1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 #include <linux/buffer_head.h> 40 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/pagemap.h> 45 46 /* How many pages do we try to swap or page in/out together? As a power of 2 */ 47 int page_cluster; 48 const int page_cluster_max = 31; 49 50 struct cpu_fbatches { 51 /* 52 * The following folio batches are grouped together because they are protected 53 * by disabling preemption (and interrupts remain enabled). 54 */ 55 local_lock_t lock; 56 struct folio_batch lru_add; 57 struct folio_batch lru_deactivate_file; 58 struct folio_batch lru_deactivate; 59 struct folio_batch lru_lazyfree; 60 #ifdef CONFIG_SMP 61 struct folio_batch lru_activate; 62 #endif 63 /* Protecting the following batches which require disabling interrupts */ 64 local_lock_t lock_irq; 65 struct folio_batch lru_move_tail; 66 }; 67 68 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = { 69 .lock = INIT_LOCAL_LOCK(lock), 70 .lock_irq = INIT_LOCAL_LOCK(lock_irq), 71 }; 72 73 static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp, 74 unsigned long *flagsp) 75 { 76 if (folio_test_lru(folio)) { 77 folio_lruvec_relock_irqsave(folio, lruvecp, flagsp); 78 lruvec_del_folio(*lruvecp, folio); 79 __folio_clear_lru_flags(folio); 80 } 81 } 82 83 /* 84 * This path almost never happens for VM activity - pages are normally freed 85 * in batches. But it gets used by networking - and for compound pages. 86 */ 87 static void page_cache_release(struct folio *folio) 88 { 89 struct lruvec *lruvec = NULL; 90 unsigned long flags; 91 92 __page_cache_release(folio, &lruvec, &flags); 93 if (lruvec) 94 unlock_page_lruvec_irqrestore(lruvec, flags); 95 } 96 97 void __folio_put(struct folio *folio) 98 { 99 if (unlikely(folio_is_zone_device(folio))) { 100 free_zone_device_folio(folio); 101 return; 102 } 103 104 if (folio_test_hugetlb(folio)) { 105 free_huge_folio(folio); 106 return; 107 } 108 109 page_cache_release(folio); 110 folio_unqueue_deferred_split(folio); 111 mem_cgroup_uncharge(folio); 112 free_unref_page(&folio->page, folio_order(folio)); 113 } 114 EXPORT_SYMBOL(__folio_put); 115 116 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio); 117 118 static void lru_add(struct lruvec *lruvec, struct folio *folio) 119 { 120 int was_unevictable = folio_test_clear_unevictable(folio); 121 long nr_pages = folio_nr_pages(folio); 122 123 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 124 125 /* 126 * Is an smp_mb__after_atomic() still required here, before 127 * folio_evictable() tests the mlocked flag, to rule out the possibility 128 * of stranding an evictable folio on an unevictable LRU? I think 129 * not, because __munlock_folio() only clears the mlocked flag 130 * while the LRU lock is held. 131 * 132 * (That is not true of __page_cache_release(), and not necessarily 133 * true of folios_put(): but those only clear the mlocked flag after 134 * folio_put_testzero() has excluded any other users of the folio.) 135 */ 136 if (folio_evictable(folio)) { 137 if (was_unevictable) 138 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 139 } else { 140 folio_clear_active(folio); 141 folio_set_unevictable(folio); 142 /* 143 * folio->mlock_count = !!folio_test_mlocked(folio)? 144 * But that leaves __mlock_folio() in doubt whether another 145 * actor has already counted the mlock or not. Err on the 146 * safe side, underestimate, let page reclaim fix it, rather 147 * than leaving a page on the unevictable LRU indefinitely. 