1591 int folio_wait_private_2_killable(struct folio *folio)
1592 {
1593 int ret = 0;
1594
1595 while (folio_test_private_2(folio)) {
1596 ret = folio_wait_bit_killable(folio, PG_private_2);
1597 if (ret < 0)
1598 break;
1599 }
1600
1601 return ret;
1602 }
1603 EXPORT_SYMBOL(folio_wait_private_2_killable);
1604
filemap_end_dropbehind(struct folio * folio)1605 static void filemap_end_dropbehind(struct folio *folio)
1606 {
1607 struct address_space *mapping = folio->mapping;
1608
1609 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1610
1611 if (folio_test_writeback(folio) || folio_test_dirty(folio))
1612 return;
1613 if (!folio_test_clear_dropbehind(folio))
1614 return;
1615 if (mapping)
1616 folio_unmap_invalidate(mapping, folio, 0);
1617 }
1618
1619 /*
1620 * If folio was marked as dropbehind, then pages should be dropped when writeback
1621 * completes. Do that now. If we fail, it's likely because of a big folio -
1622 * just reset dropbehind for that case and latter completions should invalidate.
1623 */
folio_end_dropbehind(struct folio * folio)1624 void folio_end_dropbehind(struct folio *folio)
1625 {
1626 if (!folio_test_dropbehind(folio))
1627 return;
1628
1629 /*
1630 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback,
1631 * but can happen if normal writeback just happens to find dirty folios
1632 * that were created as part of uncached writeback, and that writeback
1633 * would otherwise not need non-IRQ handling. Just skip the
1634 * invalidation in that case.
1635 */
1636 if (in_task() && folio_trylock(folio)) {
1637 filemap_end_dropbehind(folio);
1638 folio_unlock(folio);
1639 }
1640 }
1641 EXPORT_SYMBOL_GPL(folio_end_dropbehind);
1642
1643 /**
1644 * folio_end_writeback_no_dropbehind - End writeback against a folio.
1645 * @folio: The folio.
1646 *
1647 * The folio must actually be under writeback.
1648 * This call is intended for filesystems that need to defer dropbehind.
1649 *
1650 * Context: May be called from process or interrupt context.
1651 */
folio_end_writeback_no_dropbehind(struct folio * folio)1652 void folio_end_writeback_no_dropbehind(struct folio *folio)
1653 {
1654 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1655
1656 /*
1657 * folio_test_clear_reclaim() could be used here but it is an
1658 * atomic operation and overkill in this particular case. Failing
1659 * to shuffle a folio marked for immediate reclaim is too mild
1660 * a gain to justify taking an atomic operation penalty at the
1661 * end of every folio writeback.
1662 */
1663 if (folio_test_reclaim(folio)) {
1664 folio_clear_reclaim(folio);
1665 folio_rotate_reclaimable(folio);
1666 }
1667
1668 if (__folio_end_writeback(folio))
1669 folio_wake_bit(folio, PG_writeback);
1670
1671 acct_reclaim_writeback(folio);
1672 }
1673 EXPORT_SYMBOL_GPL(folio_end_writeback_no_dropbehind);
1674
1675 /**
1676 * folio_end_writeback - End writeback against a folio.
1677 * @folio: The folio.
1678 *
1679 * The folio must actually be under writeback.
1680 *
1681 * Context: May be called from process or interrupt context.
1682 */
folio_end_writeback(struct folio * folio)1683 void folio_end_writeback(struct folio *folio)
1684 {
1685 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1686
1687 /*
1688 * Writeback does not hold a folio reference of its own, relying
1689 * on truncation to wait for the clearing of PG_writeback.
1690 * But here we must make sure that the folio is not freed and
1691 * reused before the folio_wake_bit().
1692 */
1693 folio_get(folio);
1694 folio_end_writeback_no_dropbehind(folio);
1695 folio_end_dropbehind(folio);
1696 folio_put(folio);
1697 }
1698 EXPORT_SYMBOL(folio_end_writeback);
1699
1700 /**
1701 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1702 * @folio: The folio to lock
1703 */
__folio_lock(struct folio * folio)1704 void __folio_lock(struct folio *folio)
1705 {
1706 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1707 EXCLUSIVE);
1708 }
1709 EXPORT_SYMBOL(__folio_lock);
1710
__folio_lock_killable(struct folio * folio)1711 int __folio_lock_killable(struct folio *folio)
1712 {
1713 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1714 EXCLUSIVE);
1715 }
1716 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1717
__folio_lock_async(struct folio * folio,struct wait_page_queue * wait)1718 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1719 {
1720 struct wait_queue_head *q = folio_waitqueue(folio);
1721 int ret;
1722
1723 wait->folio = folio;
1724 wait->bit_nr = PG_locked;
1725
1726 spin_lock_irq(&q->lock);
1727 __add_wait_queue_entry_tail(q, &wait->wait);
1728 folio_set_waiters(folio);
1729 ret = !folio_trylock(folio);
1730 /*
1731 * If we were successful now, we know we're still on the
1732 * waitqueue as we're still under the lock. This means it's
1733 * safe to remove and return success, we know the callback
1734 * isn't going to trigger.
1735 */
1736 if (!ret)
1737 __remove_wait_queue(q, &wait->wait);
1738 else
1739 ret = -EIOCBQUEUED;
1740 spin_unlock_irq(&q->lock);
1741 return ret;
1742 }
1743
1744 /*
1745 * Return values:
1746 * 0 - folio is locked.
1747 * non-zero - folio is not locked.
1748 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1749 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1750 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1751 *
1752 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1753 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1754 */
__folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1755 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1756 {
1757 unsigned int flags = vmf->flags;
1758
1759 if (fault_flag_allow_retry_first(flags)) {
1760 /*
1761 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1762 * released even though returning VM_FAULT_RETRY.
1763 */
1764 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1765 return VM_FAULT_RETRY;
1766
1767 release_fault_lock(vmf);
1768 if (flags & FAULT_FLAG_KILLABLE)
1769 folio_wait_locked_killable(folio);
1770 else
1771 folio_wait_locked(folio);
1772 return VM_FAULT_RETRY;
1773 }
1774 if (flags & FAULT_FLAG_KILLABLE) {
1775 bool ret;
1776
1777 ret = __folio_lock_killable(folio);
1778 if (ret) {
1779 release_fault_lock(vmf);
1780 return VM_FAULT_RETRY;
1781 }
1782 } else {
1783 __folio_lock(folio);
1784 }
1785
1786 return 0;
1787 }
1788
1789 /**
1790 * page_cache_next_miss() - Find the next gap in the page cache.
1791 * @mapping: Mapping.
1792 * @index: Index.
1793 * @max_scan: Maximum range to search.
1794 *
1795 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1796 * gap with the lowest index.
1797 *
1798 * This function may be called under the rcu_read_lock. However, this will
1799 * not atomically search a snapshot of the cache at a single point in time.
1800 * For example, if a gap is created at index 5, then subsequently a gap is
1801 * created at index 10, page_cache_next_miss covering both indices may
1802 * return 10 if called under the rcu_read_lock.
1803 *
1804 * Return: The index of the gap if found, otherwise an index outside the
1805 * range specified (in which case 'return - index >= max_scan' will be true).
1806 * In the rare case of index wrap-around, 0 will be returned.
1807 */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1808 pgoff_t page_cache_next_miss(struct address_space *mapping,
1809 pgoff_t index, unsigned long max_scan)
1810 {
1811 XA_STATE(xas, &mapping->i_pages, index);
1812 unsigned long nr = max_scan;
1813
1814 while (nr--) {
1815 void *entry = xas_next(&xas);
1816 if (!entry || xa_is_value(entry))
1817 return xas.xa_index;
1818 if (xas.xa_index == 0)
1819 return 0;
1820 }
1821
1822 return index + max_scan;
1823 }
1824 EXPORT_SYMBOL(page_cache_next_miss);
1825
1826 /**
1827 * page_cache_prev_miss() - Find the previous gap in the page cache.
1828 * @mapping: Mapping.
1829 * @index: Index.
1830 * @max_scan: Maximum range to search.
1831 *
1832 * Search the range [max(index - max_scan + 1, 0), index] for the
1833 * gap with the highest index.
1834 *
1835 * This function may be called under the rcu_read_lock. However, this will
1836 * not atomically search a snapshot of the cache at a single point in time.
1837 * For example, if a gap is created at index 10, then subsequently a gap is
1838 * created at index 5, page_cache_prev_miss() covering both indices may
1839 * return 5 if called under the rcu_read_lock.
1840 *
1841 * Return: The index of the gap if found, otherwise an index outside the
1842 * range specified (in which case 'index - return >= max_scan' will be true).
1843 * In the rare case of wrap-around, ULONG_MAX will be returned.
1844 */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1845 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1846 pgoff_t index, unsigned long max_scan)
1847 {
1848 XA_STATE(xas, &mapping->i_pages, index);
1849
1850 while (max_scan--) {
1851 void *entry = xas_prev(&xas);
1852 if (!entry || xa_is_value(entry))
1853 break;
1854 if (xas.xa_index == ULONG_MAX)
1855 break;
1856 }
1857
1858 return xas.xa_index;
1859 }
1860 EXPORT_SYMBOL(page_cache_prev_miss);
1861
1862 /*
1863 * Lockless page cache protocol:
1864 * On the lookup side:
1865 * 1. Load the folio from i_pages
1866 * 2. Increment the refcount if it's not zero
1867 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1868 *
1869 * On the removal side:
1870 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1871 * B. Remove the page from i_pages
1872 * C. Return the page to the page allocator
1873 *
1874 * This means that any page may have its reference count temporarily
1875 * increased by a speculative page cache (or GUP-fast) lookup as it can
1876 * be allocated by another user before the RCU grace period expires.
1877 * Because the refcount temporarily acquired here may end up being the
1878 * last refcount on the page, any page allocation must be freeable by
1879 * folio_put().
1880 */
1881
1882 /*
1883 * filemap_get_entry - Get a page cache entry.
1884 * @mapping: the address_space to search
1885 * @index: The page cache index.
1886 *
1887 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1888 * it is returned with an increased refcount. If it is a shadow entry
1889 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1890 * it is returned without further action.
1891 *
1892 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1893 */
filemap_get_entry(struct address_space * mapping,pgoff_t index)1894 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1895 {
1896 XA_STATE(xas, &mapping->i_pages, index);
1897 struct folio *folio;
1898
1899 rcu_read_lock();
1900 repeat:
1901 xas_reset(&xas);
1902 folio = xas_load(&xas);
1903 if (xas_retry(&xas, folio))
1904 goto repeat;
1905 /*
1906 * A shadow entry of a recently evicted page, or a swap entry from
1907 * shmem/tmpfs. Return it without attempting to raise page count.
1908 */
1909 if (!folio || xa_is_value(folio))
1910 goto out;
1911
1912 if (!folio_try_get(folio))
1913 goto repeat;
1914
1915 if (unlikely(folio != xas_reload(&xas))) {
1916 folio_put(folio);
1917 goto repeat;
1918 }
1919 out:
1920 rcu_read_unlock();
1921
1922 return folio;
1923 }
1924
1925 /**
1926 * __filemap_get_folio - Find and get a reference to a folio.
1927 * @mapping: The address_space to search.
1928 * @index: The page index.
1929 * @fgp_flags: %FGP flags modify how the folio is returned.
1930 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1931 *
1932 * Looks up the page cache entry at @mapping & @index.
1933 *
1934 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1935 * if the %GFP flags specified for %FGP_CREAT are atomic.
1936 *
1937 * If this function returns a folio, it is returned with an increased refcount.
1938 *
1939 * Return: The found folio or an ERR_PTR() otherwise.
