1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
8 * Copyright (C) 2008-2009 Red Hat, Inc.
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
13 * Hugh Dickins
14 */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50
51 #ifdef CONFIG_NUMA
52 #define NUMA(x) (x)
53 #define DO_NUMA(x) do { (x); } while (0)
54 #else
55 #define NUMA(x) (0)
56 #define DO_NUMA(x) do { } while (0)
57 #endif
58
59 typedef u8 rmap_age_t;
60
61 /**
62 * DOC: Overview
63 *
64 * A few notes about the KSM scanning process,
65 * to make it easier to understand the data structures below:
66 *
67 * In order to reduce excessive scanning, KSM sorts the memory pages by their
68 * contents into a data structure that holds pointers to the pages' locations.
69 *
70 * Since the contents of the pages may change at any moment, KSM cannot just
71 * insert the pages into a normal sorted tree and expect it to find anything.
72 * Therefore KSM uses two data structures - the stable and the unstable tree.
73 *
74 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
75 * by their contents. Because each such page is write-protected, searching on
76 * this tree is fully assured to be working (except when pages are unmapped),
77 * and therefore this tree is called the stable tree.
78 *
79 * The stable tree node includes information required for reverse
80 * mapping from a KSM page to virtual addresses that map this page.
81 *
82 * In order to avoid large latencies of the rmap walks on KSM pages,
83 * KSM maintains two types of nodes in the stable tree:
84 *
85 * * the regular nodes that keep the reverse mapping structures in a
86 * linked list
87 * * the "chains" that link nodes ("dups") that represent the same
88 * write protected memory content, but each "dup" corresponds to a
89 * different KSM page copy of that content
90 *
91 * Internally, the regular nodes, "dups" and "chains" are represented
92 * using the same struct ksm_stable_node structure.
93 *
94 * In addition to the stable tree, KSM uses a second data structure called the
95 * unstable tree: this tree holds pointers to pages which have been found to
96 * be "unchanged for a period of time". The unstable tree sorts these pages
97 * by their contents, but since they are not write-protected, KSM cannot rely
98 * upon the unstable tree to work correctly - the unstable tree is liable to
99 * be corrupted as its contents are modified, and so it is called unstable.
100 *
101 * KSM solves this problem by several techniques:
102 *
103 * 1) The unstable tree is flushed every time KSM completes scanning all
104 * memory areas, and then the tree is rebuilt again from the beginning.
105 * 2) KSM will only insert into the unstable tree, pages whose hash value
106 * has not changed since the previous scan of all memory areas.
107 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
108 * colors of the nodes and not on their contents, assuring that even when
109 * the tree gets "corrupted" it won't get out of balance, so scanning time
110 * remains the same (also, searching and inserting nodes in an rbtree uses
111 * the same algorithm, so we have no overhead when we flush and rebuild).
112 * 4) KSM never flushes the stable tree, which means that even if it were to
113 * take 10 attempts to find a page in the unstable tree, once it is found,
114 * it is secured in the stable tree. (When we scan a new page, we first
115 * compare it against the stable tree, and then against the unstable tree.)
116 *
117 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
118 * stable trees and multiple unstable trees: one of each for each NUMA node.
119 */
120
121 /**
122 * struct ksm_mm_slot - ksm information per mm that is being scanned
123 * @slot: hash lookup from mm to mm_slot
124 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
125 */
126 struct ksm_mm_slot {
127 struct mm_slot slot;
128 struct ksm_rmap_item *rmap_list;
129 };
130
131 /**
132 * struct ksm_scan - cursor for scanning
133 * @mm_slot: the current mm_slot we are scanning
134 * @address: the next address inside that to be scanned
135 * @rmap_list: link to the next rmap to be scanned in the rmap_list
136 * @seqnr: count of completed full scans (needed when removing unstable node)
137 *
138 * There is only the one ksm_scan instance of this cursor structure.
139 */
140 struct ksm_scan {
141 struct ksm_mm_slot *mm_slot;
142 unsigned long address;
143 struct ksm_rmap_item **rmap_list;
144 unsigned long seqnr;
145 };
146
147 /**
148 * struct ksm_stable_node - node of the stable rbtree
149 * @node: rb node of this ksm page in the stable tree
150 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
151 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
152 * @list: linked into migrate_nodes, pending placement in the proper node tree
153 * @hlist: hlist head of rmap_items using this ksm page
154 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
155 * @chain_prune_time: time of the last full garbage collection
156 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
157 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
158 */
159 struct ksm_stable_node {
160 union {
161 struct rb_node node; /* when node of stable tree */
162 struct { /* when listed for migration */
163 struct list_head *head;
164 struct {
165 struct hlist_node hlist_dup;
166 struct list_head list;
167 };
168 };
169 };
170 struct hlist_head hlist;
171 union {
172 unsigned long kpfn;
173 unsigned long chain_prune_time;
174 };
175 /*
176 * STABLE_NODE_CHAIN can be any negative number in
177 * rmap_hlist_len negative range, but better not -1 to be able
178 * to reliably detect underflows.
179 */
180 #define STABLE_NODE_CHAIN -1024
181 int rmap_hlist_len;
182 #ifdef CONFIG_NUMA
183 int nid;
184 #endif
185 };
186
187 /**
188 * struct ksm_rmap_item - reverse mapping item for virtual addresses
189 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
190 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
191 * @nid: NUMA node id of unstable tree in which linked (may not match page)
192 * @mm: the memory structure this rmap_item is pointing into
193 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
194 * @oldchecksum: previous checksum of the page at that virtual address
195 * @node: rb node of this rmap_item in the unstable tree
196 * @head: pointer to stable_node heading this list in the stable tree
197 * @hlist: link into hlist of rmap_items hanging off that stable_node
198 * @age: number of scan iterations since creation
199 * @remaining_skips: how many scans to skip
200 */
201 struct ksm_rmap_item {
202 struct ksm_rmap_item *rmap_list;
203 union {
204 struct anon_vma *anon_vma; /* when stable */
205 #ifdef CONFIG_NUMA
206 int nid; /* when node of unstable tree */
207 #endif
208 };
209 struct mm_struct *mm;
210 unsigned long address; /* + low bits used for flags below */
211 unsigned int oldchecksum; /* when unstable */
212 rmap_age_t age;
213 rmap_age_t remaining_skips;
214 union {
215 struct rb_node node; /* when node of unstable tree */
216 struct { /* when listed from stable tree */
217 struct ksm_stable_node *head;
218 struct hlist_node hlist;
219 };
220 };
221 };
222
223 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
224 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
225 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
226
227 /* The stable and unstable tree heads */
228 static struct rb_root one_stable_tree[1] = { RB_ROOT };
229 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
230 static struct rb_root *root_stable_tree = one_stable_tree;
231 static struct rb_root *root_unstable_tree = one_unstable_tree;
232
233 /* Recently migrated nodes of stable tree, pending proper placement */
234 static LIST_HEAD(migrate_nodes);
235 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
236
237 #define MM_SLOTS_HASH_BITS 10
238 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
239
240 static struct ksm_mm_slot ksm_mm_head = {
241 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
242 };
243 static struct ksm_scan ksm_scan = {
244 .mm_slot = &ksm_mm_head,
245 };
246
247 static struct kmem_cache *rmap_item_cache;
248 static struct kmem_cache *stable_node_cache;
249 static struct kmem_cache *mm_slot_cache;
250
251 /* Default number of pages to scan per batch */
252 #define DEFAULT_PAGES_TO_SCAN 100
253
254 /* The number of pages scanned */
255 static unsigned long ksm_pages_scanned;
256
257 /* The number of nodes in the stable tree */
258 static unsigned long ksm_pages_shared;
259
260 /* The number of page slots additionally sharing those nodes */
261 static unsigned long ksm_pages_sharing;
262
263 /* The number of nodes in the unstable tree */
264 static unsigned long ksm_pages_unshared;
265
266 /* The number of rmap_items in use: to calculate pages_volatile */
267 static unsigned long ksm_rmap_items;
268
269 /* The number of stable_node chains */
270 static unsigned long ksm_stable_node_chains;
271
272 /* The number of stable_node dups linked to the stable_node chains */
273 static unsigned long ksm_stable_node_dups;
274
275 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
276 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
277
278 /* Maximum number of page slots sharing a stable node */
279 static int ksm_max_page_sharing = 256;
280
281 /* Number of pages ksmd should scan in one batch */
282 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
283
284 /* Milliseconds ksmd should sleep between batches */
285 static unsigned int ksm_thread_sleep_millisecs = 20;
286
287 /* Checksum of an empty (zeroed) page */
288 static unsigned int zero_checksum __read_mostly;
289
290 /* Whether to merge empty (zeroed) pages with actual zero pages */
291 static bool ksm_use_zero_pages __read_mostly;
292
293 /* Skip pages that couldn't be de-duplicated previously */
294 /* Default to true at least temporarily, for testing */
295 static bool ksm_smart_scan = true;
296
297 /* The number of zero pages which is placed by KSM */
298 atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
299
300 /* The number of pages that have been skipped due to "smart scanning" */
301 static unsigned long ksm_pages_skipped;
302
303 /* Don't scan more than max pages per batch. */
304 static unsigned long ksm_advisor_max_pages_to_scan = 30000;
305
306 /* Min CPU for scanning pages per scan */
307 #define KSM_ADVISOR_MIN_CPU 10
308
309 /* Max CPU for scanning pages per scan */
310 static unsigned int ksm_advisor_max_cpu = 70;
311
312 /* Target scan time in seconds to analyze all KSM candidate pages. */
313 static unsigned long ksm_advisor_target_scan_time = 200;
314
315 /* Exponentially weighted moving average. */
316 #define EWMA_WEIGHT 30
317
318 /**
319 * struct advisor_ctx - metadata for KSM advisor
320 * @start_scan: start time of the current scan
321 * @scan_time: scan time of previous scan
322 * @change: change in percent to pages_to_scan parameter
323 * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
324 */
325 struct advisor_ctx {
326 ktime_t start_scan;
327 unsigned long scan_time;
328 unsigned long change;
329 unsigned long long cpu_time;
330 };
331 static struct advisor_ctx advisor_ctx;
332
333 /* Define different advisor's */
334 enum ksm_advisor_type {
335 KSM_ADVISOR_NONE,
336 KSM_ADVISOR_SCAN_TIME,
337 };
338 static enum ksm_advisor_type ksm_advisor;
339
340 #ifdef CONFIG_SYSFS
341 /*
342 * Only called through the sysfs control interface:
343 */
344
345 /* At least scan this many pages per batch. */
346 static unsigned long ksm_advisor_min_pages_to_scan = 500;
347
set_advisor_defaults(void)348 static void set_advisor_defaults(void)
349 {
350 if (ksm_advisor == KSM_ADVISOR_NONE) {
351 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
352 } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
353 advisor_ctx = (const struct advisor_ctx){ 0 };
354 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
355 }
356 }
357 #endif /* CONFIG_SYSFS */
358
advisor_start_scan(void)359 static inline void advisor_start_scan(void)
360 {
361 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
362 advisor_ctx.start_scan = ktime_get();
363 }
364
365 /*
366 * Use previous scan time if available, otherwise use current scan time as an
367 * approximation for the previous scan time.
368 */
prev_scan_time(struct advisor_ctx * ctx,unsigned long scan_time)369 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
370 unsigned long scan_time)
371 {
372 return ctx->scan_time ? ctx->scan_time : scan_time;
373 }
374
375 /* Calculate exponential weighted moving average */
ewma(unsigned long prev,unsigned long curr)376 static unsigned long ewma(unsigned long prev, unsigned long curr)
377 {
378 return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
379 }
380
381 /*
382 * The scan time advisor is based on the current scan rate and the target
383 * scan rate.
384 *
385 * new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
386 *
387 * To avoid perturbations it calculates a change factor of previous changes.
388 * A new change factor is calculated for each iteration and it uses an
389 * exponentially weighted moving average. The new pages_to_scan value is
390 * multiplied with that change factor:
391 *
392 * new_pages_to_scan *= change facor
393 *
394 * The new_pages_to_scan value is limited by the cpu min and max values. It
395 * calculates the cpu percent for the last scan and calculates the new
396 * estimated cpu percent cost for the next scan. That value is capped by the
397 * cpu min and max setting.
398 *
399 * In addition the new pages_to_scan value is capped by the max and min
400 * limits.
401 */
scan_time_advisor(void)402 static void scan_time_advisor(void)
403 {
404 unsigned int cpu_percent;
405 unsigned long cpu_time;
406 unsigned long cpu_time_diff;
407 unsigned long cpu_time_diff_ms;
408 unsigned long pages;
409 unsigned long per_page_cost;
410 unsigned long factor;
411 unsigned long change;
412 unsigned long last_scan_time;
413 unsigned long scan_time;
414
415 /* Convert scan time to seconds */
416 scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
417 MSEC_PER_SEC);
418 scan_time = scan_time ? scan_time : 1;
419
420 /* Calculate CPU consumption of ksmd background thread */
421 cpu_time = task_sched_runtime(current);
422 cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
423 cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
424
425 cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
426 cpu_percent = cpu_percent ? cpu_percent : 1;
427 last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
428
429 /* Calculate scan time as percentage of target scan time */
430 factor = ksm_advisor_target_scan_time * 100 / scan_time;
431 factor = factor ? factor : 1;
432
433 /*
434 * Calculate scan time as percentage of last scan time and use
435 * exponentially weighted average to smooth it
436 */
437 change = scan_time * 100 / last_scan_time;
438 change = change ? change : 1;
439 change = ewma(advisor_ctx.change, change);
440
441 /* Calculate new scan rate based on target scan rate. */
442 pages = ksm_thread_pages_to_scan * 100 / factor;
443 /* Update pages_to_scan by weighted change percentage. */
444 pages = pages * change / 100;
445
446 /* Cap new pages_to_scan value */
447 per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
448 per_page_cost = per_page_cost ? per_page_cost : 1;
449
450 pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
451 pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
452 pages = min(pages, ksm_advisor_max_pages_to_scan);
453
454 /* Update advisor context */
455 advisor_ctx.change = change;
456 advisor_ctx.scan_time = scan_time;
457 advisor_ctx.cpu_time = cpu_time;
458
459 ksm_thread_pages_to_scan = pages;
460 trace_ksm_advisor(scan_time, pages, cpu_percent);
461 }
462
advisor_stop_scan(void)463 static void advisor_stop_scan(void)
464 {
465 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
466 scan_time_advisor();
467 }
468
469 #ifdef CONFIG_NUMA
470 /* Zeroed when merging across nodes is not allowed */
471 static unsigned int ksm_merge_across_nodes = 1;
472 static int ksm_nr_node_ids = 1;
473 #else
474 #define ksm_merge_across_nodes 1U
475 #define ksm_nr_node_ids 1
476 #endif
477
478 #define KSM_RUN_STOP 0
479 #define KSM_RUN_MERGE 1
480 #define KSM_RUN_UNMERGE 2
481 #define KSM_RUN_OFFLINE 4
482 static unsigned long ksm_run = KSM_RUN_STOP;
483 static void wait_while_offlining(void);
484
485 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
486 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
487 static DEFINE_MUTEX(ksm_thread_mutex);
488 static DEFINE_SPINLOCK(ksm_mmlist_lock);
489
ksm_slab_init(void)490 static int __init ksm_slab_init(void)
491 {
492 rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0);
493 if (!rmap_item_cache)
494 goto out;
495
496 stable_node_cache = KMEM_CACHE(ksm_stable_node, 0);
497 if (!stable_node_cache)
498 goto out_free1;
499
500 mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0);
501 if (!mm_slot_cache)
502 goto out_free2;
503
504 return 0;
505
506 out_free2:
507 kmem_cache_destroy(stable_node_cache);
508 out_free1:
509 kmem_cache_destroy(rmap_item_cache);
510 out:
511 return -ENOMEM;
512 }
513
ksm_slab_free(void)514 static void __init ksm_slab_free(void)
515 {
516 kmem_cache_destroy(mm_slot_cache);
517 kmem_cache_destroy(stable_node_cache);
518 kmem_cache_destroy(rmap_item_cache);
519 mm_slot_cache = NULL;
520 }
521
is_stable_node_chain(struct ksm_stable_node * chain)522 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
523 {
524 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
525 }
526
is_stable_node_dup(struct ksm_stable_node * dup)527 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
528 {
529 return dup->head == STABLE_NODE_DUP_HEAD;
530 }
531
stable_node_chain_add_dup(struct ksm_stable_node * dup,struct ksm_stable_node * chain)532 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
533 struct ksm_stable_node *chain)
534 {
535 VM_BUG_ON(is_stable_node_dup(dup));
536 dup->head = STABLE_NODE_DUP_HEAD;
537 VM_BUG_ON(!is_stable_node_chain(chain));
538 hlist_add_head(&dup->hlist_dup, &chain->hlist);
539 ksm_stable_node_dups++;
540 }
541
__stable_node_dup_del(struct ksm_stable_node * dup)542 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
543 {
544 VM_BUG_ON(!is_stable_node_dup(dup));
545 hlist_del(&dup->hlist_dup);
546 ksm_stable_node_dups--;
547 }
548
stable_node_dup_del(struct ksm_stable_node * dup)549 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
550 {
551 VM_BUG_ON(is_stable_node_chain(dup));
552 if (is_stable_node_dup(dup))
553 __stable_node_dup_del(dup);
554 else
555 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
556 #ifdef CONFIG_DEBUG_VM
557 dup->head = NULL;
558 #endif
559 }
560
alloc_rmap_item(void)561 static inline struct ksm_rmap_item *alloc_rmap_item(void)
562 {
563 struct ksm_rmap_item *rmap_item;
564
565 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
566 __GFP_NORETRY | __GFP_NOWARN);
567 if (rmap_item)
568 ksm_rmap_items++;
569 return rmap_item;
570 }
571
free_rmap_item(struct ksm_rmap_item * rmap_item)572 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
573 {
574 ksm_rmap_items--;
575 rmap_item->mm->ksm_rmap_items--;
576 rmap_item->mm = NULL; /* debug safety */
577 kmem_cache_free(rmap_item_cache, rmap_item);
578 }
579
alloc_stable_node(void)580 static inline struct ksm_stable_node *alloc_stable_node(void)
581 {
582 /*
583 * The allocation can take too long with GFP_KERNEL when memory is under
584 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
585 * grants access to memory reserves, helping to avoid this problem.