148 */ 149 folio->mlock_count = 0; 150 if (!was_unevictable) 151 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 152 } 153 154 lruvec_add_folio(lruvec, folio); 155 trace_mm_lru_insertion(folio); 156 } 157 158 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn) 159 { 160 int i; 161 struct lruvec *lruvec = NULL; 162 unsigned long flags = 0; 163 164 for (i = 0; i < folio_batch_count(fbatch); i++) { 165 struct folio *folio = fbatch->folios[i]; 166 167 folio_lruvec_relock_irqsave(folio, &lruvec, &flags); 168 move_fn(lruvec, folio); 169 170 folio_set_lru(folio); 171 } 172 173 if (lruvec) 174 unlock_page_lruvec_irqrestore(lruvec, flags); 175 folios_put(fbatch); 176 } 177 178 static void __folio_batch_add_and_move(struct folio_batch __percpu *fbatch, 179 struct folio *folio, move_fn_t move_fn, 180 bool on_lru, bool disable_irq) 181 { 182 unsigned long flags; 183 184 if (on_lru && !folio_test_clear_lru(folio)) 185 return; 186 187 folio_get(folio); 188 189 if (disable_irq) 190 local_lock_irqsave(&cpu_fbatches.lock_irq, flags); 191 else 192 local_lock(&cpu_fbatches.lock); 193 194 if (!folio_batch_add(this_cpu_ptr(fbatch), folio) || folio_test_large(folio) || 195 lru_cache_disabled()) 196 folio_batch_move_lru(this_cpu_ptr(fbatch), move_fn); 197 198 if (disable_irq) 199 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags); 200 else 201 local_unlock(&cpu_fbatches.lock); 202 } 203 204 #define folio_batch_add_and_move(folio, op, on_lru) \ 205 __folio_batch_add_and_move( \ 206 &cpu_fbatches.op, \ 207 folio, \ 208 op, \ 209 on_lru, \ 210 offsetof(struct cpu_fbatches, op) >= offsetof(struct cpu_fbatches, lock_irq) \ 211 ) 212 213 static void lru_move_tail(struct lruvec *lruvec, struct folio *folio) 214 { 215 if (folio_test_unevictable(folio)) 216 return; 217 218 lruvec_del_folio(lruvec, folio); 219 folio_clear_active(folio); 220 lruvec_add_folio_tail(lruvec, folio); 221 __count_vm_events(PGROTATED, folio_nr_pages(folio)); 222 } 223 224 /* 225 * Writeback is about to end against a folio which has been marked for 226 * immediate reclaim. If it still appears to be reclaimable, move it 227 * to the tail of the inactive list. 228 * 229 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races. 230 */ 231 void folio_rotate_reclaimable(struct folio *folio) 232 { 233 if (folio_test_locked(folio) || folio_test_dirty(folio) || 234 folio_test_unevictable(folio)) 235 return; 236 237 folio_batch_add_and_move(folio, lru_move_tail, true); 238 } 239 240 void lru_note_cost(struct lruvec *lruvec, bool file, 241 unsigned int nr_io, unsigned int nr_rotated) 242 { 243 unsigned long cost; 244 245 /* 246 * Reflect the relative cost of incurring IO and spending CPU 247 * time on rotations. This doesn't attempt to make a precise 248 * comparison, it just says: if reloads are about comparable 249 * between the LRU lists, or rotations are overwhelmingly 250 * different between them, adjust scan balance for CPU work. 251 */ 252 cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated; 253 254 do { 255 unsigned long lrusize; 256 257 /* 258 * Hold lruvec->lru_lock is safe here, since 259 * 1) The pinned lruvec in reclaim, or 260 * 2) From a pre-LRU page during refault (which also holds the 261 * rcu lock, so would be safe even if the page was on the LRU 262 * and could move simultaneously to a new lruvec). 263 */ 264 spin_lock_irq(&lruvec->lru_lock); 265 /* Record cost event */ 266 if (file) 267 lruvec->file_cost += cost; 268 else 269 lruvec->anon_cost += cost; 270 271 /* 272 * Decay previous events 273 * 274 * Because workloads change over time (and to avoid 275 * overflow) we keep these statistics as a floating 276 * average, which ends up weighing recent refaults 277 * more than old ones. 278 */ 279 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 280 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 281 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 282 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 283 284 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 285 lruvec->file_cost /= 2; 286 lruvec->anon_cost /= 2; 287 } 288 spin_unlock_irq(&lruvec->lru_lock); 289 } while ((lruvec = parent_lruvec(lruvec))); 290 } 291 292 void lru_note_cost_refault(struct folio *folio) 293 { 294 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio), 295 folio_nr_pages(folio), 0); 296 } 297 298 static void lru_activate(struct lruvec *lruvec, struct