1940 */
__filemap_get_folio(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp)1941 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1942 fgf_t fgp_flags, gfp_t gfp)
1943 {
1944 struct folio *folio;
1945
1946 repeat:
1947 folio = filemap_get_entry(mapping, index);
1948 if (xa_is_value(folio))
1949 folio = NULL;
1950 if (!folio)
1951 goto no_page;
1952
1953 if (fgp_flags & FGP_LOCK) {
1954 if (fgp_flags & FGP_NOWAIT) {
1955 if (!folio_trylock(folio)) {
1956 folio_put(folio);
1957 return ERR_PTR(-EAGAIN);
1958 }
1959 } else {
1960 folio_lock(folio);
1961 }
1962
1963 /* Has the page been truncated? */
1964 if (unlikely(folio->mapping != mapping)) {
1965 folio_unlock(folio);
1966 folio_put(folio);
1967 goto repeat;
1968 }
1969 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1970 }
1971
1972 if (fgp_flags & FGP_ACCESSED)
1973 folio_mark_accessed(folio);
1974 else if (fgp_flags & FGP_WRITE) {
1975 /* Clear idle flag for buffer write */
1976 if (folio_test_idle(folio))
1977 folio_clear_idle(folio);
1978 }
1979
1980 if (fgp_flags & FGP_STABLE)
1981 folio_wait_stable(folio);
1982 no_page:
1983 if (!folio && (fgp_flags & FGP_CREAT)) {
1984 unsigned int min_order = mapping_min_folio_order(mapping);
1985 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1986 int err;
1987 index = mapping_align_index(mapping, index);
1988
1989 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1990 gfp |= __GFP_WRITE;
1991 if (fgp_flags & FGP_NOFS)
1992 gfp &= ~__GFP_FS;
1993 if (fgp_flags & FGP_NOWAIT) {
1994 gfp &= ~GFP_KERNEL;
1995 gfp |= GFP_NOWAIT;
1996 }
1997 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1998 fgp_flags |= FGP_LOCK;
1999
2000 if (order > mapping_max_folio_order(mapping))
2001 order = mapping_max_folio_order(mapping);
2002 /* If we're not aligned, allocate a smaller folio */
2003 if (index & ((1UL << order) - 1))
2004 order = __ffs(index);
2005
2006 do {
2007 gfp_t alloc_gfp = gfp;
2008
2009 err = -ENOMEM;
2010 if (order > min_order)
2011 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
2012 folio = filemap_alloc_folio(alloc_gfp, order);
2013 if (!folio)
2014 continue;
2015
2016 /* Init accessed so avoid atomic mark_page_accessed later */
2017 if (fgp_flags & FGP_ACCESSED)
2018 __folio_set_referenced(folio);
2019 if (fgp_flags & FGP_DONTCACHE)
2020 __folio_set_dropbehind(folio);
2021
2022 err = filemap_add_folio(mapping, folio, index, gfp);
2023 if (!err)
2024 break;
2025 folio_put(folio);
2026 folio = NULL;
2027 } while (order-- > min_order);
2028
2029 if (err == -EEXIST)
2030 goto repeat;
2031 if (err) {
2032 /*
2033 * When NOWAIT I/O fails to allocate folios this could
2034 * be due to a nonblocking memory allocation and not
2035 * because the system actually is out of memory.
2036 * Return -EAGAIN so that there caller retries in a
2037 * blocking fashion instead of propagating -ENOMEM
2038 * to the application.
2039 */
2040 if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM)
2041 err = -EAGAIN;
2042 return ERR_PTR(err);
2043 }
2044 /*
2045 * filemap_add_folio locks the page, and for mmap
2046 * we expect an unlocked page.
2047 */
2048 if (folio && (fgp_flags & FGP_FOR_MMAP))
2049 folio_unlock(folio);
2050 }
2051
2052 if (!folio)
2053 return ERR_PTR(-ENOENT);
2054 /* not an uncached lookup, clear uncached if set */
2055 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE))
2056 folio_clear_dropbehind(folio);
2057 return folio;
2058 }
2059 EXPORT_SYMBOL(__filemap_get_folio);
2060
find_get_entry(struct xa_state * xas,pgoff_t max,xa_mark_t mark)2061 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2062 xa_mark_t mark)
2063 {
2064 struct folio *folio;
2065
2066 retry:
2067 if (mark == XA_PRESENT)
2068 folio = xas_find(xas, max);
2069 else
2070 folio = xas_find_marked(xas, max, mark);
2071
2072 if (xas_retry(xas, folio))
2073 goto retry;
2074 /*
2075 * A shadow entry of a recently evicted page, a swap
2076 * entry from shmem/tmpfs or a DAX entry. Return it
2077 * without attempting to raise page count.
2078 */
2079 if (!folio || xa_is_value(folio))
2080 return folio;
2081
2082 if (!folio_try_get(folio))
2083 goto reset;
2084
2085 if (unlikely(folio != xas_reload(xas))) {
2086 folio_put(folio);
2087 goto reset;
2088 }
2089
2090 return folio;
2091 reset:
2092 xas_reset(xas);
2093 goto retry;
2094 }
2095
2096 /**
2097 * find_get_entries - gang pagecache lookup
2098 * @mapping: The address_space to search
2099 * @start: The starting page cache index
2100 * @end: The final page index (inclusive).
2101 * @fbatch: Where the resulting entries are placed.
2102 * @indices: The cache indices corresponding to the entries in @entries
2103 *
2104 * find_get_entries() will search for and return a batch of entries in
2105 * the mapping. The entries are placed in @fbatch. find_get_entries()
2106 * takes a reference on any actual folios it returns.
2107 *
2108 * The entries have ascending indexes. The indices may not be consecutive
2109 * due to not-present entries or large folios.
2110 *
2111 * Any shadow entries of evicted folios, or swap entries from
2112 * shmem/tmpfs, are included in the returned array.
2113 *
2114 * Return: The number of entries which were found.
2115 */
find_get_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2116 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2117 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2118 {
2119 XA_STATE(xas, &mapping->i_pages, *start);
2120 struct folio *folio;
2121
2122 rcu_read_lock();
2123 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2124 indices[fbatch->nr] = xas.xa_index;
2125 if (!folio_batch_add(fbatch, folio))
2126 break;
2127 }
2128
2129 if (folio_batch_count(fbatch)) {
2130 unsigned long nr;
2131 int idx = folio_batch_count(fbatch) - 1;
2132
2133 folio = fbatch->folios[idx];
2134 if (!xa_is_value(folio))
2135 nr = folio_nr_pages(folio);
2136 else
2137 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2138 *start = round_down(indices[idx] + nr, nr);
2139 }
2140 rcu_read_unlock();
2141
2142 return folio_batch_count(fbatch);
2143 }
2144
2145 /**
2146 * find_lock_entries - Find a batch of pagecache entries.
2147 * @mapping: The address_space to search.
2148 * @start: The starting page cache index.
2149 * @end: The final page index (inclusive).
2150 * @fbatch: Where the resulting entries are placed.
2151 * @indices: The cache indices of the entries in @fbatch.
2152 *
2153 * find_lock_entries() will return a batch of entries from @mapping.
2154 * Swap, shadow and DAX entries are included. Folios are returned
2155 * locked and with an incremented refcount. Folios which are locked
2156 * by somebody else or under writeback are skipped. Folios which are
2157 * partially outside the range are not returned.
2158 *
2159 * The entries have ascending indexes. The indices may not be consecutive
2160 * due to not-present entries, large folios, folios which could not be
2161 * locked or folios under writeback.
2162 *
2163 * Return: The number of entries which were found.
2164 */
find_lock_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2165 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2166 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2167 {
2168 XA_STATE(xas, &mapping->i_pages, *start);
2169 struct folio *folio;
2170
2171 rcu_read_lock();
2172 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2173 unsigned long base;
2174 unsigned long nr;
2175
2176 if (!xa_is_value(folio)) {
2177 nr = folio_nr_pages(folio);
2178 base = folio->index;
2179 /* Omit large folio which begins before the start */
2180 if (base < *start)
2181 goto put;
2182 /* Omit large folio which extends beyond the end */
2183 if (base + nr - 1 > end)
2184 goto put;
2185 if (!folio_trylock(folio))
2186 goto put;
2187 if (folio->mapping != mapping ||
2188 folio_test_writeback(folio))
2189 goto unlock;
2190 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2191 folio);
2192 } else {
2193 nr = 1 << xas_get_order(&xas);
2194 base = xas.xa_index & ~(nr - 1);
2195 /* Omit order>0 value which begins before the start */
2196 if (base < *start)
2197 continue;
2198 /* Omit order>0 value which extends beyond the end */
2199 if (base + nr - 1 > end)
2200 break;
2201 }
2202
2203 /* Update start now so that last update is correct on return */
2204 *start = base + nr;
2205 indices[fbatch->nr] = xas.xa_index;
2206 if (!folio_batch_add(fbatch, folio))
2207 break;
2208 continue;
2209 unlock:
2210 folio_unlock(folio);
2211 put:
2212 folio_put(folio);
2213 }
2214 rcu_read_unlock();
2215
2216 return folio_batch_count(fbatch);
2217 }
2218
2219 /**
2220 * filemap_get_folios - Get a batch of folios
2221 * @mapping: The address_space to search
2222 * @start: The starting page index
2223 * @end: The final page index (inclusive)
2224 * @fbatch: The batch to fill.
2225 *
2226 * Search for and return a batch of folios in the mapping starting at
2227 * index @start and up to index @end (inclusive). The folios are returned
2228 * in @fbatch with an elevated reference count.
2229 *
2230 * Return: The number of folios which were found.
2231 * We also update @start to index the next folio for the traversal.
2232 */
filemap_get_folios(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2233 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2234 pgoff_t end, struct folio_batch *fbatch)
2235 {
2236 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2237 }
2238 EXPORT_SYMBOL(filemap_get_folios);
2239
2240 /**
2241 * filemap_get_folios_contig - Get a batch of contiguous folios
2242 * @mapping: The address_space to search
2243 * @start: The starting page index
2244 * @end: The final page index (inclusive)
2245 * @fbatch: The batch to fill
2246 *
2247 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2248 * except the returned folios are guaranteed to be contiguous. This may
2249 * not return all contiguous folios if the batch gets filled up.
2250 *
2251 * Return: The number of folios found.
2252 * Also update @start to be positioned for traversal of the next folio.
2253 */
2254
filemap_get_folios_contig(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2255 unsigned filemap_get_folios_contig(struct address_space *mapping,
2256 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2257 {
2258 XA_STATE(xas, &mapping->i_pages, *start);
2259 unsigned long nr;
2260 struct folio *folio;
2261
2262 rcu_read_lock();
2263
2264 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2265 folio = xas_next(&xas)) {
2266 if (xas_retry(&xas, folio))
2267 continue;
2268 /*
2269 * If the entry has been swapped out, we can stop looking.
2270 * No current caller is looking for DAX entries.
2271 */
2272 if (xa_is_value(folio))
2273 goto update_start;
2274
2275 /* If we landed in the middle of a THP, continue at its end. */
2276 if (xa_is_sibling(folio))
2277 goto update_start;
2278
2279 if (!folio_try_get(folio))
2280 goto retry;
2281
2282 if (unlikely(folio != xas_reload(&xas)))
2283 goto put_folio;
2284
2285 if (!folio_batch_add(fbatch, folio)) {
2286 nr = folio_nr_pages(folio);
2287 *start = folio->index + nr;
2288 goto out;
2289 }
2290 xas_advance(&xas, folio_next_index(folio) - 1);
2291 continue;
2292 put_folio:
2293 folio_put(folio);
2294
2295 retry:
2296 xas_reset(&xas);
2297 }
2298
2299 update_start:
2300 nr = folio_batch_count(fbatch);
2301
2302 if (nr) {
2303 folio = fbatch->folios[nr - 1];
2304 *start = folio_next_index(folio);
2305 }
2306 out:
2307 rcu_read_unlock();
2308 return folio_batch_count(fbatch);
2309 }
2310 EXPORT_SYMBOL(filemap_get_folios_contig);
2311
2312 /**
2313 * filemap_get_folios_tag - Get a batch of folios matching @tag
2314 * @mapping: The address_space to search
2315 * @start: The starting page index
2316 * @end: The final page index (inclusive)
2317 * @tag: The tag index
2318 * @fbatch: The batch to fill
2319 *
2320 * The first folio may start before @start; if it does, it will contain
2321 * @start. The final folio may extend beyond @end; if it does, it will
2322 * contain @end. The folios have ascending indices. There may be gaps
2323 * between the folios if there are indices which have no folio in the
2324 * page cache. If folios are added to or removed from the page cache
2325 * while this is running, they may or may not be found by this call.
2326 * Only returns folios that are tagged with @tag.
2327 *
2328 * Return: The number of folios found.
2329 * Also update @start to index the next folio for traversal.
2330 */
filemap_get_folios_tag(struct address_space * mapping,pgoff_t * start,pgoff_t end,xa_mark_t tag,struct folio_batch * fbatch)2331 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2332 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2333 {
2334 XA_STATE(xas, &mapping->i_pages, *start);
2335 struct folio *folio;
2336
2337 rcu_read_lock();
2338 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2339 /*
2340 * Shadow entries should never be tagged, but this iteration
2341 * is lockless so there is a window for page reclaim to evict
2342 * a page we saw tagged. Skip over it.
2343 */
2344 if (xa_is_value(folio))
2345 continue;
2346 if (!folio_batch_add(fbatch, folio)) {
2347 unsigned long nr = folio_nr_pages(folio);
2348 *start = folio->index + nr;
2349 goto out;
2350 }
2351 }
2352 /*
2353 * We come here when there is no page beyond @end. We take care to not
2354 * overflow the index @start as it confuses some of the callers. This
2355 * breaks the iteration when there is a page at index -1 but that is
2356 * already broke anyway.
2357 */
2358 if (end == (pgoff_t)-1)
2359 *start = (pgoff_t)-1;
2360 else
2361 *start = end + 1;
2362 out:
2363 rcu_read_unlock();
2364
2365 return folio_batch_count(fbatch);
2366 }
2367 EXPORT_SYMBOL(filemap_get_folios_tag);
2368
2369 /*
2370 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2371 * a _large_ part of the i/o request. Imagine the worst scenario:
2372 *
2373 * ---R__________________________________________B__________
2374 * ^ reading here ^ bad block(assume 4k)
2375 *
2376 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2377 * => failing the whole request => read(R) => read(R+1) =>
2378 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2379 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2380 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2381 *
2382 * It is going insane. Fix it by quickly scaling down the readahead size.
