xref: /linux/include/linux/mm.h (revision 3f31a806a62e44f7498e2d17719c03f816553f11)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/compiler.h>
16 #include <linux/mm_types.h>
17 #include <linux/mmap_lock.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page-flags.h>
27 #include <linux/page_ref.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 #include <linux/sched.h>
31 #include <linux/pgtable.h>
32 #include <linux/kasan.h>
33 #include <linux/memremap.h>
34 #include <linux/slab.h>
35 #include <linux/cacheinfo.h>
36 #include <linux/rcuwait.h>
37 
38 struct mempolicy;
39 struct anon_vma;
40 struct anon_vma_chain;
41 struct user_struct;
42 struct pt_regs;
43 struct folio_batch;
44 
45 void arch_mm_preinit(void);
46 void mm_core_init(void);
47 void init_mm_internals(void);
48 
49 extern atomic_long_t _totalram_pages;
totalram_pages(void)50 static inline unsigned long totalram_pages(void)
51 {
52 	return (unsigned long)atomic_long_read(&_totalram_pages);
53 }
54 
totalram_pages_inc(void)55 static inline void totalram_pages_inc(void)
56 {
57 	atomic_long_inc(&_totalram_pages);
58 }
59 
totalram_pages_dec(void)60 static inline void totalram_pages_dec(void)
61 {
62 	atomic_long_dec(&_totalram_pages);
63 }
64 
totalram_pages_add(long count)65 static inline void totalram_pages_add(long count)
66 {
67 	atomic_long_add(count, &_totalram_pages);
68 }
69 
70 extern void * high_memory;
71 
72 #ifdef CONFIG_SYSCTL
73 extern int sysctl_legacy_va_layout;
74 #else
75 #define sysctl_legacy_va_layout 0
76 #endif
77 
78 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
79 extern const int mmap_rnd_bits_min;
80 extern int mmap_rnd_bits_max __ro_after_init;
81 extern int mmap_rnd_bits __read_mostly;
82 #endif
83 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
84 extern const int mmap_rnd_compat_bits_min;
85 extern const int mmap_rnd_compat_bits_max;
86 extern int mmap_rnd_compat_bits __read_mostly;
87 #endif
88 
89 #ifndef DIRECT_MAP_PHYSMEM_END
90 # ifdef MAX_PHYSMEM_BITS
91 # define DIRECT_MAP_PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
92 # else
93 # define DIRECT_MAP_PHYSMEM_END	(((phys_addr_t)-1)&~(1ULL<<63))
94 # endif
95 #endif
96 
97 #include <asm/page.h>
98 #include <asm/processor.h>
99 
100 #ifndef __pa_symbol
101 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
102 #endif
103 
104 #ifndef page_to_virt
105 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
106 #endif
107 
108 #ifndef lm_alias
109 #define lm_alias(x)	__va(__pa_symbol(x))
110 #endif
111 
112 /*
113  * To prevent common memory management code establishing
114  * a zero page mapping on a read fault.
115  * This macro should be defined within <asm/pgtable.h>.
116  * s390 does this to prevent multiplexing of hardware bits
117  * related to the physical page in case of virtualization.
118  */
119 #ifndef mm_forbids_zeropage
120 #define mm_forbids_zeropage(X)	(0)
121 #endif
122 
123 /*
124  * On some architectures it is expensive to call memset() for small sizes.
125  * If an architecture decides to implement their own version of
126  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
127  * define their own version of this macro in <asm/pgtable.h>
128  */
129 #if BITS_PER_LONG == 64
130 /* This function must be updated when the size of struct page grows above 96
131  * or reduces below 56. The idea that compiler optimizes out switch()
132  * statement, and only leaves move/store instructions. Also the compiler can
133  * combine write statements if they are both assignments and can be reordered,
134  * this can result in several of the writes here being dropped.
135  */
136 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)137 static inline void __mm_zero_struct_page(struct page *page)
138 {
139 	unsigned long *_pp = (void *)page;
140 
141 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
142 	BUILD_BUG_ON(sizeof(struct page) & 7);
143 	BUILD_BUG_ON(sizeof(struct page) < 56);
144 	BUILD_BUG_ON(sizeof(struct page) > 96);
145 
146 	switch (sizeof(struct page)) {
147 	case 96:
148 		_pp[11] = 0;
149 		fallthrough;
150 	case 88:
151 		_pp[10] = 0;
152 		fallthrough;
153 	case 80:
154 		_pp[9] = 0;
155 		fallthrough;
156 	case 72:
157 		_pp[8] = 0;
158 		fallthrough;
159 	case 64:
160 		_pp[7] = 0;
161 		fallthrough;
162 	case 56:
163 		_pp[6] = 0;
164 		_pp[5] = 0;
165 		_pp[4] = 0;
166 		_pp[3] = 0;
167 		_pp[2] = 0;
168 		_pp[1] = 0;
169 		_pp[0] = 0;
170 	}
171 }
172 #else
173 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
174 #endif
175 
176 /*
177  * Default maximum number of active map areas, this limits the number of vmas
178  * per mm struct. Users can overwrite this number by sysctl but there is a
179  * problem.
180  *
181  * When a program's coredump is generated as ELF format, a section is created
182  * per a vma. In ELF, the number of sections is represented in unsigned short.
183  * This means the number of sections should be smaller than 65535 at coredump.
184  * Because the kernel adds some informative sections to a image of program at
185  * generating coredump, we need some margin. The number of extra sections is
186  * 1-3 now and depends on arch. We use "5" as safe margin, here.
187  *
188  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
189  * not a hard limit any more. Although some userspace tools can be surprised by
190  * that.
191  */
192 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
193 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
194 
195 extern int sysctl_max_map_count;
196 
197 extern unsigned long sysctl_user_reserve_kbytes;
198 extern unsigned long sysctl_admin_reserve_kbytes;
199 
200 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
201 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
202 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
203 #else
204 #define nth_page(page,n) ((page) + (n))
205 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
206 #endif
207 
208 /* to align the pointer to the (next) page boundary */
209 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
210 
211 /* to align the pointer to the (prev) page boundary */
212 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
213 
214 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
215 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
216 
lru_to_folio(struct list_head * head)217 static inline struct folio *lru_to_folio(struct list_head *head)
218 {
219 	return list_entry((head)->prev, struct folio, lru);
220 }
221 
222 void setup_initial_init_mm(void *start_code, void *end_code,
223 			   void *end_data, void *brk);
224 
225 /*
226  * Linux kernel virtual memory manager primitives.
227  * The idea being to have a "virtual" mm in the same way
228  * we have a virtual fs - giving a cleaner interface to the
229  * mm details, and allowing different kinds of memory mappings
230  * (from shared memory to executable loading to arbitrary
231  * mmap() functions).
232  */
233 
234 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
235 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
236 void vm_area_free(struct vm_area_struct *);
237 
238 #ifndef CONFIG_MMU
239 extern struct rb_root nommu_region_tree;
240 extern struct rw_semaphore nommu_region_sem;
241 
242 extern unsigned int kobjsize(const void *objp);
243 #endif
244 
245 /*
246  * vm_flags in vm_area_struct, see mm_types.h.
247  * When changing, update also include/trace/events/mmflags.h
248  */
249 #define VM_NONE		0x00000000
250 
251 #define VM_READ		0x00000001	/* currently active flags */
252 #define VM_WRITE	0x00000002
253 #define VM_EXEC		0x00000004
254 #define VM_SHARED	0x00000008
255 
256 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
257 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
258 #define VM_MAYWRITE	0x00000020
259 #define VM_MAYEXEC	0x00000040
260 #define VM_MAYSHARE	0x00000080
261 
262 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
263 #ifdef CONFIG_MMU
264 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
265 #else /* CONFIG_MMU */
266 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
267 #define VM_UFFD_MISSING	0
268 #endif /* CONFIG_MMU */
269 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
270 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
271 
272 #define VM_LOCKED	0x00002000
273 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
274 
275 					/* Used by sys_madvise() */
276 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
277 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
278 
279 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
280 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
281 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
282 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
283 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
284 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
285 #define VM_SYNC		0x00800000	/* Synchronous page faults */
286 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
287 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
288 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
289 
290 #ifdef CONFIG_MEM_SOFT_DIRTY
291 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
292 #else
293 # define VM_SOFTDIRTY	0
294 #endif
295 
296 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
297 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
298 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
299 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
300 
301 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
302 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
303 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
304 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
305 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
306 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
308 #define VM_HIGH_ARCH_BIT_6	38	/* bit only usable on 64-bit architectures */
309 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
310 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
311 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
312 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
313 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
314 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
315 #define VM_HIGH_ARCH_6	BIT(VM_HIGH_ARCH_BIT_6)
316 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
317 
318 #ifdef CONFIG_ARCH_HAS_PKEYS
319 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
320 # define VM_PKEY_BIT0  VM_HIGH_ARCH_0
321 # define VM_PKEY_BIT1  VM_HIGH_ARCH_1
322 # define VM_PKEY_BIT2  VM_HIGH_ARCH_2
323 #if CONFIG_ARCH_PKEY_BITS > 3
324 # define VM_PKEY_BIT3  VM_HIGH_ARCH_3
325 #else
326 # define VM_PKEY_BIT3  0
327 #endif
328 #if CONFIG_ARCH_PKEY_BITS > 4
329 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
330 #else
331 # define VM_PKEY_BIT4  0
332 #endif
333 #endif /* CONFIG_ARCH_HAS_PKEYS */
334 
335 #ifdef CONFIG_X86_USER_SHADOW_STACK
336 /*
337  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
338  * support core mm.
339  *
340  * These VMAs will get a single end guard page. This helps userspace protect
341  * itself from attacks. A single page is enough for current shadow stack archs
342  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
343  * for more details on the guard size.
344  */
345 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
346 #endif
347 
348 #if defined(CONFIG_ARM64_GCS)
349 /*
350  * arm64's Guarded Control Stack implements similar functionality and
351  * has similar constraints to shadow stacks.
352  */
353 # define VM_SHADOW_STACK	VM_HIGH_ARCH_6
354 #endif
355 
356 #ifndef VM_SHADOW_STACK
357 # define VM_SHADOW_STACK	VM_NONE
358 #endif
359 
360 #if defined(CONFIG_PPC64)
361 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
362 #elif defined(CONFIG_PARISC)
363 # define VM_GROWSUP	VM_ARCH_1
364 #elif defined(CONFIG_SPARC64)
365 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
366 # define VM_ARCH_CLEAR	VM_SPARC_ADI
367 #elif defined(CONFIG_ARM64)
368 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
369 # define VM_ARCH_CLEAR	VM_ARM64_BTI
370 #elif !defined(CONFIG_MMU)
371 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
372 #endif
373 
374 #if defined(CONFIG_ARM64_MTE)
375 # define VM_MTE		VM_HIGH_ARCH_4	/* Use Tagged memory for access control */
376 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_5	/* Tagged memory permitted */
377 #else
378 # define VM_MTE		VM_NONE
379 # define VM_MTE_ALLOWED	VM_NONE
380 #endif
381 
382 #ifndef VM_GROWSUP
383 # define VM_GROWSUP	VM_NONE
384 #endif
385 
386 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
387 # define VM_UFFD_MINOR_BIT	41
388 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
389 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
390 # define VM_UFFD_MINOR		VM_NONE
391 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
392 
393 /*
394  * This flag is used to connect VFIO to arch specific KVM code. It
395  * indicates that the memory under this VMA is safe for use with any
396  * non-cachable memory type inside KVM. Some VFIO devices, on some
397  * platforms, are thought to be unsafe and can cause machine crashes
398  * if KVM does not lock down the memory type.
399  */
400 #ifdef CONFIG_64BIT
401 #define VM_ALLOW_ANY_UNCACHED_BIT	39
402 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
403 #else
404 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
405 #endif
406 
407 #ifdef CONFIG_64BIT
408 #define VM_DROPPABLE_BIT	40
409 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
410 #elif defined(CONFIG_PPC32)
411 #define VM_DROPPABLE		VM_ARCH_1
412 #else
413 #define VM_DROPPABLE		VM_NONE
414 #endif
415 
416 #ifdef CONFIG_64BIT
417 /* VM is sealed, in vm_flags */
418 #define VM_SEALED	_BITUL(63)
419 #endif
420 
421 /* Bits set in the VMA until the stack is in its final location */
422 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
423 
424 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
425 
426 /* Common data flag combinations */
427 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
428 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
429 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
430 				 VM_MAYWRITE | VM_MAYEXEC)
431 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
432 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
433 
434 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
435 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
436 #endif
437 
438 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
439 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
440 #endif
441 
442 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
443 
444 #ifdef CONFIG_STACK_GROWSUP
445 #define VM_STACK	VM_GROWSUP
446 #define VM_STACK_EARLY	VM_GROWSDOWN
447 #else
448 #define VM_STACK	VM_GROWSDOWN
449 #define VM_STACK_EARLY	0
450 #endif
451 
452 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
453 
454 /* VMA basic access permission flags */
455 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
456 
457 
458 /*
459  * Special vmas that are non-mergable, non-mlock()able.
460  */
461 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
462 
463 /* This mask prevents VMA from being scanned with khugepaged */
464 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
465 
466 /* This mask defines which mm->def_flags a process can inherit its parent */
467 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
468 
469 /* This mask represents all the VMA flag bits used by mlock */
470 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
471 
472 /* Arch-specific flags to clear when updating VM flags on protection change */
473 #ifndef VM_ARCH_CLEAR
474 # define VM_ARCH_CLEAR	VM_NONE
475 #endif
476 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
477 
478 /*
479  * mapping from the currently active vm_flags protection bits (the
480  * low four bits) to a page protection mask..
481  */
482 
483 /*
484  * The default fault flags that should be used by most of the
485  * arch-specific page fault handlers.
486  */
487 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
488 			     FAULT_FLAG_KILLABLE | \
489 			     FAULT_FLAG_INTERRUPTIBLE)
490 
491 /**
492  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
493  * @flags: Fault flags.
494  *
495  * This is mostly used for places where we want to try to avoid taking
496  * the mmap_lock for too long a time when waiting for another condition
497  * to change, in which case we can try to be polite to release the
498  * mmap_lock in the first round to avoid potential starvation of other
499  * processes that would also want the mmap_lock.
500  *
501  * Return: true if the page fault allows retry and this is the first
502  * attempt of the fault handling; false otherwise.
503  */
fault_flag_allow_retry_first(enum fault_flag flags)504 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
505 {
506 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
507 	    (!(flags & FAULT_FLAG_TRIED));
508 }
509 
510 #define FAULT_FLAG_TRACE \
511 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
512 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
513 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
514 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
515 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
516 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
517 	{ FAULT_FLAG_USER,		"USER" }, \
518 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
519 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
520 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
521 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
522 
523 /*
524  * vm_fault is filled by the pagefault handler and passed to the vma's
525  * ->fault function. The vma's ->fault is responsible for returning a bitmask
526  * of VM_FAULT_xxx flags that give details about how the fault was handled.
527  *
528  * MM layer fills up gfp_mask for page allocations but fault handler might
529  * alter it if its implementation requires a different allocation context.
530  *
531  * pgoff should be used in favour of virtual_address, if possible.
532  */
533 struct vm_fault {
534 	const struct {
535 		struct vm_area_struct *vma;	/* Target VMA */
536 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
537 		pgoff_t pgoff;			/* Logical page offset based on vma */
538 		unsigned long address;		/* Faulting virtual address - masked */
539 		unsigned long real_address;	/* Faulting virtual address - unmasked */
540 	};
541 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
542 					 * XXX: should really be 'const' */
543 	pmd_t *pmd;			/* Pointer to pmd entry matching
544 					 * the 'address' */
545 	pud_t *pud;			/* Pointer to pud entry matching
546 					 * the 'address'
547 					 */
548 	union {
549 		pte_t orig_pte;		/* Value of PTE at the time of fault */
550 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
551 					 * used by PMD fault only.
