xref: /linux/mm/swap.c (revision c34e9ab9a612ee8b18273398ef75c207b01f516d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40 
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45 
46 /* How many pages do we try to swap or page in/out together? As a power of 2 */
47 int page_cluster;
48 const int page_cluster_max = 31;
49 
50 struct cpu_fbatches {
51 	/*
52 	 * The following folio batches are grouped together because they are protected
53 	 * by disabling preemption (and interrupts remain enabled).
54 	 */
55 	local_lock_t lock;
56 	struct folio_batch lru_add;
57 	struct folio_batch lru_deactivate_file;
58 	struct folio_batch lru_deactivate;
59 	struct folio_batch lru_lazyfree;
60 #ifdef CONFIG_SMP
61 	struct folio_batch lru_activate;
62 #endif
63 	/* Protecting the following batches which require disabling interrupts */
64 	local_lock_t lock_irq;
65 	struct folio_batch lru_move_tail;
66 };
67 
68 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
69 	.lock = INIT_LOCAL_LOCK(lock),
70 	.lock_irq = INIT_LOCAL_LOCK(lock_irq),
71 };
72 
73 static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp,
74 		unsigned long *flagsp)
75 {
76 	if (folio_test_lru(folio)) {
77 		folio_lruvec_relock_irqsave(folio, lruvecp, flagsp);
78 		lruvec_del_folio(*lruvecp, folio);
79 		__folio_clear_lru_flags(folio);
80 	}
81 }
82 
83 /*
84  * This path almost never happens for VM activity - pages are normally freed
85  * in batches.  But it gets used by networking - and for compound pages.
86  */
87 static void page_cache_release(struct folio *folio)
88 {
89 	struct lruvec *lruvec = NULL;
90 	unsigned long flags;
91 
92 	__page_cache_release(folio, &lruvec, &flags);
93 	if (lruvec)
94 		unlock_page_lruvec_irqrestore(lruvec, flags);
95 }
96 
97 void __folio_put(struct folio *folio)
98 {
99 	if (unlikely(folio_is_zone_device(folio))) {
100 		free_zone_device_folio(folio);
101 		return;
102 	}
103 
104 	if (folio_test_hugetlb(folio)) {
105 		free_huge_folio(folio);
106 		return;
107 	}
108 
109 	page_cache_release(folio);
110 	folio_unqueue_deferred_split(folio);
111 	mem_cgroup_uncharge(folio);
112 	free_unref_page(&folio->page, folio_order(folio));
113 }
114 EXPORT_SYMBOL(__folio_put);
115 
116 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
117 
118 static void lru_add(struct lruvec *lruvec, struct folio *folio)
119 {
120 	int was_unevictable = folio_test_clear_unevictable(folio);
121 	long nr_pages = folio_nr_pages(folio);
122 
123 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
124 
125 	/*
126 	 * Is an smp_mb__after_atomic() still required here, before
127 	 * folio_evictable() tests the mlocked flag, to rule out the possibility
128 	 * of stranding an evictable folio on an unevictable LRU?  I think
129 	 * not, because __munlock_folio() only clears the mlocked flag
130 	 * while the LRU lock is held.
131 	 *
132 	 * (That is not true of __page_cache_release(), and not necessarily
133 	 * true of folios_put(): but those only clear the mlocked flag after
134 	 * folio_put_testzero() has excluded any other users of the folio.)
135 	 */
136 	if (folio_evictable(folio)) {
137 		if (was_unevictable)
138 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
139 	} else {
140 		folio_clear_active(folio);
141 		folio_set_unevictable(folio);
142 		/*
143 		 * folio->mlock_count = !!folio_test_mlocked(folio)?
144 		 * But that leaves __mlock_folio() in doubt whether another
145 		 * actor has already counted the mlock or not.  Err on the
146 		 * safe side, underestimate, let page reclaim fix it, rather
147 		 * than leaving a page on the unevictable LRU indefinitely.