2383 */
shrink_readahead_size_eio(struct file_ra_state * ra)2384 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2385 {
2386 ra->ra_pages /= 4;
2387 }
2388
2389 /*
2390 * filemap_get_read_batch - Get a batch of folios for read
2391 *
2392 * Get a batch of folios which represent a contiguous range of bytes in
2393 * the file. No exceptional entries will be returned. If @index is in
2394 * the middle of a folio, the entire folio will be returned. The last
2395 * folio in the batch may have the readahead flag set or the uptodate flag
2396 * clear so that the caller can take the appropriate action.
2397 */
filemap_get_read_batch(struct address_space * mapping,pgoff_t index,pgoff_t max,struct folio_batch * fbatch)2398 static void filemap_get_read_batch(struct address_space *mapping,
2399 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2400 {
2401 XA_STATE(xas, &mapping->i_pages, index);
2402 struct folio *folio;
2403
2404 rcu_read_lock();
2405 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2406 if (xas_retry(&xas, folio))
2407 continue;
2408 if (xas.xa_index > max || xa_is_value(folio))
2409 break;
2410 if (xa_is_sibling(folio))
2411 break;
2412 if (!folio_try_get(folio))
2413 goto retry;
2414
2415 if (unlikely(folio != xas_reload(&xas)))
2416 goto put_folio;
2417
2418 if (!folio_batch_add(fbatch, folio))
2419 break;
2420 if (!folio_test_uptodate(folio))
2421 break;
2422 if (folio_test_readahead(folio))
2423 break;
2424 xas_advance(&xas, folio_next_index(folio) - 1);
2425 continue;
2426 put_folio:
2427 folio_put(folio);
2428 retry:
2429 xas_reset(&xas);
2430 }
2431 rcu_read_unlock();
2432 }
2433
filemap_read_folio(struct file * file,filler_t filler,struct folio * folio)2434 static int filemap_read_folio(struct file *file, filler_t filler,
2435 struct folio *folio)
2436 {
2437 bool workingset = folio_test_workingset(folio);
2438 unsigned long pflags;
2439 int error;
2440
2441 /* Start the actual read. The read will unlock the page. */
2442 if (unlikely(workingset))
2443 psi_memstall_enter(&pflags);
2444 error = filler(file, folio);
2445 if (unlikely(workingset))
2446 psi_memstall_leave(&pflags);
2447 if (error)
2448 return error;
2449
2450 error = folio_wait_locked_killable(folio);
2451 if (error)
2452 return error;
2453 if (folio_test_uptodate(folio))
2454 return 0;
2455 if (file)
2456 shrink_readahead_size_eio(&file->f_ra);
2457 return -EIO;
2458 }
2459
filemap_range_uptodate(struct address_space * mapping,loff_t pos,size_t count,struct folio * folio,bool need_uptodate)2460 static bool filemap_range_uptodate(struct address_space *mapping,
2461 loff_t pos, size_t count, struct folio *folio,
2462 bool need_uptodate)
2463 {
2464 if (folio_test_uptodate(folio))
2465 return true;
2466 /* pipes can't handle partially uptodate pages */
2467 if (need_uptodate)
2468 return false;
2469 if (!mapping->a_ops->is_partially_uptodate)
2470 return false;
2471 if (mapping->host->i_blkbits >= folio_shift(folio))
2472 return false;
2473
2474 if (folio_pos(folio) > pos) {
2475 count -= folio_pos(folio) - pos;
2476 pos = 0;
2477 } else {
2478 pos -= folio_pos(folio);
2479 }
2480
2481 if (pos == 0 && count >= folio_size(folio))
2482 return false;
2483
2484 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2485 }
2486
filemap_update_page(struct kiocb * iocb,struct address_space * mapping,size_t count,struct folio * folio,bool need_uptodate)2487 static int filemap_update_page(struct kiocb *iocb,
2488 struct address_space *mapping, size_t count,
2489 struct folio *folio, bool need_uptodate)
2490 {
2491 int error;
2492
2493 if (iocb->ki_flags & IOCB_NOWAIT) {
2494 if (!filemap_invalidate_trylock_shared(mapping))
2495 return -EAGAIN;
2496 } else {
2497 filemap_invalidate_lock_shared(mapping);
2498 }
2499
2500 if (!folio_trylock(folio)) {
2501 error = -EAGAIN;
2502 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2503 goto unlock_mapping;
2504 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2505 filemap_invalidate_unlock_shared(mapping);
2506 /*
2507 * This is where we usually end up waiting for a
2508 * previously submitted readahead to finish.
2509 */
2510 folio_put_wait_locked(folio, TASK_KILLABLE);
2511 return AOP_TRUNCATED_PAGE;
2512 }
2513 error = __folio_lock_async(folio, iocb->ki_waitq);
2514 if (error)
2515 goto unlock_mapping;
2516 }
2517
2518 error = AOP_TRUNCATED_PAGE;
2519 if (!folio->mapping)
2520 goto unlock;
2521
2522 error = 0;
2523 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2524 need_uptodate))
2525 goto unlock;
2526
2527 error = -EAGAIN;
2528 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2529 goto unlock;
2530
2531 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2532 folio);
2533 goto unlock_mapping;
2534 unlock:
2535 folio_unlock(folio);
2536 unlock_mapping:
2537 filemap_invalidate_unlock_shared(mapping);
2538 if (error == AOP_TRUNCATED_PAGE)
2539 folio_put(folio);
2540 return error;
2541 }
2542
filemap_create_folio(struct kiocb * iocb,struct folio_batch * fbatch)2543 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch)
2544 {
2545 struct address_space *mapping = iocb->ki_filp->f_mapping;
2546 struct folio *folio;
2547 int error;
2548 unsigned int min_order = mapping_min_folio_order(mapping);
2549 pgoff_t index;
2550
2551 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2552 return -EAGAIN;
2553
2554 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2555 if (!folio)
2556 return -ENOMEM;
2557 if (iocb->ki_flags & IOCB_DONTCACHE)
2558 __folio_set_dropbehind(folio);
2559
2560 /*
2561 * Protect against truncate / hole punch. Grabbing invalidate_lock
2562 * here assures we cannot instantiate and bring uptodate new
2563 * pagecache folios after evicting page cache during truncate
2564 * and before actually freeing blocks. Note that we could
2565 * release invalidate_lock after inserting the folio into
2566 * the page cache as the locked folio would then be enough to
2567 * synchronize with hole punching. But there are code paths
2568 * such as filemap_update_page() filling in partially uptodate
2569 * pages or ->readahead() that need to hold invalidate_lock
2570 * while mapping blocks for IO so let's hold the lock here as
2571 * well to keep locking rules simple.
2572 */
2573 filemap_invalidate_lock_shared(mapping);
2574 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order;
2575 error = filemap_add_folio(mapping, folio, index,
2576 mapping_gfp_constraint(mapping, GFP_KERNEL));
2577 if (error == -EEXIST)
2578 error = AOP_TRUNCATED_PAGE;
2579 if (error)
2580 goto error;
2581
2582 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2583 folio);
2584 if (error)
2585 goto error;
2586
2587 filemap_invalidate_unlock_shared(mapping);
2588 folio_batch_add(fbatch, folio);
2589 return 0;
2590 error:
2591 filemap_invalidate_unlock_shared(mapping);
2592 folio_put(folio);
2593 return error;
2594 }
2595
filemap_readahead(struct kiocb * iocb,struct file * file,struct address_space * mapping,struct folio * folio,pgoff_t last_index)2596 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2597 struct address_space *mapping, struct folio *folio,
2598 pgoff_t last_index)
2599 {
2600 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2601
2602 if (iocb->ki_flags & IOCB_NOIO)
2603 return -EAGAIN;
2604 if (iocb->ki_flags & IOCB_DONTCACHE)
2605 ractl.dropbehind = 1;
2606 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2607 return 0;
2608 }
2609
filemap_get_pages(struct kiocb * iocb,size_t count,struct folio_batch * fbatch,bool need_uptodate)2610 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2611 struct folio_batch *fbatch, bool need_uptodate)
2612 {
2613 struct file *filp = iocb->ki_filp;
2614 struct address_space *mapping = filp->f_mapping;
2615 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2616 pgoff_t last_index;
2617 struct folio *folio;
2618 unsigned int flags;
2619 int err = 0;
2620
2621 /* "last_index" is the index of the folio beyond the end of the read */
2622 last_index = round_up(iocb->ki_pos + count,
2623 mapping_min_folio_nrbytes(mapping)) >> PAGE_SHIFT;
2624 retry:
2625 if (fatal_signal_pending(current))
2626 return -EINTR;
2627
2628 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2629 if (!folio_batch_count(fbatch)) {
2630 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index);
2631
2632 if (iocb->ki_flags & IOCB_NOIO)
2633 return -EAGAIN;
2634 if (iocb->ki_flags & IOCB_NOWAIT)
2635 flags = memalloc_noio_save();
2636 if (iocb->ki_flags & IOCB_DONTCACHE)
2637 ractl.dropbehind = 1;
2638 page_cache_sync_ra(&ractl, last_index - index);
2639 if (iocb->ki_flags & IOCB_NOWAIT)
2640 memalloc_noio_restore(flags);
2641 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2642 }
2643 if (!folio_batch_count(fbatch)) {
2644 err = filemap_create_folio(iocb, fbatch);
2645 if (err == AOP_TRUNCATED_PAGE)
2646 goto retry;
2647 return err;
2648 }
2649
2650 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2651 if (folio_test_readahead(folio)) {
2652 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2653 if (err)
2654 goto err;
2655 }
2656 if (!folio_test_uptodate(folio)) {
2657 if (folio_batch_count(fbatch) > 1) {
2658 err = -EAGAIN;
2659 goto err;
2660 }
2661 err = filemap_update_page(iocb, mapping, count, folio,
2662 need_uptodate);
2663 if (err)
2664 goto err;
2665 }
2666
2667 trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2668 return 0;
2669 err:
2670 if (err < 0)
2671 folio_put(folio);
2672 if (likely(--fbatch->nr))
2673 return 0;
2674 if (err == AOP_TRUNCATED_PAGE)
2675 goto retry;
2676 return err;
2677 }
2678
pos_same_folio(loff_t pos1,loff_t pos2,struct folio * folio)2679 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2680 {
2681 unsigned int shift = folio_shift(folio);
2682
2683 return (pos1 >> shift == pos2 >> shift);
2684 }
2685
filemap_end_dropbehind_read(struct folio * folio)2686 static void filemap_end_dropbehind_read(struct folio *folio)
2687 {
2688 if (!folio_test_dropbehind(folio))
2689 return;
2690 if (folio_test_writeback(folio) || folio_test_dirty(folio))
2691 return;
2692 if (folio_trylock(folio)) {
2693 filemap_end_dropbehind(folio);
2694 folio_unlock(folio);
2695 }
2696 }
2697
2698 /**
2699 * filemap_read - Read data from the page cache.
2700 * @iocb: The iocb to read.
2701 * @iter: Destination for the data.
2702 * @already_read: Number of bytes already read by the caller.
2703 *
2704 * Copies data from the page cache. If the data is not currently present,
2705 * uses the readahead and read_folio address_space operations to fetch it.
2706 *
2707 * Return: Total number of bytes copied, including those already read by
2708 * the caller. If an error happens before any bytes are copied, returns
2709 * a negative error number.
2710 */
filemap_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t already_read)2711 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2712 ssize_t already_read)
2713 {
2714 struct file *filp = iocb->ki_filp;
2715 struct file_ra_state *ra = &filp->f_ra;
2716 struct address_space *mapping = filp->f_mapping;
2717 struct inode *inode = mapping->host;
2718 struct folio_batch fbatch;
2719 int i, error = 0;
2720 bool writably_mapped;
2721 loff_t isize, end_offset;
2722 loff_t last_pos = ra->prev_pos;
2723
2724 if (unlikely(iocb->ki_pos < 0))
2725 return -EINVAL;
2726 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2727 return 0;
2728 if (unlikely(!iov_iter_count(iter)))
2729 return 0;
2730
2731 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2732 folio_batch_init(&fbatch);
2733
2734 do {
2735 cond_resched();
2736
2737 /*
2738 * If we've already successfully copied some data, then we
2739 * can no longer safely return -EIOCBQUEUED. Hence mark
2740 * an async read NOWAIT at that point.
2741 */
2742 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2743 iocb->ki_flags |= IOCB_NOWAIT;
2744
2745 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2746 break;
2747
2748 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2749 if (error < 0)
2750 break;
2751
2752 /*
2753 * i_size must be checked after we know the pages are Uptodate.
2754 *
2755 * Checking i_size after the check allows us to calculate
2756 * the correct value for "nr", which means the zero-filled
2757 * part of the page is not copied back to userspace (unless
2758 * another truncate extends the file - this is desired though).