552 					 */
553 	};
554 
555 	struct page *cow_page;		/* Page handler may use for COW fault */
556 	struct page *page;		/* ->fault handlers should return a
557 					 * page here, unless VM_FAULT_NOPAGE
558 					 * is set (which is also implied by
559 					 * VM_FAULT_ERROR).
560 					 */
561 	/* These three entries are valid only while holding ptl lock */
562 	pte_t *pte;			/* Pointer to pte entry matching
563 					 * the 'address'. NULL if the page
564 					 * table hasn't been allocated.
565 					 */
566 	spinlock_t *ptl;		/* Page table lock.
567 					 * Protects pte page table if 'pte'
568 					 * is not NULL, otherwise pmd.
569 					 */
570 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
571 					 * vm_ops->map_pages() sets up a page
572 					 * table from atomic context.
573 					 * do_fault_around() pre-allocates
574 					 * page table to avoid allocation from
575 					 * atomic context.
576 					 */
577 };
578 
579 /*
580  * These are the virtual MM functions - opening of an area, closing and
581  * unmapping it (needed to keep files on disk up-to-date etc), pointer
582  * to the functions called when a no-page or a wp-page exception occurs.
583  */
584 struct vm_operations_struct {
585 	void (*open)(struct vm_area_struct * area);
586 	/**
587 	 * @close: Called when the VMA is being removed from the MM.
588 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
589 	 */
590 	void (*close)(struct vm_area_struct * area);
591 	/* Called any time before splitting to check if it's allowed */
592 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
593 	int (*mremap)(struct vm_area_struct *area);
594 	/*
595 	 * Called by mprotect() to make driver-specific permission
596 	 * checks before mprotect() is finalised.   The VMA must not
597 	 * be modified.  Returns 0 if mprotect() can proceed.
598 	 */
599 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
600 			unsigned long end, unsigned long newflags);
601 	vm_fault_t (*fault)(struct vm_fault *vmf);
602 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
603 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
604 			pgoff_t start_pgoff, pgoff_t end_pgoff);
605 	unsigned long (*pagesize)(struct vm_area_struct * area);
606 
607 	/* notification that a previously read-only page is about to become
608 	 * writable, if an error is returned it will cause a SIGBUS */
609 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
610 
611 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
612 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
613 
614 	/* called by access_process_vm when get_user_pages() fails, typically
615 	 * for use by special VMAs. See also generic_access_phys() for a generic
616 	 * implementation useful for any iomem mapping.
617 	 */
618 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
619 		      void *buf, int len, int write);
620 
621 	/* Called by the /proc/PID/maps code to ask the vma whether it
622 	 * has a special name.  Returning non-NULL will also cause this
623 	 * vma to be dumped unconditionally. */
624 	const char *(*name)(struct vm_area_struct *vma);
625 
626 #ifdef CONFIG_NUMA
627 	/*
628 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
629 	 * to hold the policy upon return.  Caller should pass NULL @new to
630 	 * remove a policy and fall back to surrounding context--i.e. do not
631 	 * install a MPOL_DEFAULT policy, nor the task or system default
632 	 * mempolicy.
633 	 */
634 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
635 
636 	/*
637 	 * get_policy() op must add reference [mpol_get()] to any policy at
638 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
639 	 * in mm/mempolicy.c will do this automatically.
640 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
641 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
642 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
643 	 * must return NULL--i.e., do not "fallback" to task or system default
644 	 * policy.
645 	 */
646 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
647 					unsigned long addr, pgoff_t *ilx);
648 #endif
649 	/*
650 	 * Called by vm_normal_page() for special PTEs to find the
651 	 * page for @addr.  This is useful if the default behavior
652 	 * (using pte_page()) would not find the correct page.
653 	 */
654 	struct page *(*find_special_page)(struct vm_area_struct *vma,
655 					  unsigned long addr);
656 };
657 
658 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)659 static inline void vma_numab_state_init(struct vm_area_struct *vma)
660 {
661 	vma->numab_state = NULL;
662 }
vma_numab_state_free(struct vm_area_struct * vma)663 static inline void vma_numab_state_free(struct vm_area_struct *vma)
664 {
665 	kfree(vma->numab_state);
666 }
667 #else
vma_numab_state_init(struct vm_area_struct * vma)668 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)669 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
670 #endif /* CONFIG_NUMA_BALANCING */
671 
672 /*
673  * These must be here rather than mmap_lock.h as dependent on vm_fault type,
674  * declared in this header.
675  */
676 #ifdef CONFIG_PER_VMA_LOCK
release_fault_lock(struct vm_fault * vmf)677 static inline void release_fault_lock(struct vm_fault *vmf)
678 {
679 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
680 		vma_end_read(vmf->vma);
681 	else
682 		mmap_read_unlock(vmf->vma->vm_mm);
683 }
684 
assert_fault_locked(struct vm_fault * vmf)685 static inline void assert_fault_locked(struct vm_fault *vmf)
686 {
687 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
688 		vma_assert_locked(vmf->vma);
689 	else
690 		mmap_assert_locked(vmf->vma->vm_mm);
691 }
692 #else
release_fault_lock(struct vm_fault * vmf)693 static inline void release_fault_lock(struct vm_fault *vmf)
694 {
695 	mmap_read_unlock(vmf->vma->vm_mm);
696 }
697 
assert_fault_locked(struct vm_fault * vmf)698 static inline void assert_fault_locked(struct vm_fault *vmf)
699 {
700 	mmap_assert_locked(vmf->vma->vm_mm);
701 }
702 #endif /* CONFIG_PER_VMA_LOCK */
703 
704 extern const struct vm_operations_struct vma_dummy_vm_ops;
705 
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)706 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
707 {
708 	memset(vma, 0, sizeof(*vma));
709 	vma->vm_mm = mm;
710 	vma->vm_ops = &vma_dummy_vm_ops;
711 	INIT_LIST_HEAD(&vma->anon_vma_chain);
712 	vma_lock_init(vma, false);
713 }
714 
715 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)716 static inline void vm_flags_init(struct vm_area_struct *vma,
717 				 vm_flags_t flags)
718 {
719 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
720 }
721 
722 /*
723  * Use when VMA is part of the VMA tree and modifications need coordination
724  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
725  * it should be locked explicitly beforehand.
726  */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)727 static inline void vm_flags_reset(struct vm_area_struct *vma,
728 				  vm_flags_t flags)
729 {
730 	vma_assert_write_locked(vma);
731 	vm_flags_init(vma, flags);
732 }
733 
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)734 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
735 				       vm_flags_t flags)
736 {
737 	vma_assert_write_locked(vma);
738 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
739 }
740 
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)741 static inline void vm_flags_set(struct vm_area_struct *vma,
742 				vm_flags_t flags)
743 {
744 	vma_start_write(vma);
745 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
746 }
747 
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)748 static inline void vm_flags_clear(struct vm_area_struct *vma,
749 				  vm_flags_t flags)
750 {
751 	vma_start_write(vma);
752 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
753 }
754 
755 /*
756  * Use only if VMA is not part of the VMA tree or has no other users and
757  * therefore needs no locking.
758  */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)759 static inline void __vm_flags_mod(struct vm_area_struct *vma,
760 				  vm_flags_t set, vm_flags_t clear)
761 {
762 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
763 }
764 
765 /*
766  * Use only when the order of set/clear operations is unimportant, otherwise
767  * use vm_flags_{set|clear} explicitly.
768  */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)769 static inline void vm_flags_mod(struct vm_area_struct *vma,
770 				vm_flags_t set, vm_flags_t clear)
771 {
772 	vma_start_write(vma);
773 	__vm_flags_mod(vma, set, clear);
774 }
775 
vma_set_anonymous(struct vm_area_struct * vma)776 static inline void vma_set_anonymous(struct vm_area_struct *vma)
777 {
778 	vma->vm_ops = NULL;
779 }
780 
vma_is_anonymous(struct vm_area_struct * vma)781 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
782 {
783 	return !vma->vm_ops;
784 }
785 
786 /*
787  * Indicate if the VMA is a heap for the given task; for
788  * /proc/PID/maps that is the heap of the main task.
789  */
vma_is_initial_heap(const struct vm_area_struct * vma)790 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
791 {
792 	return vma->vm_start < vma->vm_mm->brk &&
793 		vma->vm_end > vma->vm_mm->start_brk;
794 }
795 
796 /*
797  * Indicate if the VMA is a stack for the given task; for
798  * /proc/PID/maps that is the stack of the main task.
799  */
vma_is_initial_stack(const struct vm_area_struct * vma)800 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
801 {
802 	/*
803 	 * We make no effort to guess what a given thread considers to be
804 	 * its "stack".  It's not even well-defined for programs written
805 	 * languages like Go.
806 	 */
807 	return vma->vm_start <= vma->vm_mm->start_stack &&
808 		vma->vm_end >= vma->vm_mm->start_stack;
809 }
810 
vma_is_temporary_stack(struct vm_area_struct * vma)811 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
812 {
813 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
814 
815 	if (!maybe_stack)
816 		return false;
817 
818 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
819 						VM_STACK_INCOMPLETE_SETUP)
820 		return true;
821 
822 	return false;
823 }
824 
vma_is_foreign(struct vm_area_struct * vma)825 static inline bool vma_is_foreign(struct vm_area_struct *vma)
826 {
827 	if (!current->mm)
828 		return true;
829 
830 	if (current->mm != vma->vm_mm)
831 		return true;
832 
833 	return false;
834 }
835 
vma_is_accessible(struct vm_area_struct * vma)836 static inline bool vma_is_accessible(struct vm_area_struct *vma)
837 {
838 	return vma->vm_flags & VM_ACCESS_FLAGS;
839 }
840 
is_shared_maywrite(vm_flags_t vm_flags)841 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
842 {
843 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
844 		(VM_SHARED | VM_MAYWRITE);
845 }
846 
vma_is_shared_maywrite(struct vm_area_struct * vma)847 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
848 {
849 	return is_shared_maywrite(vma->vm_flags);
850 }
851 
852 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)853 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
854 {
855 	return mas_find(&vmi->mas, max - 1);
856 }
857 
vma_next(struct vma_iterator * vmi)858 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
859 {
860 	/*
861 	 * Uses mas_find() to get the first VMA when the iterator starts.
862 	 * Calling mas_next() could skip the first entry.
863 	 */
864 	return mas_find(&vmi->mas, ULONG_MAX);
865 }
866 
867 static inline
vma_iter_next_range(struct vma_iterator * vmi)868 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
869 {
870 	return mas_next_range(&vmi->mas, ULONG_MAX);
871 }
872 
873 
vma_prev(struct vma_iterator * vmi)874 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
875 {
876 	return mas_prev(&vmi->mas, 0);
877 }
878 
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)879 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
880 			unsigned long start, unsigned long end, gfp_t gfp)
881 {
882 	__mas_set_range(&vmi->mas, start, end - 1);
883 	mas_store_gfp(&vmi->mas, NULL, gfp);
884 	if (unlikely(mas_is_err(&vmi->mas)))
885 		return -ENOMEM;
886 
887 	return 0;
888 }
889 
890 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)891 static inline void vma_iter_free(struct vma_iterator *vmi)
892 {
893 	mas_destroy(&vmi->mas);
894 }
895 
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)896 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
897 				      struct vm_area_struct *vma)
898 {
899 	vmi->mas.index = vma->vm_start;
900 	vmi->mas.last = vma->vm_end - 1;
901 	mas_store(&vmi->mas, vma);
902 	if (unlikely(mas_is_err(&vmi->mas)))
903 		return -ENOMEM;
904 
905 	vma_mark_attached(vma);
906 	return 0;
907 }
908 
vma_iter_invalidate(struct vma_iterator * vmi)909 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
910 {
911 	mas_pause(&vmi->mas);
912 }
913 
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)914 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
915 {
916 	mas_set(&vmi->mas, addr);
917 }
918 
919 #define for_each_vma(__vmi, __vma)					\
920 	while (((__vma) = vma_next(&(__vmi))) != NULL)
921 
922 /* The MM code likes to work with exclusive end addresses */
923 #define for_each_vma_range(__vmi, __vma, __end)				\
924 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
925 
926 #ifdef CONFIG_SHMEM
927 /*
928  * The vma_is_shmem is not inline because it is used only by slow
929  * paths in userfault.
930  */
931 bool vma_is_shmem(struct vm_area_struct *vma);
932 bool vma_is_anon_shmem(struct vm_area_struct *vma);
933 #else
vma_is_shmem(struct vm_area_struct * vma)934 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(struct vm_area_struct * vma)935 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
936 #endif
937 
938 int vma_is_stack_for_current(struct vm_area_struct *vma);
939 
940 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
941 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
942 
943 struct mmu_gather;
944 struct inode;
945 
946 extern void prep_compound_page(struct page *page, unsigned int order);
947 
folio_large_order(const struct folio * folio)948 static inline unsigned int folio_large_order(const struct folio *folio)
949 {
950 	return folio->_flags_1 & 0xff;
951 }
952 
953 #ifdef NR_PAGES_IN_LARGE_FOLIO
folio_large_nr_pages(const struct folio * folio)954 static inline long folio_large_nr_pages(const struct folio *folio)
955 {
956 	return folio->_nr_pages;
957 }
958 #else
folio_large_nr_pages(const struct folio * folio)959 static inline long folio_large_nr_pages(const struct folio *folio)
960 {
961 	return 1L << folio_large_order(folio);
962 }
963 #endif
964 
965 /*
966  * compound_order() can be called without holding a reference, which means
967  * that niceties like page_folio() don't work.  These callers should be
968  * prepared to handle wild return values.  For example, PG_head may be
969  * set before the order is initialised, or this may be a tail page.
970  * See compaction.c for some good examples.
971  */
compound_order(struct page * page)972 static inline unsigned int compound_order(struct page *page)
973 {
974 	struct folio *folio = (struct folio *)page;
975 
976 	if (!test_bit(PG_head, &folio->flags))
977 		return 0;
978 	return folio_large_order(folio);
979 }
980 
981 /**
982  * folio_order - The allocation order of a folio.
983  * @folio: The folio.
984  *
985  * A folio is composed of 2^order pages.  See get_order() for the definition
986  * of order.
987  *
988  * Return: The order of the folio.
989  */
folio_order(const struct folio * folio)990 static inline unsigned int folio_order(const struct folio *folio)
991 {
992 	if (!folio_test_large(folio))
993 		return 0;
994 	return folio_large_order(folio);
995 }
996 
997 /**
998  * folio_reset_order - Reset the folio order and derived _nr_pages
999  * @folio: The folio.
1000  *
1001  * Reset the order and derived _nr_pages to 0. Must only be used in the
1002  * process of splitting large folios.
1003  */
folio_reset_order(struct folio * folio)1004 static inline void folio_reset_order(struct folio *folio)
1005 {
1006 	if (WARN_ON_ONCE(!folio_test_large(folio)))
1007 		return;
1008 	folio->_flags_1 &= ~0xffUL;
1009 #ifdef NR_PAGES_IN_LARGE_FOLIO
1010 	folio->_nr_pages = 0;
1011 #endif
1012 }
1013 
1014 #include <linux/huge_mm.h>
1015 
1016 /*
1017  * Methods to modify the page usage count.
