xref: /linux/include/linux/pagemap.h (revision f2e74ecfba1b0d407f04b671a240cc65e309e529)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4 
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18 
19 struct folio_batch;
20 
21 unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 					pgoff_t start, pgoff_t end);
23 
invalidate_remote_inode(struct inode * inode)24 static inline void invalidate_remote_inode(struct inode *inode)
25 {
26 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 	    S_ISLNK(inode->i_mode))
28 		invalidate_mapping_pages(inode->i_mapping, 0, -1);
29 }
30 int invalidate_inode_pages2(struct address_space *mapping);
31 int invalidate_inode_pages2_range(struct address_space *mapping,
32 		pgoff_t start, pgoff_t end);
33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
35 int filemap_invalidate_pages(struct address_space *mapping,
36 			     loff_t pos, loff_t end, bool nowait);
37 
38 int write_inode_now(struct inode *, int sync);
39 int filemap_fdatawrite(struct address_space *);
40 int filemap_flush(struct address_space *);
41 int filemap_flush_nr(struct address_space *mapping, long *nr_to_write);
42 int filemap_fdatawait_keep_errors(struct address_space *mapping);
43 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
44 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
45 		loff_t start_byte, loff_t end_byte);
46 int filemap_invalidate_inode(struct inode *inode, bool flush,
47 			     loff_t start, loff_t end);
48 
filemap_fdatawait(struct address_space * mapping)49 static inline int filemap_fdatawait(struct address_space *mapping)
50 {
51 	return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
52 }
53 
54 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
55 int filemap_write_and_wait_range(struct address_space *mapping,
56 		loff_t lstart, loff_t lend);
57 int filemap_fdatawrite_range(struct address_space *mapping,
58 		loff_t start, loff_t end);
59 int filemap_check_errors(struct address_space *mapping);
60 void __filemap_set_wb_err(struct address_space *mapping, int err);
61 int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
62 
filemap_write_and_wait(struct address_space * mapping)63 static inline int filemap_write_and_wait(struct address_space *mapping)
64 {
65 	return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
66 }
67 
68 /**
69  * filemap_set_wb_err - set a writeback error on an address_space
70  * @mapping: mapping in which to set writeback error
71  * @err: error to be set in mapping
72  *
73  * When writeback fails in some way, we must record that error so that
74  * userspace can be informed when fsync and the like are called.  We endeavor
75  * to report errors on any file that was open at the time of the error.  Some
76  * internal callers also need to know when writeback errors have occurred.
77  *
78  * When a writeback error occurs, most filesystems will want to call
79  * filemap_set_wb_err to record the error in the mapping so that it will be
80  * automatically reported whenever fsync is called on the file.
81  */
filemap_set_wb_err(struct address_space * mapping,int err)82 static inline void filemap_set_wb_err(struct address_space *mapping, int err)
83 {
84 	/* Fastpath for common case of no error */
85 	if (unlikely(err))
86 		__filemap_set_wb_err(mapping, err);
87 }
88 
89 /**
90  * filemap_check_wb_err - has an error occurred since the mark was sampled?
91  * @mapping: mapping to check for writeback errors
92  * @since: previously-sampled errseq_t
93  *
94  * Grab the errseq_t value from the mapping, and see if it has changed "since"
95  * the given value was sampled.
96  *
97  * If it has then report the latest error set, otherwise return 0.
98  */
filemap_check_wb_err(struct address_space * mapping,errseq_t since)99 static inline int filemap_check_wb_err(struct address_space *mapping,
100 					errseq_t since)
101 {
102 	return errseq_check(&mapping->wb_err, since);
103 }
104 
105 /**
106  * filemap_sample_wb_err - sample the current errseq_t to test for later errors
107  * @mapping: mapping to be sampled
108  *
109  * Writeback errors are always reported relative to a particular sample point
110  * in the past. This function provides those sample points.
111  */
filemap_sample_wb_err(struct address_space * mapping)112 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
113 {
114 	return errseq_sample(&mapping->wb_err);
115 }
116 
117 /**
118  * file_sample_sb_err - sample the current errseq_t to test for later errors
119  * @file: file pointer to be sampled
120  *
121  * Grab the most current superblock-level errseq_t value for the given
122  * struct file.
123  */
file_sample_sb_err(struct file * file)124 static inline errseq_t file_sample_sb_err(struct file *file)
125 {
126 	return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
127 }
128 
129 /*
130  * Flush file data before changing attributes.  Caller must hold any locks
131  * required to prevent further writes to this file until we're done setting
132  * flags.
133  */
inode_drain_writes(struct inode * inode)134 static inline int inode_drain_writes(struct inode *inode)
135 {
136 	inode_dio_wait(inode);
137 	return filemap_write_and_wait(inode->i_mapping);
138 }
139 
mapping_empty(const struct address_space * mapping)140 static inline bool mapping_empty(const struct address_space *mapping)
141 {
142 	return xa_empty(&mapping->i_pages);
143 }
144 
145 /*
146  * mapping_shrinkable - test if page cache state allows inode reclaim
147  * @mapping: the page cache mapping
148  *
149  * This checks the mapping's cache state for the pupose of inode
150  * reclaim and LRU management.
151  *
152  * The caller is expected to hold the i_lock, but is not required to
153  * hold the i_pages lock, which usually protects cache state. That's
154  * because the i_lock and the list_lru lock that protect the inode and
155  * its LRU state don't nest inside the irq-safe i_pages lock.
156  *
157  * Cache deletions are performed under the i_lock, which ensures that
158  * when an inode goes empty, it will reliably get queued on the LRU.
159  *
160  * Cache additions do not acquire the i_lock and may race with this
161  * check, in which case we'll report the inode as shrinkable when it
162  * has cache pages. This is okay: the shrinker also checks the
163  * refcount and the referenced bit, which will be elevated or set in
164  * the process of adding new cache pages to an inode.
165  */
mapping_shrinkable(const struct address_space * mapping)166 static inline bool mapping_shrinkable(const struct address_space *mapping)
167 {
168 	void *head;
169 
170 	/*
171 	 * On highmem systems, there could be lowmem pressure from the
172 	 * inodes before there is highmem pressure from the page
173 	 * cache. Make inodes shrinkable regardless of cache state.
174 	 */
175 	if (IS_ENABLED(CONFIG_HIGHMEM))
176 		return true;
177 
178 	/* Cache completely empty? Shrink away. */
179 	head = rcu_access_pointer(mapping->i_pages.xa_head);
180 	if (!head)
181 		return true;
182 
183 	/*
184 	 * The xarray stores single offset-0 entries directly in the
185 	 * head pointer, which allows non-resident page cache entries
186 	 * to escape the shadow shrinker's list of xarray nodes. The
187 	 * inode shrinker needs to pick them up under memory pressure.
188 	 */
189 	if (!xa_is_node(head) && xa_is_value(head))
190 		return true;
191 
192 	return false;
193 }
194 
195 /*
196  * Bits in mapping->flags.