folio *folio) 299 { 300 long nr_pages = folio_nr_pages(folio); 301 302 if (folio_test_active(folio) || folio_test_unevictable(folio)) 303 return; 304 305 306 lruvec_del_folio(lruvec, folio); 307 folio_set_active(folio); 308 lruvec_add_folio(lruvec, folio); 309 trace_mm_lru_activate(folio); 310 311 __count_vm_events(PGACTIVATE, nr_pages); 312 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages); 313 } 314 315 #ifdef CONFIG_SMP 316 static void folio_activate_drain(int cpu) 317 { 318 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.lru_activate, cpu); 319 320 if (folio_batch_count(fbatch)) 321 folio_batch_move_lru(fbatch, lru_activate); 322 } 323 324 void folio_activate(struct folio *folio) 325 { 326 if (folio_test_active(folio) || folio_test_unevictable(folio)) 327 return; 328 329 folio_batch_add_and_move(folio, lru_activate, true); 330 } 331 332 #else 333 static inline void folio_activate_drain(int cpu) 334 { 335 } 336 337 void folio_activate(struct folio *folio) 338 { 339 struct lruvec *lruvec; 340 341 if (!folio_test_clear_lru(folio)) 342 return; 343 344 lruvec = folio_lruvec_lock_irq(folio); 345 lru_activate(lruvec, folio); 346 unlock_page_lruvec_irq(lruvec); 347 folio_set_lru(folio); 348 } 349 #endif 350 351 static void __lru_cache_activate_folio(struct folio *folio) 352 { 353 struct folio_batch *fbatch; 354 int i; 355 356 local_lock(&cpu_fbatches.lock); 357 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add); 358 359 /* 360 * Search backwards on the optimistic assumption that the folio being 361 * activated has just been added to this batch. Note that only 362 * the local batch is examined as a !LRU folio could be in the 363 * process of being released, reclaimed, migrated or on a remote 364 * batch that is currently being drained. Furthermore, marking 365 * a remote batch's folio active potentially hits a race where 366 * a folio is marked active just after it is added to the inactive 367 * list causing accounting errors and BUG_ON checks to trigger. 368 */ 369 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) { 370 struct folio *batch_folio = fbatch->folios[i]; 371 372 if (batch_folio == folio) { 373 folio_set_active(folio); 374 break; 375 } 376 } 377 378 local_unlock(&cpu_fbatches.lock); 379 } 380 381 #ifdef CONFIG_LRU_GEN 382 static void folio_inc_refs(struct folio *folio) 383 { 384 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 385 386 if (folio_test_unevictable(folio)) 387 return; 388 389 if (!folio_test_referenced(folio)) { 390 folio_set_referenced(folio); 391 return; 392 } 393 394 if (!folio_test_workingset(folio)) { 395 folio_set_workingset(folio); 396 return; 397 } 398 399 /* see the comment on MAX_NR_TIERS */ 400 do { 401 new_flags = old_flags & LRU_REFS_MASK; 402 if (new_flags == LRU_REFS_MASK) 403 break; 404 405 new_flags += BIT(LRU_REFS_PGOFF); 406 new_flags |= old_flags & ~LRU_REFS_MASK; 407 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 408 } 409 #else 410 static void folio_inc_refs(struct folio *folio) 411 { 412 } 413 #endif /* CONFIG_LRU_GEN */ 414 415 /** 416 * folio_mark_accessed - Mark a folio as having seen activity. 417 * @folio: The folio to mark. 418 * 419 * This function will perform one of the following transitions: 420 * 421 * * inactive,unreferenced -> inactive,referenced 422 * * inactive,referenced -> active,unreferenced 423 * * active,unreferenced -> active,referenced 424 * 425 * When a newly allocated folio is not yet visible, so safe for non-atomic ops, 426 * __folio_set_referenced() may be substituted for folio_mark_accessed(). 427 */ 428 void folio_mark_accessed(struct folio *folio) 429 { 430 if (lru_gen_enabled()) { 431 folio_inc_refs(folio); 432 return; 433 } 434 435 if (!folio_test_referenced(folio)) { 436 folio_set_referenced(folio); 437 } else if (folio_test_unevictable(folio)) { 438 /* 439 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 440 * this list is never rotated or maintained, so marking an 441 * unevictable page accessed has no effect. 