1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * folio_lock
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28 * vma_start_write
29 * mapping->i_mmap_rwsem
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in block_dirty_folio)
35 * i_pages lock (widely used)
36 * lruvec->lru_lock (in folio_lruvec_lock_irq)
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
40 * i_pages lock (widely used, in set_page_dirty,
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
43 *
44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
45 * ->tasklist_lock
46 * pte map lock
47 *
48 * hugetlbfs PageHuge() take locks in this order:
49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50 * vma_lock (hugetlb specific lock for pmd_sharing)
51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52 * folio_lock
53 */
54
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77 #include <linux/oom.h>
78
79 #include <asm/tlbflush.h>
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/migrate.h>
83
84 #include "internal.h"
85
86 static struct kmem_cache *anon_vma_cachep;
87 static struct kmem_cache *anon_vma_chain_cachep;
88
anon_vma_alloc(void)89 static inline struct anon_vma *anon_vma_alloc(void)
90 {
91 struct anon_vma *anon_vma;
92
93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 if (anon_vma) {
95 atomic_set(&anon_vma->refcount, 1);
96 anon_vma->num_children = 0;
97 anon_vma->num_active_vmas = 0;
98 anon_vma->parent = anon_vma;
99 /*
100 * Initialise the anon_vma root to point to itself. If called
101 * from fork, the root will be reset to the parents anon_vma.
102 */
103 anon_vma->root = anon_vma;
104 }
105
106 return anon_vma;
107 }
108
anon_vma_free(struct anon_vma * anon_vma)109 static inline void anon_vma_free(struct anon_vma *anon_vma)
110 {
111 VM_BUG_ON(atomic_read(&anon_vma->refcount));
112
113 /*
114 * Synchronize against folio_lock_anon_vma_read() such that
115 * we can safely hold the lock without the anon_vma getting
116 * freed.
117 *
118 * Relies on the full mb implied by the atomic_dec_and_test() from
119 * put_anon_vma() against the acquire barrier implied by
120 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
121 *
122 * folio_lock_anon_vma_read() VS put_anon_vma()
123 * down_read_trylock() atomic_dec_and_test()
124 * LOCK MB
125 * atomic_read() rwsem_is_locked()
126 *
127 * LOCK should suffice since the actual taking of the lock must
128 * happen _before_ what follows.
129 */
130 might_sleep();
131 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
132 anon_vma_lock_write(anon_vma);
133 anon_vma_unlock_write(anon_vma);
134 }
135
136 kmem_cache_free(anon_vma_cachep, anon_vma);
137 }
138
anon_vma_chain_alloc(gfp_t gfp)139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
140 {
141 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
142 }
143
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
145 {
146 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
147 }
148
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)149 static void anon_vma_chain_link(struct vm_area_struct *vma,
150 struct anon_vma_chain *avc,
151 struct anon_vma *anon_vma)
152 {
153 avc->vma = vma;
154 avc->anon_vma = anon_vma;
155 list_add(&avc->same_vma, &vma->anon_vma_chain);
156 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
157 }
158
159 /**
160 * __anon_vma_prepare - attach an anon_vma to a memory region
161 * @vma: the memory region in question
162 *
163 * This makes sure the memory mapping described by 'vma' has
164 * an 'anon_vma' attached to it, so that we can associate the
165 * anonymous pages mapped into it with that anon_vma.
166 *
167 * The common case will be that we already have one, which
168 * is handled inline by anon_vma_prepare(). But if
169 * not we either need to find an adjacent mapping that we
170 * can re-use the anon_vma from (very common when the only
171 * reason for splitting a vma has been mprotect()), or we
172 * allocate a new one.
173 *
174 * Anon-vma allocations are very subtle, because we may have
175 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
176 * and that may actually touch the rwsem even in the newly
177 * allocated vma (it depends on RCU to make sure that the
178 * anon_vma isn't actually destroyed).
179 *
180 * As a result, we need to do proper anon_vma locking even
181 * for the new allocation. At the same time, we do not want
182 * to do any locking for the common case of already having
183 * an anon_vma.
184 */
__anon_vma_prepare(struct vm_area_struct * vma)185 int __anon_vma_prepare(struct vm_area_struct *vma)
186 {
187 struct mm_struct *mm = vma->vm_mm;
188 struct anon_vma *anon_vma, *allocated;
189 struct anon_vma_chain *avc;
190
191 mmap_assert_locked(mm);
192 might_sleep();
193
194 avc = anon_vma_chain_alloc(GFP_KERNEL);
195 if (!avc)
196 goto out_enomem;
197
198 anon_vma = find_mergeable_anon_vma(vma);
199 allocated = NULL;
200 if (!anon_vma) {
201 anon_vma = anon_vma_alloc();
202 if (unlikely(!anon_vma))
203 goto out_enomem_free_avc;
204 anon_vma->num_children++; /* self-parent link for new root */
205 allocated = anon_vma;
206 }
207
208 anon_vma_lock_write(anon_vma);
209 /* page_table_lock to protect against threads */
210 spin_lock(&mm->page_table_lock);
211 if (likely(!vma->anon_vma)) {
212 vma->anon_vma = anon_vma;
213 anon_vma_chain_link(vma, avc, anon_vma);
214 anon_vma->num_active_vmas++;
215 allocated = NULL;
216 avc = NULL;
217 }
218 spin_unlock(&mm->page_table_lock);
219 anon_vma_unlock_write(anon_vma);
220
221 if (unlikely(allocated))
222 put_anon_vma(allocated);
223 if (unlikely(avc))
224 anon_vma_chain_free(avc);
225
226 return 0;
227
228 out_enomem_free_avc:
229 anon_vma_chain_free(avc);
230 out_enomem:
231 return -ENOMEM;
232 }
233
234 /*
235 * This is a useful helper function for locking the anon_vma root as
236 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
237 * have the same vma.
238 *
239 * Such anon_vma's should have the same root, so you'd expect to see
240 * just a single mutex_lock for the whole traversal.
241 */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)242 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
243 {
244 struct anon_vma *new_root = anon_vma->root;
245 if (new_root != root) {
246 if (WARN_ON_ONCE(root))
247 up_write(&root->rwsem);
248 root = new_root;
249 down_write(&root->rwsem);
250 }
251 return root;
252 }
253
unlock_anon_vma_root(struct anon_vma * root)254 static inline void unlock_anon_vma_root(struct anon_vma *root)
255 {
256 if (root)
257 up_write(&root->rwsem);
258 }
259
260 /*
261 * Attach the anon_vmas from src to dst.
262 * Returns 0 on success, -ENOMEM on failure.
263 *
264 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
265 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
266 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
267 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
268 * call, we can identify this case by checking (!dst->anon_vma &&
269 * src->anon_vma).
270 *
271 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
272 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
273 * This prevents degradation of anon_vma hierarchy to endless linear chain in
274 * case of constantly forking task. On the other hand, an anon_vma with more
275 * than one child isn't reused even if there was no alive vma, thus rmap
276 * walker has a good chance of avoiding scanning the whole hierarchy when it
277 * searches where page is mapped.
278 */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)279 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
280 {
281 struct anon_vma_chain *avc, *pavc;
282 struct anon_vma *root = NULL;
283
284 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
285 struct anon_vma *anon_vma;
286
287 avc = anon_vma_chain_alloc(GFP_NOWAIT);
288 if (unlikely(!avc)) {
289 unlock_anon_vma_root(root);
290 root = NULL;
291 avc = anon_vma_chain_alloc(GFP_KERNEL);
292 if (!avc)
293 goto enomem_failure;
294 }
295 anon_vma = pavc->anon_vma;
296 root = lock_anon_vma_root(root, anon_vma);
297 anon_vma_chain_link(dst, avc, anon_vma);
298
299 /*
300 * Reuse existing anon_vma if it has no vma and only one
301 * anon_vma child.
302 *
303 * Root anon_vma is never reused:
304 * it has self-parent reference and at least one child.
305 */
306 if (!dst->anon_vma && src->anon_vma &&
307 anon_vma->num_children < 2 &&
308 anon_vma->num_active_vmas == 0)
309 dst->anon_vma = anon_vma;
310 }
311 if (dst->anon_vma)
312 dst->anon_vma->num_active_vmas++;
313 unlock_anon_vma_root(root);
314 return 0;
315
316 enomem_failure:
317 /*
318 * dst->anon_vma is dropped here otherwise its num_active_vmas can
319 * be incorrectly decremented in unlink_anon_vmas().
320 * We can safely do this because callers of anon_vma_clone() don't care
321 * about dst->anon_vma if anon_vma_clone() failed.
322 */
323 dst->anon_vma = NULL;
324 unlink_anon_vmas(dst);
325 return -ENOMEM;
326 }
327
328 /*
329 * Attach vma to its own anon_vma, as well as to the anon_vmas that
330 * the corresponding VMA in the parent process is attached to.
331 * Returns 0 on success, non-zero on failure.
332 */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)333 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
334 {
335 struct anon_vma_chain *avc;
336 struct anon_vma *anon_vma;
337 int error;
338
339 /* Don't bother if the parent process has no anon_vma here. */
340 if (!pvma->anon_vma)
341 return 0;
342
343 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
344 vma->anon_vma = NULL;
345
346 /*
347 * First, attach the new VMA to the parent VMA's anon_vmas,
348 * so rmap can find non-COWed pages in child processes.
349 */
350 error = anon_vma_clone(vma, pvma);
351 if (error)
352 return error;
353
354 /* An existing anon_vma has been reused, all done then. */
355 if (vma->anon_vma)
356 return 0;
357
358 /* Then add our own anon_vma. */
359 anon_vma = anon_vma_alloc();
360 if (!anon_vma)
361 goto out_error;
362 anon_vma->num_active_vmas++;
363 avc = anon_vma_chain_alloc(GFP_KERNEL);
364 if (!avc)
365 goto out_error_free_anon_vma;
366
367 /*
368 * The root anon_vma's rwsem is the lock actually used when we
369 * lock any of the anon_vmas in this anon_vma tree.
370 */
371 anon_vma->root = pvma->anon_vma->root;
372 anon_vma->parent = pvma->anon_vma;
373 /*
374 * With refcounts, an anon_vma can stay around longer than the
375 * process it belongs to. The root anon_vma needs to be pinned until
376 * this anon_vma is freed, because the lock lives in the root.
377 */
378 get_anon_vma(anon_vma->root);
379 /* Mark this anon_vma as the one where our new (COWed) pages go. */
380 vma->anon_vma = anon_vma;
381 anon_vma_lock_write(anon_vma);
382 anon_vma_chain_link(vma, avc, anon_vma);
383 anon_vma->parent->num_children++;
384 anon_vma_unlock_write(anon_vma);
385
386 return 0;
387
388 out_error_free_anon_vma:
389 put_anon_vma(anon_vma);
390 out_error:
391 unlink_anon_vmas(vma);
392 return -ENOMEM;
393 }
394
unlink_anon_vmas(struct vm_area_struct * vma)395 void unlink_anon_vmas(struct vm_area_struct *vma)
396 {
397 struct anon_vma_chain *avc, *next;
398 struct anon_vma *root = NULL;
399
400 /*
401 * Unlink each anon_vma chained to the VMA. This list is ordered
402 * from newest to oldest, ensuring the root anon_vma gets freed last.
403 */
404 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
405 struct anon_vma *anon_vma = avc->anon_vma;
406
407 root = lock_anon_vma_root(root, anon_vma);
408 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
409
410 /*
411 * Leave empty anon_vmas on the list - we'll need
412 * to free them outside the lock.
413 */
414 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
415 anon_vma->parent->num_children--;
416 continue;
417 }
418
419 list_del(&avc->same_vma);
420 anon_vma_chain_free(avc);
421 }
422 if (vma->anon_vma) {
423 vma->anon_vma->num_active_vmas--;
424
425 /*
426 * vma would still be needed after unlink, and anon_vma will be prepared
427 * when handle fault.
428 */
429 vma->anon_vma = NULL;
430 }
431 unlock_anon_vma_root(root);
432
433 /*
434 * Iterate the list once more, it now only contains empty and unlinked
435 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
436 * needing to write-acquire the anon_vma->root->rwsem.