148 		 */
149 		folio->mlock_count = 0;
150 		if (!was_unevictable)
151 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
152 	}
153 
154 	lruvec_add_folio(lruvec, folio);
155 	trace_mm_lru_insertion(folio);
156 }
157 
158 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
159 {
160 	int i;
161 	struct lruvec *lruvec = NULL;
162 	unsigned long flags = 0;
163 
164 	for (i = 0; i < folio_batch_count(fbatch); i++) {
165 		struct folio *folio = fbatch->folios[i];
166 
167 		folio_lruvec_relock_irqsave(folio, &lruvec, &flags);
168 		move_fn(lruvec, folio);
169 
170 		folio_set_lru(folio);
171 	}
172 
173 	if (lruvec)
174 		unlock_page_lruvec_irqrestore(lruvec, flags);
175 	folios_put(fbatch);
176 }
177 
178 static void __folio_batch_add_and_move(struct folio_batch __percpu *fbatch,
179 		struct folio *folio, move_fn_t move_fn,
180 		bool on_lru, bool disable_irq)
181 {
182 	unsigned long flags;
183 
184 	if (on_lru && !folio_test_clear_lru(folio))
185 		return;
186 
187 	folio_get(folio);
188 
189 	if (disable_irq)
190 		local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
191 	else
192 		local_lock(&cpu_fbatches.lock);
193 
194 	if (!folio_batch_add(this_cpu_ptr(fbatch), folio) || folio_test_large(folio) ||
195 	    lru_cache_disabled())
196 		folio_batch_move_lru(this_cpu_ptr(fbatch), move_fn);
197 
198 	if (disable_irq)
199 		local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
200 	else
201 		local_unlock(&cpu_fbatches.lock);
202 }
203 
204 #define folio_batch_add_and_move(folio, op, on_lru)						\
205 	__folio_batch_add_and_move(								\
206 		&cpu_fbatches.op,								\
207 		folio,										\
208 		op,										\
209 		on_lru,										\
210 		offsetof(struct cpu_fbatches, op) >= offsetof(struct cpu_fbatches, lock_irq)	\
211 	)
212 
213 static void lru_move_tail(struct lruvec *lruvec, struct folio *folio)
214 {
215 	if (folio_test_unevictable(folio))
216 		return;
217 
218 	lruvec_del_folio(lruvec, folio);
219 	folio_clear_active(folio);
220 	lruvec_add_folio_tail(lruvec, folio);
221 	__count_vm_events(PGROTATED, folio_nr_pages(folio));
222 }
223 
224 /*
225  * Writeback is about to end against a folio which has been marked for
226  * immediate reclaim.  If it still appears to be reclaimable, move it
227  * to the tail of the inactive list.
228  *
229  * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
230  */
231 void folio_rotate_reclaimable(struct folio *folio)
232 {
233 	if (folio_test_locked(folio) || folio_test_dirty(folio) ||
234 	    folio_test_unevictable(folio))
235 		return;
236 
237 	folio_batch_add_and_move(folio, lru_move_tail, true);
238 }
239 
240 void lru_note_cost(struct lruvec *lruvec, bool file,
241 		   unsigned int nr_io, unsigned int nr_rotated)
242 {
243 	unsigned long cost;
244 
245 	/*
246 	 * Reflect the relative cost of incurring IO and spending CPU
247 	 * time on rotations. This doesn't attempt to make a precise
248 	 * comparison, it just says: if reloads are about comparable
249 	 * between the LRU lists, or rotations are overwhelmingly
250 	 * different between them, adjust scan balance for CPU work.
251 	 */
252 	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
253 
254 	do {
255 		unsigned long lrusize;
256 
257 		/*
258 		 * Hold lruvec->lru_lock is safe here, since
259 		 * 1) The pinned lruvec in reclaim, or
260 		 * 2) From a pre-LRU page during refault (which also holds the
261 		 *    rcu lock, so would be safe even if the page was on the LRU
262 		 *    and could move simultaneously to a new lruvec).
263 		 */
264 		spin_lock_irq(&lruvec->lru_lock);
265 		/* Record cost event */
266 		if (file)
267 			lruvec->file_cost += cost;
268 		else
269 			lruvec->anon_cost += cost;
270 
271 		/*
272 		 * Decay previous events
273 		 *
274 		 * Because workloads change over time (and to avoid
275 		 * overflow) we keep these statistics as a floating
276 		 * average, which ends up weighing recent refaults
277 		 * more than old ones.