442 */ 443 } else if (!folio_test_active(folio)) { 444 /* 445 * If the folio is on the LRU, queue it for activation via 446 * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a 447 * folio_batch, mark it active and it'll be moved to the active 448 * LRU on the next drain. 449 */ 450 if (folio_test_lru(folio)) 451 folio_activate(folio); 452 else 453 __lru_cache_activate_folio(folio); 454 folio_clear_referenced(folio); 455 workingset_activation(folio); 456 } 457 if (folio_test_idle(folio)) 458 folio_clear_idle(folio); 459 } 460 EXPORT_SYMBOL(folio_mark_accessed); 461 462 /** 463 * folio_add_lru - Add a folio to an LRU list. 464 * @folio: The folio to be added to the LRU. 465 * 466 * Queue the folio for addition to the LRU. The decision on whether 467 * to add the page to the [in]active [file|anon] list is deferred until the 468 * folio_batch is drained. This gives a chance for the caller of folio_add_lru() 469 * have the folio added to the active list using folio_mark_accessed(). 470 */ 471 void folio_add_lru(struct folio *folio) 472 { 473 VM_BUG_ON_FOLIO(folio_test_active(folio) && 474 folio_test_unevictable(folio), folio); 475 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 476 477 /* see the comment in lru_gen_add_folio() */ 478 if (lru_gen_enabled() && !folio_test_unevictable(folio) && 479 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC)) 480 folio_set_active(folio); 481 482 folio_batch_add_and_move(folio, lru_add, false); 483 } 484 EXPORT_SYMBOL(folio_add_lru); 485 486 /** 487 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA. 488 * @folio: The folio to be added to the LRU. 489 * @vma: VMA in which the folio is mapped. 490 * 491 * If the VMA is mlocked, @folio is added to the unevictable list. 492 * Otherwise, it is treated the same way as folio_add_lru(). 493 */ 494 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma) 495 { 496 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 497 498 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED)) 499 mlock_new_folio(folio); 500 else 501 folio_add_lru(folio); 502 } 503 504 /* 505 * If the folio cannot be invalidated, it is moved to the 506 * inactive list to speed up its reclaim. It is moved to the 507 * head of the list, rather than the tail, to give the flusher 508 * threads some time to write it out, as this is much more 509 * effective than the single-page writeout from reclaim. 510 * 511 * If the folio isn't mapped and dirty/writeback, the folio 512 * could be reclaimed asap using the reclaim flag. 513 * 514 * 1. active, mapped folio -> none 515 * 2. active, dirty/writeback folio -> inactive, head, reclaim 516 * 3. inactive, mapped folio -> none 517 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim 518 * 5. inactive, clean -> inactive, tail 519 * 6. Others -> none 520 * 521 * In 4, it moves to the head of the inactive list so the folio is 522 * written out by flusher threads as this is much more efficient 523 * than the single-page writeout from reclaim. 524 */ 525 static void lru_deactivate_file(struct lruvec *lruvec, struct folio *folio) 526 { 527 bool active = folio_test_active(folio); 528 long nr_pages = folio_nr_pages(folio); 529 530 if (folio_test_unevictable(folio)) 531 return; 532 533 /* Some processes are using the folio */ 534 if (folio_mapped(folio)) 535 return; 536 537 lruvec_del_folio(lruvec, folio); 538 folio_clear_active(folio); 539 folio_clear_referenced(folio); 540 541 if (folio_test_writeback(folio) || folio_test_dirty(folio)) { 542 /* 543 * Setting the reclaim flag could race with 544 * folio_end_writeback() and confuse readahead. But the 545 * race window is _really_ small and it's not a critical 546 * problem. 547 */ 548 lruvec_add_folio(lruvec, folio); 549 folio_set_reclaim(folio); 550 } else { 551 /* 552 * The folio's writeback ended while it was in the batch. 