1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/kernel.h>
18 #include <linux/page_counter.h>
19 #include <linux/vmpressure.h>
20 #include <linux/eventfd.h>
21 #include <linux/mm.h>
22 #include <linux/vmstat.h>
23 #include <linux/writeback.h>
24 #include <linux/page-flags.h>
25 #include <linux/shrinker.h>
26
27 struct mem_cgroup;
28 struct obj_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32
33 /* Cgroup-specific page state, on top of universal node page state */
34 enum memcg_stat_item {
35 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 MEMCG_SOCK,
37 MEMCG_PERCPU_B,
38 MEMCG_VMALLOC,
39 MEMCG_KMEM,
40 MEMCG_ZSWAP_B,
41 MEMCG_ZSWAPPED,
42 MEMCG_NR_STAT,
43 };
44
45 enum memcg_memory_event {
46 MEMCG_LOW,
47 MEMCG_HIGH,
48 MEMCG_MAX,
49 MEMCG_OOM,
50 MEMCG_OOM_KILL,
51 MEMCG_OOM_GROUP_KILL,
52 MEMCG_SWAP_HIGH,
53 MEMCG_SWAP_MAX,
54 MEMCG_SWAP_FAIL,
55 MEMCG_NR_MEMORY_EVENTS,
56 };
57
58 struct mem_cgroup_reclaim_cookie {
59 pg_data_t *pgdat;
60 int generation;
61 };
62
63 #ifdef CONFIG_MEMCG
64
65 #define MEM_CGROUP_ID_SHIFT 16
66
67 struct mem_cgroup_id {
68 int id;
69 refcount_t ref;
70 };
71
72 struct memcg_vmstats_percpu;
73 struct memcg1_events_percpu;
74 struct memcg_vmstats;
75 struct lruvec_stats_percpu;
76 struct lruvec_stats;
77
78 struct mem_cgroup_reclaim_iter {
79 struct mem_cgroup *position;
80 /* scan generation, increased every round-trip */
81 atomic_t generation;
82 };
83
84 /*
85 * per-node information in memory controller.
86 */
87 struct mem_cgroup_per_node {
88 /* Keep the read-only fields at the start */
89 struct mem_cgroup *memcg; /* Back pointer, we cannot */
90 /* use container_of */
91
92 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
93 struct lruvec_stats *lruvec_stats;
94 struct shrinker_info __rcu *shrinker_info;
95
96 #ifdef CONFIG_MEMCG_V1
97 /*
98 * Memcg-v1 only stuff in middle as buffer between read mostly fields
99 * and update often fields to avoid false sharing. If v1 stuff is
100 * not present, an explicit padding is needed.
101 */
102
103 struct rb_node tree_node; /* RB tree node */
104 unsigned long usage_in_excess;/* Set to the value by which */
105 /* the soft limit is exceeded*/
106 bool on_tree;
107 #else
108 CACHELINE_PADDING(_pad1_);
109 #endif
110
111 /* Fields which get updated often at the end. */
112 struct lruvec lruvec;
113 CACHELINE_PADDING(_pad2_);
114 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
115 struct mem_cgroup_reclaim_iter iter;
116
117 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
118 /* slab stats for nmi context */
119 atomic_t slab_reclaimable;
120 atomic_t slab_unreclaimable;
121 #endif
122 };
123
124 struct mem_cgroup_threshold {
125 struct eventfd_ctx *eventfd;
126 unsigned long threshold;
127 };
128
129 /* For threshold */
130 struct mem_cgroup_threshold_ary {
131 /* An array index points to threshold just below or equal to usage. */
132 int current_threshold;
133 /* Size of entries[] */
134 unsigned int size;
135 /* Array of thresholds */
136 struct mem_cgroup_threshold entries[] __counted_by(size);
137 };
138
139 struct mem_cgroup_thresholds {
140 /* Primary thresholds array */
141 struct mem_cgroup_threshold_ary *primary;
142 /*
143 * Spare threshold array.
144 * This is needed to make mem_cgroup_unregister_event() "never fail".
145 * It must be able to store at least primary->size - 1 entries.
146 */
147 struct mem_cgroup_threshold_ary *spare;
148 };
149
150 /*
151 * Remember four most recent foreign writebacks with dirty pages in this
152 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
153 * one in a given round, we're likely to catch it later if it keeps
154 * foreign-dirtying, so a fairly low count should be enough.
155 *
156 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
157 */
158 #define MEMCG_CGWB_FRN_CNT 4
159
160 struct memcg_cgwb_frn {
161 u64 bdi_id; /* bdi->id of the foreign inode */
162 int memcg_id; /* memcg->css.id of foreign inode */
163 u64 at; /* jiffies_64 at the time of dirtying */
164 struct wb_completion done; /* tracks in-flight foreign writebacks */
165 };
166
167 /*
168 * Bucket for arbitrarily byte-sized objects charged to a memory
169 * cgroup. The bucket can be reparented in one piece when the cgroup
170 * is destroyed, without having to round up the individual references
171 * of all live memory objects in the wild.
172 */
173 struct obj_cgroup {
174 struct percpu_ref refcnt;
175 struct mem_cgroup *memcg;
176 atomic_t nr_charged_bytes;
177 union {
178 struct list_head list; /* protected by objcg_lock */
179 struct rcu_head rcu;
180 };
181 };
182
183 /*
184 * The memory controller data structure. The memory controller controls both
185 * page cache and RSS per cgroup. We would eventually like to provide
186 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
187 * to help the administrator determine what knobs to tune.
188 */
189 struct mem_cgroup {
190 struct cgroup_subsys_state css;
191
192 /* Private memcg ID. Used to ID objects that outlive the cgroup */
193 struct mem_cgroup_id id;
194
195 /* Accounted resources */
196 struct page_counter memory; /* Both v1 & v2 */
197
198 union {
199 struct page_counter swap; /* v2 only */
200 struct page_counter memsw; /* v1 only */
201 };
202
203 /* registered local peak watchers */
204 struct list_head memory_peaks;
205 struct list_head swap_peaks;
206 spinlock_t peaks_lock;
207
208 /* Range enforcement for interrupt charges */
209 struct work_struct high_work;
210
211 #ifdef CONFIG_ZSWAP
212 unsigned long zswap_max;
213
214 /*
215 * Prevent pages from this memcg from being written back from zswap to
216 * swap, and from being swapped out on zswap store failures.
217 */
218 bool zswap_writeback;
219 #endif
220
221 /* vmpressure notifications */
222 struct vmpressure vmpressure;
223
224 /*
225 * Should the OOM killer kill all belonging tasks, had it kill one?
226 */
227 bool oom_group;
228
229 int swappiness;
230
231 /* memory.events and memory.events.local */
232 struct cgroup_file events_file;
233 struct cgroup_file events_local_file;
234
235 /* handle for "memory.swap.events" */
236 struct cgroup_file swap_events_file;
237
238 /* memory.stat */
239 struct memcg_vmstats *vmstats;
240
241 /* memory.events */
242 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
243 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
244
245 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
246 /* MEMCG_KMEM for nmi context */
247 atomic_t kmem_stat;
248 #endif
249 /*
250 * Hint of reclaim pressure for socket memroy management. Note
251 * that this indicator should NOT be used in legacy cgroup mode
252 * where socket memory is accounted/charged separately.