2759 */
2760 isize = i_size_read(inode);
2761 if (unlikely(iocb->ki_pos >= isize))
2762 goto put_folios;
2763 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2764
2765 /*
2766 * Once we start copying data, we don't want to be touching any
2767 * cachelines that might be contended:
2768 */
2769 writably_mapped = mapping_writably_mapped(mapping);
2770
2771 /*
2772 * When a read accesses the same folio several times, only
2773 * mark it as accessed the first time.
2774 */
2775 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2776 fbatch.folios[0]))
2777 folio_mark_accessed(fbatch.folios[0]);
2778
2779 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2780 struct folio *folio = fbatch.folios[i];
2781 size_t fsize = folio_size(folio);
2782 size_t offset = iocb->ki_pos & (fsize - 1);
2783 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2784 fsize - offset);
2785 size_t copied;
2786
2787 if (end_offset < folio_pos(folio))
2788 break;
2789 if (i > 0)
2790 folio_mark_accessed(folio);
2791 /*
2792 * If users can be writing to this folio using arbitrary
2793 * virtual addresses, take care of potential aliasing
2794 * before reading the folio on the kernel side.
2795 */
2796 if (writably_mapped)
2797 flush_dcache_folio(folio);
2798
2799 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2800
2801 already_read += copied;
2802 iocb->ki_pos += copied;
2803 last_pos = iocb->ki_pos;
2804
2805 if (copied < bytes) {
2806 error = -EFAULT;
2807 break;
2808 }
2809 }
2810 put_folios:
2811 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2812 struct folio *folio = fbatch.folios[i];
2813
2814 filemap_end_dropbehind_read(folio);
2815 folio_put(folio);
2816 }
2817 folio_batch_init(&fbatch);
2818 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2819
2820 file_accessed(filp);
2821 ra->prev_pos = last_pos;
2822 return already_read ? already_read : error;
2823 }
2824 EXPORT_SYMBOL_GPL(filemap_read);
2825
kiocb_write_and_wait(struct kiocb * iocb,size_t count)2826 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2827 {
2828 struct address_space *mapping = iocb->ki_filp->f_mapping;
2829 loff_t pos = iocb->ki_pos;
2830 loff_t end = pos + count - 1;
2831
2832 if (iocb->ki_flags & IOCB_NOWAIT) {
2833 if (filemap_range_needs_writeback(mapping, pos, end))
2834 return -EAGAIN;
2835 return 0;
2836 }
2837
2838 return filemap_write_and_wait_range(mapping, pos, end);
2839 }
2840 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2841
filemap_invalidate_pages(struct address_space * mapping,loff_t pos,loff_t end,bool nowait)2842 int filemap_invalidate_pages(struct address_space *mapping,
2843 loff_t pos, loff_t end, bool nowait)
2844 {
2845 int ret;
2846
2847 if (nowait) {
2848 /* we could block if there are any pages in the range */
2849 if (filemap_range_has_page(mapping, pos, end))
2850 return -EAGAIN;
2851 } else {
2852 ret = filemap_write_and_wait_range(mapping, pos, end);
2853 if (ret)
2854 return ret;
2855 }
2856
2857 /*
2858 * After a write we want buffered reads to be sure to go to disk to get
2859 * the new data. We invalidate clean cached page from the region we're
2860 * about to write. We do this *before* the write so that we can return
2861 * without clobbering -EIOCBQUEUED from ->direct_IO().
2862 */
2863 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2864 end >> PAGE_SHIFT);
2865 }
2866
kiocb_invalidate_pages(struct kiocb * iocb,size_t count)2867 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2868 {
2869 struct address_space *mapping = iocb->ki_filp->f_mapping;
2870
2871 return filemap_invalidate_pages(mapping, iocb->ki_pos,
2872 iocb->ki_pos + count - 1,
2873 iocb->ki_flags & IOCB_NOWAIT);
2874 }
2875 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2876
2877 /**
2878 * generic_file_read_iter - generic filesystem read routine
2879 * @iocb: kernel I/O control block
2880 * @iter: destination for the data read
2881 *
2882 * This is the "read_iter()" routine for all filesystems
2883 * that can use the page cache directly.
2884 *
2885 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2886 * be returned when no data can be read without waiting for I/O requests
2887 * to complete; it doesn't prevent readahead.
2888 *
2889 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2890 * requests shall be made for the read or for readahead. When no data
2891 * can be read, -EAGAIN shall be returned. When readahead would be
2892 * triggered, a partial, possibly empty read shall be returned.
2893 *
2894 * Return:
2895 * * number of bytes copied, even for partial reads
2896 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2897 */
2898 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2899 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2900 {
2901 size_t count = iov_iter_count(iter);
2902 ssize_t retval = 0;
2903
2904 if (!count)
2905 return 0; /* skip atime */
2906
2907 if (iocb->ki_flags & IOCB_DIRECT) {
2908 struct file *file = iocb->ki_filp;
2909 struct address_space *mapping = file->f_mapping;
2910 struct inode *inode = mapping->host;
2911
2912 retval = kiocb_write_and_wait(iocb, count);
2913 if (retval < 0)
2914 return retval;
2915 file_accessed(file);
2916
2917 retval = mapping->a_ops->direct_IO(iocb, iter);
2918 if (retval >= 0) {
2919 iocb->ki_pos += retval;
2920 count -= retval;
2921 }
2922 if (retval != -EIOCBQUEUED)
2923 iov_iter_revert(iter, count - iov_iter_count(iter));
2924
2925 /*
2926 * Btrfs can have a short DIO read if we encounter
2927 * compressed extents, so if there was an error, or if
2928 * we've already read everything we wanted to, or if
2929 * there was a short read because we hit EOF, go ahead
2930 * and return. Otherwise fallthrough to buffered io for
2931 * the rest of the read. Buffered reads will not work for
2932 * DAX files, so don't bother trying.
2933 */
2934 if (retval < 0 || !count || IS_DAX(inode))
2935 return retval;
2936 if (iocb->ki_pos >= i_size_read(inode))
2937 return retval;
2938 }
2939
2940 return filemap_read(iocb, iter, retval);
2941 }
2942 EXPORT_SYMBOL(generic_file_read_iter);
2943
2944 /*
2945 * Splice subpages from a folio into a pipe.
2946 */
splice_folio_into_pipe(struct pipe_inode_info * pipe,struct folio * folio,loff_t fpos,size_t size)2947 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2948 struct folio *folio, loff_t fpos, size_t size)
2949 {
2950 struct page *page;
2951 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2952
2953 page = folio_page(folio, offset / PAGE_SIZE);
2954 size = min(size, folio_size(folio) - offset);
2955 offset %= PAGE_SIZE;
2956
2957 while (spliced < size && !pipe_is_full(pipe)) {
2958 struct pipe_buffer *buf = pipe_head_buf(pipe);
2959 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2960
2961 *buf = (struct pipe_buffer) {
2962 .ops = &page_cache_pipe_buf_ops,
2963 .page = page,
2964 .offset = offset,
2965 .len = part,
2966 };
2967 folio_get(folio);
2968 pipe->head++;
2969 page++;
2970 spliced += part;
2971 offset = 0;
2972 }
2973
2974 return spliced;
2975 }
2976
2977 /**
2978 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2979 * @in: The file to read from
2980 * @ppos: Pointer to the file position to read from
2981 * @pipe: The pipe to splice into
2982 * @len: The amount to splice
2983 * @flags: The SPLICE_F_* flags
2984 *
2985 * This function gets folios from a file's pagecache and splices them into the
2986 * pipe. Readahead will be called as necessary to fill more folios. This may
2987 * be used for blockdevs also.
2988 *
2989 * Return: On success, the number of bytes read will be returned and *@ppos
2990 * will be updated if appropriate; 0 will be returned if there is no more data
2991 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2992 * other negative error code will be returned on error. A short read may occur
2993 * if the pipe has insufficient space, we reach the end of the data or we hit a
2994 * hole.
2995 */
filemap_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2996 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2997 struct pipe_inode_info *pipe,
2998 size_t len, unsigned int flags)
2999 {
3000 struct folio_batch fbatch;
3001 struct kiocb iocb;
3002 size_t total_spliced = 0, used, npages;
3003 loff_t isize, end_offset;
3004 bool writably_mapped;
3005 int i, error = 0;
3006
3007 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
3008 return 0;
3009
3010 init_sync_kiocb(&iocb, in);
3011 iocb.ki_pos = *ppos;
3012
3013 /* Work out how much data we can actually add into the pipe */
3014 used = pipe_buf_usage(pipe);
3015 npages = max_t(ssize_t, pipe->max_usage - used, 0);
3016 len = min_t(size_t, len, npages * PAGE_SIZE);
3017
3018 folio_batch_init(&fbatch);
3019
3020 do {
3021 cond_resched();
3022
3023 if (*ppos >= i_size_read(in->f_mapping->host))
3024 break;
3025
3026 iocb.ki_pos = *ppos;
3027 error = filemap_get_pages(&iocb, len, &fbatch, true);
3028 if (error < 0)
3029 break;
3030
3031 /*
3032 * i_size must be checked after we know the pages are Uptodate.
3033 *
3034 * Checking i_size after the check allows us to calculate
3035 * the correct value for "nr", which means the zero-filled
3036 * part of the page is not copied back to userspace (unless
3037 * another truncate extends the file - this is desired though).
3038 */
3039 isize = i_size_read(in->f_mapping->host);
3040 if (unlikely(*ppos >= isize))
3041 break;
3042 end_offset = min_t(loff_t, isize, *ppos + len);
3043
3044 /*
3045 * Once we start copying data, we don't want to be touching any
3046 * cachelines that might be contended:
3047 */
3048 writably_mapped = mapping_writably_mapped(in->f_mapping);
3049
3050 for (i = 0; i < folio_batch_count(&fbatch); i++) {
3051 struct folio *folio = fbatch.folios[i];
3052 size_t n;
3053
3054 if (folio_pos(folio) >= end_offset)
3055 goto out;
3056 folio_mark_accessed(folio);
3057
3058 /*
3059 * If users can be writing to this folio using arbitrary
3060 * virtual addresses, take care of potential aliasing
3061 * before reading the folio on the kernel side.
3062 */
3063 if (writably_mapped)
3064 flush_dcache_folio(folio);
3065
3066 n = min_t(loff_t, len, isize - *ppos);
3067 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
3068 if (!n)
3069 goto out;
3070 len -= n;
3071 total_spliced += n;
3072 *ppos += n;
3073 in->f_ra.prev_pos = *ppos;
3074 if (pipe_is_full(pipe))
3075 goto out;
3076 }
3077
3078 folio_batch_release(&fbatch);
3079 } while (len);
3080
3081 out:
3082 folio_batch_release(&fbatch);
3083 file_accessed(in);
3084
3085 return total_spliced ? total_spliced : error;
3086 }
3087 EXPORT_SYMBOL(filemap_splice_read);
3088
folio_seek_hole_data(struct xa_state * xas,struct address_space * mapping,struct folio * folio,loff_t start,loff_t end,bool seek_data)3089 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
3090 struct address_space *mapping, struct folio *folio,
3091 loff_t start, loff_t end, bool seek_data)
3092 {
3093 const struct address_space_operations *ops = mapping->a_ops;
3094 size_t offset, bsz = i_blocksize(mapping->host);
3095
3096 if (xa_is_value(folio) || folio_test_uptodate(folio))
3097 return seek_data ? start : end;
3098 if (!ops->is_partially_uptodate)
3099 return seek_data ? end : start;
3100
3101 xas_pause(xas);
3102 rcu_read_unlock();
3103 folio_lock(folio);
3104 if (unlikely(folio->mapping != mapping))
3105 goto unlock;
3106
3107 offset = offset_in_folio(folio, start) & ~(bsz - 1);
3108
3109 do {
3110 if (ops->is_partially_uptodate(folio, offset, bsz) ==
3111 seek_data)
3112 break;
3113 start = (start + bsz) & ~((u64)bsz - 1);
3114 offset += bsz;
3115 } while (offset < folio_size(folio));
3116 unlock:
3117 folio_unlock(folio);
3118 rcu_read_lock();
3119 return start;
3120 }
3121
seek_folio_size(struct xa_state * xas,struct folio * folio)3122 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3123 {
3124 if (xa_is_value(folio))
3125 return PAGE_SIZE << xas_get_order(xas);
3126 return folio_size(folio);
3127 }
3128
3129 /**
3130 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3131 * @mapping: Address space to search.
3132 * @start: First byte to consider.
3133 * @end: Limit of search (exclusive).
3134 * @whence: Either SEEK_HOLE or SEEK_DATA.
3135 *
3136 * If the page cache knows which blocks contain holes and which blocks
3137 * contain data, your filesystem can use this function to implement
3138 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3139 * entirely memory-based such as tmpfs, and filesystems which support
3140 * unwritten extents.