553 * We move that folio to the tail of the inactive list. 554 */ 555 lruvec_add_folio_tail(lruvec, folio); 556 __count_vm_events(PGROTATED, nr_pages); 557 } 558 559 if (active) { 560 __count_vm_events(PGDEACTIVATE, nr_pages); 561 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 562 nr_pages); 563 } 564 } 565 566 static void lru_deactivate(struct lruvec *lruvec, struct folio *folio) 567 { 568 long nr_pages = folio_nr_pages(folio); 569 570 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled())) 571 return; 572 573 lruvec_del_folio(lruvec, folio); 574 folio_clear_active(folio); 575 folio_clear_referenced(folio); 576 lruvec_add_folio(lruvec, folio); 577 578 __count_vm_events(PGDEACTIVATE, nr_pages); 579 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages); 580 } 581 582 static void lru_lazyfree(struct lruvec *lruvec, struct folio *folio) 583 { 584 long nr_pages = folio_nr_pages(folio); 585 586 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) || 587 folio_test_swapcache(folio) || folio_test_unevictable(folio)) 588 return; 589 590 lruvec_del_folio(lruvec, folio); 591 folio_clear_active(folio); 592 folio_clear_referenced(folio); 593 /* 594 * Lazyfree folios are clean anonymous folios. They have 595 * the swapbacked flag cleared, to distinguish them from normal 596 * anonymous folios 597 */ 598 folio_clear_swapbacked(folio); 599 lruvec_add_folio(lruvec, folio); 600 601 __count_vm_events(PGLAZYFREE, nr_pages); 602 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages); 603 } 604 605 /* 606 * Drain pages out of the cpu's folio_batch. 607 * Either "cpu" is the current CPU, and preemption has already been 608 * disabled; or "cpu" is being hot-unplugged, and is already dead. 609 */ 610 void lru_add_drain_cpu(int cpu) 611 { 612 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 613 struct folio_batch *fbatch = &fbatches->lru_add; 614 615 if (folio_batch_count(fbatch)) 616 folio_batch_move_lru(fbatch, lru_add); 617 618 fbatch = &fbatches->lru_move_tail; 619 /* Disabling interrupts below acts as a compiler barrier. */ 620 if (data_race(folio_batch_count(fbatch))) { 621 unsigned long flags; 622 623 /* No harm done if a racing interrupt already did this */ 624 local_lock_irqsave(&cpu_fbatches.lock_irq, flags); 625 folio_batch_move_lru(fbatch, lru_move_tail); 626 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags); 627 } 628 629 fbatch = &fbatches->lru_deactivate_file; 630 if (folio_batch_count(fbatch)) 631 folio_batch_move_lru(fbatch, lru_deactivate_file); 632 633 fbatch = &fbatches->lru_deactivate; 634 if (folio_batch_count(fbatch)) 635 folio_batch_move_lru(fbatch, lru_deactivate); 636 637 fbatch = &fbatches->lru_lazyfree; 638 if (folio_batch_count(fbatch)) 639 folio_batch_move_lru(fbatch, lru_lazyfree); 640 641 folio_activate_drain(cpu); 642 } 643 644 /** 645 * deactivate_file_folio() - Deactivate a file folio. 646 * @folio: Folio to deactivate. 647 * 648 * This function hints to the VM that @folio is a good reclaim candidate, 649 * for example if its invalidation fails due to the folio being dirty 650 * or under writeback. 651 * 652 * Context: Caller holds a reference on the folio. 653 */ 654 void deactivate_file_folio(struct folio *folio) 655 { 656 /* Deactivating an unevictable folio will not accelerate reclaim */ 657 if (folio_test_unevictable(folio)) 658 return; 659 660 folio_batch_add_and_move(folio, lru_deactivate_file, true); 661 } 662 663 /* 664 * folio_deactivate - deactivate a folio 665 * @folio: folio to deactivate 666 * 667 * folio_deactivate() moves @folio to the inactive list if @folio was on the 668 * active list and was not unevictable. This is done to accelerate the 669 * reclaim of @folio. 670 */ 671 void folio_deactivate(struct folio *folio) 672 { 673 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled())) 674 return; 675 676 folio_batch_add_and_move(folio, lru_deactivate, true); 677 } 678 679 /** 680 * folio_mark_lazyfree - make an anon folio lazyfree 681 * @folio: folio to deactivate 682 * 683 * folio_mark_lazyfree() moves @folio to the inactive file list. 684 * This is done to accelerate the reclaim of @folio. 