197  */
198 enum mapping_flags {
199 	AS_EIO		= 0,	/* IO error on async write */
200 	AS_ENOSPC	= 1,	/* ENOSPC on async write */
201 	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
202 	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
203 	AS_EXITING	= 4, 	/* final truncate in progress */
204 	/* writeback related tags are not used */
205 	AS_NO_WRITEBACK_TAGS = 5,
206 	AS_RELEASE_ALWAYS = 6,	/* Call ->release_folio(), even if no private data */
207 	AS_STABLE_WRITES = 7,	/* must wait for writeback before modifying
208 				   folio contents */
209 	AS_INACCESSIBLE = 8,	/* Do not attempt direct R/W access to the mapping */
210 	AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM = 9,
211 	AS_KERNEL_FILE = 10,	/* mapping for a fake kernel file that shouldn't
212 				   account usage to user cgroups */
213 	/* Bits 16-25 are used for FOLIO_ORDER */
214 	AS_FOLIO_ORDER_BITS = 5,
215 	AS_FOLIO_ORDER_MIN = 16,
216 	AS_FOLIO_ORDER_MAX = AS_FOLIO_ORDER_MIN + AS_FOLIO_ORDER_BITS,
217 };
218 
219 #define AS_FOLIO_ORDER_BITS_MASK ((1u << AS_FOLIO_ORDER_BITS) - 1)
220 #define AS_FOLIO_ORDER_MIN_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MIN)
221 #define AS_FOLIO_ORDER_MAX_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MAX)
222 #define AS_FOLIO_ORDER_MASK (AS_FOLIO_ORDER_MIN_MASK | AS_FOLIO_ORDER_MAX_MASK)
223 
224 /**
225  * mapping_set_error - record a writeback error in the address_space
226  * @mapping: the mapping in which an error should be set
227  * @error: the error to set in the mapping
228  *
229  * When writeback fails in some way, we must record that error so that
230  * userspace can be informed when fsync and the like are called.  We endeavor
231  * to report errors on any file that was open at the time of the error.  Some
232  * internal callers also need to know when writeback errors have occurred.
233  *
234  * When a writeback error occurs, most filesystems will want to call
235  * mapping_set_error to record the error in the mapping so that it can be
236  * reported when the application calls fsync(2).
237  */
mapping_set_error(struct address_space * mapping,int error)238 static inline void mapping_set_error(struct address_space *mapping, int error)
239 {
240 	if (likely(!error))
241 		return;
242 
243 	/* Record in wb_err for checkers using errseq_t based tracking */
244 	__filemap_set_wb_err(mapping, error);
245 
246 	/* Record it in superblock */
247 	if (mapping->host)
248 		errseq_set(&mapping->host->i_sb->s_wb_err, error);
249 
250 	/* Record it in flags for now, for legacy callers */
251 	if (error == -ENOSPC)
252 		set_bit(AS_ENOSPC, &mapping->flags);
253 	else
254 		set_bit(AS_EIO, &mapping->flags);
255 }
256 
mapping_set_unevictable(struct address_space * mapping)257 static inline void mapping_set_unevictable(struct address_space *mapping)
258 {
259 	set_bit(AS_UNEVICTABLE, &mapping->flags);
260 }
261 
mapping_clear_unevictable(struct address_space * mapping)262 static inline void mapping_clear_unevictable(struct address_space *mapping)
263 {
264 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
265 }
266 
mapping_unevictable(const struct address_space * mapping)267 static inline bool mapping_unevictable(const struct address_space *mapping)
268 {
269 	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
270 }
271 
mapping_set_exiting(struct address_space * mapping)272 static inline void mapping_set_exiting(struct address_space *mapping)
273 {
274 	set_bit(AS_EXITING, &mapping->flags);
275 }
276 
mapping_exiting(const struct address_space * mapping)277 static inline int mapping_exiting(const struct address_space *mapping)
278 {
279 	return test_bit(AS_EXITING, &mapping->flags);
280 }
281 
mapping_set_no_writeback_tags(struct address_space * mapping)282 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
283 {
284 	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
285 }
286 
mapping_use_writeback_tags(const struct address_space * mapping)287 static inline int mapping_use_writeback_tags(const struct address_space *mapping)
288 {
289 	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
290 }
291 
mapping_release_always(const struct address_space * mapping)292 static inline bool mapping_release_always(const struct address_space *mapping)
293 {
294 	return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
295 }
296 
mapping_set_release_always(struct address_space * mapping)297 static inline void mapping_set_release_always(struct address_space *mapping)
298 {
299 	set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
300 }
301 
mapping_clear_release_always(struct address_space * mapping)302 static inline void mapping_clear_release_always(struct address_space *mapping)
303 {
304 	clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
305 }
306 
mapping_stable_writes(const struct address_space * mapping)307 static inline bool mapping_stable_writes(const struct address_space *mapping)
308 {
309 	return test_bit(AS_STABLE_WRITES, &mapping->flags);
310 }
311 
mapping_set_stable_writes(struct address_space * mapping)312 static inline void mapping_set_stable_writes(struct address_space *mapping)
313 {
314 	set_bit(AS_STABLE_WRITES, &mapping->flags);
315 }
316 
mapping_clear_stable_writes(struct address_space * mapping)317 static inline void mapping_clear_stable_writes(struct address_space *mapping)
318 {
319 	clear_bit(AS_STABLE_WRITES, &mapping->flags);
320 }
321 
mapping_set_inaccessible(struct address_space * mapping)322 static inline void mapping_set_inaccessible(struct address_space *mapping)
323 {
324 	/*
325 	 * It's expected inaccessible mappings are also unevictable. Compaction
326 	 * migrate scanner (isolate_migratepages_block()) relies on this to
327 	 * reduce page locking.
328 	 */
329 	set_bit(AS_UNEVICTABLE, &mapping->flags);
330 	set_bit(AS_INACCESSIBLE, &mapping->flags);
331 }
332 
mapping_inaccessible(const struct address_space * mapping)333 static inline bool mapping_inaccessible(const struct address_space *mapping)
334 {
335 	return test_bit(AS_INACCESSIBLE, &mapping->flags);
336 }
337 
mapping_set_writeback_may_deadlock_on_reclaim(struct address_space * mapping)338 static inline void mapping_set_writeback_may_deadlock_on_reclaim(struct address_space *mapping)
339 {
340 	set_bit(AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM, &mapping->flags);
341 }
342 
mapping_writeback_may_deadlock_on_reclaim(const struct address_space * mapping)343 static inline bool mapping_writeback_may_deadlock_on_reclaim(const struct address_space *mapping)
344 {
345 	return test_bit(AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM, &mapping->flags);
346 }
347 
mapping_gfp_mask(const struct address_space * mapping)348 static inline gfp_t mapping_gfp_mask(const struct address_space *mapping)
349 {
350 	return mapping->gfp_mask;
351 }
352 
353 /* Restricts the given gfp_mask to what the mapping allows. */
mapping_gfp_constraint(const struct address_space * mapping,gfp_t gfp_mask)354 static inline gfp_t mapping_gfp_constraint(const struct address_space *mapping,
355 		gfp_t gfp_mask)
356 {
357 	return mapping_gfp_mask(mapping) & gfp_mask;
358 }
359 
360 /*
361  * This is non-atomic.  Only to be used before the mapping is activated.
362  * Probably needs a barrier...
363  */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)364 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
365 {
366 	m->gfp_mask = mask;
367 }
368 
369 /*
370  * There are some parts of the kernel which assume that PMD entries
371  * are exactly HPAGE_PMD_ORDER.  Those should be fixed, but until then,
372  * limit the maximum allocation order to PMD size.  I'm not aware of any
373  * assumptions about maximum order if THP are disabled, but 8 seems like
374  * a good order (that's 1MB if you're using 4kB pages)
375  */
376 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
377 #define PREFERRED_MAX_PAGECACHE_ORDER	HPAGE_PMD_ORDER
378 #else
379 #define PREFERRED_MAX_PAGECACHE_ORDER	8
380 #endif
381 
382 /*
383  * xas_split_alloc() does not support arbitrary orders. This implies no
384  * 512MB THP on ARM64 with 64KB base page size.