3141 *
3142 * Return: The requested offset on success, or -ENXIO if @whence specifies
3143 * SEEK_DATA and there is no data after @start. There is an implicit hole
3144 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3145 * and @end contain data.
3146 */
mapping_seek_hole_data(struct address_space * mapping,loff_t start,loff_t end,int whence)3147 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3148 loff_t end, int whence)
3149 {
3150 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3151 pgoff_t max = (end - 1) >> PAGE_SHIFT;
3152 bool seek_data = (whence == SEEK_DATA);
3153 struct folio *folio;
3154
3155 if (end <= start)
3156 return -ENXIO;
3157
3158 rcu_read_lock();
3159 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3160 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3161 size_t seek_size;
3162
3163 if (start < pos) {
3164 if (!seek_data)
3165 goto unlock;
3166 start = pos;
3167 }
3168
3169 seek_size = seek_folio_size(&xas, folio);
3170 pos = round_up((u64)pos + 1, seek_size);
3171 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3172 seek_data);
3173 if (start < pos)
3174 goto unlock;
3175 if (start >= end)
3176 break;
3177 if (seek_size > PAGE_SIZE)
3178 xas_set(&xas, pos >> PAGE_SHIFT);
3179 if (!xa_is_value(folio))
3180 folio_put(folio);
3181 }
3182 if (seek_data)
3183 start = -ENXIO;
3184 unlock:
3185 rcu_read_unlock();
3186 if (folio && !xa_is_value(folio))
3187 folio_put(folio);
3188 if (start > end)
3189 return end;
3190 return start;
3191 }
3192
3193 #ifdef CONFIG_MMU
3194 #define MMAP_LOTSAMISS (100)
3195 /*
3196 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3197 * @vmf - the vm_fault for this fault.
3198 * @folio - the folio to lock.
3199 * @fpin - the pointer to the file we may pin (or is already pinned).
3200 *
3201 * This works similar to lock_folio_or_retry in that it can drop the
3202 * mmap_lock. It differs in that it actually returns the folio locked
3203 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3204 * to drop the mmap_lock then fpin will point to the pinned file and
3205 * needs to be fput()'ed at a later point.
3206 */
lock_folio_maybe_drop_mmap(struct vm_fault * vmf,struct folio * folio,struct file ** fpin)3207 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3208 struct file **fpin)
3209 {
3210 if (folio_trylock(folio))
3211 return 1;
3212
3213 /*
3214 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3215 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3216 * is supposed to work. We have way too many special cases..
3217 */
3218 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3219 return 0;
3220
3221 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3222 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3223 if (__folio_lock_killable(folio)) {
3224 /*
3225 * We didn't have the right flags to drop the
3226 * fault lock, but all fault_handlers only check
3227 * for fatal signals if we return VM_FAULT_RETRY,
3228 * so we need to drop the fault lock here and
3229 * return 0 if we don't have a fpin.
3230 */
3231 if (*fpin == NULL)
3232 release_fault_lock(vmf);
3233 return 0;
3234 }
3235 } else
3236 __folio_lock(folio);
3237
3238 return 1;
3239 }
3240
3241 /*
3242 * Synchronous readahead happens when we don't even find a page in the page
3243 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3244 * to drop the mmap sem we return the file that was pinned in order for us to do
3245 * that. If we didn't pin a file then we return NULL. The file that is
3246 * returned needs to be fput()'ed when we're done with it.
3247 */
do_sync_mmap_readahead(struct vm_fault * vmf)3248 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3249 {
3250 struct file *file = vmf->vma->vm_file;
3251 struct file_ra_state *ra = &file->f_ra;
3252 struct address_space *mapping = file->f_mapping;
3253 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3254 struct file *fpin = NULL;
3255 vm_flags_t vm_flags = vmf->vma->vm_flags;
3256 unsigned short mmap_miss;
3257
3258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3259 /* Use the readahead code, even if readahead is disabled */
3260 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3261 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3262 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3263 ra->size = HPAGE_PMD_NR;
3264 /*
3265 * Fetch two PMD folios, so we get the chance to actually
3266 * readahead, unless we've been told not to.
3267 */
3268 if (!(vm_flags & VM_RAND_READ))
3269 ra->size *= 2;
3270 ra->async_size = HPAGE_PMD_NR;
3271 ra->order = HPAGE_PMD_ORDER;
3272 page_cache_ra_order(&ractl, ra);
3273 return fpin;
3274 }
3275 #endif
3276
3277 /*
3278 * If we don't want any read-ahead, don't bother. VM_EXEC case below is
3279 * already intended for random access.
3280 */
3281 if ((vm_flags & (VM_RAND_READ | VM_EXEC)) == VM_RAND_READ)
3282 return fpin;
3283 if (!ra->ra_pages)
3284 return fpin;
3285
3286 if (vm_flags & VM_SEQ_READ) {
3287 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3288 page_cache_sync_ra(&ractl, ra->ra_pages);
3289 return fpin;
3290 }
3291
3292 /* Avoid banging the cache line if not needed */
3293 mmap_miss = READ_ONCE(ra->mmap_miss);
3294 if (mmap_miss < MMAP_LOTSAMISS * 10)
3295 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3296
3297 /*
3298 * Do we miss much more than hit in this file? If so,
3299 * stop bothering with read-ahead. It will only hurt.
3300 */
3301 if (mmap_miss > MMAP_LOTSAMISS)
3302 return fpin;
3303
3304 if (vm_flags & VM_EXEC) {
3305 /*
3306 * Allow arch to request a preferred minimum folio order for
3307 * executable memory. This can often be beneficial to
3308 * performance if (e.g.) arm64 can contpte-map the folio.
3309 * Executable memory rarely benefits from readahead, due to its
3310 * random access nature, so set async_size to 0.
3311 *
3312 * Limit to the boundaries of the VMA to avoid reading in any
3313 * pad that might exist between sections, which would be a waste
3314 * of memory.
3315 */
3316 struct vm_area_struct *vma = vmf->vma;
3317 unsigned long start = vma->vm_pgoff;
3318 unsigned long end = start + vma_pages(vma);
3319 unsigned long ra_end;
3320
3321 ra->order = exec_folio_order();
3322 ra->start = round_down(vmf->pgoff, 1UL << ra->order);
3323 ra->start = max(ra->start, start);
3324 ra_end = round_up(ra->start + ra->ra_pages, 1UL << ra->order);
3325 ra_end = min(ra_end, end);
3326 ra->size = ra_end - ra->start;
3327 ra->async_size = 0;
3328 } else {
3329 /*
3330 * mmap read-around
3331 */
3332 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3333 ra->size = ra->ra_pages;
3334 ra->async_size = ra->ra_pages / 4;
3335 ra->order = 0;
3336 }
3337
3338 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3339 ractl._index = ra->start;
3340 page_cache_ra_order(&ractl, ra);
3341 return fpin;
3342 }
3343
3344 /*
3345 * Asynchronous readahead happens when we find the page and PG_readahead,
3346 * so we want to possibly extend the readahead further. We return the file that
3347 * was pinned if we have to drop the mmap_lock in order to do IO.
3348 */
do_async_mmap_readahead(struct vm_fault * vmf,struct folio * folio)3349 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3350 struct folio *folio)
3351 {
3352 struct file *file = vmf->vma->vm_file;
3353 struct file_ra_state *ra = &file->f_ra;
3354 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3355 struct file *fpin = NULL;
3356 unsigned short mmap_miss;
3357
3358 /* If we don't want any read-ahead, don't bother */
3359 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3360 return fpin;
3361
3362 /*
3363 * If the folio is locked, we're likely racing against another fault.
3364 * Don't touch the mmap_miss counter to avoid decreasing it multiple
3365 * times for a single folio and break the balance with mmap_miss
3366 * increase in do_sync_mmap_readahead().
3367 */
3368 if (likely(!folio_test_locked(folio))) {
3369 mmap_miss = READ_ONCE(ra->mmap_miss);
3370 if (mmap_miss)
3371 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3372 }
3373
3374 if (folio_test_readahead(folio)) {
3375 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3376 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3377 }
3378 return fpin;
3379 }
3380
filemap_fault_recheck_pte_none(struct vm_fault * vmf)3381 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3382 {
3383 struct vm_area_struct *vma = vmf->vma;
3384 vm_fault_t ret = 0;
3385 pte_t *ptep;
3386
3387 /*
3388 * We might have COW'ed a pagecache folio and might now have an mlocked
3389 * anon folio mapped. The original pagecache folio is not mlocked and
3390 * might have been evicted. During a read+clear/modify/write update of
3391 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3392 * temporarily clear the PTE under PT lock and might detect it here as
3393 * "none" when not holding the PT lock.
3394 *
3395 * Not rechecking the PTE under PT lock could result in an unexpected
3396 * major fault in an mlock'ed region. Recheck only for this special
3397 * scenario while holding the PT lock, to not degrade non-mlocked
3398 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3399 * the number of times we hold PT lock.
3400 */
3401 if (!(vma->vm_flags & VM_LOCKED))
3402 return 0;
3403
3404 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3405 return 0;
3406
3407 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3408 &vmf->ptl);
3409 if (unlikely(!ptep))
3410 return VM_FAULT_NOPAGE;
3411
3412 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3413 ret = VM_FAULT_NOPAGE;
3414 } else {
3415 spin_lock(vmf->ptl);
3416 if (unlikely(!pte_none(ptep_get(ptep))))
3417 ret = VM_FAULT_NOPAGE;
3418 spin_unlock(vmf->ptl);
3419 }
3420 pte_unmap(ptep);
3421 return ret;
3422 }
3423
3424 /**
3425 * filemap_fault - read in file data for page fault handling
3426 * @vmf: struct vm_fault containing details of the fault
3427 *
3428 * filemap_fault() is invoked via the vma operations vector for a
3429 * mapped memory region to read in file data during a page fault.
3430 *
3431 * The goto's are kind of ugly, but this streamlines the normal case of having
3432 * it in the page cache, and handles the special cases reasonably without
3433 * having a lot of duplicated code.
3434 *
3435 * vma->vm_mm->mmap_lock must be held on entry.
3436 *
3437 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3438 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3439 *
3440 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3441 * has not been released.
3442 *
3443 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3444 *
3445 * Return: bitwise-OR of %VM_FAULT_ codes.
3446 */
filemap_fault(struct vm_fault * vmf)3447 vm_fault_t filemap_fault(struct vm_fault *vmf)
3448 {
3449 int error;
3450 struct file *file = vmf->vma->vm_file;
3451 struct file *fpin = NULL;
3452 struct address_space *mapping = file->f_mapping;
3453 struct inode *inode = mapping->host;
3454 pgoff_t max_idx, index = vmf->pgoff;
3455 struct folio *folio;
3456 vm_fault_t ret = 0;
3457 bool mapping_locked = false;
3458
3459 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3460 if (unlikely(index >= max_idx))
3461 return VM_FAULT_SIGBUS;
3462
3463 trace_mm_filemap_fault(mapping, index);
3464
3465 /*
3466 * Do we have something in the page cache already?
3467 */
3468 folio = filemap_get_folio(mapping, index);
3469 if (likely(!IS_ERR(folio))) {
3470 /*
3471 * We found the page, so try async readahead before waiting for
3472 * the lock.
3473 */
3474 if (!(vmf->flags & FAULT_FLAG_TRIED))
3475 fpin = do_async_mmap_readahead(vmf, folio);
3476 if (unlikely(!folio_test_uptodate(folio))) {
3477 filemap_invalidate_lock_shared(mapping);
3478 mapping_locked = true;
3479 }
3480 } else {
3481 ret = filemap_fault_recheck_pte_none(vmf);
3482 if (unlikely(ret))
3483 return ret;
3484
3485 /* No page in the page cache at all */
3486 count_vm_event(PGMAJFAULT);
3487 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3488 ret = VM_FAULT_MAJOR;
3489 fpin = do_sync_mmap_readahead(vmf);
3490 retry_find:
3491 /*
3492 * See comment in filemap_create_folio() why we need
3493 * invalidate_lock
3494 */
3495 if (!mapping_locked) {
3496 filemap_invalidate_lock_shared(mapping);
3497 mapping_locked = true;
3498 }
3499 folio = __filemap_get_folio(mapping, index,
3500 FGP_CREAT|FGP_FOR_MMAP,
3501 vmf->gfp_mask);
3502 if (IS_ERR(folio)) {
3503 if (fpin)
3504 goto out_retry;
3505 filemap_invalidate_unlock_shared(mapping);
3506 return VM_FAULT_OOM;
3507 }
3508 }
3509
3510 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3511 goto out_retry;
3512
3513 /* Did it get truncated? */
3514 if (unlikely(folio->mapping != mapping)) {
3515 folio_unlock(folio);
3516 folio_put(folio);
3517 goto retry_find;
3518 }
3519 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3520
3521 /*
3522 * We have a locked folio in the page cache, now we need to check
3523 * that it's up-to-date. If not, it is going to be due to an error,
3524 * or because readahead was otherwise unable to retrieve it.