685 */ 686 void folio_mark_lazyfree(struct folio *folio) 687 { 688 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) || 689 folio_test_swapcache(folio) || folio_test_unevictable(folio)) 690 return; 691 692 folio_batch_add_and_move(folio, lru_lazyfree, true); 693 } 694 695 void lru_add_drain(void) 696 { 697 local_lock(&cpu_fbatches.lock); 698 lru_add_drain_cpu(smp_processor_id()); 699 local_unlock(&cpu_fbatches.lock); 700 mlock_drain_local(); 701 } 702 703 /* 704 * It's called from per-cpu workqueue context in SMP case so 705 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on 706 * the same cpu. It shouldn't be a problem in !SMP case since 707 * the core is only one and the locks will disable preemption. 708 */ 709 static void lru_add_and_bh_lrus_drain(void) 710 { 711 local_lock(&cpu_fbatches.lock); 712 lru_add_drain_cpu(smp_processor_id()); 713 local_unlock(&cpu_fbatches.lock); 714 invalidate_bh_lrus_cpu(); 715 mlock_drain_local(); 716 } 717 718 void lru_add_drain_cpu_zone(struct zone *zone) 719 { 720 local_lock(&cpu_fbatches.lock); 721 lru_add_drain_cpu(smp_processor_id()); 722 drain_local_pages(zone); 723 local_unlock(&cpu_fbatches.lock); 724 mlock_drain_local(); 725 } 726 727 #ifdef CONFIG_SMP 728 729 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 730 731 static void lru_add_drain_per_cpu(struct work_struct *dummy) 732 { 733 lru_add_and_bh_lrus_drain(); 734 } 735 736 static bool cpu_needs_drain(unsigned int cpu) 737 { 738 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 739 740 /* Check these in order of likelihood that they're not zero */ 741 return folio_batch_count(&fbatches->lru_add) || 742 folio_batch_count(&fbatches->lru_move_tail) || 743 folio_batch_count(&fbatches->lru_deactivate_file) || 744 folio_batch_count(&fbatches->lru_deactivate) || 745 folio_batch_count(&fbatches->lru_lazyfree) || 746 folio_batch_count(&fbatches->lru_activate) || 747 need_mlock_drain(cpu) || 748 has_bh_in_lru(cpu, NULL); 749 } 750 751 /* 752 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 753 * kworkers being shut down before our page_alloc_cpu_dead callback is 754 * executed on the offlined cpu. 755 * Calling this function with cpu hotplug locks held can actually lead 756 * to obscure indirect dependencies via WQ context. 757 */ 758 static inline void __lru_add_drain_all(bool force_all_cpus) 759 { 760 /* 761 * lru_drain_gen - Global pages generation number 762 * 763 * (A) Definition: global lru_drain_gen = x implies that all generations 764 * 0 < n <= x are already *scheduled* for draining. 765 * 766 * This is an optimization for the highly-contended use case where a 767 * user space workload keeps constantly generating a flow of pages for 768 * each CPU. 769 */ 770 static unsigned int lru_drain_gen; 771 static struct cpumask has_work; 772 static DEFINE_MUTEX(lock); 773 unsigned cpu, this_gen; 774 775 /* 776 * Make sure nobody triggers this path before mm_percpu_wq is fully 777 * initialized. 778 */ 779 if (WARN_ON(!mm_percpu_wq)) 780 return; 781 782 /* 783 * Guarantee folio_batch counter stores visible by this CPU 784 * are visible to other CPUs before loading the current drain 785 * generation. 786 */ 787 smp_mb(); 788 789 /* 790 * (B) Locally cache global LRU draining generation number 791 * 792 * The read barrier ensures that the counter is loaded before the mutex 793 * is taken. It pairs with smp_mb() inside the mutex critical section 794 * at (D). 795 */ 796 this_gen = smp_load_acquire(&lru_drain_gen); 797 798 mutex_lock(&lock); 799 800 /* 801 * (C) Exit the draining operation if a newer generation, from another 802 * lru_add_drain_all(), was already scheduled for draining. Check (A). 