253 */
254 u64 socket_pressure;
255 #if BITS_PER_LONG < 64
256 seqlock_t socket_pressure_seqlock;
257 #endif
258 int kmemcg_id;
259 /*
260 * memcg->objcg is wiped out as a part of the objcg repaprenting
261 * process. memcg->orig_objcg preserves a pointer (and a reference)
262 * to the original objcg until the end of live of memcg.
263 */
264 struct obj_cgroup __rcu *objcg;
265 struct obj_cgroup *orig_objcg;
266 /* list of inherited objcgs, protected by objcg_lock */
267 struct list_head objcg_list;
268
269 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
270
271 #ifdef CONFIG_CGROUP_WRITEBACK
272 struct list_head cgwb_list;
273 struct wb_domain cgwb_domain;
274 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
275 #endif
276
277 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
278 struct deferred_split deferred_split_queue;
279 #endif
280
281 #ifdef CONFIG_LRU_GEN_WALKS_MMU
282 /* per-memcg mm_struct list */
283 struct lru_gen_mm_list mm_list;
284 #endif
285
286 #ifdef CONFIG_MEMCG_V1
287 /* Legacy consumer-oriented counters */
288 struct page_counter kmem; /* v1 only */
289 struct page_counter tcpmem; /* v1 only */
290
291 struct memcg1_events_percpu __percpu *events_percpu;
292
293 unsigned long soft_limit;
294
295 /* protected by memcg_oom_lock */
296 bool oom_lock;
297 int under_oom;
298
299 /* OOM-Killer disable */
300 int oom_kill_disable;
301
302 /* protect arrays of thresholds */
303 struct mutex thresholds_lock;
304
305 /* thresholds for memory usage. RCU-protected */
306 struct mem_cgroup_thresholds thresholds;
307
308 /* thresholds for mem+swap usage. RCU-protected */
309 struct mem_cgroup_thresholds memsw_thresholds;
310
311 /* For oom notifier event fd */
312 struct list_head oom_notify;
313
314 /* Legacy tcp memory accounting */
315 bool tcpmem_active;
316 int tcpmem_pressure;
317
318 /* List of events which userspace want to receive */
319 struct list_head event_list;
320 spinlock_t event_list_lock;
321 #endif /* CONFIG_MEMCG_V1 */
322
323 struct mem_cgroup_per_node *nodeinfo[];
324 };
325
326 /*
327 * size of first charge trial.
328 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
329 * workload.
330 */
331 #define MEMCG_CHARGE_BATCH 64U
332
333 extern struct mem_cgroup *root_mem_cgroup;
334
335 enum page_memcg_data_flags {
336 /* page->memcg_data is a pointer to an slabobj_ext vector */
337 MEMCG_DATA_OBJEXTS = (1UL << 0),
338 /* page has been accounted as a non-slab kernel page */
339 MEMCG_DATA_KMEM = (1UL << 1),
340 /* the next bit after the last actual flag */
341 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
342 };
343
344 #define __OBJEXTS_ALLOC_FAIL MEMCG_DATA_OBJEXTS
345 #define __FIRST_OBJEXT_FLAG __NR_MEMCG_DATA_FLAGS
346
347 #else /* CONFIG_MEMCG */
348
349 #define __OBJEXTS_ALLOC_FAIL (1UL << 0)
350 #define __FIRST_OBJEXT_FLAG (1UL << 0)
351
352 #endif /* CONFIG_MEMCG */
353
354 enum objext_flags {
355 /*
356 * Use bit 0 with zero other bits to signal that slabobj_ext vector
357 * failed to allocate. The same bit 0 with valid upper bits means
358 * MEMCG_DATA_OBJEXTS.
359 */
360 OBJEXTS_ALLOC_FAIL = __OBJEXTS_ALLOC_FAIL,
361 /* slabobj_ext vector allocated with kmalloc_nolock() */
362 OBJEXTS_NOSPIN_ALLOC = __FIRST_OBJEXT_FLAG,
363 /* the next bit after the last actual flag */
364 __NR_OBJEXTS_FLAGS = (__FIRST_OBJEXT_FLAG << 1),
365 };
366
367 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
368
369 #ifdef CONFIG_MEMCG
370
371 static inline bool folio_memcg_kmem(struct folio *folio);
372
373 /*
374 * After the initialization objcg->memcg is always pointing at
375 * a valid memcg, but can be atomically swapped to the parent memcg.
376 *
377 * The caller must ensure that the returned memcg won't be released.
378 */
obj_cgroup_memcg(struct obj_cgroup * objcg)379 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
380 {
381 lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex));
382 return READ_ONCE(objcg->memcg);
383 }
384
385 /*
386 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
387 * @folio: Pointer to the folio.
388 *
389 * Returns a pointer to the memory cgroup associated with the folio,
390 * or NULL. This function assumes that the folio is known to have a
391 * proper memory cgroup pointer. It's not safe to call this function
392 * against some type of folios, e.g. slab folios or ex-slab folios or
393 * kmem folios.
394 */
__folio_memcg(struct folio * folio)395 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
396 {
397 unsigned long memcg_data = folio->memcg_data;
398
399 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
400 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
401 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
402
403 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
404 }
405
406 /*
407 * __folio_objcg - get the object cgroup associated with a kmem folio.
408 * @folio: Pointer to the folio.
409 *
410 * Returns a pointer to the object cgroup associated with the folio,
411 * or NULL. This function assumes that the folio is known to have a
412 * proper object cgroup pointer. It's not safe to call this function
413 * against some type of folios, e.g. slab folios or ex-slab folios or
414 * LRU folios.
415 */
__folio_objcg(struct folio * folio)416 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
417 {
418 unsigned long memcg_data = folio->memcg_data;
419
420 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
421 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
422 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
423
424 return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
425 }
426
427 /*
428 * folio_memcg - Get the memory cgroup associated with a folio.
429 * @folio: Pointer to the folio.
430 *
431 * Returns a pointer to the memory cgroup associated with the folio,
432 * or NULL. This function assumes that the folio is known to have a
433 * proper memory cgroup pointer. It's not safe to call this function
434 * against some type of folios, e.g. slab folios or ex-slab folios.
435 *
436 * For a non-kmem folio any of the following ensures folio and memcg binding
437 * stability:
438 *
439 * - the folio lock
440 * - LRU isolation
441 * - exclusive reference
442 *
443 * For a kmem folio a caller should hold an rcu read lock to protect memcg
444 * associated with a kmem folio from being released.
445 */
folio_memcg(struct folio * folio)446 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
447 {
448 if (folio_memcg_kmem(folio))
449 return obj_cgroup_memcg(__folio_objcg(folio));
450 return __folio_memcg(folio);
451 }
452
453 /*
454 * folio_memcg_charged - If a folio is charged to a memory cgroup.
455 * @folio: Pointer to the folio.
456 *
457 * Returns true if folio is charged to a memory cgroup, otherwise returns false.