278 		 */
279 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
280 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
281 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
282 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
283 
284 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
285 			lruvec->file_cost /= 2;
286 			lruvec->anon_cost /= 2;
287 		}
288 		spin_unlock_irq(&lruvec->lru_lock);
289 	} while ((lruvec = parent_lruvec(lruvec)));
290 }
291 
292 void lru_note_cost_refault(struct folio *folio)
293 {
294 	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
295 		      folio_nr_pages(folio), 0);
296 }
297 
298 static void lru_activate(struct lruvec *lruvec, struct folio *folio)
299 {
300 	long nr_pages = folio_nr_pages(folio);
301 
302 	if (folio_test_active(folio) || folio_test_unevictable(folio))
303 		return;
304 
305 
306 	lruvec_del_folio(lruvec, folio);
307 	folio_set_active(folio);
308 	lruvec_add_folio(lruvec, folio);
309 	trace_mm_lru_activate(folio);
310 
311 	__count_vm_events(PGACTIVATE, nr_pages);
312 	__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages);
313 }
314 
315 #ifdef CONFIG_SMP
316 static void folio_activate_drain(int cpu)
317 {
318 	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.lru_activate, cpu);
319 
320 	if (folio_batch_count(fbatch))
321 		folio_batch_move_lru(fbatch, lru_activate);
322 }
323 
324 void folio_activate(struct folio *folio)
325 {
326 	if (folio_test_active(folio) || folio_test_unevictable(folio))
327 		return;
328 
329 	folio_batch_add_and_move(folio, lru_activate, true);
330 }
331 
332 #else
333 static inline void folio_activate_drain(int cpu)
334 {
335 }
336 
337 void folio_activate(struct folio *folio)
338 {
339 	struct lruvec *lruvec;
340 
341 	if (!folio_test_clear_lru(folio))
342 		return;
343 
344 	lruvec = folio_lruvec_lock_irq(folio);
345 	lru_activate(lruvec, folio);
346 	unlock_page_lruvec_irq(lruvec);
347 	folio_set_lru(folio);
348 }
349 #endif
350 
351 static void __lru_cache_activate_folio(struct folio *folio)
352 {
353 	struct folio_batch *fbatch;
354 	int i;
355 
356 	local_lock(&cpu_fbatches.lock);
357 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
358 
359 	/*
360 	 * Search backwards on the optimistic assumption that the folio being
361 	 * activated has just been added to this batch. Note that only
362 	 * the local batch is examined as a !LRU folio could be in the
363 	 * process of being released, reclaimed, migrated or on a remote
364 	 * batch that is currently being drained. Furthermore, marking
365 	 * a remote batch's folio active potentially hits a race where
366 	 * a folio is marked active just after it is added to the inactive
367 	 * list causing accounting errors and BUG_ON checks to trigger.
368 	 */
369 	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
370 		struct folio *batch_folio = fbatch->folios[i];
371 
372 		if (batch_folio == folio) {
373 			folio_set_active(folio);
374 			break;
375 		}
376 	}
377 
378 	local_unlock(&cpu_fbatches.lock);
379 }
380 
381 #ifdef CONFIG_LRU_GEN
382 static void folio_inc_refs(struct folio *folio)
383 {
384 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
385 
386 	if (folio_test_unevictable(folio))
387 		return;
388 
389 	if (!folio_test_referenced(folio)) {
390 		folio_set_referenced(folio);
391 		return;
392 	}
393 
394 	if (!folio_test_workingset(folio)) {
395 		folio_set_workingset(folio);
396 		return;
397 	}
398 
399 	/* see the comment on MAX_NR_TIERS */
400 	do {
401 		new_flags = old_flags & LRU_REFS_MASK;
402 		if (new_flags == LRU_REFS_MASK)
403 			break;
404 
405 		new_flags += BIT(LRU_REFS_PGOFF);
406 		new_flags |= old_flags & ~LRU_REFS_MASK;
407 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
408 }
409 #else
410 static void folio_inc_refs(struct folio *folio)
411 {
412 }
413 #endif /* CONFIG_LRU_GEN */
414 
415 /**
416  * folio_mark_accessed - Mark a folio as having seen activity.
417  * @folio: The folio to mark.
418  *
419  * This function will perform one of the following transitions:
420  *
421  * * inactive,unreferenced	->	inactive,referenced
422  * * inactive,referenced	->	active,unreferenced
423  * * active,unreferenced	->	active,referenced
424  *
425  * When a newly allocated folio is not yet visible, so safe for non-atomic ops,
426  * __folio_set_referenced() may be substituted for folio_mark_accessed().