803 */ 804 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus)) 805 goto done; 806 807 /* 808 * (D) Increment global generation number 809 * 810 * Pairs with smp_load_acquire() at (B), outside of the critical 811 * section. Use a full memory barrier to guarantee that the 812 * new global drain generation number is stored before loading 813 * folio_batch counters. 814 * 815 * This pairing must be done here, before the for_each_online_cpu loop 816 * below which drains the page vectors. 817 * 818 * Let x, y, and z represent some system CPU numbers, where x < y < z. 819 * Assume CPU #z is in the middle of the for_each_online_cpu loop 820 * below and has already reached CPU #y's per-cpu data. CPU #x comes 821 * along, adds some pages to its per-cpu vectors, then calls 822 * lru_add_drain_all(). 823 * 824 * If the paired barrier is done at any later step, e.g. after the 825 * loop, CPU #x will just exit at (C) and miss flushing out all of its 826 * added pages. 827 */ 828 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 829 smp_mb(); 830 831 cpumask_clear(&has_work); 832 for_each_online_cpu(cpu) { 833 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 834 835 if (cpu_needs_drain(cpu)) { 836 INIT_WORK(work, lru_add_drain_per_cpu); 837 queue_work_on(cpu, mm_percpu_wq, work); 838 __cpumask_set_cpu(cpu, &has_work); 839 } 840 } 841 842 for_each_cpu(cpu, &has_work) 843 flush_work(&per_cpu(lru_add_drain_work, cpu)); 844 845 done: 846 mutex_unlock(&lock); 847 } 848 849 void lru_add_drain_all(void) 850 { 851 __lru_add_drain_all(false); 852 } 853 #else 854 void lru_add_drain_all(void) 855 { 856 lru_add_drain(); 857 } 858 #endif /* CONFIG_SMP */ 859 860 atomic_t lru_disable_count = ATOMIC_INIT(0); 861 862 /* 863 * lru_cache_disable() needs to be called before we start compiling 864 * a list of folios to be migrated using folio_isolate_lru(). 865 * It drains folios on LRU cache and then disable on all cpus until 866 * lru_cache_enable is called. 867 * 868 * Must be paired with a call to lru_cache_enable(). 869 */ 870 void lru_cache_disable(void) 871 { 872 atomic_inc(&lru_disable_count); 873 /* 874 * Readers of lru_disable_count are protected by either disabling 875 * preemption or rcu_read_lock: 876 * 877 * preempt_disable, local_irq_disable [bh_lru_lock()] 878 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT] 879 * preempt_disable [local_lock !CONFIG_PREEMPT_RT] 880 * 881 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on 882 * preempt_disable() regions of code. So any CPU which sees 883 * lru_disable_count = 0 will have exited the critical 884 * section when synchronize_rcu() returns. 885 */ 886 synchronize_rcu_expedited(); 887 #ifdef CONFIG_SMP 888 __lru_add_drain_all(true); 889 #else 890 lru_add_and_bh_lrus_drain(); 891 #endif 892 } 893 894 /** 895 * folios_put_refs - Reduce the reference count on a batch of folios. 896 * @folios: The folios. 897 * @refs: The number of refs to subtract from each folio. 898 * 899 * Like folio_put(), but for a batch of folios. This is more efficient 900 * than writing the loop yourself as it will optimise the locks which need 901 * to be taken if the folios are freed. The folios batch is returned 902 * empty and ready to be reused for another batch; there is no need 903 * to reinitialise it. If @refs is NULL, we subtract one from each 904 * folio refcount. 905 * 906 * Context: May be called in process or interrupt context, but not in NMI 907 * context. May be called while holding a spinlock. 908 */ 909 void folios_put_refs(struct folio_batch *folios, unsigned int *refs) 910 { 911 int i, j; 912 struct lruvec *lruvec = NULL; 913 unsigned long flags = 0; 914 915 for (i = 0, j = 0; i < folios->nr; i++) { 916 struct folio *folio = folios->folios[i]; 917 unsigned int nr_refs = refs ? refs[i] : 1; 918 919 if (is_huge_zero_folio(folio)) 920 continue; 921 922 if (folio_is_zone_device(folio)) { 923 if (lruvec) { 924 unlock_page_lruvec_irqrestore(lruvec, flags); 925 lruvec = NULL; 926 } 927 if (put_devmap_managed_folio_refs(folio, nr_refs)) 928 continue; 929 if (folio_ref_sub_and_test(folio, nr_refs)) 