xref: /linux/include/linux/mm.h (revision 76b6905c11fd3c6dc4562aefc3e8c4429fefae1e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 #include <linux/cacheinfo.h>
35 
36 struct mempolicy;
37 struct anon_vma;
38 struct anon_vma_chain;
39 struct user_struct;
40 struct pt_regs;
41 struct folio_batch;
42 
43 extern int sysctl_page_lock_unfairness;
44 
45 void mm_core_init(void);
46 void init_mm_internals(void);
47 
48 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
49 extern unsigned long max_mapnr;
50 
set_max_mapnr(unsigned long limit)51 static inline void set_max_mapnr(unsigned long limit)
52 {
53 	max_mapnr = limit;
54 }
55 #else
set_max_mapnr(unsigned long limit)56 static inline void set_max_mapnr(unsigned long limit) { }
57 #endif
58 
59 extern atomic_long_t _totalram_pages;
totalram_pages(void)60 static inline unsigned long totalram_pages(void)
61 {
62 	return (unsigned long)atomic_long_read(&_totalram_pages);
63 }
64 
totalram_pages_inc(void)65 static inline void totalram_pages_inc(void)
66 {
67 	atomic_long_inc(&_totalram_pages);
68 }
69 
totalram_pages_dec(void)70 static inline void totalram_pages_dec(void)
71 {
72 	atomic_long_dec(&_totalram_pages);
73 }
74 
totalram_pages_add(long count)75 static inline void totalram_pages_add(long count)
76 {
77 	atomic_long_add(count, &_totalram_pages);
78 }
79 
80 extern void * high_memory;
81 extern int page_cluster;
82 extern const int page_cluster_max;
83 
84 #ifdef CONFIG_SYSCTL
85 extern int sysctl_legacy_va_layout;
86 #else
87 #define sysctl_legacy_va_layout 0
88 #endif
89 
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91 extern const int mmap_rnd_bits_min;
92 extern int mmap_rnd_bits_max __ro_after_init;
93 extern int mmap_rnd_bits __read_mostly;
94 #endif
95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96 extern const int mmap_rnd_compat_bits_min;
97 extern const int mmap_rnd_compat_bits_max;
98 extern int mmap_rnd_compat_bits __read_mostly;
99 #endif
100 
101 #ifndef DIRECT_MAP_PHYSMEM_END
102 # ifdef MAX_PHYSMEM_BITS
103 # define DIRECT_MAP_PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
104 # else
105 # define DIRECT_MAP_PHYSMEM_END	(((phys_addr_t)-1)&~(1ULL<<63))
106 # endif
107 #endif
108 
109 #include <asm/page.h>
110 #include <asm/processor.h>
111 
112 #ifndef __pa_symbol
113 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
114 #endif
115 
116 #ifndef page_to_virt
117 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
118 #endif
119 
120 #ifndef lm_alias
121 #define lm_alias(x)	__va(__pa_symbol(x))
122 #endif
123 
124 /*
125  * To prevent common memory management code establishing
126  * a zero page mapping on a read fault.
127  * This macro should be defined within <asm/pgtable.h>.
128  * s390 does this to prevent multiplexing of hardware bits
129  * related to the physical page in case of virtualization.
130  */
131 #ifndef mm_forbids_zeropage
132 #define mm_forbids_zeropage(X)	(0)
133 #endif
134 
135 /*
136  * On some architectures it is expensive to call memset() for small sizes.
137  * If an architecture decides to implement their own version of
138  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
139  * define their own version of this macro in <asm/pgtable.h>
140  */
141 #if BITS_PER_LONG == 64
142 /* This function must be updated when the size of struct page grows above 96
143  * or reduces below 56. The idea that compiler optimizes out switch()
144  * statement, and only leaves move/store instructions. Also the compiler can
145  * combine write statements if they are both assignments and can be reordered,
146  * this can result in several of the writes here being dropped.
147  */
148 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)149 static inline void __mm_zero_struct_page(struct page *page)
150 {
151 	unsigned long *_pp = (void *)page;
152 
153 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
154 	BUILD_BUG_ON(sizeof(struct page) & 7);
155 	BUILD_BUG_ON(sizeof(struct page) < 56);
156 	BUILD_BUG_ON(sizeof(struct page) > 96);
157 
158 	switch (sizeof(struct page)) {
159 	case 96:
160 		_pp[11] = 0;
161 		fallthrough;
162 	case 88:
163 		_pp[10] = 0;
164 		fallthrough;
165 	case 80:
166 		_pp[9] = 0;
167 		fallthrough;
168 	case 72:
169 		_pp[8] = 0;
170 		fallthrough;
171 	case 64:
172 		_pp[7] = 0;
173 		fallthrough;
174 	case 56:
175 		_pp[6] = 0;
176 		_pp[5] = 0;
177 		_pp[4] = 0;
178 		_pp[3] = 0;
179 		_pp[2] = 0;
180 		_pp[1] = 0;
181 		_pp[0] = 0;
182 	}
183 }
184 #else
185 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
186 #endif
187 
188 /*
189  * Default maximum number of active map areas, this limits the number of vmas
190  * per mm struct. Users can overwrite this number by sysctl but there is a
191  * problem.
192  *
193  * When a program's coredump is generated as ELF format, a section is created
194  * per a vma. In ELF, the number of sections is represented in unsigned short.
195  * This means the number of sections should be smaller than 65535 at coredump.
196  * Because the kernel adds some informative sections to a image of program at
197  * generating coredump, we need some margin. The number of extra sections is
198  * 1-3 now and depends on arch. We use "5" as safe margin, here.
199  *
200  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
201  * not a hard limit any more. Although some userspace tools can be surprised by
202  * that.
203  */
204 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
205 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
206 
207 extern int sysctl_max_map_count;
208 
209 extern unsigned long sysctl_user_reserve_kbytes;
210 extern unsigned long sysctl_admin_reserve_kbytes;
211 
212 extern int sysctl_overcommit_memory;
213 extern int sysctl_overcommit_ratio;
214 extern unsigned long sysctl_overcommit_kbytes;
215 
216 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
217 		loff_t *);
218 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
219 		loff_t *);
220 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
221 		loff_t *);
222 
223 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
224 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
225 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
226 #else
227 #define nth_page(page,n) ((page) + (n))
228 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
229 #endif
230 
231 /* to align the pointer to the (next) page boundary */
232 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
233 
234 /* to align the pointer to the (prev) page boundary */
235 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
236 
237 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
238 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
239 
lru_to_folio(struct list_head * head)240 static inline struct folio *lru_to_folio(struct list_head *head)
241 {
242 	return list_entry((head)->prev, struct folio, lru);
243 }
244 
245 void setup_initial_init_mm(void *start_code, void *end_code,
246 			   void *end_data, void *brk);
247 
248 /*
249  * Linux kernel virtual memory manager primitives.
250  * The idea being to have a "virtual" mm in the same way
251  * we have a virtual fs - giving a cleaner interface to the
252  * mm details, and allowing different kinds of memory mappings
253  * (from shared memory to executable loading to arbitrary
254  * mmap() functions).
255  */
256 
257 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
258 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
259 void vm_area_free(struct vm_area_struct *);
260 /* Use only if VMA has no other users */
261 void __vm_area_free(struct vm_area_struct *vma);
262 
263 #ifndef CONFIG_MMU
264 extern struct rb_root nommu_region_tree;
265 extern struct rw_semaphore nommu_region_sem;
266 
267 extern unsigned int kobjsize(const void *objp);
268 #endif
269 
270 /*
271  * vm_flags in vm_area_struct, see mm_types.h.
272  * When changing, update also include/trace/events/mmflags.h
273  */
274 #define VM_NONE		0x00000000
275 
276 #define VM_READ		0x00000001	/* currently active flags */
277 #define VM_WRITE	0x00000002
278 #define VM_EXEC		0x00000004
279 #define VM_SHARED	0x00000008
280 
281 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
282 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
283 #define VM_MAYWRITE	0x00000020
284 #define VM_MAYEXEC	0x00000040
285 #define VM_MAYSHARE	0x00000080
286 
287 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
288 #ifdef CONFIG_MMU
289 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
290 #else /* CONFIG_MMU */
291 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
292 #define VM_UFFD_MISSING	0
293 #endif /* CONFIG_MMU */
294 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
295 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
296 
297 #define VM_LOCKED	0x00002000
298 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
299 
300 					/* Used by sys_madvise() */
301 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
302 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
303 
304 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
305 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
306 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
307 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
308 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
309 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
310 #define VM_SYNC		0x00800000	/* Synchronous page faults */
311 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
312 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
313 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
314 
315 #ifdef CONFIG_MEM_SOFT_DIRTY
316 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
317 #else
318 # define VM_SOFTDIRTY	0
319 #endif
320 
321 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
322 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
323 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
324 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
325 
326 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
327 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
328 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
329 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
330 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
331 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
332 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
333 #define VM_HIGH_ARCH_BIT_6	38	/* bit only usable on 64-bit architectures */
334 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
335 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
336 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
337 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
338 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
339 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
340 #define VM_HIGH_ARCH_6	BIT(VM_HIGH_ARCH_BIT_6)
341 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
342 
343 #ifdef CONFIG_ARCH_HAS_PKEYS
344 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
345 # define VM_PKEY_BIT0  VM_HIGH_ARCH_0
346 # define VM_PKEY_BIT1  VM_HIGH_ARCH_1
347 # define VM_PKEY_BIT2  VM_HIGH_ARCH_2
348 #if CONFIG_ARCH_PKEY_BITS > 3
349 # define VM_PKEY_BIT3  VM_HIGH_ARCH_3
350 #else
351 # define VM_PKEY_BIT3  0
352 #endif
353 #if CONFIG_ARCH_PKEY_BITS > 4
354 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
355 #else
356 # define VM_PKEY_BIT4  0
357 #endif
358 #endif /* CONFIG_ARCH_HAS_PKEYS */
359 
360 #ifdef CONFIG_X86_USER_SHADOW_STACK
361 /*
362  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
363  * support core mm.
364  *
365  * These VMAs will get a single end guard page. This helps userspace protect
366  * itself from attacks. A single page is enough for current shadow stack archs
367  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
368  * for more details on the guard size.
369  */
370 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
371 #endif
372 
373 #if defined(CONFIG_ARM64_GCS)
374 /*
375  * arm64's Guarded Control Stack implements similar functionality and
376  * has similar constraints to shadow stacks.
377  */
378 # define VM_SHADOW_STACK	VM_HIGH_ARCH_6
379 #endif
380 
381 #ifndef VM_SHADOW_STACK
382 # define VM_SHADOW_STACK	VM_NONE
383 #endif
384 
385 #if defined(CONFIG_X86)
386 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
387 #elif defined(CONFIG_PPC64)
388 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
389 #elif defined(CONFIG_PARISC)
390 # define VM_GROWSUP	VM_ARCH_1
391 #elif defined(CONFIG_SPARC64)
392 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
393 # define VM_ARCH_CLEAR	VM_SPARC_ADI
394 #elif defined(CONFIG_ARM64)
395 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
396 # define VM_ARCH_CLEAR	VM_ARM64_BTI
397 #elif !defined(CONFIG_MMU)
398 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
399 #endif
400 
401 #if defined(CONFIG_ARM64_MTE)
402 # define VM_MTE		VM_HIGH_ARCH_4	/* Use Tagged memory for access control */
403 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_5	/* Tagged memory permitted */
404 #else
405 # define VM_MTE		VM_NONE
406 # define VM_MTE_ALLOWED	VM_NONE
407 #endif
408 
409 #ifndef VM_GROWSUP
410 # define VM_GROWSUP	VM_NONE
411 #endif
412 
413 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
414 # define VM_UFFD_MINOR_BIT	38
415 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
416 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
417 # define VM_UFFD_MINOR		VM_NONE
418 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
419 
420 /*
421  * This flag is used to connect VFIO to arch specific KVM code. It
422  * indicates that the memory under this VMA is safe for use with any
423  * non-cachable memory type inside KVM. Some VFIO devices, on some
424  * platforms, are thought to be unsafe and can cause machine crashes
425  * if KVM does not lock down the memory type.
426  */
427 #ifdef CONFIG_64BIT
428 #define VM_ALLOW_ANY_UNCACHED_BIT	39
429 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
430 #else
431 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
432 #endif
433 
434 #ifdef CONFIG_64BIT
435 #define VM_DROPPABLE_BIT	40
436 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
437 #elif defined(CONFIG_PPC32)
438 #define VM_DROPPABLE		VM_ARCH_1
439 #else
440 #define VM_DROPPABLE		VM_NONE
441 #endif
442 
443 #ifdef CONFIG_64BIT
444 /* VM is sealed, in vm_flags */
445 #define VM_SEALED	_BITUL(63)
446 #endif
447 
448 /* Bits set in the VMA until the stack is in its final location */
449 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
450 
451 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
452 
453 /* Common data flag combinations */
454 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
455 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
456 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
457 				 VM_MAYWRITE | VM_MAYEXEC)
458 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
459 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
460 
461 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
462 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
463 #endif
464 
465 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
466 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
467 #endif
468 
469 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
470 
471 #ifdef CONFIG_STACK_GROWSUP
472 #define VM_STACK	VM_GROWSUP
473 #define VM_STACK_EARLY	VM_GROWSDOWN
474 #else
475 #define VM_STACK	VM_GROWSDOWN
476 #define VM_STACK_EARLY	0
477 #endif
478 
479 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
480 
481 /* VMA basic access permission flags */
482 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
483 
484 
485 /*
486  * Special vmas that are non-mergable, non-mlock()able.
487  */
488 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
489 
490 /* This mask prevents VMA from being scanned with khugepaged */
491 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
492 
493 /* This mask defines which mm->def_flags a process can inherit its parent */
494 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
495 
496 /* This mask represents all the VMA flag bits used by mlock */
497 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
498 
499 /* Arch-specific flags to clear when updating VM flags on protection change */
500 #ifndef VM_ARCH_CLEAR
501 # define VM_ARCH_CLEAR	VM_NONE
502 #endif
503 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
504 
505 /*
506  * mapping from the currently active vm_flags protection bits (the
507  * low four bits) to a page protection mask..
508  */
509 
510 /*
511  * The default fault flags that should be used by most of the
512  * arch-specific page fault handlers.
513  */
514 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
515 			     FAULT_FLAG_KILLABLE | \
516 			     FAULT_FLAG_INTERRUPTIBLE)
517 
518 /**
519  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
520  * @flags: Fault flags.
521  *
522  * This is mostly used for places where we want to try to avoid taking
523  * the mmap_lock for too long a time when waiting for another condition
524  * to change, in which case we can try to be polite to release the
525  * mmap_lock in the first round to avoid potential starvation of other
526  * processes that would also want the mmap_lock.
527  *
528  * Return: true if the page fault allows retry and this is the first
529  * attempt of the fault handling; false otherwise.
530  */
fault_flag_allow_retry_first(enum fault_flag flags)531 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
532 {
533 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
534 	    (!(flags & FAULT_FLAG_TRIED));
535 }
536 
537 #define FAULT_FLAG_TRACE \
538 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
539 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
540 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
541 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
542 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
543 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
544 	{ FAULT_FLAG_USER,		"USER" }, \
545 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
546 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
547 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
548 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
549 
550 /*
551  * vm_fault is filled by the pagefault handler and passed to the vma's
552  * ->fault function. The vma's ->fault is responsible for returning a bitmask
553  * of VM_FAULT_xxx flags that give details about how the fault was handled.
554  *
555  * MM layer fills up gfp_mask for page allocations but fault handler might
556  * alter it if its implementation requires a different allocation context.
557  *
558  * pgoff should be used in favour of virtual_address, if possible.
559  */
560 struct vm_fault {
561 	const struct {
562 		struct vm_area_struct *vma;	/* Target VMA */
563 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
564 		pgoff_t pgoff;			/* Logical page offset based on vma */
565 		unsigned long address;		/* Faulting virtual address - masked */
566 		unsigned long real_address;	/* Faulting virtual address - unmasked */
567 	};
568 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
569 					 * XXX: should really be 'const' */
570 	pmd_t *pmd;			/* Pointer to pmd entry matching
571 					 * the 'address' */
572 	pud_t *pud;			/* Pointer to pud entry matching
573 					 * the 'address'
574 					 */
575 	union {
576 		pte_t orig_pte;		/* Value of PTE at the time of fault */
577 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
578 					 * used by PMD fault only.