458 */
folio_memcg_charged(struct folio * folio)459 static inline bool folio_memcg_charged(struct folio *folio)
460 {
461 return folio->memcg_data != 0;
462 }
463
464 /*
465 * folio_memcg_check - Get the memory cgroup associated with a folio.
466 * @folio: Pointer to the folio.
467 *
468 * Returns a pointer to the memory cgroup associated with the folio,
469 * or NULL. This function unlike folio_memcg() can take any folio
470 * as an argument. It has to be used in cases when it's not known if a folio
471 * has an associated memory cgroup pointer or an object cgroups vector or
472 * an object cgroup.
473 *
474 * For a non-kmem folio any of the following ensures folio and memcg binding
475 * stability:
476 *
477 * - the folio lock
478 * - LRU isolation
479 * - exclusive reference
480 *
481 * For a kmem folio a caller should hold an rcu read lock to protect memcg
482 * associated with a kmem folio from being released.
483 */
folio_memcg_check(struct folio * folio)484 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
485 {
486 /*
487 * Because folio->memcg_data might be changed asynchronously
488 * for slabs, READ_ONCE() should be used here.
489 */
490 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
491
492 if (memcg_data & MEMCG_DATA_OBJEXTS)
493 return NULL;
494
495 if (memcg_data & MEMCG_DATA_KMEM) {
496 struct obj_cgroup *objcg;
497
498 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
499 return obj_cgroup_memcg(objcg);
500 }
501
502 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
503 }
504
page_memcg_check(struct page * page)505 static inline struct mem_cgroup *page_memcg_check(struct page *page)
506 {
507 if (PageTail(page))
508 return NULL;
509 return folio_memcg_check((struct folio *)page);
510 }
511
get_mem_cgroup_from_objcg(struct obj_cgroup * objcg)512 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
513 {
514 struct mem_cgroup *memcg;
515
516 rcu_read_lock();
517 retry:
518 memcg = obj_cgroup_memcg(objcg);
519 if (unlikely(!css_tryget(&memcg->css)))
520 goto retry;
521 rcu_read_unlock();
522
523 return memcg;
524 }
525
526 /*
527 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
528 * @folio: Pointer to the folio.
529 *
530 * Checks if the folio has MemcgKmem flag set. The caller must ensure
531 * that the folio has an associated memory cgroup. It's not safe to call
532 * this function against some types of folios, e.g. slab folios.
533 */
folio_memcg_kmem(struct folio * folio)534 static inline bool folio_memcg_kmem(struct folio *folio)
535 {
536 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
537 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
538 return folio->memcg_data & MEMCG_DATA_KMEM;
539 }
540
PageMemcgKmem(struct page * page)541 static inline bool PageMemcgKmem(struct page *page)
542 {
543 return folio_memcg_kmem(page_folio(page));
544 }
545
mem_cgroup_is_root(struct mem_cgroup * memcg)546 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
547 {
548 return (memcg == root_mem_cgroup);
549 }
550
mem_cgroup_disabled(void)551 static inline bool mem_cgroup_disabled(void)
552 {
553 return !cgroup_subsys_enabled(memory_cgrp_subsys);
554 }
555
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)556 static inline void mem_cgroup_protection(struct mem_cgroup *root,
557 struct mem_cgroup *memcg,
558 unsigned long *min,
559 unsigned long *low)
560 {
561 *min = *low = 0;
562
563 if (mem_cgroup_disabled())
564 return;
565
566 /*
567 * There is no reclaim protection applied to a targeted reclaim.
568 * We are special casing this specific case here because
569 * mem_cgroup_calculate_protection is not robust enough to keep
570 * the protection invariant for calculated effective values for
571 * parallel reclaimers with different reclaim target. This is
572 * especially a problem for tail memcgs (as they have pages on LRU)
573 * which would want to have effective values 0 for targeted reclaim
574 * but a different value for external reclaim.
575 *
576 * Example
577 * Let's have global and A's reclaim in parallel:
578 * |
579 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
580 * |\
581 * | C (low = 1G, usage = 2.5G)
582 * B (low = 1G, usage = 0.5G)
583 *
584 * For the global reclaim
585 * A.elow = A.low
586 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
587 * C.elow = min(C.usage, C.low)
588 *
589 * With the effective values resetting we have A reclaim
590 * A.elow = 0
591 * B.elow = B.low
592 * C.elow = C.low
593 *
594 * If the global reclaim races with A's reclaim then
595 * B.elow = C.elow = 0 because children_low_usage > A.elow)
596 * is possible and reclaiming B would be violating the protection.
597 *
598 */
599 if (root == memcg)
600 return;
601
602 *min = READ_ONCE(memcg->memory.emin);
603 *low = READ_ONCE(memcg->memory.elow);
604 }
605
606 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
607 struct mem_cgroup *memcg);
608
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)609 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
610 struct mem_cgroup *memcg)
611 {
612 /*
613 * The root memcg doesn't account charges, and doesn't support
614 * protection. The target memcg's protection is ignored, see
615 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
616 */
617 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
618 memcg == target;
619 }
620
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)621 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
622 struct mem_cgroup *memcg)
623 {
624 if (mem_cgroup_unprotected(target, memcg))
625 return false;
626
627 return READ_ONCE(memcg->memory.elow) >=
628 page_counter_read(&memcg->memory);
629 }
630
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)631 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
632 struct mem_cgroup *memcg)
633 {
634 if (mem_cgroup_unprotected(target, memcg))
635 return false;
636
637 return READ_ONCE(memcg->memory.emin) >=
638 page_counter_read(&memcg->memory);
639 }
640
641 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
642
643 /**
644 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
645 * @folio: Folio to charge.
646 * @mm: mm context of the allocating task.
647 * @gfp: Reclaim mode.
648 *
649 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
650 * pages according to @gfp if necessary. If @mm is NULL, try to
651 * charge to the active memcg.
652 *
653 * Do not use this for folios allocated for swapin.
654 *
655 * Return: 0 on success. Otherwise, an error code is returned.
656 */
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)657 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
658 gfp_t gfp)
659 {
660 if (mem_cgroup_disabled())
661 return 0;
662 return __mem_cgroup_charge(folio, mm, gfp);
663 }
664
665 int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp);
666
667 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
668 gfp_t gfp, swp_entry_t entry);
669
670 void __mem_cgroup_uncharge(struct folio *folio);
671
672 /**
673 * mem_cgroup_uncharge - Uncharge a folio.
674 * @folio: Folio to uncharge.
675 *
676 * Uncharge a folio previously charged with mem_cgroup_charge().
677 */
mem_cgroup_uncharge(struct folio * folio)678 static inline void mem_cgroup_uncharge(struct folio *folio)
679 {
680 if (mem_cgroup_disabled())
681 return;
682 __mem_cgroup_uncharge(folio);
683 }
684
685 void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
mem_cgroup_uncharge_folios(struct folio_batch * folios)686 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
687 {
688 if (mem_cgroup_disabled())
689 return;
690 __mem_cgroup_uncharge_folios(folios);
691 }
692
693 void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
694 void mem_cgroup_migrate(struct folio *old, struct folio *new);
695
696 /**
697 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
698 * @memcg: memcg of the wanted lruvec
699 * @pgdat: pglist_data
700 *
701 * Returns the lru list vector holding pages for a given @memcg &
702 * @pgdat combination. This can be the node lruvec, if the memory
703 * controller is disabled.