586 */
587 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
588 }
589
free_stable_node(struct ksm_stable_node * stable_node)590 static inline void free_stable_node(struct ksm_stable_node *stable_node)
591 {
592 VM_BUG_ON(stable_node->rmap_hlist_len &&
593 !is_stable_node_chain(stable_node));
594 kmem_cache_free(stable_node_cache, stable_node);
595 }
596
597 /*
598 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
599 * page tables after it has passed through ksm_exit() - which, if necessary,
600 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
601 * a special flag: they can just back out as soon as mm_users goes to zero.
602 * ksm_test_exit() is used throughout to make this test for exit: in some
603 * places for correctness, in some places just to avoid unnecessary work.
604 */
ksm_test_exit(struct mm_struct * mm)605 static inline bool ksm_test_exit(struct mm_struct *mm)
606 {
607 return atomic_read(&mm->mm_users) == 0;
608 }
609
610 /*
611 * We use break_ksm to break COW on a ksm page by triggering unsharing,
612 * such that the ksm page will get replaced by an exclusive anonymous page.
613 *
614 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
615 * in case the application has unmapped and remapped mm,addr meanwhile.
616 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
617 * mmap of /dev/mem, where we would not want to touch it.
618 *
619 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
620 * of the process that owns 'vma'. We also do not want to enforce
621 * protection keys here anyway.
622 */
break_ksm(struct vm_area_struct * vma,unsigned long addr,bool lock_vma)623 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
624 {
625 vm_fault_t ret = 0;
626
627 if (lock_vma)
628 vma_start_write(vma);
629
630 do {
631 bool ksm_page = false;
632 struct folio_walk fw;
633 struct folio *folio;
634
635 cond_resched();
636 folio = folio_walk_start(&fw, vma, addr,
637 FW_MIGRATION | FW_ZEROPAGE);
638 if (folio) {
639 /* Small folio implies FW_LEVEL_PTE. */
640 if (!folio_test_large(folio) &&
641 (folio_test_ksm(folio) || is_ksm_zero_pte(fw.pte)))
642 ksm_page = true;
643 folio_walk_end(&fw, vma);
644 }
645
646 if (!ksm_page)
647 return 0;
648 ret = handle_mm_fault(vma, addr,
649 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
650 NULL);
651 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
652 /*
653 * We must loop until we no longer find a KSM page because
654 * handle_mm_fault() may back out if there's any difficulty e.g. if
655 * pte accessed bit gets updated concurrently.
656 *
657 * VM_FAULT_SIGBUS could occur if we race with truncation of the
658 * backing file, which also invalidates anonymous pages: that's
659 * okay, that truncation will have unmapped the KSM page for us.
660 *
661 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
662 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
663 * current task has TIF_MEMDIE set, and will be OOM killed on return
664 * to user; and ksmd, having no mm, would never be chosen for that.
665 *
666 * But if the mm is in a limited mem_cgroup, then the fault may fail
667 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
668 * even ksmd can fail in this way - though it's usually breaking ksm
669 * just to undo a merge it made a moment before, so unlikely to oom.
670 *
671 * That's a pity: we might therefore have more kernel pages allocated
672 * than we're counting as nodes in the stable tree; but ksm_do_scan
673 * will retry to break_cow on each pass, so should recover the page
674 * in due course. The important thing is to not let VM_MERGEABLE
675 * be cleared while any such pages might remain in the area.
676 */
677 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
678 }
679
ksm_compatible(const struct file * file,vm_flags_t vm_flags)680 static bool ksm_compatible(const struct file *file, vm_flags_t vm_flags)
681 {
682 if (vm_flags & (VM_SHARED | VM_MAYSHARE | VM_SPECIAL |
683 VM_HUGETLB | VM_DROPPABLE))
684 return false; /* just ignore the advice */
685
686 if (file_is_dax(file))
687 return false;
688
689 #ifdef VM_SAO
690 if (vm_flags & VM_SAO)
691 return false;
692 #endif
693 #ifdef VM_SPARC_ADI
694 if (vm_flags & VM_SPARC_ADI)
695 return false;
696 #endif
697
698 return true;
699 }
700
vma_ksm_compatible(struct vm_area_struct * vma)701 static bool vma_ksm_compatible(struct vm_area_struct *vma)
702 {
703 return ksm_compatible(vma->vm_file, vma->vm_flags);
704 }
705
find_mergeable_vma(struct mm_struct * mm,unsigned long addr)706 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
707 unsigned long addr)
708 {
709 struct vm_area_struct *vma;
710 if (ksm_test_exit(mm))
711 return NULL;
712 vma = vma_lookup(mm, addr);
713 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
714 return NULL;
715 return vma;
716 }
717
break_cow(struct ksm_rmap_item * rmap_item)718 static void break_cow(struct ksm_rmap_item *rmap_item)
719 {
720 struct mm_struct *mm = rmap_item->mm;
721 unsigned long addr = rmap_item->address;
722 struct vm_area_struct *vma;
723
724 /*
725 * It is not an accident that whenever we want to break COW
726 * to undo, we also need to drop a reference to the anon_vma.
727 */
728 put_anon_vma(rmap_item->anon_vma);
729
730 mmap_read_lock(mm);
731 vma = find_mergeable_vma(mm, addr);
732 if (vma)
733 break_ksm(vma, addr, false);
734 mmap_read_unlock(mm);
735 }
736
get_mergeable_page(struct ksm_rmap_item * rmap_item)737 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
738 {
739 struct mm_struct *mm = rmap_item->mm;
740 unsigned long addr = rmap_item->address;
741 struct vm_area_struct *vma;
742 struct page *page = NULL;
743 struct folio_walk fw;
744 struct folio *folio;
745
746 mmap_read_lock(mm);
747 vma = find_mergeable_vma(mm, addr);
748 if (!vma)
749 goto out;
750
751 folio = folio_walk_start(&fw, vma, addr, 0);
752 if (folio) {
753 if (!folio_is_zone_device(folio) &&
754 folio_test_anon(folio)) {
755 folio_get(folio);
756 page = fw.page;
757 }
758 folio_walk_end(&fw, vma);
759 }
760 out:
761 if (page) {
762 flush_anon_page(vma, page, addr);
763 flush_dcache_page(page);
764 }
765 mmap_read_unlock(mm);
766 return page;
767 }
768
769 /*
770 * This helper is used for getting right index into array of tree roots.
771 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
772 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
773 * every node has its own stable and unstable tree.
774 */
get_kpfn_nid(unsigned long kpfn)775 static inline int get_kpfn_nid(unsigned long kpfn)
776 {
777 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
778 }
779
alloc_stable_node_chain(struct ksm_stable_node * dup,struct rb_root * root)780 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
781 struct rb_root *root)
782 {
783 struct ksm_stable_node *chain = alloc_stable_node();
784 VM_BUG_ON(is_stable_node_chain(dup));
785 if (likely(chain)) {
786 INIT_HLIST_HEAD(&chain->hlist);
787 chain->chain_prune_time = jiffies;
788 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
789 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
790 chain->nid = NUMA_NO_NODE; /* debug */
791 #endif
792 ksm_stable_node_chains++;
793
794 /*
795 * Put the stable node chain in the first dimension of
796 * the stable tree and at the same time remove the old
797 * stable node.
798 */
799 rb_replace_node(&dup->node, &chain->node, root);
800
801 /*
802 * Move the old stable node to the second dimension
803 * queued in the hlist_dup. The invariant is that all
804 * dup stable_nodes in the chain->hlist point to pages
805 * that are write protected and have the exact same
806 * content.
807 */
808 stable_node_chain_add_dup(dup, chain);
809 }
810 return chain;
811 }
812
free_stable_node_chain(struct ksm_stable_node * chain,struct rb_root * root)813 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
814 struct rb_root *root)
815 {
816 rb_erase(&chain->node, root);
817 free_stable_node(chain);
818 ksm_stable_node_chains--;
819 }
820
remove_node_from_stable_tree(struct ksm_stable_node * stable_node)821 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
822 {
823 struct ksm_rmap_item *rmap_item;
824
825 /* check it's not STABLE_NODE_CHAIN or negative */
826 BUG_ON(stable_node->rmap_hlist_len < 0);
827
828 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
829 if (rmap_item->hlist.next) {
830 ksm_pages_sharing--;
831 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
832 } else {
833 ksm_pages_shared--;
834 }
835
836 rmap_item->mm->ksm_merging_pages--;
837
838 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
839 stable_node->rmap_hlist_len--;
840 put_anon_vma(rmap_item->anon_vma);
841 rmap_item->address &= PAGE_MASK;
842 cond_resched();
843 }
844
845 /*
846 * We need the second aligned pointer of the migrate_nodes
847 * list_head to stay clear from the rb_parent_color union
848 * (aligned and different than any node) and also different
849 * from &migrate_nodes. This will verify that future list.h changes
850 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
851 */
852 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
853 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
854
855 trace_ksm_remove_ksm_page(stable_node->kpfn);
856 if (stable_node->head == &migrate_nodes)
857 list_del(&stable_node->list);
858 else
859 stable_node_dup_del(stable_node);
860 free_stable_node(stable_node);
861 }
862
863 enum ksm_get_folio_flags {
864 KSM_GET_FOLIO_NOLOCK,
865 KSM_GET_FOLIO_LOCK,
866 KSM_GET_FOLIO_TRYLOCK
867 };
868
869 /*
870 * ksm_get_folio: checks if the page indicated by the stable node
871 * is still its ksm page, despite having held no reference to it.
872 * In which case we can trust the content of the page, and it
873 * returns the gotten page; but if the page has now been zapped,
874 * remove the stale node from the stable tree and return NULL.
875 * But beware, the stable node's page might be being migrated.
876 *
877 * You would expect the stable_node to hold a reference to the ksm page.
878 * But if it increments the page's count, swapping out has to wait for
879 * ksmd to come around again before it can free the page, which may take
880 * seconds or even minutes: much too unresponsive. So instead we use a
881 * "keyhole reference": access to the ksm page from the stable node peeps
882 * out through its keyhole to see if that page still holds the right key,
883 * pointing back to this stable node. This relies on freeing a PageAnon
884 * page to reset its page->mapping to NULL, and relies on no other use of
885 * a page to put something that might look like our key in page->mapping.
886 * is on its way to being freed; but it is an anomaly to bear in mind.
887 */
ksm_get_folio(struct ksm_stable_node * stable_node,enum ksm_get_folio_flags flags)888 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
889 enum ksm_get_folio_flags flags)
890 {
891 struct folio *folio;
892 void *expected_mapping;
893 unsigned long kpfn;
894
895 expected_mapping = (void *)((unsigned long)stable_node |
896 FOLIO_MAPPING_KSM);
897 again:
898 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
899 folio = pfn_folio(kpfn);
900 if (READ_ONCE(folio->mapping) != expected_mapping)
901 goto stale;
902
903 /*
904 * We cannot do anything with the page while its refcount is 0.
905 * Usually 0 means free, or tail of a higher-order page: in which
906 * case this node is no longer referenced, and should be freed;
907 * however, it might mean that the page is under page_ref_freeze().
908 * The __remove_mapping() case is easy, again the node is now stale;
909 * the same is in reuse_ksm_page() case; but if page is swapcache
910 * in folio_migrate_mapping(), it might still be our page,
911 * in which case it's essential to keep the node.
912 */
913 while (!folio_try_get(folio)) {
914 /*
915 * Another check for folio->mapping != expected_mapping
916 * would work here too. We have chosen to test the
917 * swapcache flag to optimize the common case, when the
918 * folio is or is about to be freed: the swapcache flag
919 * is cleared (under spin_lock_irq) in the ref_freeze
920 * section of __remove_mapping(); but anon folio->mapping
921 * is reset to NULL later, in free_pages_prepare().
922 */
923 if (!folio_test_swapcache(folio))
924 goto stale;
925 cpu_relax();
926 }
927
928 if (READ_ONCE(folio->mapping) != expected_mapping) {
929 folio_put(folio);
930 goto stale;
931 }
932
933 if (flags == KSM_GET_FOLIO_TRYLOCK) {
934 if (!folio_trylock(folio)) {
935 folio_put(folio);
936 return ERR_PTR(-EBUSY);
937 }
938 } else if (flags == KSM_GET_FOLIO_LOCK)
939 folio_lock(folio);
940
941 if (flags != KSM_GET_FOLIO_NOLOCK) {
942 if (READ_ONCE(folio->mapping) != expected_mapping) {
943 folio_unlock(folio);
944 folio_put(folio);
945 goto stale;
946 }
947 }
948 return folio;
949
950 stale:
951 /*
952 * We come here from above when folio->mapping or the swapcache flag
953 * suggests that the node is stale; but it might be under migration.
954 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
955 * before checking whether node->kpfn has been changed.
956 */
957 smp_rmb();
958 if (READ_ONCE(stable_node->kpfn) != kpfn)
959 goto again;
960 remove_node_from_stable_tree(stable_node);
961 return NULL;
962 }
963
964 /*
965 * Removing rmap_item from stable or unstable tree.
966 * This function will clean the information from the stable/unstable tree.
967 */
remove_rmap_item_from_tree(struct ksm_rmap_item * rmap_item)968 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
969 {
970 if (rmap_item->address & STABLE_FLAG) {
971 struct ksm_stable_node *stable_node;
972 struct folio *folio;
973
974 stable_node = rmap_item->head;
975 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
976 if (!folio)
977 goto out;
978
979 hlist_del(&rmap_item->hlist);
980 folio_unlock(folio);
981 folio_put(folio);
982
983 if (!hlist_empty(&stable_node->hlist))
984 ksm_pages_sharing--;
985 else
986 ksm_pages_shared--;
987
988 rmap_item->mm->ksm_merging_pages--;
989
990 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
991 stable_node->rmap_hlist_len--;
992
993 put_anon_vma(rmap_item->anon_vma);
994 rmap_item->head = NULL;
995 rmap_item->address &= PAGE_MASK;
996
997 } else if (rmap_item->address & UNSTABLE_FLAG) {
998 unsigned char age;
999 /*
1000 * Usually ksmd can and must skip the rb_erase, because
1001 * root_unstable_tree was already reset to RB_ROOT.