385  */
386 #define MAX_XAS_ORDER		(XA_CHUNK_SHIFT * 2 - 1)
387 #define MAX_PAGECACHE_ORDER	min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER)
388 
389 /*
390  * mapping_max_folio_size_supported() - Check the max folio size supported
391  *
392  * The filesystem should call this function at mount time if there is a
393  * requirement on the folio mapping size in the page cache.
394  */
mapping_max_folio_size_supported(void)395 static inline size_t mapping_max_folio_size_supported(void)
396 {
397 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
398 		return 1U << (PAGE_SHIFT + MAX_PAGECACHE_ORDER);
399 	return PAGE_SIZE;
400 }
401 
402 /*
403  * mapping_set_folio_order_range() - Set the orders supported by a file.
404  * @mapping: The address space of the file.
405  * @min: Minimum folio order (between 0-MAX_PAGECACHE_ORDER inclusive).
406  * @max: Maximum folio order (between @min-MAX_PAGECACHE_ORDER inclusive).
407  *
408  * The filesystem should call this function in its inode constructor to
409  * indicate which base size (min) and maximum size (max) of folio the VFS
410  * can use to cache the contents of the file.  This should only be used
411  * if the filesystem needs special handling of folio sizes (ie there is
412  * something the core cannot know).
413  * Do not tune it based on, eg, i_size.
414  *
415  * Context: This should not be called while the inode is active as it
416  * is non-atomic.
417  */
mapping_set_folio_order_range(struct address_space * mapping,unsigned int min,unsigned int max)418 static inline void mapping_set_folio_order_range(struct address_space *mapping,
419 						 unsigned int min,
420 						 unsigned int max)
421 {
422 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
423 		return;
424 
425 	if (min > MAX_PAGECACHE_ORDER)
426 		min = MAX_PAGECACHE_ORDER;
427 
428 	if (max > MAX_PAGECACHE_ORDER)
429 		max = MAX_PAGECACHE_ORDER;
430 
431 	if (max < min)
432 		max = min;
433 
434 	mapping->flags = (mapping->flags & ~AS_FOLIO_ORDER_MASK) |
435 		(min << AS_FOLIO_ORDER_MIN) | (max << AS_FOLIO_ORDER_MAX);
436 }
437 
mapping_set_folio_min_order(struct address_space * mapping,unsigned int min)438 static inline void mapping_set_folio_min_order(struct address_space *mapping,
439 					       unsigned int min)
440 {
441 	mapping_set_folio_order_range(mapping, min, MAX_PAGECACHE_ORDER);
442 }
443 
444 /**
445  * mapping_set_large_folios() - Indicate the file supports large folios.
446  * @mapping: The address space of the file.
447  *
448  * The filesystem should call this function in its inode constructor to
449  * indicate that the VFS can use large folios to cache the contents of
450  * the file.
451  *
452  * Context: This should not be called while the inode is active as it
453  * is non-atomic.
454  */
mapping_set_large_folios(struct address_space * mapping)455 static inline void mapping_set_large_folios(struct address_space *mapping)
456 {
457 	mapping_set_folio_order_range(mapping, 0, MAX_PAGECACHE_ORDER);
458 }
459 
460 static inline unsigned int
mapping_max_folio_order(const struct address_space * mapping)461 mapping_max_folio_order(const struct address_space *mapping)
462 {
463 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
464 		return 0;
465 	return (mapping->flags & AS_FOLIO_ORDER_MAX_MASK) >> AS_FOLIO_ORDER_MAX;
466 }
467 
468 static inline unsigned int
mapping_min_folio_order(const struct address_space * mapping)469 mapping_min_folio_order(const struct address_space *mapping)
470 {
471 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
472 		return 0;
473 	return (mapping->flags & AS_FOLIO_ORDER_MIN_MASK) >> AS_FOLIO_ORDER_MIN;
474 }
475 
476 static inline unsigned long
mapping_min_folio_nrpages(const struct address_space * mapping)477 mapping_min_folio_nrpages(const struct address_space *mapping)
478 {
479 	return 1UL << mapping_min_folio_order(mapping);
480 }
481 
482 static inline unsigned long
mapping_min_folio_nrbytes(const struct address_space * mapping)483 mapping_min_folio_nrbytes(const struct address_space *mapping)
484 {
485 	return mapping_min_folio_nrpages(mapping) << PAGE_SHIFT;
486 }
487 
488 /**
489  * mapping_align_index() - Align index for this mapping.
490  * @mapping: The address_space.
491  * @index: The page index.
492  *
493  * The index of a folio must be naturally aligned.  If you are adding a
494  * new folio to the page cache and need to know what index to give it,
495  * call this function.
496  */
mapping_align_index(const struct address_space * mapping,pgoff_t index)497 static inline pgoff_t mapping_align_index(const struct address_space *mapping,
498 					  pgoff_t index)
499 {
500 	return round_down(index, mapping_min_folio_nrpages(mapping));
501 }
502 
503 /*
504  * Large folio support currently depends on THP.  These dependencies are
505  * being worked on but are not yet fixed.
506  */
mapping_large_folio_support(const struct address_space * mapping)507 static inline bool mapping_large_folio_support(const struct address_space *mapping)
508 {
509 	/* AS_FOLIO_ORDER is only reasonable for pagecache folios */
510 	VM_WARN_ONCE((unsigned long)mapping & FOLIO_MAPPING_ANON,
511 			"Anonymous mapping always supports large folio");
512 
513 	return mapping_max_folio_order(mapping) > 0;
514 }
515 
516 /* Return the maximum folio size for this pagecache mapping, in bytes. */
mapping_max_folio_size(const struct address_space * mapping)517 static inline size_t mapping_max_folio_size(const struct address_space *mapping)
518 {
519 	return PAGE_SIZE << mapping_max_folio_order(mapping);
520 }
521 
filemap_nr_thps(const struct address_space * mapping)522 static inline int filemap_nr_thps(const struct address_space *mapping)
523 {
524 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
525 	return atomic_read(&mapping->nr_thps);
526 #else
527 	return 0;
528 #endif
529 }
530 
filemap_nr_thps_inc(struct address_space * mapping)531 static inline void filemap_nr_thps_inc(struct address_space *mapping)
532 {
533 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
534 	if (!mapping_large_folio_support(mapping))
535 		atomic_inc(&mapping->nr_thps);
536 #else
537 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
538 #endif
539 }
540 
filemap_nr_thps_dec(struct address_space * mapping)541 static inline void filemap_nr_thps_dec(struct address_space *mapping)
542 {
543 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
544 	if (!mapping_large_folio_support(mapping))
545 		atomic_dec(&mapping->nr_thps);
546 #else
547 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
548 #endif
549 }
550 
551 struct address_space *folio_mapping(const struct folio *folio);
552 
553 /**
554  * folio_flush_mapping - Find the file mapping this folio belongs to.
555  * @folio: The folio.
556  *
557  * For folios which are in the page cache, return the mapping that this
558  * page belongs to.  Anonymous folios return NULL, even if they're in
559  * the swap cache.  Other kinds of folio also return NULL.
560  *
561  * This is ONLY used by architecture cache flushing code.  If you aren't
562  * writing cache flushing code, you want either folio_mapping() or
563  * folio_file_mapping().