704 */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)705 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
706 struct pglist_data *pgdat)
707 {
708 struct mem_cgroup_per_node *mz;
709 struct lruvec *lruvec;
710
711 if (mem_cgroup_disabled()) {
712 lruvec = &pgdat->__lruvec;
713 goto out;
714 }
715
716 if (!memcg)
717 memcg = root_mem_cgroup;
718
719 mz = memcg->nodeinfo[pgdat->node_id];
720 lruvec = &mz->lruvec;
721 out:
722 /*
723 * Since a node can be onlined after the mem_cgroup was created,
724 * we have to be prepared to initialize lruvec->pgdat here;
725 * and if offlined then reonlined, we need to reinitialize it.
726 */
727 if (unlikely(lruvec->pgdat != pgdat))
728 lruvec->pgdat = pgdat;
729 return lruvec;
730 }
731
732 /**
733 * folio_lruvec - return lruvec for isolating/putting an LRU folio
734 * @folio: Pointer to the folio.
735 *
736 * This function relies on folio->mem_cgroup being stable.
737 */
folio_lruvec(struct folio * folio)738 static inline struct lruvec *folio_lruvec(struct folio *folio)
739 {
740 struct mem_cgroup *memcg = folio_memcg(folio);
741
742 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
743 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
744 }
745
746 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
747
748 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
749
750 struct mem_cgroup *get_mem_cgroup_from_current(void);
751
752 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio);
753
754 struct lruvec *folio_lruvec_lock(struct folio *folio);
755 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
756 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
757 unsigned long *flags);
758
759 #ifdef CONFIG_DEBUG_VM
760 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
761 #else
762 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)763 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
764 {
765 }
766 #endif
767
768 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)769 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
770 return css ? container_of(css, struct mem_cgroup, css) : NULL;
771 }
772
obj_cgroup_tryget(struct obj_cgroup * objcg)773 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
774 {
775 return percpu_ref_tryget(&objcg->refcnt);
776 }
777
obj_cgroup_get(struct obj_cgroup * objcg)778 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
779 {
780 percpu_ref_get(&objcg->refcnt);
781 }
782
obj_cgroup_get_many(struct obj_cgroup * objcg,unsigned long nr)783 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
784 unsigned long nr)
785 {
786 percpu_ref_get_many(&objcg->refcnt, nr);
787 }
788
obj_cgroup_put(struct obj_cgroup * objcg)789 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
790 {
791 if (objcg)
792 percpu_ref_put(&objcg->refcnt);
793 }
794
mem_cgroup_tryget(struct mem_cgroup * memcg)795 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
796 {
797 return !memcg || css_tryget(&memcg->css);
798 }
799
mem_cgroup_tryget_online(struct mem_cgroup * memcg)800 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
801 {
802 return !memcg || css_tryget_online(&memcg->css);
803 }
804
mem_cgroup_put(struct mem_cgroup * memcg)805 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
806 {
807 if (memcg)
808 css_put(&memcg->css);
809 }
810
811 #define mem_cgroup_from_counter(counter, member) \
812 container_of(counter, struct mem_cgroup, member)
813
814 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
815 struct mem_cgroup *,
816 struct mem_cgroup_reclaim_cookie *);
817 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
818 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
819 int (*)(struct task_struct *, void *), void *arg);
820
mem_cgroup_id(struct mem_cgroup * memcg)821 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
822 {
823 if (mem_cgroup_disabled())
824 return 0;
825
826 return memcg->id.id;
827 }
828 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
829
830 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)831 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
832 {
833 return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
834 }
835
836 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
837 #endif
838
mem_cgroup_from_seq(struct seq_file * m)839 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
840 {
841 return mem_cgroup_from_css(seq_css(m));
842 }
843
lruvec_memcg(struct lruvec * lruvec)844 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
845 {
846 struct mem_cgroup_per_node *mz;
847
848 if (mem_cgroup_disabled())
849 return NULL;
850
851 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
852 return mz->memcg;
853 }
854
855 /**
856 * parent_mem_cgroup - find the accounting parent of a memcg
857 * @memcg: memcg whose parent to find
858 *
859 * Returns the parent memcg, or NULL if this is the root.
860 */
parent_mem_cgroup(struct mem_cgroup * memcg)861 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
862 {
863 return mem_cgroup_from_css(memcg->css.parent);
864 }
865
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)866 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
867 struct mem_cgroup *root)
868 {
869 if (root == memcg)
870 return true;
871 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
872 }
873
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)874 static inline bool mm_match_cgroup(struct mm_struct *mm,
875 struct mem_cgroup *memcg)
876 {
877 struct mem_cgroup *task_memcg;
878 bool match = false;
879
880 rcu_read_lock();
881 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
882 if (task_memcg)
883 match = mem_cgroup_is_descendant(task_memcg, memcg);
884 rcu_read_unlock();
885 return match;
886 }
887
888 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
889 ino_t page_cgroup_ino(struct page *page);
890
mem_cgroup_online(struct mem_cgroup * memcg)891 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
892 {
893 if (mem_cgroup_disabled())
894 return true;
895 return !!(memcg->css.flags & CSS_ONLINE);
896 }
897
898 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
899 int zid, int nr_pages);
900
901 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)902 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
903 enum lru_list lru, int zone_idx)
904 {
905 struct mem_cgroup_per_node *mz;
906
907 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
908 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
909 }
910
911 void __mem_cgroup_handle_over_high(gfp_t gfp_mask);
912
mem_cgroup_handle_over_high(gfp_t gfp_mask)913 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
914 {
915 if (unlikely(current->memcg_nr_pages_over_high))
916 __mem_cgroup_handle_over_high(gfp_mask);
917 }
918
919 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
920
921 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
922
923 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
924 struct task_struct *p);
925
926 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
927
928 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
929 struct mem_cgroup *oom_domain);
930 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
931
932 /* idx can be of type enum memcg_stat_item or node_stat_item */
933 void mod_memcg_state(struct mem_cgroup *memcg,
934 enum memcg_stat_item idx, int val);
935
mod_memcg_page_state(struct page * page,enum memcg_stat_item idx,int val)936 static inline void mod_memcg_page_state(struct page *page,
937 enum memcg_stat_item idx, int val)
938 {
939 struct mem_cgroup *memcg;
940
941 if (mem_cgroup_disabled())
942 return;
943
944 rcu_read_lock();
945 memcg = folio_memcg(page_folio(page));
946 if (memcg)
947 mod_memcg_state(memcg, idx, val);
948 rcu_read_unlock();
949 }
950
951 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
952 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
953 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
954 enum node_stat_item idx);
955
956 void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