930 free_zone_device_folio(folio); 931 continue; 932 } 933 934 if (!folio_ref_sub_and_test(folio, nr_refs)) 935 continue; 936 937 /* hugetlb has its own memcg */ 938 if (folio_test_hugetlb(folio)) { 939 if (lruvec) { 940 unlock_page_lruvec_irqrestore(lruvec, flags); 941 lruvec = NULL; 942 } 943 free_huge_folio(folio); 944 continue; 945 } 946 folio_unqueue_deferred_split(folio); 947 __page_cache_release(folio, &lruvec, &flags); 948 949 if (j != i) 950 folios->folios[j] = folio; 951 j++; 952 } 953 if (lruvec) 954 unlock_page_lruvec_irqrestore(lruvec, flags); 955 if (!j) { 956 folio_batch_reinit(folios); 957 return; 958 } 959 960 folios->nr = j; 961 mem_cgroup_uncharge_folios(folios); 962 free_unref_folios(folios); 963 } 964 EXPORT_SYMBOL(folios_put_refs); 965 966 /** 967 * release_pages - batched put_page() 968 * @arg: array of pages to release 969 * @nr: number of pages 970 * 971 * Decrement the reference count on all the pages in @arg. If it 972 * fell to zero, remove the page from the LRU and free it. 973 * 974 * Note that the argument can be an array of pages, encoded pages, 975 * or folio pointers. We ignore any encoded bits, and turn any of 976 * them into just a folio that gets free'd. 977 */ 978 void release_pages(release_pages_arg arg, int nr) 979 { 980 struct folio_batch fbatch; 981 int refs[PAGEVEC_SIZE]; 982 struct encoded_page **encoded = arg.encoded_pages; 983 int i; 984 985 folio_batch_init(&fbatch); 986 for (i = 0; i < nr; i++) { 987 /* Turn any of the argument types into a folio */ 988 struct folio *folio = page_folio(encoded_page_ptr(encoded[i])); 989 990 /* Is our next entry actually "nr_pages" -> "nr_refs" ? */ 991 refs[fbatch.nr] = 1; 992 if (unlikely(encoded_page_flags(encoded[i]) & 993 ENCODED_PAGE_BIT_NR_PAGES_NEXT)) 994 refs[fbatch.nr] = encoded_nr_pages(encoded[++i]); 995 996 if (folio_batch_add(&fbatch, folio) > 0) 997 continue; 998 folios_put_refs(&fbatch, refs); 999 } 1000 1001 if (fbatch.nr) 1002 folios_put_refs(&fbatch, refs); 1003 } 1004 EXPORT_SYMBOL(release_pages); 1005 1006 /* 1007 * The folios which we're about to release may be in the deferred lru-addition 1008 * queues. That would prevent them from really being freed right now. That's 1009 * OK from a correctness point of view but is inefficient - those folios may be 1010 * cache-warm and we want to give them back to the page allocator ASAP. 1011 * 1012 * So __folio_batch_release() will drain those queues here. 1013 * folio_batch_move_lru() calls folios_put() directly to avoid 1014 * mutual recursion. 1015 */ 1016 void __folio_batch_release(struct folio_batch *fbatch) 1017 { 1018 if (!fbatch->percpu_pvec_drained) { 1019 lru_add_drain(); 1020 fbatch->percpu_pvec_drained = true; 1021 } 1022 folios_put(fbatch); 1023 } 1024 EXPORT_SYMBOL(__folio_batch_release); 1025 1026 /** 1027 * folio_batch_remove_exceptionals() - Prune non-folios from a batch. 1028 * @fbatch: The batch to prune 1029 * 1030 * find_get_entries() fills a batch with both folios and shadow/swap/DAX 1031 * entries. This function prunes all the non-folio entries from @fbatch 1032 * without leaving holes, so that it can be passed on to folio-only batch 1033 * operations. 1034 */ 1035 void folio_batch_remove_exceptionals(struct folio_batch *fbatch) 1036 { 1037 unsigned int i, j; 1038 1039 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) { 1040 struct folio *folio = fbatch->folios[i]; 1041 if (!xa_is_value(folio)) 1042 fbatch->folios[j++] = folio; 1043 } 1044 fbatch->nr = j; 1045 } 1046 1047 /* 1048 * Perform any setup for the swap system 1049 */ 1050 void __init swap_setup(void) 1051 { 1052 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1053 1054 /* Use a smaller cluster for small-memory machines */ 1055 if (megs < 16) 1056 page_cluster = 2; 1057 else 1058 page_cluster = 3; 1059 /* 1060 * Right now other parts of the system means that we 1061 * _really_ don't want to cluster much more 1062 */ 1063 } 1064