427  */
428 void folio_mark_accessed(struct folio *folio)
429 {
430 	if (lru_gen_enabled()) {
431 		folio_inc_refs(folio);
432 		return;
433 	}
434 
435 	if (!folio_test_referenced(folio)) {
436 		folio_set_referenced(folio);
437 	} else if (folio_test_unevictable(folio)) {
438 		/*
439 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
440 		 * this list is never rotated or maintained, so marking an
441 		 * unevictable page accessed has no effect.
442 		 */
443 	} else if (!folio_test_active(folio)) {
444 		/*
445 		 * If the folio is on the LRU, queue it for activation via
446 		 * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a
447 		 * folio_batch, mark it active and it'll be moved to the active
448 		 * LRU on the next drain.
449 		 */
450 		if (folio_test_lru(folio))
451 			folio_activate(folio);
452 		else
453 			__lru_cache_activate_folio(folio);
454 		folio_clear_referenced(folio);
455 		workingset_activation(folio);
456 	}
457 	if (folio_test_idle(folio))
458 		folio_clear_idle(folio);
459 }
460 EXPORT_SYMBOL(folio_mark_accessed);
461 
462 /**
463  * folio_add_lru - Add a folio to an LRU list.
464  * @folio: The folio to be added to the LRU.
465  *
466  * Queue the folio for addition to the LRU. The decision on whether
467  * to add the page to the [in]active [file|anon] list is deferred until the
468  * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
469  * have the folio added to the active list using folio_mark_accessed().
470  */
471 void folio_add_lru(struct folio *folio)
472 {
473 	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
474 			folio_test_unevictable(folio), folio);
475 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
476 
477 	/* see the comment in lru_gen_add_folio() */
478 	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
479 	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
480 		folio_set_active(folio);
481 
482 	folio_batch_add_and_move(folio, lru_add, false);
483 }
484 EXPORT_SYMBOL(folio_add_lru);
485 
486 /**
487  * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
488  * @folio: The folio to be added to the LRU.
489  * @vma: VMA in which the folio is mapped.
490  *
491  * If the VMA is mlocked, @folio is added to the unevictable list.
492  * Otherwise, it is treated the same way as folio_add_lru().
493  */
494 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
495 {
496 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
497 
498 	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
499 		mlock_new_folio(folio);
500 	else
501 		folio_add_lru(folio);
502 }
503 
504 /*
505  * If the folio cannot be invalidated, it is moved to the
506  * inactive list to speed up its reclaim.  It is moved to the
507  * head of the list, rather than the tail, to give the flusher
508  * threads some time to write it out, as this is much more
509  * effective than the single-page writeout from reclaim.
510  *
511  * If the folio isn't mapped and dirty/writeback, the folio
512  * could be reclaimed asap using the reclaim flag.
513  *
514  * 1. active, mapped folio -> none
515  * 2. active, dirty/writeback folio -> inactive, head, reclaim
516  * 3. inactive, mapped folio -> none
517  * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
518  * 5. inactive, clean -> inactive, tail
519  * 6. Others -> none
520  *
521  * In 4, it moves to the head of the inactive list so the folio is
522  * written out by flusher threads as this is much more efficient
523  * than the single-page writeout from reclaim.
524  */
525 static void lru_deactivate_file(struct lruvec *lruvec, struct folio *folio)
526 {
527 	bool active = folio_test_active(folio);
528 	long nr_pages = folio_nr_pages(folio);
529 
530 	if (folio_test_unevictable(folio))
531 		return;
532 
533 	/* Some processes are using the folio */
534 	if (folio_mapped(folio))
535 		return;
536 
537 	lruvec_del_folio(lruvec, folio);
538 	folio_clear_active(folio);
539 	folio_clear_referenced(folio);
540 
541 	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
542 		/*
543 		 * Setting the reclaim flag could race with
544 		 * folio_end_writeback() and confuse readahead.  But the
545 		 * race window is _really_ small and  it's not a critical
546 		 * problem.
547 		 */
548 		lruvec_add_folio(lruvec, folio);
549 		folio_set_reclaim(folio);
550 	} else {
551 		/*
552 		 * The folio's writeback ended while it was in the batch.
553 		 * We move that folio to the tail of the inactive list.