957 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
958
959 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
960
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)961 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
962 int val)
963 {
964 unsigned long flags;
965
966 local_irq_save(flags);
967 __mod_lruvec_kmem_state(p, idx, val);
968 local_irq_restore(flags);
969 }
970
971 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
972 unsigned long count);
973
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)974 static inline void count_memcg_folio_events(struct folio *folio,
975 enum vm_event_item idx, unsigned long nr)
976 {
977 struct mem_cgroup *memcg = folio_memcg(folio);
978
979 if (memcg)
980 count_memcg_events(memcg, idx, nr);
981 }
982
count_memcg_events_mm(struct mm_struct * mm,enum vm_event_item idx,unsigned long count)983 static inline void count_memcg_events_mm(struct mm_struct *mm,
984 enum vm_event_item idx, unsigned long count)
985 {
986 struct mem_cgroup *memcg;
987
988 if (mem_cgroup_disabled())
989 return;
990
991 rcu_read_lock();
992 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
993 if (likely(memcg))
994 count_memcg_events(memcg, idx, count);
995 rcu_read_unlock();
996 }
997
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)998 static inline void count_memcg_event_mm(struct mm_struct *mm,
999 enum vm_event_item idx)
1000 {
1001 count_memcg_events_mm(mm, idx, 1);
1002 }
1003
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1004 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1005 enum memcg_memory_event event)
1006 {
1007 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1008 event == MEMCG_SWAP_FAIL;
1009
1010 atomic_long_inc(&memcg->memory_events_local[event]);
1011 if (!swap_event)
1012 cgroup_file_notify(&memcg->events_local_file);
1013
1014 do {
1015 atomic_long_inc(&memcg->memory_events[event]);
1016 if (swap_event)
1017 cgroup_file_notify(&memcg->swap_events_file);
1018 else
1019 cgroup_file_notify(&memcg->events_file);
1020
1021 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1022 break;
1023 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1024 break;
1025 } while ((memcg = parent_mem_cgroup(memcg)) &&
1026 !mem_cgroup_is_root(memcg));
1027 }
1028
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1029 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1030 enum memcg_memory_event event)
1031 {
1032 struct mem_cgroup *memcg;
1033
1034 if (mem_cgroup_disabled())
1035 return;
1036
1037 rcu_read_lock();
1038 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1039 if (likely(memcg))
1040 memcg_memory_event(memcg, event);
1041 rcu_read_unlock();
1042 }
1043
1044 void split_page_memcg(struct page *first, unsigned order);
1045 void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
1046 unsigned new_order);
1047
cgroup_id_from_mm(struct mm_struct * mm)1048 static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1049 {
1050 struct mem_cgroup *memcg;
1051 u64 id;
1052
1053 if (mem_cgroup_disabled())
1054 return 0;
1055
1056 rcu_read_lock();
1057 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1058 if (!memcg)
1059 memcg = root_mem_cgroup;
1060 id = cgroup_id(memcg->css.cgroup);
1061 rcu_read_unlock();
1062 return id;
1063 }
1064
1065 extern int mem_cgroup_init(void);
1066 #else /* CONFIG_MEMCG */
1067
1068 #define MEM_CGROUP_ID_SHIFT 0
1069
1070 #define root_mem_cgroup (NULL)
1071
folio_memcg(struct folio * folio)1072 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1073 {
1074 return NULL;
1075 }
1076
folio_memcg_charged(struct folio * folio)1077 static inline bool folio_memcg_charged(struct folio *folio)
1078 {
1079 return false;
1080 }
1081
folio_memcg_check(struct folio * folio)1082 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1083 {
1084 return NULL;
1085 }
1086
page_memcg_check(struct page * page)1087 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1088 {
1089 return NULL;
1090 }
1091
get_mem_cgroup_from_objcg(struct obj_cgroup * objcg)1092 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1093 {
1094 return NULL;
1095 }
1096
folio_memcg_kmem(struct folio * folio)1097 static inline bool folio_memcg_kmem(struct folio *folio)
1098 {
1099 return false;
1100 }
1101
PageMemcgKmem(struct page * page)1102 static inline bool PageMemcgKmem(struct page *page)
1103 {
1104 return false;
1105 }
1106
mem_cgroup_is_root(struct mem_cgroup * memcg)1107 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1108 {
1109 return true;
1110 }
1111
mem_cgroup_disabled(void)1112 static inline bool mem_cgroup_disabled(void)
1113 {
1114 return true;
1115 }
1116
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1117 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1118 enum memcg_memory_event event)
1119 {
1120 }
1121
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1122 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1123 enum memcg_memory_event event)
1124 {
1125 }
1126
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)1127 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1128 struct mem_cgroup *memcg,
1129 unsigned long *min,
1130 unsigned long *low)
1131 {
1132 *min = *low = 0;
1133 }
1134
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)1135 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1136 struct mem_cgroup *memcg)
1137 {
1138 }
1139
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)1140 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1141 struct mem_cgroup *memcg)
1142 {
1143 return true;
1144 }
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)1145 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1146 struct mem_cgroup *memcg)
1147 {
1148 return false;
1149 }
1150
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)1151 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1152 struct mem_cgroup *memcg)
1153 {
1154 return false;
1155 }
1156
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)1157 static inline int mem_cgroup_charge(struct folio *folio,
1158 struct mm_struct *mm, gfp_t gfp)
1159 {
1160 return 0;
1161 }
1162
mem_cgroup_charge_hugetlb(struct folio * folio,gfp_t gfp)1163 static inline int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp)
1164 {
1165 return 0;
1166 }
1167
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)1168 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1169 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1170 {
1171 return 0;
1172 }
1173
mem_cgroup_uncharge(struct folio * folio)1174 static inline void mem_cgroup_uncharge(struct folio *folio)
1175 {
1176 }
1177
mem_cgroup_uncharge_folios(struct folio_batch * folios)1178 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1179 {
1180 }
1181
mem_cgroup_replace_folio(struct folio * old,struct folio * new)1182 static inline void mem_cgroup_replace_folio(struct folio *old,
1183 struct folio *new)
1184 {
1185 }
1186
mem_cgroup_migrate(struct folio * old,struct folio * new)1187 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1188 {
1189 }
1190
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1191 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1192 struct pglist_data *pgdat)
1193 {
1194 return &pgdat->__lruvec;
1195 }
1196
folio_lruvec(struct folio * folio)1197 static inline struct lruvec *folio_lruvec(struct folio *folio)
1198 {
1199 struct pglist_data *pgdat = folio_pgdat(folio);
1200 return &pgdat->__lruvec;
1201 }
1202
1203 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1204 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1205 {
1206 }
1207
parent_mem_cgroup(struct mem_cgroup * memcg)1208 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1209 {
1210 return NULL;
1211 }
1212
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1213 static inline bool mm_match_cgroup(struct mm_struct *mm,
1214 struct mem_cgroup *memcg)
1215 {
1216 return true;
1217 }
1218
get_mem_cgroup_from_mm(struct mm_struct * mm)1219 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1220 {