1018  *
1019  * What counts for a page usage:
1020  * - cache mapping   (page->mapping)
1021  * - private data    (page->private)
1022  * - page mapped in a task's page tables, each mapping
1023  *   is counted separately
1024  *
1025  * Also, many kernel routines increase the page count before a critical
1026  * routine so they can be sure the page doesn't go away from under them.
1027  */
1028 
1029 /*
1030  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1031  */
put_page_testzero(struct page * page)1032 static inline int put_page_testzero(struct page *page)
1033 {
1034 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1035 	return page_ref_dec_and_test(page);
1036 }
1037 
folio_put_testzero(struct folio * folio)1038 static inline int folio_put_testzero(struct folio *folio)
1039 {
1040 	return put_page_testzero(&folio->page);
1041 }
1042 
1043 /*
1044  * Try to grab a ref unless the page has a refcount of zero, return false if
1045  * that is the case.
1046  * This can be called when MMU is off so it must not access
1047  * any of the virtual mappings.
1048  */
get_page_unless_zero(struct page * page)1049 static inline bool get_page_unless_zero(struct page *page)
1050 {
1051 	return page_ref_add_unless(page, 1, 0);
1052 }
1053 
folio_get_nontail_page(struct page * page)1054 static inline struct folio *folio_get_nontail_page(struct page *page)
1055 {
1056 	if (unlikely(!get_page_unless_zero(page)))
1057 		return NULL;
1058 	return (struct folio *)page;
1059 }
1060 
1061 extern int page_is_ram(unsigned long pfn);
1062 
1063 enum {
1064 	REGION_INTERSECTS,
1065 	REGION_DISJOINT,
1066 	REGION_MIXED,
1067 };
1068 
1069 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1070 		      unsigned long desc);
1071 
1072 /* Support for virtually mapped pages */
1073 struct page *vmalloc_to_page(const void *addr);
1074 unsigned long vmalloc_to_pfn(const void *addr);
1075 
1076 /*
1077  * Determine if an address is within the vmalloc range
1078  *
1079  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1080  * is no special casing required.
1081  */
1082 #ifdef CONFIG_MMU
1083 extern bool is_vmalloc_addr(const void *x);
1084 extern int is_vmalloc_or_module_addr(const void *x);
1085 #else
is_vmalloc_addr(const void * x)1086 static inline bool is_vmalloc_addr(const void *x)
1087 {
1088 	return false;
1089 }
is_vmalloc_or_module_addr(const void * x)1090 static inline int is_vmalloc_or_module_addr(const void *x)
1091 {
1092 	return 0;
1093 }
1094 #endif
1095 
1096 /*
1097  * How many times the entire folio is mapped as a single unit (eg by a
1098  * PMD or PUD entry).  This is probably not what you want, except for
1099  * debugging purposes or implementation of other core folio_*() primitives.
1100  */
folio_entire_mapcount(const struct folio * folio)1101 static inline int folio_entire_mapcount(const struct folio *folio)
1102 {
1103 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1104 	if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
1105 		return 0;
1106 	return atomic_read(&folio->_entire_mapcount) + 1;
1107 }
1108 
folio_large_mapcount(const struct folio * folio)1109 static inline int folio_large_mapcount(const struct folio *folio)
1110 {
1111 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1112 	return atomic_read(&folio->_large_mapcount) + 1;
1113 }
1114 
1115 /**
1116  * folio_mapcount() - Number of mappings of this folio.
1117  * @folio: The folio.
1118  *
1119  * The folio mapcount corresponds to the number of present user page table
1120  * entries that reference any part of a folio. Each such present user page
1121  * table entry must be paired with exactly on folio reference.
1122  *
1123  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1124  * exactly once.
1125  *
1126  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1127  * references the entire folio counts exactly once, even when such special
1128  * page table entries are comprised of multiple ordinary page table entries.
1129  *
1130  * Will report 0 for pages which cannot be mapped into userspace, such as
1131  * slab, page tables and similar.
1132  *
1133  * Return: The number of times this folio is mapped.
1134  */
folio_mapcount(const struct folio * folio)1135 static inline int folio_mapcount(const struct folio *folio)
1136 {
1137 	int mapcount;
1138 
1139 	if (likely(!folio_test_large(folio))) {
1140 		mapcount = atomic_read(&folio->_mapcount) + 1;
1141 		if (page_mapcount_is_type(mapcount))
1142 			mapcount = 0;
1143 		return mapcount;
1144 	}
1145 	return folio_large_mapcount(folio);
1146 }
1147 
1148 /**
1149  * folio_mapped - Is this folio mapped into userspace?
1150  * @folio: The folio.
1151  *
1152  * Return: True if any page in this folio is referenced by user page tables.
1153  */
folio_mapped(const struct folio * folio)1154 static inline bool folio_mapped(const struct folio *folio)
1155 {
1156 	return folio_mapcount(folio) >= 1;
1157 }
1158 
1159 /*
1160  * Return true if this page is mapped into pagetables.
1161  * For compound page it returns true if any sub-page of compound page is mapped,
1162  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1163  */
page_mapped(const struct page * page)1164 static inline bool page_mapped(const struct page *page)
1165 {
1166 	return folio_mapped(page_folio(page));
1167 }
1168 
virt_to_head_page(const void * x)1169 static inline struct page *virt_to_head_page(const void *x)
1170 {
1171 	struct page *page = virt_to_page(x);
1172 
1173 	return compound_head(page);
1174 }
1175 
virt_to_folio(const void * x)1176 static inline struct folio *virt_to_folio(const void *x)
1177 {
1178 	struct page *page = virt_to_page(x);
1179 
1180 	return page_folio(page);
1181 }
1182 
1183 void __folio_put(struct folio *folio);
1184 
1185 void split_page(struct page *page, unsigned int order);
1186 void folio_copy(struct folio *dst, struct folio *src);
1187 int folio_mc_copy(struct folio *dst, struct folio *src);
1188 
1189 unsigned long nr_free_buffer_pages(void);
1190 
1191 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)1192 static inline unsigned long page_size(struct page *page)
1193 {
1194 	return PAGE_SIZE << compound_order(page);
1195 }
1196 
1197 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1198 static inline unsigned int page_shift(struct page *page)
1199 {
1200 	return PAGE_SHIFT + compound_order(page);
1201 }
1202 
1203 /**
1204  * thp_order - Order of a transparent huge page.
1205  * @page: Head page of a transparent huge page.
1206  */
thp_order(struct page * page)1207 static inline unsigned int thp_order(struct page *page)
1208 {
1209 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1210 	return compound_order(page);
1211 }
1212 
1213 /**
1214  * thp_size - Size of a transparent huge page.
1215  * @page: Head page of a transparent huge page.
1216  *
1217  * Return: Number of bytes in this page.
1218  */
thp_size(struct page * page)1219 static inline unsigned long thp_size(struct page *page)
1220 {
1221 	return PAGE_SIZE << thp_order(page);
1222 }
1223 
1224 #ifdef CONFIG_MMU
1225 /*
1226  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1227  * servicing faults for write access.  In the normal case, do always want
1228  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1229  * that do not have writing enabled, when used by access_process_vm.
1230  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1231 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1232 {
1233 	if (likely(vma->vm_flags & VM_WRITE))
1234 		pte = pte_mkwrite(pte, vma);
1235 	return pte;
1236 }
1237 
1238 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page);
1239 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1240 		struct page *page, unsigned int nr, unsigned long addr);
1241 
1242 vm_fault_t finish_fault(struct vm_fault *vmf);
1243 #endif
1244 
1245 /*
1246  * Multiple processes may "see" the same page. E.g. for untouched
1247  * mappings of /dev/null, all processes see the same page full of
1248  * zeroes, and text pages of executables and shared libraries have
1249  * only one copy in memory, at most, normally.
1250  *
1251  * For the non-reserved pages, page_count(page) denotes a reference count.
1252  *   page_count() == 0 means the page is free. page->lru is then used for
1253  *   freelist management in the buddy allocator.
1254  *   page_count() > 0  means the page has been allocated.
1255  *
1256  * Pages are allocated by the slab allocator in order to provide memory
1257  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1258  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1259  * unless a particular usage is carefully commented. (the responsibility of
1260  * freeing the kmalloc memory is the caller's, of course).
1261  *
1262  * A page may be used by anyone else who does a __get_free_page().
1263  * In this case, page_count still tracks the references, and should only
1264  * be used through the normal accessor functions. The top bits of page->flags
1265  * and page->virtual store page management information, but all other fields
1266  * are unused and could be used privately, carefully. The management of this
1267  * page is the responsibility of the one who allocated it, and those who have
1268  * subsequently been given references to it.
1269  *
1270  * The other pages (we may call them "pagecache pages") are completely
1271  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1272  * The following discussion applies only to them.
1273  *
1274  * A pagecache page contains an opaque `private' member, which belongs to the
1275  * page's address_space. Usually, this is the address of a circular list of
1276  * the page's disk buffers. PG_private must be set to tell the VM to call
1277  * into the filesystem to release these pages.
1278  *
1279  * A folio may belong to an inode's memory mapping. In this case,
1280  * folio->mapping points to the inode, and folio->index is the file
1281  * offset of the folio, in units of PAGE_SIZE.
1282  *
1283  * If pagecache pages are not associated with an inode, they are said to be
1284  * anonymous pages. These may become associated with the swapcache, and in that
1285  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1286  *
1287  * In either case (swapcache or inode backed), the pagecache itself holds one
1288  * reference to the page. Setting PG_private should also increment the
1289  * refcount. The each user mapping also has a reference to the page.
1290  *
1291  * The pagecache pages are stored in a per-mapping radix tree, which is
1292  * rooted at mapping->i_pages, and indexed by offset.
1293  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1294  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1295  *
1296  * All pagecache pages may be subject to I/O:
1297  * - inode pages may need to be read from disk,
1298  * - inode pages which have been modified and are MAP_SHARED may need
1299  *   to be written back to the inode on disk,
1300  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1301  *   modified may need to be swapped out to swap space and (later) to be read
1302  *   back into memory.
1303  */
1304 
1305 /* 127: arbitrary random number, small enough to assemble well */
1306 #define folio_ref_zero_or_close_to_overflow(folio) \
1307 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1308 
1309 /**
1310  * folio_get - Increment the reference count on a folio.
1311  * @folio: The folio.
1312  *
1313  * Context: May be called in any context, as long as you know that
1314  * you have a refcount on the folio.  If you do not already have one,
1315  * folio_try_get() may be the right interface for you to use.
1316  */
folio_get(struct folio * folio)1317 static inline void folio_get(struct folio *folio)
1318 {
1319 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1320 	folio_ref_inc(folio);
1321 }
1322 
get_page(struct page * page)1323 static inline void get_page(struct page *page)
1324 {
1325 	struct folio *folio = page_folio(page);
1326 	if (WARN_ON_ONCE(folio_test_slab(folio)))
1327 		return;
1328 	folio_get(folio);
1329 }
1330 
try_get_page(struct page * page)1331 static inline __must_check bool try_get_page(struct page *page)
1332 {
1333 	page = compound_head(page);
1334 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1335 		return false;
1336 	page_ref_inc(page);
1337 	return true;
1338 }
1339 
1340 /**
1341  * folio_put - Decrement the reference count on a folio.
1342  * @folio: The folio.
1343  *
1344  * If the folio's reference count reaches zero, the memory will be
1345  * released back to the page allocator and may be used by another
1346  * allocation immediately.  Do not access the memory or the struct folio
1347  * after calling folio_put() unless you can be sure that it wasn't the
1348  * last reference.
1349  *
1350  * Context: May be called in process or interrupt context, but not in NMI
1351  * context.  May be called while holding a spinlock.
1352  */
folio_put(struct folio * folio)1353 static inline void folio_put(struct folio *folio)
1354 {
1355 	if (folio_put_testzero(folio))
1356 		__folio_put(folio);
1357 }
1358 
1359 /**
1360  * folio_put_refs - Reduce the reference count on a folio.
1361  * @folio: The folio.
1362  * @refs: The amount to subtract from the folio's reference count.
1363  *
1364  * If the folio's reference count reaches zero, the memory will be
1365  * released back to the page allocator and may be used by another
1366  * allocation immediately.  Do not access the memory or the struct folio
1367  * after calling folio_put_refs() unless you can be sure that these weren't
1368  * the last references.
1369  *
1370  * Context: May be called in process or interrupt context, but not in NMI
1371  * context.  May be called while holding a spinlock.
1372  */
folio_put_refs(struct folio * folio,int refs)1373 static inline void folio_put_refs(struct folio *folio, int refs)
1374 {
1375 	if (folio_ref_sub_and_test(folio, refs))
1376 		__folio_put(folio);
1377 }
1378 
1379 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1380 
1381 /*
1382  * union release_pages_arg - an array of pages or folios
1383  *
1384  * release_pages() releases a simple array of multiple pages, and
1385  * accepts various different forms of said page array: either
1386  * a regular old boring array of pages, an array of folios, or
1387  * an array of encoded page pointers.
1388  *
1389  * The transparent union syntax for this kind of "any of these
1390  * argument types" is all kinds of ugly, so look away.
1391  */
1392 typedef union {
1393 	struct page **pages;
1394 	struct folio **folios;
1395 	struct encoded_page **encoded_pages;
1396 } release_pages_arg __attribute__ ((__transparent_union__));
1397 
1398 void release_pages(release_pages_arg, int nr);
1399 
1400 /**
1401  * folios_put - Decrement the reference count on an array of folios.
1402  * @folios: The folios.
1403  *
1404  * Like folio_put(), but for a batch of folios.  This is more efficient
1405  * than writing the loop yourself as it will optimise the locks which need
1406  * to be taken if the folios are freed.  The folios batch is returned
1407  * empty and ready to be reused for another batch; there is no need to
1408  * reinitialise it.
1409  *
1410  * Context: May be called in process or interrupt context, but not in NMI
1411  * context.  May be called while holding a spinlock.
1412  */
folios_put(struct folio_batch * folios)1413 static inline void folios_put(struct folio_batch *folios)
1414 {
1415 	folios_put_refs(folios, NULL);
1416 }
1417 
put_page(struct page * page)1418 static inline void put_page(struct page *page)
1419 {
1420 	struct folio *folio = page_folio(page);
1421 
1422 	if (folio_test_slab(folio))
1423 		return;
1424 
1425 	folio_put(folio);
1426 }
1427 
1428 /*
1429  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1430  * the page's refcount so that two separate items are tracked: the original page
1431  * reference count, and also a new count of how many pin_user_pages() calls were
1432  * made against the page. ("gup-pinned" is another term for the latter).
1433  *
1434  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1435  * distinct from normal pages. As such, the unpin_user_page() call (and its
1436  * variants) must be used in order to release gup-pinned pages.
1437  *
1438  * Choice of value:
1439  *
1440  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1441  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1442  * simpler, due to the fact that adding an even power of two to the page
1443  * refcount has the effect of using only the upper N bits, for the code that
1444  * counts up using the bias value. This means that the lower bits are left for
1445  * the exclusive use of the original code that increments and decrements by one
1446  * (or at least, by much smaller values than the bias value).
1447  *
1448  * Of course, once the lower bits overflow into the upper bits (and this is
1449  * OK, because subtraction recovers the original values), then visual inspection
1450  * no longer suffices to directly view the separate counts. However, for normal
1451  * applications that don't have huge page reference counts, this won't be an
1452  * issue.
1453  *
1454  * Locking: the lockless algorithm described in folio_try_get_rcu()
1455  * provides safe operation for get_user_pages(), folio_mkclean() and
1456  * other calls that race to set up page table entries.