579 					 */
580 	};
581 
582 	struct page *cow_page;		/* Page handler may use for COW fault */
583 	struct page *page;		/* ->fault handlers should return a
584 					 * page here, unless VM_FAULT_NOPAGE
585 					 * is set (which is also implied by
586 					 * VM_FAULT_ERROR).
587 					 */
588 	/* These three entries are valid only while holding ptl lock */
589 	pte_t *pte;			/* Pointer to pte entry matching
590 					 * the 'address'. NULL if the page
591 					 * table hasn't been allocated.
592 					 */
593 	spinlock_t *ptl;		/* Page table lock.
594 					 * Protects pte page table if 'pte'
595 					 * is not NULL, otherwise pmd.
596 					 */
597 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
598 					 * vm_ops->map_pages() sets up a page
599 					 * table from atomic context.
600 					 * do_fault_around() pre-allocates
601 					 * page table to avoid allocation from
602 					 * atomic context.
603 					 */
604 };
605 
606 /*
607  * These are the virtual MM functions - opening of an area, closing and
608  * unmapping it (needed to keep files on disk up-to-date etc), pointer
609  * to the functions called when a no-page or a wp-page exception occurs.
610  */
611 struct vm_operations_struct {
612 	void (*open)(struct vm_area_struct * area);
613 	/**
614 	 * @close: Called when the VMA is being removed from the MM.
615 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
616 	 */
617 	void (*close)(struct vm_area_struct * area);
618 	/* Called any time before splitting to check if it's allowed */
619 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
620 	int (*mremap)(struct vm_area_struct *area);
621 	/*
622 	 * Called by mprotect() to make driver-specific permission
623 	 * checks before mprotect() is finalised.   The VMA must not
624 	 * be modified.  Returns 0 if mprotect() can proceed.
625 	 */
626 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
627 			unsigned long end, unsigned long newflags);
628 	vm_fault_t (*fault)(struct vm_fault *vmf);
629 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
630 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
631 			pgoff_t start_pgoff, pgoff_t end_pgoff);
632 	unsigned long (*pagesize)(struct vm_area_struct * area);
633 
634 	/* notification that a previously read-only page is about to become
635 	 * writable, if an error is returned it will cause a SIGBUS */
636 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
637 
638 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
639 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
640 
641 	/* called by access_process_vm when get_user_pages() fails, typically
642 	 * for use by special VMAs. See also generic_access_phys() for a generic
643 	 * implementation useful for any iomem mapping.
644 	 */
645 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
646 		      void *buf, int len, int write);
647 
648 	/* Called by the /proc/PID/maps code to ask the vma whether it
649 	 * has a special name.  Returning non-NULL will also cause this
650 	 * vma to be dumped unconditionally. */
651 	const char *(*name)(struct vm_area_struct *vma);
652 
653 #ifdef CONFIG_NUMA
654 	/*
655 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
656 	 * to hold the policy upon return.  Caller should pass NULL @new to
657 	 * remove a policy and fall back to surrounding context--i.e. do not
658 	 * install a MPOL_DEFAULT policy, nor the task or system default
659 	 * mempolicy.
660 	 */
661 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
662 
663 	/*
664 	 * get_policy() op must add reference [mpol_get()] to any policy at
665 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
666 	 * in mm/mempolicy.c will do this automatically.
667 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
668 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
669 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
670 	 * must return NULL--i.e., do not "fallback" to task or system default
671 	 * policy.
672 	 */
673 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
674 					unsigned long addr, pgoff_t *ilx);
675 #endif
676 	/*
677 	 * Called by vm_normal_page() for special PTEs to find the
678 	 * page for @addr.  This is useful if the default behavior
679 	 * (using pte_page()) would not find the correct page.
680 	 */
681 	struct page *(*find_special_page)(struct vm_area_struct *vma,
682 					  unsigned long addr);
683 };
684 
685 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)686 static inline void vma_numab_state_init(struct vm_area_struct *vma)
687 {
688 	vma->numab_state = NULL;
689 }
vma_numab_state_free(struct vm_area_struct * vma)690 static inline void vma_numab_state_free(struct vm_area_struct *vma)
691 {
692 	kfree(vma->numab_state);
693 }
694 #else
vma_numab_state_init(struct vm_area_struct * vma)695 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)696 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
697 #endif /* CONFIG_NUMA_BALANCING */
698 
699 #ifdef CONFIG_PER_VMA_LOCK
700 /*
701  * Try to read-lock a vma. The function is allowed to occasionally yield false
702  * locked result to avoid performance overhead, in which case we fall back to
703  * using mmap_lock. The function should never yield false unlocked result.
704  */
vma_start_read(struct vm_area_struct * vma)705 static inline bool vma_start_read(struct vm_area_struct *vma)
706 {
707 	/*
708 	 * Check before locking. A race might cause false locked result.
709 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
710 	 * ACQUIRE semantics, because this is just a lockless check whose result
711 	 * we don't rely on for anything - the mm_lock_seq read against which we
712 	 * need ordering is below.
713 	 */
714 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq.sequence))
715 		return false;
716 
717 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
718 		return false;
719 
720 	/*
721 	 * Overflow might produce false locked result.
722 	 * False unlocked result is impossible because we modify and check
723 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
724 	 * modification invalidates all existing locks.
725 	 *
726 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
727 	 * racing with vma_end_write_all(), we only start reading from the VMA
728 	 * after it has been unlocked.
729 	 * This pairs with RELEASE semantics in vma_end_write_all().
730 	 */
731 	if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&vma->vm_mm->mm_lock_seq))) {
732 		up_read(&vma->vm_lock->lock);
733 		return false;
734 	}
735 	return true;
736 }
737 
vma_end_read(struct vm_area_struct * vma)738 static inline void vma_end_read(struct vm_area_struct *vma)
739 {
740 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
741 	up_read(&vma->vm_lock->lock);
742 	rcu_read_unlock();
743 }
744 
745 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
__is_vma_write_locked(struct vm_area_struct * vma,unsigned int * mm_lock_seq)746 static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq)
747 {
748 	mmap_assert_write_locked(vma->vm_mm);
749 
750 	/*
751 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
752 	 * mm->mm_lock_seq can't be concurrently modified.
753 	 */
754 	*mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence;
755 	return (vma->vm_lock_seq == *mm_lock_seq);
756 }
757 
758 /*
759  * Begin writing to a VMA.
760  * Exclude concurrent readers under the per-VMA lock until the currently
761  * write-locked mmap_lock is dropped or downgraded.
762  */
vma_start_write(struct vm_area_struct * vma)763 static inline void vma_start_write(struct vm_area_struct *vma)
764 {
765 	unsigned int mm_lock_seq;
766 
767 	if (__is_vma_write_locked(vma, &mm_lock_seq))
768 		return;
769 
770 	down_write(&vma->vm_lock->lock);
771 	/*
772 	 * We should use WRITE_ONCE() here because we can have concurrent reads
773 	 * from the early lockless pessimistic check in vma_start_read().
774 	 * We don't really care about the correctness of that early check, but
775 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
776 	 */
777 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
778 	up_write(&vma->vm_lock->lock);
779 }
780 
vma_assert_write_locked(struct vm_area_struct * vma)781 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
782 {
783 	unsigned int mm_lock_seq;
784 
785 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
786 }
787 
vma_assert_locked(struct vm_area_struct * vma)788 static inline void vma_assert_locked(struct vm_area_struct *vma)
789 {
790 	if (!rwsem_is_locked(&vma->vm_lock->lock))
791 		vma_assert_write_locked(vma);
792 }
793 
vma_mark_detached(struct vm_area_struct * vma,bool detached)794 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
795 {
796 	/* When detaching vma should be write-locked */
797 	if (detached)
798 		vma_assert_write_locked(vma);
799 	vma->detached = detached;
800 }
801 
release_fault_lock(struct vm_fault * vmf)802 static inline void release_fault_lock(struct vm_fault *vmf)
803 {
804 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
805 		vma_end_read(vmf->vma);
806 	else
807 		mmap_read_unlock(vmf->vma->vm_mm);
808 }
809 
assert_fault_locked(struct vm_fault * vmf)810 static inline void assert_fault_locked(struct vm_fault *vmf)
811 {
812 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
813 		vma_assert_locked(vmf->vma);
814 	else
815 		mmap_assert_locked(vmf->vma->vm_mm);
816 }
817 
818 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
819 					  unsigned long address);
820 
821 #else /* CONFIG_PER_VMA_LOCK */
822 
vma_start_read(struct vm_area_struct * vma)823 static inline bool vma_start_read(struct vm_area_struct *vma)
824 		{ return false; }
vma_end_read(struct vm_area_struct * vma)825 static inline void vma_end_read(struct vm_area_struct *vma) {}
vma_start_write(struct vm_area_struct * vma)826 static inline void vma_start_write(struct vm_area_struct *vma) {}
vma_assert_write_locked(struct vm_area_struct * vma)827 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
828 		{ mmap_assert_write_locked(vma->vm_mm); }
vma_mark_detached(struct vm_area_struct * vma,bool detached)829 static inline void vma_mark_detached(struct vm_area_struct *vma,
830 				     bool detached) {}
831 
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)832 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
833 		unsigned long address)
834 {
835 	return NULL;
836 }
837 
vma_assert_locked(struct vm_area_struct * vma)838 static inline void vma_assert_locked(struct vm_area_struct *vma)
839 {
840 	mmap_assert_locked(vma->vm_mm);
841 }
842 
release_fault_lock(struct vm_fault * vmf)843 static inline void release_fault_lock(struct vm_fault *vmf)
844 {
845 	mmap_read_unlock(vmf->vma->vm_mm);
846 }
847 
assert_fault_locked(struct vm_fault * vmf)848 static inline void assert_fault_locked(struct vm_fault *vmf)
849 {
850 	mmap_assert_locked(vmf->vma->vm_mm);
851 }
852 
853 #endif /* CONFIG_PER_VMA_LOCK */
854 
855 extern const struct vm_operations_struct vma_dummy_vm_ops;
856 
857 /*
858  * WARNING: vma_init does not initialize vma->vm_lock.
859  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
860  */
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)861 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
862 {
863 	memset(vma, 0, sizeof(*vma));
864 	vma->vm_mm = mm;
865 	vma->vm_ops = &vma_dummy_vm_ops;
866 	INIT_LIST_HEAD(&vma->anon_vma_chain);
867 	vma_mark_detached(vma, false);
868 	vma_numab_state_init(vma);
869 }
870 
871 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)872 static inline void vm_flags_init(struct vm_area_struct *vma,
873 				 vm_flags_t flags)
874 {
875 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
876 }
877 
878 /*
879  * Use when VMA is part of the VMA tree and modifications need coordination
880  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
881  * it should be locked explicitly beforehand.
882  */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)883 static inline void vm_flags_reset(struct vm_area_struct *vma,
884 				  vm_flags_t flags)
885 {
886 	vma_assert_write_locked(vma);
887 	vm_flags_init(vma, flags);
888 }
889 
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)890 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
891 				       vm_flags_t flags)
892 {
893 	vma_assert_write_locked(vma);
894 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
895 }
896 
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)897 static inline void vm_flags_set(struct vm_area_struct *vma,
898 				vm_flags_t flags)
899 {
900 	vma_start_write(vma);
901 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
902 }
903 
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)904 static inline void vm_flags_clear(struct vm_area_struct *vma,
905 				  vm_flags_t flags)
906 {
907 	vma_start_write(vma);
908 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
909 }
910 
911 /*
912  * Use only if VMA is not part of the VMA tree or has no other users and
913  * therefore needs no locking.
914  */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)915 static inline void __vm_flags_mod(struct vm_area_struct *vma,
916 				  vm_flags_t set, vm_flags_t clear)
917 {
918 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
919 }
920 
921 /*
922  * Use only when the order of set/clear operations is unimportant, otherwise
923  * use vm_flags_{set|clear} explicitly.
924  */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)925 static inline void vm_flags_mod(struct vm_area_struct *vma,
926 				vm_flags_t set, vm_flags_t clear)
927 {
928 	vma_start_write(vma);
929 	__vm_flags_mod(vma, set, clear);
930 }
931 
vma_set_anonymous(struct vm_area_struct * vma)932 static inline void vma_set_anonymous(struct vm_area_struct *vma)
933 {
934 	vma->vm_ops = NULL;
935 }
936 
vma_is_anonymous(struct vm_area_struct * vma)937 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
938 {
939 	return !vma->vm_ops;
940 }
941 
942 /*
943  * Indicate if the VMA is a heap for the given task; for
944  * /proc/PID/maps that is the heap of the main task.
945  */
vma_is_initial_heap(const struct vm_area_struct * vma)946 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
947 {
948 	return vma->vm_start < vma->vm_mm->brk &&
949 		vma->vm_end > vma->vm_mm->start_brk;
950 }
951 
952 /*
953  * Indicate if the VMA is a stack for the given task; for
954  * /proc/PID/maps that is the stack of the main task.
955  */
vma_is_initial_stack(const struct vm_area_struct * vma)956 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
957 {
958 	/*
959 	 * We make no effort to guess what a given thread considers to be
960 	 * its "stack".  It's not even well-defined for programs written
961 	 * languages like Go.
962 	 */
963 	return vma->vm_start <= vma->vm_mm->start_stack &&
964 		vma->vm_end >= vma->vm_mm->start_stack;
965 }
966 
vma_is_temporary_stack(struct vm_area_struct * vma)967 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
968 {
969 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
970 
971 	if (!maybe_stack)
972 		return false;
973 
974 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
975 						VM_STACK_INCOMPLETE_SETUP)
976 		return true;
977 
978 	return false;
979 }
980 
vma_is_foreign(struct vm_area_struct * vma)981 static inline bool vma_is_foreign(struct vm_area_struct *vma)
982 {
983 	if (!current->mm)
984 		return true;
985 
986 	if (current->mm != vma->vm_mm)
987 		return true;
988 
989 	return false;
990 }
991 
vma_is_accessible(struct vm_area_struct * vma)992 static inline bool vma_is_accessible(struct vm_area_struct *vma)
993 {
994 	return vma->vm_flags & VM_ACCESS_FLAGS;
995 }
996 
is_shared_maywrite(vm_flags_t vm_flags)997 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
998 {
999 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
1000 		(VM_SHARED | VM_MAYWRITE);
1001 }
1002 
vma_is_shared_maywrite(struct vm_area_struct * vma)1003 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
1004 {
1005 	return is_shared_maywrite(vma->vm_flags);
1006 }
1007 
1008 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)1009 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
1010 {
1011 	return mas_find(&vmi->mas, max - 1);
1012 }
1013 
vma_next(struct vma_iterator * vmi)1014 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1015 {
1016 	/*
1017 	 * Uses mas_find() to get the first VMA when the iterator starts.
1018 	 * Calling mas_next() could skip the first entry.
1019 	 */
1020 	return mas_find(&vmi->mas, ULONG_MAX);
1021 }
1022 
1023 static inline
vma_iter_next_range(struct vma_iterator * vmi)1024 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1025 {
1026 	return mas_next_range(&vmi->mas, ULONG_MAX);
1027 }
1028 
1029 
vma_prev(struct vma_iterator * vmi)1030 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1031 {
1032 	return mas_prev(&vmi->mas, 0);
1033 }
1034 
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)1035 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1036 			unsigned long start, unsigned long end, gfp_t gfp)
1037 {
1038 	__mas_set_range(&vmi->mas, start, end - 1);
1039 	mas_store_gfp(&vmi->mas, NULL, gfp);
1040 	if (unlikely(mas_is_err(&vmi->mas)))
1041 		return -ENOMEM;
1042 
1043 	return 0;
1044 }
1045 
1046 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)1047 static inline void vma_iter_free(struct vma_iterator *vmi)
1048 {
1049 	mas_destroy(&vmi->mas);
1050 }
1051 
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)1052 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1053 				      struct vm_area_struct *vma)
1054 {
1055 	vmi->mas.index = vma->vm_start;
1056 	vmi->mas.last = vma->vm_end - 1;
1057 	mas_store(&vmi->mas, vma);
1058 	if (unlikely(mas_is_err(&vmi->mas)))
1059 		return -ENOMEM;
1060 
1061 	return 0;
1062 }
1063 
vma_iter_invalidate(struct vma_iterator * vmi)1064 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1065 {
1066 	mas_pause(&vmi->mas);
1067 }
1068 
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)1069 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1070 {
1071 	mas_set(&vmi->mas, addr);
1072 }
1073 
1074 #define for_each_vma(__vmi, __vma)					\
1075 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1076 
1077 /* The MM code likes to work with exclusive end addresses */
1078 #define for_each_vma_range(__vmi, __vma, __end)				\
1079 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1080 
1081 #ifdef CONFIG_SHMEM
1082 /*
1083  * The vma_is_shmem is not inline because it is used only by slow
1084  * paths in userfault.