564  */
folio_flush_mapping(struct folio * folio)565 static inline struct address_space *folio_flush_mapping(struct folio *folio)
566 {
567 	if (unlikely(folio_test_swapcache(folio)))
568 		return NULL;
569 
570 	return folio_mapping(folio);
571 }
572 
573 /**
574  * folio_inode - Get the host inode for this folio.
575  * @folio: The folio.
576  *
577  * For folios which are in the page cache, return the inode that this folio
578  * belongs to.
579  *
580  * Do not call this for folios which aren't in the page cache.
581  */
folio_inode(struct folio * folio)582 static inline struct inode *folio_inode(struct folio *folio)
583 {
584 	return folio->mapping->host;
585 }
586 
587 /**
588  * folio_attach_private - Attach private data to a folio.
589  * @folio: Folio to attach data to.
590  * @data: Data to attach to folio.
591  *
592  * Attaching private data to a folio increments the page's reference count.
593  * The data must be detached before the folio will be freed.
594  */
folio_attach_private(struct folio * folio,void * data)595 static inline void folio_attach_private(struct folio *folio, void *data)
596 {
597 	folio_get(folio);
598 	folio->private = data;
599 	folio_set_private(folio);
600 }
601 
602 /**
603  * folio_change_private - Change private data on a folio.
604  * @folio: Folio to change the data on.
605  * @data: Data to set on the folio.
606  *
607  * Change the private data attached to a folio and return the old
608  * data.  The page must previously have had data attached and the data
609  * must be detached before the folio will be freed.
610  *
611  * Return: Data that was previously attached to the folio.
612  */
folio_change_private(struct folio * folio,void * data)613 static inline void *folio_change_private(struct folio *folio, void *data)
614 {
615 	void *old = folio_get_private(folio);
616 
617 	folio->private = data;
618 	return old;
619 }
620 
621 /**
622  * folio_detach_private - Detach private data from a folio.
623  * @folio: Folio to detach data from.
624  *
625  * Removes the data that was previously attached to the folio and decrements
626  * the refcount on the page.
627  *
628  * Return: Data that was attached to the folio.
629  */
folio_detach_private(struct folio * folio)630 static inline void *folio_detach_private(struct folio *folio)
631 {
632 	void *data = folio_get_private(folio);
633 
634 	if (!folio_test_private(folio))
635 		return NULL;
636 	folio_clear_private(folio);
637 	folio->private = NULL;
638 	folio_put(folio);
639 
640 	return data;
641 }
642 
attach_page_private(struct page * page,void * data)643 static inline void attach_page_private(struct page *page, void *data)
644 {
645 	folio_attach_private(page_folio(page), data);
646 }
647 
detach_page_private(struct page * page)648 static inline void *detach_page_private(struct page *page)
649 {
650 	return folio_detach_private(page_folio(page));
651 }
652 
653 #ifdef CONFIG_NUMA
654 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order);
655 #else
filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order)656 static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
657 {
658 	return folio_alloc_noprof(gfp, order);
659 }
660 #endif
661 
662 #define filemap_alloc_folio(...)				\
663 	alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__))
664 
__page_cache_alloc(gfp_t gfp)665 static inline struct page *__page_cache_alloc(gfp_t gfp)
666 {
667 	return &filemap_alloc_folio(gfp, 0)->page;
668 }
669 
readahead_gfp_mask(struct address_space * x)670 static inline gfp_t readahead_gfp_mask(struct address_space *x)
671 {
672 	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
673 }
674 
675 typedef int filler_t(struct file *, struct folio *);
676 
677 pgoff_t page_cache_next_miss(struct address_space *mapping,
678 			     pgoff_t index, unsigned long max_scan);
679 pgoff_t page_cache_prev_miss(struct address_space *mapping,
680 			     pgoff_t index, unsigned long max_scan);
681 
682 /**
683  * typedef fgf_t - Flags for getting folios from the page cache.
684  *
685  * Most users of the page cache will not need to use these flags;
686  * there are convenience functions such as filemap_get_folio() and
687  * filemap_lock_folio().  For users which need more control over exactly
688  * what is done with the folios, these flags to __filemap_get_folio()
689  * are available.
690  *
691  * * %FGP_ACCESSED - The folio will be marked accessed.
692  * * %FGP_LOCK - The folio is returned locked.
693  * * %FGP_CREAT - If no folio is present then a new folio is allocated,
694  *   added to the page cache and the VM's LRU list.  The folio is
695  *   returned locked.
696  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
697  *   folio is already in cache.  If the folio was allocated, unlock it
698  *   before returning so the caller can do the same dance.
699  * * %FGP_WRITE - The folio will be written to by the caller.
700  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
701  * * %FGP_NOWAIT - Don't block on the folio lock.
702  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
703  * * %FGP_DONTCACHE - Uncached buffered IO
704  * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
705  *   implementation.
706  */
707 typedef unsigned int __bitwise fgf_t;
708 
709 #define FGP_ACCESSED		((__force fgf_t)0x00000001)
710 #define FGP_LOCK		((__force fgf_t)0x00000002)
711 #define FGP_CREAT		((__force fgf_t)0x00000004)
712 #define FGP_WRITE		((__force fgf_t)0x00000008)
713 #define FGP_NOFS		((__force fgf_t)0x00000010)
714 #define FGP_NOWAIT		((__force fgf_t)0x00000020)
715 #define FGP_FOR_MMAP		((__force fgf_t)0x00000040)
716 #define FGP_STABLE		((__force fgf_t)0x00000080)
717 #define FGP_DONTCACHE		((__force fgf_t)0x00000100)
718 #define FGF_GET_ORDER(fgf)	(((__force unsigned)fgf) >> 26)	/* top 6 bits */
719 
720 #define FGP_WRITEBEGIN		(FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
721 
filemap_get_order(size_t size)722 static inline unsigned int filemap_get_order(size_t size)
723 {
724 	unsigned int shift = ilog2(size);
725 
726 	if (shift <= PAGE_SHIFT)
727 		return 0;
728 
729 	return shift - PAGE_SHIFT;
730 }
731 
732 /**
733  * fgf_set_order - Encode a length in the fgf_t flags.
734  * @size: The suggested size of the folio to create.
735  *
736  * The caller of __filemap_get_folio() can use this to suggest a preferred
737  * size for the folio that is created.  If there is already a folio at
738  * the index, it will be returned, no matter what its size.  If a folio
739  * is freshly created, it may be of a different size than requested
740  * due to alignment constraints, memory pressure, or the presence of
741  * other folios at nearby indices.
742  */
fgf_set_order(size_t size)743 static inline fgf_t fgf_set_order(size_t size)
744 {
745 	unsigned int order = filemap_get_order(size);
746 
747 	if (!order)
748 		return 0;
749 	return (__force fgf_t)(order << 26);
750 }
751 
752 void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
753 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
754 		fgf_t fgp_flags, gfp_t gfp);
755 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
756 		fgf_t fgp_flags, gfp_t gfp);
757 
758 /**
759  * write_begin_get_folio - Get folio for write_begin with flags.
760  * @iocb: The kiocb passed from write_begin (may be NULL).
761  * @mapping: The address space to search.
762  * @index: The page cache index.
763  * @len: Length of data being written.
764  *
765  * This is a helper for filesystem write_begin() implementations.
766  * It wraps __filemap_get_folio(), setting appropriate flags in
767  * the write begin context.
768  *
769  * Return: A folio or an ERR_PTR.