1457  */
1458 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1459 
1460 void unpin_user_page(struct page *page);
1461 void unpin_folio(struct folio *folio);
1462 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1463 				 bool make_dirty);
1464 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1465 				      bool make_dirty);
1466 void unpin_user_pages(struct page **pages, unsigned long npages);
1467 void unpin_user_folio(struct folio *folio, unsigned long npages);
1468 void unpin_folios(struct folio **folios, unsigned long nfolios);
1469 
is_cow_mapping(vm_flags_t flags)1470 static inline bool is_cow_mapping(vm_flags_t flags)
1471 {
1472 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1473 }
1474 
1475 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1476 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1477 {
1478 	/*
1479 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1480 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1481 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1482 	 * underlying memory if ptrace is active, so this is only possible if
1483 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1484 	 * write permissions later.
1485 	 */
1486 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1487 }
1488 #endif
1489 
1490 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1491 #define SECTION_IN_PAGE_FLAGS
1492 #endif
1493 
1494 /*
1495  * The identification function is mainly used by the buddy allocator for
1496  * determining if two pages could be buddies. We are not really identifying
1497  * the zone since we could be using the section number id if we do not have
1498  * node id available in page flags.
1499  * We only guarantee that it will return the same value for two combinable
1500  * pages in a zone.
1501  */
page_zone_id(struct page * page)1502 static inline int page_zone_id(struct page *page)
1503 {
1504 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1505 }
1506 
1507 #ifdef NODE_NOT_IN_PAGE_FLAGS
1508 int page_to_nid(const struct page *page);
1509 #else
page_to_nid(const struct page * page)1510 static inline int page_to_nid(const struct page *page)
1511 {
1512 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1513 }
1514 #endif
1515 
folio_nid(const struct folio * folio)1516 static inline int folio_nid(const struct folio *folio)
1517 {
1518 	return page_to_nid(&folio->page);
1519 }
1520 
1521 #ifdef CONFIG_NUMA_BALANCING
1522 /* page access time bits needs to hold at least 4 seconds */
1523 #define PAGE_ACCESS_TIME_MIN_BITS	12
1524 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1525 #define PAGE_ACCESS_TIME_BUCKETS				\
1526 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1527 #else
1528 #define PAGE_ACCESS_TIME_BUCKETS	0
1529 #endif
1530 
1531 #define PAGE_ACCESS_TIME_MASK				\
1532 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1533 
cpu_pid_to_cpupid(int cpu,int pid)1534 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1535 {
1536 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1537 }
1538 
cpupid_to_pid(int cpupid)1539 static inline int cpupid_to_pid(int cpupid)
1540 {
1541 	return cpupid & LAST__PID_MASK;
1542 }
1543 
cpupid_to_cpu(int cpupid)1544 static inline int cpupid_to_cpu(int cpupid)
1545 {
1546 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1547 }
1548 
cpupid_to_nid(int cpupid)1549 static inline int cpupid_to_nid(int cpupid)
1550 {
1551 	return cpu_to_node(cpupid_to_cpu(cpupid));
1552 }
1553 
cpupid_pid_unset(int cpupid)1554 static inline bool cpupid_pid_unset(int cpupid)
1555 {
1556 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1557 }
1558 
cpupid_cpu_unset(int cpupid)1559 static inline bool cpupid_cpu_unset(int cpupid)
1560 {
1561 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1562 }
1563 
__cpupid_match_pid(pid_t task_pid,int cpupid)1564 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1565 {
1566 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1567 }
1568 
1569 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1570 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1571 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1572 {
1573 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1574 }
1575 
folio_last_cpupid(struct folio * folio)1576 static inline int folio_last_cpupid(struct folio *folio)
1577 {
1578 	return folio->_last_cpupid;
1579 }
page_cpupid_reset_last(struct page * page)1580 static inline void page_cpupid_reset_last(struct page *page)
1581 {
1582 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1583 }
1584 #else
folio_last_cpupid(struct folio * folio)1585 static inline int folio_last_cpupid(struct folio *folio)
1586 {
1587 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1588 }
1589 
1590 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1591 
page_cpupid_reset_last(struct page * page)1592 static inline void page_cpupid_reset_last(struct page *page)
1593 {
1594 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1595 }
1596 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1597 
folio_xchg_access_time(struct folio * folio,int time)1598 static inline int folio_xchg_access_time(struct folio *folio, int time)
1599 {
1600 	int last_time;
1601 
1602 	last_time = folio_xchg_last_cpupid(folio,
1603 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1604 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1605 }
1606 
vma_set_access_pid_bit(struct vm_area_struct * vma)1607 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1608 {
1609 	unsigned int pid_bit;
1610 
1611 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1612 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1613 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1614 	}
1615 }
1616 
1617 bool folio_use_access_time(struct folio *folio);
1618 #else /* !CONFIG_NUMA_BALANCING */
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1619 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1620 {
1621 	return folio_nid(folio); /* XXX */
1622 }
1623 
folio_xchg_access_time(struct folio * folio,int time)1624 static inline int folio_xchg_access_time(struct folio *folio, int time)
1625 {
1626 	return 0;
1627 }
1628 
folio_last_cpupid(struct folio * folio)1629 static inline int folio_last_cpupid(struct folio *folio)
1630 {
1631 	return folio_nid(folio); /* XXX */
1632 }
1633 
cpupid_to_nid(int cpupid)1634 static inline int cpupid_to_nid(int cpupid)
1635 {
1636 	return -1;
1637 }
1638 
cpupid_to_pid(int cpupid)1639 static inline int cpupid_to_pid(int cpupid)
1640 {
1641 	return -1;
1642 }
1643 
cpupid_to_cpu(int cpupid)1644 static inline int cpupid_to_cpu(int cpupid)
1645 {
1646 	return -1;
1647 }
1648 
cpu_pid_to_cpupid(int nid,int pid)1649 static inline int cpu_pid_to_cpupid(int nid, int pid)
1650 {
1651 	return -1;
1652 }
1653 
cpupid_pid_unset(int cpupid)1654 static inline bool cpupid_pid_unset(int cpupid)
1655 {
1656 	return true;
1657 }
1658 
page_cpupid_reset_last(struct page * page)1659 static inline void page_cpupid_reset_last(struct page *page)
1660 {
1661 }
1662 
cpupid_match_pid(struct task_struct * task,int cpupid)1663 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1664 {
1665 	return false;
1666 }
1667 
vma_set_access_pid_bit(struct vm_area_struct * vma)1668 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1669 {
1670 }
folio_use_access_time(struct folio * folio)1671 static inline bool folio_use_access_time(struct folio *folio)
1672 {
1673 	return false;
1674 }
1675 #endif /* CONFIG_NUMA_BALANCING */
1676 
1677 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1678 
1679 /*
1680  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1681  * setting tags for all pages to native kernel tag value 0xff, as the default
1682  * value 0x00 maps to 0xff.
1683  */
1684 
page_kasan_tag(const struct page * page)1685 static inline u8 page_kasan_tag(const struct page *page)
1686 {
1687 	u8 tag = KASAN_TAG_KERNEL;
1688 
1689 	if (kasan_enabled()) {
1690 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1691 		tag ^= 0xff;
1692 	}
1693 
1694 	return tag;
1695 }
1696 
page_kasan_tag_set(struct page * page,u8 tag)1697 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1698 {
1699 	unsigned long old_flags, flags;
1700 
1701 	if (!kasan_enabled())
1702 		return;
1703 
1704 	tag ^= 0xff;
1705 	old_flags = READ_ONCE(page->flags);
1706 	do {
1707 		flags = old_flags;
1708 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1709 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1710 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1711 }
1712 
page_kasan_tag_reset(struct page * page)1713 static inline void page_kasan_tag_reset(struct page *page)
1714 {
1715 	if (kasan_enabled())
1716 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1717 }
1718 
1719 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1720 
page_kasan_tag(const struct page * page)1721 static inline u8 page_kasan_tag(const struct page *page)
1722 {
1723 	return 0xff;
1724 }
1725 
page_kasan_tag_set(struct page * page,u8 tag)1726 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1727 static inline void page_kasan_tag_reset(struct page *page) { }
1728 
1729 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1730 
page_zone(const struct page * page)1731 static inline struct zone *page_zone(const struct page *page)
1732 {
1733 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1734 }
1735 
page_pgdat(const struct page * page)1736 static inline pg_data_t *page_pgdat(const struct page *page)
1737 {
1738 	return NODE_DATA(page_to_nid(page));
1739 }
1740 
folio_zone(const struct folio * folio)1741 static inline struct zone *folio_zone(const struct folio *folio)
1742 {
1743 	return page_zone(&folio->page);
1744 }
1745 
folio_pgdat(const struct folio * folio)1746 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1747 {
1748 	return page_pgdat(&folio->page);
1749 }
1750 
1751 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1752 static inline void set_page_section(struct page *page, unsigned long section)
1753 {
1754 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1755 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1756 }
1757 
page_to_section(const struct page * page)1758 static inline unsigned long page_to_section(const struct page *page)
1759 {
1760 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1761 }
1762 #endif
1763 
1764 /**
1765  * folio_pfn - Return the Page Frame Number of a folio.
1766  * @folio: The folio.
1767  *
1768  * A folio may contain multiple pages.  The pages have consecutive
1769  * Page Frame Numbers.
1770  *
1771  * Return: The Page Frame Number of the first page in the folio.
1772  */
folio_pfn(const struct folio * folio)1773 static inline unsigned long folio_pfn(const struct folio *folio)
1774 {
1775 	return page_to_pfn(&folio->page);
1776 }
1777 
pfn_folio(unsigned long pfn)1778 static inline struct folio *pfn_folio(unsigned long pfn)
1779 {
1780 	return page_folio(pfn_to_page(pfn));
1781 }
1782 
1783 #ifdef CONFIG_MMU
mk_pte(struct page * page,pgprot_t pgprot)1784 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1785 {
1786 	return pfn_pte(page_to_pfn(page), pgprot);
1787 }
1788 
1789 /**
1790  * folio_mk_pte - Create a PTE for this folio
1791  * @folio: The folio to create a PTE for
1792  * @pgprot: The page protection bits to use
1793  *
1794  * Create a page table entry for the first page of this folio.
1795  * This is suitable for passing to set_ptes().
1796  *
1797  * Return: A page table entry suitable for mapping this folio.
1798  */
folio_mk_pte(struct folio * folio,pgprot_t pgprot)1799 static inline pte_t folio_mk_pte(struct folio *folio, pgprot_t pgprot)
1800 {
1801 	return pfn_pte(folio_pfn(folio), pgprot);
1802 }
1803 
1804 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1805 /**
1806  * folio_mk_pmd - Create a PMD for this folio
1807  * @folio: The folio to create a PMD for
1808  * @pgprot: The page protection bits to use
1809  *
1810  * Create a page table entry for the first page of this folio.
1811  * This is suitable for passing to set_pmd_at().
1812  *
1813  * Return: A page table entry suitable for mapping this folio.
1814  */
folio_mk_pmd(struct folio * folio,pgprot_t pgprot)1815 static inline pmd_t folio_mk_pmd(struct folio *folio, pgprot_t pgprot)
1816 {
1817 	return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot));
1818 }
1819 #endif
1820 #endif /* CONFIG_MMU */
1821 
folio_has_pincount(const struct folio * folio)1822 static inline bool folio_has_pincount(const struct folio *folio)
1823 {
1824 	if (IS_ENABLED(CONFIG_64BIT))
1825 		return folio_test_large(folio);
1826 	return folio_order(folio) > 1;
1827 }
1828 
1829 /**
1830  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1831  * @folio: The folio.
1832  *
1833  * This function checks if a folio has been pinned via a call to
1834  * a function in the pin_user_pages() family.
1835  *
1836  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1837  * because it means "definitely not pinned for DMA", but true means "probably
1838  * pinned for DMA, but possibly a false positive due to having at least
1839  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1840  *
1841  * False positives are OK, because: a) it's unlikely for a folio to
1842  * get that many refcounts, and b) all the callers of this routine are
1843  * expected to be able to deal gracefully with a false positive.
1844  *
1845  * For most large folios, the result will be exactly correct. That's because
1846  * we have more tracking data available: the _pincount field is used
1847  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1848  *
1849  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1850  *
1851  * Return: True, if it is likely that the folio has been "dma-pinned".
1852  * False, if the folio is definitely not dma-pinned.
1853  */
folio_maybe_dma_pinned(struct folio * folio)1854 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1855 {
1856 	if (folio_has_pincount(folio))
1857 		return atomic_read(&folio->_pincount) > 0;
1858 
1859 	/*
1860 	 * folio_ref_count() is signed. If that refcount overflows, then
1861 	 * folio_ref_count() returns a negative value, and callers will avoid
1862 	 * further incrementing the refcount.
1863 	 *
1864 	 * Here, for that overflow case, use the sign bit to count a little
1865 	 * bit higher via unsigned math, and thus still get an accurate result.
1866 	 */
1867 	return ((unsigned int)folio_ref_count(folio)) >=
1868 		GUP_PIN_COUNTING_BIAS;
1869 }
1870 
1871 /*
1872  * This should most likely only be called during fork() to see whether we
1873  * should break the cow immediately for an anon page on the src mm.
1874  *
1875  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1876  */
folio_needs_cow_for_dma(struct vm_area_struct * vma,struct folio * folio)1877 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1878 					  struct folio *folio)
1879 {
1880 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1881 
1882 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1883 		return false;
1884 
1885 	return folio_maybe_dma_pinned(folio);
1886 }
1887 
1888 /**
1889  * is_zero_page - Query if a page is a zero page
1890  * @page: The page to query
1891  *
1892  * This returns true if @page is one of the permanent zero pages.
1893  */
is_zero_page(const struct page * page)1894 static inline bool is_zero_page(const struct page *page)
1895 {
1896 	return is_zero_pfn(page_to_pfn(page));
1897 }
1898 
1899 /**
1900  * is_zero_folio - Query if a folio is a zero page
1901  * @folio: The folio to query
1902  *
1903  * This returns true if @folio is one of the permanent zero pages.
1904  */
is_zero_folio(const struct folio * folio)1905 static inline bool is_zero_folio(const struct folio *folio)
1906 {
1907 	return is_zero_page(&folio->page);
1908 }
1909 
1910 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1911 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)1912 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1913 {
1914 #ifdef CONFIG_CMA
1915 	int mt = folio_migratetype(folio);
1916 
1917 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1918 		return false;
1919 #endif
1920 	/* The zero page can be "pinned" but gets special handling. */
1921 	if (is_zero_folio(folio))
1922 		return true;
1923 
1924 	/* Coherent device memory must always allow eviction. */
1925 	if (folio_is_device_coherent(folio))
1926 		return false;
1927 
1928 	/*
1929 	 * Filesystems can only tolerate transient delays to truncate and
1930 	 * hole-punch operations
1931 	 */
1932 	if (folio_is_fsdax(folio))
1933 		return false;
1934 
1935 	/* Otherwise, non-movable zone folios can be pinned. */
1936 	return !folio_is_zone_movable(folio);
1937 
1938 }
1939 #else
folio_is_longterm_pinnable(struct folio * folio)1940 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1941 {
1942 	return true;
1943 }
1944 #endif
1945 
set_page_zone(struct page * page,enum zone_type zone)1946 static inline void set_page_zone(struct page *page, enum zone_type zone)
1947 {
1948 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1949 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1950 }
1951 
set_page_node(struct page * page,unsigned long node)1952 static inline void set_page_node(struct page *page, unsigned long node)
1953 {
1954 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1955 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1956 }
1957 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1958 static inline void set_page_links(struct page *page, enum zone_type zone,
1959 	unsigned long node, unsigned long pfn)
1960 {
1961 	set_page_zone(page, zone);
1962 	set_page_node(page, node);
1963 #ifdef SECTION_IN_PAGE_FLAGS
1964 	set_page_section(page, pfn_to_section_nr(pfn));
1965 #endif
1966 }
1967 
1968 /**
1969  * folio_nr_pages - The number of pages in the folio.