1002 * But be careful when an mm is exiting: do the rb_erase
1003 * if this rmap_item was inserted by this scan, rather
1004 * than left over from before.
1005 */
1006 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1007 BUG_ON(age > 1);
1008 if (!age)
1009 rb_erase(&rmap_item->node,
1010 root_unstable_tree + NUMA(rmap_item->nid));
1011 ksm_pages_unshared--;
1012 rmap_item->address &= PAGE_MASK;
1013 }
1014 out:
1015 cond_resched(); /* we're called from many long loops */
1016 }
1017
remove_trailing_rmap_items(struct ksm_rmap_item ** rmap_list)1018 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1019 {
1020 while (*rmap_list) {
1021 struct ksm_rmap_item *rmap_item = *rmap_list;
1022 *rmap_list = rmap_item->rmap_list;
1023 remove_rmap_item_from_tree(rmap_item);
1024 free_rmap_item(rmap_item);
1025 }
1026 }
1027
1028 /*
1029 * Though it's very tempting to unmerge rmap_items from stable tree rather
1030 * than check every pte of a given vma, the locking doesn't quite work for
1031 * that - an rmap_item is assigned to the stable tree after inserting ksm
1032 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
1033 * rmap_items from parent to child at fork time (so as not to waste time
1034 * if exit comes before the next scan reaches it).
1035 *
1036 * Similarly, although we'd like to remove rmap_items (so updating counts
1037 * and freeing memory) when unmerging an area, it's easier to leave that
1038 * to the next pass of ksmd - consider, for example, how ksmd might be
1039 * in cmp_and_merge_page on one of the rmap_items we would be removing.
1040 */
unmerge_ksm_pages(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool lock_vma)1041 static int unmerge_ksm_pages(struct vm_area_struct *vma,
1042 unsigned long start, unsigned long end, bool lock_vma)
1043 {
1044 unsigned long addr;
1045 int err = 0;
1046
1047 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1048 if (ksm_test_exit(vma->vm_mm))
1049 break;
1050 if (signal_pending(current))
1051 err = -ERESTARTSYS;
1052 else
1053 err = break_ksm(vma, addr, lock_vma);
1054 }
1055 return err;
1056 }
1057
1058 static inline
folio_stable_node(const struct folio * folio)1059 struct ksm_stable_node *folio_stable_node(const struct folio *folio)
1060 {
1061 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1062 }
1063
folio_set_stable_node(struct folio * folio,struct ksm_stable_node * stable_node)1064 static inline void folio_set_stable_node(struct folio *folio,
1065 struct ksm_stable_node *stable_node)
1066 {
1067 VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1068 folio->mapping = (void *)((unsigned long)stable_node | FOLIO_MAPPING_KSM);
1069 }
1070
1071 #ifdef CONFIG_SYSFS
1072 /*
1073 * Only called through the sysfs control interface:
1074 */
remove_stable_node(struct ksm_stable_node * stable_node)1075 static int remove_stable_node(struct ksm_stable_node *stable_node)
1076 {
1077 struct folio *folio;
1078 int err;
1079
1080 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1081 if (!folio) {
1082 /*
1083 * ksm_get_folio did remove_node_from_stable_tree itself.
1084 */
1085 return 0;
1086 }
1087
1088 /*
1089 * Page could be still mapped if this races with __mmput() running in
1090 * between ksm_exit() and exit_mmap(). Just refuse to let
1091 * merge_across_nodes/max_page_sharing be switched.
1092 */
1093 err = -EBUSY;
1094 if (!folio_mapped(folio)) {
1095 /*
1096 * The stable node did not yet appear stale to ksm_get_folio(),
1097 * since that allows for an unmapped ksm folio to be recognized
1098 * right up until it is freed; but the node is safe to remove.
1099 * This folio might be in an LRU cache waiting to be freed,
1100 * or it might be in the swapcache (perhaps under writeback),
1101 * or it might have been removed from swapcache a moment ago.
1102 */
1103 folio_set_stable_node(folio, NULL);
1104 remove_node_from_stable_tree(stable_node);
1105 err = 0;
1106 }
1107
1108 folio_unlock(folio);
1109 folio_put(folio);
1110 return err;
1111 }
1112
remove_stable_node_chain(struct ksm_stable_node * stable_node,struct rb_root * root)1113 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1114 struct rb_root *root)
1115 {
1116 struct ksm_stable_node *dup;
1117 struct hlist_node *hlist_safe;
1118
1119 if (!is_stable_node_chain(stable_node)) {
1120 VM_BUG_ON(is_stable_node_dup(stable_node));
1121 if (remove_stable_node(stable_node))
1122 return true;
1123 else
1124 return false;
1125 }
1126
1127 hlist_for_each_entry_safe(dup, hlist_safe,
1128 &stable_node->hlist, hlist_dup) {
1129 VM_BUG_ON(!is_stable_node_dup(dup));
1130 if (remove_stable_node(dup))
1131 return true;
1132 }
1133 BUG_ON(!hlist_empty(&stable_node->hlist));
1134 free_stable_node_chain(stable_node, root);
1135 return false;
1136 }
1137
remove_all_stable_nodes(void)1138 static int remove_all_stable_nodes(void)
1139 {
1140 struct ksm_stable_node *stable_node, *next;
1141 int nid;
1142 int err = 0;
1143
1144 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1145 while (root_stable_tree[nid].rb_node) {
1146 stable_node = rb_entry(root_stable_tree[nid].rb_node,
1147 struct ksm_stable_node, node);
1148 if (remove_stable_node_chain(stable_node,
1149 root_stable_tree + nid)) {
1150 err = -EBUSY;
1151 break; /* proceed to next nid */
1152 }
1153 cond_resched();
1154 }
1155 }
1156 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1157 if (remove_stable_node(stable_node))
1158 err = -EBUSY;
1159 cond_resched();
1160 }
1161 return err;
1162 }
1163
unmerge_and_remove_all_rmap_items(void)1164 static int unmerge_and_remove_all_rmap_items(void)
1165 {
1166 struct ksm_mm_slot *mm_slot;
1167 struct mm_slot *slot;
1168 struct mm_struct *mm;
1169 struct vm_area_struct *vma;
1170 int err = 0;
1171
1172 spin_lock(&ksm_mmlist_lock);
1173 slot = list_entry(ksm_mm_head.slot.mm_node.next,
1174 struct mm_slot, mm_node);
1175 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1176 spin_unlock(&ksm_mmlist_lock);
1177
1178 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1179 mm_slot = ksm_scan.mm_slot) {
1180 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1181
1182 mm = mm_slot->slot.mm;
1183 mmap_read_lock(mm);
1184
1185 /*
1186 * Exit right away if mm is exiting to avoid lockdep issue in
1187 * the maple tree
1188 */
1189 if (ksm_test_exit(mm))
1190 goto mm_exiting;
1191
1192 for_each_vma(vmi, vma) {
1193 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1194 continue;
1195 err = unmerge_ksm_pages(vma,
1196 vma->vm_start, vma->vm_end, false);
1197 if (err)
1198 goto error;
1199 }
1200
1201 mm_exiting:
1202 remove_trailing_rmap_items(&mm_slot->rmap_list);
1203 mmap_read_unlock(mm);
1204
1205 spin_lock(&ksm_mmlist_lock);
1206 slot = list_entry(mm_slot->slot.mm_node.next,
1207 struct mm_slot, mm_node);
1208 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1209 if (ksm_test_exit(mm)) {
1210 hash_del(&mm_slot->slot.hash);
1211 list_del(&mm_slot->slot.mm_node);
1212 spin_unlock(&ksm_mmlist_lock);
1213
1214 mm_slot_free(mm_slot_cache, mm_slot);
1215 mm_flags_clear(MMF_VM_MERGEABLE, mm);
1216 mm_flags_clear(MMF_VM_MERGE_ANY, mm);
1217 mmdrop(mm);
1218 } else
1219 spin_unlock(&ksm_mmlist_lock);
1220 }
1221
1222 /* Clean up stable nodes, but don't worry if some are still busy */
1223 remove_all_stable_nodes();
1224 ksm_scan.seqnr = 0;
1225 return 0;
1226
1227 error:
1228 mmap_read_unlock(mm);
1229 spin_lock(&ksm_mmlist_lock);
1230 ksm_scan.mm_slot = &ksm_mm_head;
1231 spin_unlock(&ksm_mmlist_lock);
1232 return err;
1233 }
1234 #endif /* CONFIG_SYSFS */
1235
calc_checksum(struct page * page)1236 static u32 calc_checksum(struct page *page)
1237 {
1238 u32 checksum;
1239 void *addr = kmap_local_page(page);
1240 checksum = xxhash(addr, PAGE_SIZE, 0);
1241 kunmap_local(addr);
1242 return checksum;
1243 }
1244
write_protect_page(struct vm_area_struct * vma,struct folio * folio,pte_t * orig_pte)1245 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
1246 pte_t *orig_pte)
1247 {
1248 struct mm_struct *mm = vma->vm_mm;
1249 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
1250 int swapped;
1251 int err = -EFAULT;
1252 struct mmu_notifier_range range;
1253 bool anon_exclusive;
1254 pte_t entry;
1255
1256 if (WARN_ON_ONCE(folio_test_large(folio)))
1257 return err;
1258
1259 pvmw.address = page_address_in_vma(folio, folio_page(folio, 0), vma);
1260 if (pvmw.address == -EFAULT)
1261 goto out;
1262
1263 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1264 pvmw.address + PAGE_SIZE);
1265 mmu_notifier_invalidate_range_start(&range);
1266
1267 if (!page_vma_mapped_walk(&pvmw))
1268 goto out_mn;
1269 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1270 goto out_unlock;
1271
1272 entry = ptep_get(pvmw.pte);
1273 /*
1274 * Handle PFN swap PTEs, such as device-exclusive ones, that actually
1275 * map pages: give up just like the next folio_walk would.
1276 */
1277 if (unlikely(!pte_present(entry)))
1278 goto out_unlock;
1279
1280 anon_exclusive = PageAnonExclusive(&folio->page);
1281 if (pte_write(entry) || pte_dirty(entry) ||
1282 anon_exclusive || mm_tlb_flush_pending(mm)) {
1283 swapped = folio_test_swapcache(folio);
1284 flush_cache_page(vma, pvmw.address, folio_pfn(folio));
1285 /*
1286 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1287 * take any lock, therefore the check that we are going to make
1288 * with the pagecount against the mapcount is racy and
1289 * O_DIRECT can happen right after the check.
1290 * So we clear the pte and flush the tlb before the check
1291 * this assure us that no O_DIRECT can happen after the check
1292 * or in the middle of the check.
1293 *
1294 * No need to notify as we are downgrading page table to read
1295 * only not changing it to point to a new page.
1296 *
1297 * See Documentation/mm/mmu_notifier.rst
1298 */
1299 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1300 /*
1301 * Check that no O_DIRECT or similar I/O is in progress on the
1302 * page
1303 */
1304 if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
1305 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1306 goto out_unlock;
1307 }
1308
1309 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1310 if (anon_exclusive &&
1311 folio_try_share_anon_rmap_pte(folio, &folio->page)) {
1312 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1313 goto out_unlock;
1314 }
1315
1316 if (pte_dirty(entry))
1317 folio_mark_dirty(folio);
1318 entry = pte_mkclean(entry);
1319
1320 if (pte_write(entry))
1321 entry = pte_wrprotect(entry);
1322
1323 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1324 }
1325 *orig_pte = entry;
1326 err = 0;
1327
1328 out_unlock:
1329 page_vma_mapped_walk_done(&pvmw);
1330 out_mn:
1331 mmu_notifier_invalidate_range_end(&range);
1332 out:
1333 return err;
1334 }
1335
1336 /**
1337 * replace_page - replace page in vma by new ksm page
1338 * @vma: vma that holds the pte pointing to page
1339 * @page: the page we are replacing by kpage
1340 * @kpage: the ksm page we replace page by
1341 * @orig_pte: the original value of the pte
1342 *
1343 * Returns 0 on success, -EFAULT on failure.
1344 */
replace_page(struct vm_area_struct * vma,struct page * page,struct page * kpage,pte_t orig_pte)1345 static int replace_page(struct vm_area_struct *vma, struct page *page,
1346 struct page *kpage, pte_t orig_pte)
1347 {
1348 struct folio *kfolio = page_folio(kpage);
1349 struct mm_struct *mm = vma->vm_mm;
1350 struct folio *folio = page_folio(page);
1351 pmd_t *pmd;
1352 pmd_t pmde;
1353 pte_t *ptep;
1354 pte_t newpte;
1355 spinlock_t *ptl;
1356 unsigned long addr;
1357 int err = -EFAULT;
1358 struct mmu_notifier_range range;
1359
1360 addr = page_address_in_vma(folio, page, vma);
1361 if (addr == -EFAULT)
1362 goto out;
1363
1364 pmd = mm_find_pmd(mm, addr);
1365 if (!pmd)
1366 goto out;
1367 /*
1368 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1369 * without holding anon_vma lock for write. So when looking for a
1370 * genuine pmde (in which to find pte), test present and !THP together.
1371 */
1372 pmde = pmdp_get_lockless(pmd);
1373 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1374 goto out;
1375
1376 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1377 addr + PAGE_SIZE);
1378 mmu_notifier_invalidate_range_start(&range);
1379
1380 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1381 if (!ptep)
1382 goto out_mn;
1383 if (!pte_same(ptep_get(ptep), orig_pte)) {
1384 pte_unmap_unlock(ptep, ptl);
1385 goto out_mn;
1386 }
1387 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1388 VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1389 kfolio);
1390
1391 /*
1392 * No need to check ksm_use_zero_pages here: we can only have a
1393 * zero_page here if ksm_use_zero_pages was enabled already.
1394 */
1395 if (!is_zero_pfn(page_to_pfn(kpage))) {
1396 folio_get(kfolio);
1397 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1398 newpte = mk_pte(kpage, vma->vm_page_prot);
1399 } else {
1400 /*
1401 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1402 * we can easily track all KSM-placed zero pages by checking if
1403 * the dirty bit in zero page's PTE is set.
1404 */
1405 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1406 ksm_map_zero_page(mm);
1407 /*
1408 * We're replacing an anonymous page with a zero page, which is
1409 * not anonymous. We need to do proper accounting otherwise we
1410 * will get wrong values in /proc, and a BUG message in dmesg
1411 * when tearing down the mm.
1412 */
1413 dec_mm_counter(mm, MM_ANONPAGES);
1414 }
1415
1416 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1417 /*
1418 * No need to notify as we are replacing a read only page with another
1419 * read only page with the same content.
1420 *
1421 * See Documentation/mm/mmu_notifier.rst
1422 */
1423 ptep_clear_flush(vma, addr, ptep);
1424 set_pte_at(mm, addr, ptep, newpte);
1425
1426 folio_remove_rmap_pte(folio, page, vma);
1427 if (!folio_mapped(folio))
1428 folio_free_swap(folio);
1429 folio_put(folio);
1430
1431 pte_unmap_unlock(ptep, ptl);
1432 err = 0;
1433 out_mn:
1434 mmu_notifier_invalidate_range_end(&range);
1435 out:
1436 return err;
1437 }
1438
1439 /*
1440 * try_to_merge_one_page - take two pages and merge them into one
1441 * @vma: the vma that holds the pte pointing to page
1442 * @page: the PageAnon page that we want to replace with kpage
1443 * @kpage: the KSM page that we want to map instead of page,
1444 * or NULL the first time when we want to use page as kpage.
1445 *
1446 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1447 */
try_to_merge_one_page(struct vm_area_struct * vma,struct page * page,struct page * kpage)1448 static int try_to_merge_one_page(struct vm_area_struct *vma,
1449 struct page *page, struct page *kpage)
1450 {
1451 struct folio *folio = page_folio(page);
1452 pte_t orig_pte = __pte(0);
1453 int err = -EFAULT;
1454
1455 if (page == kpage) /* ksm page forked */
1456 return 0;
1457
1458 if (!folio_test_anon(folio))
1459 goto out;
1460
1461 /*
1462 * We need the folio lock to read a stable swapcache flag in
1463 * write_protect_page(). We trylock because we don't want to wait
1464 * here - we prefer to continue scanning and merging different
1465 * pages, then come back to this page when it is unlocked.