1085  */
1086 bool vma_is_shmem(struct vm_area_struct *vma);
1087 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1088 #else
vma_is_shmem(struct vm_area_struct * vma)1089 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(struct vm_area_struct * vma)1090 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1091 #endif
1092 
1093 int vma_is_stack_for_current(struct vm_area_struct *vma);
1094 
1095 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1096 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1097 
1098 struct mmu_gather;
1099 struct inode;
1100 
1101 /*
1102  * compound_order() can be called without holding a reference, which means
1103  * that niceties like page_folio() don't work.  These callers should be
1104  * prepared to handle wild return values.  For example, PG_head may be
1105  * set before the order is initialised, or this may be a tail page.
1106  * See compaction.c for some good examples.
1107  */
compound_order(struct page * page)1108 static inline unsigned int compound_order(struct page *page)
1109 {
1110 	struct folio *folio = (struct folio *)page;
1111 
1112 	if (!test_bit(PG_head, &folio->flags))
1113 		return 0;
1114 	return folio->_flags_1 & 0xff;
1115 }
1116 
1117 /**
1118  * folio_order - The allocation order of a folio.
1119  * @folio: The folio.
1120  *
1121  * A folio is composed of 2^order pages.  See get_order() for the definition
1122  * of order.
1123  *
1124  * Return: The order of the folio.
1125  */
folio_order(const struct folio * folio)1126 static inline unsigned int folio_order(const struct folio *folio)
1127 {
1128 	if (!folio_test_large(folio))
1129 		return 0;
1130 	return folio->_flags_1 & 0xff;
1131 }
1132 
1133 #include <linux/huge_mm.h>
1134 
1135 /*
1136  * Methods to modify the page usage count.
1137  *
1138  * What counts for a page usage:
1139  * - cache mapping   (page->mapping)
1140  * - private data    (page->private)
1141  * - page mapped in a task's page tables, each mapping
1142  *   is counted separately
1143  *
1144  * Also, many kernel routines increase the page count before a critical
1145  * routine so they can be sure the page doesn't go away from under them.
1146  */
1147 
1148 /*
1149  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1150  */
put_page_testzero(struct page * page)1151 static inline int put_page_testzero(struct page *page)
1152 {
1153 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1154 	return page_ref_dec_and_test(page);
1155 }
1156 
folio_put_testzero(struct folio * folio)1157 static inline int folio_put_testzero(struct folio *folio)
1158 {
1159 	return put_page_testzero(&folio->page);
1160 }
1161 
1162 /*
1163  * Try to grab a ref unless the page has a refcount of zero, return false if
1164  * that is the case.
1165  * This can be called when MMU is off so it must not access
1166  * any of the virtual mappings.
1167  */
get_page_unless_zero(struct page * page)1168 static inline bool get_page_unless_zero(struct page *page)
1169 {
1170 	return page_ref_add_unless(page, 1, 0);
1171 }
1172 
folio_get_nontail_page(struct page * page)1173 static inline struct folio *folio_get_nontail_page(struct page *page)
1174 {
1175 	if (unlikely(!get_page_unless_zero(page)))
1176 		return NULL;
1177 	return (struct folio *)page;
1178 }
1179 
1180 extern int page_is_ram(unsigned long pfn);
1181 
1182 enum {
1183 	REGION_INTERSECTS,
1184 	REGION_DISJOINT,
1185 	REGION_MIXED,
1186 };
1187 
1188 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1189 		      unsigned long desc);
1190 
1191 /* Support for virtually mapped pages */
1192 struct page *vmalloc_to_page(const void *addr);
1193 unsigned long vmalloc_to_pfn(const void *addr);
1194 
1195 /*
1196  * Determine if an address is within the vmalloc range
1197  *
1198  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1199  * is no special casing required.
1200  */
1201 #ifdef CONFIG_MMU
1202 extern bool is_vmalloc_addr(const void *x);
1203 extern int is_vmalloc_or_module_addr(const void *x);
1204 #else
is_vmalloc_addr(const void * x)1205 static inline bool is_vmalloc_addr(const void *x)
1206 {
1207 	return false;
1208 }
is_vmalloc_or_module_addr(const void * x)1209 static inline int is_vmalloc_or_module_addr(const void *x)
1210 {
1211 	return 0;
1212 }
1213 #endif
1214 
1215 /*
1216  * How many times the entire folio is mapped as a single unit (eg by a
1217  * PMD or PUD entry).  This is probably not what you want, except for
1218  * debugging purposes or implementation of other core folio_*() primitives.
1219  */
folio_entire_mapcount(const struct folio * folio)1220 static inline int folio_entire_mapcount(const struct folio *folio)
1221 {
1222 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1223 	return atomic_read(&folio->_entire_mapcount) + 1;
1224 }
1225 
folio_large_mapcount(const struct folio * folio)1226 static inline int folio_large_mapcount(const struct folio *folio)
1227 {
1228 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1229 	return atomic_read(&folio->_large_mapcount) + 1;
1230 }
1231 
1232 /**
1233  * folio_mapcount() - Number of mappings of this folio.
1234  * @folio: The folio.
1235  *
1236  * The folio mapcount corresponds to the number of present user page table
1237  * entries that reference any part of a folio. Each such present user page
1238  * table entry must be paired with exactly on folio reference.
1239  *
1240  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1241  * exactly once.
1242  *
1243  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1244  * references the entire folio counts exactly once, even when such special
1245  * page table entries are comprised of multiple ordinary page table entries.
1246  *
1247  * Will report 0 for pages which cannot be mapped into userspace, such as
1248  * slab, page tables and similar.
1249  *
1250  * Return: The number of times this folio is mapped.
1251  */
folio_mapcount(const struct folio * folio)1252 static inline int folio_mapcount(const struct folio *folio)
1253 {
1254 	int mapcount;
1255 
1256 	if (likely(!folio_test_large(folio))) {
1257 		mapcount = atomic_read(&folio->_mapcount) + 1;
1258 		if (page_mapcount_is_type(mapcount))
1259 			mapcount = 0;
1260 		return mapcount;
1261 	}
1262 	return folio_large_mapcount(folio);
1263 }
1264 
1265 /**
1266  * folio_mapped - Is this folio mapped into userspace?
1267  * @folio: The folio.
1268  *
1269  * Return: True if any page in this folio is referenced by user page tables.
1270  */
folio_mapped(const struct folio * folio)1271 static inline bool folio_mapped(const struct folio *folio)
1272 {
1273 	return folio_mapcount(folio) >= 1;
1274 }
1275 
1276 /*
1277  * Return true if this page is mapped into pagetables.
1278  * For compound page it returns true if any sub-page of compound page is mapped,
1279  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1280  */
page_mapped(const struct page * page)1281 static inline bool page_mapped(const struct page *page)
1282 {
1283 	return folio_mapped(page_folio(page));
1284 }
1285 
virt_to_head_page(const void * x)1286 static inline struct page *virt_to_head_page(const void *x)
1287 {
1288 	struct page *page = virt_to_page(x);
1289 
1290 	return compound_head(page);
1291 }
1292 
virt_to_folio(const void * x)1293 static inline struct folio *virt_to_folio(const void *x)
1294 {
1295 	struct page *page = virt_to_page(x);
1296 
1297 	return page_folio(page);
1298 }
1299 
1300 void __folio_put(struct folio *folio);
1301 
1302 void split_page(struct page *page, unsigned int order);
1303 void folio_copy(struct folio *dst, struct folio *src);
1304 int folio_mc_copy(struct folio *dst, struct folio *src);
1305 
1306 unsigned long nr_free_buffer_pages(void);
1307 
1308 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)1309 static inline unsigned long page_size(struct page *page)
1310 {
1311 	return PAGE_SIZE << compound_order(page);
1312 }
1313 
1314 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1315 static inline unsigned int page_shift(struct page *page)
1316 {
1317 	return PAGE_SHIFT + compound_order(page);
1318 }
1319 
1320 /**
1321  * thp_order - Order of a transparent huge page.
1322  * @page: Head page of a transparent huge page.
1323  */
thp_order(struct page * page)1324 static inline unsigned int thp_order(struct page *page)
1325 {
1326 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1327 	return compound_order(page);
1328 }
1329 
1330 /**
1331  * thp_size - Size of a transparent huge page.
1332  * @page: Head page of a transparent huge page.
1333  *
1334  * Return: Number of bytes in this page.
1335  */
thp_size(struct page * page)1336 static inline unsigned long thp_size(struct page *page)
1337 {
1338 	return PAGE_SIZE << thp_order(page);
1339 }
1340 
1341 #ifdef CONFIG_MMU
1342 /*
1343  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1344  * servicing faults for write access.  In the normal case, do always want
1345  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1346  * that do not have writing enabled, when used by access_process_vm.
1347  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1348 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1349 {
1350 	if (likely(vma->vm_flags & VM_WRITE))
1351 		pte = pte_mkwrite(pte, vma);
1352 	return pte;
1353 }
1354 
1355 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1356 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1357 		struct page *page, unsigned int nr, unsigned long addr);
1358 
1359 vm_fault_t finish_fault(struct vm_fault *vmf);
1360 #endif
1361 
1362 /*
1363  * Multiple processes may "see" the same page. E.g. for untouched
1364  * mappings of /dev/null, all processes see the same page full of
1365  * zeroes, and text pages of executables and shared libraries have
1366  * only one copy in memory, at most, normally.
1367  *
1368  * For the non-reserved pages, page_count(page) denotes a reference count.
1369  *   page_count() == 0 means the page is free. page->lru is then used for
1370  *   freelist management in the buddy allocator.
1371  *   page_count() > 0  means the page has been allocated.
1372  *
1373  * Pages are allocated by the slab allocator in order to provide memory
1374  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1375  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1376  * unless a particular usage is carefully commented. (the responsibility of
1377  * freeing the kmalloc memory is the caller's, of course).
1378  *
1379  * A page may be used by anyone else who does a __get_free_page().
1380  * In this case, page_count still tracks the references, and should only
1381  * be used through the normal accessor functions. The top bits of page->flags
1382  * and page->virtual store page management information, but all other fields
1383  * are unused and could be used privately, carefully. The management of this
1384  * page is the responsibility of the one who allocated it, and those who have
1385  * subsequently been given references to it.
1386  *
1387  * The other pages (we may call them "pagecache pages") are completely
1388  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1389  * The following discussion applies only to them.
1390  *
1391  * A pagecache page contains an opaque `private' member, which belongs to the
1392  * page's address_space. Usually, this is the address of a circular list of
1393  * the page's disk buffers. PG_private must be set to tell the VM to call
1394  * into the filesystem to release these pages.
1395  *
1396  * A page may belong to an inode's memory mapping. In this case, page->mapping
1397  * is the pointer to the inode, and page->index is the file offset of the page,
1398  * in units of PAGE_SIZE.
1399  *
1400  * If pagecache pages are not associated with an inode, they are said to be
1401  * anonymous pages. These may become associated with the swapcache, and in that
1402  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1403  *
1404  * In either case (swapcache or inode backed), the pagecache itself holds one
1405  * reference to the page. Setting PG_private should also increment the
1406  * refcount. The each user mapping also has a reference to the page.
1407  *
1408  * The pagecache pages are stored in a per-mapping radix tree, which is
1409  * rooted at mapping->i_pages, and indexed by offset.
1410  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1411  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1412  *
1413  * All pagecache pages may be subject to I/O:
1414  * - inode pages may need to be read from disk,
1415  * - inode pages which have been modified and are MAP_SHARED may need
1416  *   to be written back to the inode on disk,
1417  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1418  *   modified may need to be swapped out to swap space and (later) to be read
1419  *   back into memory.
1420  */
1421 
1422 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1423 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1424 
1425 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
put_devmap_managed_folio_refs(struct folio * folio,int refs)1426 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1427 {
1428 	if (!static_branch_unlikely(&devmap_managed_key))
1429 		return false;
1430 	if (!folio_is_zone_device(folio))
1431 		return false;
1432 	return __put_devmap_managed_folio_refs(folio, refs);
1433 }
1434 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
put_devmap_managed_folio_refs(struct folio * folio,int refs)1435 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1436 {
1437 	return false;
1438 }
1439 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1440 
1441 /* 127: arbitrary random number, small enough to assemble well */
1442 #define folio_ref_zero_or_close_to_overflow(folio) \
1443 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1444 
1445 /**
1446  * folio_get - Increment the reference count on a folio.
1447  * @folio: The folio.
1448  *
1449  * Context: May be called in any context, as long as you know that
1450  * you have a refcount on the folio.  If you do not already have one,
1451  * folio_try_get() may be the right interface for you to use.
1452  */
folio_get(struct folio * folio)1453 static inline void folio_get(struct folio *folio)
1454 {
1455 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1456 	folio_ref_inc(folio);
1457 }
1458 
get_page(struct page * page)1459 static inline void get_page(struct page *page)
1460 {
1461 	struct folio *folio = page_folio(page);
1462 	if (WARN_ON_ONCE(folio_test_slab(folio)))
1463 		return;
1464 	folio_get(folio);
1465 }
1466 
try_get_page(struct page * page)1467 static inline __must_check bool try_get_page(struct page *page)
1468 {
1469 	page = compound_head(page);
1470 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1471 		return false;
1472 	page_ref_inc(page);
1473 	return true;
1474 }
1475 
1476 /**
1477  * folio_put - Decrement the reference count on a folio.
1478  * @folio: The folio.
1479  *
1480  * If the folio's reference count reaches zero, the memory will be
1481  * released back to the page allocator and may be used by another
1482  * allocation immediately.  Do not access the memory or the struct folio
1483  * after calling folio_put() unless you can be sure that it wasn't the
1484  * last reference.
1485  *
1486  * Context: May be called in process or interrupt context, but not in NMI
1487  * context.  May be called while holding a spinlock.
1488  */
folio_put(struct folio * folio)1489 static inline void folio_put(struct folio *folio)
1490 {
1491 	if (folio_put_testzero(folio))
1492 		__folio_put(folio);
1493 }
1494 
1495 /**
1496  * folio_put_refs - Reduce the reference count on a folio.
1497  * @folio: The folio.
1498  * @refs: The amount to subtract from the folio's reference count.
1499  *
1500  * If the folio's reference count reaches zero, the memory will be
1501  * released back to the page allocator and may be used by another
1502  * allocation immediately.  Do not access the memory or the struct folio
1503  * after calling folio_put_refs() unless you can be sure that these weren't
1504  * the last references.
1505  *
1506  * Context: May be called in process or interrupt context, but not in NMI
1507  * context.  May be called while holding a spinlock.
1508  */
folio_put_refs(struct folio * folio,int refs)1509 static inline void folio_put_refs(struct folio *folio, int refs)
1510 {
1511 	if (folio_ref_sub_and_test(folio, refs))
1512 		__folio_put(folio);
1513 }
1514 
1515 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1516 
1517 /*
1518  * union release_pages_arg - an array of pages or folios
1519  *
1520  * release_pages() releases a simple array of multiple pages, and
1521  * accepts various different forms of said page array: either
1522  * a regular old boring array of pages, an array of folios, or
1523  * an array of encoded page pointers.
1524  *
1525  * The transparent union syntax for this kind of "any of these
1526  * argument types" is all kinds of ugly, so look away.
1527  */
1528 typedef union {
1529 	struct page **pages;
1530 	struct folio **folios;
1531 	struct encoded_page **encoded_pages;
1532 } release_pages_arg __attribute__ ((__transparent_union__));
1533 
1534 void release_pages(release_pages_arg, int nr);
1535 
1536 /**
1537  * folios_put - Decrement the reference count on an array of folios.