1970  * @folio: The folio.
1971  *
1972  * Return: A positive power of two.
1973  */
folio_nr_pages(const struct folio * folio)1974 static inline long folio_nr_pages(const struct folio *folio)
1975 {
1976 	if (!folio_test_large(folio))
1977 		return 1;
1978 	return folio_large_nr_pages(folio);
1979 }
1980 
1981 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
1982 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1983 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
1984 #else
1985 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
1986 #endif
1987 
1988 /*
1989  * compound_nr() returns the number of pages in this potentially compound
1990  * page.  compound_nr() can be called on a tail page, and is defined to
1991  * return 1 in that case.
1992  */
compound_nr(struct page * page)1993 static inline long compound_nr(struct page *page)
1994 {
1995 	struct folio *folio = (struct folio *)page;
1996 
1997 	if (!test_bit(PG_head, &folio->flags))
1998 		return 1;
1999 	return folio_large_nr_pages(folio);
2000 }
2001 
2002 /**
2003  * folio_next - Move to the next physical folio.
2004  * @folio: The folio we're currently operating on.
2005  *
2006  * If you have physically contiguous memory which may span more than
2007  * one folio (eg a &struct bio_vec), use this function to move from one
2008  * folio to the next.  Do not use it if the memory is only virtually
2009  * contiguous as the folios are almost certainly not adjacent to each
2010  * other.  This is the folio equivalent to writing ``page++``.
2011  *
2012  * Context: We assume that the folios are refcounted and/or locked at a
2013  * higher level and do not adjust the reference counts.
2014  * Return: The next struct folio.
2015  */
folio_next(struct folio * folio)2016 static inline struct folio *folio_next(struct folio *folio)
2017 {
2018 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2019 }
2020 
2021 /**
2022  * folio_shift - The size of the memory described by this folio.
2023  * @folio: The folio.
2024  *
2025  * A folio represents a number of bytes which is a power-of-two in size.
2026  * This function tells you which power-of-two the folio is.  See also
2027  * folio_size() and folio_order().
2028  *
2029  * Context: The caller should have a reference on the folio to prevent
2030  * it from being split.  It is not necessary for the folio to be locked.
2031  * Return: The base-2 logarithm of the size of this folio.
2032  */
folio_shift(const struct folio * folio)2033 static inline unsigned int folio_shift(const struct folio *folio)
2034 {
2035 	return PAGE_SHIFT + folio_order(folio);
2036 }
2037 
2038 /**
2039  * folio_size - The number of bytes in a folio.
2040  * @folio: The folio.
2041  *
2042  * Context: The caller should have a reference on the folio to prevent
2043  * it from being split.  It is not necessary for the folio to be locked.
2044  * Return: The number of bytes in this folio.
2045  */
folio_size(const struct folio * folio)2046 static inline size_t folio_size(const struct folio *folio)
2047 {
2048 	return PAGE_SIZE << folio_order(folio);
2049 }
2050 
2051 /**
2052  * folio_maybe_mapped_shared - Whether the folio is mapped into the page
2053  *			       tables of more than one MM
2054  * @folio: The folio.
2055  *
2056  * This function checks if the folio maybe currently mapped into more than one
2057  * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
2058  * MM ("mapped exclusively").
2059  *
2060  * For KSM folios, this function also returns "mapped shared" when a folio is
2061  * mapped multiple times into the same MM, because the individual page mappings
2062  * are independent.
2063  *
2064  * For small anonymous folios and anonymous hugetlb folios, the return
2065  * value will be exactly correct: non-KSM folios can only be mapped at most once
2066  * into an MM, and they cannot be partially mapped. KSM folios are
2067  * considered shared even if mapped multiple times into the same MM.
2068  *
2069  * For other folios, the result can be fuzzy:
2070  *    #. For partially-mappable large folios (THP), the return value can wrongly
2071  *       indicate "mapped shared" (false positive) if a folio was mapped by
2072  *       more than two MMs at one point in time.
2073  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2074  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2075  *       cover the same file range.
2076  *
2077  * Further, this function only considers current page table mappings that
2078  * are tracked using the folio mapcount(s).
2079  *
2080  * This function does not consider:
2081  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2082  *       pagecache, temporary unmapping for migration).
2083  *    #. If the folio is mapped differently (VM_PFNMAP).
2084  *    #. If hugetlb page table sharing applies. Callers might want to check
2085  *       hugetlb_pmd_shared().
2086  *
2087  * Return: Whether the folio is estimated to be mapped into more than one MM.
2088  */
folio_maybe_mapped_shared(struct folio * folio)2089 static inline bool folio_maybe_mapped_shared(struct folio *folio)
2090 {
2091 	int mapcount = folio_mapcount(folio);
2092 
2093 	/* Only partially-mappable folios require more care. */
2094 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2095 		return mapcount > 1;
2096 
2097 	/*
2098 	 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
2099 	 * simply assume "mapped shared", nobody should really care
2100 	 * about this for arbitrary kernel allocations.
2101 	 */
2102 	if (!IS_ENABLED(CONFIG_MM_ID))
2103 		return true;
2104 
2105 	/*
2106 	 * A single mapping implies "mapped exclusively", even if the
2107 	 * folio flag says something different: it's easier to handle this
2108 	 * case here instead of on the RMAP hot path.
2109 	 */
2110 	if (mapcount <= 1)
2111 		return false;
2112 	return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids);
2113 }
2114 
2115 /**
2116  * folio_expected_ref_count - calculate the expected folio refcount
2117  * @folio: the folio
2118  *
2119  * Calculate the expected folio refcount, taking references from the pagecache,
2120  * swapcache, PG_private and page table mappings into account. Useful in
2121  * combination with folio_ref_count() to detect unexpected references (e.g.,
2122  * GUP or other temporary references).
2123  *
2124  * Does currently not consider references from the LRU cache. If the folio
2125  * was isolated from the LRU (which is the case during migration or split),
2126  * the LRU cache does not apply.
2127  *
2128  * Calling this function on an unmapped folio -- !folio_mapped() -- that is
2129  * locked will return a stable result.
2130  *
2131  * Calling this function on a mapped folio will not result in a stable result,
2132  * because nothing stops additional page table mappings from coming (e.g.,
2133  * fork()) or going (e.g., munmap()).
2134  *
2135  * Calling this function without the folio lock will also not result in a
2136  * stable result: for example, the folio might get dropped from the swapcache
2137  * concurrently.
2138  *
2139  * However, even when called without the folio lock or on a mapped folio,
2140  * this function can be used to detect unexpected references early (for example,
2141  * if it makes sense to even lock the folio and unmap it).
2142  *
2143  * The caller must add any reference (e.g., from folio_try_get()) it might be
2144  * holding itself to the result.
2145  *
2146  * Returns the expected folio refcount.
2147  */
folio_expected_ref_count(const struct folio * folio)2148 static inline int folio_expected_ref_count(const struct folio *folio)
2149 {
2150 	const int order = folio_order(folio);
2151 	int ref_count = 0;
2152 
2153 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2154 		return 0;
2155 
2156 	if (folio_test_anon(folio)) {
2157 		/* One reference per page from the swapcache. */
2158 		ref_count += folio_test_swapcache(folio) << order;
2159 	} else if (!((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS)) {
2160 		/* One reference per page from the pagecache. */
2161 		ref_count += !!folio->mapping << order;
2162 		/* One reference from PG_private. */
2163 		ref_count += folio_test_private(folio);
2164 	}
2165 
2166 	/* One reference per page table mapping. */
2167 	return ref_count + folio_mapcount(folio);
2168 }
2169 
2170 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2171 static inline int arch_make_folio_accessible(struct folio *folio)
2172 {
2173 	return 0;
2174 }
2175 #endif
2176 
2177 /*
2178  * Some inline functions in vmstat.h depend on page_zone()
2179  */
2180 #include <linux/vmstat.h>
2181 
2182 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2183 #define HASHED_PAGE_VIRTUAL
2184 #endif
2185 
2186 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2187 static inline void *page_address(const struct page *page)
2188 {
2189 	return page->virtual;
2190 }
set_page_address(struct page * page,void * address)2191 static inline void set_page_address(struct page *page, void *address)
2192 {
2193 	page->virtual = address;
2194 }
2195 #define page_address_init()  do { } while(0)
2196 #endif
2197 
2198 #if defined(HASHED_PAGE_VIRTUAL)
2199 void *page_address(const struct page *page);
2200 void set_page_address(struct page *page, void *virtual);
2201 void page_address_init(void);
2202 #endif
2203 
lowmem_page_address(const struct page * page)2204 static __always_inline void *lowmem_page_address(const struct page *page)
2205 {
2206 	return page_to_virt(page);
2207 }
2208 
2209 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2210 #define page_address(page) lowmem_page_address(page)
2211 #define set_page_address(page, address)  do { } while(0)
2212 #define page_address_init()  do { } while(0)
2213 #endif
2214 
folio_address(const struct folio * folio)2215 static inline void *folio_address(const struct folio *folio)
2216 {
2217 	return page_address(&folio->page);
2218 }
2219 
2220 /*
2221  * Return true only if the page has been allocated with
2222  * ALLOC_NO_WATERMARKS and the low watermark was not
2223  * met implying that the system is under some pressure.
2224  */
page_is_pfmemalloc(const struct page * page)2225 static inline bool page_is_pfmemalloc(const struct page *page)
2226 {
2227 	/*
2228 	 * lru.next has bit 1 set if the page is allocated from the
2229 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2230 	 * they do not need to preserve that information.
2231 	 */
2232 	return (uintptr_t)page->lru.next & BIT(1);
2233 }
2234 
2235 /*
2236  * Return true only if the folio has been allocated with
2237  * ALLOC_NO_WATERMARKS and the low watermark was not
2238  * met implying that the system is under some pressure.
2239  */
folio_is_pfmemalloc(const struct folio * folio)2240 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2241 {
2242 	/*
2243 	 * lru.next has bit 1 set if the page is allocated from the
2244 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2245 	 * they do not need to preserve that information.
2246 	 */
2247 	return (uintptr_t)folio->lru.next & BIT(1);
2248 }
2249 
2250 /*
2251  * Only to be called by the page allocator on a freshly allocated
2252  * page.
2253  */
set_page_pfmemalloc(struct page * page)2254 static inline void set_page_pfmemalloc(struct page *page)
2255 {
2256 	page->lru.next = (void *)BIT(1);
2257 }
2258 
clear_page_pfmemalloc(struct page * page)2259 static inline void clear_page_pfmemalloc(struct page *page)
2260 {
2261 	page->lru.next = NULL;
2262 }
2263 
2264 /*
2265  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2266  */
2267 extern void pagefault_out_of_memory(void);
2268 
2269 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2270 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2271 
2272 /*
2273  * Parameter block passed down to zap_pte_range in exceptional cases.
2274  */
2275 struct zap_details {
2276 	struct folio *single_folio;	/* Locked folio to be unmapped */
2277 	bool even_cows;			/* Zap COWed private pages too? */
2278 	bool reclaim_pt;		/* Need reclaim page tables? */
2279 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2280 };
2281 
2282 /*
2283  * Whether to drop the pte markers, for example, the uffd-wp information for
2284  * file-backed memory.  This should only be specified when we will completely
2285  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2286  * default, the flag is not set.
2287  */
2288 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2289 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2290 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2291 
2292 #ifdef CONFIG_SCHED_MM_CID
2293 void sched_mm_cid_before_execve(struct task_struct *t);
2294 void sched_mm_cid_after_execve(struct task_struct *t);
2295 void sched_mm_cid_fork(struct task_struct *t);
2296 void sched_mm_cid_exit_signals(struct task_struct *t);
task_mm_cid(struct task_struct * t)2297 static inline int task_mm_cid(struct task_struct *t)
2298 {
2299 	return t->mm_cid;
2300 }
2301 #else
sched_mm_cid_before_execve(struct task_struct * t)2302 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
sched_mm_cid_after_execve(struct task_struct * t)2303 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
sched_mm_cid_fork(struct task_struct * t)2304 static inline void sched_mm_cid_fork(struct task_struct *t) { }
sched_mm_cid_exit_signals(struct task_struct * t)2305 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
task_mm_cid(struct task_struct * t)2306 static inline int task_mm_cid(struct task_struct *t)
2307 {
2308 	/*
2309 	 * Use the processor id as a fall-back when the mm cid feature is
2310 	 * disabled. This provides functional per-cpu data structure accesses
2311 	 * in user-space, althrough it won't provide the memory usage benefits.
2312 	 */
2313 	return raw_smp_processor_id();
2314 }
2315 #endif
2316 
2317 #ifdef CONFIG_MMU
2318 extern bool can_do_mlock(void);
2319 #else
can_do_mlock(void)2320 static inline bool can_do_mlock(void) { return false; }
2321 #endif
2322 extern int user_shm_lock(size_t, struct ucounts *);
2323 extern void user_shm_unlock(size_t, struct ucounts *);
2324 
2325 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2326 			     pte_t pte);
2327 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2328 			     pte_t pte);
2329 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2330 				  unsigned long addr, pmd_t pmd);
2331 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2332 				pmd_t pmd);
2333 
2334 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2335 		  unsigned long size);
2336 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2337 			   unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2338 static inline void zap_vma_pages(struct vm_area_struct *vma)
2339 {
2340 	zap_page_range_single(vma, vma->vm_start,
2341 			      vma->vm_end - vma->vm_start, NULL);
2342 }
2343 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2344 		struct vm_area_struct *start_vma, unsigned long start,
2345 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2346 
2347 struct mmu_notifier_range;
2348 
2349 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2350 		unsigned long end, unsigned long floor, unsigned long ceiling);
2351 int
2352 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2353 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2354 			void *buf, int len, int write);
2355 
2356 struct follow_pfnmap_args {
2357 	/**
2358 	 * Inputs:
2359 	 * @vma: Pointer to @vm_area_struct struct
2360 	 * @address: the virtual address to walk
2361 	 */
2362 	struct vm_area_struct *vma;
2363 	unsigned long address;
2364 	/**
2365 	 * Internals:
2366 	 *
2367 	 * The caller shouldn't touch any of these.