1466 */
1467 if (!folio_trylock(folio))
1468 goto out;
1469
1470 if (folio_test_large(folio)) {
1471 if (split_huge_page(page))
1472 goto out_unlock;
1473 folio = page_folio(page);
1474 }
1475
1476 /*
1477 * If this anonymous page is mapped only here, its pte may need
1478 * to be write-protected. If it's mapped elsewhere, all of its
1479 * ptes are necessarily already write-protected. But in either
1480 * case, we need to lock and check page_count is not raised.
1481 */
1482 if (write_protect_page(vma, folio, &orig_pte) == 0) {
1483 if (!kpage) {
1484 /*
1485 * While we hold folio lock, upgrade folio from
1486 * anon to a NULL stable_node with the KSM flag set:
1487 * stable_tree_insert() will update stable_node.
1488 */
1489 folio_set_stable_node(folio, NULL);
1490 folio_mark_accessed(folio);
1491 /*
1492 * Page reclaim just frees a clean folio with no dirty
1493 * ptes: make sure that the ksm page would be swapped.
1494 */
1495 if (!folio_test_dirty(folio))
1496 folio_mark_dirty(folio);
1497 err = 0;
1498 } else if (pages_identical(page, kpage))
1499 err = replace_page(vma, page, kpage, orig_pte);
1500 }
1501
1502 out_unlock:
1503 folio_unlock(folio);
1504 out:
1505 return err;
1506 }
1507
1508 /*
1509 * This function returns 0 if the pages were merged or if they are
1510 * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise.
1511 */
try_to_merge_with_zero_page(struct ksm_rmap_item * rmap_item,struct page * page)1512 static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item,
1513 struct page *page)
1514 {
1515 struct mm_struct *mm = rmap_item->mm;
1516 int err = -EFAULT;
1517
1518 /*
1519 * Same checksum as an empty page. We attempt to merge it with the
1520 * appropriate zero page if the user enabled this via sysfs.
1521 */
1522 if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) {
1523 struct vm_area_struct *vma;
1524
1525 mmap_read_lock(mm);
1526 vma = find_mergeable_vma(mm, rmap_item->address);
1527 if (vma) {
1528 err = try_to_merge_one_page(vma, page,
1529 ZERO_PAGE(rmap_item->address));
1530 trace_ksm_merge_one_page(
1531 page_to_pfn(ZERO_PAGE(rmap_item->address)),
1532 rmap_item, mm, err);
1533 } else {
1534 /*
1535 * If the vma is out of date, we do not need to
1536 * continue.
1537 */
1538 err = 0;
1539 }
1540 mmap_read_unlock(mm);
1541 }
1542
1543 return err;
1544 }
1545
1546 /*
1547 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1548 * but no new kernel page is allocated: kpage must already be a ksm page.
1549 *
1550 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1551 */
try_to_merge_with_ksm_page(struct ksm_rmap_item * rmap_item,struct page * page,struct page * kpage)1552 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1553 struct page *page, struct page *kpage)
1554 {
1555 struct mm_struct *mm = rmap_item->mm;
1556 struct vm_area_struct *vma;
1557 int err = -EFAULT;
1558
1559 mmap_read_lock(mm);
1560 vma = find_mergeable_vma(mm, rmap_item->address);
1561 if (!vma)
1562 goto out;
1563
1564 err = try_to_merge_one_page(vma, page, kpage);
1565 if (err)
1566 goto out;
1567
1568 /* Unstable nid is in union with stable anon_vma: remove first */
1569 remove_rmap_item_from_tree(rmap_item);
1570
1571 /* Must get reference to anon_vma while still holding mmap_lock */
1572 rmap_item->anon_vma = vma->anon_vma;
1573 get_anon_vma(vma->anon_vma);
1574 out:
1575 mmap_read_unlock(mm);
1576 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1577 rmap_item, mm, err);
1578 return err;
1579 }
1580
1581 /*
1582 * try_to_merge_two_pages - take two identical pages and prepare them
1583 * to be merged into one page.
1584 *
1585 * This function returns the kpage if we successfully merged two identical
1586 * pages into one ksm page, NULL otherwise.
1587 *
1588 * Note that this function upgrades page to ksm page: if one of the pages
1589 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1590 */
try_to_merge_two_pages(struct ksm_rmap_item * rmap_item,struct page * page,struct ksm_rmap_item * tree_rmap_item,struct page * tree_page)1591 static struct folio *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1592 struct page *page,
1593 struct ksm_rmap_item *tree_rmap_item,
1594 struct page *tree_page)
1595 {
1596 int err;
1597
1598 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1599 if (!err) {
1600 err = try_to_merge_with_ksm_page(tree_rmap_item,
1601 tree_page, page);
1602 /*
1603 * If that fails, we have a ksm page with only one pte
1604 * pointing to it: so break it.
1605 */
1606 if (err)
1607 break_cow(rmap_item);
1608 }
1609 return err ? NULL : page_folio(page);
1610 }
1611
1612 static __always_inline
__is_page_sharing_candidate(struct ksm_stable_node * stable_node,int offset)1613 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1614 {
1615 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1616 /*
1617 * Check that at least one mapping still exists, otherwise
1618 * there's no much point to merge and share with this
1619 * stable_node, as the underlying tree_page of the other
1620 * sharer is going to be freed soon.
1621 */
1622 return stable_node->rmap_hlist_len &&
1623 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1624 }
1625
1626 static __always_inline
is_page_sharing_candidate(struct ksm_stable_node * stable_node)1627 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1628 {
1629 return __is_page_sharing_candidate(stable_node, 0);
1630 }
1631
stable_node_dup(struct ksm_stable_node ** _stable_node_dup,struct ksm_stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1632 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1633 struct ksm_stable_node **_stable_node,
1634 struct rb_root *root,
1635 bool prune_stale_stable_nodes)
1636 {
1637 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1638 struct hlist_node *hlist_safe;
1639 struct folio *folio, *tree_folio = NULL;
1640 int found_rmap_hlist_len;
1641
1642 if (!prune_stale_stable_nodes ||
1643 time_before(jiffies, stable_node->chain_prune_time +
1644 msecs_to_jiffies(
1645 ksm_stable_node_chains_prune_millisecs)))
1646 prune_stale_stable_nodes = false;
1647 else
1648 stable_node->chain_prune_time = jiffies;
1649
1650 hlist_for_each_entry_safe(dup, hlist_safe,
1651 &stable_node->hlist, hlist_dup) {
1652 cond_resched();
1653 /*
1654 * We must walk all stable_node_dup to prune the stale
1655 * stable nodes during lookup.
1656 *
1657 * ksm_get_folio can drop the nodes from the
1658 * stable_node->hlist if they point to freed pages
1659 * (that's why we do a _safe walk). The "dup"
1660 * stable_node parameter itself will be freed from
1661 * under us if it returns NULL.
1662 */
1663 folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
1664 if (!folio)
1665 continue;
1666 /* Pick the best candidate if possible. */
1667 if (!found || (is_page_sharing_candidate(dup) &&
1668 (!is_page_sharing_candidate(found) ||
1669 dup->rmap_hlist_len > found_rmap_hlist_len))) {
1670 if (found)
1671 folio_put(tree_folio);
1672 found = dup;
1673 found_rmap_hlist_len = found->rmap_hlist_len;
1674 tree_folio = folio;
1675 /* skip put_page for found candidate */
1676 if (!prune_stale_stable_nodes &&
1677 is_page_sharing_candidate(found))
1678 break;
1679 continue;
1680 }
1681 folio_put(folio);
1682 }
1683
1684 if (found) {
1685 if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) {
1686 /*
1687 * If there's not just one entry it would
1688 * corrupt memory, better BUG_ON. In KSM
1689 * context with no lock held it's not even
1690 * fatal.
1691 */
1692 BUG_ON(stable_node->hlist.first->next);
1693
1694 /*
1695 * There's just one entry and it is below the
1696 * deduplication limit so drop the chain.
1697 */
1698 rb_replace_node(&stable_node->node, &found->node,
1699 root);
1700 free_stable_node(stable_node);
1701 ksm_stable_node_chains--;
1702 ksm_stable_node_dups--;
1703 /*
1704 * NOTE: the caller depends on the stable_node
1705 * to be equal to stable_node_dup if the chain
1706 * was collapsed.
1707 */
1708 *_stable_node = found;
1709 /*
1710 * Just for robustness, as stable_node is
1711 * otherwise left as a stable pointer, the
1712 * compiler shall optimize it away at build
1713 * time.
1714 */
1715 stable_node = NULL;
1716 } else if (stable_node->hlist.first != &found->hlist_dup &&
1717 __is_page_sharing_candidate(found, 1)) {
1718 /*
1719 * If the found stable_node dup can accept one
1720 * more future merge (in addition to the one
1721 * that is underway) and is not at the head of
1722 * the chain, put it there so next search will
1723 * be quicker in the !prune_stale_stable_nodes
1724 * case.
1725 *
1726 * NOTE: it would be inaccurate to use nr > 1
1727 * instead of checking the hlist.first pointer
1728 * directly, because in the
1729 * prune_stale_stable_nodes case "nr" isn't
1730 * the position of the found dup in the chain,
1731 * but the total number of dups in the chain.
1732 */
1733 hlist_del(&found->hlist_dup);
1734 hlist_add_head(&found->hlist_dup,
1735 &stable_node->hlist);
1736 }
1737 } else {
1738 /* Its hlist must be empty if no one found. */
1739 free_stable_node_chain(stable_node, root);
1740 }
1741
1742 *_stable_node_dup = found;
1743 return tree_folio;
1744 }
1745
1746 /*
1747 * Like for ksm_get_folio, this function can free the *_stable_node and
1748 * *_stable_node_dup if the returned tree_page is NULL.
1749 *
1750 * It can also free and overwrite *_stable_node with the found
1751 * stable_node_dup if the chain is collapsed (in which case
1752 * *_stable_node will be equal to *_stable_node_dup like if the chain
1753 * never existed). It's up to the caller to verify tree_page is not
1754 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1755 *
1756 * *_stable_node_dup is really a second output parameter of this
1757 * function and will be overwritten in all cases, the caller doesn't
1758 * need to initialize it.
1759 */
__stable_node_chain(struct ksm_stable_node ** _stable_node_dup,struct ksm_stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1760 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1761 struct ksm_stable_node **_stable_node,
1762 struct rb_root *root,
1763 bool prune_stale_stable_nodes)
1764 {
1765 struct ksm_stable_node *stable_node = *_stable_node;
1766
1767 if (!is_stable_node_chain(stable_node)) {
1768 *_stable_node_dup = stable_node;
1769 return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
1770 }
1771 return stable_node_dup(_stable_node_dup, _stable_node, root,
1772 prune_stale_stable_nodes);
1773 }
1774
chain_prune(struct ksm_stable_node ** s_n_d,struct ksm_stable_node ** s_n,struct rb_root * root)1775 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1776 struct ksm_stable_node **s_n,
1777 struct rb_root *root)
1778 {
1779 return __stable_node_chain(s_n_d, s_n, root, true);
1780 }
1781
chain(struct ksm_stable_node ** s_n_d,struct ksm_stable_node ** s_n,struct rb_root * root)1782 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1783 struct ksm_stable_node **s_n,
1784 struct rb_root *root)
1785 {
1786 return __stable_node_chain(s_n_d, s_n, root, false);
1787 }
1788
1789 /*
1790 * stable_tree_search - search for page inside the stable tree
1791 *
1792 * This function checks if there is a page inside the stable tree
1793 * with identical content to the page that we are scanning right now.
1794 *
1795 * This function returns the stable tree node of identical content if found,
1796 * -EBUSY if the stable node's page is being migrated, NULL otherwise.
1797 */
stable_tree_search(struct page * page)1798 static struct folio *stable_tree_search(struct page *page)
1799 {
1800 int nid;
1801 struct rb_root *root;
1802 struct rb_node **new;
1803 struct rb_node *parent;
1804 struct ksm_stable_node *stable_node, *stable_node_dup;
1805 struct ksm_stable_node *page_node;
1806 struct folio *folio;
1807
1808 folio = page_folio(page);
1809 page_node = folio_stable_node(folio);
1810 if (page_node && page_node->head != &migrate_nodes) {
1811 /* ksm page forked */
1812 folio_get(folio);
1813 return folio;
1814 }
1815
1816 nid = get_kpfn_nid(folio_pfn(folio));
1817 root = root_stable_tree + nid;
1818 again:
1819 new = &root->rb_node;
1820 parent = NULL;
1821
1822 while (*new) {
1823 struct folio *tree_folio;
1824 int ret;
1825
1826 cond_resched();
1827 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1828 tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
1829 if (!tree_folio) {
1830 /*
1831 * If we walked over a stale stable_node,
1832 * ksm_get_folio() will call rb_erase() and it
1833 * may rebalance the tree from under us. So
1834 * restart the search from scratch. Returning
1835 * NULL would be safe too, but we'd generate
1836 * false negative insertions just because some
1837 * stable_node was stale.
1838 */
1839 goto again;
1840 }
1841
1842 ret = memcmp_pages(page, &tree_folio->page);
1843 folio_put(tree_folio);
1844
1845 parent = *new;
1846 if (ret < 0)
1847 new = &parent->rb_left;
1848 else if (ret > 0)
1849 new = &parent->rb_right;
1850 else {
1851 if (page_node) {
1852 VM_BUG_ON(page_node->head != &migrate_nodes);
1853 /*
1854 * If the mapcount of our migrated KSM folio is
1855 * at most 1, we can merge it with another
1856 * KSM folio where we know that we have space
1857 * for one more mapping without exceeding the
1858 * ksm_max_page_sharing limit: see
1859 * chain_prune(). This way, we can avoid adding
1860 * this stable node to the chain.
1861 */
1862 if (folio_mapcount(folio) > 1)
1863 goto chain_append;
1864 }
1865
1866 if (!is_page_sharing_candidate(stable_node_dup)) {
1867 /*
1868 * If the stable_node is a chain and
1869 * we got a payload match in memcmp
1870 * but we cannot merge the scanned
1871 * page in any of the existing
1872 * stable_node dups because they're
1873 * all full, we need to wait the
1874 * scanned page to find itself a match
1875 * in the unstable tree to create a
1876 * brand new KSM page to add later to
1877 * the dups of this stable_node.
1878 */
1879 return NULL;
1880 }
1881
1882 /*
1883 * Lock and unlock the stable_node's page (which
1884 * might already have been migrated) so that page
1885 * migration is sure to notice its raised count.
1886 * It would be more elegant to return stable_node
1887 * than kpage, but that involves more changes.
1888 */
1889 tree_folio = ksm_get_folio(stable_node_dup,
1890 KSM_GET_FOLIO_TRYLOCK);
1891
1892 if (PTR_ERR(tree_folio) == -EBUSY)
1893 return ERR_PTR(-EBUSY);
1894
1895 if (unlikely(!tree_folio))
1896 /*
1897 * The tree may have been rebalanced,
1898 * so re-evaluate parent and new.
1899 */
1900 goto again;
1901 folio_unlock(tree_folio);
1902
1903 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1904 NUMA(stable_node_dup->nid)) {
1905 folio_put(tree_folio);
1906 goto replace;
1907 }
1908 return tree_folio;
1909 }
1910 }
1911
1912 if (!page_node)
1913 return NULL;
1914
1915 list_del(&page_node->list);
1916 DO_NUMA(page_node->nid = nid);
1917 rb_link_node(&page_node->node, parent, new);
1918 rb_insert_color(&page_node->node, root);
1919 out:
1920 if (is_page_sharing_candidate(page_node)) {
1921 folio_get(folio);
1922 return folio;
1923 } else
1924 return NULL;
1925
1926 replace:
1927 /*
1928 * If stable_node was a chain and chain_prune collapsed it,
1929 * stable_node has been updated to be the new regular
1930 * stable_node. A collapse of the chain is indistinguishable
1931 * from the case there was no chain in the stable
1932 * rbtree. Otherwise stable_node is the chain and
1933 * stable_node_dup is the dup to replace.