437 */
438 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
439 struct anon_vma *anon_vma = avc->anon_vma;
440
441 VM_WARN_ON(anon_vma->num_children);
442 VM_WARN_ON(anon_vma->num_active_vmas);
443 put_anon_vma(anon_vma);
444
445 list_del(&avc->same_vma);
446 anon_vma_chain_free(avc);
447 }
448 }
449
anon_vma_ctor(void * data)450 static void anon_vma_ctor(void *data)
451 {
452 struct anon_vma *anon_vma = data;
453
454 init_rwsem(&anon_vma->rwsem);
455 atomic_set(&anon_vma->refcount, 0);
456 anon_vma->rb_root = RB_ROOT_CACHED;
457 }
458
anon_vma_init(void)459 void __init anon_vma_init(void)
460 {
461 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
462 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
463 anon_vma_ctor);
464 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
465 SLAB_PANIC|SLAB_ACCOUNT);
466 }
467
468 /*
469 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
470 *
471 * Since there is no serialization what so ever against folio_remove_rmap_*()
472 * the best this function can do is return a refcount increased anon_vma
473 * that might have been relevant to this page.
474 *
475 * The page might have been remapped to a different anon_vma or the anon_vma
476 * returned may already be freed (and even reused).
477 *
478 * In case it was remapped to a different anon_vma, the new anon_vma will be a
479 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
480 * ensure that any anon_vma obtained from the page will still be valid for as
481 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
482 *
483 * All users of this function must be very careful when walking the anon_vma
484 * chain and verify that the page in question is indeed mapped in it
485 * [ something equivalent to page_mapped_in_vma() ].
486 *
487 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
488 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
489 * if there is a mapcount, we can dereference the anon_vma after observing
490 * those.
491 *
492 * NOTE: the caller should normally hold folio lock when calling this. If
493 * not, the caller needs to double check the anon_vma didn't change after
494 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
495 * concurrently without folio lock protection). See folio_lock_anon_vma_read()
496 * which has already covered that, and comment above remap_pages().
497 */
folio_get_anon_vma(const struct folio * folio)498 struct anon_vma *folio_get_anon_vma(const struct folio *folio)
499 {
500 struct anon_vma *anon_vma = NULL;
501 unsigned long anon_mapping;
502
503 rcu_read_lock();
504 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
505 if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON)
506 goto out;
507 if (!folio_mapped(folio))
508 goto out;
509
510 anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON);
511 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
512 anon_vma = NULL;
513 goto out;
514 }
515
516 /*
517 * If this folio is still mapped, then its anon_vma cannot have been
518 * freed. But if it has been unmapped, we have no security against the
519 * anon_vma structure being freed and reused (for another anon_vma:
520 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
521 * above cannot corrupt).
522 */
523 if (!folio_mapped(folio)) {
524 rcu_read_unlock();
525 put_anon_vma(anon_vma);
526 return NULL;
527 }
528 out:
529 rcu_read_unlock();
530
531 return anon_vma;
532 }
533
534 /*
535 * Similar to folio_get_anon_vma() except it locks the anon_vma.
536 *
537 * Its a little more complex as it tries to keep the fast path to a single
538 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
539 * reference like with folio_get_anon_vma() and then block on the mutex
540 * on !rwc->try_lock case.
541 */
folio_lock_anon_vma_read(const struct folio * folio,struct rmap_walk_control * rwc)542 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio,
543 struct rmap_walk_control *rwc)
544 {
545 struct anon_vma *anon_vma = NULL;
546 struct anon_vma *root_anon_vma;
547 unsigned long anon_mapping;
548
549 retry:
550 rcu_read_lock();
551 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
552 if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON)
553 goto out;
554 if (!folio_mapped(folio))
555 goto out;
556
557 anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON);
558 root_anon_vma = READ_ONCE(anon_vma->root);
559 if (down_read_trylock(&root_anon_vma->rwsem)) {
560 /*
561 * folio_move_anon_rmap() might have changed the anon_vma as we
562 * might not hold the folio lock here.
563 */
564 if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
565 anon_mapping)) {
566 up_read(&root_anon_vma->rwsem);
567 rcu_read_unlock();
568 goto retry;
569 }
570
571 /*
572 * If the folio is still mapped, then this anon_vma is still
573 * its anon_vma, and holding the mutex ensures that it will
574 * not go away, see anon_vma_free().
575 */
576 if (!folio_mapped(folio)) {
577 up_read(&root_anon_vma->rwsem);
578 anon_vma = NULL;
579 }
580 goto out;
581 }
582
583 if (rwc && rwc->try_lock) {
584 anon_vma = NULL;
585 rwc->contended = true;
586 goto out;
587 }
588
589 /* trylock failed, we got to sleep */
590 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
591 anon_vma = NULL;
592 goto out;
593 }
594
595 if (!folio_mapped(folio)) {
596 rcu_read_unlock();
597 put_anon_vma(anon_vma);
598 return NULL;
599 }
600
601 /* we pinned the anon_vma, its safe to sleep */
602 rcu_read_unlock();
603 anon_vma_lock_read(anon_vma);
604
605 /*
606 * folio_move_anon_rmap() might have changed the anon_vma as we might
607 * not hold the folio lock here.
608 */
609 if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
610 anon_mapping)) {
611 anon_vma_unlock_read(anon_vma);
612 put_anon_vma(anon_vma);
613 anon_vma = NULL;
614 goto retry;
615 }
616
617 if (atomic_dec_and_test(&anon_vma->refcount)) {
618 /*
619 * Oops, we held the last refcount, release the lock
620 * and bail -- can't simply use put_anon_vma() because
621 * we'll deadlock on the anon_vma_lock_write() recursion.
622 */
623 anon_vma_unlock_read(anon_vma);
624 __put_anon_vma(anon_vma);
625 anon_vma = NULL;
626 }
627
628 return anon_vma;
629
630 out:
631 rcu_read_unlock();
632 return anon_vma;
633 }
634
635 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
636 /*
637 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
638 * important if a PTE was dirty when it was unmapped that it's flushed
639 * before any IO is initiated on the page to prevent lost writes. Similarly,
640 * it must be flushed before freeing to prevent data leakage.
641 */
try_to_unmap_flush(void)642 void try_to_unmap_flush(void)
643 {
644 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
645
646 if (!tlb_ubc->flush_required)
647 return;
648
649 arch_tlbbatch_flush(&tlb_ubc->arch);
650 tlb_ubc->flush_required = false;
651 tlb_ubc->writable = false;
652 }
653
654 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)655 void try_to_unmap_flush_dirty(void)
656 {
657 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
658
659 if (tlb_ubc->writable)
660 try_to_unmap_flush();
661 }
662
663 /*
664 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
665 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
666 */
667 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
668 #define TLB_FLUSH_BATCH_PENDING_MASK \
669 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
670 #define TLB_FLUSH_BATCH_PENDING_LARGE \
671 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
672
set_tlb_ubc_flush_pending(struct mm_struct * mm,pte_t pteval,unsigned long start,unsigned long end)673 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
674 unsigned long start, unsigned long end)
675 {
676 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
677 int batch;
678 bool writable = pte_dirty(pteval);
679
680 if (!pte_accessible(mm, pteval))
681 return;
682
683 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, start, end);
684 tlb_ubc->flush_required = true;
685
686 /*
687 * Ensure compiler does not re-order the setting of tlb_flush_batched
688 * before the PTE is cleared.
689 */
690 barrier();
691 batch = atomic_read(&mm->tlb_flush_batched);
692 retry:
693 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
694 /*
695 * Prevent `pending' from catching up with `flushed' because of
696 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
697 * `pending' becomes large.
698 */
699 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
700 goto retry;
701 } else {
702 atomic_inc(&mm->tlb_flush_batched);
703 }
704
705 /*
706 * If the PTE was dirty then it's best to assume it's writable. The
707 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
708 * before the page is queued for IO.
709 */
710 if (writable)
711 tlb_ubc->writable = true;
712 }
713
714 /*
715 * Returns true if the TLB flush should be deferred to the end of a batch of
716 * unmap operations to reduce IPIs.
717 */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)718 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
719 {
720 if (!(flags & TTU_BATCH_FLUSH))
721 return false;
722
723 return arch_tlbbatch_should_defer(mm);
724 }
725
726 /*
727 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
728 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
729 * operation such as mprotect or munmap to race between reclaim unmapping
730 * the page and flushing the page. If this race occurs, it potentially allows
731 * access to data via a stale TLB entry. Tracking all mm's that have TLB
732 * batching in flight would be expensive during reclaim so instead track
733 * whether TLB batching occurred in the past and if so then do a flush here
734 * if required. This will cost one additional flush per reclaim cycle paid
735 * by the first operation at risk such as mprotect and mumap.
736 *
737 * This must be called under the PTL so that an access to tlb_flush_batched
738 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
739 * via the PTL.
740 */
flush_tlb_batched_pending(struct mm_struct * mm)741 void flush_tlb_batched_pending(struct mm_struct *mm)
742 {
743 int batch = atomic_read(&mm->tlb_flush_batched);
744 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
745 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
746
747 if (pending != flushed) {
748 flush_tlb_mm(mm);
749 /*
750 * If the new TLB flushing is pending during flushing, leave
751 * mm->tlb_flush_batched as is, to avoid losing flushing.
752 */
753 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
754 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
755 }
756 }
757 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,pte_t pteval,unsigned long start,unsigned long end)758 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
759 unsigned long start, unsigned long end)
760 {
761 }
762
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)763 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
764 {
765 return false;
766 }
767 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
768
769 /**
770 * page_address_in_vma - The virtual address of a page in this VMA.
771 * @folio: The folio containing the page.
772 * @page: The page within the folio.
773 * @vma: The VMA we need to know the address in.
774 *
775 * Calculates the user virtual address of this page in the specified VMA.
776 * It is the caller's responsibility to check the page is actually
777 * within the VMA. There may not currently be a PTE pointing at this
778 * page, but if a page fault occurs at this address, this is the page
779 * which will be accessed.
780 *
781 * Context: Caller should hold a reference to the folio. Caller should
782 * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the
783 * VMA from being altered.
784 *
785 * Return: The virtual address corresponding to this page in the VMA.
786 */
page_address_in_vma(const struct folio * folio,const struct page * page,const struct vm_area_struct * vma)787 unsigned long page_address_in_vma(const struct folio *folio,
788 const struct page *page, const struct vm_area_struct *vma)
789 {
790 if (folio_test_anon(folio)) {
791 struct anon_vma *anon_vma = folio_anon_vma(folio);
792 /*
793 * Note: swapoff's unuse_vma() is more efficient with this
794 * check, and needs it to match anon_vma when KSM is active.
795 */
796 if (!vma->anon_vma || !anon_vma ||
797 vma->anon_vma->root != anon_vma->root)
798 return -EFAULT;
799 } else if (!vma->vm_file) {
800 return -EFAULT;
801 } else if (vma->vm_file->f_mapping != folio->mapping) {
802 return -EFAULT;
803 }
804
805 /* KSM folios don't reach here because of the !anon_vma check */
806 return vma_address(vma, page_pgoff(folio, page), 1);
807 }
808
809 /*
810 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
811 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
812 * represents.
813 */
mm_find_pmd(struct mm_struct * mm,unsigned long address)814 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
815 {
816 pgd_t *pgd;
817 p4d_t *p4d;
818 pud_t *pud;
819 pmd_t *pmd = NULL;
820
821 pgd = pgd_offset(mm, address);
822 if (!pgd_present(*pgd))
823 goto out;
824
825 p4d = p4d_offset(pgd, address);
826 if (!p4d_present(*p4d))
827 goto out;
828
829 pud = pud_offset(p4d, address);
830 if (!pud_present(*pud))
831 goto out;
832
833 pmd = pmd_offset(pud, address);
834 out:
835 return pmd;
836 }
837
838 struct folio_referenced_arg {
839 int mapcount;
840 int referenced;
841 vm_flags_t vm_flags;
842 struct mem_cgroup *memcg;
843 };
844
845 /*
846 * arg: folio_referenced_arg will be passed
847 */
folio_referenced_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)848 static bool folio_referenced_one(struct folio *folio,
849 struct vm_area_struct *vma, unsigned long address, void *arg)
850 {
851 struct folio_referenced_arg *pra = arg;
852 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
853 int ptes = 0, referenced = 0;
854
855 while (page_vma_mapped_walk(&pvmw)) {
856 address = pvmw.address;
857
858 if (vma->vm_flags & VM_LOCKED) {
859 ptes++;
860 pra->mapcount--;
861
862 /* Only mlock fully mapped pages */
863 if (pvmw.pte && ptes != pvmw.nr_pages)
864 continue;
865
866 /*
867 * All PTEs must be protected by page table lock in
868 * order to mlock the page.
869 *
870 * If page table boundary has been cross, current ptl
871 * only protect part of ptes.
872 */
873 if (pvmw.flags & PVMW_PGTABLE_CROSSED)
874 continue;
875
876 /* Restore the mlock which got missed */
877 mlock_vma_folio(folio, vma);
878 page_vma_mapped_walk_done(&pvmw);
879 pra->vm_flags |= VM_LOCKED;
880 return false; /* To break the loop */
881 }
882
883 /*
884 * Skip the non-shared swapbacked folio mapped solely by
885 * the exiting or OOM-reaped process. This avoids redundant
886 * swap-out followed by an immediate unmap.