1221 return NULL;
1222 }
1223
get_mem_cgroup_from_current(void)1224 static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1225 {
1226 return NULL;
1227 }
1228
get_mem_cgroup_from_folio(struct folio * folio)1229 static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
1230 {
1231 return NULL;
1232 }
1233
1234 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)1235 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1236 {
1237 return NULL;
1238 }
1239
obj_cgroup_get(struct obj_cgroup * objcg)1240 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
1241 {
1242 }
1243
obj_cgroup_put(struct obj_cgroup * objcg)1244 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1245 {
1246 }
1247
mem_cgroup_tryget(struct mem_cgroup * memcg)1248 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1249 {
1250 return true;
1251 }
1252
mem_cgroup_tryget_online(struct mem_cgroup * memcg)1253 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1254 {
1255 return true;
1256 }
1257
mem_cgroup_put(struct mem_cgroup * memcg)1258 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1259 {
1260 }
1261
folio_lruvec_lock(struct folio * folio)1262 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1263 {
1264 struct pglist_data *pgdat = folio_pgdat(folio);
1265
1266 spin_lock(&pgdat->__lruvec.lru_lock);
1267 return &pgdat->__lruvec;
1268 }
1269
folio_lruvec_lock_irq(struct folio * folio)1270 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1271 {
1272 struct pglist_data *pgdat = folio_pgdat(folio);
1273
1274 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1275 return &pgdat->__lruvec;
1276 }
1277
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flagsp)1278 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1279 unsigned long *flagsp)
1280 {
1281 struct pglist_data *pgdat = folio_pgdat(folio);
1282
1283 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1284 return &pgdat->__lruvec;
1285 }
1286
1287 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1288 mem_cgroup_iter(struct mem_cgroup *root,
1289 struct mem_cgroup *prev,
1290 struct mem_cgroup_reclaim_cookie *reclaim)
1291 {
1292 return NULL;
1293 }
1294
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1295 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1296 struct mem_cgroup *prev)
1297 {
1298 }
1299
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1300 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1301 int (*fn)(struct task_struct *, void *), void *arg)
1302 {
1303 }
1304
mem_cgroup_id(struct mem_cgroup * memcg)1305 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1306 {
1307 return 0;
1308 }
1309
mem_cgroup_from_id(unsigned short id)1310 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1311 {
1312 WARN_ON_ONCE(id);
1313 /* XXX: This should always return root_mem_cgroup */
1314 return NULL;
1315 }
1316
1317 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)1318 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1319 {
1320 return 0;
1321 }
1322
mem_cgroup_get_from_ino(unsigned long ino)1323 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1324 {
1325 return NULL;
1326 }
1327 #endif
1328
mem_cgroup_from_seq(struct seq_file * m)1329 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1330 {
1331 return NULL;
1332 }
1333
lruvec_memcg(struct lruvec * lruvec)1334 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1335 {
1336 return NULL;
1337 }
1338
mem_cgroup_online(struct mem_cgroup * memcg)1339 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1340 {
1341 return true;
1342 }
1343
1344 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1345 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1346 enum lru_list lru, int zone_idx)
1347 {
1348 return 0;
1349 }
1350
mem_cgroup_get_max(struct mem_cgroup * memcg)1351 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1352 {
1353 return 0;
1354 }
1355
mem_cgroup_size(struct mem_cgroup * memcg)1356 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1357 {
1358 return 0;
1359 }
1360
1361 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1362 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1363 {
1364 }
1365
1366 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1367 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1368 {
1369 }
1370
mem_cgroup_handle_over_high(gfp_t gfp_mask)1371 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1372 {
1373 }
1374
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1375 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1376 struct task_struct *victim, struct mem_cgroup *oom_domain)
1377 {
1378 return NULL;
1379 }
1380
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1381 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1382 {
1383 }
1384
mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int nr)1385 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1386 enum memcg_stat_item idx,
1387 int nr)
1388 {
1389 }
1390
mod_memcg_page_state(struct page * page,enum memcg_stat_item idx,int val)1391 static inline void mod_memcg_page_state(struct page *page,
1392 enum memcg_stat_item idx, int val)
1393 {
1394 }
1395
memcg_page_state(struct mem_cgroup * memcg,int idx)1396 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1397 {
1398 return 0;
1399 }
1400
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1401 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1402 enum node_stat_item idx)
1403 {
1404 return node_page_state(lruvec_pgdat(lruvec), idx);
1405 }
1406
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1407 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1408 enum node_stat_item idx)
1409 {
1410 return node_page_state(lruvec_pgdat(lruvec), idx);
1411 }
1412
mem_cgroup_flush_stats(struct mem_cgroup * memcg)1413 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1414 {
1415 }
1416
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)1417 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1418 {
1419 }
1420
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1421 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1422 int val)
1423 {
1424 struct page *page = virt_to_head_page(p);
1425
1426 __mod_node_page_state(page_pgdat(page), idx, val);
1427 }
1428
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1429 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1430 int val)
1431 {
1432 struct page *page = virt_to_head_page(p);
1433
1434 mod_node_page_state(page_pgdat(page), idx, val);
1435 }
1436
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1437 static inline void count_memcg_events(struct mem_cgroup *memcg,
1438 enum vm_event_item idx,
1439 unsigned long count)
1440 {
1441 }
1442
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1443 static inline void count_memcg_folio_events(struct folio *folio,
1444 enum vm_event_item idx, unsigned long nr)
1445 {
1446 }
1447
count_memcg_events_mm(struct mm_struct * mm,enum vm_event_item idx,unsigned long count)1448 static inline void count_memcg_events_mm(struct mm_struct *mm,
1449 enum vm_event_item idx, unsigned long count)
1450 {
1451 }
1452
1453 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1454 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1455 {
1456 }
1457
split_page_memcg(struct page * first,unsigned order)1458 static inline void split_page_memcg(struct page *first, unsigned order)
1459 {
1460 }
1461
folio_split_memcg_refs(struct folio * folio,unsigned old_order,unsigned new_order)1462 static inline void folio_split_memcg_refs(struct folio *folio,
1463 unsigned old_order, unsigned new_order)
1464 {
1465 }
1466
cgroup_id_from_mm(struct mm_struct * mm)1467 static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1468 {
1469 return 0;
1470 }
1471
mem_cgroup_init(void)1472 static inline int mem_cgroup_init(void) { return 0; }
1473 #endif /* CONFIG_MEMCG */
1474
1475 /*
1476 * Extended information for slab objects stored as an array in page->memcg_data
1477 * if MEMCG_DATA_OBJEXTS is set.