1934 */
1935 if (stable_node_dup == stable_node) {
1936 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1937 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1938 /* there is no chain */
1939 if (page_node) {
1940 VM_BUG_ON(page_node->head != &migrate_nodes);
1941 list_del(&page_node->list);
1942 DO_NUMA(page_node->nid = nid);
1943 rb_replace_node(&stable_node_dup->node,
1944 &page_node->node,
1945 root);
1946 if (is_page_sharing_candidate(page_node))
1947 folio_get(folio);
1948 else
1949 folio = NULL;
1950 } else {
1951 rb_erase(&stable_node_dup->node, root);
1952 folio = NULL;
1953 }
1954 } else {
1955 VM_BUG_ON(!is_stable_node_chain(stable_node));
1956 __stable_node_dup_del(stable_node_dup);
1957 if (page_node) {
1958 VM_BUG_ON(page_node->head != &migrate_nodes);
1959 list_del(&page_node->list);
1960 DO_NUMA(page_node->nid = nid);
1961 stable_node_chain_add_dup(page_node, stable_node);
1962 if (is_page_sharing_candidate(page_node))
1963 folio_get(folio);
1964 else
1965 folio = NULL;
1966 } else {
1967 folio = NULL;
1968 }
1969 }
1970 stable_node_dup->head = &migrate_nodes;
1971 list_add(&stable_node_dup->list, stable_node_dup->head);
1972 return folio;
1973
1974 chain_append:
1975 /*
1976 * If stable_node was a chain and chain_prune collapsed it,
1977 * stable_node has been updated to be the new regular
1978 * stable_node. A collapse of the chain is indistinguishable
1979 * from the case there was no chain in the stable
1980 * rbtree. Otherwise stable_node is the chain and
1981 * stable_node_dup is the dup to replace.
1982 */
1983 if (stable_node_dup == stable_node) {
1984 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1985 /* chain is missing so create it */
1986 stable_node = alloc_stable_node_chain(stable_node_dup,
1987 root);
1988 if (!stable_node)
1989 return NULL;
1990 }
1991 /*
1992 * Add this stable_node dup that was
1993 * migrated to the stable_node chain
1994 * of the current nid for this page
1995 * content.
1996 */
1997 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1998 VM_BUG_ON(page_node->head != &migrate_nodes);
1999 list_del(&page_node->list);
2000 DO_NUMA(page_node->nid = nid);
2001 stable_node_chain_add_dup(page_node, stable_node);
2002 goto out;
2003 }
2004
2005 /*
2006 * stable_tree_insert - insert stable tree node pointing to new ksm page
2007 * into the stable tree.
2008 *
2009 * This function returns the stable tree node just allocated on success,
2010 * NULL otherwise.
2011 */
stable_tree_insert(struct folio * kfolio)2012 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
2013 {
2014 int nid;
2015 unsigned long kpfn;
2016 struct rb_root *root;
2017 struct rb_node **new;
2018 struct rb_node *parent;
2019 struct ksm_stable_node *stable_node, *stable_node_dup;
2020 bool need_chain = false;
2021
2022 kpfn = folio_pfn(kfolio);
2023 nid = get_kpfn_nid(kpfn);
2024 root = root_stable_tree + nid;
2025 again:
2026 parent = NULL;
2027 new = &root->rb_node;
2028
2029 while (*new) {
2030 struct folio *tree_folio;
2031 int ret;
2032
2033 cond_resched();
2034 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2035 tree_folio = chain(&stable_node_dup, &stable_node, root);
2036 if (!tree_folio) {
2037 /*
2038 * If we walked over a stale stable_node,
2039 * ksm_get_folio() will call rb_erase() and it
2040 * may rebalance the tree from under us. So
2041 * restart the search from scratch. Returning
2042 * NULL would be safe too, but we'd generate
2043 * false negative insertions just because some
2044 * stable_node was stale.
2045 */
2046 goto again;
2047 }
2048
2049 ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2050 folio_put(tree_folio);
2051
2052 parent = *new;
2053 if (ret < 0)
2054 new = &parent->rb_left;
2055 else if (ret > 0)
2056 new = &parent->rb_right;
2057 else {
2058 need_chain = true;
2059 break;
2060 }
2061 }
2062
2063 stable_node_dup = alloc_stable_node();
2064 if (!stable_node_dup)
2065 return NULL;
2066
2067 INIT_HLIST_HEAD(&stable_node_dup->hlist);
2068 stable_node_dup->kpfn = kpfn;
2069 stable_node_dup->rmap_hlist_len = 0;
2070 DO_NUMA(stable_node_dup->nid = nid);
2071 if (!need_chain) {
2072 rb_link_node(&stable_node_dup->node, parent, new);
2073 rb_insert_color(&stable_node_dup->node, root);
2074 } else {
2075 if (!is_stable_node_chain(stable_node)) {
2076 struct ksm_stable_node *orig = stable_node;
2077 /* chain is missing so create it */
2078 stable_node = alloc_stable_node_chain(orig, root);
2079 if (!stable_node) {
2080 free_stable_node(stable_node_dup);
2081 return NULL;
2082 }
2083 }
2084 stable_node_chain_add_dup(stable_node_dup, stable_node);
2085 }
2086
2087 folio_set_stable_node(kfolio, stable_node_dup);
2088
2089 return stable_node_dup;
2090 }
2091
2092 /*
2093 * unstable_tree_search_insert - search for identical page,
2094 * else insert rmap_item into the unstable tree.
2095 *
2096 * This function searches for a page in the unstable tree identical to the
2097 * page currently being scanned; and if no identical page is found in the
2098 * tree, we insert rmap_item as a new object into the unstable tree.
2099 *
2100 * This function returns pointer to rmap_item found to be identical
2101 * to the currently scanned page, NULL otherwise.
2102 *
2103 * This function does both searching and inserting, because they share
2104 * the same walking algorithm in an rbtree.
2105 */
2106 static
unstable_tree_search_insert(struct ksm_rmap_item * rmap_item,struct page * page,struct page ** tree_pagep)2107 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2108 struct page *page,
2109 struct page **tree_pagep)
2110 {
2111 struct rb_node **new;
2112 struct rb_root *root;
2113 struct rb_node *parent = NULL;
2114 int nid;
2115
2116 nid = get_kpfn_nid(page_to_pfn(page));
2117 root = root_unstable_tree + nid;
2118 new = &root->rb_node;
2119
2120 while (*new) {
2121 struct ksm_rmap_item *tree_rmap_item;
2122 struct page *tree_page;
2123 int ret;
2124
2125 cond_resched();
2126 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2127 tree_page = get_mergeable_page(tree_rmap_item);
2128 if (!tree_page)
2129 return NULL;
2130
2131 /*
2132 * Don't substitute a ksm page for a forked page.
2133 */
2134 if (page == tree_page) {
2135 put_page(tree_page);
2136 return NULL;
2137 }
2138
2139 ret = memcmp_pages(page, tree_page);
2140
2141 parent = *new;
2142 if (ret < 0) {
2143 put_page(tree_page);
2144 new = &parent->rb_left;
2145 } else if (ret > 0) {
2146 put_page(tree_page);
2147 new = &parent->rb_right;
2148 } else if (!ksm_merge_across_nodes &&
2149 page_to_nid(tree_page) != nid) {
2150 /*
2151 * If tree_page has been migrated to another NUMA node,
2152 * it will be flushed out and put in the right unstable
2153 * tree next time: only merge with it when across_nodes.
2154 */
2155 put_page(tree_page);
2156 return NULL;
2157 } else {
2158 *tree_pagep = tree_page;
2159 return tree_rmap_item;
2160 }
2161 }
2162
2163 rmap_item->address |= UNSTABLE_FLAG;
2164 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2165 DO_NUMA(rmap_item->nid = nid);
2166 rb_link_node(&rmap_item->node, parent, new);
2167 rb_insert_color(&rmap_item->node, root);
2168
2169 ksm_pages_unshared++;
2170 return NULL;
2171 }
2172
2173 /*
2174 * stable_tree_append - add another rmap_item to the linked list of
2175 * rmap_items hanging off a given node of the stable tree, all sharing
2176 * the same ksm page.
2177 */
stable_tree_append(struct ksm_rmap_item * rmap_item,struct ksm_stable_node * stable_node,bool max_page_sharing_bypass)2178 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2179 struct ksm_stable_node *stable_node,
2180 bool max_page_sharing_bypass)
2181 {
2182 /*
2183 * rmap won't find this mapping if we don't insert the
2184 * rmap_item in the right stable_node
2185 * duplicate. page_migration could break later if rmap breaks,
2186 * so we can as well crash here. We really need to check for
2187 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2188 * for other negative values as an underflow if detected here
2189 * for the first time (and not when decreasing rmap_hlist_len)
2190 * would be sign of memory corruption in the stable_node.
2191 */
2192 BUG_ON(stable_node->rmap_hlist_len < 0);
2193
2194 stable_node->rmap_hlist_len++;
2195 if (!max_page_sharing_bypass)
2196 /* possibly non fatal but unexpected overflow, only warn */
2197 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2198 ksm_max_page_sharing);
2199
2200 rmap_item->head = stable_node;
2201 rmap_item->address |= STABLE_FLAG;
2202 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2203
2204 if (rmap_item->hlist.next)
2205 ksm_pages_sharing++;
2206 else
2207 ksm_pages_shared++;
2208
2209 rmap_item->mm->ksm_merging_pages++;
2210 }
2211
2212 /*
2213 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2214 * if not, compare checksum to previous and if it's the same, see if page can
2215 * be inserted into the unstable tree, or merged with a page already there and
2216 * both transferred to the stable tree.
2217 *
2218 * @page: the page that we are searching identical page to.
2219 * @rmap_item: the reverse mapping into the virtual address of this page
2220 */
cmp_and_merge_page(struct page * page,struct ksm_rmap_item * rmap_item)2221 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2222 {
2223 struct folio *folio = page_folio(page);
2224 struct ksm_rmap_item *tree_rmap_item;
2225 struct page *tree_page = NULL;
2226 struct ksm_stable_node *stable_node;
2227 struct folio *kfolio;
2228 unsigned int checksum;
2229 int err;
2230 bool max_page_sharing_bypass = false;
2231
2232 stable_node = folio_stable_node(folio);
2233 if (stable_node) {
2234 if (stable_node->head != &migrate_nodes &&
2235 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2236 NUMA(stable_node->nid)) {
2237 stable_node_dup_del(stable_node);
2238 stable_node->head = &migrate_nodes;
2239 list_add(&stable_node->list, stable_node->head);
2240 }
2241 if (stable_node->head != &migrate_nodes &&
2242 rmap_item->head == stable_node)
2243 return;
2244 /*
2245 * If it's a KSM fork, allow it to go over the sharing limit
2246 * without warnings.
2247 */
2248 if (!is_page_sharing_candidate(stable_node))
2249 max_page_sharing_bypass = true;
2250 } else {
2251 remove_rmap_item_from_tree(rmap_item);
2252
2253 /*
2254 * If the hash value of the page has changed from the last time
2255 * we calculated it, this page is changing frequently: therefore we
2256 * don't want to insert it in the unstable tree, and we don't want
2257 * to waste our time searching for something identical to it there.
2258 */
2259 checksum = calc_checksum(page);
2260 if (rmap_item->oldchecksum != checksum) {
2261 rmap_item->oldchecksum = checksum;
2262 return;
2263 }
2264
2265 if (!try_to_merge_with_zero_page(rmap_item, page))
2266 return;
2267 }
2268
2269 /* Start by searching for the folio in the stable tree */
2270 kfolio = stable_tree_search(page);
2271 if (kfolio == folio && rmap_item->head == stable_node) {
2272 folio_put(kfolio);
2273 return;
2274 }
2275
2276 remove_rmap_item_from_tree(rmap_item);
2277
2278 if (kfolio) {
2279 if (kfolio == ERR_PTR(-EBUSY))
2280 return;
2281
2282 err = try_to_merge_with_ksm_page(rmap_item, page, &kfolio->page);
2283 if (!err) {
2284 /*
2285 * The page was successfully merged:
2286 * add its rmap_item to the stable tree.
2287 */
2288 folio_lock(kfolio);
2289 stable_tree_append(rmap_item, folio_stable_node(kfolio),
2290 max_page_sharing_bypass);
2291 folio_unlock(kfolio);
2292 }
2293 folio_put(kfolio);
2294 return;
2295 }
2296
2297 tree_rmap_item =
2298 unstable_tree_search_insert(rmap_item, page, &tree_page);
2299 if (tree_rmap_item) {
2300 bool split;
2301
2302 kfolio = try_to_merge_two_pages(rmap_item, page,
2303 tree_rmap_item, tree_page);
2304 /*
2305 * If both pages we tried to merge belong to the same compound
2306 * page, then we actually ended up increasing the reference
2307 * count of the same compound page twice, and split_huge_page
2308 * failed.
2309 * Here we set a flag if that happened, and we use it later to
2310 * try split_huge_page again. Since we call put_page right
2311 * afterwards, the reference count will be correct and
2312 * split_huge_page should succeed.
2313 */
2314 split = PageTransCompound(page)
2315 && compound_head(page) == compound_head(tree_page);
2316 put_page(tree_page);
2317 if (kfolio) {
2318 /*
2319 * The pages were successfully merged: insert new
2320 * node in the stable tree and add both rmap_items.
2321 */
2322 folio_lock(kfolio);
2323 stable_node = stable_tree_insert(kfolio);
2324 if (stable_node) {
2325 stable_tree_append(tree_rmap_item, stable_node,
2326 false);
2327 stable_tree_append(rmap_item, stable_node,
2328 false);
2329 }
2330 folio_unlock(kfolio);
2331
2332 /*
2333 * If we fail to insert the page into the stable tree,
2334 * we will have 2 virtual addresses that are pointing
2335 * to a ksm page left outside the stable tree,
2336 * in which case we need to break_cow on both.
2337 */
2338 if (!stable_node) {
2339 break_cow(tree_rmap_item);
2340 break_cow(rmap_item);
2341 }
2342 } else if (split) {
2343 /*
2344 * We are here if we tried to merge two pages and
2345 * failed because they both belonged to the same
2346 * compound page. We will split the page now, but no
2347 * merging will take place.
2348 * We do not want to add the cost of a full lock; if
2349 * the page is locked, it is better to skip it and
2350 * perhaps try again later.
2351 */
2352 if (!folio_trylock(folio))
2353 return;
2354 split_huge_page(page);
2355 folio = page_folio(page);
2356 folio_unlock(folio);
2357 }
2358 }
2359 }
2360
get_next_rmap_item(struct ksm_mm_slot * mm_slot,struct ksm_rmap_item ** rmap_list,unsigned long addr)2361 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2362 struct ksm_rmap_item **rmap_list,
2363 unsigned long addr)
2364 {
2365 struct ksm_rmap_item *rmap_item;
2366
2367 while (*rmap_list) {
2368 rmap_item = *rmap_list;
2369 if ((rmap_item->address & PAGE_MASK) == addr)
2370 return rmap_item;
2371 if (rmap_item->address > addr)
2372 break;
2373 *rmap_list = rmap_item->rmap_list;
2374 remove_rmap_item_from_tree(rmap_item);
2375 free_rmap_item(rmap_item);
2376 }
2377
2378 rmap_item = alloc_rmap_item();
2379 if (rmap_item) {
2380 /* It has already been zeroed */
2381 rmap_item->mm = mm_slot->slot.mm;
2382 rmap_item->mm->ksm_rmap_items++;
2383 rmap_item->address = addr;
2384 rmap_item->rmap_list = *rmap_list;
2385 *rmap_list = rmap_item;
2386 }
2387 return rmap_item;
2388 }
2389
2390 /*
2391 * Calculate skip age for the ksm page age. The age determines how often
2392 * de-duplicating has already been tried unsuccessfully. If the age is
2393 * smaller, the scanning of this page is skipped for less scans.
2394 *
2395 * @age: rmap_item age of page
2396 */
skip_age(rmap_age_t age)2397 static unsigned int skip_age(rmap_age_t age)
2398 {
2399 if (age <= 3)
2400 return 1;
2401 if (age <= 5)
2402 return 2;
2403 if (age <= 8)
2404 return 4;
2405
2406 return 8;
2407 }
2408
2409 /*
2410 * Determines if a page should be skipped for the current scan.