770  */
write_begin_get_folio(const struct kiocb * iocb,struct address_space * mapping,pgoff_t index,size_t len)771 static inline struct folio *write_begin_get_folio(const struct kiocb *iocb,
772 		  struct address_space *mapping, pgoff_t index, size_t len)
773 {
774         fgf_t fgp_flags = FGP_WRITEBEGIN;
775 
776         fgp_flags |= fgf_set_order(len);
777 
778         if (iocb && iocb->ki_flags & IOCB_DONTCACHE)
779                 fgp_flags |= FGP_DONTCACHE;
780 
781         return __filemap_get_folio(mapping, index, fgp_flags,
782                                    mapping_gfp_mask(mapping));
783 }
784 
785 /**
786  * filemap_get_folio - Find and get a folio.
787  * @mapping: The address_space to search.
788  * @index: The page index.
789  *
790  * Looks up the page cache entry at @mapping & @index.  If a folio is
791  * present, it is returned with an increased refcount.
792  *
793  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
794  * this index.  Will not return a shadow, swap or DAX entry.
795  */
filemap_get_folio(struct address_space * mapping,pgoff_t index)796 static inline struct folio *filemap_get_folio(struct address_space *mapping,
797 					pgoff_t index)
798 {
799 	return __filemap_get_folio(mapping, index, 0, 0);
800 }
801 
802 /**
803  * filemap_lock_folio - Find and lock a folio.
804  * @mapping: The address_space to search.
805  * @index: The page index.
806  *
807  * Looks up the page cache entry at @mapping & @index.  If a folio is
808  * present, it is returned locked with an increased refcount.
809  *
810  * Context: May sleep.
811  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
812  * this index.  Will not return a shadow, swap or DAX entry.
813  */
filemap_lock_folio(struct address_space * mapping,pgoff_t index)814 static inline struct folio *filemap_lock_folio(struct address_space *mapping,
815 					pgoff_t index)
816 {
817 	return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
818 }
819 
820 /**
821  * filemap_grab_folio - grab a folio from the page cache
822  * @mapping: The address space to search
823  * @index: The page index
824  *
825  * Looks up the page cache entry at @mapping & @index. If no folio is found,
826  * a new folio is created. The folio is locked, marked as accessed, and
827  * returned.
828  *
829  * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
830  * and failed to create a folio.
831  */
filemap_grab_folio(struct address_space * mapping,pgoff_t index)832 static inline struct folio *filemap_grab_folio(struct address_space *mapping,
833 					pgoff_t index)
834 {
835 	return __filemap_get_folio(mapping, index,
836 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
837 			mapping_gfp_mask(mapping));
838 }
839 
840 /**
841  * find_get_page - find and get a page reference
842  * @mapping: the address_space to search
843  * @offset: the page index
844  *
845  * Looks up the page cache slot at @mapping & @offset.  If there is a
846  * page cache page, it is returned with an increased refcount.
847  *
848  * Otherwise, %NULL is returned.
849  */
find_get_page(struct address_space * mapping,pgoff_t offset)850 static inline struct page *find_get_page(struct address_space *mapping,
851 					pgoff_t offset)
852 {
853 	return pagecache_get_page(mapping, offset, 0, 0);
854 }
855 
find_get_page_flags(struct address_space * mapping,pgoff_t offset,fgf_t fgp_flags)856 static inline struct page *find_get_page_flags(struct address_space *mapping,
857 					pgoff_t offset, fgf_t fgp_flags)
858 {
859 	return pagecache_get_page(mapping, offset, fgp_flags, 0);
860 }
861 
862 /**
863  * find_lock_page - locate, pin and lock a pagecache page
864  * @mapping: the address_space to search
865  * @index: the page index
866  *
867  * Looks up the page cache entry at @mapping & @index.  If there is a
868  * page cache page, it is returned locked and with an increased
869  * refcount.
870  *
871  * Context: May sleep.
872  * Return: A struct page or %NULL if there is no page in the cache for this
873  * index.
874  */
find_lock_page(struct address_space * mapping,pgoff_t index)875 static inline struct page *find_lock_page(struct address_space *mapping,
876 					pgoff_t index)
877 {
878 	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
879 }
880 
881 /**
882  * find_or_create_page - locate or add a pagecache page
883  * @mapping: the page's address_space
884  * @index: the page's index into the mapping
885  * @gfp_mask: page allocation mode
886  *
887  * Looks up the page cache slot at @mapping & @offset.  If there is a
888  * page cache page, it is returned locked and with an increased
889  * refcount.
890  *
891  * If the page is not present, a new page is allocated using @gfp_mask
892  * and added to the page cache and the VM's LRU list.  The page is
893  * returned locked and with an increased refcount.
894  *
895  * On memory exhaustion, %NULL is returned.
896  *
897  * find_or_create_page() may sleep, even if @gfp_flags specifies an
898  * atomic allocation!
899  */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)900 static inline struct page *find_or_create_page(struct address_space *mapping,
901 					pgoff_t index, gfp_t gfp_mask)
902 {
903 	return pagecache_get_page(mapping, index,
904 					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
905 					gfp_mask);
906 }
907 
908 /**
909  * grab_cache_page_nowait - returns locked page at given index in given cache
910  * @mapping: target address_space
911  * @index: the page index
912  *
913  * Returns locked page at given index in given cache, creating it if
914  * needed, but do not wait if the page is locked or to reclaim memory.
915  * This is intended for speculative data generators, where the data can
916  * be regenerated if the page couldn't be grabbed.  This routine should
917  * be safe to call while holding the lock for another page.
918  *
919  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
920  * and deadlock against the caller's locked page.
921  */
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)922 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
923 				pgoff_t index)
924 {
925 	return pagecache_get_page(mapping, index,
926 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
927 			mapping_gfp_mask(mapping));
928 }
929 
930 /**
931  * folio_next_index - Get the index of the next folio.
932  * @folio: The current folio.
933  *
934  * Return: The index of the folio which follows this folio in the file.
935  */
folio_next_index(const struct folio * folio)936 static inline pgoff_t folio_next_index(const struct folio *folio)
937 {
938 	return folio->index + folio_nr_pages(folio);
939 }
940 
941 /**
942  * folio_next_pos - Get the file position of the next folio.
943  * @folio: The current folio.
944  *
945  * Return: The position of the folio which follows this folio in the file.
946  */
folio_next_pos(const struct folio * folio)947 static inline loff_t folio_next_pos(const struct folio *folio)
948 {
949 	return (loff_t)folio_next_index(folio) << PAGE_SHIFT;
950 }
951 
952 /**
953  * folio_file_page - The page for a particular index.
954  * @folio: The folio which contains this index.
955  * @index: The index we want to look up.
956  *
957  * Sometimes after looking up a folio in the page cache, we need to
958  * obtain the specific page for an index (eg a page fault).
959  *
960  * Return: The page containing the file data for this index.
961  */
folio_file_page(struct folio * folio,pgoff_t index)962 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
963 {
964 	return folio_page(folio, index & (folio_nr_pages(folio) - 1));
965 }
966 
967 /**
968  * folio_contains - Does this folio contain this index?
969  * @folio: The folio.
970  * @index: The page index within the file.
971  *
972  * Context: The caller should have the folio locked and ensure
973  * e.g., shmem did not move this folio to the swap cache.
974  * Return: true or false.