1478 */
1479 struct slabobj_ext {
1480 #ifdef CONFIG_MEMCG
1481 struct obj_cgroup *objcg;
1482 #endif
1483 #ifdef CONFIG_MEM_ALLOC_PROFILING
1484 union codetag_ref ref;
1485 #endif
1486 } __aligned(8);
1487
__inc_lruvec_kmem_state(void * p,enum node_stat_item idx)1488 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1489 {
1490 __mod_lruvec_kmem_state(p, idx, 1);
1491 }
1492
__dec_lruvec_kmem_state(void * p,enum node_stat_item idx)1493 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1494 {
1495 __mod_lruvec_kmem_state(p, idx, -1);
1496 }
1497
parent_lruvec(struct lruvec * lruvec)1498 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1499 {
1500 struct mem_cgroup *memcg;
1501
1502 memcg = lruvec_memcg(lruvec);
1503 if (!memcg)
1504 return NULL;
1505 memcg = parent_mem_cgroup(memcg);
1506 if (!memcg)
1507 return NULL;
1508 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1509 }
1510
unlock_page_lruvec(struct lruvec * lruvec)1511 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1512 {
1513 spin_unlock(&lruvec->lru_lock);
1514 }
1515
unlock_page_lruvec_irq(struct lruvec * lruvec)1516 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1517 {
1518 spin_unlock_irq(&lruvec->lru_lock);
1519 }
1520
unlock_page_lruvec_irqrestore(struct lruvec * lruvec,unsigned long flags)1521 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1522 unsigned long flags)
1523 {
1524 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1525 }
1526
1527 /* Test requires a stable folio->memcg binding, see folio_memcg() */
folio_matches_lruvec(struct folio * folio,struct lruvec * lruvec)1528 static inline bool folio_matches_lruvec(struct folio *folio,
1529 struct lruvec *lruvec)
1530 {
1531 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1532 lruvec_memcg(lruvec) == folio_memcg(folio);
1533 }
1534
1535 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irq(struct folio * folio,struct lruvec * locked_lruvec)1536 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1537 struct lruvec *locked_lruvec)
1538 {
1539 if (locked_lruvec) {
1540 if (folio_matches_lruvec(folio, locked_lruvec))
1541 return locked_lruvec;
1542
1543 unlock_page_lruvec_irq(locked_lruvec);
1544 }
1545
1546 return folio_lruvec_lock_irq(folio);
1547 }
1548
1549 /* Don't lock again iff folio's lruvec locked */
folio_lruvec_relock_irqsave(struct folio * folio,struct lruvec ** lruvecp,unsigned long * flags)1550 static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1551 struct lruvec **lruvecp, unsigned long *flags)
1552 {
1553 if (*lruvecp) {
1554 if (folio_matches_lruvec(folio, *lruvecp))
1555 return;
1556
1557 unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1558 }
1559
1560 *lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1561 }
1562
1563 #ifdef CONFIG_CGROUP_WRITEBACK
1564
1565 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1566 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1567 unsigned long *pheadroom, unsigned long *pdirty,
1568 unsigned long *pwriteback);
1569
1570 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1571 struct bdi_writeback *wb);
1572
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1573 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1574 struct bdi_writeback *wb)
1575 {
1576 struct mem_cgroup *memcg;
1577
1578 if (mem_cgroup_disabled())
1579 return;
1580
1581 memcg = folio_memcg(folio);
1582 if (unlikely(memcg && &memcg->css != wb->memcg_css))
1583 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1584 }
1585
1586 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1587
1588 #else /* CONFIG_CGROUP_WRITEBACK */
1589
mem_cgroup_wb_domain(struct bdi_writeback * wb)1590 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1591 {
1592 return NULL;
1593 }
1594
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1595 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1596 unsigned long *pfilepages,
1597 unsigned long *pheadroom,
1598 unsigned long *pdirty,
1599 unsigned long *pwriteback)
1600 {
1601 }
1602
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1603 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1604 struct bdi_writeback *wb)
1605 {
1606 }
1607
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1608 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1609 {
1610 }
1611
1612 #endif /* CONFIG_CGROUP_WRITEBACK */
1613
1614 struct sock;
1615 #ifdef CONFIG_MEMCG
1616 extern struct static_key_false memcg_sockets_enabled_key;
1617 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1618
1619 void mem_cgroup_sk_alloc(struct sock *sk);
1620 void mem_cgroup_sk_free(struct sock *sk);
1621 void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk);
1622 bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages,
1623 gfp_t gfp_mask);
1624 void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages);
1625
1626 #if BITS_PER_LONG < 64
mem_cgroup_set_socket_pressure(struct mem_cgroup * memcg)1627 static inline void mem_cgroup_set_socket_pressure(struct mem_cgroup *memcg)
1628 {
1629 u64 val = get_jiffies_64() + HZ;
1630 unsigned long flags;
1631
1632 write_seqlock_irqsave(&memcg->socket_pressure_seqlock, flags);
1633 memcg->socket_pressure = val;
1634 write_sequnlock_irqrestore(&memcg->socket_pressure_seqlock, flags);
1635 }
1636
mem_cgroup_get_socket_pressure(struct mem_cgroup * memcg)1637 static inline u64 mem_cgroup_get_socket_pressure(struct mem_cgroup *memcg)
1638 {
1639 unsigned int seq;
1640 u64 val;
1641
1642 do {
1643 seq = read_seqbegin(&memcg->socket_pressure_seqlock);
1644 val = memcg->socket_pressure;
1645 } while (read_seqretry(&memcg->socket_pressure_seqlock, seq));
1646
1647 return val;
1648 }
1649 #else
mem_cgroup_set_socket_pressure(struct mem_cgroup * memcg)1650 static inline void mem_cgroup_set_socket_pressure(struct mem_cgroup *memcg)
1651 {
1652 WRITE_ONCE(memcg->socket_pressure, jiffies + HZ);
1653 }
1654
mem_cgroup_get_socket_pressure(struct mem_cgroup * memcg)1655 static inline u64 mem_cgroup_get_socket_pressure(struct mem_cgroup *memcg)
1656 {
1657 return READ_ONCE(memcg->socket_pressure);
1658 }
1659 #endif
1660
1661 int alloc_shrinker_info(struct mem_cgroup *memcg);
1662 void free_shrinker_info(struct mem_cgroup *memcg);
1663 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1664 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1665 #else
1666 #define mem_cgroup_sockets_enabled 0
1667
mem_cgroup_sk_alloc(struct sock * sk)1668 static inline void mem_cgroup_sk_alloc(struct sock *sk)
1669 {
1670 }
1671
mem_cgroup_sk_free(struct sock * sk)1672 static inline void mem_cgroup_sk_free(struct sock *sk)
1673 {
1674 }
1675
mem_cgroup_sk_inherit(const struct sock * sk,struct sock * newsk)1676 static inline void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk)
1677 {
1678 }
1679
mem_cgroup_sk_charge(const struct sock * sk,unsigned int nr_pages,gfp_t gfp_mask)1680 static inline bool mem_cgroup_sk_charge(const struct sock *sk,
1681 unsigned int nr_pages,
1682 gfp_t gfp_mask)
1683 {
1684 return false;
1685 }
1686
mem_cgroup_sk_uncharge(const struct sock * sk,unsigned int nr_pages)1687 static inline void mem_cgroup_sk_uncharge(const struct sock *sk,
1688 unsigned int nr_pages)
1689 {
1690 }
1691
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1692 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1693 int nid, int shrinker_id)
1694 {
1695 }
1696 #endif
1697
1698 #ifdef CONFIG_MEMCG
1699 bool mem_cgroup_kmem_disabled(void);
1700 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1701 void __memcg_kmem_uncharge_page(struct page *page, int order);
1702
1703 /*
1704 * The returned objcg pointer is safe to use without additional
1705 * protection within a scope. The scope is defined either by
1706 * the current task (similar to the "current" global variable)
1707 * or by set_active_memcg() pair.