2411 *
2412 * @folio: folio containing the page to check
2413 * @rmap_item: associated rmap_item of page
2414 */
should_skip_rmap_item(struct folio * folio,struct ksm_rmap_item * rmap_item)2415 static bool should_skip_rmap_item(struct folio *folio,
2416 struct ksm_rmap_item *rmap_item)
2417 {
2418 rmap_age_t age;
2419
2420 if (!ksm_smart_scan)
2421 return false;
2422
2423 /*
2424 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2425 * will essentially ignore them, but we still have to process them
2426 * properly.
2427 */
2428 if (folio_test_ksm(folio))
2429 return false;
2430
2431 age = rmap_item->age;
2432 if (age != U8_MAX)
2433 rmap_item->age++;
2434
2435 /*
2436 * Smaller ages are not skipped, they need to get a chance to go
2437 * through the different phases of the KSM merging.
2438 */
2439 if (age < 3)
2440 return false;
2441
2442 /*
2443 * Are we still allowed to skip? If not, then don't skip it
2444 * and determine how much more often we are allowed to skip next.
2445 */
2446 if (!rmap_item->remaining_skips) {
2447 rmap_item->remaining_skips = skip_age(age);
2448 return false;
2449 }
2450
2451 /* Skip this page */
2452 ksm_pages_skipped++;
2453 rmap_item->remaining_skips--;
2454 remove_rmap_item_from_tree(rmap_item);
2455 return true;
2456 }
2457
scan_get_next_rmap_item(struct page ** page)2458 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2459 {
2460 struct mm_struct *mm;
2461 struct ksm_mm_slot *mm_slot;
2462 struct mm_slot *slot;
2463 struct vm_area_struct *vma;
2464 struct ksm_rmap_item *rmap_item;
2465 struct vma_iterator vmi;
2466 int nid;
2467
2468 if (list_empty(&ksm_mm_head.slot.mm_node))
2469 return NULL;
2470
2471 mm_slot = ksm_scan.mm_slot;
2472 if (mm_slot == &ksm_mm_head) {
2473 advisor_start_scan();
2474 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2475
2476 /*
2477 * A number of pages can hang around indefinitely in per-cpu
2478 * LRU cache, raised page count preventing write_protect_page
2479 * from merging them. Though it doesn't really matter much,
2480 * it is puzzling to see some stuck in pages_volatile until
2481 * other activity jostles them out, and they also prevented
2482 * LTP's KSM test from succeeding deterministically; so drain
2483 * them here (here rather than on entry to ksm_do_scan(),
2484 * so we don't IPI too often when pages_to_scan is set low).
2485 */
2486 lru_add_drain_all();
2487
2488 /*
2489 * Whereas stale stable_nodes on the stable_tree itself
2490 * get pruned in the regular course of stable_tree_search(),
2491 * those moved out to the migrate_nodes list can accumulate:
2492 * so prune them once before each full scan.
2493 */
2494 if (!ksm_merge_across_nodes) {
2495 struct ksm_stable_node *stable_node, *next;
2496 struct folio *folio;
2497
2498 list_for_each_entry_safe(stable_node, next,
2499 &migrate_nodes, list) {
2500 folio = ksm_get_folio(stable_node,
2501 KSM_GET_FOLIO_NOLOCK);
2502 if (folio)
2503 folio_put(folio);
2504 cond_resched();
2505 }
2506 }
2507
2508 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2509 root_unstable_tree[nid] = RB_ROOT;
2510
2511 spin_lock(&ksm_mmlist_lock);
2512 slot = list_entry(mm_slot->slot.mm_node.next,
2513 struct mm_slot, mm_node);
2514 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2515 ksm_scan.mm_slot = mm_slot;
2516 spin_unlock(&ksm_mmlist_lock);
2517 /*
2518 * Although we tested list_empty() above, a racing __ksm_exit
2519 * of the last mm on the list may have removed it since then.
2520 */
2521 if (mm_slot == &ksm_mm_head)
2522 return NULL;
2523 next_mm:
2524 ksm_scan.address = 0;
2525 ksm_scan.rmap_list = &mm_slot->rmap_list;
2526 }
2527
2528 slot = &mm_slot->slot;
2529 mm = slot->mm;
2530 vma_iter_init(&vmi, mm, ksm_scan.address);
2531
2532 mmap_read_lock(mm);
2533 if (ksm_test_exit(mm))
2534 goto no_vmas;
2535
2536 for_each_vma(vmi, vma) {
2537 if (!(vma->vm_flags & VM_MERGEABLE))
2538 continue;
2539 if (ksm_scan.address < vma->vm_start)
2540 ksm_scan.address = vma->vm_start;
2541 if (!vma->anon_vma)
2542 ksm_scan.address = vma->vm_end;
2543
2544 while (ksm_scan.address < vma->vm_end) {
2545 struct page *tmp_page = NULL;
2546 struct folio_walk fw;
2547 struct folio *folio;
2548
2549 if (ksm_test_exit(mm))
2550 break;
2551
2552 folio = folio_walk_start(&fw, vma, ksm_scan.address, 0);
2553 if (folio) {
2554 if (!folio_is_zone_device(folio) &&
2555 folio_test_anon(folio)) {
2556 folio_get(folio);
2557 tmp_page = fw.page;
2558 }
2559 folio_walk_end(&fw, vma);
2560 }
2561
2562 if (tmp_page) {
2563 flush_anon_page(vma, tmp_page, ksm_scan.address);
2564 flush_dcache_page(tmp_page);
2565 rmap_item = get_next_rmap_item(mm_slot,
2566 ksm_scan.rmap_list, ksm_scan.address);
2567 if (rmap_item) {
2568 ksm_scan.rmap_list =
2569 &rmap_item->rmap_list;
2570
2571 if (should_skip_rmap_item(folio, rmap_item)) {
2572 folio_put(folio);
2573 goto next_page;
2574 }
2575
2576 ksm_scan.address += PAGE_SIZE;
2577 *page = tmp_page;
2578 } else {
2579 folio_put(folio);
2580 }
2581 mmap_read_unlock(mm);
2582 return rmap_item;
2583 }
2584 next_page:
2585 ksm_scan.address += PAGE_SIZE;
2586 cond_resched();
2587 }
2588 }
2589
2590 if (ksm_test_exit(mm)) {
2591 no_vmas:
2592 ksm_scan.address = 0;
2593 ksm_scan.rmap_list = &mm_slot->rmap_list;
2594 }
2595 /*
2596 * Nuke all the rmap_items that are above this current rmap:
2597 * because there were no VM_MERGEABLE vmas with such addresses.
2598 */
2599 remove_trailing_rmap_items(ksm_scan.rmap_list);
2600
2601 spin_lock(&ksm_mmlist_lock);
2602 slot = list_entry(mm_slot->slot.mm_node.next,
2603 struct mm_slot, mm_node);
2604 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2605 if (ksm_scan.address == 0) {
2606 /*
2607 * We've completed a full scan of all vmas, holding mmap_lock
2608 * throughout, and found no VM_MERGEABLE: so do the same as
2609 * __ksm_exit does to remove this mm from all our lists now.
2610 * This applies either when cleaning up after __ksm_exit
2611 * (but beware: we can reach here even before __ksm_exit),
2612 * or when all VM_MERGEABLE areas have been unmapped (and
2613 * mmap_lock then protects against race with MADV_MERGEABLE).
2614 */
2615 hash_del(&mm_slot->slot.hash);
2616 list_del(&mm_slot->slot.mm_node);
2617 spin_unlock(&ksm_mmlist_lock);
2618
2619 mm_slot_free(mm_slot_cache, mm_slot);
2620 mm_flags_clear(MMF_VM_MERGEABLE, mm);
2621 mm_flags_clear(MMF_VM_MERGE_ANY, mm);
2622 mmap_read_unlock(mm);
2623 mmdrop(mm);
2624 } else {
2625 mmap_read_unlock(mm);
2626 /*
2627 * mmap_read_unlock(mm) first because after
2628 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2629 * already have been freed under us by __ksm_exit()
2630 * because the "mm_slot" is still hashed and
2631 * ksm_scan.mm_slot doesn't point to it anymore.
2632 */
2633 spin_unlock(&ksm_mmlist_lock);
2634 }
2635
2636 /* Repeat until we've completed scanning the whole list */
2637 mm_slot = ksm_scan.mm_slot;
2638 if (mm_slot != &ksm_mm_head)
2639 goto next_mm;
2640
2641 advisor_stop_scan();
2642
2643 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2644 ksm_scan.seqnr++;
2645 return NULL;
2646 }
2647
2648 /**
2649 * ksm_do_scan - the ksm scanner main worker function.
2650 * @scan_npages: number of pages we want to scan before we return.
2651 */
ksm_do_scan(unsigned int scan_npages)2652 static void ksm_do_scan(unsigned int scan_npages)
2653 {
2654 struct ksm_rmap_item *rmap_item;
2655 struct page *page;
2656
2657 while (scan_npages-- && likely(!freezing(current))) {
2658 cond_resched();
2659 rmap_item = scan_get_next_rmap_item(&page);
2660 if (!rmap_item)
2661 return;
2662 cmp_and_merge_page(page, rmap_item);
2663 put_page(page);
2664 ksm_pages_scanned++;
2665 }
2666 }
2667
ksmd_should_run(void)2668 static int ksmd_should_run(void)
2669 {
2670 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2671 }
2672
ksm_scan_thread(void * nothing)2673 static int ksm_scan_thread(void *nothing)
2674 {
2675 unsigned int sleep_ms;
2676
2677 set_freezable();
2678 set_user_nice(current, 5);
2679
2680 while (!kthread_should_stop()) {
2681 mutex_lock(&ksm_thread_mutex);
2682 wait_while_offlining();
2683 if (ksmd_should_run())
2684 ksm_do_scan(ksm_thread_pages_to_scan);
2685 mutex_unlock(&ksm_thread_mutex);
2686
2687 if (ksmd_should_run()) {
2688 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2689 wait_event_freezable_timeout(ksm_iter_wait,
2690 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2691 msecs_to_jiffies(sleep_ms));
2692 } else {
2693 wait_event_freezable(ksm_thread_wait,
2694 ksmd_should_run() || kthread_should_stop());
2695 }
2696 }
2697 return 0;
2698 }
2699
__ksm_should_add_vma(const struct file * file,vm_flags_t vm_flags)2700 static bool __ksm_should_add_vma(const struct file *file, vm_flags_t vm_flags)
2701 {
2702 if (vm_flags & VM_MERGEABLE)
2703 return false;
2704
2705 return ksm_compatible(file, vm_flags);
2706 }
2707
__ksm_add_vma(struct vm_area_struct * vma)2708 static void __ksm_add_vma(struct vm_area_struct *vma)
2709 {
2710 if (__ksm_should_add_vma(vma->vm_file, vma->vm_flags))
2711 vm_flags_set(vma, VM_MERGEABLE);
2712 }
2713
__ksm_del_vma(struct vm_area_struct * vma)2714 static int __ksm_del_vma(struct vm_area_struct *vma)
2715 {
2716 int err;
2717
2718 if (!(vma->vm_flags & VM_MERGEABLE))
2719 return 0;
2720
2721 if (vma->anon_vma) {
2722 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2723 if (err)
2724 return err;
2725 }
2726
2727 vm_flags_clear(vma, VM_MERGEABLE);
2728 return 0;
2729 }
2730 /**
2731 * ksm_vma_flags - Update VMA flags to mark as mergeable if compatible
2732 *
2733 * @mm: Proposed VMA's mm_struct
2734 * @file: Proposed VMA's file-backed mapping, if any.
2735 * @vm_flags: Proposed VMA"s flags.
2736 *
2737 * Returns: @vm_flags possibly updated to mark mergeable.
2738 */
ksm_vma_flags(const struct mm_struct * mm,const struct file * file,vm_flags_t vm_flags)2739 vm_flags_t ksm_vma_flags(const struct mm_struct *mm, const struct file *file,
2740 vm_flags_t vm_flags)
2741 {
2742 if (mm_flags_test(MMF_VM_MERGE_ANY, mm) &&
2743 __ksm_should_add_vma(file, vm_flags))
2744 vm_flags |= VM_MERGEABLE;
2745
2746 return vm_flags;
2747 }
2748
ksm_add_vmas(struct mm_struct * mm)2749 static void ksm_add_vmas(struct mm_struct *mm)
2750 {
2751 struct vm_area_struct *vma;
2752
2753 VMA_ITERATOR(vmi, mm, 0);
2754 for_each_vma(vmi, vma)
2755 __ksm_add_vma(vma);
2756 }
2757
ksm_del_vmas(struct mm_struct * mm)2758 static int ksm_del_vmas(struct mm_struct *mm)
2759 {
2760 struct vm_area_struct *vma;
2761 int err;
2762
2763 VMA_ITERATOR(vmi, mm, 0);
2764 for_each_vma(vmi, vma) {
2765 err = __ksm_del_vma(vma);
2766 if (err)
2767 return err;
2768 }
2769 return 0;
2770 }
2771
2772 /**
2773 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2774 * compatible VMA's
2775 *
2776 * @mm: Pointer to mm
2777 *
2778 * Returns 0 on success, otherwise error code
2779 */
ksm_enable_merge_any(struct mm_struct * mm)2780 int ksm_enable_merge_any(struct mm_struct *mm)
2781 {
2782 int err;
2783
2784 if (mm_flags_test(MMF_VM_MERGE_ANY, mm))
2785 return 0;
2786
2787 if (!mm_flags_test(MMF_VM_MERGEABLE, mm)) {
2788 err = __ksm_enter(mm);
2789 if (err)
2790 return err;
2791 }
2792
2793 mm_flags_set(MMF_VM_MERGE_ANY, mm);
2794 ksm_add_vmas(mm);
2795
2796 return 0;
2797 }
2798
2799 /**
2800 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2801 * previously enabled via ksm_enable_merge_any().
2802 *
2803 * Disabling merging implies unmerging any merged pages, like setting
2804 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2805 * merging on all compatible VMA's remains enabled.
2806 *
2807 * @mm: Pointer to mm
2808 *
2809 * Returns 0 on success, otherwise error code
2810 */
ksm_disable_merge_any(struct mm_struct * mm)2811 int ksm_disable_merge_any(struct mm_struct *mm)
2812 {
2813 int err;
2814
2815 if (!mm_flags_test(MMF_VM_MERGE_ANY, mm))
2816 return 0;
2817
2818 err = ksm_del_vmas(mm);
2819 if (err) {
2820 ksm_add_vmas(mm);
2821 return err;
2822 }
2823
2824 mm_flags_clear(MMF_VM_MERGE_ANY, mm);
2825 return 0;
2826 }
2827
ksm_disable(struct mm_struct * mm)2828 int ksm_disable(struct mm_struct *mm)
2829 {
2830 mmap_assert_write_locked(mm);
2831
2832 if (!mm_flags_test(MMF_VM_MERGEABLE, mm))
2833 return 0;
2834 if (mm_flags_test(MMF_VM_MERGE_ANY, mm))
2835 return ksm_disable_merge_any(mm);
2836 return ksm_del_vmas(mm);
2837 }
2838
ksm_madvise(struct vm_area_struct * vma,unsigned long start,unsigned long end,int advice,vm_flags_t * vm_flags)2839 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2840 unsigned long end, int advice, vm_flags_t *vm_flags)
2841 {
2842 struct mm_struct *mm = vma->vm_mm;
2843 int err;
2844
2845 switch (advice) {
2846 case MADV_MERGEABLE:
2847 if (vma->vm_flags & VM_MERGEABLE)
2848 return 0;
2849 if (!vma_ksm_compatible(vma))
2850 return 0;
2851
2852 if (!mm_flags_test(MMF_VM_MERGEABLE, mm)) {
2853 err = __ksm_enter(mm);
2854 if (err)
2855 return err;
2856 }
2857
2858 *vm_flags |= VM_MERGEABLE;
2859 break;
2860
2861 case MADV_UNMERGEABLE:
2862 if (!(*vm_flags & VM_MERGEABLE))
2863 return 0; /* just ignore the advice */
2864
2865 if (vma->anon_vma) {
2866 err = unmerge_ksm_pages(vma, start, end, true);
2867 if (err)
2868 return err;
2869 }
2870
2871 *vm_flags &= ~VM_MERGEABLE;
2872 break;
2873 }
2874
2875 return 0;
2876 }
2877 EXPORT_SYMBOL_GPL(ksm_madvise);
2878
__ksm_enter(struct mm_struct * mm)2879 int __ksm_enter(struct mm_struct *mm)
2880 {
2881 struct ksm_mm_slot *mm_slot;
2882 struct mm_slot *slot;
2883 int needs_wakeup;
2884
2885 mm_slot = mm_slot_alloc(mm_slot_cache);
2886 if (!mm_slot)
2887 return -ENOMEM;
2888
2889 slot = &mm_slot->slot;
2890
2891 /* Check ksm_run too? Would need tighter locking */
2892 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2893
2894 spin_lock(&ksm_mmlist_lock);
2895 mm_slot_insert(mm_slots_hash, mm, slot);
2896 /*
2897 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2898 * insert just behind the scanning cursor, to let the area settle
2899 * down a little; when fork is followed by immediate exec, we don't
2900 * want ksmd to waste time setting up and tearing down an rmap_list.