3525 */
3526 if (unlikely(!folio_test_uptodate(folio))) {
3527 /*
3528 * If the invalidate lock is not held, the folio was in cache
3529 * and uptodate and now it is not. Strange but possible since we
3530 * didn't hold the page lock all the time. Let's drop
3531 * everything, get the invalidate lock and try again.
3532 */
3533 if (!mapping_locked) {
3534 folio_unlock(folio);
3535 folio_put(folio);
3536 goto retry_find;
3537 }
3538
3539 /*
3540 * OK, the folio is really not uptodate. This can be because the
3541 * VMA has the VM_RAND_READ flag set, or because an error
3542 * arose. Let's read it in directly.
3543 */
3544 goto page_not_uptodate;
3545 }
3546
3547 /*
3548 * We've made it this far and we had to drop our mmap_lock, now is the
3549 * time to return to the upper layer and have it re-find the vma and
3550 * redo the fault.
3551 */
3552 if (fpin) {
3553 folio_unlock(folio);
3554 goto out_retry;
3555 }
3556 if (mapping_locked)
3557 filemap_invalidate_unlock_shared(mapping);
3558
3559 /*
3560 * Found the page and have a reference on it.
3561 * We must recheck i_size under page lock.
3562 */
3563 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3564 if (unlikely(index >= max_idx)) {
3565 folio_unlock(folio);
3566 folio_put(folio);
3567 return VM_FAULT_SIGBUS;
3568 }
3569
3570 vmf->page = folio_file_page(folio, index);
3571 return ret | VM_FAULT_LOCKED;
3572
3573 page_not_uptodate:
3574 /*
3575 * Umm, take care of errors if the page isn't up-to-date.
3576 * Try to re-read it _once_. We do this synchronously,
3577 * because there really aren't any performance issues here
3578 * and we need to check for errors.
3579 */
3580 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3581 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3582 if (fpin)
3583 goto out_retry;
3584 folio_put(folio);
3585
3586 if (!error || error == AOP_TRUNCATED_PAGE)
3587 goto retry_find;
3588 filemap_invalidate_unlock_shared(mapping);
3589
3590 return VM_FAULT_SIGBUS;
3591
3592 out_retry:
3593 /*
3594 * We dropped the mmap_lock, we need to return to the fault handler to
3595 * re-find the vma and come back and find our hopefully still populated
3596 * page.
3597 */
3598 if (!IS_ERR(folio))
3599 folio_put(folio);
3600 if (mapping_locked)
3601 filemap_invalidate_unlock_shared(mapping);
3602 if (fpin)
3603 fput(fpin);
3604 return ret | VM_FAULT_RETRY;
3605 }
3606 EXPORT_SYMBOL(filemap_fault);
3607
filemap_map_pmd(struct vm_fault * vmf,struct folio * folio,pgoff_t start)3608 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3609 pgoff_t start)
3610 {
3611 struct mm_struct *mm = vmf->vma->vm_mm;
3612
3613 /* Huge page is mapped? No need to proceed. */
3614 if (pmd_trans_huge(*vmf->pmd)) {
3615 folio_unlock(folio);
3616 folio_put(folio);
3617 return true;
3618 }
3619
3620 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3621 struct page *page = folio_file_page(folio, start);
3622 vm_fault_t ret = do_set_pmd(vmf, folio, page);
3623 if (!ret) {
3624 /* The page is mapped successfully, reference consumed. */
3625 folio_unlock(folio);
3626 return true;
3627 }
3628 }
3629
3630 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3631 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3632
3633 return false;
3634 }
3635
next_uptodate_folio(struct xa_state * xas,struct address_space * mapping,pgoff_t end_pgoff)3636 static struct folio *next_uptodate_folio(struct xa_state *xas,
3637 struct address_space *mapping, pgoff_t end_pgoff)
3638 {
3639 struct folio *folio = xas_next_entry(xas, end_pgoff);
3640 unsigned long max_idx;
3641
3642 do {
3643 if (!folio)
3644 return NULL;
3645 if (xas_retry(xas, folio))
3646 continue;
3647 if (xa_is_value(folio))
3648 continue;
3649 if (!folio_try_get(folio))
3650 continue;
3651 if (folio_test_locked(folio))
3652 goto skip;
3653 /* Has the page moved or been split? */
3654 if (unlikely(folio != xas_reload(xas)))
3655 goto skip;
3656 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3657 goto skip;
3658 if (!folio_trylock(folio))
3659 goto skip;
3660 if (folio->mapping != mapping)
3661 goto unlock;
3662 if (!folio_test_uptodate(folio))
3663 goto unlock;
3664 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3665 if (xas->xa_index >= max_idx)
3666 goto unlock;
3667 return folio;
3668 unlock:
3669 folio_unlock(folio);
3670 skip:
3671 folio_put(folio);
3672 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3673
3674 return NULL;
3675 }
3676
3677 /*
3678 * Map page range [start_page, start_page + nr_pages) of folio.
3679 * start_page is gotten from start by folio_page(folio, start)
3680 */
filemap_map_folio_range(struct vm_fault * vmf,struct folio * folio,unsigned long start,unsigned long addr,unsigned int nr_pages,unsigned long * rss,unsigned short * mmap_miss)3681 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3682 struct folio *folio, unsigned long start,
3683 unsigned long addr, unsigned int nr_pages,
3684 unsigned long *rss, unsigned short *mmap_miss)
3685 {
3686 unsigned int ref_from_caller = 1;
3687 vm_fault_t ret = 0;
3688 struct page *page = folio_page(folio, start);
3689 unsigned int count = 0;
3690 pte_t *old_ptep = vmf->pte;
3691 unsigned long addr0;
3692
3693 /*
3694 * Map the large folio fully where possible.
3695 *
3696 * The folio must not cross VMA or page table boundary.
3697 */
3698 addr0 = addr - start * PAGE_SIZE;
3699 if (folio_within_vma(folio, vmf->vma) &&
3700 (addr0 & PMD_MASK) == ((addr0 + folio_size(folio) - 1) & PMD_MASK)) {
3701 vmf->pte -= start;
3702 page -= start;
3703 addr = addr0;
3704 nr_pages = folio_nr_pages(folio);
3705 }
3706
3707 do {
3708 if (PageHWPoison(page + count))
3709 goto skip;
3710
3711 /*
3712 * If there are too many folios that are recently evicted
3713 * in a file, they will probably continue to be evicted.
3714 * In such situation, read-ahead is only a waste of IO.
3715 * Don't decrease mmap_miss in this scenario to make sure
3716 * we can stop read-ahead.
3717 */
3718 if (!folio_test_workingset(folio))
3719 (*mmap_miss)++;
3720
3721 /*
3722 * NOTE: If there're PTE markers, we'll leave them to be
3723 * handled in the specific fault path, and it'll prohibit the
3724 * fault-around logic.
3725 */
3726 if (!pte_none(ptep_get(&vmf->pte[count])))
3727 goto skip;
3728
3729 count++;
3730 continue;
3731 skip:
3732 if (count) {
3733 set_pte_range(vmf, folio, page, count, addr);
3734 *rss += count;
3735 folio_ref_add(folio, count - ref_from_caller);
3736 ref_from_caller = 0;
3737 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3738 ret = VM_FAULT_NOPAGE;
3739 }
3740
3741 count++;
3742 page += count;
3743 vmf->pte += count;
3744 addr += count * PAGE_SIZE;
3745 count = 0;
3746 } while (--nr_pages > 0);
3747
3748 if (count) {
3749 set_pte_range(vmf, folio, page, count, addr);
3750 *rss += count;
3751 folio_ref_add(folio, count - ref_from_caller);
3752 ref_from_caller = 0;
3753 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3754 ret = VM_FAULT_NOPAGE;
3755 }
3756
3757 vmf->pte = old_ptep;
3758 if (ref_from_caller)
3759 /* Locked folios cannot get truncated. */
3760 folio_ref_dec(folio);
3761
3762 return ret;
3763 }
3764
filemap_map_order0_folio(struct vm_fault * vmf,struct folio * folio,unsigned long addr,unsigned long * rss,unsigned short * mmap_miss)3765 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3766 struct folio *folio, unsigned long addr,
3767 unsigned long *rss, unsigned short *mmap_miss)
3768 {
3769 vm_fault_t ret = 0;
3770 struct page *page = &folio->page;
3771
3772 if (PageHWPoison(page))
3773 goto out;
3774
3775 /* See comment of filemap_map_folio_range() */
3776 if (!folio_test_workingset(folio))
3777 (*mmap_miss)++;
3778
3779 /*
3780 * NOTE: If there're PTE markers, we'll leave them to be
3781 * handled in the specific fault path, and it'll prohibit
3782 * the fault-around logic.
3783 */
3784 if (!pte_none(ptep_get(vmf->pte)))
3785 goto out;
3786
3787 if (vmf->address == addr)
3788 ret = VM_FAULT_NOPAGE;
3789
3790 set_pte_range(vmf, folio, page, 1, addr);
3791 (*rss)++;
3792 return ret;
3793
3794 out:
3795 /* Locked folios cannot get truncated. */
3796 folio_ref_dec(folio);
3797 return ret;
3798 }
3799
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3800 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3801 pgoff_t start_pgoff, pgoff_t end_pgoff)
3802 {
3803 struct vm_area_struct *vma = vmf->vma;
3804 struct file *file = vma->vm_file;
3805 struct address_space *mapping = file->f_mapping;
3806 pgoff_t file_end, last_pgoff = start_pgoff;
3807 unsigned long addr;
3808 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3809 struct folio *folio;
3810 vm_fault_t ret = 0;
3811 unsigned long rss = 0;
3812 unsigned int nr_pages = 0, folio_type;
3813 unsigned short mmap_miss = 0, mmap_miss_saved;
3814
3815 rcu_read_lock();
3816 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3817 if (!folio)
3818 goto out;
3819
3820 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3821 ret = VM_FAULT_NOPAGE;
3822 goto out;
3823 }
3824
3825 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3826 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3827 if (!vmf->pte) {
3828 folio_unlock(folio);
3829 folio_put(folio);
3830 goto out;
3831 }
3832
3833 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3834 if (end_pgoff > file_end)
3835 end_pgoff = file_end;
3836
3837 folio_type = mm_counter_file(folio);
3838 do {
3839 unsigned long end;
3840
3841 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3842 vmf->pte += xas.xa_index - last_pgoff;
3843 last_pgoff = xas.xa_index;
3844 end = folio_next_index(folio) - 1;
3845 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3846
3847 if (!folio_test_large(folio))
3848 ret |= filemap_map_order0_folio(vmf,
3849 folio, addr, &rss, &mmap_miss);
3850 else
3851 ret |= filemap_map_folio_range(vmf, folio,
3852 xas.xa_index - folio->index, addr,
3853 nr_pages, &rss, &mmap_miss);
3854
3855 folio_unlock(folio);
3856 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3857 add_mm_counter(vma->vm_mm, folio_type, rss);
3858 pte_unmap_unlock(vmf->pte, vmf->ptl);
3859 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3860 out:
3861 rcu_read_unlock();
3862
3863 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3864 if (mmap_miss >= mmap_miss_saved)
3865 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3866 else
3867 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3868
3869 return ret;
3870 }
3871 EXPORT_SYMBOL(filemap_map_pages);
3872
filemap_page_mkwrite(struct vm_fault * vmf)3873 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3874 {
3875 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3876 struct folio *folio = page_folio(vmf->page);
3877 vm_fault_t ret = VM_FAULT_LOCKED;
3878
3879 sb_start_pagefault(mapping->host->i_sb);
3880 file_update_time(vmf->vma->vm_file);
3881 folio_lock(folio);
3882 if (folio->mapping != mapping) {
3883 folio_unlock(folio);
3884 ret = VM_FAULT_NOPAGE;
3885 goto out;
3886 }
3887 /*
3888 * We mark the folio dirty already here so that when freeze is in
3889 * progress, we are guaranteed that writeback during freezing will
3890 * see the dirty folio and writeprotect it again.
3891 */
3892 folio_mark_dirty(folio);
3893 folio_wait_stable(folio);
3894 out:
3895 sb_end_pagefault(mapping->host->i_sb);
3896 return ret;
3897 }
3898
3899 const struct vm_operations_struct generic_file_vm_ops = {
3900 .fault = filemap_fault,
3901 .map_pages = filemap_map_pages,
3902 .page_mkwrite = filemap_page_mkwrite,
3903 };
3904
3905 /* This is used for a general mmap of a disk file */
3906
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3907 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3908 {
3909 struct address_space *mapping = file->f_mapping;
3910
3911 if (!mapping->a_ops->read_folio)
3912 return -ENOEXEC;
3913 file_accessed(file);
3914 vma->vm_ops = &generic_file_vm_ops;
3915 return 0;
3916 }
3917
generic_file_mmap_prepare(struct vm_area_desc * desc)3918 int generic_file_mmap_prepare(struct vm_area_desc *desc)
3919 {
3920 struct file *file = desc->file;
3921 struct address_space *mapping = file->f_mapping;
3922
3923 if (!mapping->a_ops->read_folio)
3924 return -ENOEXEC;
3925 file_accessed(file);
3926 desc->vm_ops = &generic_file_vm_ops;
3927 return 0;
3928 }
3929
3930 /*
3931 * This is for filesystems which do not implement ->writepage.