887 */
888 if ((!atomic_read(&vma->vm_mm->mm_users) ||
889 check_stable_address_space(vma->vm_mm)) &&
890 folio_test_anon(folio) && folio_test_swapbacked(folio) &&
891 !folio_maybe_mapped_shared(folio)) {
892 pra->referenced = -1;
893 page_vma_mapped_walk_done(&pvmw);
894 return false;
895 }
896
897 if (lru_gen_enabled() && pvmw.pte) {
898 if (lru_gen_look_around(&pvmw))
899 referenced++;
900 } else if (pvmw.pte) {
901 if (ptep_clear_flush_young_notify(vma, address,
902 pvmw.pte))
903 referenced++;
904 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
905 if (pmdp_clear_flush_young_notify(vma, address,
906 pvmw.pmd))
907 referenced++;
908 } else {
909 /* unexpected pmd-mapped folio? */
910 WARN_ON_ONCE(1);
911 }
912
913 pra->mapcount--;
914 }
915
916 if (referenced)
917 folio_clear_idle(folio);
918 if (folio_test_clear_young(folio))
919 referenced++;
920
921 if (referenced) {
922 pra->referenced++;
923 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
924 }
925
926 if (!pra->mapcount)
927 return false; /* To break the loop */
928
929 return true;
930 }
931
invalid_folio_referenced_vma(struct vm_area_struct * vma,void * arg)932 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
933 {
934 struct folio_referenced_arg *pra = arg;
935 struct mem_cgroup *memcg = pra->memcg;
936
937 /*
938 * Ignore references from this mapping if it has no recency. If the
939 * folio has been used in another mapping, we will catch it; if this
940 * other mapping is already gone, the unmap path will have set the
941 * referenced flag or activated the folio in zap_pte_range().
942 */
943 if (!vma_has_recency(vma))
944 return true;
945
946 /*
947 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
948 * of references from different cgroups.
949 */
950 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
951 return true;
952
953 return false;
954 }
955
956 /**
957 * folio_referenced() - Test if the folio was referenced.
958 * @folio: The folio to test.
959 * @is_locked: Caller holds lock on the folio.
960 * @memcg: target memory cgroup
961 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
962 *
963 * Quick test_and_clear_referenced for all mappings of a folio,
964 *
965 * Return: The number of mappings which referenced the folio. Return -1 if
966 * the function bailed out due to rmap lock contention.
967 */
folio_referenced(struct folio * folio,int is_locked,struct mem_cgroup * memcg,vm_flags_t * vm_flags)968 int folio_referenced(struct folio *folio, int is_locked,
969 struct mem_cgroup *memcg, vm_flags_t *vm_flags)
970 {
971 bool we_locked = false;
972 struct folio_referenced_arg pra = {
973 .mapcount = folio_mapcount(folio),
974 .memcg = memcg,
975 };
976 struct rmap_walk_control rwc = {
977 .rmap_one = folio_referenced_one,
978 .arg = (void *)&pra,
979 .anon_lock = folio_lock_anon_vma_read,
980 .try_lock = true,
981 .invalid_vma = invalid_folio_referenced_vma,
982 };
983
984 *vm_flags = 0;
985 if (!pra.mapcount)
986 return 0;
987
988 if (!folio_raw_mapping(folio))
989 return 0;
990
991 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
992 we_locked = folio_trylock(folio);
993 if (!we_locked)
994 return 1;
995 }
996
997 rmap_walk(folio, &rwc);
998 *vm_flags = pra.vm_flags;
999
1000 if (we_locked)
1001 folio_unlock(folio);
1002
1003 return rwc.contended ? -1 : pra.referenced;
1004 }
1005
page_vma_mkclean_one(struct page_vma_mapped_walk * pvmw)1006 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1007 {
1008 int cleaned = 0;
1009 struct vm_area_struct *vma = pvmw->vma;
1010 struct mmu_notifier_range range;
1011 unsigned long address = pvmw->address;
1012
1013 /*
1014 * We have to assume the worse case ie pmd for invalidation. Note that
1015 * the folio can not be freed from this function.
1016 */
1017 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1018 vma->vm_mm, address, vma_address_end(pvmw));
1019 mmu_notifier_invalidate_range_start(&range);
1020
1021 while (page_vma_mapped_walk(pvmw)) {
1022 int ret = 0;
1023
1024 address = pvmw->address;
1025 if (pvmw->pte) {
1026 pte_t *pte = pvmw->pte;
1027 pte_t entry = ptep_get(pte);
1028
1029 /*
1030 * PFN swap PTEs, such as device-exclusive ones, that
1031 * actually map pages are clean and not writable from a
1032 * CPU perspective. The MMU notifier takes care of any
1033 * device aspects.
1034 */
1035 if (!pte_present(entry))
1036 continue;
1037 if (!pte_dirty(entry) && !pte_write(entry))
1038 continue;
1039
1040 flush_cache_page(vma, address, pte_pfn(entry));
1041 entry = ptep_clear_flush(vma, address, pte);
1042 entry = pte_wrprotect(entry);
1043 entry = pte_mkclean(entry);
1044 set_pte_at(vma->vm_mm, address, pte, entry);
1045 ret = 1;
1046 } else {
1047 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1048 pmd_t *pmd = pvmw->pmd;
1049 pmd_t entry;
1050
1051 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1052 continue;
1053
1054 flush_cache_range(vma, address,
1055 address + HPAGE_PMD_SIZE);
1056 entry = pmdp_invalidate(vma, address, pmd);
1057 entry = pmd_wrprotect(entry);
1058 entry = pmd_mkclean(entry);
1059 set_pmd_at(vma->vm_mm, address, pmd, entry);
1060 ret = 1;
1061 #else
1062 /* unexpected pmd-mapped folio? */
1063 WARN_ON_ONCE(1);
1064 #endif
1065 }
1066
1067 if (ret)
1068 cleaned++;
1069 }
1070
1071 mmu_notifier_invalidate_range_end(&range);
1072
1073 return cleaned;
1074 }
1075
page_mkclean_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1076 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1077 unsigned long address, void *arg)
1078 {
1079 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1080 int *cleaned = arg;
1081
1082 *cleaned += page_vma_mkclean_one(&pvmw);
1083
1084 return true;
1085 }
1086
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)1087 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1088 {
1089 if (vma->vm_flags & VM_SHARED)
1090 return false;
1091
1092 return true;
1093 }
1094
folio_mkclean(struct folio * folio)1095 int folio_mkclean(struct folio *folio)
1096 {
1097 int cleaned = 0;
1098 struct address_space *mapping;
1099 struct rmap_walk_control rwc = {
1100 .arg = (void *)&cleaned,
1101 .rmap_one = page_mkclean_one,
1102 .invalid_vma = invalid_mkclean_vma,
1103 };
1104
1105 BUG_ON(!folio_test_locked(folio));
1106
1107 if (!folio_mapped(folio))
1108 return 0;
1109
1110 mapping = folio_mapping(folio);
1111 if (!mapping)
1112 return 0;
1113
1114 rmap_walk(folio, &rwc);
1115
1116 return cleaned;
1117 }
1118 EXPORT_SYMBOL_GPL(folio_mkclean);
1119
1120 struct wrprotect_file_state {
1121 int cleaned;
1122 pgoff_t pgoff;
1123 unsigned long pfn;
1124 unsigned long nr_pages;
1125 };
1126
mapping_wrprotect_range_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1127 static bool mapping_wrprotect_range_one(struct folio *folio,
1128 struct vm_area_struct *vma, unsigned long address, void *arg)
1129 {
1130 struct wrprotect_file_state *state = (struct wrprotect_file_state *)arg;
1131 struct page_vma_mapped_walk pvmw = {
1132 .pfn = state->pfn,
1133 .nr_pages = state->nr_pages,
1134 .pgoff = state->pgoff,
1135 .vma = vma,
1136 .address = address,
1137 .flags = PVMW_SYNC,
1138 };
1139
1140 state->cleaned += page_vma_mkclean_one(&pvmw);
1141
1142 return true;
1143 }
1144
1145 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping,
1146 pgoff_t pgoff_start, unsigned long nr_pages,
1147 struct rmap_walk_control *rwc, bool locked);
1148
1149 /**
1150 * mapping_wrprotect_range() - Write-protect all mappings in a specified range.
1151 *
1152 * @mapping: The mapping whose reverse mapping should be traversed.
1153 * @pgoff: The page offset at which @pfn is mapped within @mapping.
1154 * @pfn: The PFN of the page mapped in @mapping at @pgoff.
1155 * @nr_pages: The number of physically contiguous base pages spanned.
1156 *
1157 * Traverses the reverse mapping, finding all VMAs which contain a shared
1158 * mapping of the pages in the specified range in @mapping, and write-protects
1159 * them (that is, updates the page tables to mark the mappings read-only such
1160 * that a write protection fault arises when the mappings are written to).
1161 *
1162 * The @pfn value need not refer to a folio, but rather can reference a kernel
1163 * allocation which is mapped into userland. We therefore do not require that
1164 * the page maps to a folio with a valid mapping or index field, rather the
1165 * caller specifies these in @mapping and @pgoff.
1166 *
1167 * Return: the number of write-protected PTEs, or an error.
1168 */
mapping_wrprotect_range(struct address_space * mapping,pgoff_t pgoff,unsigned long pfn,unsigned long nr_pages)1169 int mapping_wrprotect_range(struct address_space *mapping, pgoff_t pgoff,
1170 unsigned long pfn, unsigned long nr_pages)
1171 {
1172 struct wrprotect_file_state state = {
1173 .cleaned = 0,
1174 .pgoff = pgoff,
1175 .pfn = pfn,
1176 .nr_pages = nr_pages,
1177 };
1178 struct rmap_walk_control rwc = {
1179 .arg = (void *)&state,
1180 .rmap_one = mapping_wrprotect_range_one,
1181 .invalid_vma = invalid_mkclean_vma,
1182 };
1183
1184 if (!mapping)
1185 return 0;
1186
1187 __rmap_walk_file(/* folio = */NULL, mapping, pgoff, nr_pages, &rwc,
1188 /* locked = */false);
1189
1190 return state.cleaned;
1191 }
1192 EXPORT_SYMBOL_GPL(mapping_wrprotect_range);
1193
1194 /**
1195 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1196 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1197 * within the @vma of shared mappings. And since clean PTEs
1198 * should also be readonly, write protects them too.
1199 * @pfn: start pfn.
1200 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1201 * @pgoff: page offset that the @pfn mapped with.
1202 * @vma: vma that @pfn mapped within.
1203 *
1204 * Returns the number of cleaned PTEs (including PMDs).
1205 */
pfn_mkclean_range(unsigned long pfn,unsigned long nr_pages,pgoff_t pgoff,struct vm_area_struct * vma)1206 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1207 struct vm_area_struct *vma)
1208 {
1209 struct page_vma_mapped_walk pvmw = {
1210 .pfn = pfn,
1211 .nr_pages = nr_pages,
1212 .pgoff = pgoff,
1213 .vma = vma,
1214 .flags = PVMW_SYNC,
1215 };
1216
1217 if (invalid_mkclean_vma(vma, NULL))
1218 return 0;
1219
1220 pvmw.address = vma_address(vma, pgoff, nr_pages);
1221 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1222
1223 return page_vma_mkclean_one(&pvmw);
1224 }
1225
__folio_mod_stat(struct folio * folio,int nr,int nr_pmdmapped)1226 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
1227 {
1228 int idx;
1229
1230 if (nr) {
1231 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1232 __lruvec_stat_mod_folio(folio, idx, nr);
1233 }
1234 if (nr_pmdmapped) {
1235 if (folio_test_anon(folio)) {
1236 idx = NR_ANON_THPS;
1237 __lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1238 } else {
1239 /* NR_*_PMDMAPPED are not maintained per-memcg */
1240 idx = folio_test_swapbacked(folio) ?