2901 *
2902 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2903 * scanning cursor, otherwise KSM pages in newly forked mms will be
2904 * missed: then we might as well insert at the end of the list.
2905 */
2906 if (ksm_run & KSM_RUN_UNMERGE)
2907 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2908 else
2909 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2910 spin_unlock(&ksm_mmlist_lock);
2911
2912 mm_flags_set(MMF_VM_MERGEABLE, mm);
2913 mmgrab(mm);
2914
2915 if (needs_wakeup)
2916 wake_up_interruptible(&ksm_thread_wait);
2917
2918 trace_ksm_enter(mm);
2919 return 0;
2920 }
2921
__ksm_exit(struct mm_struct * mm)2922 void __ksm_exit(struct mm_struct *mm)
2923 {
2924 struct ksm_mm_slot *mm_slot;
2925 struct mm_slot *slot;
2926 int easy_to_free = 0;
2927
2928 /*
2929 * This process is exiting: if it's straightforward (as is the
2930 * case when ksmd was never running), free mm_slot immediately.
2931 * But if it's at the cursor or has rmap_items linked to it, use
2932 * mmap_lock to synchronize with any break_cows before pagetables
2933 * are freed, and leave the mm_slot on the list for ksmd to free.
2934 * Beware: ksm may already have noticed it exiting and freed the slot.
2935 */
2936
2937 spin_lock(&ksm_mmlist_lock);
2938 slot = mm_slot_lookup(mm_slots_hash, mm);
2939 if (slot) {
2940 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2941 if (ksm_scan.mm_slot != mm_slot) {
2942 if (!mm_slot->rmap_list) {
2943 hash_del(&slot->hash);
2944 list_del(&slot->mm_node);
2945 easy_to_free = 1;
2946 } else {
2947 list_move(&slot->mm_node,
2948 &ksm_scan.mm_slot->slot.mm_node);
2949 }
2950 }
2951 }
2952 spin_unlock(&ksm_mmlist_lock);
2953
2954 if (easy_to_free) {
2955 mm_slot_free(mm_slot_cache, mm_slot);
2956 mm_flags_clear(MMF_VM_MERGE_ANY, mm);
2957 mm_flags_clear(MMF_VM_MERGEABLE, mm);
2958 mmdrop(mm);
2959 } else if (mm_slot) {
2960 mmap_write_lock(mm);
2961 mmap_write_unlock(mm);
2962 }
2963
2964 trace_ksm_exit(mm);
2965 }
2966
ksm_might_need_to_copy(struct folio * folio,struct vm_area_struct * vma,unsigned long addr)2967 struct folio *ksm_might_need_to_copy(struct folio *folio,
2968 struct vm_area_struct *vma, unsigned long addr)
2969 {
2970 struct page *page = folio_page(folio, 0);
2971 struct anon_vma *anon_vma = folio_anon_vma(folio);
2972 struct folio *new_folio;
2973
2974 if (folio_test_large(folio))
2975 return folio;
2976
2977 if (folio_test_ksm(folio)) {
2978 if (folio_stable_node(folio) &&
2979 !(ksm_run & KSM_RUN_UNMERGE))
2980 return folio; /* no need to copy it */
2981 } else if (!anon_vma) {
2982 return folio; /* no need to copy it */
2983 } else if (folio->index == linear_page_index(vma, addr) &&
2984 anon_vma->root == vma->anon_vma->root) {
2985 return folio; /* still no need to copy it */
2986 }
2987 if (PageHWPoison(page))
2988 return ERR_PTR(-EHWPOISON);
2989 if (!folio_test_uptodate(folio))
2990 return folio; /* let do_swap_page report the error */
2991
2992 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
2993 if (new_folio &&
2994 mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
2995 folio_put(new_folio);
2996 new_folio = NULL;
2997 }
2998 if (new_folio) {
2999 if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
3000 addr, vma)) {
3001 folio_put(new_folio);
3002 return ERR_PTR(-EHWPOISON);
3003 }
3004 folio_set_dirty(new_folio);
3005 __folio_mark_uptodate(new_folio);
3006 __folio_set_locked(new_folio);
3007 #ifdef CONFIG_SWAP
3008 count_vm_event(KSM_SWPIN_COPY);
3009 #endif
3010 }
3011
3012 return new_folio;
3013 }
3014
rmap_walk_ksm(struct folio * folio,struct rmap_walk_control * rwc)3015 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
3016 {
3017 struct ksm_stable_node *stable_node;
3018 struct ksm_rmap_item *rmap_item;
3019 int search_new_forks = 0;
3020
3021 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3022
3023 /*
3024 * Rely on the page lock to protect against concurrent modifications
3025 * to that page's node of the stable tree.
3026 */
3027 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3028
3029 stable_node = folio_stable_node(folio);
3030 if (!stable_node)
3031 return;
3032 again:
3033 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3034 struct anon_vma *anon_vma = rmap_item->anon_vma;
3035 struct anon_vma_chain *vmac;
3036 struct vm_area_struct *vma;
3037
3038 cond_resched();
3039 if (!anon_vma_trylock_read(anon_vma)) {
3040 if (rwc->try_lock) {
3041 rwc->contended = true;
3042 return;
3043 }
3044 anon_vma_lock_read(anon_vma);
3045 }
3046 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3047 0, ULONG_MAX) {
3048 unsigned long addr;
3049
3050 cond_resched();
3051 vma = vmac->vma;
3052
3053 /* Ignore the stable/unstable/sqnr flags */
3054 addr = rmap_item->address & PAGE_MASK;
3055
3056 if (addr < vma->vm_start || addr >= vma->vm_end)
3057 continue;
3058 /*
3059 * Initially we examine only the vma which covers this
3060 * rmap_item; but later, if there is still work to do,
3061 * we examine covering vmas in other mms: in case they
3062 * were forked from the original since ksmd passed.
3063 */
3064 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3065 continue;
3066
3067 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3068 continue;
3069
3070 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3071 anon_vma_unlock_read(anon_vma);
3072 return;
3073 }
3074 if (rwc->done && rwc->done(folio)) {
3075 anon_vma_unlock_read(anon_vma);
3076 return;
3077 }
3078 }
3079 anon_vma_unlock_read(anon_vma);
3080 }
3081 if (!search_new_forks++)
3082 goto again;
3083 }
3084
3085 #ifdef CONFIG_MEMORY_FAILURE
3086 /*
3087 * Collect processes when the error hit an ksm page.
3088 */
collect_procs_ksm(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)3089 void collect_procs_ksm(const struct folio *folio, const struct page *page,
3090 struct list_head *to_kill, int force_early)
3091 {
3092 struct ksm_stable_node *stable_node;
3093 struct ksm_rmap_item *rmap_item;
3094 struct vm_area_struct *vma;
3095 struct task_struct *tsk;
3096
3097 stable_node = folio_stable_node(folio);
3098 if (!stable_node)
3099 return;
3100 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3101 struct anon_vma *av = rmap_item->anon_vma;
3102
3103 anon_vma_lock_read(av);
3104 rcu_read_lock();
3105 for_each_process(tsk) {
3106 struct anon_vma_chain *vmac;
3107 unsigned long addr;
3108 struct task_struct *t =
3109 task_early_kill(tsk, force_early);
3110 if (!t)
3111 continue;
3112 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3113 ULONG_MAX)
3114 {
3115 vma = vmac->vma;
3116 if (vma->vm_mm == t->mm) {
3117 addr = rmap_item->address & PAGE_MASK;
3118 add_to_kill_ksm(t, page, vma, to_kill,
3119 addr);
3120 }
3121 }
3122 }
3123 rcu_read_unlock();
3124 anon_vma_unlock_read(av);
3125 }
3126 }
3127 #endif
3128
3129 #ifdef CONFIG_MIGRATION
folio_migrate_ksm(struct folio * newfolio,struct folio * folio)3130 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3131 {
3132 struct ksm_stable_node *stable_node;
3133
3134 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3135 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3136 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3137
3138 stable_node = folio_stable_node(folio);
3139 if (stable_node) {
3140 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3141 stable_node->kpfn = folio_pfn(newfolio);
3142 /*
3143 * newfolio->mapping was set in advance; now we need smp_wmb()
3144 * to make sure that the new stable_node->kpfn is visible
3145 * to ksm_get_folio() before it can see that folio->mapping
3146 * has gone stale (or that the swapcache flag has been cleared).
3147 */
3148 smp_wmb();
3149 folio_set_stable_node(folio, NULL);
3150 }
3151 }
3152 #endif /* CONFIG_MIGRATION */
3153
3154 #ifdef CONFIG_MEMORY_HOTREMOVE
wait_while_offlining(void)3155 static void wait_while_offlining(void)
3156 {
3157 while (ksm_run & KSM_RUN_OFFLINE) {
3158 mutex_unlock(&ksm_thread_mutex);
3159 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3160 TASK_UNINTERRUPTIBLE);
3161 mutex_lock(&ksm_thread_mutex);
3162 }
3163 }
3164
stable_node_dup_remove_range(struct ksm_stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn)3165 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3166 unsigned long start_pfn,
3167 unsigned long end_pfn)
3168 {
3169 if (stable_node->kpfn >= start_pfn &&
3170 stable_node->kpfn < end_pfn) {
3171 /*
3172 * Don't ksm_get_folio, page has already gone:
3173 * which is why we keep kpfn instead of page*
3174 */
3175 remove_node_from_stable_tree(stable_node);
3176 return true;
3177 }
3178 return false;
3179 }
3180
stable_node_chain_remove_range(struct ksm_stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn,struct rb_root * root)3181 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3182 unsigned long start_pfn,
3183 unsigned long end_pfn,
3184 struct rb_root *root)
3185 {
3186 struct ksm_stable_node *dup;
3187 struct hlist_node *hlist_safe;
3188
3189 if (!is_stable_node_chain(stable_node)) {
3190 VM_BUG_ON(is_stable_node_dup(stable_node));
3191 return stable_node_dup_remove_range(stable_node, start_pfn,
3192 end_pfn);
3193 }
3194
3195 hlist_for_each_entry_safe(dup, hlist_safe,
3196 &stable_node->hlist, hlist_dup) {
3197 VM_BUG_ON(!is_stable_node_dup(dup));
3198 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3199 }
3200 if (hlist_empty(&stable_node->hlist)) {
3201 free_stable_node_chain(stable_node, root);
3202 return true; /* notify caller that tree was rebalanced */
3203 } else
3204 return false;
3205 }
3206
ksm_check_stable_tree(unsigned long start_pfn,unsigned long end_pfn)3207 static void ksm_check_stable_tree(unsigned long start_pfn,
3208 unsigned long end_pfn)
3209 {
3210 struct ksm_stable_node *stable_node, *next;
3211 struct rb_node *node;
3212 int nid;
3213
3214 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3215 node = rb_first(root_stable_tree + nid);
3216 while (node) {
3217 stable_node = rb_entry(node, struct ksm_stable_node, node);
3218 if (stable_node_chain_remove_range(stable_node,
3219 start_pfn, end_pfn,
3220 root_stable_tree +
3221 nid))
3222 node = rb_first(root_stable_tree + nid);
3223 else
3224 node = rb_next(node);
3225 cond_resched();
3226 }
3227 }
3228 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3229 if (stable_node->kpfn >= start_pfn &&
3230 stable_node->kpfn < end_pfn)
3231 remove_node_from_stable_tree(stable_node);
3232 cond_resched();
3233 }
3234 }
3235
ksm_memory_callback(struct notifier_block * self,unsigned long action,void * arg)3236 static int ksm_memory_callback(struct notifier_block *self,
3237 unsigned long action, void *arg)
3238 {
3239 struct memory_notify *mn = arg;
3240
3241 switch (action) {
3242 case MEM_GOING_OFFLINE:
3243 /*
3244 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3245 * and remove_all_stable_nodes() while memory is going offline:
3246 * it is unsafe for them to touch the stable tree at this time.
3247 * But unmerge_ksm_pages(), rmap lookups and other entry points
3248 * which do not need the ksm_thread_mutex are all safe.
3249 */
3250 mutex_lock(&ksm_thread_mutex);
3251 ksm_run |= KSM_RUN_OFFLINE;
3252 mutex_unlock(&ksm_thread_mutex);
3253 break;
3254
3255 case MEM_OFFLINE:
3256 /*
3257 * Most of the work is done by page migration; but there might
3258 * be a few stable_nodes left over, still pointing to struct
3259 * pages which have been offlined: prune those from the tree,
3260 * otherwise ksm_get_folio() might later try to access a
3261 * non-existent struct page.
3262 */
3263 ksm_check_stable_tree(mn->start_pfn,
3264 mn->start_pfn + mn->nr_pages);
3265 fallthrough;
3266 case MEM_CANCEL_OFFLINE:
3267 mutex_lock(&ksm_thread_mutex);
3268 ksm_run &= ~KSM_RUN_OFFLINE;
3269 mutex_unlock(&ksm_thread_mutex);
3270
3271 smp_mb(); /* wake_up_bit advises this */
3272 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3273 break;
3274 }
3275 return NOTIFY_OK;
3276 }
3277 #else
wait_while_offlining(void)3278 static void wait_while_offlining(void)
3279 {
3280 }
3281 #endif /* CONFIG_MEMORY_HOTREMOVE */
3282
3283 #ifdef CONFIG_PROC_FS
3284 /*
3285 * The process is mergeable only if any VMA is currently
3286 * applicable to KSM.
3287 *
3288 * The mmap lock must be held in read mode.
3289 */
ksm_process_mergeable(struct mm_struct * mm)3290 bool ksm_process_mergeable(struct mm_struct *mm)
3291 {
3292 struct vm_area_struct *vma;
3293
3294 mmap_assert_locked(mm);
3295 VMA_ITERATOR(vmi, mm, 0);
3296 for_each_vma(vmi, vma)
3297 if (vma->vm_flags & VM_MERGEABLE)
3298 return true;
3299
3300 return false;
3301 }
3302
ksm_process_profit(struct mm_struct * mm)3303 long ksm_process_profit(struct mm_struct *mm)
3304 {
3305 return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
3306 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3307 }
3308 #endif /* CONFIG_PROC_FS */
3309
3310 #ifdef CONFIG_SYSFS
3311 /*
3312 * This all compiles without CONFIG_SYSFS, but is a waste of space.