1538  * @folios: The folios.
1539  *
1540  * Like folio_put(), but for a batch of folios.  This is more efficient
1541  * than writing the loop yourself as it will optimise the locks which need
1542  * to be taken if the folios are freed.  The folios batch is returned
1543  * empty and ready to be reused for another batch; there is no need to
1544  * reinitialise it.
1545  *
1546  * Context: May be called in process or interrupt context, but not in NMI
1547  * context.  May be called while holding a spinlock.
1548  */
folios_put(struct folio_batch * folios)1549 static inline void folios_put(struct folio_batch *folios)
1550 {
1551 	folios_put_refs(folios, NULL);
1552 }
1553 
put_page(struct page * page)1554 static inline void put_page(struct page *page)
1555 {
1556 	struct folio *folio = page_folio(page);
1557 
1558 	if (folio_test_slab(folio))
1559 		return;
1560 
1561 	/*
1562 	 * For some devmap managed pages we need to catch refcount transition
1563 	 * from 2 to 1:
1564 	 */
1565 	if (put_devmap_managed_folio_refs(folio, 1))
1566 		return;
1567 	folio_put(folio);
1568 }
1569 
1570 /*
1571  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1572  * the page's refcount so that two separate items are tracked: the original page
1573  * reference count, and also a new count of how many pin_user_pages() calls were
1574  * made against the page. ("gup-pinned" is another term for the latter).
1575  *
1576  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1577  * distinct from normal pages. As such, the unpin_user_page() call (and its
1578  * variants) must be used in order to release gup-pinned pages.
1579  *
1580  * Choice of value:
1581  *
1582  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1583  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1584  * simpler, due to the fact that adding an even power of two to the page
1585  * refcount has the effect of using only the upper N bits, for the code that
1586  * counts up using the bias value. This means that the lower bits are left for
1587  * the exclusive use of the original code that increments and decrements by one
1588  * (or at least, by much smaller values than the bias value).
1589  *
1590  * Of course, once the lower bits overflow into the upper bits (and this is
1591  * OK, because subtraction recovers the original values), then visual inspection
1592  * no longer suffices to directly view the separate counts. However, for normal
1593  * applications that don't have huge page reference counts, this won't be an
1594  * issue.
1595  *
1596  * Locking: the lockless algorithm described in folio_try_get_rcu()
1597  * provides safe operation for get_user_pages(), folio_mkclean() and
1598  * other calls that race to set up page table entries.
1599  */
1600 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1601 
1602 void unpin_user_page(struct page *page);
1603 void unpin_folio(struct folio *folio);
1604 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1605 				 bool make_dirty);
1606 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1607 				      bool make_dirty);
1608 void unpin_user_pages(struct page **pages, unsigned long npages);
1609 void unpin_user_folio(struct folio *folio, unsigned long npages);
1610 void unpin_folios(struct folio **folios, unsigned long nfolios);
1611 
is_cow_mapping(vm_flags_t flags)1612 static inline bool is_cow_mapping(vm_flags_t flags)
1613 {
1614 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1615 }
1616 
1617 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1618 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1619 {
1620 	/*
1621 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1622 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1623 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1624 	 * underlying memory if ptrace is active, so this is only possible if
1625 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1626 	 * write permissions later.
1627 	 */
1628 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1629 }
1630 #endif
1631 
1632 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1633 #define SECTION_IN_PAGE_FLAGS
1634 #endif
1635 
1636 /*
1637  * The identification function is mainly used by the buddy allocator for
1638  * determining if two pages could be buddies. We are not really identifying
1639  * the zone since we could be using the section number id if we do not have
1640  * node id available in page flags.
1641  * We only guarantee that it will return the same value for two combinable
1642  * pages in a zone.
1643  */
page_zone_id(struct page * page)1644 static inline int page_zone_id(struct page *page)
1645 {
1646 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1647 }
1648 
1649 #ifdef NODE_NOT_IN_PAGE_FLAGS
1650 int page_to_nid(const struct page *page);
1651 #else
page_to_nid(const struct page * page)1652 static inline int page_to_nid(const struct page *page)
1653 {
1654 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1655 }
1656 #endif
1657 
folio_nid(const struct folio * folio)1658 static inline int folio_nid(const struct folio *folio)
1659 {
1660 	return page_to_nid(&folio->page);
1661 }
1662 
1663 #ifdef CONFIG_NUMA_BALANCING
1664 /* page access time bits needs to hold at least 4 seconds */
1665 #define PAGE_ACCESS_TIME_MIN_BITS	12
1666 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1667 #define PAGE_ACCESS_TIME_BUCKETS				\
1668 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1669 #else
1670 #define PAGE_ACCESS_TIME_BUCKETS	0
1671 #endif
1672 
1673 #define PAGE_ACCESS_TIME_MASK				\
1674 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1675 
cpu_pid_to_cpupid(int cpu,int pid)1676 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1677 {
1678 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1679 }
1680 
cpupid_to_pid(int cpupid)1681 static inline int cpupid_to_pid(int cpupid)
1682 {
1683 	return cpupid & LAST__PID_MASK;
1684 }
1685 
cpupid_to_cpu(int cpupid)1686 static inline int cpupid_to_cpu(int cpupid)
1687 {
1688 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1689 }
1690 
cpupid_to_nid(int cpupid)1691 static inline int cpupid_to_nid(int cpupid)
1692 {
1693 	return cpu_to_node(cpupid_to_cpu(cpupid));
1694 }
1695 
cpupid_pid_unset(int cpupid)1696 static inline bool cpupid_pid_unset(int cpupid)
1697 {
1698 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1699 }
1700 
cpupid_cpu_unset(int cpupid)1701 static inline bool cpupid_cpu_unset(int cpupid)
1702 {
1703 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1704 }
1705 
__cpupid_match_pid(pid_t task_pid,int cpupid)1706 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1707 {
1708 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1709 }
1710 
1711 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1712 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1713 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1714 {
1715 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1716 }
1717 
folio_last_cpupid(struct folio * folio)1718 static inline int folio_last_cpupid(struct folio *folio)
1719 {
1720 	return folio->_last_cpupid;
1721 }
page_cpupid_reset_last(struct page * page)1722 static inline void page_cpupid_reset_last(struct page *page)
1723 {
1724 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1725 }
1726 #else
folio_last_cpupid(struct folio * folio)1727 static inline int folio_last_cpupid(struct folio *folio)
1728 {
1729 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1730 }
1731 
1732 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1733 
page_cpupid_reset_last(struct page * page)1734 static inline void page_cpupid_reset_last(struct page *page)
1735 {
1736 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1737 }
1738 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1739 
folio_xchg_access_time(struct folio * folio,int time)1740 static inline int folio_xchg_access_time(struct folio *folio, int time)
1741 {
1742 	int last_time;
1743 
1744 	last_time = folio_xchg_last_cpupid(folio,
1745 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1746 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1747 }
1748 
vma_set_access_pid_bit(struct vm_area_struct * vma)1749 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1750 {
1751 	unsigned int pid_bit;
1752 
1753 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1754 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1755 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1756 	}
1757 }
1758 
1759 bool folio_use_access_time(struct folio *folio);
1760 #else /* !CONFIG_NUMA_BALANCING */
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1761 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1762 {
1763 	return folio_nid(folio); /* XXX */
1764 }
1765 
folio_xchg_access_time(struct folio * folio,int time)1766 static inline int folio_xchg_access_time(struct folio *folio, int time)
1767 {
1768 	return 0;
1769 }
1770 
folio_last_cpupid(struct folio * folio)1771 static inline int folio_last_cpupid(struct folio *folio)
1772 {
1773 	return folio_nid(folio); /* XXX */
1774 }
1775 
cpupid_to_nid(int cpupid)1776 static inline int cpupid_to_nid(int cpupid)
1777 {
1778 	return -1;
1779 }
1780 
cpupid_to_pid(int cpupid)1781 static inline int cpupid_to_pid(int cpupid)
1782 {
1783 	return -1;
1784 }
1785 
cpupid_to_cpu(int cpupid)1786 static inline int cpupid_to_cpu(int cpupid)
1787 {
1788 	return -1;
1789 }
1790 
cpu_pid_to_cpupid(int nid,int pid)1791 static inline int cpu_pid_to_cpupid(int nid, int pid)
1792 {
1793 	return -1;
1794 }
1795 
cpupid_pid_unset(int cpupid)1796 static inline bool cpupid_pid_unset(int cpupid)
1797 {
1798 	return true;
1799 }
1800 
page_cpupid_reset_last(struct page * page)1801 static inline void page_cpupid_reset_last(struct page *page)
1802 {
1803 }
1804 
cpupid_match_pid(struct task_struct * task,int cpupid)1805 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1806 {
1807 	return false;
1808 }
1809 
vma_set_access_pid_bit(struct vm_area_struct * vma)1810 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1811 {
1812 }
folio_use_access_time(struct folio * folio)1813 static inline bool folio_use_access_time(struct folio *folio)
1814 {
1815 	return false;
1816 }
1817 #endif /* CONFIG_NUMA_BALANCING */
1818 
1819 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1820 
1821 /*
1822  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1823  * setting tags for all pages to native kernel tag value 0xff, as the default
1824  * value 0x00 maps to 0xff.
1825  */
1826 
page_kasan_tag(const struct page * page)1827 static inline u8 page_kasan_tag(const struct page *page)
1828 {
1829 	u8 tag = KASAN_TAG_KERNEL;
1830 
1831 	if (kasan_enabled()) {
1832 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1833 		tag ^= 0xff;
1834 	}
1835 
1836 	return tag;
1837 }
1838 
page_kasan_tag_set(struct page * page,u8 tag)1839 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1840 {
1841 	unsigned long old_flags, flags;
1842 
1843 	if (!kasan_enabled())
1844 		return;
1845 
1846 	tag ^= 0xff;
1847 	old_flags = READ_ONCE(page->flags);
1848 	do {
1849 		flags = old_flags;
1850 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1851 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1852 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1853 }
1854 
page_kasan_tag_reset(struct page * page)1855 static inline void page_kasan_tag_reset(struct page *page)
1856 {
1857 	if (kasan_enabled())
1858 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1859 }
1860 
1861 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1862 
page_kasan_tag(const struct page * page)1863 static inline u8 page_kasan_tag(const struct page *page)
1864 {
1865 	return 0xff;
1866 }
1867 
page_kasan_tag_set(struct page * page,u8 tag)1868 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1869 static inline void page_kasan_tag_reset(struct page *page) { }
1870 
1871 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1872 
page_zone(const struct page * page)1873 static inline struct zone *page_zone(const struct page *page)
1874 {
1875 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1876 }
1877 
page_pgdat(const struct page * page)1878 static inline pg_data_t *page_pgdat(const struct page *page)
1879 {
1880 	return NODE_DATA(page_to_nid(page));
1881 }
1882 
folio_zone(const struct folio * folio)1883 static inline struct zone *folio_zone(const struct folio *folio)
1884 {
1885 	return page_zone(&folio->page);
1886 }
1887 
folio_pgdat(const struct folio * folio)1888 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1889 {
1890 	return page_pgdat(&folio->page);
1891 }
1892 
1893 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1894 static inline void set_page_section(struct page *page, unsigned long section)
1895 {
1896 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1897 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1898 }
1899 
page_to_section(const struct page * page)1900 static inline unsigned long page_to_section(const struct page *page)
1901 {
1902 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1903 }
1904 #endif
1905 
1906 /**
1907  * folio_pfn - Return the Page Frame Number of a folio.
1908  * @folio: The folio.
1909  *
1910  * A folio may contain multiple pages.  The pages have consecutive
1911  * Page Frame Numbers.
1912  *
1913  * Return: The Page Frame Number of the first page in the folio.
1914  */
folio_pfn(const struct folio * folio)1915 static inline unsigned long folio_pfn(const struct folio *folio)
1916 {
1917 	return page_to_pfn(&folio->page);
1918 }
1919 
pfn_folio(unsigned long pfn)1920 static inline struct folio *pfn_folio(unsigned long pfn)
1921 {
1922 	return page_folio(pfn_to_page(pfn));
1923 }
1924 
1925 /**
1926  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1927  * @folio: The folio.
1928  *
1929  * This function checks if a folio has been pinned via a call to
1930  * a function in the pin_user_pages() family.
1931  *
1932  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1933  * because it means "definitely not pinned for DMA", but true means "probably
1934  * pinned for DMA, but possibly a false positive due to having at least
1935  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1936  *
1937  * False positives are OK, because: a) it's unlikely for a folio to
1938  * get that many refcounts, and b) all the callers of this routine are
1939  * expected to be able to deal gracefully with a false positive.
1940  *
1941  * For large folios, the result will be exactly correct. That's because
1942  * we have more tracking data available: the _pincount field is used
1943  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1944  *
1945  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1946  *
1947  * Return: True, if it is likely that the folio has been "dma-pinned".
1948  * False, if the folio is definitely not dma-pinned.
1949  */
folio_maybe_dma_pinned(struct folio * folio)1950 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1951 {
1952 	if (folio_test_large(folio))
1953 		return atomic_read(&folio->_pincount) > 0;
1954 
1955 	/*
1956 	 * folio_ref_count() is signed. If that refcount overflows, then
1957 	 * folio_ref_count() returns a negative value, and callers will avoid
1958 	 * further incrementing the refcount.
1959 	 *
1960 	 * Here, for that overflow case, use the sign bit to count a little
1961 	 * bit higher via unsigned math, and thus still get an accurate result.
1962 	 */
1963 	return ((unsigned int)folio_ref_count(folio)) >=
1964 		GUP_PIN_COUNTING_BIAS;
1965 }
1966 
1967 /*
1968  * This should most likely only be called during fork() to see whether we
1969  * should break the cow immediately for an anon page on the src mm.
1970  *
1971  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1972  */
folio_needs_cow_for_dma(struct vm_area_struct * vma,struct folio * folio)1973 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1974 					  struct folio *folio)
1975 {
1976 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1977 
1978 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1979 		return false;
1980 
1981 	return folio_maybe_dma_pinned(folio);
1982 }
1983 
1984 /**
1985  * is_zero_page - Query if a page is a zero page
1986  * @page: The page to query
1987  *
1988  * This returns true if @page is one of the permanent zero pages.
1989  */
is_zero_page(const struct page * page)1990 static inline bool is_zero_page(const struct page *page)
1991 {
1992 	return is_zero_pfn(page_to_pfn(page));
1993 }
1994 
1995 /**
1996  * is_zero_folio - Query if a folio is a zero page
1997  * @folio: The folio to query
1998  *
1999  * This returns true if @folio is one of the permanent zero pages.
2000  */
is_zero_folio(const struct folio * folio)2001 static inline bool is_zero_folio(const struct folio *folio)
2002 {
2003 	return is_zero_page(&folio->page);
2004 }
2005 
2006 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2007 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)2008 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2009 {
2010 #ifdef CONFIG_CMA
2011 	int mt = folio_migratetype(folio);
2012 
2013 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2014 		return false;
2015 #endif
2016 	/* The zero page can be "pinned" but gets special handling. */
2017 	if (is_zero_folio(folio))
2018 		return true;
2019 
2020 	/* Coherent device memory must always allow eviction. */
2021 	if (folio_is_device_coherent(folio))
2022 		return false;
2023 
2024 	/* Otherwise, non-movable zone folios can be pinned. */
2025 	return !folio_is_zone_movable(folio);
2026 
2027 }
2028 #else
folio_is_longterm_pinnable(struct folio * folio)2029 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2030 {
2031 	return true;
2032 }
2033 #endif
2034 
set_page_zone(struct page * page,enum zone_type zone)2035 static inline void set_page_zone(struct page *page, enum zone_type zone)
2036 {
2037 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2038 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2039 }
2040 
set_page_node(struct page * page,unsigned long node)2041 static inline void set_page_node(struct page *page, unsigned long node)
2042 {
2043 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2044 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2045 }
2046 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)2047 static inline void set_page_links(struct page *page, enum zone_type zone,
2048 	unsigned long node, unsigned long pfn)
2049 {
2050 	set_page_zone(page, zone);
2051 	set_page_node(page, node);
2052 #ifdef SECTION_IN_PAGE_FLAGS
2053 	set_page_section(page, pfn_to_section_nr(pfn));
2054 #endif
2055 }
2056 
2057 /**
2058  * folio_nr_pages - The number of pages in the folio.