1241 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1242 __mod_node_page_state(folio_pgdat(folio), idx,
1243 nr_pmdmapped);
1244 }
1245 }
1246 }
1247
__folio_add_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum pgtable_level level)1248 static __always_inline void __folio_add_rmap(struct folio *folio,
1249 struct page *page, int nr_pages, struct vm_area_struct *vma,
1250 enum pgtable_level level)
1251 {
1252 atomic_t *mapped = &folio->_nr_pages_mapped;
1253 const int orig_nr_pages = nr_pages;
1254 int first = 0, nr = 0, nr_pmdmapped = 0;
1255
1256 __folio_rmap_sanity_checks(folio, page, nr_pages, level);
1257
1258 switch (level) {
1259 case PGTABLE_LEVEL_PTE:
1260 if (!folio_test_large(folio)) {
1261 nr = atomic_inc_and_test(&folio->_mapcount);
1262 break;
1263 }
1264
1265 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1266 nr = folio_add_return_large_mapcount(folio, orig_nr_pages, vma);
1267 if (nr == orig_nr_pages)
1268 /* Was completely unmapped. */
1269 nr = folio_large_nr_pages(folio);
1270 else
1271 nr = 0;
1272 break;
1273 }
1274
1275 do {
1276 first += atomic_inc_and_test(&page->_mapcount);
1277 } while (page++, --nr_pages > 0);
1278
1279 if (first &&
1280 atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED)
1281 nr = first;
1282
1283 folio_add_large_mapcount(folio, orig_nr_pages, vma);
1284 break;
1285 case PGTABLE_LEVEL_PMD:
1286 case PGTABLE_LEVEL_PUD:
1287 first = atomic_inc_and_test(&folio->_entire_mapcount);
1288 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1289 if (level == PGTABLE_LEVEL_PMD && first)
1290 nr_pmdmapped = folio_large_nr_pages(folio);
1291 nr = folio_inc_return_large_mapcount(folio, vma);
1292 if (nr == 1)
1293 /* Was completely unmapped. */
1294 nr = folio_large_nr_pages(folio);
1295 else
1296 nr = 0;
1297 break;
1298 }
1299
1300 if (first) {
1301 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1302 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1303 nr_pages = folio_large_nr_pages(folio);
1304 /*
1305 * We only track PMD mappings of PMD-sized
1306 * folios separately.
1307 */
1308 if (level == PGTABLE_LEVEL_PMD)
1309 nr_pmdmapped = nr_pages;
1310 nr = nr_pages - (nr & FOLIO_PAGES_MAPPED);
1311 /* Raced ahead of a remove and another add? */
1312 if (unlikely(nr < 0))
1313 nr = 0;
1314 } else {
1315 /* Raced ahead of a remove of ENTIRELY_MAPPED */
1316 nr = 0;
1317 }
1318 }
1319 folio_inc_large_mapcount(folio, vma);
1320 break;
1321 default:
1322 BUILD_BUG();
1323 }
1324 __folio_mod_stat(folio, nr, nr_pmdmapped);
1325 }
1326
1327 /**
1328 * folio_move_anon_rmap - move a folio to our anon_vma
1329 * @folio: The folio to move to our anon_vma
1330 * @vma: The vma the folio belongs to
1331 *
1332 * When a folio belongs exclusively to one process after a COW event,
1333 * that folio can be moved into the anon_vma that belongs to just that
1334 * process, so the rmap code will not search the parent or sibling processes.
1335 */
folio_move_anon_rmap(struct folio * folio,struct vm_area_struct * vma)1336 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1337 {
1338 void *anon_vma = vma->anon_vma;
1339
1340 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1341 VM_BUG_ON_VMA(!anon_vma, vma);
1342
1343 anon_vma += FOLIO_MAPPING_ANON;
1344 /*
1345 * Ensure that anon_vma and the FOLIO_MAPPING_ANON bit are written
1346 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1347 * folio_test_anon()) will not see one without the other.
1348 */
1349 WRITE_ONCE(folio->mapping, anon_vma);
1350 }
1351
1352 /**
1353 * __folio_set_anon - set up a new anonymous rmap for a folio
1354 * @folio: The folio to set up the new anonymous rmap for.
1355 * @vma: VM area to add the folio to.
1356 * @address: User virtual address of the mapping
1357 * @exclusive: Whether the folio is exclusive to the process.
1358 */
__folio_set_anon(struct folio * folio,struct vm_area_struct * vma,unsigned long address,bool exclusive)1359 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1360 unsigned long address, bool exclusive)
1361 {
1362 struct anon_vma *anon_vma = vma->anon_vma;
1363
1364 BUG_ON(!anon_vma);
1365
1366 /*
1367 * If the folio isn't exclusive to this vma, we must use the _oldest_
1368 * possible anon_vma for the folio mapping!
1369 */
1370 if (!exclusive)
1371 anon_vma = anon_vma->root;
1372
1373 /*
1374 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1375 * Make sure the compiler doesn't split the stores of anon_vma and
1376 * the FOLIO_MAPPING_ANON type identifier, otherwise the rmap code
1377 * could mistake the mapping for a struct address_space and crash.
1378 */
1379 anon_vma = (void *) anon_vma + FOLIO_MAPPING_ANON;
1380 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1381 folio->index = linear_page_index(vma, address);
1382 }
1383
1384 /**
1385 * __page_check_anon_rmap - sanity check anonymous rmap addition
1386 * @folio: The folio containing @page.
1387 * @page: the page to check the mapping of
1388 * @vma: the vm area in which the mapping is added
1389 * @address: the user virtual address mapped
1390 */
__page_check_anon_rmap(const struct folio * folio,const struct page * page,struct vm_area_struct * vma,unsigned long address)1391 static void __page_check_anon_rmap(const struct folio *folio,
1392 const struct page *page, struct vm_area_struct *vma,
1393 unsigned long address)
1394 {
1395 /*
1396 * The page's anon-rmap details (mapping and index) are guaranteed to
1397 * be set up correctly at this point.
1398 *
1399 * We have exclusion against folio_add_anon_rmap_*() because the caller
1400 * always holds the page locked.
1401 *
1402 * We have exclusion against folio_add_new_anon_rmap because those pages
1403 * are initially only visible via the pagetables, and the pte is locked
1404 * over the call to folio_add_new_anon_rmap.
1405 */
1406 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1407 folio);
1408 VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address),
1409 page);
1410 }
1411
__folio_add_anon_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,unsigned long address,rmap_t flags,enum pgtable_level level)1412 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1413 struct page *page, int nr_pages, struct vm_area_struct *vma,
1414 unsigned long address, rmap_t flags, enum pgtable_level level)
1415 {
1416 int i;
1417
1418 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1419
1420 __folio_add_rmap(folio, page, nr_pages, vma, level);
1421
1422 if (likely(!folio_test_ksm(folio)))
1423 __page_check_anon_rmap(folio, page, vma, address);
1424
1425 if (flags & RMAP_EXCLUSIVE) {
1426 switch (level) {
1427 case PGTABLE_LEVEL_PTE:
1428 for (i = 0; i < nr_pages; i++)
1429 SetPageAnonExclusive(page + i);
1430 break;
1431 case PGTABLE_LEVEL_PMD:
1432 SetPageAnonExclusive(page);
1433 break;
1434 case PGTABLE_LEVEL_PUD:
1435 /*
1436 * Keep the compiler happy, we don't support anonymous
1437 * PUD mappings.
1438 */
1439 WARN_ON_ONCE(1);
1440 break;
1441 default:
1442 BUILD_BUG();
1443 }
1444 }
1445
1446 VM_WARN_ON_FOLIO(!folio_test_large(folio) && PageAnonExclusive(page) &&
1447 atomic_read(&folio->_mapcount) > 0, folio);
1448 for (i = 0; i < nr_pages; i++) {
1449 struct page *cur_page = page + i;
1450
1451 VM_WARN_ON_FOLIO(folio_test_large(folio) &&
1452 folio_entire_mapcount(folio) > 1 &&
1453 PageAnonExclusive(cur_page), folio);
1454 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT))
1455 continue;
1456
1457 /*
1458 * While PTE-mapping a THP we have a PMD and a PTE
1459 * mapping.
1460 */
1461 VM_WARN_ON_FOLIO(atomic_read(&cur_page->_mapcount) > 0 &&
1462 PageAnonExclusive(cur_page), folio);
1463 }
1464
1465 /*
1466 * Only mlock it if the folio is fully mapped to the VMA.
1467 *
1468 * Partially mapped folios can be split on reclaim and part outside
1469 * of mlocked VMA can be evicted or freed.
1470 */
1471 if (folio_nr_pages(folio) == nr_pages)
1472 mlock_vma_folio(folio, vma);
1473 }
1474
1475 /**
1476 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1477 * @folio: The folio to add the mappings to
1478 * @page: The first page to add
1479 * @nr_pages: The number of pages which will be mapped
1480 * @vma: The vm area in which the mappings are added
1481 * @address: The user virtual address of the first page to map
1482 * @flags: The rmap flags
1483 *
1484 * The page range of folio is defined by [first_page, first_page + nr_pages)
1485 *
1486 * The caller needs to hold the page table lock, and the page must be locked in
1487 * the anon_vma case: to serialize mapping,index checking after setting,
1488 * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1489 * (but KSM folios are never downgraded).
1490 */
folio_add_anon_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1491 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1492 int nr_pages, struct vm_area_struct *vma, unsigned long address,
1493 rmap_t flags)
1494 {
1495 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1496 PGTABLE_LEVEL_PTE);
1497 }
1498
1499 /**
1500 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1501 * @folio: The folio to add the mapping to
1502 * @page: The first page to add
1503 * @vma: The vm area in which the mapping is added
1504 * @address: The user virtual address of the first page to map
1505 * @flags: The rmap flags
1506 *
1507 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1508 *
1509 * The caller needs to hold the page table lock, and the page must be locked in
1510 * the anon_vma case: to serialize mapping,index checking after setting.
1511 */
folio_add_anon_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1512 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1513 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1514 {
1515 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1516 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1517 PGTABLE_LEVEL_PMD);
1518 #else
1519 WARN_ON_ONCE(true);
1520 #endif
1521 }
1522
1523 /**
1524 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1525 * @folio: The folio to add the mapping to.
1526 * @vma: the vm area in which the mapping is added
1527 * @address: the user virtual address mapped
1528 * @flags: The rmap flags
1529 *
1530 * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1531 * This means the inc-and-test can be bypassed.
1532 * The folio doesn't necessarily need to be locked while it's exclusive
1533 * unless two threads map it concurrently. However, the folio must be
1534 * locked if it's shared.
1535 *
1536 * If the folio is pmd-mappable, it is accounted as a THP.
1537 */
folio_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1538 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1539 unsigned long address, rmap_t flags)
1540 {
1541 const bool exclusive = flags & RMAP_EXCLUSIVE;
1542 int nr = 1, nr_pmdmapped = 0;
1543
1544 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1545 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1546
1547 /*
1548 * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1549 * under memory pressure.
1550 */
1551 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1552 __folio_set_swapbacked(folio);
1553 __folio_set_anon(folio, vma, address, exclusive);
1554
1555 if (likely(!folio_test_large(folio))) {
1556 /* increment count (starts at -1) */
1557 atomic_set(&folio->_mapcount, 0);
1558 if (exclusive)
1559 SetPageAnonExclusive(&folio->page);
1560 } else if (!folio_test_pmd_mappable(folio)) {
1561 int i;
1562
1563 nr = folio_large_nr_pages(folio);
1564 for (i = 0; i < nr; i++) {
1565 struct page *page = folio_page(folio, i);
1566
1567 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1568 /* increment count (starts at -1) */
1569 atomic_set(&page->_mapcount, 0);
1570 if (exclusive)
1571 SetPageAnonExclusive(page);
1572 }
1573
1574 folio_set_large_mapcount(folio, nr, vma);
1575 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1576 atomic_set(&folio->_nr_pages_mapped, nr);
1577 } else {
1578 nr = folio_large_nr_pages(folio);
1579 /* increment count (starts at -1) */
1580 atomic_set(&folio->_entire_mapcount, 0);
1581 folio_set_large_mapcount(folio, 1, vma);
1582 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1583 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1584 if (exclusive)
1585 SetPageAnonExclusive(&folio->page);
1586 nr_pmdmapped = nr;
1587 }
1588
1589 VM_WARN_ON_ONCE(address < vma->vm_start ||
1590 address + (nr << PAGE_SHIFT) > vma->vm_end);
1591
1592 __folio_mod_stat(folio, nr, nr_pmdmapped);
1593 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
1594 }
1595
__folio_add_file_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum pgtable_level level)1596 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1597 struct page *page, int nr_pages, struct vm_area_struct *vma,
1598 enum pgtable_level level)
1599 {
1600 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1601
1602 __folio_add_rmap(folio, page, nr_pages, vma, level);
1603
1604 /*
1605 * Only mlock it if the folio is fully mapped to the VMA.
1606 *
1607 * Partially mapped folios can be split on reclaim and part outside
1608 * of mlocked VMA can be evicted or freed.