2368 	 */
2369 	spinlock_t *lock;
2370 	pte_t *ptep;
2371 	/**
2372 	 * Outputs:
2373 	 *
2374 	 * @pfn: the PFN of the address
2375 	 * @addr_mask: address mask covering pfn
2376 	 * @pgprot: the pgprot_t of the mapping
2377 	 * @writable: whether the mapping is writable
2378 	 * @special: whether the mapping is a special mapping (real PFN maps)
2379 	 */
2380 	unsigned long pfn;
2381 	unsigned long addr_mask;
2382 	pgprot_t pgprot;
2383 	bool writable;
2384 	bool special;
2385 };
2386 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2387 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2388 
2389 extern void truncate_pagecache(struct inode *inode, loff_t new);
2390 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2391 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2392 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2393 int generic_error_remove_folio(struct address_space *mapping,
2394 		struct folio *folio);
2395 
2396 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2397 		unsigned long address, struct pt_regs *regs);
2398 
2399 #ifdef CONFIG_MMU
2400 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2401 				  unsigned long address, unsigned int flags,
2402 				  struct pt_regs *regs);
2403 extern int fixup_user_fault(struct mm_struct *mm,
2404 			    unsigned long address, unsigned int fault_flags,
2405 			    bool *unlocked);
2406 void unmap_mapping_pages(struct address_space *mapping,
2407 		pgoff_t start, pgoff_t nr, bool even_cows);
2408 void unmap_mapping_range(struct address_space *mapping,
2409 		loff_t const holebegin, loff_t const holelen, int even_cows);
2410 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2411 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2412 					 unsigned long address, unsigned int flags,
2413 					 struct pt_regs *regs)
2414 {
2415 	/* should never happen if there's no MMU */
2416 	BUG();
2417 	return VM_FAULT_SIGBUS;
2418 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2419 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2420 		unsigned int fault_flags, bool *unlocked)
2421 {
2422 	/* should never happen if there's no MMU */
2423 	BUG();
2424 	return -EFAULT;
2425 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2426 static inline void unmap_mapping_pages(struct address_space *mapping,
2427 		pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2428 static inline void unmap_mapping_range(struct address_space *mapping,
2429 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2430 #endif
2431 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2432 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2433 		loff_t const holebegin, loff_t const holelen)
2434 {
2435 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2436 }
2437 
2438 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2439 						unsigned long addr);
2440 
2441 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2442 		void *buf, int len, unsigned int gup_flags);
2443 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2444 		void *buf, int len, unsigned int gup_flags);
2445 
2446 #ifdef CONFIG_BPF_SYSCALL
2447 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
2448 			      void *buf, int len, unsigned int gup_flags);
2449 #endif
2450 
2451 long get_user_pages_remote(struct mm_struct *mm,
2452 			   unsigned long start, unsigned long nr_pages,
2453 			   unsigned int gup_flags, struct page **pages,
2454 			   int *locked);
2455 long pin_user_pages_remote(struct mm_struct *mm,
2456 			   unsigned long start, unsigned long nr_pages,
2457 			   unsigned int gup_flags, struct page **pages,
2458 			   int *locked);
2459 
2460 /*
2461  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2462  */
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2463 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2464 						    unsigned long addr,
2465 						    int gup_flags,
2466 						    struct vm_area_struct **vmap)
2467 {
2468 	struct page *page;
2469 	struct vm_area_struct *vma;
2470 	int got;
2471 
2472 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2473 		return ERR_PTR(-EINVAL);
2474 
2475 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2476 
2477 	if (got < 0)
2478 		return ERR_PTR(got);
2479 
2480 	vma = vma_lookup(mm, addr);
2481 	if (WARN_ON_ONCE(!vma)) {
2482 		put_page(page);
2483 		return ERR_PTR(-EINVAL);
2484 	}
2485 
2486 	*vmap = vma;
2487 	return page;
2488 }
2489 
2490 long get_user_pages(unsigned long start, unsigned long nr_pages,
2491 		    unsigned int gup_flags, struct page **pages);
2492 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2493 		    unsigned int gup_flags, struct page **pages);
2494 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2495 		    struct page **pages, unsigned int gup_flags);
2496 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2497 		    struct page **pages, unsigned int gup_flags);
2498 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2499 		      struct folio **folios, unsigned int max_folios,
2500 		      pgoff_t *offset);
2501 int folio_add_pins(struct folio *folio, unsigned int pins);
2502 
2503 int get_user_pages_fast(unsigned long start, int nr_pages,
2504 			unsigned int gup_flags, struct page **pages);
2505 int pin_user_pages_fast(unsigned long start, int nr_pages,
2506 			unsigned int gup_flags, struct page **pages);
2507 void folio_add_pin(struct folio *folio);
2508 
2509 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2510 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2511 			struct task_struct *task, bool bypass_rlim);
2512 
2513 struct kvec;
2514 struct page *get_dump_page(unsigned long addr, int *locked);
2515 
2516 bool folio_mark_dirty(struct folio *folio);
2517 bool folio_mark_dirty_lock(struct folio *folio);
2518 bool set_page_dirty(struct page *page);
2519 int set_page_dirty_lock(struct page *page);
2520 
2521 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2522 
2523 /*
2524  * Flags used by change_protection().  For now we make it a bitmap so
2525  * that we can pass in multiple flags just like parameters.  However
2526  * for now all the callers are only use one of the flags at the same
2527  * time.
2528  */
2529 /*
2530  * Whether we should manually check if we can map individual PTEs writable,
2531  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2532  * PTEs automatically in a writable mapping.
2533  */
2534 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2535 /* Whether this protection change is for NUMA hints */
2536 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2537 /* Whether this change is for write protecting */
2538 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2539 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2540 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2541 					    MM_CP_UFFD_WP_RESOLVE)
2542 
2543 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2544 			     pte_t pte);
2545 extern long change_protection(struct mmu_gather *tlb,
2546 			      struct vm_area_struct *vma, unsigned long start,
2547 			      unsigned long end, unsigned long cp_flags);
2548 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2549 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2550 	  unsigned long start, unsigned long end, unsigned long newflags);
2551 
2552 /*
2553  * doesn't attempt to fault and will return short.
2554  */
2555 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2556 			     unsigned int gup_flags, struct page **pages);
2557 
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2558 static inline bool get_user_page_fast_only(unsigned long addr,
2559 			unsigned int gup_flags, struct page **pagep)
2560 {
2561 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2562 }
2563 /*
2564  * per-process(per-mm_struct) statistics.
2565  */
get_mm_counter(struct mm_struct * mm,int member)2566 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2567 {
2568 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2569 }
2570 
get_mm_counter_sum(struct mm_struct * mm,int member)2571 static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member)
2572 {
2573 	return percpu_counter_sum_positive(&mm->rss_stat[member]);
2574 }
2575 
2576 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2577 
add_mm_counter(struct mm_struct * mm,int member,long value)2578 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2579 {
2580 	percpu_counter_add(&mm->rss_stat[member], value);
2581 
2582 	mm_trace_rss_stat(mm, member);
2583 }
2584 
inc_mm_counter(struct mm_struct * mm,int member)2585 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2586 {
2587 	percpu_counter_inc(&mm->rss_stat[member]);
2588 
2589 	mm_trace_rss_stat(mm, member);
2590 }
2591 
dec_mm_counter(struct mm_struct * mm,int member)2592 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2593 {
2594 	percpu_counter_dec(&mm->rss_stat[member]);
2595 
2596 	mm_trace_rss_stat(mm, member);
2597 }
2598 
2599 /* Optimized variant when folio is already known not to be anon */
mm_counter_file(struct folio * folio)2600 static inline int mm_counter_file(struct folio *folio)
2601 {
2602 	if (folio_test_swapbacked(folio))
2603 		return MM_SHMEMPAGES;
2604 	return MM_FILEPAGES;
2605 }
2606 
mm_counter(struct folio * folio)2607 static inline int mm_counter(struct folio *folio)
2608 {
2609 	if (folio_test_anon(folio))
2610 		return MM_ANONPAGES;
2611 	return mm_counter_file(folio);
2612 }
2613 
get_mm_rss(struct mm_struct * mm)2614 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2615 {
2616 	return get_mm_counter(mm, MM_FILEPAGES) +
2617 		get_mm_counter(mm, MM_ANONPAGES) +
2618 		get_mm_counter(mm, MM_SHMEMPAGES);
2619 }
2620 
get_mm_hiwater_rss(struct mm_struct * mm)2621 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2622 {
2623 	return max(mm->hiwater_rss, get_mm_rss(mm));
2624 }
2625 
get_mm_hiwater_vm(struct mm_struct * mm)2626 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2627 {
2628 	return max(mm->hiwater_vm, mm->total_vm);
2629 }
2630 
update_hiwater_rss(struct mm_struct * mm)2631 static inline void update_hiwater_rss(struct mm_struct *mm)
2632 {
2633 	unsigned long _rss = get_mm_rss(mm);
2634 
2635 	if (data_race(mm->hiwater_rss) < _rss)
2636 		(mm)->hiwater_rss = _rss;
2637 }
2638 
update_hiwater_vm(struct mm_struct * mm)2639 static inline void update_hiwater_vm(struct mm_struct *mm)
2640 {
2641 	if (mm->hiwater_vm < mm->total_vm)
2642 		mm->hiwater_vm = mm->total_vm;
2643 }
2644 
reset_mm_hiwater_rss(struct mm_struct * mm)2645 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2646 {
2647 	mm->hiwater_rss = get_mm_rss(mm);
2648 }
2649 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2650 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2651 					 struct mm_struct *mm)
2652 {
2653 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2654 
2655 	if (*maxrss < hiwater_rss)
2656 		*maxrss = hiwater_rss;
2657 }
2658 
2659 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2660 static inline int pte_special(pte_t pte)
2661 {
2662 	return 0;
2663 }
2664 
pte_mkspecial(pte_t pte)2665 static inline pte_t pte_mkspecial(pte_t pte)
2666 {
2667 	return pte;
2668 }
2669 #endif
2670 
2671 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)2672 static inline bool pmd_special(pmd_t pmd)
2673 {
2674 	return false;
2675 }
2676 
pmd_mkspecial(pmd_t pmd)2677 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2678 {
2679 	return pmd;
2680 }
2681 #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2682 
2683 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)2684 static inline bool pud_special(pud_t pud)
2685 {
2686 	return false;
2687 }
2688 
pud_mkspecial(pud_t pud)2689 static inline pud_t pud_mkspecial(pud_t pud)
2690 {
2691 	return pud;
2692 }
2693 #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2694 
2695 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2696 static inline int pte_devmap(pte_t pte)
2697 {
2698 	return 0;
2699 }
2700 #endif
2701 
2702 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2703 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2704 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2705 				    spinlock_t **ptl)
2706 {
2707 	pte_t *ptep;
2708 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2709 	return ptep;
2710 }
2711 
2712 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2713 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2714 						unsigned long address)
2715 {
2716 	return 0;
2717 }
2718 #else
2719 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2720 #endif
2721 
2722 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2723 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2724 						unsigned long address)
2725 {
2726 	return 0;
2727 }
mm_inc_nr_puds(struct mm_struct * mm)2728 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2729 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2730 
2731 #else
2732 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2733 
mm_inc_nr_puds(struct mm_struct * mm)2734 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2735 {
2736 	if (mm_pud_folded(mm))
2737 		return;
2738 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2739 }
2740 
mm_dec_nr_puds(struct mm_struct * mm)2741 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2742 {
2743 	if (mm_pud_folded(mm))
2744 		return;
2745 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2746 }
2747 #endif
2748 
2749 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2750 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2751 						unsigned long address)
2752 {
2753 	return 0;
2754 }
2755 
mm_inc_nr_pmds(struct mm_struct * mm)2756 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2757 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2758 
2759 #else
2760 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2761 
mm_inc_nr_pmds(struct mm_struct * mm)2762 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2763 {
2764 	if (mm_pmd_folded(mm))
2765 		return;
2766 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2767 }
2768 
mm_dec_nr_pmds(struct mm_struct * mm)2769 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2770 {
2771 	if (mm_pmd_folded(mm))
2772 		return;
2773 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2774 }
2775 #endif
2776 
2777 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2778 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2779 {
2780 	atomic_long_set(&mm->pgtables_bytes, 0);
2781 }
2782 
mm_pgtables_bytes(const struct mm_struct * mm)2783 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2784 {
2785 	return atomic_long_read(&mm->pgtables_bytes);
2786 }
2787 
mm_inc_nr_ptes(struct mm_struct * mm)2788 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2789 {
2790 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2791 }
2792 
mm_dec_nr_ptes(struct mm_struct * mm)2793 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2794 {
2795 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2796 }
2797 #else
2798 
mm_pgtables_bytes_init(struct mm_struct * mm)2799 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2800 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2801 {
2802 	return 0;
2803 }
2804 
mm_inc_nr_ptes(struct mm_struct * mm)2805 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2806 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2807 #endif
2808 
2809 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2810 int __pte_alloc_kernel(pmd_t *pmd);
2811 
2812 #if defined(CONFIG_MMU)
2813 
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2814 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2815 		unsigned long address)
2816 {
2817 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2818 		NULL : p4d_offset(pgd, address);
2819 }
2820 
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2821 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2822 		unsigned long address)
2823 {
2824 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2825 		NULL : pud_offset(p4d, address);
2826 }
2827 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2828 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2829 {
2830 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2831 		NULL: pmd_offset(pud, address);
2832 }
2833 #endif /* CONFIG_MMU */
2834 
virt_to_ptdesc(const void * x)2835 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2836 {
2837 	return page_ptdesc(virt_to_page(x));
2838 }
2839 
ptdesc_to_virt(const struct ptdesc * pt)2840 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2841 {
2842 	return page_to_virt(ptdesc_page(pt));
2843 }
2844 
ptdesc_address(const struct ptdesc * pt)2845 static inline void *ptdesc_address(const struct ptdesc *pt)
2846 {
2847 	return folio_address(ptdesc_folio(pt));
2848 }
2849 
pagetable_is_reserved(struct ptdesc * pt)2850 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2851 {
2852 	return folio_test_reserved(ptdesc_folio(pt));
2853 }
2854 
2855 /**
2856  * pagetable_alloc - Allocate pagetables
2857  * @gfp:    GFP flags
2858  * @order:  desired pagetable order
2859  *
2860  * pagetable_alloc allocates memory for page tables as well as a page table
2861  * descriptor to describe that memory.
2862  *
2863  * Return: The ptdesc describing the allocated page tables.
2864  */
pagetable_alloc_noprof(gfp_t gfp,unsigned int order)2865 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2866 {
2867 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2868 
2869 	return page_ptdesc(page);
2870 }
2871 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2872 
2873 /**
2874  * pagetable_free - Free pagetables
2875  * @pt:	The page table descriptor
2876  *
2877  * pagetable_free frees the memory of all page tables described by a page
2878  * table descriptor and the memory for the descriptor itself.
2879  */
pagetable_free(struct ptdesc * pt)2880 static inline void pagetable_free(struct ptdesc *pt)
2881 {
2882 	struct page *page = ptdesc_page(pt);
2883 
2884 	__free_pages(page, compound_order(page));
2885 }
2886 
2887 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2888 #if ALLOC_SPLIT_PTLOCKS
2889 void __init ptlock_cache_init(void);
2890 bool ptlock_alloc(struct ptdesc *ptdesc);
2891 void ptlock_free(struct ptdesc *ptdesc);
2892 
ptlock_ptr(struct ptdesc * ptdesc)2893 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2894 {
2895 	return ptdesc->ptl;
2896 }
2897 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2898 static inline void ptlock_cache_init(void)
2899 {
2900 }
2901 
ptlock_alloc(struct ptdesc * ptdesc)2902 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2903 {
2904 	return true;
2905 }
2906 
ptlock_free(struct ptdesc * ptdesc)2907 static inline void ptlock_free(struct ptdesc *ptdesc)
2908 {
2909 }
2910 
ptlock_ptr(struct ptdesc * ptdesc)2911 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2912 {
2913 	return &ptdesc->ptl;
2914 }
2915 #endif /* ALLOC_SPLIT_PTLOCKS */
2916 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2917 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2918 {
2919 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2920 }
2921 
ptep_lockptr(struct mm_struct * mm,pte_t * pte)2922 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2923 {
2924 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2925 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2926 	return ptlock_ptr(virt_to_ptdesc(pte));
2927 }
2928 
ptlock_init(struct ptdesc * ptdesc)2929 static inline bool ptlock_init(struct ptdesc *ptdesc)
2930 {
2931 	/*
2932 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2933 	 * with 0. Make sure nobody took it in use in between.