975  */
folio_contains(const struct folio * folio,pgoff_t index)976 static inline bool folio_contains(const struct folio *folio, pgoff_t index)
977 {
978 	VM_WARN_ON_ONCE_FOLIO(folio_test_swapcache(folio), folio);
979 	return index - folio->index < folio_nr_pages(folio);
980 }
981 
982 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
983 		pgoff_t end, struct folio_batch *fbatch);
984 unsigned filemap_get_folios_contig(struct address_space *mapping,
985 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
986 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
987 		pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
988 unsigned filemap_get_folios_dirty(struct address_space *mapping,
989 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
990 
991 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
992 		filler_t *filler, struct file *file);
993 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
994 		gfp_t flags);
995 struct page *read_cache_page(struct address_space *, pgoff_t index,
996 		filler_t *filler, struct file *file);
997 extern struct page * read_cache_page_gfp(struct address_space *mapping,
998 				pgoff_t index, gfp_t gfp_mask);
999 
read_mapping_page(struct address_space * mapping,pgoff_t index,struct file * file)1000 static inline struct page *read_mapping_page(struct address_space *mapping,
1001 				pgoff_t index, struct file *file)
1002 {
1003 	return read_cache_page(mapping, index, NULL, file);
1004 }
1005 
read_mapping_folio(struct address_space * mapping,pgoff_t index,struct file * file)1006 static inline struct folio *read_mapping_folio(struct address_space *mapping,
1007 				pgoff_t index, struct file *file)
1008 {
1009 	return read_cache_folio(mapping, index, NULL, file);
1010 }
1011 
1012 /**
1013  * page_pgoff - Calculate the logical page offset of this page.
1014  * @folio: The folio containing this page.
1015  * @page: The page which we need the offset of.
1016  *
1017  * For file pages, this is the offset from the beginning of the file
1018  * in units of PAGE_SIZE.  For anonymous pages, this is the offset from
1019  * the beginning of the anon_vma in units of PAGE_SIZE.  This will
1020  * return nonsense for KSM pages.
1021  *
1022  * Context: Caller must have a reference on the folio or otherwise
1023  * prevent it from being split or freed.
1024  *
1025  * Return: The offset in units of PAGE_SIZE.
1026  */
page_pgoff(const struct folio * folio,const struct page * page)1027 static inline pgoff_t page_pgoff(const struct folio *folio,
1028 		const struct page *page)
1029 {
1030 	return folio->index + folio_page_idx(folio, page);
1031 }
1032 
1033 /**
1034  * folio_pos - Returns the byte position of this folio in its file.
1035  * @folio: The folio.
1036  */
folio_pos(const struct folio * folio)1037 static inline loff_t folio_pos(const struct folio *folio)
1038 {
1039 	return ((loff_t)folio->index) * PAGE_SIZE;
1040 }
1041 
1042 /*
1043  * Return byte-offset into filesystem object for page.
1044  */
page_offset(struct page * page)1045 static inline loff_t page_offset(struct page *page)
1046 {
1047 	struct folio *folio = page_folio(page);
1048 
1049 	return folio_pos(folio) + folio_page_idx(folio, page) * PAGE_SIZE;
1050 }
1051 
1052 /*
1053  * Get the offset in PAGE_SIZE (even for hugetlb folios).
1054  */
folio_pgoff(const struct folio * folio)1055 static inline pgoff_t folio_pgoff(const struct folio *folio)
1056 {
1057 	return folio->index;
1058 }
1059 
linear_page_index(const struct vm_area_struct * vma,const unsigned long address)1060 static inline pgoff_t linear_page_index(const struct vm_area_struct *vma,
1061 					const unsigned long address)
1062 {
1063 	pgoff_t pgoff;
1064 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1065 	pgoff += vma->vm_pgoff;
1066 	return pgoff;
1067 }
1068 
1069 struct wait_page_key {
1070 	struct folio *folio;
1071 	int bit_nr;
1072 	int page_match;
1073 };
1074 
1075 struct wait_page_queue {
1076 	struct folio *folio;
1077 	int bit_nr;
1078 	wait_queue_entry_t wait;
1079 };
1080 
wake_page_match(struct wait_page_queue * wait_page,struct wait_page_key * key)1081 static inline bool wake_page_match(struct wait_page_queue *wait_page,
1082 				  struct wait_page_key *key)
1083 {
1084 	if (wait_page->folio != key->folio)
1085 	       return false;
1086 	key->page_match = 1;
1087 
1088 	if (wait_page->bit_nr != key->bit_nr)
1089 		return false;
1090 
1091 	return true;
1092 }
1093 
1094 void __folio_lock(struct folio *folio);
1095 int __folio_lock_killable(struct folio *folio);
1096 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
1097 void unlock_page(struct page *page);
1098 void folio_unlock(struct folio *folio);
1099 
1100 /**
1101  * folio_trylock() - Attempt to lock a folio.
1102  * @folio: The folio to attempt to lock.
1103  *
1104  * Sometimes it is undesirable to wait for a folio to be unlocked (eg
1105  * when the locks are being taken in the wrong order, or if making
1106  * progress through a batch of folios is more important than processing
1107  * them in order).  Usually folio_lock() is the correct function to call.
1108  *
1109  * Context: Any context.
1110  * Return: Whether the lock was successfully acquired.
1111  */
folio_trylock(struct folio * folio)1112 static inline bool folio_trylock(struct folio *folio)
1113 {
1114 	return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
1115 }
1116 
1117 /*
1118  * Return true if the page was successfully locked
1119  */
trylock_page(struct page * page)1120 static inline bool trylock_page(struct page *page)
1121 {
1122 	return folio_trylock(page_folio(page));
1123 }
1124 
1125 /**
1126  * folio_lock() - Lock this folio.
1127  * @folio: The folio to lock.
1128  *
1129  * The folio lock protects against many things, probably more than it
1130  * should.  It is primarily held while a folio is being brought uptodate,
1131  * either from its backing file or from swap.  It is also held while a
1132  * folio is being truncated from its address_space, so holding the lock
1133  * is sufficient to keep folio->mapping stable.
1134  *
1135  * The folio lock is also held while write() is modifying the page to
1136  * provide POSIX atomicity guarantees (as long as the write does not
1137  * cross a page boundary).  Other modifications to the data in the folio
1138  * do not hold the folio lock and can race with writes, eg DMA and stores
1139  * to mapped pages.
1140  *
1141  * Context: May sleep.  If you need to acquire the locks of two or
1142  * more folios, they must be in order of ascending index, if they are
1143  * in the same address_space.  If they are in different address_spaces,
1144  * acquire the lock of the folio which belongs to the address_space which
1145  * has the lowest address in memory first.
1146  */
folio_lock(struct folio * folio)1147 static inline void folio_lock(struct folio *folio)
1148 {
1149 	might_sleep();
1150 	if (!folio_trylock(folio))
1151 		__folio_lock(folio);
1152 }
1153 
1154 /**
1155  * lock_page() - Lock the folio containing this page.
1156  * @page: The page to lock.
1157  *
1158  * See folio_lock() for a description of what the lock protects.
1159  * This is a legacy function and new code should probably use folio_lock()
1160  * instead.
1161  *
1162  * Context: May sleep.  Pages in the same folio share a lock, so do not
1163  * attempt to lock two pages which share a folio.
1164  */
lock_page(struct page * page)1165 static inline void lock_page(struct page *page)
1166 {
1167 	struct folio *folio;
1168 	might_sleep();
1169 
1170 	folio = page_folio(page);
1171 	if (!folio_trylock(folio))
1172 		__folio_lock(folio);
1173 }
1174 
1175 /**
1176  * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1177  * @folio: The folio to lock.
1178  *
1179  * Attempts to lock the folio, like folio_lock(), except that the sleep
1180  * to acquire the lock is interruptible by a fatal signal.