1609 */
1610 if (folio_nr_pages(folio) == nr_pages)
1611 mlock_vma_folio(folio, vma);
1612 }
1613
1614 /**
1615 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1616 * @folio: The folio to add the mappings to
1617 * @page: The first page to add
1618 * @nr_pages: The number of pages that will be mapped using PTEs
1619 * @vma: The vm area in which the mappings are added
1620 *
1621 * The page range of the folio is defined by [page, page + nr_pages)
1622 *
1623 * The caller needs to hold the page table lock.
1624 */
folio_add_file_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma)1625 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1626 int nr_pages, struct vm_area_struct *vma)
1627 {
1628 __folio_add_file_rmap(folio, page, nr_pages, vma, PGTABLE_LEVEL_PTE);
1629 }
1630
1631 /**
1632 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1633 * @folio: The folio to add the mapping to
1634 * @page: The first page to add
1635 * @vma: The vm area in which the mapping is added
1636 *
1637 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1638 *
1639 * The caller needs to hold the page table lock.
1640 */
folio_add_file_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma)1641 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1642 struct vm_area_struct *vma)
1643 {
1644 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1645 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, PGTABLE_LEVEL_PMD);
1646 #else
1647 WARN_ON_ONCE(true);
1648 #endif
1649 }
1650
1651 /**
1652 * folio_add_file_rmap_pud - add a PUD mapping to a page range of a folio
1653 * @folio: The folio to add the mapping to
1654 * @page: The first page to add
1655 * @vma: The vm area in which the mapping is added
1656 *
1657 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR)
1658 *
1659 * The caller needs to hold the page table lock.
1660 */
folio_add_file_rmap_pud(struct folio * folio,struct page * page,struct vm_area_struct * vma)1661 void folio_add_file_rmap_pud(struct folio *folio, struct page *page,
1662 struct vm_area_struct *vma)
1663 {
1664 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1665 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1666 __folio_add_file_rmap(folio, page, HPAGE_PUD_NR, vma, PGTABLE_LEVEL_PUD);
1667 #else
1668 WARN_ON_ONCE(true);
1669 #endif
1670 }
1671
__folio_remove_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum pgtable_level level)1672 static __always_inline void __folio_remove_rmap(struct folio *folio,
1673 struct page *page, int nr_pages, struct vm_area_struct *vma,
1674 enum pgtable_level level)
1675 {
1676 atomic_t *mapped = &folio->_nr_pages_mapped;
1677 int last = 0, nr = 0, nr_pmdmapped = 0;
1678 bool partially_mapped = false;
1679
1680 __folio_rmap_sanity_checks(folio, page, nr_pages, level);
1681
1682 switch (level) {
1683 case PGTABLE_LEVEL_PTE:
1684 if (!folio_test_large(folio)) {
1685 nr = atomic_add_negative(-1, &folio->_mapcount);
1686 break;
1687 }
1688
1689 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1690 nr = folio_sub_return_large_mapcount(folio, nr_pages, vma);
1691 if (!nr) {
1692 /* Now completely unmapped. */
1693 nr = folio_large_nr_pages(folio);
1694 } else {
1695 partially_mapped = nr < folio_large_nr_pages(folio) &&
1696 !folio_entire_mapcount(folio);
1697 nr = 0;
1698 }
1699 break;
1700 }
1701
1702 folio_sub_large_mapcount(folio, nr_pages, vma);
1703 do {
1704 last += atomic_add_negative(-1, &page->_mapcount);
1705 } while (page++, --nr_pages > 0);
1706
1707 if (last &&
1708 atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED)
1709 nr = last;
1710
1711 partially_mapped = nr && atomic_read(mapped);
1712 break;
1713 case PGTABLE_LEVEL_PMD:
1714 case PGTABLE_LEVEL_PUD:
1715 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1716 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1717 if (level == PGTABLE_LEVEL_PMD && last)
1718 nr_pmdmapped = folio_large_nr_pages(folio);
1719 nr = folio_dec_return_large_mapcount(folio, vma);
1720 if (!nr) {
1721 /* Now completely unmapped. */
1722 nr = folio_large_nr_pages(folio);
1723 } else {
1724 partially_mapped = last &&
1725 nr < folio_large_nr_pages(folio);
1726 nr = 0;
1727 }
1728 break;
1729 }
1730
1731 folio_dec_large_mapcount(folio, vma);
1732 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1733 if (last) {
1734 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1735 if (likely(nr < ENTIRELY_MAPPED)) {
1736 nr_pages = folio_large_nr_pages(folio);
1737 if (level == PGTABLE_LEVEL_PMD)
1738 nr_pmdmapped = nr_pages;
1739 nr = nr_pages - nr;
1740 /* Raced ahead of another remove and an add? */
1741 if (unlikely(nr < 0))
1742 nr = 0;
1743 } else {
1744 /* An add of ENTIRELY_MAPPED raced ahead */
1745 nr = 0;
1746 }
1747 }
1748
1749 partially_mapped = nr && nr < nr_pmdmapped;
1750 break;
1751 default:
1752 BUILD_BUG();
1753 }
1754
1755 /*
1756 * Queue anon large folio for deferred split if at least one page of
1757 * the folio is unmapped and at least one page is still mapped.
1758 *
1759 * Check partially_mapped first to ensure it is a large folio.
1760 */
1761 if (partially_mapped && folio_test_anon(folio) &&
1762 !folio_test_partially_mapped(folio))
1763 deferred_split_folio(folio, true);
1764
1765 __folio_mod_stat(folio, -nr, -nr_pmdmapped);
1766
1767 /*
1768 * It would be tidy to reset folio_test_anon mapping when fully
1769 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1770 * which increments mapcount after us but sets mapping before us:
1771 * so leave the reset to free_pages_prepare, and remember that
1772 * it's only reliable while mapped.
1773 */
1774
1775 munlock_vma_folio(folio, vma);
1776 }
1777
1778 /**
1779 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1780 * @folio: The folio to remove the mappings from
1781 * @page: The first page to remove
1782 * @nr_pages: The number of pages that will be removed from the mapping
1783 * @vma: The vm area from which the mappings are removed
1784 *
1785 * The page range of the folio is defined by [page, page + nr_pages)
1786 *
1787 * The caller needs to hold the page table lock.
1788 */
folio_remove_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma)1789 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1790 int nr_pages, struct vm_area_struct *vma)
1791 {
1792 __folio_remove_rmap(folio, page, nr_pages, vma, PGTABLE_LEVEL_PTE);
1793 }
1794
1795 /**
1796 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1797 * @folio: The folio to remove the mapping from
1798 * @page: The first page to remove
1799 * @vma: The vm area from which the mapping is removed
1800 *
1801 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1802 *
1803 * The caller needs to hold the page table lock.
1804 */
folio_remove_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma)1805 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1806 struct vm_area_struct *vma)
1807 {
1808 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1809 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, PGTABLE_LEVEL_PMD);
1810 #else
1811 WARN_ON_ONCE(true);
1812 #endif
1813 }
1814
1815 /**
1816 * folio_remove_rmap_pud - remove a PUD mapping from a page range of a folio
1817 * @folio: The folio to remove the mapping from
1818 * @page: The first page to remove
1819 * @vma: The vm area from which the mapping is removed
1820 *
1821 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR)
1822 *
1823 * The caller needs to hold the page table lock.
1824 */
folio_remove_rmap_pud(struct folio * folio,struct page * page,struct vm_area_struct * vma)1825 void folio_remove_rmap_pud(struct folio *folio, struct page *page,
1826 struct vm_area_struct *vma)
1827 {
1828 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1829 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1830 __folio_remove_rmap(folio, page, HPAGE_PUD_NR, vma, PGTABLE_LEVEL_PUD);
1831 #else
1832 WARN_ON_ONCE(true);
1833 #endif
1834 }
1835
folio_unmap_pte_batch(struct folio * folio,struct page_vma_mapped_walk * pvmw,enum ttu_flags flags,pte_t pte)1836 static inline unsigned int folio_unmap_pte_batch(struct folio *folio,
1837 struct page_vma_mapped_walk *pvmw,
1838 enum ttu_flags flags, pte_t pte)
1839 {
1840 unsigned long end_addr, addr = pvmw->address;
1841 struct vm_area_struct *vma = pvmw->vma;
1842 unsigned int max_nr;
1843
1844 if (flags & TTU_HWPOISON)
1845 return 1;
1846 if (!folio_test_large(folio))
1847 return 1;
1848
1849 /* We may only batch within a single VMA and a single page table. */
1850 end_addr = pmd_addr_end(addr, vma->vm_end);
1851 max_nr = (end_addr - addr) >> PAGE_SHIFT;
1852
1853 /* We only support lazyfree batching for now ... */
1854 if (!folio_test_anon(folio) || folio_test_swapbacked(folio))
1855 return 1;
1856 if (pte_unused(pte))
1857 return 1;
1858
1859 return folio_pte_batch(folio, pvmw->pte, pte, max_nr);
1860 }
1861
1862 /*
1863 * @arg: enum ttu_flags will be passed to this argument
1864 */
try_to_unmap_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1865 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1866 unsigned long address, void *arg)
1867 {
1868 struct mm_struct *mm = vma->vm_mm;
1869 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1870 bool anon_exclusive, ret = true;
1871 pte_t pteval;
1872 struct page *subpage;
1873 struct mmu_notifier_range range;
1874 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1875 unsigned long nr_pages = 1, end_addr;
1876 unsigned long pfn;
1877 unsigned long hsz = 0;
1878 int ptes = 0;
1879
1880 /*
1881 * When racing against e.g. zap_pte_range() on another cpu,
1882 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1883 * try_to_unmap() may return before page_mapped() has become false,
1884 * if page table locking is skipped: use TTU_SYNC to wait for that.
1885 */
1886 if (flags & TTU_SYNC)
1887 pvmw.flags = PVMW_SYNC;
1888
1889 /*
1890 * For THP, we have to assume the worse case ie pmd for invalidation.
1891 * For hugetlb, it could be much worse if we need to do pud
1892 * invalidation in the case of pmd sharing.
1893 *
1894 * Note that the folio can not be freed in this function as call of
1895 * try_to_unmap() must hold a reference on the folio.
1896 */
1897 range.end = vma_address_end(&pvmw);
1898 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1899 address, range.end);
1900 if (folio_test_hugetlb(folio)) {
1901 /*
1902 * If sharing is possible, start and end will be adjusted
1903 * accordingly.
1904 */
1905 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1906 &range.end);
1907
1908 /* We need the huge page size for set_huge_pte_at() */
1909 hsz = huge_page_size(hstate_vma(vma));
1910 }
1911 mmu_notifier_invalidate_range_start(&range);
1912
1913 while (page_vma_mapped_walk(&pvmw)) {
1914 /*
1915 * If the folio is in an mlock()d vma, we must not swap it out.
1916 */
1917 if (!(flags & TTU_IGNORE_MLOCK) &&
1918 (vma->vm_flags & VM_LOCKED)) {
1919 ptes++;
1920
1921 /*
1922 * Set 'ret' to indicate the page cannot be unmapped.
1923 *
1924 * Do not jump to walk_abort immediately as additional
1925 * iteration might be required to detect fully mapped
1926 * folio an mlock it.
1927 */
1928 ret = false;
1929
1930 /* Only mlock fully mapped pages */
1931 if (pvmw.pte && ptes != pvmw.nr_pages)
1932 continue;
1933
1934 /*
1935 * All PTEs must be protected by page table lock in
1936 * order to mlock the page.
1937 *
1938 * If page table boundary has been cross, current ptl
1939 * only protect part of ptes.
1940 */
1941 if (pvmw.flags & PVMW_PGTABLE_CROSSED)
1942 goto walk_done;
1943
1944 /* Restore the mlock which got missed */
1945 mlock_vma_folio(folio, vma);
1946 goto walk_done;
1947 }
1948
1949 if (!pvmw.pte) {
1950 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1951 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, folio))
1952 goto walk_done;
1953 /*
1954 * unmap_huge_pmd_locked has either already marked
1955 * the folio as swap-backed or decided to retain it
1956 * due to GUP or speculative references.
1957 */
1958 goto walk_abort;
1959 }
1960
1961 if (flags & TTU_SPLIT_HUGE_PMD) {
1962 /*
1963 * We temporarily have to drop the PTL and
1964 * restart so we can process the PTE-mapped THP.
1965 */
1966 split_huge_pmd_locked(vma, pvmw.address,
1967 pvmw.pmd, false);
1968 flags &= ~TTU_SPLIT_HUGE_PMD;
1969 page_vma_mapped_walk_restart(&pvmw);
1970 continue;
1971 }
1972 }
1973
1974 /* Unexpected PMD-mapped THP? */
1975 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1976
1977 /*
1978 * Handle PFN swap PTEs, such as device-exclusive ones, that
1979 * actually map pages.