554 		 */
555 		lruvec_add_folio_tail(lruvec, folio);
556 		__count_vm_events(PGROTATED, nr_pages);
557 	}
558 
559 	if (active) {
560 		__count_vm_events(PGDEACTIVATE, nr_pages);
561 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
562 				     nr_pages);
563 	}
564 }
565 
566 static void lru_deactivate(struct lruvec *lruvec, struct folio *folio)
567 {
568 	long nr_pages = folio_nr_pages(folio);
569 
570 	if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled()))
571 		return;
572 
573 	lruvec_del_folio(lruvec, folio);
574 	folio_clear_active(folio);
575 	folio_clear_referenced(folio);
576 	lruvec_add_folio(lruvec, folio);
577 
578 	__count_vm_events(PGDEACTIVATE, nr_pages);
579 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages);
580 }
581 
582 static void lru_lazyfree(struct lruvec *lruvec, struct folio *folio)
583 {
584 	long nr_pages = folio_nr_pages(folio);
585 
586 	if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
587 	    folio_test_swapcache(folio) || folio_test_unevictable(folio))
588 		return;
589 
590 	lruvec_del_folio(lruvec, folio);
591 	folio_clear_active(folio);
592 	folio_clear_referenced(folio);
593 	/*
594 	 * Lazyfree folios are clean anonymous folios.  They have
595 	 * the swapbacked flag cleared, to distinguish them from normal
596 	 * anonymous folios
597 	 */
598 	folio_clear_swapbacked(folio);
599 	lruvec_add_folio(lruvec, folio);
600 
601 	__count_vm_events(PGLAZYFREE, nr_pages);
602 	__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages);
603 }
604 
605 /*
606  * Drain pages out of the cpu's folio_batch.
607  * Either "cpu" is the current CPU, and preemption has already been
608  * disabled; or "cpu" is being hot-unplugged, and is already dead.
609  */
610 void lru_add_drain_cpu(int cpu)
611 {
612 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
613 	struct folio_batch *fbatch = &fbatches->lru_add;
614 
615 	if (folio_batch_count(fbatch))
616 		folio_batch_move_lru(fbatch, lru_add);
617 
618 	fbatch = &fbatches->lru_move_tail;
619 	/* Disabling interrupts below acts as a compiler barrier. */
620 	if (data_race(folio_batch_count(fbatch))) {
621 		unsigned long flags;
622 
623 		/* No harm done if a racing interrupt already did this */
624 		local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
625 		folio_batch_move_lru(fbatch, lru_move_tail);
626 		local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
627 	}
628 
629 	fbatch = &fbatches->lru_deactivate_file;
630 	if (folio_batch_count(fbatch))
631 		folio_batch_move_lru(fbatch, lru_deactivate_file);
632 
633 	fbatch = &fbatches->lru_deactivate;
634 	if (folio_batch_count(fbatch))
635 		folio_batch_move_lru(fbatch, lru_deactivate);
636 
637 	fbatch = &fbatches->lru_lazyfree;
638 	if (folio_batch_count(fbatch))
639 		folio_batch_move_lru(fbatch, lru_lazyfree);
640 
641 	folio_activate_drain(cpu);
642 }
643 
644 /**
645  * deactivate_file_folio() - Deactivate a file folio.
646  * @folio: Folio to deactivate.
647  *
648  * This function hints to the VM that @folio is a good reclaim candidate,
649  * for example if its invalidation fails due to the folio being dirty
650  * or under writeback.
651  *
652  * Context: Caller holds a reference on the folio.
653  */
654 void deactivate_file_folio(struct folio *folio)
655 {
656 	/* Deactivating an unevictable folio will not accelerate reclaim */
657 	if (folio_test_unevictable(folio))
658 		return;
659 
660 	folio_batch_add_and_move(folio, lru_deactivate_file, true);
661 }
662 
663 /*
664  * folio_deactivate - deactivate a folio
665  * @folio: folio to deactivate
666  *
667  * folio_deactivate() moves @folio to the inactive list if @folio was on the
668  * active list and was not unevictable. This is done to accelerate the
669  * reclaim of @folio.
670  */
671 void folio_deactivate(struct folio *folio)
672 {
673 	if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled()))
674 		return;
675 
676 	folio_batch_add_and_move(folio, lru_deactivate, true);
677 }
678 
679 /**
680  * folio_mark_lazyfree - make an anon folio lazyfree
681  * @folio: folio to deactivate
682  *
683  * folio_mark_lazyfree() moves @folio to the inactive file list.