1181  *
1182  * Context: May sleep; see folio_lock().
1183  * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1184  */
folio_lock_killable(struct folio * folio)1185 static inline int folio_lock_killable(struct folio *folio)
1186 {
1187 	might_sleep();
1188 	if (!folio_trylock(folio))
1189 		return __folio_lock_killable(folio);
1190 	return 0;
1191 }
1192 
1193 /*
1194  * folio_lock_or_retry - Lock the folio, unless this would block and the
1195  * caller indicated that it can handle a retry.
1196  *
1197  * Return value and mmap_lock implications depend on flags; see
1198  * __folio_lock_or_retry().
1199  */
folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1200 static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1201 					     struct vm_fault *vmf)
1202 {
1203 	might_sleep();
1204 	if (!folio_trylock(folio))
1205 		return __folio_lock_or_retry(folio, vmf);
1206 	return 0;
1207 }
1208 
1209 /*
1210  * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1211  * and should not be used directly.
1212  */
1213 void folio_wait_bit(struct folio *folio, int bit_nr);
1214 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1215 
1216 /*
1217  * Wait for a folio to be unlocked.
1218  *
1219  * This must be called with the caller "holding" the folio,
1220  * ie with increased folio reference count so that the folio won't
1221  * go away during the wait.
1222  */
folio_wait_locked(struct folio * folio)1223 static inline void folio_wait_locked(struct folio *folio)
1224 {
1225 	if (folio_test_locked(folio))
1226 		folio_wait_bit(folio, PG_locked);
1227 }
1228 
folio_wait_locked_killable(struct folio * folio)1229 static inline int folio_wait_locked_killable(struct folio *folio)
1230 {
1231 	if (!folio_test_locked(folio))
1232 		return 0;
1233 	return folio_wait_bit_killable(folio, PG_locked);
1234 }
1235 
1236 void folio_end_read(struct folio *folio, bool success);
1237 void wait_on_page_writeback(struct page *page);
1238 void folio_wait_writeback(struct folio *folio);
1239 int folio_wait_writeback_killable(struct folio *folio);
1240 void end_page_writeback(struct page *page);
1241 void folio_end_writeback(struct folio *folio);
1242 void folio_end_writeback_no_dropbehind(struct folio *folio);
1243 void folio_end_dropbehind(struct folio *folio);
1244 void folio_wait_stable(struct folio *folio);
1245 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1246 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1247 void __folio_cancel_dirty(struct folio *folio);
folio_cancel_dirty(struct folio * folio)1248 static inline void folio_cancel_dirty(struct folio *folio)
1249 {
1250 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1251 	if (folio_test_dirty(folio))
1252 		__folio_cancel_dirty(folio);
1253 }
1254 bool folio_clear_dirty_for_io(struct folio *folio);
1255 bool clear_page_dirty_for_io(struct page *page);
1256 void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1257 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1258 
1259 #ifdef CONFIG_MIGRATION
1260 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1261 		struct folio *src, enum migrate_mode mode);
1262 #else
1263 #define filemap_migrate_folio NULL
1264 #endif
1265 void folio_end_private_2(struct folio *folio);
1266 void folio_wait_private_2(struct folio *folio);
1267 int folio_wait_private_2_killable(struct folio *folio);
1268 
1269 /*
1270  * Fault in userspace address range.
1271  */
1272 size_t fault_in_writeable(char __user *uaddr, size_t size);
1273 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1274 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1275 size_t fault_in_readable(const char __user *uaddr, size_t size);
1276 
1277 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1278 		pgoff_t index, gfp_t gfp);
1279 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1280 		pgoff_t index, gfp_t gfp);
1281 void filemap_remove_folio(struct folio *folio);
1282 void __filemap_remove_folio(struct folio *folio, void *shadow);
1283 void replace_page_cache_folio(struct folio *old, struct folio *new);
1284 void delete_from_page_cache_batch(struct address_space *mapping,
1285 				  struct folio_batch *fbatch);
1286 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1287 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1288 		int whence);
1289 
1290 /* Must be non-static for BPF error injection */
1291 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1292 		pgoff_t index, gfp_t gfp, void **shadowp);
1293 
1294 bool filemap_range_has_writeback(struct address_space *mapping,
1295 				 loff_t start_byte, loff_t end_byte);
1296 
1297 /**
1298  * filemap_range_needs_writeback - check if range potentially needs writeback
1299  * @mapping:           address space within which to check
1300  * @start_byte:        offset in bytes where the range starts
1301  * @end_byte:          offset in bytes where the range ends (inclusive)
1302  *
1303  * Find at least one page in the range supplied, usually used to check if
1304  * direct writing in this range will trigger a writeback. Used by O_DIRECT
1305  * read/write with IOCB_NOWAIT, to see if the caller needs to do
1306  * filemap_write_and_wait_range() before proceeding.
1307  *
1308  * Return: %true if the caller should do filemap_write_and_wait_range() before
1309  * doing O_DIRECT to a page in this range, %false otherwise.
1310  */
filemap_range_needs_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)1311 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1312 						 loff_t start_byte,
1313 						 loff_t end_byte)
1314 {
1315 	if (!mapping->nrpages)
1316 		return false;
1317 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1318 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1319 		return false;
1320 	return filemap_range_has_writeback(mapping, start_byte, end_byte);
1321 }
1322 
1323 /**
1324  * struct readahead_control - Describes a readahead request.
1325  *
1326  * A readahead request is for consecutive pages.  Filesystems which
1327  * implement the ->readahead method should call readahead_folio() or
1328  * __readahead_batch() in a loop and attempt to start reads into each
1329  * folio in the request.
1330  *
1331  * Most of the fields in this struct are private and should be accessed
1332  * by the functions below.
1333  *
1334  * @file: The file, used primarily by network filesystems for authentication.
1335  *	  May be NULL if invoked internally by the filesystem.
1336  * @mapping: Readahead this filesystem object.
1337  * @ra: File readahead state.  May be NULL.
1338  */
1339 struct readahead_control {
1340 	struct file *file;
1341 	struct address_space *mapping;
1342 	struct file_ra_state *ra;
1343 /* private: use the readahead_* accessors instead */
1344 	pgoff_t _index;
1345 	unsigned int _nr_pages;
1346 	unsigned int _batch_count;
1347 	bool dropbehind;
1348 	bool _workingset;
1349 	unsigned long _pflags;
1350 };
1351 
1352 #define DEFINE_READAHEAD(ractl, f, r, m, i)				\
1353 	struct readahead_control ractl = {				\
1354 		.file = f,						\
1355 		.mapping = m,						\
1356 		.ra = r,						\
1357 		._index = i,						\
1358 	}
1359 
1360 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
1361 
1362 void page_cache_ra_unbounded(struct readahead_control *,
1363 		unsigned long nr_to_read, unsigned long lookahead_count);
1364 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1365 void page_cache_async_ra(struct readahead_control *, struct folio *,
1366 		unsigned long req_count);
1367 void readahead_expand(struct readahead_control *ractl,
1368 		      loff_t new_start, size_t new_len);
1369 
1370 /**
1371  * page_cache_sync_readahead - generic file readahead
1372  * @mapping: address_space which holds the pagecache and I/O vectors
1373  * @ra: file_ra_state which holds the readahead state
1374  * @file: Used by the filesystem for authentication.
1375  * @index: Index of first page to be read.
1376  * @req_count: Total number of pages being read by the caller.