2059  * @folio: The folio.
2060  *
2061  * Return: A positive power of two.
2062  */
folio_nr_pages(const struct folio * folio)2063 static inline long folio_nr_pages(const struct folio *folio)
2064 {
2065 	if (!folio_test_large(folio))
2066 		return 1;
2067 #ifdef CONFIG_64BIT
2068 	return folio->_folio_nr_pages;
2069 #else
2070 	return 1L << (folio->_flags_1 & 0xff);
2071 #endif
2072 }
2073 
2074 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2075 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2076 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2077 #else
2078 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2079 #endif
2080 
2081 /*
2082  * compound_nr() returns the number of pages in this potentially compound
2083  * page.  compound_nr() can be called on a tail page, and is defined to
2084  * return 1 in that case.
2085  */
compound_nr(struct page * page)2086 static inline unsigned long compound_nr(struct page *page)
2087 {
2088 	struct folio *folio = (struct folio *)page;
2089 
2090 	if (!test_bit(PG_head, &folio->flags))
2091 		return 1;
2092 #ifdef CONFIG_64BIT
2093 	return folio->_folio_nr_pages;
2094 #else
2095 	return 1L << (folio->_flags_1 & 0xff);
2096 #endif
2097 }
2098 
2099 /**
2100  * thp_nr_pages - The number of regular pages in this huge page.
2101  * @page: The head page of a huge page.
2102  */
thp_nr_pages(struct page * page)2103 static inline int thp_nr_pages(struct page *page)
2104 {
2105 	return folio_nr_pages((struct folio *)page);
2106 }
2107 
2108 /**
2109  * folio_next - Move to the next physical folio.
2110  * @folio: The folio we're currently operating on.
2111  *
2112  * If you have physically contiguous memory which may span more than
2113  * one folio (eg a &struct bio_vec), use this function to move from one
2114  * folio to the next.  Do not use it if the memory is only virtually
2115  * contiguous as the folios are almost certainly not adjacent to each
2116  * other.  This is the folio equivalent to writing ``page++``.
2117  *
2118  * Context: We assume that the folios are refcounted and/or locked at a
2119  * higher level and do not adjust the reference counts.
2120  * Return: The next struct folio.
2121  */
folio_next(struct folio * folio)2122 static inline struct folio *folio_next(struct folio *folio)
2123 {
2124 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2125 }
2126 
2127 /**
2128  * folio_shift - The size of the memory described by this folio.
2129  * @folio: The folio.
2130  *
2131  * A folio represents a number of bytes which is a power-of-two in size.
2132  * This function tells you which power-of-two the folio is.  See also
2133  * folio_size() and folio_order().
2134  *
2135  * Context: The caller should have a reference on the folio to prevent
2136  * it from being split.  It is not necessary for the folio to be locked.
2137  * Return: The base-2 logarithm of the size of this folio.
2138  */
folio_shift(const struct folio * folio)2139 static inline unsigned int folio_shift(const struct folio *folio)
2140 {
2141 	return PAGE_SHIFT + folio_order(folio);
2142 }
2143 
2144 /**
2145  * folio_size - The number of bytes in a folio.
2146  * @folio: The folio.
2147  *
2148  * Context: The caller should have a reference on the folio to prevent
2149  * it from being split.  It is not necessary for the folio to be locked.
2150  * Return: The number of bytes in this folio.
2151  */
folio_size(const struct folio * folio)2152 static inline size_t folio_size(const struct folio *folio)
2153 {
2154 	return PAGE_SIZE << folio_order(folio);
2155 }
2156 
2157 /**
2158  * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2159  *				tables of more than one MM
2160  * @folio: The folio.
2161  *
2162  * This function checks if the folio is currently mapped into more than one
2163  * MM ("mapped shared"), or if the folio is only mapped into a single MM
2164  * ("mapped exclusively").
2165  *
2166  * For KSM folios, this function also returns "mapped shared" when a folio is
2167  * mapped multiple times into the same MM, because the individual page mappings
2168  * are independent.
2169  *
2170  * As precise information is not easily available for all folios, this function
2171  * estimates the number of MMs ("sharers") that are currently mapping a folio
2172  * using the number of times the first page of the folio is currently mapped
2173  * into page tables.
2174  *
2175  * For small anonymous folios and anonymous hugetlb folios, the return
2176  * value will be exactly correct: non-KSM folios can only be mapped at most once
2177  * into an MM, and they cannot be partially mapped. KSM folios are
2178  * considered shared even if mapped multiple times into the same MM.
2179  *
2180  * For other folios, the result can be fuzzy:
2181  *    #. For partially-mappable large folios (THP), the return value can wrongly
2182  *       indicate "mapped exclusively" (false negative) when the folio is
2183  *       only partially mapped into at least one MM.
2184  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2185  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2186  *       cover the same file range.
2187  *
2188  * Further, this function only considers current page table mappings that
2189  * are tracked using the folio mapcount(s).
2190  *
2191  * This function does not consider:
2192  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2193  *       pagecache, temporary unmapping for migration).
2194  *    #. If the folio is mapped differently (VM_PFNMAP).
2195  *    #. If hugetlb page table sharing applies. Callers might want to check
2196  *       hugetlb_pmd_shared().
2197  *
2198  * Return: Whether the folio is estimated to be mapped into more than one MM.
2199  */
folio_likely_mapped_shared(struct folio * folio)2200 static inline bool folio_likely_mapped_shared(struct folio *folio)
2201 {
2202 	int mapcount = folio_mapcount(folio);
2203 
2204 	/* Only partially-mappable folios require more care. */
2205 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2206 		return mapcount > 1;
2207 
2208 	/* A single mapping implies "mapped exclusively". */
2209 	if (mapcount <= 1)
2210 		return false;
2211 
2212 	/* If any page is mapped more than once we treat it "mapped shared". */
2213 	if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2214 		return true;
2215 
2216 	/* Let's guess based on the first subpage. */
2217 	return atomic_read(&folio->_mapcount) > 0;
2218 }
2219 
2220 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2221 static inline int arch_make_folio_accessible(struct folio *folio)
2222 {
2223 	return 0;
2224 }
2225 #endif
2226 
2227 /*
2228  * Some inline functions in vmstat.h depend on page_zone()
2229  */
2230 #include <linux/vmstat.h>
2231 
2232 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2233 #define HASHED_PAGE_VIRTUAL
2234 #endif
2235 
2236 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2237 static inline void *page_address(const struct page *page)
2238 {
2239 	return page->virtual;
2240 }
set_page_address(struct page * page,void * address)2241 static inline void set_page_address(struct page *page, void *address)
2242 {
2243 	page->virtual = address;
2244 }
2245 #define page_address_init()  do { } while(0)
2246 #endif
2247 
2248 #if defined(HASHED_PAGE_VIRTUAL)
2249 void *page_address(const struct page *page);
2250 void set_page_address(struct page *page, void *virtual);
2251 void page_address_init(void);
2252 #endif
2253 
lowmem_page_address(const struct page * page)2254 static __always_inline void *lowmem_page_address(const struct page *page)
2255 {
2256 	return page_to_virt(page);
2257 }
2258 
2259 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2260 #define page_address(page) lowmem_page_address(page)
2261 #define set_page_address(page, address)  do { } while(0)
2262 #define page_address_init()  do { } while(0)
2263 #endif
2264 
folio_address(const struct folio * folio)2265 static inline void *folio_address(const struct folio *folio)
2266 {
2267 	return page_address(&folio->page);
2268 }
2269 
2270 /*
2271  * Return true only if the page has been allocated with
2272  * ALLOC_NO_WATERMARKS and the low watermark was not
2273  * met implying that the system is under some pressure.
2274  */
page_is_pfmemalloc(const struct page * page)2275 static inline bool page_is_pfmemalloc(const struct page *page)
2276 {
2277 	/*
2278 	 * lru.next has bit 1 set if the page is allocated from the
2279 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2280 	 * they do not need to preserve that information.
2281 	 */
2282 	return (uintptr_t)page->lru.next & BIT(1);
2283 }
2284 
2285 /*
2286  * Return true only if the folio has been allocated with
2287  * ALLOC_NO_WATERMARKS and the low watermark was not
2288  * met implying that the system is under some pressure.
2289  */
folio_is_pfmemalloc(const struct folio * folio)2290 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2291 {
2292 	/*
2293 	 * lru.next has bit 1 set if the page is allocated from the
2294 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2295 	 * they do not need to preserve that information.
2296 	 */
2297 	return (uintptr_t)folio->lru.next & BIT(1);
2298 }
2299 
2300 /*
2301  * Only to be called by the page allocator on a freshly allocated
2302  * page.
2303  */
set_page_pfmemalloc(struct page * page)2304 static inline void set_page_pfmemalloc(struct page *page)
2305 {
2306 	page->lru.next = (void *)BIT(1);
2307 }
2308 
clear_page_pfmemalloc(struct page * page)2309 static inline void clear_page_pfmemalloc(struct page *page)
2310 {
2311 	page->lru.next = NULL;
2312 }
2313 
2314 /*
2315  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2316  */
2317 extern void pagefault_out_of_memory(void);
2318 
2319 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2320 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2321 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2322 
2323 /*
2324  * Parameter block passed down to zap_pte_range in exceptional cases.
2325  */
2326 struct zap_details {
2327 	struct folio *single_folio;	/* Locked folio to be unmapped */
2328 	bool even_cows;			/* Zap COWed private pages too? */
2329 	bool reclaim_pt;		/* Need reclaim page tables? */
2330 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2331 };
2332 
2333 /*
2334  * Whether to drop the pte markers, for example, the uffd-wp information for
2335  * file-backed memory.  This should only be specified when we will completely
2336  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2337  * default, the flag is not set.
2338  */
2339 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2340 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2341 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2342 
2343 #ifdef CONFIG_SCHED_MM_CID
2344 void sched_mm_cid_before_execve(struct task_struct *t);
2345 void sched_mm_cid_after_execve(struct task_struct *t);
2346 void sched_mm_cid_fork(struct task_struct *t);
2347 void sched_mm_cid_exit_signals(struct task_struct *t);
task_mm_cid(struct task_struct * t)2348 static inline int task_mm_cid(struct task_struct *t)
2349 {
2350 	return t->mm_cid;
2351 }
2352 #else
sched_mm_cid_before_execve(struct task_struct * t)2353 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
sched_mm_cid_after_execve(struct task_struct * t)2354 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
sched_mm_cid_fork(struct task_struct * t)2355 static inline void sched_mm_cid_fork(struct task_struct *t) { }
sched_mm_cid_exit_signals(struct task_struct * t)2356 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
task_mm_cid(struct task_struct * t)2357 static inline int task_mm_cid(struct task_struct *t)
2358 {
2359 	/*
2360 	 * Use the processor id as a fall-back when the mm cid feature is
2361 	 * disabled. This provides functional per-cpu data structure accesses
2362 	 * in user-space, althrough it won't provide the memory usage benefits.
2363 	 */
2364 	return raw_smp_processor_id();
2365 }
2366 #endif
2367 
2368 #ifdef CONFIG_MMU
2369 extern bool can_do_mlock(void);
2370 #else
can_do_mlock(void)2371 static inline bool can_do_mlock(void) { return false; }
2372 #endif
2373 extern int user_shm_lock(size_t, struct ucounts *);
2374 extern void user_shm_unlock(size_t, struct ucounts *);
2375 
2376 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2377 			     pte_t pte);
2378 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2379 			     pte_t pte);
2380 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2381 				  unsigned long addr, pmd_t pmd);
2382 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2383 				pmd_t pmd);
2384 
2385 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2386 		  unsigned long size);
2387 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2388 			   unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2389 static inline void zap_vma_pages(struct vm_area_struct *vma)
2390 {
2391 	zap_page_range_single(vma, vma->vm_start,
2392 			      vma->vm_end - vma->vm_start, NULL);
2393 }
2394 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2395 		struct vm_area_struct *start_vma, unsigned long start,
2396 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2397 
2398 struct mmu_notifier_range;
2399 
2400 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2401 		unsigned long end, unsigned long floor, unsigned long ceiling);
2402 int
2403 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2404 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2405 			void *buf, int len, int write);
2406 
2407 struct follow_pfnmap_args {
2408 	/**
2409 	 * Inputs:
2410 	 * @vma: Pointer to @vm_area_struct struct
2411 	 * @address: the virtual address to walk
2412 	 */
2413 	struct vm_area_struct *vma;
2414 	unsigned long address;
2415 	/**
2416 	 * Internals:
2417 	 *
2418 	 * The caller shouldn't touch any of these.
2419 	 */
2420 	spinlock_t *lock;
2421 	pte_t *ptep;
2422 	/**
2423 	 * Outputs:
2424 	 *
2425 	 * @pfn: the PFN of the address
2426 	 * @pgprot: the pgprot_t of the mapping
2427 	 * @writable: whether the mapping is writable
2428 	 * @special: whether the mapping is a special mapping (real PFN maps)
2429 	 */
2430 	unsigned long pfn;
2431 	pgprot_t pgprot;
2432 	bool writable;
2433 	bool special;
2434 };
2435 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2436 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2437 
2438 extern void truncate_pagecache(struct inode *inode, loff_t new);
2439 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2440 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2441 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2442 int generic_error_remove_folio(struct address_space *mapping,
2443 		struct folio *folio);
2444 
2445 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2446 		unsigned long address, struct pt_regs *regs);
2447 
2448 #ifdef CONFIG_MMU
2449 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2450 				  unsigned long address, unsigned int flags,
2451 				  struct pt_regs *regs);
2452 extern int fixup_user_fault(struct mm_struct *mm,
2453 			    unsigned long address, unsigned int fault_flags,
2454 			    bool *unlocked);
2455 void unmap_mapping_pages(struct address_space *mapping,
2456 		pgoff_t start, pgoff_t nr, bool even_cows);
2457 void unmap_mapping_range(struct address_space *mapping,
2458 		loff_t const holebegin, loff_t const holelen, int even_cows);
2459 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2460 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2461 					 unsigned long address, unsigned int flags,
2462 					 struct pt_regs *regs)
2463 {
2464 	/* should never happen if there's no MMU */
2465 	BUG();
2466 	return VM_FAULT_SIGBUS;
2467 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2468 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2469 		unsigned int fault_flags, bool *unlocked)
2470 {
2471 	/* should never happen if there's no MMU */
2472 	BUG();
2473 	return -EFAULT;
2474 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2475 static inline void unmap_mapping_pages(struct address_space *mapping,
2476 		pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2477 static inline void unmap_mapping_range(struct address_space *mapping,
2478 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2479 #endif
2480 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2481 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2482 		loff_t const holebegin, loff_t const holelen)
2483 {
2484 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2485 }
2486 
2487 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2488 						unsigned long addr);
2489 
2490 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2491 		void *buf, int len, unsigned int gup_flags);
2492 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2493 		void *buf, int len, unsigned int gup_flags);
2494 
2495 long get_user_pages_remote(struct mm_struct *mm,
2496 			   unsigned long start, unsigned long nr_pages,
2497 			   unsigned int gup_flags, struct page **pages,
2498 			   int *locked);
2499 long pin_user_pages_remote(struct mm_struct *mm,
2500 			   unsigned long start, unsigned long nr_pages,
2501 			   unsigned int gup_flags, struct page **pages,
2502 			   int *locked);
2503 
2504 /*
2505  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2506  */
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2507 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2508 						    unsigned long addr,
2509 						    int gup_flags,
2510 						    struct vm_area_struct **vmap)
2511 {
2512 	struct page *page;
2513 	struct vm_area_struct *vma;
2514 	int got;
2515 
2516 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2517 		return ERR_PTR(-EINVAL);
2518 
2519 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2520 
2521 	if (got < 0)
2522 		return ERR_PTR(got);
2523 
2524 	vma = vma_lookup(mm, addr);
2525 	if (WARN_ON_ONCE(!vma)) {
2526 		put_page(page);
2527 		return ERR_PTR(-EINVAL);
2528 	}
2529 
2530 	*vmap = vma;
2531 	return page;
2532 }
2533 
2534 long get_user_pages(unsigned long start, unsigned long nr_pages,
2535 		    unsigned int gup_flags, struct page **pages);
2536 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2537 		    unsigned int gup_flags, struct page **pages);
2538 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2539 		    struct page **pages, unsigned int gup_flags);
2540 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2541 		    struct page **pages, unsigned int gup_flags);
2542 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2543 		      struct folio **folios, unsigned int max_folios,
2544 		      pgoff_t *offset);
2545 int folio_add_pins(struct folio *folio, unsigned int pins);
2546 
2547 int get_user_pages_fast(unsigned long start, int nr_pages,
2548 			unsigned int gup_flags, struct page **pages);
2549 int pin_user_pages_fast(unsigned long start, int nr_pages,
2550 			unsigned int gup_flags, struct page **pages);
2551 void folio_add_pin(struct folio *folio);
2552 
2553 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2554 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2555 			struct task_struct *task, bool bypass_rlim);
2556 
2557 struct kvec;
2558 struct page *get_dump_page(unsigned long addr);
2559 
2560 bool folio_mark_dirty(struct folio *folio);
2561 bool folio_mark_dirty_lock(struct folio *folio);
2562 bool set_page_dirty(struct page *page);
2563 int set_page_dirty_lock(struct page *page);
2564 
2565 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2566 
2567 /*
2568  * Flags used by change_protection().  For now we make it a bitmap so
2569  * that we can pass in multiple flags just like parameters.  However
2570  * for now all the callers are only use one of the flags at the same
2571  * time.