684  * This is done to accelerate the reclaim of @folio.
685  */
686 void folio_mark_lazyfree(struct folio *folio)
687 {
688 	if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
689 	    folio_test_swapcache(folio) || folio_test_unevictable(folio))
690 		return;
691 
692 	folio_batch_add_and_move(folio, lru_lazyfree, true);
693 }
694 
695 void lru_add_drain(void)
696 {
697 	local_lock(&cpu_fbatches.lock);
698 	lru_add_drain_cpu(smp_processor_id());
699 	local_unlock(&cpu_fbatches.lock);
700 	mlock_drain_local();
701 }
702 
703 /*
704  * It's called from per-cpu workqueue context in SMP case so
705  * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
706  * the same cpu. It shouldn't be a problem in !SMP case since
707  * the core is only one and the locks will disable preemption.
708  */
709 static void lru_add_and_bh_lrus_drain(void)
710 {
711 	local_lock(&cpu_fbatches.lock);
712 	lru_add_drain_cpu(smp_processor_id());
713 	local_unlock(&cpu_fbatches.lock);
714 	invalidate_bh_lrus_cpu();
715 	mlock_drain_local();
716 }
717 
718 void lru_add_drain_cpu_zone(struct zone *zone)
719 {
720 	local_lock(&cpu_fbatches.lock);
721 	lru_add_drain_cpu(smp_processor_id());
722 	drain_local_pages(zone);
723 	local_unlock(&cpu_fbatches.lock);
724 	mlock_drain_local();
725 }
726 
727 #ifdef CONFIG_SMP
728 
729 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
730 
731 static void lru_add_drain_per_cpu(struct work_struct *dummy)
732 {
733 	lru_add_and_bh_lrus_drain();
734 }
735 
736 static bool cpu_needs_drain(unsigned int cpu)
737 {
738 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
739 
740 	/* Check these in order of likelihood that they're not zero */
741 	return folio_batch_count(&fbatches->lru_add) ||
742 		folio_batch_count(&fbatches->lru_move_tail) ||
743 		folio_batch_count(&fbatches->lru_deactivate_file) ||
744 		folio_batch_count(&fbatches->lru_deactivate) ||
745 		folio_batch_count(&fbatches->lru_lazyfree) ||
746 		folio_batch_count(&fbatches->lru_activate) ||
747 		need_mlock_drain(cpu) ||
748 		has_bh_in_lru(cpu, NULL);
749 }
750 
751 /*
752  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
753  * kworkers being shut down before our page_alloc_cpu_dead callback is
754  * executed on the offlined cpu.
755  * Calling this function with cpu hotplug locks held can actually lead
756  * to obscure indirect dependencies via WQ context.
757  */
758 static inline void __lru_add_drain_all(bool force_all_cpus)
759 {
760 	/*
761 	 * lru_drain_gen - Global pages generation number
762 	 *
763 	 * (A) Definition: global lru_drain_gen = x implies that all generations
764 	 *     0 < n <= x are already *scheduled* for draining.
765 	 *
766 	 * This is an optimization for the highly-contended use case where a
767 	 * user space workload keeps constantly generating a flow of pages for
768 	 * each CPU.
769 	 */
770 	static unsigned int lru_drain_gen;
771 	static struct cpumask has_work;
772 	static DEFINE_MUTEX(lock);
773 	unsigned cpu, this_gen;
774 
775 	/*
776 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
777 	 * initialized.
778 	 */
779 	if (WARN_ON(!mm_percpu_wq))
780 		return;
781 
782 	/*
783 	 * Guarantee folio_batch counter stores visible by this CPU
784 	 * are visible to other CPUs before loading the current drain
785 	 * generation.
786 	 */
787 	smp_mb();
788 
789 	/*
790 	 * (B) Locally cache global LRU draining generation number
791 	 *
792 	 * The read barrier ensures that the counter is loaded before the mutex
793 	 * is taken. It pairs with smp_mb() inside the mutex critical section
794 	 * at (D).
795 	 */
796 	this_gen = smp_load_acquire(&lru_drain_gen);
797 
798 	mutex_lock(&lock);
799 
800 	/*
801 	 * (C) Exit the draining operation if a newer generation, from another
802 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
803 	 */
804 	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
805 		goto done;
806 
807 	/*
808 	 * (D) Increment global generation number
809 	 *
810 	 * Pairs with smp_load_acquire() at (B), outside of the critical
811 	 * section. Use a full memory barrier to guarantee that the
812 	 * new global drain generation number is stored before loading
813 	 * folio_batch counters.