1377  *
1378  * page_cache_sync_readahead() should be called when a cache miss happened:
1379  * it will submit the read.  The readahead logic may decide to piggyback more
1380  * pages onto the read request if access patterns suggest it will improve
1381  * performance.
1382  */
1383 static inline
page_cache_sync_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t index,unsigned long req_count)1384 void page_cache_sync_readahead(struct address_space *mapping,
1385 		struct file_ra_state *ra, struct file *file, pgoff_t index,
1386 		unsigned long req_count)
1387 {
1388 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1389 	page_cache_sync_ra(&ractl, req_count);
1390 }
1391 
1392 /**
1393  * page_cache_async_readahead - file readahead for marked pages
1394  * @mapping: address_space which holds the pagecache and I/O vectors
1395  * @ra: file_ra_state which holds the readahead state
1396  * @file: Used by the filesystem for authentication.
1397  * @folio: The folio which triggered the readahead call.
1398  * @req_count: Total number of pages being read by the caller.
1399  *
1400  * page_cache_async_readahead() should be called when a page is used which
1401  * is marked as PageReadahead; this is a marker to suggest that the application
1402  * has used up enough of the readahead window that we should start pulling in
1403  * more pages.
1404  */
1405 static inline
page_cache_async_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,struct folio * folio,unsigned long req_count)1406 void page_cache_async_readahead(struct address_space *mapping,
1407 		struct file_ra_state *ra, struct file *file,
1408 		struct folio *folio, unsigned long req_count)
1409 {
1410 	DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index);
1411 	page_cache_async_ra(&ractl, folio, req_count);
1412 }
1413 
__readahead_folio(struct readahead_control * ractl)1414 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1415 {
1416 	struct folio *folio;
1417 
1418 	BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1419 	ractl->_nr_pages -= ractl->_batch_count;
1420 	ractl->_index += ractl->_batch_count;
1421 
1422 	if (!ractl->_nr_pages) {
1423 		ractl->_batch_count = 0;
1424 		return NULL;
1425 	}
1426 
1427 	folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1428 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1429 	ractl->_batch_count = folio_nr_pages(folio);
1430 
1431 	return folio;
1432 }
1433 
1434 /**
1435  * readahead_folio - Get the next folio to read.
1436  * @ractl: The current readahead request.
1437  *
1438  * Context: The folio is locked.  The caller should unlock the folio once
1439  * all I/O to that folio has completed.
1440  * Return: A pointer to the next folio, or %NULL if we are done.
1441  */
readahead_folio(struct readahead_control * ractl)1442 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1443 {
1444 	struct folio *folio = __readahead_folio(ractl);
1445 
1446 	if (folio)
1447 		folio_put(folio);
1448 	return folio;
1449 }
1450 
__readahead_batch(struct readahead_control * rac,struct page ** array,unsigned int array_sz)1451 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1452 		struct page **array, unsigned int array_sz)
1453 {
1454 	unsigned int i = 0;
1455 	XA_STATE(xas, &rac->mapping->i_pages, 0);
1456 	struct folio *folio;
1457 
1458 	BUG_ON(rac->_batch_count > rac->_nr_pages);
1459 	rac->_nr_pages -= rac->_batch_count;
1460 	rac->_index += rac->_batch_count;
1461 	rac->_batch_count = 0;
1462 
1463 	xas_set(&xas, rac->_index);
1464 	rcu_read_lock();
1465 	xas_for_each(&xas, folio, rac->_index + rac->_nr_pages - 1) {
1466 		if (xas_retry(&xas, folio))
1467 			continue;
1468 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1469 		array[i++] = folio_page(folio, 0);
1470 		rac->_batch_count += folio_nr_pages(folio);
1471 		if (i == array_sz)
1472 			break;
1473 	}
1474 	rcu_read_unlock();
1475 
1476 	return i;
1477 }
1478 
1479 /**
1480  * readahead_pos - The byte offset into the file of this readahead request.
1481  * @rac: The readahead request.
1482  */
readahead_pos(const struct readahead_control * rac)1483 static inline loff_t readahead_pos(const struct readahead_control *rac)
1484 {
1485 	return (loff_t)rac->_index * PAGE_SIZE;
1486 }
1487 
1488 /**
1489  * readahead_length - The number of bytes in this readahead request.
1490  * @rac: The readahead request.
1491  */
readahead_length(const struct readahead_control * rac)1492 static inline size_t readahead_length(const struct readahead_control *rac)
1493 {
1494 	return rac->_nr_pages * PAGE_SIZE;
1495 }
1496 
1497 /**
1498  * readahead_index - The index of the first page in this readahead request.
1499  * @rac: The readahead request.
1500  */
readahead_index(const struct readahead_control * rac)1501 static inline pgoff_t readahead_index(const struct readahead_control *rac)
1502 {
1503 	return rac->_index;
1504 }
1505 
1506 /**
1507  * readahead_count - The number of pages in this readahead request.
1508  * @rac: The readahead request.
1509  */
readahead_count(const struct readahead_control * rac)1510 static inline unsigned int readahead_count(const struct readahead_control *rac)
1511 {
1512 	return rac->_nr_pages;
1513 }
1514 
1515 /**
1516  * readahead_batch_length - The number of bytes in the current batch.
1517  * @rac: The readahead request.
1518  */
readahead_batch_length(const struct readahead_control * rac)1519 static inline size_t readahead_batch_length(const struct readahead_control *rac)
1520 {
1521 	return rac->_batch_count * PAGE_SIZE;
1522 }
1523 
dir_pages(const struct inode * inode)1524 static inline unsigned long dir_pages(const struct inode *inode)
1525 {
1526 	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1527 			       PAGE_SHIFT;
1528 }
1529 
1530 /**
1531  * folio_mkwrite_check_truncate - check if folio was truncated
1532  * @folio: the folio to check
1533  * @inode: the inode to check the folio against
1534  *
1535  * Return: the number of bytes in the folio up to EOF,
1536  * or -EFAULT if the folio was truncated.
1537  */
folio_mkwrite_check_truncate(const struct folio * folio,const struct inode * inode)1538 static inline ssize_t folio_mkwrite_check_truncate(const struct folio *folio,
1539 						   const struct inode *inode)
1540 {
1541 	loff_t size = i_size_read(inode);
1542 	pgoff_t index = size >> PAGE_SHIFT;
1543 	size_t offset = offset_in_folio(folio, size);
1544 
1545 	if (!folio->mapping)
1546 		return -EFAULT;
1547 
1548 	/* folio is wholly inside EOF */
1549 	if (folio_next_index(folio) - 1 < index)
1550 		return folio_size(folio);
1551 	/* folio is wholly past EOF */
1552 	if (folio->index > index || !offset)
1553 		return -EFAULT;
1554 	/* folio is partially inside EOF */
1555 	return offset;
1556 }
1557 
1558 /**
1559  * i_blocks_per_folio - How many blocks fit in this folio.
1560  * @inode: The inode which contains the blocks.
1561  * @folio: The folio.
1562  *
1563  * If the block size is larger than the size of this folio, return zero.
1564  *
1565  * Context: The caller should hold a refcount on the folio to prevent it
1566  * from being split.
1567  * Return: The number of filesystem blocks covered by this folio.
1568  */
1569 static inline
i_blocks_per_folio(const struct inode * inode,const struct folio * folio)1570 unsigned int i_blocks_per_folio(const struct inode *inode,
1571 				const struct folio *folio)
1572 {
1573 	return folio_size(folio) >> inode->i_blkbits;
1574 }
1575 #endif /* _LINUX_PAGEMAP_H */
1576