2572  */
2573 /*
2574  * Whether we should manually check if we can map individual PTEs writable,
2575  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2576  * PTEs automatically in a writable mapping.
2577  */
2578 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2579 /* Whether this protection change is for NUMA hints */
2580 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2581 /* Whether this change is for write protecting */
2582 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2583 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2584 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2585 					    MM_CP_UFFD_WP_RESOLVE)
2586 
2587 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2588 			     pte_t pte);
2589 extern long change_protection(struct mmu_gather *tlb,
2590 			      struct vm_area_struct *vma, unsigned long start,
2591 			      unsigned long end, unsigned long cp_flags);
2592 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2593 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2594 	  unsigned long start, unsigned long end, unsigned long newflags);
2595 
2596 /*
2597  * doesn't attempt to fault and will return short.
2598  */
2599 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2600 			     unsigned int gup_flags, struct page **pages);
2601 
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2602 static inline bool get_user_page_fast_only(unsigned long addr,
2603 			unsigned int gup_flags, struct page **pagep)
2604 {
2605 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2606 }
2607 /*
2608  * per-process(per-mm_struct) statistics.
2609  */
get_mm_counter(struct mm_struct * mm,int member)2610 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2611 {
2612 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2613 }
2614 
2615 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2616 
add_mm_counter(struct mm_struct * mm,int member,long value)2617 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2618 {
2619 	percpu_counter_add(&mm->rss_stat[member], value);
2620 
2621 	mm_trace_rss_stat(mm, member);
2622 }
2623 
inc_mm_counter(struct mm_struct * mm,int member)2624 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2625 {
2626 	percpu_counter_inc(&mm->rss_stat[member]);
2627 
2628 	mm_trace_rss_stat(mm, member);
2629 }
2630 
dec_mm_counter(struct mm_struct * mm,int member)2631 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2632 {
2633 	percpu_counter_dec(&mm->rss_stat[member]);
2634 
2635 	mm_trace_rss_stat(mm, member);
2636 }
2637 
2638 /* Optimized variant when folio is already known not to be anon */
mm_counter_file(struct folio * folio)2639 static inline int mm_counter_file(struct folio *folio)
2640 {
2641 	if (folio_test_swapbacked(folio))
2642 		return MM_SHMEMPAGES;
2643 	return MM_FILEPAGES;
2644 }
2645 
mm_counter(struct folio * folio)2646 static inline int mm_counter(struct folio *folio)
2647 {
2648 	if (folio_test_anon(folio))
2649 		return MM_ANONPAGES;
2650 	return mm_counter_file(folio);
2651 }
2652 
get_mm_rss(struct mm_struct * mm)2653 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2654 {
2655 	return get_mm_counter(mm, MM_FILEPAGES) +
2656 		get_mm_counter(mm, MM_ANONPAGES) +
2657 		get_mm_counter(mm, MM_SHMEMPAGES);
2658 }
2659 
get_mm_hiwater_rss(struct mm_struct * mm)2660 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2661 {
2662 	return max(mm->hiwater_rss, get_mm_rss(mm));
2663 }
2664 
get_mm_hiwater_vm(struct mm_struct * mm)2665 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2666 {
2667 	return max(mm->hiwater_vm, mm->total_vm);
2668 }
2669 
update_hiwater_rss(struct mm_struct * mm)2670 static inline void update_hiwater_rss(struct mm_struct *mm)
2671 {
2672 	unsigned long _rss = get_mm_rss(mm);
2673 
2674 	if ((mm)->hiwater_rss < _rss)
2675 		(mm)->hiwater_rss = _rss;
2676 }
2677 
update_hiwater_vm(struct mm_struct * mm)2678 static inline void update_hiwater_vm(struct mm_struct *mm)
2679 {
2680 	if (mm->hiwater_vm < mm->total_vm)
2681 		mm->hiwater_vm = mm->total_vm;
2682 }
2683 
reset_mm_hiwater_rss(struct mm_struct * mm)2684 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2685 {
2686 	mm->hiwater_rss = get_mm_rss(mm);
2687 }
2688 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2689 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2690 					 struct mm_struct *mm)
2691 {
2692 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2693 
2694 	if (*maxrss < hiwater_rss)
2695 		*maxrss = hiwater_rss;
2696 }
2697 
2698 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2699 static inline int pte_special(pte_t pte)
2700 {
2701 	return 0;
2702 }
2703 
pte_mkspecial(pte_t pte)2704 static inline pte_t pte_mkspecial(pte_t pte)
2705 {
2706 	return pte;
2707 }
2708 #endif
2709 
2710 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)2711 static inline bool pmd_special(pmd_t pmd)
2712 {
2713 	return false;
2714 }
2715 
pmd_mkspecial(pmd_t pmd)2716 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2717 {
2718 	return pmd;
2719 }
2720 #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2721 
2722 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)2723 static inline bool pud_special(pud_t pud)
2724 {
2725 	return false;
2726 }
2727 
pud_mkspecial(pud_t pud)2728 static inline pud_t pud_mkspecial(pud_t pud)
2729 {
2730 	return pud;
2731 }
2732 #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2733 
2734 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2735 static inline int pte_devmap(pte_t pte)
2736 {
2737 	return 0;
2738 }
2739 #endif
2740 
2741 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2742 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2743 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2744 				    spinlock_t **ptl)
2745 {
2746 	pte_t *ptep;
2747 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2748 	return ptep;
2749 }
2750 
2751 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2752 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2753 						unsigned long address)
2754 {
2755 	return 0;
2756 }
2757 #else
2758 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2759 #endif
2760 
2761 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2762 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2763 						unsigned long address)
2764 {
2765 	return 0;
2766 }
mm_inc_nr_puds(struct mm_struct * mm)2767 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2768 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2769 
2770 #else
2771 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2772 
mm_inc_nr_puds(struct mm_struct * mm)2773 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2774 {
2775 	if (mm_pud_folded(mm))
2776 		return;
2777 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2778 }
2779 
mm_dec_nr_puds(struct mm_struct * mm)2780 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2781 {
2782 	if (mm_pud_folded(mm))
2783 		return;
2784 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2785 }
2786 #endif
2787 
2788 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2789 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2790 						unsigned long address)
2791 {
2792 	return 0;
2793 }
2794 
mm_inc_nr_pmds(struct mm_struct * mm)2795 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2796 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2797 
2798 #else
2799 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2800 
mm_inc_nr_pmds(struct mm_struct * mm)2801 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2802 {
2803 	if (mm_pmd_folded(mm))
2804 		return;
2805 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2806 }
2807 
mm_dec_nr_pmds(struct mm_struct * mm)2808 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2809 {
2810 	if (mm_pmd_folded(mm))
2811 		return;
2812 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2813 }
2814 #endif
2815 
2816 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2817 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2818 {
2819 	atomic_long_set(&mm->pgtables_bytes, 0);
2820 }
2821 
mm_pgtables_bytes(const struct mm_struct * mm)2822 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2823 {
2824 	return atomic_long_read(&mm->pgtables_bytes);
2825 }
2826 
mm_inc_nr_ptes(struct mm_struct * mm)2827 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2828 {
2829 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2830 }
2831 
mm_dec_nr_ptes(struct mm_struct * mm)2832 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2833 {
2834 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2835 }
2836 #else
2837 
mm_pgtables_bytes_init(struct mm_struct * mm)2838 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2839 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2840 {
2841 	return 0;
2842 }
2843 
mm_inc_nr_ptes(struct mm_struct * mm)2844 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2845 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2846 #endif
2847 
2848 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2849 int __pte_alloc_kernel(pmd_t *pmd);
2850 
2851 #if defined(CONFIG_MMU)
2852 
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2853 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2854 		unsigned long address)
2855 {
2856 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2857 		NULL : p4d_offset(pgd, address);
2858 }
2859 
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2860 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2861 		unsigned long address)
2862 {
2863 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2864 		NULL : pud_offset(p4d, address);
2865 }
2866 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2867 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2868 {
2869 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2870 		NULL: pmd_offset(pud, address);
2871 }
2872 #endif /* CONFIG_MMU */
2873 
virt_to_ptdesc(const void * x)2874 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2875 {
2876 	return page_ptdesc(virt_to_page(x));
2877 }
2878 
ptdesc_to_virt(const struct ptdesc * pt)2879 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2880 {
2881 	return page_to_virt(ptdesc_page(pt));
2882 }
2883 
ptdesc_address(const struct ptdesc * pt)2884 static inline void *ptdesc_address(const struct ptdesc *pt)
2885 {
2886 	return folio_address(ptdesc_folio(pt));
2887 }
2888 
pagetable_is_reserved(struct ptdesc * pt)2889 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2890 {
2891 	return folio_test_reserved(ptdesc_folio(pt));
2892 }
2893 
2894 /**
2895  * pagetable_alloc - Allocate pagetables
2896  * @gfp:    GFP flags
2897  * @order:  desired pagetable order
2898  *
2899  * pagetable_alloc allocates memory for page tables as well as a page table
2900  * descriptor to describe that memory.
2901  *
2902  * Return: The ptdesc describing the allocated page tables.
2903  */
pagetable_alloc_noprof(gfp_t gfp,unsigned int order)2904 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2905 {
2906 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2907 
2908 	return page_ptdesc(page);
2909 }
2910 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2911 
2912 /**
2913  * pagetable_free - Free pagetables
2914  * @pt:	The page table descriptor
2915  *
2916  * pagetable_free frees the memory of all page tables described by a page
2917  * table descriptor and the memory for the descriptor itself.
2918  */
pagetable_free(struct ptdesc * pt)2919 static inline void pagetable_free(struct ptdesc *pt)
2920 {
2921 	struct page *page = ptdesc_page(pt);
2922 
2923 	__free_pages(page, compound_order(page));
2924 }
2925 
2926 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2927 #if ALLOC_SPLIT_PTLOCKS
2928 void __init ptlock_cache_init(void);
2929 bool ptlock_alloc(struct ptdesc *ptdesc);
2930 void ptlock_free(struct ptdesc *ptdesc);
2931 
ptlock_ptr(struct ptdesc * ptdesc)2932 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2933 {
2934 	return ptdesc->ptl;
2935 }
2936 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2937 static inline void ptlock_cache_init(void)
2938 {
2939 }
2940 
ptlock_alloc(struct ptdesc * ptdesc)2941 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2942 {
2943 	return true;
2944 }
2945 
ptlock_free(struct ptdesc * ptdesc)2946 static inline void ptlock_free(struct ptdesc *ptdesc)
2947 {
2948 }
2949 
ptlock_ptr(struct ptdesc * ptdesc)2950 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2951 {
2952 	return &ptdesc->ptl;
2953 }
2954 #endif /* ALLOC_SPLIT_PTLOCKS */
2955 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2956 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2957 {
2958 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2959 }
2960 
ptep_lockptr(struct mm_struct * mm,pte_t * pte)2961 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2962 {
2963 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2964 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2965 	return ptlock_ptr(virt_to_ptdesc(pte));
2966 }
2967 
ptlock_init(struct ptdesc * ptdesc)2968 static inline bool ptlock_init(struct ptdesc *ptdesc)
2969 {
2970 	/*
2971 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2972 	 * with 0. Make sure nobody took it in use in between.
2973 	 *
2974 	 * It can happen if arch try to use slab for page table allocation:
2975 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2976 	 */
2977 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2978 	if (!ptlock_alloc(ptdesc))
2979 		return false;
2980 	spin_lock_init(ptlock_ptr(ptdesc));
2981 	return true;
2982 }
2983 
2984 #else	/* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2985 /*
2986  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2987  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2988 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2989 {
2990 	return &mm->page_table_lock;
2991 }
ptep_lockptr(struct mm_struct * mm,pte_t * pte)2992 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2993 {
2994 	return &mm->page_table_lock;
2995 }
ptlock_cache_init(void)2996 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)2997 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)2998 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2999 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3000 
__pagetable_ctor(struct ptdesc * ptdesc)3001 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
3002 {
3003 	struct folio *folio = ptdesc_folio(ptdesc);
3004 
3005 	__folio_set_pgtable(folio);
3006 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3007 }
3008 
pagetable_dtor(struct ptdesc * ptdesc)3009 static inline void pagetable_dtor(struct ptdesc *ptdesc)
3010 {
3011 	struct folio *folio = ptdesc_folio(ptdesc);
3012 
3013 	ptlock_free(ptdesc);
3014 	__folio_clear_pgtable(folio);
3015 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3016 }
3017 
pagetable_dtor_free(struct ptdesc * ptdesc)3018 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
3019 {
3020 	pagetable_dtor(ptdesc);
3021 	pagetable_free(ptdesc);
3022 }
3023 
pagetable_pte_ctor(struct ptdesc * ptdesc)3024 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
3025 {
3026 	if (!ptlock_init(ptdesc))
3027 		return false;
3028 	__pagetable_ctor(ptdesc);
3029 	return true;
3030 }
3031 
3032 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
__pte_offset_map(pmd_t * pmd,unsigned long addr,pmd_t * pmdvalp)3033 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3034 			pmd_t *pmdvalp)
3035 {
3036 	pte_t *pte;
3037 
3038 	__cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3039 	return pte;
3040 }
pte_offset_map(pmd_t * pmd,unsigned long addr)3041 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3042 {
3043 	return __pte_offset_map(pmd, addr, NULL);
3044 }
3045 
3046 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3047 			unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)3048 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3049 			unsigned long addr, spinlock_t **ptlp)
3050 {
3051 	pte_t *pte;
3052 
3053 	__cond_lock(RCU, __cond_lock(*ptlp,
3054 			pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3055 	return pte;
3056 }
3057 
3058 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3059 				unsigned long addr, spinlock_t **ptlp);
3060 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3061 				unsigned long addr, pmd_t *pmdvalp,
3062 				spinlock_t **ptlp);
3063 
3064 #define pte_unmap_unlock(pte, ptl)	do {		\
3065 	spin_unlock(ptl);				\
3066 	pte_unmap(pte);					\
3067 } while (0)
3068 
3069 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3070 
3071 #define pte_alloc_map(mm, pmd, address)			\
3072 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3073 
3074 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3075 	(pte_alloc(mm, pmd) ?			\
3076 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3077 
3078 #define pte_alloc_kernel(pmd, address)			\
3079 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3080 		NULL: pte_offset_kernel(pmd, address))
3081 
3082 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3083 
pmd_pgtable_page(pmd_t * pmd)3084 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3085 {
3086 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3087 	return virt_to_page((void *)((unsigned long) pmd & mask));
3088 }
3089 
pmd_ptdesc(pmd_t * pmd)3090 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3091 {
3092 	return page_ptdesc(pmd_pgtable_page(pmd));
3093 }
3094 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3095 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3096 {
3097 	return ptlock_ptr(pmd_ptdesc(pmd));
3098 }
3099 
pmd_ptlock_init(struct ptdesc * ptdesc)3100 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3101 {
3102 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3103 	ptdesc->pmd_huge_pte = NULL;
3104 #endif
3105 	return ptlock_init(ptdesc);
3106 }
3107 
3108 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3109 
3110 #else
3111 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3112 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3113 {
3114 	return &mm->page_table_lock;
3115 }
3116 
pmd_ptlock_init(struct ptdesc * ptdesc)3117 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3118 
3119 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3120 
3121 #endif
3122 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3123 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3124 {
3125 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3126 	spin_lock(ptl);
3127 	return ptl;
3128 }
3129 
pagetable_pmd_ctor(struct ptdesc * ptdesc)3130 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3131 {
3132 	if (!pmd_ptlock_init(ptdesc))
3133 		return false;
3134 	ptdesc_pmd_pts_init(ptdesc);
3135 	__pagetable_ctor(ptdesc);
3136 	return true;
3137 }
3138 
3139 /*
3140  * No scalability reason to split PUD locks yet, but follow the same pattern
3141  * as the PMD locks to make it easier if we decide to.  The VM should not be
3142  * considered ready to switch to split PUD locks yet; there may be places
3143  * which need to be converted from page_table_lock.