3932 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3933 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3934 {
3935 if (vma_is_shared_maywrite(vma))
3936 return -EINVAL;
3937 return generic_file_mmap(file, vma);
3938 }
3939
generic_file_readonly_mmap_prepare(struct vm_area_desc * desc)3940 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc)
3941 {
3942 if (is_shared_maywrite(desc->vm_flags))
3943 return -EINVAL;
3944 return generic_file_mmap_prepare(desc);
3945 }
3946 #else
filemap_page_mkwrite(struct vm_fault * vmf)3947 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3948 {
3949 return VM_FAULT_SIGBUS;
3950 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3951 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3952 {
3953 return -ENOSYS;
3954 }
generic_file_mmap_prepare(struct vm_area_desc * desc)3955 int generic_file_mmap_prepare(struct vm_area_desc *desc)
3956 {
3957 return -ENOSYS;
3958 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3959 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3960 {
3961 return -ENOSYS;
3962 }
generic_file_readonly_mmap_prepare(struct vm_area_desc * desc)3963 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc)
3964 {
3965 return -ENOSYS;
3966 }
3967 #endif /* CONFIG_MMU */
3968
3969 EXPORT_SYMBOL(filemap_page_mkwrite);
3970 EXPORT_SYMBOL(generic_file_mmap);
3971 EXPORT_SYMBOL(generic_file_mmap_prepare);
3972 EXPORT_SYMBOL(generic_file_readonly_mmap);
3973 EXPORT_SYMBOL(generic_file_readonly_mmap_prepare);
3974
do_read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file,gfp_t gfp)3975 static struct folio *do_read_cache_folio(struct address_space *mapping,
3976 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3977 {
3978 struct folio *folio;
3979 int err;
3980
3981 if (!filler)
3982 filler = mapping->a_ops->read_folio;
3983 repeat:
3984 folio = filemap_get_folio(mapping, index);
3985 if (IS_ERR(folio)) {
3986 folio = filemap_alloc_folio(gfp,
3987 mapping_min_folio_order(mapping));
3988 if (!folio)
3989 return ERR_PTR(-ENOMEM);
3990 index = mapping_align_index(mapping, index);
3991 err = filemap_add_folio(mapping, folio, index, gfp);
3992 if (unlikely(err)) {
3993 folio_put(folio);
3994 if (err == -EEXIST)
3995 goto repeat;
3996 /* Presumably ENOMEM for xarray node */
3997 return ERR_PTR(err);
3998 }
3999
4000 goto filler;
4001 }
4002 if (folio_test_uptodate(folio))
4003 goto out;
4004
4005 if (!folio_trylock(folio)) {
4006 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
4007 goto repeat;
4008 }
4009
4010 /* Folio was truncated from mapping */
4011 if (!folio->mapping) {
4012 folio_unlock(folio);
4013 folio_put(folio);
4014 goto repeat;
4015 }
4016
4017 /* Someone else locked and filled the page in a very small window */
4018 if (folio_test_uptodate(folio)) {
4019 folio_unlock(folio);
4020 goto out;
4021 }
4022
4023 filler:
4024 err = filemap_read_folio(file, filler, folio);
4025 if (err) {
4026 folio_put(folio);
4027 if (err == AOP_TRUNCATED_PAGE)
4028 goto repeat;
4029 return ERR_PTR(err);
4030 }
4031
4032 out:
4033 folio_mark_accessed(folio);
4034 return folio;
4035 }
4036
4037 /**
4038 * read_cache_folio - Read into page cache, fill it if needed.
4039 * @mapping: The address_space to read from.
4040 * @index: The index to read.
4041 * @filler: Function to perform the read, or NULL to use aops->read_folio().
4042 * @file: Passed to filler function, may be NULL if not required.
4043 *
4044 * Read one page into the page cache. If it succeeds, the folio returned
4045 * will contain @index, but it may not be the first page of the folio.
4046 *
4047 * If the filler function returns an error, it will be returned to the
4048 * caller.
4049 *
4050 * Context: May sleep. Expects mapping->invalidate_lock to be held.
4051 * Return: An uptodate folio on success, ERR_PTR() on failure.
4052 */
read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file)4053 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
4054 filler_t filler, struct file *file)
4055 {
4056 return do_read_cache_folio(mapping, index, filler, file,
4057 mapping_gfp_mask(mapping));
4058 }
4059 EXPORT_SYMBOL(read_cache_folio);
4060
4061 /**
4062 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
4063 * @mapping: The address_space for the folio.
4064 * @index: The index that the allocated folio will contain.
4065 * @gfp: The page allocator flags to use if allocating.
4066 *
4067 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
4068 * any new memory allocations done using the specified allocation flags.
4069 *
4070 * The most likely error from this function is EIO, but ENOMEM is
4071 * possible and so is EINTR. If ->read_folio returns another error,
4072 * that will be returned to the caller.
4073 *
4074 * The function expects mapping->invalidate_lock to be already held.
4075 *
4076 * Return: Uptodate folio on success, ERR_PTR() on failure.
4077 */
mapping_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4078 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
4079 pgoff_t index, gfp_t gfp)
4080 {
4081 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
4082 }
4083 EXPORT_SYMBOL(mapping_read_folio_gfp);
4084
do_read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file,gfp_t gfp)4085 static struct page *do_read_cache_page(struct address_space *mapping,
4086 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
4087 {
4088 struct folio *folio;
4089
4090 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
4091 if (IS_ERR(folio))
4092 return &folio->page;
4093 return folio_file_page(folio, index);
4094 }
4095
read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file)4096 struct page *read_cache_page(struct address_space *mapping,
4097 pgoff_t index, filler_t *filler, struct file *file)
4098 {
4099 return do_read_cache_page(mapping, index, filler, file,
4100 mapping_gfp_mask(mapping));
4101 }
4102 EXPORT_SYMBOL(read_cache_page);
4103
4104 /**
4105 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
4106 * @mapping: the page's address_space
4107 * @index: the page index
4108 * @gfp: the page allocator flags to use if allocating
4109 *
4110 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
4111 * any new page allocations done using the specified allocation flags.
4112 *
4113 * If the page does not get brought uptodate, return -EIO.
4114 *
4115 * The function expects mapping->invalidate_lock to be already held.
4116 *
4117 * Return: up to date page on success, ERR_PTR() on failure.
4118 */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4119 struct page *read_cache_page_gfp(struct address_space *mapping,
4120 pgoff_t index,
4121 gfp_t gfp)
4122 {
4123 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
4124 }
4125 EXPORT_SYMBOL(read_cache_page_gfp);
4126
4127 /*
4128 * Warn about a page cache invalidation failure during a direct I/O write.
4129 */
dio_warn_stale_pagecache(struct file * filp)4130 static void dio_warn_stale_pagecache(struct file *filp)
4131 {
4132 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
4133 char pathname[128];
4134 char *path;
4135
4136 errseq_set(&filp->f_mapping->wb_err, -EIO);
4137 if (__ratelimit(&_rs)) {
4138 path = file_path(filp, pathname, sizeof(pathname));
4139 if (IS_ERR(path))
4140 path = "(unknown)";
4141 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
4142 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
4143 current->comm);
4144 }
4145 }
4146
kiocb_invalidate_post_direct_write(struct kiocb * iocb,size_t count)4147 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
4148 {
4149 struct address_space *mapping = iocb->ki_filp->f_mapping;
4150
4151 if (mapping->nrpages &&
4152 invalidate_inode_pages2_range(mapping,
4153 iocb->ki_pos >> PAGE_SHIFT,
4154 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
4155 dio_warn_stale_pagecache(iocb->ki_filp);
4156 }
4157
4158 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)4159 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
4160 {
4161 struct address_space *mapping = iocb->ki_filp->f_mapping;
4162 size_t write_len = iov_iter_count(from);
4163 ssize_t written;
4164
4165 /*
4166 * If a page can not be invalidated, return 0 to fall back
4167 * to buffered write.
4168 */
4169 written = kiocb_invalidate_pages(iocb, write_len);
4170 if (written) {
4171 if (written == -EBUSY)
4172 return 0;
4173 return written;
4174 }
4175
4176 written = mapping->a_ops->direct_IO(iocb, from);
4177
4178 /*
4179 * Finally, try again to invalidate clean pages which might have been
4180 * cached by non-direct readahead, or faulted in by get_user_pages()
4181 * if the source of the write was an mmap'ed region of the file
4182 * we're writing. Either one is a pretty crazy thing to do,
4183 * so we don't support it 100%. If this invalidation
4184 * fails, tough, the write still worked...
4185 *
4186 * Most of the time we do not need this since dio_complete() will do
4187 * the invalidation for us. However there are some file systems that
4188 * do not end up with dio_complete() being called, so let's not break
4189 * them by removing it completely.
4190 *
4191 * Noticeable example is a blkdev_direct_IO().
4192 *
4193 * Skip invalidation for async writes or if mapping has no pages.
4194 */
4195 if (written > 0) {
4196 struct inode *inode = mapping->host;
4197 loff_t pos = iocb->ki_pos;
4198
4199 kiocb_invalidate_post_direct_write(iocb, written);
4200 pos += written;
4201 write_len -= written;
4202 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
4203 i_size_write(inode, pos);
4204 mark_inode_dirty(inode);
4205 }
4206 iocb->ki_pos = pos;
4207 }
4208 if (written != -EIOCBQUEUED)
4209 iov_iter_revert(from, write_len - iov_iter_count(from));
4210 return written;
4211 }
4212 EXPORT_SYMBOL(generic_file_direct_write);
4213
generic_perform_write(struct kiocb * iocb,struct iov_iter * i)4214 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4215 {
4216 struct file *file = iocb->ki_filp;
4217 loff_t pos = iocb->ki_pos;
4218 struct address_space *mapping = file->f_mapping;
4219 const struct address_space_operations *a_ops = mapping->a_ops;
4220 size_t chunk = mapping_max_folio_size(mapping);
4221 long status = 0;
4222 ssize_t written = 0;
4223
4224 do {
4225 struct folio *folio;
4226 size_t offset; /* Offset into folio */
4227 size_t bytes; /* Bytes to write to folio */
4228 size_t copied; /* Bytes copied from user */
4229 void *fsdata = NULL;
4230
4231 bytes = iov_iter_count(i);
4232 retry:
4233 offset = pos & (chunk - 1);
4234 bytes = min(chunk - offset, bytes);
4235 balance_dirty_pages_ratelimited(mapping);
4236
4237 if (fatal_signal_pending(current)) {
4238 status = -EINTR;
4239 break;
4240 }
4241
4242 status = a_ops->write_begin(iocb, mapping, pos, bytes,
4243 &folio, &fsdata);
4244 if (unlikely(status < 0))
4245 break;
4246
4247 offset = offset_in_folio(folio, pos);
4248 if (bytes > folio_size(folio) - offset)
4249 bytes = folio_size(folio) - offset;
4250
4251 if (mapping_writably_mapped(mapping))
4252 flush_dcache_folio(folio);
4253
4254 /*
4255 * Faults here on mmap()s can recurse into arbitrary
4256 * filesystem code. Lots of locks are held that can
4257 * deadlock. Use an atomic copy to avoid deadlocking
4258 * in page fault handling.
4259 */
4260 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4261 flush_dcache_folio(folio);
4262
4263 status = a_ops->write_end(iocb, mapping, pos, bytes, copied,
4264 folio, fsdata);
4265 if (unlikely(status != copied)) {
4266 iov_iter_revert(i, copied - max(status, 0L));
4267 if (unlikely(status < 0))
4268 break;
4269 }
4270 cond_resched();
4271
4272 if (unlikely(status == 0)) {
4273 /*
4274 * A short copy made ->write_end() reject the
4275 * thing entirely. Might be memory poisoning
4276 * halfway through, might be a race with munmap,
4277 * might be severe memory pressure.
4278 */
4279 if (chunk > PAGE_SIZE)
4280 chunk /= 2;
4281 if (copied) {
4282 bytes = copied;
4283 goto retry;
4284 }
4285
4286 /*
4287 * 'folio' is now unlocked and faults on it can be
4288 * handled. Ensure forward progress by trying to
4289 * fault it in now.
4290 */
4291 if (fault_in_iov_iter_readable(i, bytes) == bytes) {
4292 status = -EFAULT;
4293 break;
4294 }
4295 } else {
4296 pos += status;
4297 written += status;
4298 }
4299 } while (iov_iter_count(i));
4300
4301 if (!written)
4302 return status;
4303 iocb->ki_pos += written;
4304 return written;
4305 }
4306 EXPORT_SYMBOL(generic_perform_write);
4307
4308 /**
4309 * __generic_file_write_iter - write data to a file
4310 * @iocb: IO state structure (file, offset, etc.)