1980 */
1981 pteval = ptep_get(pvmw.pte);
1982 if (likely(pte_present(pteval))) {
1983 pfn = pte_pfn(pteval);
1984 } else {
1985 pfn = swp_offset_pfn(pte_to_swp_entry(pteval));
1986 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1987 }
1988
1989 subpage = folio_page(folio, pfn - folio_pfn(folio));
1990 address = pvmw.address;
1991 anon_exclusive = folio_test_anon(folio) &&
1992 PageAnonExclusive(subpage);
1993
1994 if (folio_test_hugetlb(folio)) {
1995 bool anon = folio_test_anon(folio);
1996
1997 /*
1998 * The try_to_unmap() is only passed a hugetlb page
1999 * in the case where the hugetlb page is poisoned.
2000 */
2001 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
2002 /*
2003 * huge_pmd_unshare may unmap an entire PMD page.
2004 * There is no way of knowing exactly which PMDs may
2005 * be cached for this mm, so we must flush them all.
2006 * start/end were already adjusted above to cover this
2007 * range.
2008 */
2009 flush_cache_range(vma, range.start, range.end);
2010
2011 /*
2012 * To call huge_pmd_unshare, i_mmap_rwsem must be
2013 * held in write mode. Caller needs to explicitly
2014 * do this outside rmap routines.
2015 *
2016 * We also must hold hugetlb vma_lock in write mode.
2017 * Lock order dictates acquiring vma_lock BEFORE
2018 * i_mmap_rwsem. We can only try lock here and fail
2019 * if unsuccessful.
2020 */
2021 if (!anon) {
2022 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2023 if (!hugetlb_vma_trylock_write(vma))
2024 goto walk_abort;
2025 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2026 hugetlb_vma_unlock_write(vma);
2027 flush_tlb_range(vma,
2028 range.start, range.end);
2029 /*
2030 * The ref count of the PMD page was
2031 * dropped which is part of the way map
2032 * counting is done for shared PMDs.
2033 * Return 'true' here. When there is
2034 * no other sharing, huge_pmd_unshare
2035 * returns false and we will unmap the
2036 * actual page and drop map count
2037 * to zero.
2038 */
2039 goto walk_done;
2040 }
2041 hugetlb_vma_unlock_write(vma);
2042 }
2043 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2044 if (pte_dirty(pteval))
2045 folio_mark_dirty(folio);
2046 } else if (likely(pte_present(pteval))) {
2047 nr_pages = folio_unmap_pte_batch(folio, &pvmw, flags, pteval);
2048 end_addr = address + nr_pages * PAGE_SIZE;
2049 flush_cache_range(vma, address, end_addr);
2050
2051 /* Nuke the page table entry. */
2052 pteval = get_and_clear_ptes(mm, address, pvmw.pte, nr_pages);
2053 /*
2054 * We clear the PTE but do not flush so potentially
2055 * a remote CPU could still be writing to the folio.
2056 * If the entry was previously clean then the
2057 * architecture must guarantee that a clear->dirty
2058 * transition on a cached TLB entry is written through
2059 * and traps if the PTE is unmapped.
2060 */
2061 if (should_defer_flush(mm, flags))
2062 set_tlb_ubc_flush_pending(mm, pteval, address, end_addr);
2063 else
2064 flush_tlb_range(vma, address, end_addr);
2065 if (pte_dirty(pteval))
2066 folio_mark_dirty(folio);
2067 } else {
2068 pte_clear(mm, address, pvmw.pte);
2069 }
2070
2071 /*
2072 * Now the pte is cleared. If this pte was uffd-wp armed,
2073 * we may want to replace a none pte with a marker pte if
2074 * it's file-backed, so we don't lose the tracking info.
2075 */
2076 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
2077
2078 /* Update high watermark before we lower rss */
2079 update_hiwater_rss(mm);
2080
2081 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
2082 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2083 if (folio_test_hugetlb(folio)) {
2084 hugetlb_count_sub(folio_nr_pages(folio), mm);
2085 set_huge_pte_at(mm, address, pvmw.pte, pteval,
2086 hsz);
2087 } else {
2088 dec_mm_counter(mm, mm_counter(folio));
2089 set_pte_at(mm, address, pvmw.pte, pteval);
2090 }
2091 } else if (likely(pte_present(pteval)) && pte_unused(pteval) &&
2092 !userfaultfd_armed(vma)) {
2093 /*
2094 * The guest indicated that the page content is of no
2095 * interest anymore. Simply discard the pte, vmscan
2096 * will take care of the rest.
2097 * A future reference will then fault in a new zero
2098 * page. When userfaultfd is active, we must not drop
2099 * this page though, as its main user (postcopy
2100 * migration) will not expect userfaults on already
2101 * copied pages.
2102 */
2103 dec_mm_counter(mm, mm_counter(folio));
2104 } else if (folio_test_anon(folio)) {
2105 swp_entry_t entry = page_swap_entry(subpage);
2106 pte_t swp_pte;
2107 /*
2108 * Store the swap location in the pte.
2109 * See handle_pte_fault() ...
2110 */
2111 if (unlikely(folio_test_swapbacked(folio) !=
2112 folio_test_swapcache(folio))) {
2113 WARN_ON_ONCE(1);
2114 goto walk_abort;
2115 }
2116
2117 /* MADV_FREE page check */
2118 if (!folio_test_swapbacked(folio)) {
2119 int ref_count, map_count;
2120
2121 /*
2122 * Synchronize with gup_pte_range():
2123 * - clear PTE; barrier; read refcount
2124 * - inc refcount; barrier; read PTE
2125 */
2126 smp_mb();
2127
2128 ref_count = folio_ref_count(folio);
2129 map_count = folio_mapcount(folio);
2130
2131 /*
2132 * Order reads for page refcount and dirty flag
2133 * (see comments in __remove_mapping()).
2134 */
2135 smp_rmb();
2136
2137 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
2138 /*
2139 * redirtied either using the page table or a previously
2140 * obtained GUP reference.
2141 */
2142 set_ptes(mm, address, pvmw.pte, pteval, nr_pages);
2143 folio_set_swapbacked(folio);
2144 goto walk_abort;
2145 } else if (ref_count != 1 + map_count) {
2146 /*
2147 * Additional reference. Could be a GUP reference or any
2148 * speculative reference. GUP users must mark the folio
2149 * dirty if there was a modification. This folio cannot be
2150 * reclaimed right now either way, so act just like nothing
2151 * happened.
2152 * We'll come back here later and detect if the folio was
2153 * dirtied when the additional reference is gone.
2154 */
2155 set_ptes(mm, address, pvmw.pte, pteval, nr_pages);
2156 goto walk_abort;
2157 }
2158 add_mm_counter(mm, MM_ANONPAGES, -nr_pages);
2159 goto discard;
2160 }
2161
2162 if (swap_duplicate(entry) < 0) {
2163 set_pte_at(mm, address, pvmw.pte, pteval);
2164 goto walk_abort;
2165 }
2166
2167 /*
2168 * arch_unmap_one() is expected to be a NOP on
2169 * architectures where we could have PFN swap PTEs,
2170 * so we'll not check/care.
2171 */
2172 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2173 swap_free(entry);
2174 set_pte_at(mm, address, pvmw.pte, pteval);
2175 goto walk_abort;
2176 }
2177
2178 /* See folio_try_share_anon_rmap(): clear PTE first. */
2179 if (anon_exclusive &&
2180 folio_try_share_anon_rmap_pte(folio, subpage)) {
2181 swap_free(entry);
2182 set_pte_at(mm, address, pvmw.pte, pteval);
2183 goto walk_abort;
2184 }
2185 if (list_empty(&mm->mmlist)) {
2186 spin_lock(&mmlist_lock);
2187 if (list_empty(&mm->mmlist))
2188 list_add(&mm->mmlist, &init_mm.mmlist);
2189 spin_unlock(&mmlist_lock);
2190 }
2191 dec_mm_counter(mm, MM_ANONPAGES);
2192 inc_mm_counter(mm, MM_SWAPENTS);
2193 swp_pte = swp_entry_to_pte(entry);
2194 if (anon_exclusive)
2195 swp_pte = pte_swp_mkexclusive(swp_pte);
2196 if (likely(pte_present(pteval))) {
2197 if (pte_soft_dirty(pteval))
2198 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2199 if (pte_uffd_wp(pteval))
2200 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2201 } else {
2202 if (pte_swp_soft_dirty(pteval))
2203 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2204 if (pte_swp_uffd_wp(pteval))
2205 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2206 }
2207 set_pte_at(mm, address, pvmw.pte, swp_pte);
2208 } else {
2209 /*
2210 * This is a locked file-backed folio,
2211 * so it cannot be removed from the page
2212 * cache and replaced by a new folio before
2213 * mmu_notifier_invalidate_range_end, so no
2214 * concurrent thread might update its page table
2215 * to point at a new folio while a device is
2216 * still using this folio.
2217 *
2218 * See Documentation/mm/mmu_notifier.rst
2219 */
2220 dec_mm_counter(mm, mm_counter_file(folio));
2221 }
2222 discard:
2223 if (unlikely(folio_test_hugetlb(folio))) {
2224 hugetlb_remove_rmap(folio);
2225 } else {
2226 folio_remove_rmap_ptes(folio, subpage, nr_pages, vma);
2227 }
2228 if (vma->vm_flags & VM_LOCKED)
2229 mlock_drain_local();
2230 folio_put_refs(folio, nr_pages);
2231
2232 /*
2233 * If we are sure that we batched the entire folio and cleared
2234 * all PTEs, we can just optimize and stop right here.
2235 */
2236 if (nr_pages == folio_nr_pages(folio))
2237 goto walk_done;
2238 continue;
2239 walk_abort:
2240 ret = false;
2241 walk_done:
2242 page_vma_mapped_walk_done(&pvmw);
2243 break;
2244 }
2245
2246 mmu_notifier_invalidate_range_end(&range);
2247
2248 return ret;
2249 }
2250
invalid_migration_vma(struct vm_area_struct * vma,void * arg)2251 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
2252 {
2253 return vma_is_temporary_stack(vma);
2254 }
2255
folio_not_mapped(struct folio * folio)2256 static int folio_not_mapped(struct folio *folio)
2257 {
2258 return !folio_mapped(folio);
2259 }
2260
2261 /**
2262 * try_to_unmap - Try to remove all page table mappings to a folio.
2263 * @folio: The folio to unmap.
2264 * @flags: action and flags
2265 *
2266 * Tries to remove all the page table entries which are mapping this
2267 * folio. It is the caller's responsibility to check if the folio is
2268 * still mapped if needed (use TTU_SYNC to prevent accounting races).
2269 *
2270 * Context: Caller must hold the folio lock.
2271 */
try_to_unmap(struct folio * folio,enum ttu_flags flags)2272 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
2273 {
2274 struct rmap_walk_control rwc = {
2275 .rmap_one = try_to_unmap_one,
2276 .arg = (void *)flags,
2277 .done = folio_not_mapped,
2278 .anon_lock = folio_lock_anon_vma_read,
2279 };
2280
2281 if (flags & TTU_RMAP_LOCKED)
2282 rmap_walk_locked(folio, &rwc);
2283 else
2284 rmap_walk(folio, &rwc);
2285 }
2286
2287 /*
2288 * @arg: enum ttu_flags will be passed to this argument.
2289 *
2290 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
2291 * containing migration entries.
2292 */
try_to_migrate_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)2293 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
2294 unsigned long address, void *arg)
2295 {
2296 struct mm_struct *mm = vma->vm_mm;
2297 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2298 bool anon_exclusive, writable, ret = true;
2299 pte_t pteval;
2300 struct page *subpage;
2301 struct mmu_notifier_range range;
2302 enum ttu_flags flags = (enum ttu_flags)(long)arg;
2303 unsigned long pfn;
2304 unsigned long hsz = 0;
2305
2306 /*
2307 * When racing against e.g. zap_pte_range() on another cpu,
2308 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2309 * try_to_migrate() may return before page_mapped() has become false,
2310 * if page table locking is skipped: use TTU_SYNC to wait for that.
2311 */
2312 if (flags & TTU_SYNC)
2313 pvmw.flags = PVMW_SYNC;
2314
2315 /*
2316 * For THP, we have to assume the worse case ie pmd for invalidation.
2317 * For hugetlb, it could be much worse if we need to do pud
2318 * invalidation in the case of pmd sharing.
2319 *
2320 * Note that the page can not be free in this function as call of
2321 * try_to_unmap() must hold a reference on the page.