2934 	 *
2935 	 * It can happen if arch try to use slab for page table allocation:
2936 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2937 	 */
2938 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2939 	if (!ptlock_alloc(ptdesc))
2940 		return false;
2941 	spin_lock_init(ptlock_ptr(ptdesc));
2942 	return true;
2943 }
2944 
2945 #else	/* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2946 /*
2947  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2948  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2949 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2950 {
2951 	return &mm->page_table_lock;
2952 }
ptep_lockptr(struct mm_struct * mm,pte_t * pte)2953 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2954 {
2955 	return &mm->page_table_lock;
2956 }
ptlock_cache_init(void)2957 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)2958 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)2959 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2960 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2961 
__pagetable_ctor(struct ptdesc * ptdesc)2962 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
2963 {
2964 	struct folio *folio = ptdesc_folio(ptdesc);
2965 
2966 	__folio_set_pgtable(folio);
2967 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2968 }
2969 
pagetable_dtor(struct ptdesc * ptdesc)2970 static inline void pagetable_dtor(struct ptdesc *ptdesc)
2971 {
2972 	struct folio *folio = ptdesc_folio(ptdesc);
2973 
2974 	ptlock_free(ptdesc);
2975 	__folio_clear_pgtable(folio);
2976 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2977 }
2978 
pagetable_dtor_free(struct ptdesc * ptdesc)2979 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
2980 {
2981 	pagetable_dtor(ptdesc);
2982 	pagetable_free(ptdesc);
2983 }
2984 
pagetable_pte_ctor(struct mm_struct * mm,struct ptdesc * ptdesc)2985 static inline bool pagetable_pte_ctor(struct mm_struct *mm,
2986 				      struct ptdesc *ptdesc)
2987 {
2988 	if (mm != &init_mm && !ptlock_init(ptdesc))
2989 		return false;
2990 	__pagetable_ctor(ptdesc);
2991 	return true;
2992 }
2993 
2994 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
__pte_offset_map(pmd_t * pmd,unsigned long addr,pmd_t * pmdvalp)2995 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
2996 			pmd_t *pmdvalp)
2997 {
2998 	pte_t *pte;
2999 
3000 	__cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3001 	return pte;
3002 }
pte_offset_map(pmd_t * pmd,unsigned long addr)3003 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3004 {
3005 	return __pte_offset_map(pmd, addr, NULL);
3006 }
3007 
3008 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3009 			unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)3010 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3011 			unsigned long addr, spinlock_t **ptlp)
3012 {
3013 	pte_t *pte;
3014 
3015 	__cond_lock(RCU, __cond_lock(*ptlp,
3016 			pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3017 	return pte;
3018 }
3019 
3020 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3021 				unsigned long addr, spinlock_t **ptlp);
3022 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3023 				unsigned long addr, pmd_t *pmdvalp,
3024 				spinlock_t **ptlp);
3025 
3026 #define pte_unmap_unlock(pte, ptl)	do {		\
3027 	spin_unlock(ptl);				\
3028 	pte_unmap(pte);					\
3029 } while (0)
3030 
3031 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3032 
3033 #define pte_alloc_map(mm, pmd, address)			\
3034 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3035 
3036 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3037 	(pte_alloc(mm, pmd) ?			\
3038 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3039 
3040 #define pte_alloc_kernel(pmd, address)			\
3041 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3042 		NULL: pte_offset_kernel(pmd, address))
3043 
3044 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3045 
pmd_pgtable_page(pmd_t * pmd)3046 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3047 {
3048 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3049 	return virt_to_page((void *)((unsigned long) pmd & mask));
3050 }
3051 
pmd_ptdesc(pmd_t * pmd)3052 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3053 {
3054 	return page_ptdesc(pmd_pgtable_page(pmd));
3055 }
3056 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3057 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3058 {
3059 	return ptlock_ptr(pmd_ptdesc(pmd));
3060 }
3061 
pmd_ptlock_init(struct ptdesc * ptdesc)3062 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3063 {
3064 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3065 	ptdesc->pmd_huge_pte = NULL;
3066 #endif
3067 	return ptlock_init(ptdesc);
3068 }
3069 
3070 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3071 
3072 #else
3073 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3074 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3075 {
3076 	return &mm->page_table_lock;
3077 }
3078 
pmd_ptlock_init(struct ptdesc * ptdesc)3079 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3080 
3081 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3082 
3083 #endif
3084 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3085 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3086 {
3087 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3088 	spin_lock(ptl);
3089 	return ptl;
3090 }
3091 
pagetable_pmd_ctor(struct mm_struct * mm,struct ptdesc * ptdesc)3092 static inline bool pagetable_pmd_ctor(struct mm_struct *mm,
3093 				      struct ptdesc *ptdesc)
3094 {
3095 	if (mm != &init_mm && !pmd_ptlock_init(ptdesc))
3096 		return false;
3097 	ptdesc_pmd_pts_init(ptdesc);
3098 	__pagetable_ctor(ptdesc);
3099 	return true;
3100 }
3101 
3102 /*
3103  * No scalability reason to split PUD locks yet, but follow the same pattern
3104  * as the PMD locks to make it easier if we decide to.  The VM should not be
3105  * considered ready to switch to split PUD locks yet; there may be places
3106  * which need to be converted from page_table_lock.
3107  */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3108 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3109 {
3110 	return &mm->page_table_lock;
3111 }
3112 
pud_lock(struct mm_struct * mm,pud_t * pud)3113 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3114 {
3115 	spinlock_t *ptl = pud_lockptr(mm, pud);
3116 
3117 	spin_lock(ptl);
3118 	return ptl;
3119 }
3120 
pagetable_pud_ctor(struct ptdesc * ptdesc)3121 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3122 {
3123 	__pagetable_ctor(ptdesc);
3124 }
3125 
pagetable_p4d_ctor(struct ptdesc * ptdesc)3126 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3127 {
3128 	__pagetable_ctor(ptdesc);
3129 }
3130 
pagetable_pgd_ctor(struct ptdesc * ptdesc)3131 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3132 {
3133 	__pagetable_ctor(ptdesc);
3134 }
3135 
3136 extern void __init pagecache_init(void);
3137 extern void free_initmem(void);
3138 
3139 /*
3140  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3141  * into the buddy system. The freed pages will be poisoned with pattern
3142  * "poison" if it's within range [0, UCHAR_MAX].
3143  * Return pages freed into the buddy system.
3144  */
3145 extern unsigned long free_reserved_area(void *start, void *end,
3146 					int poison, const char *s);
3147 
3148 extern void adjust_managed_page_count(struct page *page, long count);
3149 
3150 extern void reserve_bootmem_region(phys_addr_t start,
3151 				   phys_addr_t end, int nid);
3152 
3153 /* Free the reserved page into the buddy system, so it gets managed. */
3154 void free_reserved_page(struct page *page);
3155 
mark_page_reserved(struct page * page)3156 static inline void mark_page_reserved(struct page *page)
3157 {
3158 	SetPageReserved(page);
3159 	adjust_managed_page_count(page, -1);
3160 }
3161 
free_reserved_ptdesc(struct ptdesc * pt)3162 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3163 {
3164 	free_reserved_page(ptdesc_page(pt));
3165 }
3166 
3167 /*
3168  * Default method to free all the __init memory into the buddy system.
3169  * The freed pages will be poisoned with pattern "poison" if it's within
3170  * range [0, UCHAR_MAX].
3171  * Return pages freed into the buddy system.
3172  */
free_initmem_default(int poison)3173 static inline unsigned long free_initmem_default(int poison)
3174 {
3175 	extern char __init_begin[], __init_end[];
3176 
3177 	return free_reserved_area(&__init_begin, &__init_end,
3178 				  poison, "unused kernel image (initmem)");
3179 }
3180 
get_num_physpages(void)3181 static inline unsigned long get_num_physpages(void)
3182 {
3183 	int nid;
3184 	unsigned long phys_pages = 0;
3185 
3186 	for_each_online_node(nid)
3187 		phys_pages += node_present_pages(nid);
3188 
3189 	return phys_pages;
3190 }
3191 
3192 /*
3193  * Using memblock node mappings, an architecture may initialise its
3194  * zones, allocate the backing mem_map and account for memory holes in an
3195  * architecture independent manner.
3196  *
3197  * An architecture is expected to register range of page frames backed by
3198  * physical memory with memblock_add[_node]() before calling
3199  * free_area_init() passing in the PFN each zone ends at. At a basic
3200  * usage, an architecture is expected to do something like
3201  *
3202  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3203  * 							 max_highmem_pfn};
3204  * for_each_valid_physical_page_range()
3205  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3206  * free_area_init(max_zone_pfns);
3207  */
3208 void free_area_init(unsigned long *max_zone_pfn);
3209 unsigned long node_map_pfn_alignment(void);
3210 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3211 						unsigned long end_pfn);
3212 extern void get_pfn_range_for_nid(unsigned int nid,
3213 			unsigned long *start_pfn, unsigned long *end_pfn);
3214 
3215 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3216 static inline int early_pfn_to_nid(unsigned long pfn)
3217 {
3218 	return 0;
3219 }
3220 #else
3221 /* please see mm/page_alloc.c */
3222 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3223 #endif
3224 
3225 extern void mem_init(void);
3226 extern void __init mmap_init(void);
3227 
3228 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3229 static inline void show_mem(void)
3230 {
3231 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3232 }
3233 extern long si_mem_available(void);
3234 extern void si_meminfo(struct sysinfo * val);
3235 extern void si_meminfo_node(struct sysinfo *val, int nid);
3236 
3237 extern __printf(3, 4)
3238 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3239 
3240 extern void setup_per_cpu_pageset(void);
3241 
3242 /* nommu.c */
3243 extern atomic_long_t mmap_pages_allocated;
3244 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3245 
3246 /* interval_tree.c */
3247 void vma_interval_tree_insert(struct vm_area_struct *node,
3248 			      struct rb_root_cached *root);
3249 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3250 				    struct vm_area_struct *prev,
3251 				    struct rb_root_cached *root);
3252 void vma_interval_tree_remove(struct vm_area_struct *node,
3253 			      struct rb_root_cached *root);
3254 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3255 				unsigned long start, unsigned long last);
3256 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3257 				unsigned long start, unsigned long last);
3258 
3259 #define vma_interval_tree_foreach(vma, root, start, last)		\
3260 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3261 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3262 
3263 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3264 				   struct rb_root_cached *root);
3265 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3266 				   struct rb_root_cached *root);
3267 struct anon_vma_chain *
3268 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3269 				  unsigned long start, unsigned long last);
3270 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3271 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3272 #ifdef CONFIG_DEBUG_VM_RB
3273 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3274 #endif
3275 
3276 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3277 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3278 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3279 
3280 /* mmap.c */
3281 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3282 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3283 extern void exit_mmap(struct mm_struct *);
3284 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3285 				 unsigned long addr, bool write);
3286 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3287 static inline int check_data_rlimit(unsigned long rlim,
3288 				    unsigned long new,
3289 				    unsigned long start,
3290 				    unsigned long end_data,
3291 				    unsigned long start_data)
3292 {
3293 	if (rlim < RLIM_INFINITY) {
3294 		if (((new - start) + (end_data - start_data)) > rlim)
3295 			return -ENOSPC;
3296 	}
3297 
3298 	return 0;
3299 }
3300 
3301 extern int mm_take_all_locks(struct mm_struct *mm);
3302 extern void mm_drop_all_locks(struct mm_struct *mm);
3303 
3304 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3305 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3306 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3307 extern struct file *get_task_exe_file(struct task_struct *task);
3308 
3309 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3310 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3311 
3312 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3313 				   const struct vm_special_mapping *sm);
3314 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3315 				   unsigned long addr, unsigned long len,
3316 				   unsigned long flags,
3317 				   const struct vm_special_mapping *spec);
3318 
3319 unsigned long randomize_stack_top(unsigned long stack_top);
3320 unsigned long randomize_page(unsigned long start, unsigned long range);
3321 
3322 unsigned long
3323 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3324 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3325 
3326 static inline unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3327 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3328 		  unsigned long pgoff, unsigned long flags)
3329 {
3330 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3331 }
3332 
3333 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3334 	unsigned long len, unsigned long prot, unsigned long flags,
3335 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3336 	struct list_head *uf);
3337 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3338 			 unsigned long start, size_t len, struct list_head *uf,
3339 			 bool unlock);
3340 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3341 		    struct mm_struct *mm, unsigned long start,
3342 		    unsigned long end, struct list_head *uf, bool unlock);
3343 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3344 		     struct list_head *uf);
3345 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3346 
3347 #ifdef CONFIG_MMU
3348 extern int __mm_populate(unsigned long addr, unsigned long len,
3349 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3350 static inline void mm_populate(unsigned long addr, unsigned long len)
3351 {
3352 	/* Ignore errors */
3353 	(void) __mm_populate(addr, len, 1);
3354 }
3355 #else
mm_populate(unsigned long addr,unsigned long len)3356 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3357 #endif
3358 
3359 /* This takes the mm semaphore itself */
3360 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3361 extern int vm_munmap(unsigned long, size_t);
3362 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3363         unsigned long, unsigned long,
3364         unsigned long, unsigned long);
3365 
3366 struct vm_unmapped_area_info {
3367 #define VM_UNMAPPED_AREA_TOPDOWN 1
3368 	unsigned long flags;
3369 	unsigned long length;
3370 	unsigned long low_limit;
3371 	unsigned long high_limit;
3372 	unsigned long align_mask;
3373 	unsigned long align_offset;
3374 	unsigned long start_gap;
3375 };
3376 
3377 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3378 
3379 /* truncate.c */
3380 extern void truncate_inode_pages(struct address_space *, loff_t);
3381 extern void truncate_inode_pages_range(struct address_space *,
3382 				       loff_t lstart, loff_t lend);
3383 extern void truncate_inode_pages_final(struct address_space *);
3384 
3385 /* generic vm_area_ops exported for stackable file systems */
3386 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3387 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3388 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3389 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3390 
3391 extern unsigned long stack_guard_gap;
3392 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3393 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3394 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3395 
3396 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3397 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3398 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3399 					     struct vm_area_struct **pprev);
3400 
3401 /*
3402  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3403  * NULL if none.  Assume start_addr < end_addr.
3404  */
3405 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3406 			unsigned long start_addr, unsigned long end_addr);
3407 
3408 /**
3409  * vma_lookup() - Find a VMA at a specific address
3410  * @mm: The process address space.
3411  * @addr: The user address.
3412  *
3413  * Return: The vm_area_struct at the given address, %NULL otherwise.