3144  */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3145 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3146 {
3147 	return &mm->page_table_lock;
3148 }
3149 
pud_lock(struct mm_struct * mm,pud_t * pud)3150 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3151 {
3152 	spinlock_t *ptl = pud_lockptr(mm, pud);
3153 
3154 	spin_lock(ptl);
3155 	return ptl;
3156 }
3157 
pagetable_pud_ctor(struct ptdesc * ptdesc)3158 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3159 {
3160 	__pagetable_ctor(ptdesc);
3161 }
3162 
pagetable_p4d_ctor(struct ptdesc * ptdesc)3163 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3164 {
3165 	__pagetable_ctor(ptdesc);
3166 }
3167 
pagetable_pgd_ctor(struct ptdesc * ptdesc)3168 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3169 {
3170 	__pagetable_ctor(ptdesc);
3171 }
3172 
3173 extern void __init pagecache_init(void);
3174 extern void free_initmem(void);
3175 
3176 /*
3177  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3178  * into the buddy system. The freed pages will be poisoned with pattern
3179  * "poison" if it's within range [0, UCHAR_MAX].
3180  * Return pages freed into the buddy system.
3181  */
3182 extern unsigned long free_reserved_area(void *start, void *end,
3183 					int poison, const char *s);
3184 
3185 extern void adjust_managed_page_count(struct page *page, long count);
3186 
3187 extern void reserve_bootmem_region(phys_addr_t start,
3188 				   phys_addr_t end, int nid);
3189 
3190 /* Free the reserved page into the buddy system, so it gets managed. */
3191 void free_reserved_page(struct page *page);
3192 #define free_highmem_page(page) free_reserved_page(page)
3193 
mark_page_reserved(struct page * page)3194 static inline void mark_page_reserved(struct page *page)
3195 {
3196 	SetPageReserved(page);
3197 	adjust_managed_page_count(page, -1);
3198 }
3199 
free_reserved_ptdesc(struct ptdesc * pt)3200 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3201 {
3202 	free_reserved_page(ptdesc_page(pt));
3203 }
3204 
3205 /*
3206  * Default method to free all the __init memory into the buddy system.
3207  * The freed pages will be poisoned with pattern "poison" if it's within
3208  * range [0, UCHAR_MAX].
3209  * Return pages freed into the buddy system.
3210  */
free_initmem_default(int poison)3211 static inline unsigned long free_initmem_default(int poison)
3212 {
3213 	extern char __init_begin[], __init_end[];
3214 
3215 	return free_reserved_area(&__init_begin, &__init_end,
3216 				  poison, "unused kernel image (initmem)");
3217 }
3218 
get_num_physpages(void)3219 static inline unsigned long get_num_physpages(void)
3220 {
3221 	int nid;
3222 	unsigned long phys_pages = 0;
3223 
3224 	for_each_online_node(nid)
3225 		phys_pages += node_present_pages(nid);
3226 
3227 	return phys_pages;
3228 }
3229 
3230 /*
3231  * Using memblock node mappings, an architecture may initialise its
3232  * zones, allocate the backing mem_map and account for memory holes in an
3233  * architecture independent manner.
3234  *
3235  * An architecture is expected to register range of page frames backed by
3236  * physical memory with memblock_add[_node]() before calling
3237  * free_area_init() passing in the PFN each zone ends at. At a basic
3238  * usage, an architecture is expected to do something like
3239  *
3240  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3241  * 							 max_highmem_pfn};
3242  * for_each_valid_physical_page_range()
3243  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3244  * free_area_init(max_zone_pfns);
3245  */
3246 void free_area_init(unsigned long *max_zone_pfn);
3247 unsigned long node_map_pfn_alignment(void);
3248 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3249 						unsigned long end_pfn);
3250 extern void get_pfn_range_for_nid(unsigned int nid,
3251 			unsigned long *start_pfn, unsigned long *end_pfn);
3252 
3253 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3254 static inline int early_pfn_to_nid(unsigned long pfn)
3255 {
3256 	return 0;
3257 }
3258 #else
3259 /* please see mm/page_alloc.c */
3260 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3261 #endif
3262 
3263 extern void mem_init(void);
3264 extern void __init mmap_init(void);
3265 
3266 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3267 static inline void show_mem(void)
3268 {
3269 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3270 }
3271 extern long si_mem_available(void);
3272 extern void si_meminfo(struct sysinfo * val);
3273 extern void si_meminfo_node(struct sysinfo *val, int nid);
3274 
3275 extern __printf(3, 4)
3276 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3277 
3278 extern void setup_per_cpu_pageset(void);
3279 
3280 /* nommu.c */
3281 extern atomic_long_t mmap_pages_allocated;
3282 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3283 
3284 /* interval_tree.c */
3285 void vma_interval_tree_insert(struct vm_area_struct *node,
3286 			      struct rb_root_cached *root);
3287 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3288 				    struct vm_area_struct *prev,
3289 				    struct rb_root_cached *root);
3290 void vma_interval_tree_remove(struct vm_area_struct *node,
3291 			      struct rb_root_cached *root);
3292 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3293 				unsigned long start, unsigned long last);
3294 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3295 				unsigned long start, unsigned long last);
3296 
3297 #define vma_interval_tree_foreach(vma, root, start, last)		\
3298 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3299 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3300 
3301 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3302 				   struct rb_root_cached *root);
3303 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3304 				   struct rb_root_cached *root);
3305 struct anon_vma_chain *
3306 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3307 				  unsigned long start, unsigned long last);
3308 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3309 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3310 #ifdef CONFIG_DEBUG_VM_RB
3311 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3312 #endif
3313 
3314 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3315 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3316 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3317 
3318 /* mmap.c */
3319 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3320 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3321 extern void exit_mmap(struct mm_struct *);
3322 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3323 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3324 				 unsigned long addr, bool write);
3325 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3326 static inline int check_data_rlimit(unsigned long rlim,
3327 				    unsigned long new,
3328 				    unsigned long start,
3329 				    unsigned long end_data,
3330 				    unsigned long start_data)
3331 {
3332 	if (rlim < RLIM_INFINITY) {
3333 		if (((new - start) + (end_data - start_data)) > rlim)
3334 			return -ENOSPC;
3335 	}
3336 
3337 	return 0;
3338 }
3339 
3340 extern int mm_take_all_locks(struct mm_struct *mm);
3341 extern void mm_drop_all_locks(struct mm_struct *mm);
3342 
3343 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3344 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3345 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3346 extern struct file *get_task_exe_file(struct task_struct *task);
3347 
3348 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3349 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3350 
3351 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3352 				   const struct vm_special_mapping *sm);
3353 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3354 				   unsigned long addr, unsigned long len,
3355 				   unsigned long flags,
3356 				   const struct vm_special_mapping *spec);
3357 
3358 unsigned long randomize_stack_top(unsigned long stack_top);
3359 unsigned long randomize_page(unsigned long start, unsigned long range);
3360 
3361 unsigned long
3362 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3363 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3364 
3365 static inline unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3366 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3367 		  unsigned long pgoff, unsigned long flags)
3368 {
3369 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3370 }
3371 
3372 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3373 	unsigned long len, unsigned long prot, unsigned long flags,
3374 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3375 	struct list_head *uf);
3376 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3377 			 unsigned long start, size_t len, struct list_head *uf,
3378 			 bool unlock);
3379 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3380 		    struct mm_struct *mm, unsigned long start,
3381 		    unsigned long end, struct list_head *uf, bool unlock);
3382 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3383 		     struct list_head *uf);
3384 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3385 
3386 #ifdef CONFIG_MMU
3387 extern int __mm_populate(unsigned long addr, unsigned long len,
3388 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3389 static inline void mm_populate(unsigned long addr, unsigned long len)
3390 {
3391 	/* Ignore errors */
3392 	(void) __mm_populate(addr, len, 1);
3393 }
3394 #else
mm_populate(unsigned long addr,unsigned long len)3395 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3396 #endif
3397 
3398 /* This takes the mm semaphore itself */
3399 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3400 extern int vm_munmap(unsigned long, size_t);
3401 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3402         unsigned long, unsigned long,
3403         unsigned long, unsigned long);
3404 
3405 struct vm_unmapped_area_info {
3406 #define VM_UNMAPPED_AREA_TOPDOWN 1
3407 	unsigned long flags;
3408 	unsigned long length;
3409 	unsigned long low_limit;
3410 	unsigned long high_limit;
3411 	unsigned long align_mask;
3412 	unsigned long align_offset;
3413 	unsigned long start_gap;
3414 };
3415 
3416 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3417 
3418 /* truncate.c */
3419 extern void truncate_inode_pages(struct address_space *, loff_t);
3420 extern void truncate_inode_pages_range(struct address_space *,
3421 				       loff_t lstart, loff_t lend);
3422 extern void truncate_inode_pages_final(struct address_space *);
3423 
3424 /* generic vm_area_ops exported for stackable file systems */
3425 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3426 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3427 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3428 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3429 
3430 extern unsigned long stack_guard_gap;
3431 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3432 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3433 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3434 
3435 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3436 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3437 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3438 					     struct vm_area_struct **pprev);
3439 
3440 /*
3441  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3442  * NULL if none.  Assume start_addr < end_addr.
3443  */
3444 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3445 			unsigned long start_addr, unsigned long end_addr);
3446 
3447 /**
3448  * vma_lookup() - Find a VMA at a specific address
3449  * @mm: The process address space.
3450  * @addr: The user address.
3451  *
3452  * Return: The vm_area_struct at the given address, %NULL otherwise.
3453  */
3454 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3455 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3456 {
3457 	return mtree_load(&mm->mm_mt, addr);
3458 }
3459 
stack_guard_start_gap(struct vm_area_struct * vma)3460 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3461 {
3462 	if (vma->vm_flags & VM_GROWSDOWN)
3463 		return stack_guard_gap;
3464 
3465 	/* See reasoning around the VM_SHADOW_STACK definition */
3466 	if (vma->vm_flags & VM_SHADOW_STACK)
3467 		return PAGE_SIZE;
3468 
3469 	return 0;
3470 }
3471 
vm_start_gap(struct vm_area_struct * vma)3472 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3473 {
3474 	unsigned long gap = stack_guard_start_gap(vma);
3475 	unsigned long vm_start = vma->vm_start;
3476 
3477 	vm_start -= gap;
3478 	if (vm_start > vma->vm_start)
3479 		vm_start = 0;
3480 	return vm_start;
3481 }
3482 
vm_end_gap(struct vm_area_struct * vma)3483 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3484 {
3485 	unsigned long vm_end = vma->vm_end;
3486 
3487 	if (vma->vm_flags & VM_GROWSUP) {
3488 		vm_end += stack_guard_gap;
3489 		if (vm_end < vma->vm_end)
3490 			vm_end = -PAGE_SIZE;
3491 	}
3492 	return vm_end;
3493 }
3494 
vma_pages(struct vm_area_struct * vma)3495 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3496 {
3497 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3498 }
3499 
3500 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3501 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3502 				unsigned long vm_start, unsigned long vm_end)
3503 {
3504 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3505 
3506 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3507 		vma = NULL;
3508 
3509 	return vma;
3510 }
3511 
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)3512 static inline bool range_in_vma(struct vm_area_struct *vma,
3513 				unsigned long start, unsigned long end)
3514 {
3515 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3516 }
3517 
3518 #ifdef CONFIG_MMU
3519 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3520 void vma_set_page_prot(struct vm_area_struct *vma);
3521 #else
vm_get_page_prot(unsigned long vm_flags)3522 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3523 {
3524 	return __pgprot(0);
3525 }
vma_set_page_prot(struct vm_area_struct * vma)3526 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3527 {
3528 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3529 }
3530 #endif
3531 
3532 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3533 
3534 #ifdef CONFIG_NUMA_BALANCING
3535 unsigned long change_prot_numa(struct vm_area_struct *vma,
3536 			unsigned long start, unsigned long end);
3537 #endif
3538 
3539 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3540 		unsigned long addr);
3541 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3542 			unsigned long pfn, unsigned long size, pgprot_t);
3543 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3544 		unsigned long pfn, unsigned long size, pgprot_t prot);
3545 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3546 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3547 			struct page **pages, unsigned long *num);
3548 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3549 				unsigned long num);
3550 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3551 				unsigned long num);
3552 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3553 			unsigned long pfn);
3554 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3555 			unsigned long pfn, pgprot_t pgprot);
3556 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3557 			pfn_t pfn);
3558 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3559 		unsigned long addr, pfn_t pfn);
3560 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3561 
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3562 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3563 				unsigned long addr, struct page *page)
3564 {
3565 	int err = vm_insert_page(vma, addr, page);
3566 
3567 	if (err == -ENOMEM)
3568 		return VM_FAULT_OOM;
3569 	if (err < 0 && err != -EBUSY)
3570 		return VM_FAULT_SIGBUS;
3571 
3572 	return VM_FAULT_NOPAGE;
3573 }
3574 
3575 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3576 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3577 				     unsigned long addr, unsigned long pfn,
3578 				     unsigned long size, pgprot_t prot)
3579 {
3580 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3581 }
3582 #endif
3583 
vmf_error(int err)3584 static inline vm_fault_t vmf_error(int err)
3585 {
3586 	if (err == -ENOMEM)
3587 		return VM_FAULT_OOM;
3588 	else if (err == -EHWPOISON)
3589 		return VM_FAULT_HWPOISON;
3590 	return VM_FAULT_SIGBUS;
3591 }
3592 
3593 /*
3594  * Convert errno to return value for ->page_mkwrite() calls.
3595  *
3596  * This should eventually be merged with vmf_error() above, but will need a
3597  * careful audit of all vmf_error() callers.
3598  */
vmf_fs_error(int err)3599 static inline vm_fault_t vmf_fs_error(int err)
3600 {
3601 	if (err == 0)
3602 		return VM_FAULT_LOCKED;
3603 	if (err == -EFAULT || err == -EAGAIN)
3604 		return VM_FAULT_NOPAGE;
3605 	if (err == -ENOMEM)
3606 		return VM_FAULT_OOM;
3607 	/* -ENOSPC, -EDQUOT, -EIO ... */
3608 	return VM_FAULT_SIGBUS;
3609 }
3610 
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3611 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3612 {
3613 	if (vm_fault & VM_FAULT_OOM)
3614 		return -ENOMEM;
3615 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3616 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3617 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3618 		return -EFAULT;
3619 	return 0;
3620 }
3621 
3622 /*
3623  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3624  * a (NUMA hinting) fault is required.
3625  */
gup_can_follow_protnone(struct vm_area_struct * vma,unsigned int flags)3626 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3627 					   unsigned int flags)
3628 {
3629 	/*
3630 	 * If callers don't want to honor NUMA hinting faults, no need to
3631 	 * determine if we would actually have to trigger a NUMA hinting fault.