3313 */
3314
3315 #define KSM_ATTR_RO(_name) \
3316 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3317 #define KSM_ATTR(_name) \
3318 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3319
sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3320 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3321 struct kobj_attribute *attr, char *buf)
3322 {
3323 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3324 }
3325
sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3326 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3327 struct kobj_attribute *attr,
3328 const char *buf, size_t count)
3329 {
3330 unsigned int msecs;
3331 int err;
3332
3333 err = kstrtouint(buf, 10, &msecs);
3334 if (err)
3335 return -EINVAL;
3336
3337 ksm_thread_sleep_millisecs = msecs;
3338 wake_up_interruptible(&ksm_iter_wait);
3339
3340 return count;
3341 }
3342 KSM_ATTR(sleep_millisecs);
3343
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3344 static ssize_t pages_to_scan_show(struct kobject *kobj,
3345 struct kobj_attribute *attr, char *buf)
3346 {
3347 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3348 }
3349
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3350 static ssize_t pages_to_scan_store(struct kobject *kobj,
3351 struct kobj_attribute *attr,
3352 const char *buf, size_t count)
3353 {
3354 unsigned int nr_pages;
3355 int err;
3356
3357 if (ksm_advisor != KSM_ADVISOR_NONE)
3358 return -EINVAL;
3359
3360 err = kstrtouint(buf, 10, &nr_pages);
3361 if (err)
3362 return -EINVAL;
3363
3364 ksm_thread_pages_to_scan = nr_pages;
3365
3366 return count;
3367 }
3368 KSM_ATTR(pages_to_scan);
3369
run_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3370 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3371 char *buf)
3372 {
3373 return sysfs_emit(buf, "%lu\n", ksm_run);
3374 }
3375
run_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3376 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3377 const char *buf, size_t count)
3378 {
3379 unsigned int flags;
3380 int err;
3381
3382 err = kstrtouint(buf, 10, &flags);
3383 if (err)
3384 return -EINVAL;
3385 if (flags > KSM_RUN_UNMERGE)
3386 return -EINVAL;
3387
3388 /*
3389 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3390 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3391 * breaking COW to free the pages_shared (but leaves mm_slots
3392 * on the list for when ksmd may be set running again).
3393 */
3394
3395 mutex_lock(&ksm_thread_mutex);
3396 wait_while_offlining();
3397 if (ksm_run != flags) {
3398 ksm_run = flags;
3399 if (flags & KSM_RUN_UNMERGE) {
3400 set_current_oom_origin();
3401 err = unmerge_and_remove_all_rmap_items();
3402 clear_current_oom_origin();
3403 if (err) {
3404 ksm_run = KSM_RUN_STOP;
3405 count = err;
3406 }
3407 }
3408 }
3409 mutex_unlock(&ksm_thread_mutex);
3410
3411 if (flags & KSM_RUN_MERGE)
3412 wake_up_interruptible(&ksm_thread_wait);
3413
3414 return count;
3415 }
3416 KSM_ATTR(run);
3417
3418 #ifdef CONFIG_NUMA
merge_across_nodes_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3419 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3420 struct kobj_attribute *attr, char *buf)
3421 {
3422 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3423 }
3424
merge_across_nodes_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3425 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3426 struct kobj_attribute *attr,
3427 const char *buf, size_t count)
3428 {
3429 int err;
3430 unsigned long knob;
3431
3432 err = kstrtoul(buf, 10, &knob);
3433 if (err)
3434 return err;
3435 if (knob > 1)
3436 return -EINVAL;
3437
3438 mutex_lock(&ksm_thread_mutex);
3439 wait_while_offlining();
3440 if (ksm_merge_across_nodes != knob) {
3441 if (ksm_pages_shared || remove_all_stable_nodes())
3442 err = -EBUSY;
3443 else if (root_stable_tree == one_stable_tree) {
3444 struct rb_root *buf;
3445 /*
3446 * This is the first time that we switch away from the
3447 * default of merging across nodes: must now allocate
3448 * a buffer to hold as many roots as may be needed.
3449 * Allocate stable and unstable together:
3450 * MAXSMP NODES_SHIFT 10 will use 16kB.
3451 */
3452 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3453 GFP_KERNEL);
3454 /* Let us assume that RB_ROOT is NULL is zero */
3455 if (!buf)
3456 err = -ENOMEM;
3457 else {
3458 root_stable_tree = buf;
3459 root_unstable_tree = buf + nr_node_ids;
3460 /* Stable tree is empty but not the unstable */
3461 root_unstable_tree[0] = one_unstable_tree[0];
3462 }
3463 }
3464 if (!err) {
3465 ksm_merge_across_nodes = knob;
3466 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3467 }
3468 }
3469 mutex_unlock(&ksm_thread_mutex);
3470
3471 return err ? err : count;
3472 }
3473 KSM_ATTR(merge_across_nodes);
3474 #endif
3475
use_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3476 static ssize_t use_zero_pages_show(struct kobject *kobj,
3477 struct kobj_attribute *attr, char *buf)
3478 {
3479 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3480 }
use_zero_pages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3481 static ssize_t use_zero_pages_store(struct kobject *kobj,
3482 struct kobj_attribute *attr,
3483 const char *buf, size_t count)
3484 {
3485 int err;
3486 bool value;
3487
3488 err = kstrtobool(buf, &value);
3489 if (err)
3490 return -EINVAL;
3491
3492 ksm_use_zero_pages = value;
3493
3494 return count;
3495 }
3496 KSM_ATTR(use_zero_pages);
3497
max_page_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3498 static ssize_t max_page_sharing_show(struct kobject *kobj,
3499 struct kobj_attribute *attr, char *buf)
3500 {
3501 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3502 }
3503
max_page_sharing_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3504 static ssize_t max_page_sharing_store(struct kobject *kobj,
3505 struct kobj_attribute *attr,
3506 const char *buf, size_t count)
3507 {
3508 int err;
3509 int knob;
3510
3511 err = kstrtoint(buf, 10, &knob);
3512 if (err)
3513 return err;
3514 /*
3515 * When a KSM page is created it is shared by 2 mappings. This
3516 * being a signed comparison, it implicitly verifies it's not
3517 * negative.
3518 */
3519 if (knob < 2)
3520 return -EINVAL;
3521
3522 if (READ_ONCE(ksm_max_page_sharing) == knob)
3523 return count;
3524
3525 mutex_lock(&ksm_thread_mutex);
3526 wait_while_offlining();
3527 if (ksm_max_page_sharing != knob) {
3528 if (ksm_pages_shared || remove_all_stable_nodes())
3529 err = -EBUSY;
3530 else
3531 ksm_max_page_sharing = knob;
3532 }
3533 mutex_unlock(&ksm_thread_mutex);
3534
3535 return err ? err : count;
3536 }
3537 KSM_ATTR(max_page_sharing);
3538
pages_scanned_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3539 static ssize_t pages_scanned_show(struct kobject *kobj,
3540 struct kobj_attribute *attr, char *buf)
3541 {
3542 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3543 }
3544 KSM_ATTR_RO(pages_scanned);
3545
pages_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3546 static ssize_t pages_shared_show(struct kobject *kobj,
3547 struct kobj_attribute *attr, char *buf)
3548 {
3549 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3550 }
3551 KSM_ATTR_RO(pages_shared);
3552
pages_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3553 static ssize_t pages_sharing_show(struct kobject *kobj,
3554 struct kobj_attribute *attr, char *buf)
3555 {
3556 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3557 }
3558 KSM_ATTR_RO(pages_sharing);
3559
pages_unshared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3560 static ssize_t pages_unshared_show(struct kobject *kobj,
3561 struct kobj_attribute *attr, char *buf)
3562 {
3563 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3564 }
3565 KSM_ATTR_RO(pages_unshared);
3566
pages_volatile_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3567 static ssize_t pages_volatile_show(struct kobject *kobj,
3568 struct kobj_attribute *attr, char *buf)
3569 {
3570 long ksm_pages_volatile;
3571
3572 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3573 - ksm_pages_sharing - ksm_pages_unshared;
3574 /*
3575 * It was not worth any locking to calculate that statistic,
3576 * but it might therefore sometimes be negative: conceal that.
3577 */
3578 if (ksm_pages_volatile < 0)
3579 ksm_pages_volatile = 0;
3580 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3581 }
3582 KSM_ATTR_RO(pages_volatile);
3583
pages_skipped_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3584 static ssize_t pages_skipped_show(struct kobject *kobj,
3585 struct kobj_attribute *attr, char *buf)
3586 {
3587 return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3588 }
3589 KSM_ATTR_RO(pages_skipped);
3590
ksm_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3591 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3592 struct kobj_attribute *attr, char *buf)
3593 {
3594 return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
3595 }
3596 KSM_ATTR_RO(ksm_zero_pages);
3597
general_profit_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3598 static ssize_t general_profit_show(struct kobject *kobj,
3599 struct kobj_attribute *attr, char *buf)
3600 {
3601 long general_profit;
3602
3603 general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
3604 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3605
3606 return sysfs_emit(buf, "%ld\n", general_profit);
3607 }
3608 KSM_ATTR_RO(general_profit);
3609
stable_node_dups_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3610 static ssize_t stable_node_dups_show(struct kobject *kobj,
3611 struct kobj_attribute *attr, char *buf)
3612 {
3613 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3614 }
3615 KSM_ATTR_RO(stable_node_dups);
3616
stable_node_chains_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3617 static ssize_t stable_node_chains_show(struct kobject *kobj,
3618 struct kobj_attribute *attr, char *buf)
3619 {
3620 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3621 }
3622 KSM_ATTR_RO(stable_node_chains);
3623
3624 static ssize_t
stable_node_chains_prune_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3625 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3626 struct kobj_attribute *attr,
3627 char *buf)
3628 {
3629 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3630 }
3631
3632 static ssize_t
stable_node_chains_prune_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3633 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3634 struct kobj_attribute *attr,
3635 const char *buf, size_t count)
3636 {
3637 unsigned int msecs;
3638 int err;
3639
3640 err = kstrtouint(buf, 10, &msecs);
3641 if (err)
3642 return -EINVAL;
3643
3644 ksm_stable_node_chains_prune_millisecs = msecs;
3645
3646 return count;
3647 }
3648 KSM_ATTR(stable_node_chains_prune_millisecs);
3649
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3650 static ssize_t full_scans_show(struct kobject *kobj,
3651 struct kobj_attribute *attr, char *buf)
3652 {
3653 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3654 }
3655 KSM_ATTR_RO(full_scans);
3656
smart_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3657 static ssize_t smart_scan_show(struct kobject *kobj,
3658 struct kobj_attribute *attr, char *buf)
3659 {
3660 return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3661 }
3662
smart_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3663 static ssize_t smart_scan_store(struct kobject *kobj,
3664 struct kobj_attribute *attr,
3665 const char *buf, size_t count)
3666 {
3667 int err;
3668 bool value;
3669
3670 err = kstrtobool(buf, &value);
3671 if (err)
3672 return -EINVAL;
3673
3674 ksm_smart_scan = value;
3675 return count;
3676 }
3677 KSM_ATTR(smart_scan);
3678
advisor_mode_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3679 static ssize_t advisor_mode_show(struct kobject *kobj,
3680 struct kobj_attribute *attr, char *buf)
3681 {
3682 const char *output;
3683
3684 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3685 output = "none [scan-time]";
3686 else
3687 output = "[none] scan-time";
3688
3689 return sysfs_emit(buf, "%s\n", output);
3690 }
3691
advisor_mode_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3692 static ssize_t advisor_mode_store(struct kobject *kobj,
3693 struct kobj_attribute *attr, const char *buf,
3694 size_t count)
3695 {
3696 enum ksm_advisor_type curr_advisor = ksm_advisor;
3697
3698 if (sysfs_streq("scan-time", buf))
3699 ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3700 else if (sysfs_streq("none", buf))
3701 ksm_advisor = KSM_ADVISOR_NONE;
3702 else
3703 return -EINVAL;
3704
3705 /* Set advisor default values */
3706 if (curr_advisor != ksm_advisor)
3707 set_advisor_defaults();
3708
3709 return count;
3710 }
3711 KSM_ATTR(advisor_mode);
3712
advisor_max_cpu_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3713 static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3714 struct kobj_attribute *attr, char *buf)
3715 {
3716 return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3717 }
3718
advisor_max_cpu_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3719 static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3720 struct kobj_attribute *attr,
3721 const char *buf, size_t count)
3722 {
3723 int err;
3724 unsigned long value;
3725
3726 err = kstrtoul(buf, 10, &value);
3727 if (err)
3728 return -EINVAL;
3729
3730 ksm_advisor_max_cpu = value;
3731 return count;
3732 }
3733 KSM_ATTR(advisor_max_cpu);
3734
advisor_min_pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3735 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3736 struct kobj_attribute *attr, char *buf)
3737 {
3738 return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3739 }
3740
advisor_min_pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3741 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3742 struct kobj_attribute *attr,
3743 const char *buf, size_t count)
3744 {
3745 int err;
3746 unsigned long value;
3747
3748 err = kstrtoul(buf, 10, &value);
3749 if (err)
3750 return -EINVAL;
3751
3752 ksm_advisor_min_pages_to_scan = value;
3753 return count;
3754 }
3755 KSM_ATTR(advisor_min_pages_to_scan);
3756
advisor_max_pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3757 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3758 struct kobj_attribute *attr, char *buf)
3759 {
3760 return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3761 }
3762
advisor_max_pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3763 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3764 struct kobj_attribute *attr,
3765 const char *buf, size_t count)
3766 {
3767 int err;
3768 unsigned long value;
3769
3770 err = kstrtoul(buf, 10, &value);
3771 if (err)
3772 return -EINVAL;
3773
3774 ksm_advisor_max_pages_to_scan = value;
3775 return count;
3776 }
3777 KSM_ATTR(advisor_max_pages_to_scan);
3778
advisor_target_scan_time_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3779 static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3780 struct kobj_attribute *attr, char *buf)
3781 {
3782 return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3783 }
3784
advisor_target_scan_time_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3785 static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3786 struct kobj_attribute *attr,
3787 const char *buf, size_t count)
3788 {
3789 int err;
3790 unsigned long value;
3791
3792 err = kstrtoul(buf, 10, &value);
3793 if (err)
3794 return -EINVAL;
3795 if (value < 1)
3796 return -EINVAL;
3797
3798 ksm_advisor_target_scan_time = value;
3799 return count;
3800 }
3801 KSM_ATTR(advisor_target_scan_time);
3802
3803 static struct attribute *ksm_attrs[] = {
3804 &sleep_millisecs_attr.attr,
3805 &pages_to_scan_attr.attr,
3806 &run_attr.attr,
3807 &pages_scanned_attr.attr,
3808 &pages_shared_attr.attr,
3809 &pages_sharing_attr.attr,
3810 &pages_unshared_attr.attr,
3811 &pages_volatile_attr.attr,
3812 &pages_skipped_attr.attr,
3813 &ksm_zero_pages_attr.attr,
3814 &full_scans_attr.attr,
3815 #ifdef CONFIG_NUMA
3816 &merge_across_nodes_attr.attr,
3817 #endif
3818 &max_page_sharing_attr.attr,
3819 &stable_node_chains_attr.attr,
3820 &stable_node_dups_attr.attr,
3821 &stable_node_chains_prune_millisecs_attr.attr,
3822 &use_zero_pages_attr.attr,
3823 &general_profit_attr.attr,
3824 &smart_scan_attr.attr,
3825 &advisor_mode_attr.attr,
3826 &advisor_max_cpu_attr.attr,
3827 &advisor_min_pages_to_scan_attr.attr,
3828 &advisor_max_pages_to_scan_attr.attr,
3829 &advisor_target_scan_time_attr.attr,
3830 NULL,
3831 };
3832
3833 static const struct attribute_group ksm_attr_group = {
3834 .attrs = ksm_attrs,
3835 .name = "ksm",
3836 };
3837 #endif /* CONFIG_SYSFS */
3838
ksm_init(void)3839 static int __init ksm_init(void)
3840 {
3841 struct task_struct *ksm_thread;
3842 int err;
3843
3844 /* The correct value depends on page size and endianness */
3845 zero_checksum = calc_checksum(ZERO_PAGE(0));
3846 /* Default to false for backwards compatibility */
3847 ksm_use_zero_pages = false;
3848
3849 err = ksm_slab_init();
3850 if (err)
3851 goto out;
3852
3853 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3854 if (IS_ERR(ksm_thread)) {
3855 pr_err("ksm: creating kthread failed\n");
3856 err = PTR_ERR(ksm_thread);
3857 goto out_free;
3858 }
3859
3860 #ifdef CONFIG_SYSFS
3861 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3862 if (err) {
3863 pr_err("ksm: register sysfs failed\n");
3864 kthread_stop(ksm_thread);
3865 goto out_free;
3866 }
3867 #else
3868 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3869
3870 #endif /* CONFIG_SYSFS */
3871
3872 #ifdef CONFIG_MEMORY_HOTREMOVE
3873 /* There is no significance to this priority 100 */
3874 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3875 #endif
3876 return 0;
3877
3878 out_free:
3879 ksm_slab_free();
3880 out:
3881 return err;
3882 }
3883 subsys_initcall(ksm_init);
3884