814 	 *
815 	 * This pairing must be done here, before the for_each_online_cpu loop
816 	 * below which drains the page vectors.
817 	 *
818 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
819 	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
820 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
821 	 * along, adds some pages to its per-cpu vectors, then calls
822 	 * lru_add_drain_all().
823 	 *
824 	 * If the paired barrier is done at any later step, e.g. after the
825 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
826 	 * added pages.
827 	 */
828 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
829 	smp_mb();
830 
831 	cpumask_clear(&has_work);
832 	for_each_online_cpu(cpu) {
833 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
834 
835 		if (cpu_needs_drain(cpu)) {
836 			INIT_WORK(work, lru_add_drain_per_cpu);
837 			queue_work_on(cpu, mm_percpu_wq, work);
838 			__cpumask_set_cpu(cpu, &has_work);
839 		}
840 	}
841 
842 	for_each_cpu(cpu, &has_work)
843 		flush_work(&per_cpu(lru_add_drain_work, cpu));
844 
845 done:
846 	mutex_unlock(&lock);
847 }
848 
849 void lru_add_drain_all(void)
850 {
851 	__lru_add_drain_all(false);
852 }
853 #else
854 void lru_add_drain_all(void)
855 {
856 	lru_add_drain();
857 }
858 #endif /* CONFIG_SMP */
859 
860 atomic_t lru_disable_count = ATOMIC_INIT(0);
861 
862 /*
863  * lru_cache_disable() needs to be called before we start compiling
864  * a list of folios to be migrated using folio_isolate_lru().
865  * It drains folios on LRU cache and then disable on all cpus until
866  * lru_cache_enable is called.
867  *
868  * Must be paired with a call to lru_cache_enable().
869  */
870 void lru_cache_disable(void)
871 {
872 	atomic_inc(&lru_disable_count);
873 	/*
874 	 * Readers of lru_disable_count are protected by either disabling
875 	 * preemption or rcu_read_lock:
876 	 *
877 	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
878 	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
879 	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
880 	 *
881 	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
882 	 * preempt_disable() regions of code. So any CPU which sees
883 	 * lru_disable_count = 0 will have exited the critical
884 	 * section when synchronize_rcu() returns.
885 	 */
886 	synchronize_rcu_expedited();
887 #ifdef CONFIG_SMP
888 	__lru_add_drain_all(true);
889 #else
890 	lru_add_and_bh_lrus_drain();
891 #endif
892 }
893 
894 /**
895  * folios_put_refs - Reduce the reference count on a batch of folios.
896  * @folios: The folios.
897  * @refs: The number of refs to subtract from each folio.
898  *
899  * Like folio_put(), but for a batch of folios.  This is more efficient
900  * than writing the loop yourself as it will optimise the locks which need
901  * to be taken if the folios are freed.  The folios batch is returned
902  * empty and ready to be reused for another batch; there is no need
903  * to reinitialise it.  If @refs is NULL, we subtract one from each
904  * folio refcount.
905  *
906  * Context: May be called in process or interrupt context, but not in NMI
907  * context.  May be called while holding a spinlock.