3632 	 */
3633 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3634 		return true;
3635 
3636 	/*
3637 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3638 	 *
3639 	 * Requiring a fault here even for inaccessible VMAs would mean that
3640 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3641 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3642 	 */
3643 	return !vma_is_accessible(vma);
3644 }
3645 
3646 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3647 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3648 			       unsigned long size, pte_fn_t fn, void *data);
3649 extern int apply_to_existing_page_range(struct mm_struct *mm,
3650 				   unsigned long address, unsigned long size,
3651 				   pte_fn_t fn, void *data);
3652 
3653 #ifdef CONFIG_PAGE_POISONING
3654 extern void __kernel_poison_pages(struct page *page, int numpages);
3655 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3656 extern bool _page_poisoning_enabled_early;
3657 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3658 static inline bool page_poisoning_enabled(void)
3659 {
3660 	return _page_poisoning_enabled_early;
3661 }
3662 /*
3663  * For use in fast paths after init_mem_debugging() has run, or when a
3664  * false negative result is not harmful when called too early.
3665  */
page_poisoning_enabled_static(void)3666 static inline bool page_poisoning_enabled_static(void)
3667 {
3668 	return static_branch_unlikely(&_page_poisoning_enabled);
3669 }
kernel_poison_pages(struct page * page,int numpages)3670 static inline void kernel_poison_pages(struct page *page, int numpages)
3671 {
3672 	if (page_poisoning_enabled_static())
3673 		__kernel_poison_pages(page, numpages);
3674 }
kernel_unpoison_pages(struct page * page,int numpages)3675 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3676 {
3677 	if (page_poisoning_enabled_static())
3678 		__kernel_unpoison_pages(page, numpages);
3679 }
3680 #else
page_poisoning_enabled(void)3681 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3682 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3683 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3684 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3685 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3686 #endif
3687 
3688 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3689 static inline bool want_init_on_alloc(gfp_t flags)
3690 {
3691 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3692 				&init_on_alloc))
3693 		return true;
3694 	return flags & __GFP_ZERO;
3695 }
3696 
3697 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3698 static inline bool want_init_on_free(void)
3699 {
3700 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3701 				   &init_on_free);
3702 }
3703 
3704 extern bool _debug_pagealloc_enabled_early;
3705 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3706 
debug_pagealloc_enabled(void)3707 static inline bool debug_pagealloc_enabled(void)
3708 {
3709 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3710 		_debug_pagealloc_enabled_early;
3711 }
3712 
3713 /*
3714  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3715  * or when a false negative result is not harmful when called too early.
3716  */
debug_pagealloc_enabled_static(void)3717 static inline bool debug_pagealloc_enabled_static(void)
3718 {
3719 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3720 		return false;
3721 
3722 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3723 }
3724 
3725 /*
3726  * To support DEBUG_PAGEALLOC architecture must ensure that
3727  * __kernel_map_pages() never fails
3728  */
3729 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3730 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)3731 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3732 {
3733 	if (debug_pagealloc_enabled_static())
3734 		__kernel_map_pages(page, numpages, 1);
3735 }
3736 
debug_pagealloc_unmap_pages(struct page * page,int numpages)3737 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3738 {
3739 	if (debug_pagealloc_enabled_static())
3740 		__kernel_map_pages(page, numpages, 0);
3741 }
3742 
3743 extern unsigned int _debug_guardpage_minorder;
3744 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3745 
debug_guardpage_minorder(void)3746 static inline unsigned int debug_guardpage_minorder(void)
3747 {
3748 	return _debug_guardpage_minorder;
3749 }
3750 
debug_guardpage_enabled(void)3751 static inline bool debug_guardpage_enabled(void)
3752 {
3753 	return static_branch_unlikely(&_debug_guardpage_enabled);
3754 }
3755 
page_is_guard(struct page * page)3756 static inline bool page_is_guard(struct page *page)
3757 {
3758 	if (!debug_guardpage_enabled())
3759 		return false;
3760 
3761 	return PageGuard(page);
3762 }
3763 
3764 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3765 static inline bool set_page_guard(struct zone *zone, struct page *page,
3766 				  unsigned int order)
3767 {
3768 	if (!debug_guardpage_enabled())
3769 		return false;
3770 	return __set_page_guard(zone, page, order);
3771 }
3772 
3773 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3774 static inline void clear_page_guard(struct zone *zone, struct page *page,
3775 				    unsigned int order)
3776 {
3777 	if (!debug_guardpage_enabled())
3778 		return;
3779 	__clear_page_guard(zone, page, order);
3780 }
3781 
3782 #else	/* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3783 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3784 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)3785 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3786 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3787 static inline bool page_is_guard(struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3788 static inline bool set_page_guard(struct zone *zone, struct page *page,
3789 			unsigned int order) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3790 static inline void clear_page_guard(struct zone *zone, struct page *page,
3791 				unsigned int order) {}
3792 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3793 
3794 #ifdef __HAVE_ARCH_GATE_AREA
3795 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3796 extern int in_gate_area_no_mm(unsigned long addr);
3797 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3798 #else
get_gate_vma(struct mm_struct * mm)3799 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3800 {
3801 	return NULL;
3802 }
in_gate_area_no_mm(unsigned long addr)3803 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3804 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3805 {
3806 	return 0;
3807 }
3808 #endif	/* __HAVE_ARCH_GATE_AREA */
3809 
3810 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3811 
3812 #ifdef CONFIG_SYSCTL
3813 extern int sysctl_drop_caches;
3814 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3815 		loff_t *);
3816 #endif
3817 
3818 void drop_slab(void);
3819 
3820 #ifndef CONFIG_MMU
3821 #define randomize_va_space 0
3822 #else
3823 extern int randomize_va_space;
3824 #endif
3825 
3826 const char * arch_vma_name(struct vm_area_struct *vma);
3827 #ifdef CONFIG_MMU
3828 void print_vma_addr(char *prefix, unsigned long rip);
3829 #else
print_vma_addr(char * prefix,unsigned long rip)3830 static inline void print_vma_addr(char *prefix, unsigned long rip)
3831 {
3832 }
3833 #endif
3834 
3835 void *sparse_buffer_alloc(unsigned long size);
3836 struct page * __populate_section_memmap(unsigned long pfn,
3837 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3838 		struct dev_pagemap *pgmap);
3839 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3840 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3841 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3842 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3843 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3844 			    struct vmem_altmap *altmap, struct page *reuse);
3845 void *vmemmap_alloc_block(unsigned long size, int node);
3846 struct vmem_altmap;
3847 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3848 			      struct vmem_altmap *altmap);
3849 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3850 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3851 		     unsigned long addr, unsigned long next);
3852 int vmemmap_check_pmd(pmd_t *pmd, int node,
3853 		      unsigned long addr, unsigned long next);
3854 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3855 			       int node, struct vmem_altmap *altmap);
3856 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3857 			       int node, struct vmem_altmap *altmap);
3858 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3859 		struct vmem_altmap *altmap);
3860 void vmemmap_populate_print_last(void);
3861 #ifdef CONFIG_MEMORY_HOTPLUG
3862 void vmemmap_free(unsigned long start, unsigned long end,
3863 		struct vmem_altmap *altmap);
3864 #endif
3865 
3866 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmem_altmap_offset(struct vmem_altmap * altmap)3867 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3868 {
3869 	/* number of pfns from base where pfn_to_page() is valid */
3870 	if (altmap)
3871 		return altmap->reserve + altmap->free;
3872 	return 0;
3873 }
3874 
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3875 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3876 				    unsigned long nr_pfns)
3877 {
3878 	altmap->alloc -= nr_pfns;
3879 }
3880 #else
vmem_altmap_offset(struct vmem_altmap * altmap)3881 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3882 {
3883 	return 0;
3884 }
3885 
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3886 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3887 				    unsigned long nr_pfns)
3888 {
3889 }
3890 #endif
3891 
3892 #define VMEMMAP_RESERVE_NR	2
3893 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3894 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3895 					  struct dev_pagemap *pgmap)
3896 {
3897 	unsigned long nr_pages;
3898 	unsigned long nr_vmemmap_pages;
3899 
3900 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3901 		return false;
3902 
3903 	nr_pages = pgmap_vmemmap_nr(pgmap);
3904 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3905 	/*
3906 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3907 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3908 	 */
3909 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3910 }
3911 /*
3912  * If we don't have an architecture override, use the generic rule
3913  */
3914 #ifndef vmemmap_can_optimize
3915 #define vmemmap_can_optimize __vmemmap_can_optimize
3916 #endif
3917 
3918 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3919 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3920 					   struct dev_pagemap *pgmap)
3921 {
3922 	return false;
3923 }
3924 #endif
3925 
3926 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3927 				  unsigned long nr_pages);
3928 
3929 enum mf_flags {
3930 	MF_COUNT_INCREASED = 1 << 0,
3931 	MF_ACTION_REQUIRED = 1 << 1,
3932 	MF_MUST_KILL = 1 << 2,
3933 	MF_SOFT_OFFLINE = 1 << 3,
3934 	MF_UNPOISON = 1 << 4,
3935 	MF_SW_SIMULATED = 1 << 5,
3936 	MF_NO_RETRY = 1 << 6,
3937 	MF_MEM_PRE_REMOVE = 1 << 7,
3938 };
3939 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3940 		      unsigned long count, int mf_flags);
3941 extern int memory_failure(unsigned long pfn, int flags);
3942 extern void memory_failure_queue_kick(int cpu);
3943 extern int unpoison_memory(unsigned long pfn);
3944 extern atomic_long_t num_poisoned_pages __read_mostly;
3945 extern int soft_offline_page(unsigned long pfn, int flags);
3946 #ifdef CONFIG_MEMORY_FAILURE
3947 /*
3948  * Sysfs entries for memory failure handling statistics.
3949  */
3950 extern const struct attribute_group memory_failure_attr_group;
3951 extern void memory_failure_queue(unsigned long pfn, int flags);
3952 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3953 					bool *migratable_cleared);
3954 void num_poisoned_pages_inc(unsigned long pfn);
3955 void num_poisoned_pages_sub(unsigned long pfn, long i);
3956 #else
memory_failure_queue(unsigned long pfn,int flags)3957 static inline void memory_failure_queue(unsigned long pfn, int flags)
3958 {
3959 }
3960 
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)3961 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3962 					bool *migratable_cleared)
3963 {
3964 	return 0;
3965 }
3966 
num_poisoned_pages_inc(unsigned long pfn)3967 static inline void num_poisoned_pages_inc(unsigned long pfn)
3968 {
3969 }
3970 
num_poisoned_pages_sub(unsigned long pfn,long i)3971 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3972 {
3973 }
3974 #endif
3975 
3976 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3977 extern void memblk_nr_poison_inc(unsigned long pfn);
3978 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3979 #else
memblk_nr_poison_inc(unsigned long pfn)3980 static inline void memblk_nr_poison_inc(unsigned long pfn)
3981 {
3982 }
3983 
memblk_nr_poison_sub(unsigned long pfn,long i)3984 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3985 {
3986 }
3987 #endif
3988 
3989 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)3990 static inline int arch_memory_failure(unsigned long pfn, int flags)
3991 {
3992 	return -ENXIO;
3993 }
3994 #endif
3995 
3996 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)3997 static inline bool arch_is_platform_page(u64 paddr)
3998 {
3999 	return false;
4000 }
4001 #endif
4002 
4003 /*
4004  * Error handlers for various types of pages.
4005  */
4006 enum mf_result {
4007 	MF_IGNORED,	/* Error: cannot be handled */
4008 	MF_FAILED,	/* Error: handling failed */
4009 	MF_DELAYED,	/* Will be handled later */
4010 	MF_RECOVERED,	/* Successfully recovered */
4011 };
4012 
4013 enum mf_action_page_type {
4014 	MF_MSG_KERNEL,
4015 	MF_MSG_KERNEL_HIGH_ORDER,
4016 	MF_MSG_DIFFERENT_COMPOUND,
4017 	MF_MSG_HUGE,
4018 	MF_MSG_FREE_HUGE,
4019 	MF_MSG_GET_HWPOISON,
4020 	MF_MSG_UNMAP_FAILED,
4021 	MF_MSG_DIRTY_SWAPCACHE,
4022 	MF_MSG_CLEAN_SWAPCACHE,
4023 	MF_MSG_DIRTY_MLOCKED_LRU,
4024 	MF_MSG_CLEAN_MLOCKED_LRU,
4025 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4026 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4027 	MF_MSG_DIRTY_LRU,
4028 	MF_MSG_CLEAN_LRU,
4029 	MF_MSG_TRUNCATED_LRU,
4030 	MF_MSG_BUDDY,
4031 	MF_MSG_DAX,
4032 	MF_MSG_UNSPLIT_THP,
4033 	MF_MSG_ALREADY_POISONED,
4034 	MF_MSG_UNKNOWN,
4035 };
4036 
4037 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4038 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4039 int copy_user_large_folio(struct folio *dst, struct folio *src,
4040 			  unsigned long addr_hint,
4041 			  struct vm_area_struct *vma);
4042 long copy_folio_from_user(struct folio *dst_folio,
4043 			   const void __user *usr_src,
4044 			   bool allow_pagefault);
4045 
4046 /**
4047  * vma_is_special_huge - Are transhuge page-table entries considered special?
4048  * @vma: Pointer to the struct vm_area_struct to consider
4049  *
4050  * Whether transhuge page-table entries are considered "special" following
4051  * the definition in vm_normal_page().
4052  *
4053  * Return: true if transhuge page-table entries should be considered special,
4054  * false otherwise.
4055  */
vma_is_special_huge(const struct vm_area_struct * vma)4056 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4057 {
4058 	return vma_is_dax(vma) || (vma->vm_file &&
4059 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4060 }
4061 
4062 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4063 
4064 #if MAX_NUMNODES > 1
4065 void __init setup_nr_node_ids(void);
4066 #else
setup_nr_node_ids(void)4067 static inline void setup_nr_node_ids(void) {}
4068 #endif
4069 
4070 extern int memcmp_pages(struct page *page1, struct page *page2);
4071 
pages_identical(struct page * page1,struct page * page2)4072 static inline int pages_identical(struct page *page1, struct page *page2)
4073 {
4074 	return !memcmp_pages(page1, page2);
4075 }
4076 
4077 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4078 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4079 						pgoff_t first_index, pgoff_t nr,
4080 						pgoff_t bitmap_pgoff,
4081 						unsigned long *bitmap,
4082 						pgoff_t *start,
4083 						pgoff_t *end);
4084 
4085 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4086 				      pgoff_t first_index, pgoff_t nr);
4087 #endif
4088 
4089 extern int sysctl_nr_trim_pages;
4090 
4091 #ifdef CONFIG_ANON_VMA_NAME
4092 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4093 			  unsigned long len_in,
4094 			  struct anon_vma_name *anon_name);
4095 #else
4096 static inline int
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)4097 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4098 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4099 	return 0;
4100 }
4101 #endif
4102 
4103 #ifdef CONFIG_UNACCEPTED_MEMORY
4104 
4105 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4106 void accept_memory(phys_addr_t start, unsigned long size);
4107 
4108 #else
4109 
range_contains_unaccepted_memory(phys_addr_t start,unsigned long size)4110 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4111 						    unsigned long size)
4112 {
4113 	return false;
4114 }
4115 
accept_memory(phys_addr_t start,unsigned long size)4116 static inline void accept_memory(phys_addr_t start, unsigned long size)
4117 {
4118 }
4119 
4120 #endif
4121 
pfn_is_unaccepted_memory(unsigned long pfn)4122 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4123 {
4124 	return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4125 }
4126 
4127 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4128 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4129 
4130 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4131 
4132 #ifdef CONFIG_64BIT
4133 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4134 #else
do_mseal(unsigned long start,size_t len_in,unsigned long flags)4135 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4136 {
4137 	/* noop on 32 bit */
4138 	return 0;
4139 }
4140 #endif
4141 
4142 /*
4143  * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4144  * be zeroed or not.
4145  */
user_alloc_needs_zeroing(void)4146 static inline bool user_alloc_needs_zeroing(void)
4147 {
4148 	/*
4149 	 * for user folios, arch with cache aliasing requires cache flush and
4150 	 * arc changes folio->flags to make icache coherent with dcache, so
4151 	 * always return false to make caller use
4152 	 * clear_user_page()/clear_user_highpage().
4153 	 */
4154 	return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4155 	       !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4156 				   &init_on_alloc);
4157 }
4158 
4159 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4160 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4161 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4162 
4163 #endif /* _LINUX_MM_H */
4164