4311 * @from: iov_iter with data to write
4312 *
4313 * This function does all the work needed for actually writing data to a
4314 * file. It does all basic checks, removes SUID from the file, updates
4315 * modification times and calls proper subroutines depending on whether we
4316 * do direct IO or a standard buffered write.
4317 *
4318 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4319 * object which does not need locking at all.
4320 *
4321 * This function does *not* take care of syncing data in case of O_SYNC write.
4322 * A caller has to handle it. This is mainly due to the fact that we want to
4323 * avoid syncing under i_rwsem.
4324 *
4325 * Return:
4326 * * number of bytes written, even for truncated writes
4327 * * negative error code if no data has been written at all
4328 */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4329 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4330 {
4331 struct file *file = iocb->ki_filp;
4332 struct address_space *mapping = file->f_mapping;
4333 struct inode *inode = mapping->host;
4334 ssize_t ret;
4335
4336 ret = file_remove_privs(file);
4337 if (ret)
4338 return ret;
4339
4340 ret = file_update_time(file);
4341 if (ret)
4342 return ret;
4343
4344 if (iocb->ki_flags & IOCB_DIRECT) {
4345 ret = generic_file_direct_write(iocb, from);
4346 /*
4347 * If the write stopped short of completing, fall back to
4348 * buffered writes. Some filesystems do this for writes to
4349 * holes, for example. For DAX files, a buffered write will
4350 * not succeed (even if it did, DAX does not handle dirty
4351 * page-cache pages correctly).
4352 */
4353 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4354 return ret;
4355 return direct_write_fallback(iocb, from, ret,
4356 generic_perform_write(iocb, from));
4357 }
4358
4359 return generic_perform_write(iocb, from);
4360 }
4361 EXPORT_SYMBOL(__generic_file_write_iter);
4362
4363 /**
4364 * generic_file_write_iter - write data to a file
4365 * @iocb: IO state structure
4366 * @from: iov_iter with data to write
4367 *
4368 * This is a wrapper around __generic_file_write_iter() to be used by most
4369 * filesystems. It takes care of syncing the file in case of O_SYNC file
4370 * and acquires i_rwsem as needed.
4371 * Return:
4372 * * negative error code if no data has been written at all of
4373 * vfs_fsync_range() failed for a synchronous write
4374 * * number of bytes written, even for truncated writes
4375 */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4376 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4377 {
4378 struct file *file = iocb->ki_filp;
4379 struct inode *inode = file->f_mapping->host;
4380 ssize_t ret;
4381
4382 inode_lock(inode);
4383 ret = generic_write_checks(iocb, from);
4384 if (ret > 0)
4385 ret = __generic_file_write_iter(iocb, from);
4386 inode_unlock(inode);
4387
4388 if (ret > 0)
4389 ret = generic_write_sync(iocb, ret);
4390 return ret;
4391 }
4392 EXPORT_SYMBOL(generic_file_write_iter);
4393
4394 /**
4395 * filemap_release_folio() - Release fs-specific metadata on a folio.
4396 * @folio: The folio which the kernel is trying to free.
4397 * @gfp: Memory allocation flags (and I/O mode).
4398 *
4399 * The address_space is trying to release any data attached to a folio
4400 * (presumably at folio->private).
4401 *
4402 * This will also be called if the private_2 flag is set on a page,
4403 * indicating that the folio has other metadata associated with it.
4404 *
4405 * The @gfp argument specifies whether I/O may be performed to release
4406 * this page (__GFP_IO), and whether the call may block
4407 * (__GFP_RECLAIM & __GFP_FS).
4408 *
4409 * Return: %true if the release was successful, otherwise %false.
4410 */
filemap_release_folio(struct folio * folio,gfp_t gfp)4411 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4412 {
4413 struct address_space * const mapping = folio->mapping;
4414
4415 BUG_ON(!folio_test_locked(folio));
4416 if (!folio_needs_release(folio))
4417 return true;
4418 if (folio_test_writeback(folio))
4419 return false;
4420
4421 if (mapping && mapping->a_ops->release_folio)
4422 return mapping->a_ops->release_folio(folio, gfp);
4423 return try_to_free_buffers(folio);
4424 }
4425 EXPORT_SYMBOL(filemap_release_folio);
4426
4427 /**
4428 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4429 * @inode: The inode to flush
4430 * @flush: Set to write back rather than simply invalidate.
4431 * @start: First byte to in range.
4432 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4433 * onwards.
4434 *
4435 * Invalidate all the folios on an inode that contribute to the specified
4436 * range, possibly writing them back first. Whilst the operation is
4437 * undertaken, the invalidate lock is held to prevent new folios from being
4438 * installed.
4439 */
filemap_invalidate_inode(struct inode * inode,bool flush,loff_t start,loff_t end)4440 int filemap_invalidate_inode(struct inode *inode, bool flush,
4441 loff_t start, loff_t end)
4442 {
4443 struct address_space *mapping = inode->i_mapping;
4444 pgoff_t first = start >> PAGE_SHIFT;
4445 pgoff_t last = end >> PAGE_SHIFT;
4446 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4447
4448 if (!mapping || !mapping->nrpages || end < start)
4449 goto out;
4450
4451 /* Prevent new folios from being added to the inode. */
4452 filemap_invalidate_lock(mapping);
4453
4454 if (!mapping->nrpages)
4455 goto unlock;
4456
4457 unmap_mapping_pages(mapping, first, nr, false);
4458
4459 /* Write back the data if we're asked to. */
4460 if (flush) {
4461 struct writeback_control wbc = {
4462 .sync_mode = WB_SYNC_ALL,
4463 .nr_to_write = LONG_MAX,
4464 .range_start = start,
4465 .range_end = end,
4466 };
4467
4468 filemap_fdatawrite_wbc(mapping, &wbc);
4469 }
4470
4471 /* Wait for writeback to complete on all folios and discard. */
4472 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4473
4474 unlock:
4475 filemap_invalidate_unlock(mapping);
4476 out:
4477 return filemap_check_errors(mapping);
4478 }
4479 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4480
4481 #ifdef CONFIG_CACHESTAT_SYSCALL
4482 /**
4483 * filemap_cachestat() - compute the page cache statistics of a mapping
4484 * @mapping: The mapping to compute the statistics for.
4485 * @first_index: The starting page cache index.
4486 * @last_index: The final page index (inclusive).
4487 * @cs: the cachestat struct to write the result to.
4488 *
4489 * This will query the page cache statistics of a mapping in the
4490 * page range of [first_index, last_index] (inclusive). The statistics
4491 * queried include: number of dirty pages, number of pages marked for
4492 * writeback, and the number of (recently) evicted pages.
4493 */
filemap_cachestat(struct address_space * mapping,pgoff_t first_index,pgoff_t last_index,struct cachestat * cs)4494 static void filemap_cachestat(struct address_space *mapping,
4495 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4496 {
4497 XA_STATE(xas, &mapping->i_pages, first_index);
4498 struct folio *folio;
4499
4500 /* Flush stats (and potentially sleep) outside the RCU read section. */
4501 mem_cgroup_flush_stats_ratelimited(NULL);
4502
4503 rcu_read_lock();
4504 xas_for_each(&xas, folio, last_index) {
4505 int order;
4506 unsigned long nr_pages;
4507 pgoff_t folio_first_index, folio_last_index;
4508
4509 /*
4510 * Don't deref the folio. It is not pinned, and might
4511 * get freed (and reused) underneath us.
4512 *
4513 * We *could* pin it, but that would be expensive for
4514 * what should be a fast and lightweight syscall.
4515 *
4516 * Instead, derive all information of interest from
4517 * the rcu-protected xarray.
4518 */
4519
4520 if (xas_retry(&xas, folio))
4521 continue;
4522
4523 order = xas_get_order(&xas);
4524 nr_pages = 1 << order;
4525 folio_first_index = round_down(xas.xa_index, 1 << order);
4526 folio_last_index = folio_first_index + nr_pages - 1;
4527
4528 /* Folios might straddle the range boundaries, only count covered pages */
4529 if (folio_first_index < first_index)
4530 nr_pages -= first_index - folio_first_index;
4531
4532 if (folio_last_index > last_index)
4533 nr_pages -= folio_last_index - last_index;
4534
4535 if (xa_is_value(folio)) {
4536 /* page is evicted */
4537 void *shadow = (void *)folio;
4538 bool workingset; /* not used */
4539
4540 cs->nr_evicted += nr_pages;
4541
4542 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4543 if (shmem_mapping(mapping)) {
4544 /* shmem file - in swap cache */
4545 swp_entry_t swp = radix_to_swp_entry(folio);
4546
4547 /* swapin error results in poisoned entry */
4548 if (non_swap_entry(swp))
4549 goto resched;
4550
4551 /*
4552 * Getting a swap entry from the shmem
4553 * inode means we beat
4554 * shmem_unuse(). rcu_read_lock()
4555 * ensures swapoff waits for us before
4556 * freeing the swapper space. However,
4557 * we can race with swapping and
4558 * invalidation, so there might not be
4559 * a shadow in the swapcache (yet).
4560 */
4561 shadow = swap_cache_get_shadow(swp);
4562 if (!shadow)
4563 goto resched;
4564 }
4565 #endif
4566 if (workingset_test_recent(shadow, true, &workingset, false))
4567 cs->nr_recently_evicted += nr_pages;
4568
4569 goto resched;
4570 }
4571
4572 /* page is in cache */
4573 cs->nr_cache += nr_pages;
4574
4575 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4576 cs->nr_dirty += nr_pages;
4577
4578 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4579 cs->nr_writeback += nr_pages;
4580
4581 resched:
4582 if (need_resched()) {
4583 xas_pause(&xas);
4584 cond_resched_rcu();
4585 }
4586 }
4587 rcu_read_unlock();
4588 }
4589
4590 /*
4591 * See mincore: reveal pagecache information only for files
4592 * that the calling process has write access to, or could (if
4593 * tried) open for writing.
4594 */
can_do_cachestat(struct file * f)4595 static inline bool can_do_cachestat(struct file *f)
4596 {
4597 if (f->f_mode & FMODE_WRITE)
4598 return true;
4599 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f)))
4600 return true;
4601 return file_permission(f, MAY_WRITE) == 0;
4602 }
4603
4604 /*
4605 * The cachestat(2) system call.
4606 *
4607 * cachestat() returns the page cache statistics of a file in the
4608 * bytes range specified by `off` and `len`: number of cached pages,
4609 * number of dirty pages, number of pages marked for writeback,
4610 * number of evicted pages, and number of recently evicted pages.
4611 *
4612 * An evicted page is a page that is previously in the page cache
4613 * but has been evicted since. A page is recently evicted if its last
4614 * eviction was recent enough that its reentry to the cache would
4615 * indicate that it is actively being used by the system, and that
4616 * there is memory pressure on the system.
4617 *
4618 * `off` and `len` must be non-negative integers. If `len` > 0,
4619 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4620 * we will query in the range from `off` to the end of the file.
4621 *
4622 * The `flags` argument is unused for now, but is included for future
4623 * extensibility. User should pass 0 (i.e no flag specified).
4624 *
4625 * Currently, hugetlbfs is not supported.
4626 *
4627 * Because the status of a page can change after cachestat() checks it
4628 * but before it returns to the application, the returned values may
4629 * contain stale information.
4630 *
4631 * return values:
4632 * zero - success
4633 * -EFAULT - cstat or cstat_range points to an illegal address
4634 * -EINVAL - invalid flags
4635 * -EBADF - invalid file descriptor
4636 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4637 */
SYSCALL_DEFINE4(cachestat,unsigned int,fd,struct cachestat_range __user *,cstat_range,struct cachestat __user *,cstat,unsigned int,flags)4638 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4639 struct cachestat_range __user *, cstat_range,
4640 struct cachestat __user *, cstat, unsigned int, flags)
4641 {
4642 CLASS(fd, f)(fd);
4643 struct address_space *mapping;
4644 struct cachestat_range csr;
4645 struct cachestat cs;
4646 pgoff_t first_index, last_index;
4647
4648 if (fd_empty(f))
4649 return -EBADF;
4650
4651 if (copy_from_user(&csr, cstat_range,
4652 sizeof(struct cachestat_range)))
4653 return -EFAULT;
4654
4655 /* hugetlbfs is not supported */
4656 if (is_file_hugepages(fd_file(f)))
4657 return -EOPNOTSUPP;
4658
4659 if (!can_do_cachestat(fd_file(f)))
4660 return -EPERM;
4661
4662 if (flags != 0)
4663 return -EINVAL;
4664
4665 first_index = csr.off >> PAGE_SHIFT;
4666 last_index =
4667 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4668 memset(&cs, 0, sizeof(struct cachestat));
4669 mapping = fd_file(f)->f_mapping;
4670 filemap_cachestat(mapping, first_index, last_index, &cs);
4671
4672 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4673 return -EFAULT;
4674
4675 return 0;
4676 }
4677 #endif /* CONFIG_CACHESTAT_SYSCALL */
4678