2322 */
2323 range.end = vma_address_end(&pvmw);
2324 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2325 address, range.end);
2326 if (folio_test_hugetlb(folio)) {
2327 /*
2328 * If sharing is possible, start and end will be adjusted
2329 * accordingly.
2330 */
2331 adjust_range_if_pmd_sharing_possible(vma, &range.start,
2332 &range.end);
2333
2334 /* We need the huge page size for set_huge_pte_at() */
2335 hsz = huge_page_size(hstate_vma(vma));
2336 }
2337 mmu_notifier_invalidate_range_start(&range);
2338
2339 while (page_vma_mapped_walk(&pvmw)) {
2340 /* PMD-mapped THP migration entry */
2341 if (!pvmw.pte) {
2342 if (flags & TTU_SPLIT_HUGE_PMD) {
2343 split_huge_pmd_locked(vma, pvmw.address,
2344 pvmw.pmd, true);
2345 ret = false;
2346 page_vma_mapped_walk_done(&pvmw);
2347 break;
2348 }
2349 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2350 subpage = folio_page(folio,
2351 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2352 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2353 !folio_test_pmd_mappable(folio), folio);
2354
2355 if (set_pmd_migration_entry(&pvmw, subpage)) {
2356 ret = false;
2357 page_vma_mapped_walk_done(&pvmw);
2358 break;
2359 }
2360 continue;
2361 #endif
2362 }
2363
2364 /* Unexpected PMD-mapped THP? */
2365 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2366
2367 /*
2368 * Handle PFN swap PTEs, such as device-exclusive ones, that
2369 * actually map pages.
2370 */
2371 pteval = ptep_get(pvmw.pte);
2372 if (likely(pte_present(pteval))) {
2373 pfn = pte_pfn(pteval);
2374 } else {
2375 pfn = swp_offset_pfn(pte_to_swp_entry(pteval));
2376 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
2377 }
2378
2379 subpage = folio_page(folio, pfn - folio_pfn(folio));
2380 address = pvmw.address;
2381 anon_exclusive = folio_test_anon(folio) &&
2382 PageAnonExclusive(subpage);
2383
2384 if (folio_test_hugetlb(folio)) {
2385 bool anon = folio_test_anon(folio);
2386
2387 /*
2388 * huge_pmd_unshare may unmap an entire PMD page.
2389 * There is no way of knowing exactly which PMDs may
2390 * be cached for this mm, so we must flush them all.
2391 * start/end were already adjusted above to cover this
2392 * range.
2393 */
2394 flush_cache_range(vma, range.start, range.end);
2395
2396 /*
2397 * To call huge_pmd_unshare, i_mmap_rwsem must be
2398 * held in write mode. Caller needs to explicitly
2399 * do this outside rmap routines.
2400 *
2401 * We also must hold hugetlb vma_lock in write mode.
2402 * Lock order dictates acquiring vma_lock BEFORE
2403 * i_mmap_rwsem. We can only try lock here and
2404 * fail if unsuccessful.
2405 */
2406 if (!anon) {
2407 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2408 if (!hugetlb_vma_trylock_write(vma)) {
2409 page_vma_mapped_walk_done(&pvmw);
2410 ret = false;
2411 break;
2412 }
2413 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2414 hugetlb_vma_unlock_write(vma);
2415 flush_tlb_range(vma,
2416 range.start, range.end);
2417
2418 /*
2419 * The ref count of the PMD page was
2420 * dropped which is part of the way map
2421 * counting is done for shared PMDs.
2422 * Return 'true' here. When there is
2423 * no other sharing, huge_pmd_unshare
2424 * returns false and we will unmap the
2425 * actual page and drop map count
2426 * to zero.
2427 */
2428 page_vma_mapped_walk_done(&pvmw);
2429 break;
2430 }
2431 hugetlb_vma_unlock_write(vma);
2432 }
2433 /* Nuke the hugetlb page table entry */
2434 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2435 if (pte_dirty(pteval))
2436 folio_mark_dirty(folio);
2437 writable = pte_write(pteval);
2438 } else if (likely(pte_present(pteval))) {
2439 flush_cache_page(vma, address, pfn);
2440 /* Nuke the page table entry. */
2441 if (should_defer_flush(mm, flags)) {
2442 /*
2443 * We clear the PTE but do not flush so potentially
2444 * a remote CPU could still be writing to the folio.
2445 * If the entry was previously clean then the
2446 * architecture must guarantee that a clear->dirty
2447 * transition on a cached TLB entry is written through
2448 * and traps if the PTE is unmapped.
2449 */
2450 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2451
2452 set_tlb_ubc_flush_pending(mm, pteval, address, address + PAGE_SIZE);
2453 } else {
2454 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2455 }
2456 if (pte_dirty(pteval))
2457 folio_mark_dirty(folio);
2458 writable = pte_write(pteval);
2459 } else {
2460 pte_clear(mm, address, pvmw.pte);
2461 writable = is_writable_device_private_entry(pte_to_swp_entry(pteval));
2462 }
2463
2464 VM_WARN_ON_FOLIO(writable && folio_test_anon(folio) &&
2465 !anon_exclusive, folio);
2466
2467 /* Update high watermark before we lower rss */
2468 update_hiwater_rss(mm);
2469
2470 if (PageHWPoison(subpage)) {
2471 VM_WARN_ON_FOLIO(folio_is_device_private(folio), folio);
2472
2473 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2474 if (folio_test_hugetlb(folio)) {
2475 hugetlb_count_sub(folio_nr_pages(folio), mm);
2476 set_huge_pte_at(mm, address, pvmw.pte, pteval,
2477 hsz);
2478 } else {
2479 dec_mm_counter(mm, mm_counter(folio));
2480 set_pte_at(mm, address, pvmw.pte, pteval);
2481 }
2482 } else if (likely(pte_present(pteval)) && pte_unused(pteval) &&
2483 !userfaultfd_armed(vma)) {
2484 /*
2485 * The guest indicated that the page content is of no
2486 * interest anymore. Simply discard the pte, vmscan
2487 * will take care of the rest.
2488 * A future reference will then fault in a new zero
2489 * page. When userfaultfd is active, we must not drop
2490 * this page though, as its main user (postcopy
2491 * migration) will not expect userfaults on already
2492 * copied pages.
2493 */
2494 dec_mm_counter(mm, mm_counter(folio));
2495 } else {
2496 swp_entry_t entry;
2497 pte_t swp_pte;
2498
2499 /*
2500 * arch_unmap_one() is expected to be a NOP on
2501 * architectures where we could have PFN swap PTEs,
2502 * so we'll not check/care.
2503 */
2504 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2505 if (folio_test_hugetlb(folio))
2506 set_huge_pte_at(mm, address, pvmw.pte,
2507 pteval, hsz);
2508 else
2509 set_pte_at(mm, address, pvmw.pte, pteval);
2510 ret = false;
2511 page_vma_mapped_walk_done(&pvmw);
2512 break;
2513 }
2514
2515 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2516 if (folio_test_hugetlb(folio)) {
2517 if (anon_exclusive &&
2518 hugetlb_try_share_anon_rmap(folio)) {
2519 set_huge_pte_at(mm, address, pvmw.pte,
2520 pteval, hsz);
2521 ret = false;
2522 page_vma_mapped_walk_done(&pvmw);
2523 break;
2524 }
2525 } else if (anon_exclusive &&
2526 folio_try_share_anon_rmap_pte(folio, subpage)) {
2527 set_pte_at(mm, address, pvmw.pte, pteval);
2528 ret = false;
2529 page_vma_mapped_walk_done(&pvmw);
2530 break;
2531 }
2532
2533 /*
2534 * Store the pfn of the page in a special migration
2535 * pte. do_swap_page() will wait until the migration
2536 * pte is removed and then restart fault handling.
2537 */
2538 if (writable)
2539 entry = make_writable_migration_entry(
2540 page_to_pfn(subpage));
2541 else if (anon_exclusive)
2542 entry = make_readable_exclusive_migration_entry(
2543 page_to_pfn(subpage));
2544 else
2545 entry = make_readable_migration_entry(
2546 page_to_pfn(subpage));
2547 if (likely(pte_present(pteval))) {
2548 if (pte_young(pteval))
2549 entry = make_migration_entry_young(entry);
2550 if (pte_dirty(pteval))
2551 entry = make_migration_entry_dirty(entry);
2552 swp_pte = swp_entry_to_pte(entry);
2553 if (pte_soft_dirty(pteval))
2554 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2555 if (pte_uffd_wp(pteval))
2556 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2557 } else {
2558 swp_pte = swp_entry_to_pte(entry);
2559 if (pte_swp_soft_dirty(pteval))
2560 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2561 if (pte_swp_uffd_wp(pteval))
2562 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2563 }
2564 if (folio_test_hugetlb(folio))
2565 set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2566 hsz);
2567 else
2568 set_pte_at(mm, address, pvmw.pte, swp_pte);
2569 trace_set_migration_pte(address, pte_val(swp_pte),
2570 folio_order(folio));
2571 /*
2572 * No need to invalidate here it will synchronize on
2573 * against the special swap migration pte.
2574 */
2575 }
2576
2577 if (unlikely(folio_test_hugetlb(folio)))
2578 hugetlb_remove_rmap(folio);
2579 else
2580 folio_remove_rmap_pte(folio, subpage, vma);
2581 if (vma->vm_flags & VM_LOCKED)
2582 mlock_drain_local();
2583 folio_put(folio);
2584 }
2585
2586 mmu_notifier_invalidate_range_end(&range);
2587
2588 return ret;
2589 }
2590
2591 /**
2592 * try_to_migrate - try to replace all page table mappings with swap entries
2593 * @folio: the folio to replace page table entries for
2594 * @flags: action and flags
2595 *
2596 * Tries to remove all the page table entries which are mapping this folio and
2597 * replace them with special swap entries. Caller must hold the folio lock.
2598 */
try_to_migrate(struct folio * folio,enum ttu_flags flags)2599 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2600 {
2601 struct rmap_walk_control rwc = {
2602 .rmap_one = try_to_migrate_one,
2603 .arg = (void *)flags,
2604 .done = folio_not_mapped,
2605 .anon_lock = folio_lock_anon_vma_read,
2606 };
2607
2608 /*
2609 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2610 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2611 */
2612 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2613 TTU_SYNC | TTU_BATCH_FLUSH)))
2614 return;
2615
2616 if (folio_is_zone_device(folio) &&
2617 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2618 return;
2619
2620 /*
2621 * During exec, a temporary VMA is setup and later moved.
2622 * The VMA is moved under the anon_vma lock but not the
2623 * page tables leading to a race where migration cannot
2624 * find the migration ptes. Rather than increasing the
2625 * locking requirements of exec(), migration skips
2626 * temporary VMAs until after exec() completes.
2627 */
2628 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2629 rwc.invalid_vma = invalid_migration_vma;
2630
2631 if (flags & TTU_RMAP_LOCKED)
2632 rmap_walk_locked(folio, &rwc);
2633 else
2634 rmap_walk(folio, &rwc);
2635 }
2636
2637 #ifdef CONFIG_DEVICE_PRIVATE
2638 /**
2639 * make_device_exclusive() - Mark a page for exclusive use by a device
2640 * @mm: mm_struct of associated target process
2641 * @addr: the virtual address to mark for exclusive device access
2642 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2643 * @foliop: folio pointer will be stored here on success.
2644 *
2645 * This function looks up the page mapped at the given address, grabs a
2646 * folio reference, locks the folio and replaces the PTE with special
2647 * device-exclusive PFN swap entry, preventing access through the process
2648 * page tables. The function will return with the folio locked and referenced.
2649 *
2650 * On fault, the device-exclusive entries are replaced with the original PTE
2651 * under folio lock, after calling MMU notifiers.
2652 *
2653 * Only anonymous non-hugetlb folios are supported and the VMA must have
2654 * write permissions such that we can fault in the anonymous page writable
2655 * in order to mark it exclusive. The caller must hold the mmap_lock in read
2656 * mode.
2657 *
2658 * A driver using this to program access from a device must use a mmu notifier
2659 * critical section to hold a device specific lock during programming. Once
2660 * programming is complete it should drop the folio lock and reference after
2661 * which point CPU access to the page will revoke the exclusive access.
2662 *
2663 * Notes:
2664 * #. This function always operates on individual PTEs mapping individual
2665 * pages. PMD-sized THPs are first remapped to be mapped by PTEs before
2666 * the conversion happens on a single PTE corresponding to @addr.
2667 * #. While concurrent access through the process page tables is prevented,
2668 * concurrent access through other page references (e.g., earlier GUP
2669 * invocation) is not handled and not supported.
2670 * #. device-exclusive entries are considered "clean" and "old" by core-mm.