908  */
909 void folios_put_refs(struct folio_batch *folios, unsigned int *refs)
910 {
911 	int i, j;
912 	struct lruvec *lruvec = NULL;
913 	unsigned long flags = 0;
914 
915 	for (i = 0, j = 0; i < folios->nr; i++) {
916 		struct folio *folio = folios->folios[i];
917 		unsigned int nr_refs = refs ? refs[i] : 1;
918 
919 		if (is_huge_zero_folio(folio))
920 			continue;
921 
922 		if (folio_is_zone_device(folio)) {
923 			if (lruvec) {
924 				unlock_page_lruvec_irqrestore(lruvec, flags);
925 				lruvec = NULL;
926 			}
927 			if (put_devmap_managed_folio_refs(folio, nr_refs))
928 				continue;
929 			if (folio_ref_sub_and_test(folio, nr_refs))
930 				free_zone_device_folio(folio);
931 			continue;
932 		}
933 
934 		if (!folio_ref_sub_and_test(folio, nr_refs))
935 			continue;
936 
937 		/* hugetlb has its own memcg */
938 		if (folio_test_hugetlb(folio)) {
939 			if (lruvec) {
940 				unlock_page_lruvec_irqrestore(lruvec, flags);
941 				lruvec = NULL;
942 			}
943 			free_huge_folio(folio);
944 			continue;
945 		}
946 		folio_unqueue_deferred_split(folio);
947 		__page_cache_release(folio, &lruvec, &flags);
948 
949 		if (j != i)
950 			folios->folios[j] = folio;
951 		j++;
952 	}
953 	if (lruvec)
954 		unlock_page_lruvec_irqrestore(lruvec, flags);
955 	if (!j) {
956 		folio_batch_reinit(folios);
957 		return;
958 	}
959 
960 	folios->nr = j;
961 	mem_cgroup_uncharge_folios(folios);
962 	free_unref_folios(folios);
963 }
964 EXPORT_SYMBOL(folios_put_refs);
965 
966 /**
967  * release_pages - batched put_page()
968  * @arg: array of pages to release
969  * @nr: number of pages
970  *
971  * Decrement the reference count on all the pages in @arg.  If it
972  * fell to zero, remove the page from the LRU and free it.
973  *
974  * Note that the argument can be an array of pages, encoded pages,
975  * or folio pointers. We ignore any encoded bits, and turn any of
976  * them into just a folio that gets free'd.
977  */
978 void release_pages(release_pages_arg arg, int nr)
979 {
980 	struct folio_batch fbatch;
981 	int refs[PAGEVEC_SIZE];
982 	struct encoded_page **encoded = arg.encoded_pages;
983 	int i;
984 
985 	folio_batch_init(&fbatch);
986 	for (i = 0; i < nr; i++) {
987 		/* Turn any of the argument types into a folio */
988 		struct folio *folio = page_folio(encoded_page_ptr(encoded[i]));
989 
990 		/* Is our next entry actually "nr_pages" -> "nr_refs" ? */
991 		refs[fbatch.nr] = 1;
992 		if (unlikely(encoded_page_flags(encoded[i]) &
993 			     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
994 			refs[fbatch.nr] = encoded_nr_pages(encoded[++i]);
995 
996 		if (folio_batch_add(&fbatch, folio) > 0)
997 			continue;
998 		folios_put_refs(&fbatch, refs);
999 	}
1000 
1001 	if (fbatch.nr)
1002 		folios_put_refs(&fbatch, refs);
1003 }
1004 EXPORT_SYMBOL(release_pages);
1005 
1006 /*
1007  * The folios which we're about to release may be in the deferred lru-addition
1008  * queues.  That would prevent them from really being freed right now.  That's
1009  * OK from a correctness point of view but is inefficient - those folios may be
1010  * cache-warm and we want to give them back to the page allocator ASAP.
1011  *
1012  * So __folio_batch_release() will drain those queues here.
1013  * folio_batch_move_lru() calls folios_put() directly to avoid
1014  * mutual recursion.
1015  */
1016 void __folio_batch_release(struct folio_batch *fbatch)
1017 {
1018 	if (!fbatch->percpu_pvec_drained) {
1019 		lru_add_drain();
1020 		fbatch->percpu_pvec_drained = true;
1021 	}
1022 	folios_put(fbatch);
1023 }
1024 EXPORT_SYMBOL(__folio_batch_release);
1025 
1026 /**
1027  * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1028  * @fbatch: The batch to prune
1029  *
1030  * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1031  * entries.  This function prunes all the non-folio entries from @fbatch
1032  * without leaving holes, so that it can be passed on to folio-only batch
1033  * operations.
1034  */
1035 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1036 {
1037 	unsigned int i, j;
1038 
1039 	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1040 		struct folio *folio = fbatch->folios[i];
1041 		if (!xa_is_value(folio))
1042 			fbatch->folios[j++] = folio;
1043 	}
1044 	fbatch->nr = j;
1045 }
1046 
1047 /*
1048  * Perform any setup for the swap system
1049  */
1050 void __init swap_setup(void)
1051 {
1052 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1053 
1054 	/* Use a smaller cluster for small-memory machines */
1055 	if (megs < 16)
1056 		page_cluster = 2;
1057 	else
1058 		page_cluster = 3;
1059 	/*
1060 	 * Right now other parts of the system means that we
1061 	 * _really_ don't want to cluster much more
1062 	 */
1063 }
1064