1708 * Please, use obj_cgroup_get() to get a reference if the pointer
1709 * needs to be used outside of the local scope.
1710 */
1711 struct obj_cgroup *current_obj_cgroup(void);
1712 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1713
get_obj_cgroup_from_current(void)1714 static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1715 {
1716 struct obj_cgroup *objcg = current_obj_cgroup();
1717
1718 if (objcg)
1719 obj_cgroup_get(objcg);
1720
1721 return objcg;
1722 }
1723
1724 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1725 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1726
1727 extern struct static_key_false memcg_bpf_enabled_key;
memcg_bpf_enabled(void)1728 static inline bool memcg_bpf_enabled(void)
1729 {
1730 return static_branch_likely(&memcg_bpf_enabled_key);
1731 }
1732
1733 extern struct static_key_false memcg_kmem_online_key;
1734
memcg_kmem_online(void)1735 static inline bool memcg_kmem_online(void)
1736 {
1737 return static_branch_likely(&memcg_kmem_online_key);
1738 }
1739
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1740 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1741 int order)
1742 {
1743 if (memcg_kmem_online())
1744 return __memcg_kmem_charge_page(page, gfp, order);
1745 return 0;
1746 }
1747
memcg_kmem_uncharge_page(struct page * page,int order)1748 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1749 {
1750 if (memcg_kmem_online())
1751 __memcg_kmem_uncharge_page(page, order);
1752 }
1753
1754 /*
1755 * A helper for accessing memcg's kmem_id, used for getting
1756 * corresponding LRU lists.
1757 */
memcg_kmem_id(struct mem_cgroup * memcg)1758 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1759 {
1760 return memcg ? memcg->kmemcg_id : -1;
1761 }
1762
1763 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1764
count_objcg_events(struct obj_cgroup * objcg,enum vm_event_item idx,unsigned long count)1765 static inline void count_objcg_events(struct obj_cgroup *objcg,
1766 enum vm_event_item idx,
1767 unsigned long count)
1768 {
1769 struct mem_cgroup *memcg;
1770
1771 if (!memcg_kmem_online())
1772 return;
1773
1774 rcu_read_lock();
1775 memcg = obj_cgroup_memcg(objcg);
1776 count_memcg_events(memcg, idx, count);
1777 rcu_read_unlock();
1778 }
1779
1780 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid);
1781
1782 #else
mem_cgroup_kmem_disabled(void)1783 static inline bool mem_cgroup_kmem_disabled(void)
1784 {
1785 return true;
1786 }
1787
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1788 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1789 int order)
1790 {
1791 return 0;
1792 }
1793
memcg_kmem_uncharge_page(struct page * page,int order)1794 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1795 {
1796 }
1797
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1798 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1799 int order)
1800 {
1801 return 0;
1802 }
1803
__memcg_kmem_uncharge_page(struct page * page,int order)1804 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1805 {
1806 }
1807
get_obj_cgroup_from_folio(struct folio * folio)1808 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1809 {
1810 return NULL;
1811 }
1812
memcg_bpf_enabled(void)1813 static inline bool memcg_bpf_enabled(void)
1814 {
1815 return false;
1816 }
1817
memcg_kmem_online(void)1818 static inline bool memcg_kmem_online(void)
1819 {
1820 return false;
1821 }
1822
memcg_kmem_id(struct mem_cgroup * memcg)1823 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1824 {
1825 return -1;
1826 }
1827
mem_cgroup_from_slab_obj(void * p)1828 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1829 {
1830 return NULL;
1831 }
1832
count_objcg_events(struct obj_cgroup * objcg,enum vm_event_item idx,unsigned long count)1833 static inline void count_objcg_events(struct obj_cgroup *objcg,
1834 enum vm_event_item idx,
1835 unsigned long count)
1836 {
1837 }
1838
page_cgroup_ino(struct page * page)1839 static inline ino_t page_cgroup_ino(struct page *page)
1840 {
1841 return 0;
1842 }
1843
mem_cgroup_node_allowed(struct mem_cgroup * memcg,int nid)1844 static inline bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
1845 {
1846 return true;
1847 }
1848 #endif /* CONFIG_MEMCG */
1849
1850 #if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP)
1851 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1852 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1853 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1854 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1855 #else
obj_cgroup_may_zswap(struct obj_cgroup * objcg)1856 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1857 {
1858 return true;
1859 }
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)1860 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1861 size_t size)
1862 {
1863 }
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)1864 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1865 size_t size)
1866 {
1867 }
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)1868 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1869 {
1870 /* if zswap is disabled, do not block pages going to the swapping device */
1871 return true;
1872 }
1873 #endif
1874
1875
1876 /* Cgroup v1-related declarations */
1877
1878 #ifdef CONFIG_MEMCG_V1
1879 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1880 gfp_t gfp_mask,
1881 unsigned long *total_scanned);
1882
1883 bool mem_cgroup_oom_synchronize(bool wait);
1884
task_in_memcg_oom(struct task_struct * p)1885 static inline bool task_in_memcg_oom(struct task_struct *p)
1886 {
1887 return p->memcg_in_oom;
1888 }
1889
mem_cgroup_enter_user_fault(void)1890 static inline void mem_cgroup_enter_user_fault(void)
1891 {
1892 WARN_ON(current->in_user_fault);
1893 current->in_user_fault = 1;
1894 }
1895
mem_cgroup_exit_user_fault(void)1896 static inline void mem_cgroup_exit_user_fault(void)
1897 {
1898 WARN_ON(!current->in_user_fault);
1899 current->in_user_fault = 0;
1900 }
1901
1902 void memcg1_swapout(struct folio *folio, swp_entry_t entry);
1903 void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages);
1904
1905 #else /* CONFIG_MEMCG_V1 */
1906 static inline
memcg1_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1907 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1908 gfp_t gfp_mask,
1909 unsigned long *total_scanned)
1910 {
1911 return 0;
1912 }
1913
task_in_memcg_oom(struct task_struct * p)1914 static inline bool task_in_memcg_oom(struct task_struct *p)
1915 {
1916 return false;
1917 }
1918
mem_cgroup_oom_synchronize(bool wait)1919 static inline bool mem_cgroup_oom_synchronize(bool wait)
1920 {
1921 return false;
1922 }
1923
mem_cgroup_enter_user_fault(void)1924 static inline void mem_cgroup_enter_user_fault(void)
1925 {
1926 }
1927
mem_cgroup_exit_user_fault(void)1928 static inline void mem_cgroup_exit_user_fault(void)
1929 {
1930 }
1931
memcg1_swapout(struct folio * folio,swp_entry_t entry)1932 static inline void memcg1_swapout(struct folio *folio, swp_entry_t entry)
1933 {
1934 }
1935
memcg1_swapin(swp_entry_t entry,unsigned int nr_pages)1936 static inline void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages)
1937 {
1938 }
1939
1940 #endif /* CONFIG_MEMCG_V1 */
1941
1942 #endif /* _LINUX_MEMCONTROL_H */
1943