2671 * Device drivers must update the folio state when informed by MMU
2672 * notifiers.
2673 *
2674 * Returns: pointer to mapped page on success, otherwise a negative error.
2675 */
make_device_exclusive(struct mm_struct * mm,unsigned long addr,void * owner,struct folio ** foliop)2676 struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr,
2677 void *owner, struct folio **foliop)
2678 {
2679 struct mmu_notifier_range range;
2680 struct folio *folio, *fw_folio;
2681 struct vm_area_struct *vma;
2682 struct folio_walk fw;
2683 struct page *page;
2684 swp_entry_t entry;
2685 pte_t swp_pte;
2686 int ret;
2687
2688 mmap_assert_locked(mm);
2689 addr = PAGE_ALIGN_DOWN(addr);
2690
2691 /*
2692 * Fault in the page writable and try to lock it; note that if the
2693 * address would already be marked for exclusive use by a device,
2694 * the GUP call would undo that first by triggering a fault.
2695 *
2696 * If any other device would already map this page exclusively, the
2697 * fault will trigger a conversion to an ordinary
2698 * (non-device-exclusive) PTE and issue a MMU_NOTIFY_EXCLUSIVE.
2699 */
2700 retry:
2701 page = get_user_page_vma_remote(mm, addr,
2702 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2703 &vma);
2704 if (IS_ERR(page))
2705 return page;
2706 folio = page_folio(page);
2707
2708 if (!folio_test_anon(folio) || folio_test_hugetlb(folio)) {
2709 folio_put(folio);
2710 return ERR_PTR(-EOPNOTSUPP);
2711 }
2712
2713 ret = folio_lock_killable(folio);
2714 if (ret) {
2715 folio_put(folio);
2716 return ERR_PTR(ret);
2717 }
2718
2719 /*
2720 * Inform secondary MMUs that we are going to convert this PTE to
2721 * device-exclusive, such that they unmap it now. Note that the
2722 * caller must filter this event out to prevent livelocks.
2723 */
2724 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2725 mm, addr, addr + PAGE_SIZE, owner);
2726 mmu_notifier_invalidate_range_start(&range);
2727
2728 /*
2729 * Let's do a second walk and make sure we still find the same page
2730 * mapped writable. Note that any page of an anonymous folio can
2731 * only be mapped writable using exactly one PTE ("exclusive"), so
2732 * there cannot be other mappings.
2733 */
2734 fw_folio = folio_walk_start(&fw, vma, addr, 0);
2735 if (fw_folio != folio || fw.page != page ||
2736 fw.level != FW_LEVEL_PTE || !pte_write(fw.pte)) {
2737 if (fw_folio)
2738 folio_walk_end(&fw, vma);
2739 mmu_notifier_invalidate_range_end(&range);
2740 folio_unlock(folio);
2741 folio_put(folio);
2742 goto retry;
2743 }
2744
2745 /* Nuke the page table entry so we get the uptodate dirty bit. */
2746 flush_cache_page(vma, addr, page_to_pfn(page));
2747 fw.pte = ptep_clear_flush(vma, addr, fw.ptep);
2748
2749 /* Set the dirty flag on the folio now the PTE is gone. */
2750 if (pte_dirty(fw.pte))
2751 folio_mark_dirty(folio);
2752
2753 /*
2754 * Store the pfn of the page in a special device-exclusive PFN swap PTE.
2755 * do_swap_page() will trigger the conversion back while holding the
2756 * folio lock.
2757 */
2758 entry = make_device_exclusive_entry(page_to_pfn(page));
2759 swp_pte = swp_entry_to_pte(entry);
2760 if (pte_soft_dirty(fw.pte))
2761 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2762 /* The pte is writable, uffd-wp does not apply. */
2763 set_pte_at(mm, addr, fw.ptep, swp_pte);
2764
2765 folio_walk_end(&fw, vma);
2766 mmu_notifier_invalidate_range_end(&range);
2767 *foliop = folio;
2768 return page;
2769 }
2770 EXPORT_SYMBOL_GPL(make_device_exclusive);
2771 #endif
2772
__put_anon_vma(struct anon_vma * anon_vma)2773 void __put_anon_vma(struct anon_vma *anon_vma)
2774 {
2775 struct anon_vma *root = anon_vma->root;
2776
2777 anon_vma_free(anon_vma);
2778 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2779 anon_vma_free(root);
2780 }
2781
rmap_walk_anon_lock(const struct folio * folio,struct rmap_walk_control * rwc)2782 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio,
2783 struct rmap_walk_control *rwc)
2784 {
2785 struct anon_vma *anon_vma;
2786
2787 if (rwc->anon_lock)
2788 return rwc->anon_lock(folio, rwc);
2789
2790 /*
2791 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2792 * because that depends on page_mapped(); but not all its usages
2793 * are holding mmap_lock. Users without mmap_lock are required to
2794 * take a reference count to prevent the anon_vma disappearing
2795 */
2796 anon_vma = folio_anon_vma(folio);
2797 if (!anon_vma)
2798 return NULL;
2799
2800 if (anon_vma_trylock_read(anon_vma))
2801 goto out;
2802
2803 if (rwc->try_lock) {
2804 anon_vma = NULL;
2805 rwc->contended = true;
2806 goto out;
2807 }
2808
2809 anon_vma_lock_read(anon_vma);
2810 out:
2811 return anon_vma;
2812 }
2813
2814 /*
2815 * rmap_walk_anon - do something to anonymous page using the object-based
2816 * rmap method
2817 * @folio: the folio to be handled
2818 * @rwc: control variable according to each walk type
2819 * @locked: caller holds relevant rmap lock
2820 *
2821 * Find all the mappings of a folio using the mapping pointer and the vma
2822 * chains contained in the anon_vma struct it points to.
2823 */
rmap_walk_anon(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2824 static void rmap_walk_anon(struct folio *folio,
2825 struct rmap_walk_control *rwc, bool locked)
2826 {
2827 struct anon_vma *anon_vma;
2828 pgoff_t pgoff_start, pgoff_end;
2829 struct anon_vma_chain *avc;
2830
2831 if (locked) {
2832 anon_vma = folio_anon_vma(folio);
2833 /* anon_vma disappear under us? */
2834 VM_BUG_ON_FOLIO(!anon_vma, folio);
2835 } else {
2836 anon_vma = rmap_walk_anon_lock(folio, rwc);
2837 }
2838 if (!anon_vma)
2839 return;
2840
2841 pgoff_start = folio_pgoff(folio);
2842 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2843 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2844 pgoff_start, pgoff_end) {
2845 struct vm_area_struct *vma = avc->vma;
2846 unsigned long address = vma_address(vma, pgoff_start,
2847 folio_nr_pages(folio));
2848
2849 VM_BUG_ON_VMA(address == -EFAULT, vma);
2850 cond_resched();
2851
2852 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2853 continue;
2854
2855 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2856 break;
2857 if (rwc->done && rwc->done(folio))
2858 break;
2859 }
2860
2861 if (!locked)
2862 anon_vma_unlock_read(anon_vma);
2863 }
2864
2865 /**
2866 * __rmap_walk_file() - Traverse the reverse mapping for a file-backed mapping
2867 * of a page mapped within a specified page cache object at a specified offset.
2868 *
2869 * @folio: Either the folio whose mappings to traverse, or if NULL,
2870 * the callbacks specified in @rwc will be configured such
2871 * as to be able to look up mappings correctly.
2872 * @mapping: The page cache object whose mapping VMAs we intend to
2873 * traverse. If @folio is non-NULL, this should be equal to
2874 * folio_mapping(folio).
2875 * @pgoff_start: The offset within @mapping of the page which we are
2876 * looking up. If @folio is non-NULL, this should be equal
2877 * to folio_pgoff(folio).
2878 * @nr_pages: The number of pages mapped by the mapping. If @folio is
2879 * non-NULL, this should be equal to folio_nr_pages(folio).
2880 * @rwc: The reverse mapping walk control object describing how
2881 * the traversal should proceed.
2882 * @locked: Is the @mapping already locked? If not, we acquire the
2883 * lock.
2884 */
__rmap_walk_file(struct folio * folio,struct address_space * mapping,pgoff_t pgoff_start,unsigned long nr_pages,struct rmap_walk_control * rwc,bool locked)2885 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping,
2886 pgoff_t pgoff_start, unsigned long nr_pages,
2887 struct rmap_walk_control *rwc, bool locked)
2888 {
2889 pgoff_t pgoff_end = pgoff_start + nr_pages - 1;
2890 struct vm_area_struct *vma;
2891
2892 VM_WARN_ON_FOLIO(folio && mapping != folio_mapping(folio), folio);
2893 VM_WARN_ON_FOLIO(folio && pgoff_start != folio_pgoff(folio), folio);
2894 VM_WARN_ON_FOLIO(folio && nr_pages != folio_nr_pages(folio), folio);
2895
2896 if (!locked) {
2897 if (i_mmap_trylock_read(mapping))
2898 goto lookup;
2899
2900 if (rwc->try_lock) {
2901 rwc->contended = true;
2902 return;
2903 }
2904
2905 i_mmap_lock_read(mapping);
2906 }
2907 lookup:
2908 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2909 pgoff_start, pgoff_end) {
2910 unsigned long address = vma_address(vma, pgoff_start, nr_pages);
2911
2912 VM_BUG_ON_VMA(address == -EFAULT, vma);
2913 cond_resched();
2914
2915 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2916 continue;
2917
2918 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2919 goto done;
2920 if (rwc->done && rwc->done(folio))
2921 goto done;
2922 }
2923 done:
2924 if (!locked)
2925 i_mmap_unlock_read(mapping);
2926 }
2927
2928 /*
2929 * rmap_walk_file - do something to file page using the object-based rmap method
2930 * @folio: the folio to be handled
2931 * @rwc: control variable according to each walk type
2932 * @locked: caller holds relevant rmap lock
2933 *
2934 * Find all the mappings of a folio using the mapping pointer and the vma chains
2935 * contained in the address_space struct it points to.
2936 */
rmap_walk_file(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2937 static void rmap_walk_file(struct folio *folio,
2938 struct rmap_walk_control *rwc, bool locked)
2939 {
2940 /*
2941 * The folio lock not only makes sure that folio->mapping cannot
2942 * suddenly be NULLified by truncation, it makes sure that the structure
2943 * at mapping cannot be freed and reused yet, so we can safely take
2944 * mapping->i_mmap_rwsem.
2945 */
2946 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2947
2948 if (!folio->mapping)
2949 return;
2950
2951 __rmap_walk_file(folio, folio->mapping, folio->index,
2952 folio_nr_pages(folio), rwc, locked);
2953 }
2954
rmap_walk(struct folio * folio,struct rmap_walk_control * rwc)2955 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2956 {
2957 if (unlikely(folio_test_ksm(folio)))
2958 rmap_walk_ksm(folio, rwc);
2959 else if (folio_test_anon(folio))
2960 rmap_walk_anon(folio, rwc, false);
2961 else
2962 rmap_walk_file(folio, rwc, false);
2963 }
2964
2965 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct folio * folio,struct rmap_walk_control * rwc)2966 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2967 {
2968 /* no ksm support for now */
2969 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2970 if (folio_test_anon(folio))
2971 rmap_walk_anon(folio, rwc, true);
2972 else
2973 rmap_walk_file(folio, rwc, true);
2974 }
2975
2976 #ifdef CONFIG_HUGETLB_PAGE
2977 /*
2978 * The following two functions are for anonymous (private mapped) hugepages.
2979 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2980 * and no lru code, because we handle hugepages differently from common pages.
2981 */
hugetlb_add_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address,rmap_t flags)2982 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2983 unsigned long address, rmap_t flags)
2984 {
2985 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2986 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2987
2988 atomic_inc(&folio->_entire_mapcount);
2989 atomic_inc(&folio->_large_mapcount);
2990 if (flags & RMAP_EXCLUSIVE)
2991 SetPageAnonExclusive(&folio->page);
2992 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2993 PageAnonExclusive(&folio->page), folio);
2994 }
2995
hugetlb_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address)2996 void hugetlb_add_new_anon_rmap(struct folio *folio,
2997 struct vm_area_struct *vma, unsigned long address)
2998 {
2999 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
3000
3001 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
3002 /* increment count (starts at -1) */
3003 atomic_set(&folio->_entire_mapcount, 0);
3004 atomic_set(&folio->_large_mapcount, 0);
3005 folio_clear_hugetlb_restore_reserve(folio);
3006 __folio_set_anon(folio, vma, address, true);
3007 SetPageAnonExclusive(&folio->page);
3008 }
3009 #endif /* CONFIG_HUGETLB_PAGE */
3010