3414  */
3415 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3416 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3417 {
3418 	return mtree_load(&mm->mm_mt, addr);
3419 }
3420 
stack_guard_start_gap(struct vm_area_struct * vma)3421 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3422 {
3423 	if (vma->vm_flags & VM_GROWSDOWN)
3424 		return stack_guard_gap;
3425 
3426 	/* See reasoning around the VM_SHADOW_STACK definition */
3427 	if (vma->vm_flags & VM_SHADOW_STACK)
3428 		return PAGE_SIZE;
3429 
3430 	return 0;
3431 }
3432 
vm_start_gap(struct vm_area_struct * vma)3433 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3434 {
3435 	unsigned long gap = stack_guard_start_gap(vma);
3436 	unsigned long vm_start = vma->vm_start;
3437 
3438 	vm_start -= gap;
3439 	if (vm_start > vma->vm_start)
3440 		vm_start = 0;
3441 	return vm_start;
3442 }
3443 
vm_end_gap(struct vm_area_struct * vma)3444 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3445 {
3446 	unsigned long vm_end = vma->vm_end;
3447 
3448 	if (vma->vm_flags & VM_GROWSUP) {
3449 		vm_end += stack_guard_gap;
3450 		if (vm_end < vma->vm_end)
3451 			vm_end = -PAGE_SIZE;
3452 	}
3453 	return vm_end;
3454 }
3455 
vma_pages(struct vm_area_struct * vma)3456 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3457 {
3458 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3459 }
3460 
3461 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3462 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3463 				unsigned long vm_start, unsigned long vm_end)
3464 {
3465 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3466 
3467 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3468 		vma = NULL;
3469 
3470 	return vma;
3471 }
3472 
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)3473 static inline bool range_in_vma(struct vm_area_struct *vma,
3474 				unsigned long start, unsigned long end)
3475 {
3476 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3477 }
3478 
3479 #ifdef CONFIG_MMU
3480 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3481 void vma_set_page_prot(struct vm_area_struct *vma);
3482 #else
vm_get_page_prot(unsigned long vm_flags)3483 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3484 {
3485 	return __pgprot(0);
3486 }
vma_set_page_prot(struct vm_area_struct * vma)3487 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3488 {
3489 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3490 }
3491 #endif
3492 
3493 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3494 
3495 #ifdef CONFIG_NUMA_BALANCING
3496 unsigned long change_prot_numa(struct vm_area_struct *vma,
3497 			unsigned long start, unsigned long end);
3498 #endif
3499 
3500 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3501 		unsigned long addr);
3502 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3503 			unsigned long pfn, unsigned long size, pgprot_t);
3504 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3505 		unsigned long pfn, unsigned long size, pgprot_t prot);
3506 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3507 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3508 			struct page **pages, unsigned long *num);
3509 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3510 				unsigned long num);
3511 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3512 				unsigned long num);
3513 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
3514 			bool write);
3515 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3516 			unsigned long pfn);
3517 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3518 			unsigned long pfn, pgprot_t pgprot);
3519 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3520 			pfn_t pfn);
3521 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3522 		unsigned long addr, pfn_t pfn);
3523 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3524 
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3525 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3526 				unsigned long addr, struct page *page)
3527 {
3528 	int err = vm_insert_page(vma, addr, page);
3529 
3530 	if (err == -ENOMEM)
3531 		return VM_FAULT_OOM;
3532 	if (err < 0 && err != -EBUSY)
3533 		return VM_FAULT_SIGBUS;
3534 
3535 	return VM_FAULT_NOPAGE;
3536 }
3537 
3538 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3539 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3540 				     unsigned long addr, unsigned long pfn,
3541 				     unsigned long size, pgprot_t prot)
3542 {
3543 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3544 }
3545 #endif
3546 
vmf_error(int err)3547 static inline vm_fault_t vmf_error(int err)
3548 {
3549 	if (err == -ENOMEM)
3550 		return VM_FAULT_OOM;
3551 	else if (err == -EHWPOISON)
3552 		return VM_FAULT_HWPOISON;
3553 	return VM_FAULT_SIGBUS;
3554 }
3555 
3556 /*
3557  * Convert errno to return value for ->page_mkwrite() calls.
3558  *
3559  * This should eventually be merged with vmf_error() above, but will need a
3560  * careful audit of all vmf_error() callers.
3561  */
vmf_fs_error(int err)3562 static inline vm_fault_t vmf_fs_error(int err)
3563 {
3564 	if (err == 0)
3565 		return VM_FAULT_LOCKED;
3566 	if (err == -EFAULT || err == -EAGAIN)
3567 		return VM_FAULT_NOPAGE;
3568 	if (err == -ENOMEM)
3569 		return VM_FAULT_OOM;
3570 	/* -ENOSPC, -EDQUOT, -EIO ... */
3571 	return VM_FAULT_SIGBUS;
3572 }
3573 
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3574 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3575 {
3576 	if (vm_fault & VM_FAULT_OOM)
3577 		return -ENOMEM;
3578 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3579 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3580 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3581 		return -EFAULT;
3582 	return 0;
3583 }
3584 
3585 /*
3586  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3587  * a (NUMA hinting) fault is required.
3588  */
gup_can_follow_protnone(struct vm_area_struct * vma,unsigned int flags)3589 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3590 					   unsigned int flags)
3591 {
3592 	/*
3593 	 * If callers don't want to honor NUMA hinting faults, no need to
3594 	 * determine if we would actually have to trigger a NUMA hinting fault.
3595 	 */
3596 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3597 		return true;
3598 
3599 	/*
3600 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3601 	 *
3602 	 * Requiring a fault here even for inaccessible VMAs would mean that
3603 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3604 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3605 	 */
3606 	return !vma_is_accessible(vma);
3607 }
3608 
3609 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3610 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3611 			       unsigned long size, pte_fn_t fn, void *data);
3612 extern int apply_to_existing_page_range(struct mm_struct *mm,
3613 				   unsigned long address, unsigned long size,
3614 				   pte_fn_t fn, void *data);
3615 
3616 #ifdef CONFIG_PAGE_POISONING
3617 extern void __kernel_poison_pages(struct page *page, int numpages);
3618 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3619 extern bool _page_poisoning_enabled_early;
3620 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3621 static inline bool page_poisoning_enabled(void)
3622 {
3623 	return _page_poisoning_enabled_early;
3624 }
3625 /*
3626  * For use in fast paths after init_mem_debugging() has run, or when a
3627  * false negative result is not harmful when called too early.
3628  */
page_poisoning_enabled_static(void)3629 static inline bool page_poisoning_enabled_static(void)
3630 {
3631 	return static_branch_unlikely(&_page_poisoning_enabled);
3632 }
kernel_poison_pages(struct page * page,int numpages)3633 static inline void kernel_poison_pages(struct page *page, int numpages)
3634 {
3635 	if (page_poisoning_enabled_static())
3636 		__kernel_poison_pages(page, numpages);
3637 }
kernel_unpoison_pages(struct page * page,int numpages)3638 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3639 {
3640 	if (page_poisoning_enabled_static())
3641 		__kernel_unpoison_pages(page, numpages);
3642 }
3643 #else
page_poisoning_enabled(void)3644 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3645 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3646 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3647 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3648 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3649 #endif
3650 
3651 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3652 static inline bool want_init_on_alloc(gfp_t flags)
3653 {
3654 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3655 				&init_on_alloc))
3656 		return true;
3657 	return flags & __GFP_ZERO;
3658 }
3659 
3660 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3661 static inline bool want_init_on_free(void)
3662 {
3663 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3664 				   &init_on_free);
3665 }
3666 
3667 extern bool _debug_pagealloc_enabled_early;
3668 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3669 
debug_pagealloc_enabled(void)3670 static inline bool debug_pagealloc_enabled(void)
3671 {
3672 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3673 		_debug_pagealloc_enabled_early;
3674 }
3675 
3676 /*
3677  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3678  * or when a false negative result is not harmful when called too early.
3679  */
debug_pagealloc_enabled_static(void)3680 static inline bool debug_pagealloc_enabled_static(void)
3681 {
3682 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3683 		return false;
3684 
3685 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3686 }
3687 
3688 /*
3689  * To support DEBUG_PAGEALLOC architecture must ensure that
3690  * __kernel_map_pages() never fails
3691  */
3692 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3693 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)3694 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3695 {
3696 	if (debug_pagealloc_enabled_static())
3697 		__kernel_map_pages(page, numpages, 1);
3698 }
3699 
debug_pagealloc_unmap_pages(struct page * page,int numpages)3700 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3701 {
3702 	if (debug_pagealloc_enabled_static())
3703 		__kernel_map_pages(page, numpages, 0);
3704 }
3705 
3706 extern unsigned int _debug_guardpage_minorder;
3707 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3708 
debug_guardpage_minorder(void)3709 static inline unsigned int debug_guardpage_minorder(void)
3710 {
3711 	return _debug_guardpage_minorder;
3712 }
3713 
debug_guardpage_enabled(void)3714 static inline bool debug_guardpage_enabled(void)
3715 {
3716 	return static_branch_unlikely(&_debug_guardpage_enabled);
3717 }
3718 
page_is_guard(struct page * page)3719 static inline bool page_is_guard(struct page *page)
3720 {
3721 	if (!debug_guardpage_enabled())
3722 		return false;
3723 
3724 	return PageGuard(page);
3725 }
3726 
3727 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3728 static inline bool set_page_guard(struct zone *zone, struct page *page,
3729 				  unsigned int order)
3730 {
3731 	if (!debug_guardpage_enabled())
3732 		return false;
3733 	return __set_page_guard(zone, page, order);
3734 }
3735 
3736 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3737 static inline void clear_page_guard(struct zone *zone, struct page *page,
3738 				    unsigned int order)
3739 {
3740 	if (!debug_guardpage_enabled())
3741 		return;
3742 	__clear_page_guard(zone, page, order);
3743 }
3744 
3745 #else	/* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3746 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3747 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)3748 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3749 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3750 static inline bool page_is_guard(struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3751 static inline bool set_page_guard(struct zone *zone, struct page *page,
3752 			unsigned int order) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3753 static inline void clear_page_guard(struct zone *zone, struct page *page,
3754 				unsigned int order) {}
3755 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3756 
3757 #ifdef __HAVE_ARCH_GATE_AREA
3758 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3759 extern int in_gate_area_no_mm(unsigned long addr);
3760 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3761 #else
get_gate_vma(struct mm_struct * mm)3762 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3763 {
3764 	return NULL;
3765 }
in_gate_area_no_mm(unsigned long addr)3766 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3767 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3768 {
3769 	return 0;
3770 }
3771 #endif	/* __HAVE_ARCH_GATE_AREA */
3772 
3773 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3774 
3775 void drop_slab(void);
3776 
3777 #ifndef CONFIG_MMU
3778 #define randomize_va_space 0
3779 #else
3780 extern int randomize_va_space;
3781 #endif
3782 
3783 const char * arch_vma_name(struct vm_area_struct *vma);
3784 #ifdef CONFIG_MMU
3785 void print_vma_addr(char *prefix, unsigned long rip);
3786 #else
print_vma_addr(char * prefix,unsigned long rip)3787 static inline void print_vma_addr(char *prefix, unsigned long rip)
3788 {
3789 }
3790 #endif
3791 
3792 void *sparse_buffer_alloc(unsigned long size);
3793 unsigned long section_map_size(void);
3794 struct page * __populate_section_memmap(unsigned long pfn,
3795 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3796 		struct dev_pagemap *pgmap);
3797 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3798 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3799 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3800 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3801 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3802 			    struct vmem_altmap *altmap, unsigned long ptpfn,
3803 			    unsigned long flags);
3804 void *vmemmap_alloc_block(unsigned long size, int node);
3805 struct vmem_altmap;
3806 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3807 			      struct vmem_altmap *altmap);
3808 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3809 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3810 		     unsigned long addr, unsigned long next);
3811 int vmemmap_check_pmd(pmd_t *pmd, int node,
3812 		      unsigned long addr, unsigned long next);
3813 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3814 			       int node, struct vmem_altmap *altmap);
3815 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3816 			       int node, struct vmem_altmap *altmap);
3817 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3818 		struct vmem_altmap *altmap);
3819 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
3820 			 unsigned long headsize);
3821 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
3822 		     unsigned long headsize);
3823 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
3824 			  unsigned long headsize);
3825 void vmemmap_populate_print_last(void);
3826 #ifdef CONFIG_MEMORY_HOTPLUG
3827 void vmemmap_free(unsigned long start, unsigned long end,
3828 		struct vmem_altmap *altmap);
3829 #endif
3830 
3831 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmem_altmap_offset(struct vmem_altmap * altmap)3832 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3833 {
3834 	/* number of pfns from base where pfn_to_page() is valid */
3835 	if (altmap)
3836 		return altmap->reserve + altmap->free;
3837 	return 0;
3838 }
3839 
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3840 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3841 				    unsigned long nr_pfns)
3842 {
3843 	altmap->alloc -= nr_pfns;
3844 }
3845 #else
vmem_altmap_offset(struct vmem_altmap * altmap)3846 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3847 {
3848 	return 0;
3849 }
3850 
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3851 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3852 				    unsigned long nr_pfns)
3853 {
3854 }
3855 #endif
3856 
3857 #define VMEMMAP_RESERVE_NR	2
3858 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3859 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3860 					  struct dev_pagemap *pgmap)
3861 {
3862 	unsigned long nr_pages;
3863 	unsigned long nr_vmemmap_pages;
3864 
3865 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3866 		return false;
3867 
3868 	nr_pages = pgmap_vmemmap_nr(pgmap);
3869 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3870 	/*
3871 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3872 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3873 	 */
3874 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3875 }
3876 /*
3877  * If we don't have an architecture override, use the generic rule
3878  */
3879 #ifndef vmemmap_can_optimize
3880 #define vmemmap_can_optimize __vmemmap_can_optimize
3881 #endif
3882 
3883 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3884 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3885 					   struct dev_pagemap *pgmap)
3886 {
3887 	return false;
3888 }
3889 #endif
3890 
3891 enum mf_flags {
3892 	MF_COUNT_INCREASED = 1 << 0,
3893 	MF_ACTION_REQUIRED = 1 << 1,
3894 	MF_MUST_KILL = 1 << 2,
3895 	MF_SOFT_OFFLINE = 1 << 3,
3896 	MF_UNPOISON = 1 << 4,
3897 	MF_SW_SIMULATED = 1 << 5,
3898 	MF_NO_RETRY = 1 << 6,
3899 	MF_MEM_PRE_REMOVE = 1 << 7,
3900 };
3901 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3902 		      unsigned long count, int mf_flags);
3903 extern int memory_failure(unsigned long pfn, int flags);
3904 extern void memory_failure_queue_kick(int cpu);
3905 extern int unpoison_memory(unsigned long pfn);
3906 extern atomic_long_t num_poisoned_pages __read_mostly;
3907 extern int soft_offline_page(unsigned long pfn, int flags);
3908 #ifdef CONFIG_MEMORY_FAILURE
3909 /*
3910  * Sysfs entries for memory failure handling statistics.
3911  */
3912 extern const struct attribute_group memory_failure_attr_group;
3913 extern void memory_failure_queue(unsigned long pfn, int flags);
3914 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3915 					bool *migratable_cleared);
3916 void num_poisoned_pages_inc(unsigned long pfn);
3917 void num_poisoned_pages_sub(unsigned long pfn, long i);
3918 #else
memory_failure_queue(unsigned long pfn,int flags)3919 static inline void memory_failure_queue(unsigned long pfn, int flags)
3920 {
3921 }
3922 
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)3923 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3924 					bool *migratable_cleared)
3925 {
3926 	return 0;
3927 }
3928 
num_poisoned_pages_inc(unsigned long pfn)3929 static inline void num_poisoned_pages_inc(unsigned long pfn)
3930 {
3931 }
3932 
num_poisoned_pages_sub(unsigned long pfn,long i)3933 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3934 {
3935 }
3936 #endif
3937 
3938 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3939 extern void memblk_nr_poison_inc(unsigned long pfn);
3940 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3941 #else
memblk_nr_poison_inc(unsigned long pfn)3942 static inline void memblk_nr_poison_inc(unsigned long pfn)
3943 {
3944 }
3945 
memblk_nr_poison_sub(unsigned long pfn,long i)3946 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3947 {
3948 }
3949 #endif
3950 
3951 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)3952 static inline int arch_memory_failure(unsigned long pfn, int flags)
3953 {
3954 	return -ENXIO;
3955 }
3956 #endif
3957 
3958 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)3959 static inline bool arch_is_platform_page(u64 paddr)
3960 {
3961 	return false;
3962 }
3963 #endif
3964 
3965 /*
3966  * Error handlers for various types of pages.
3967  */
3968 enum mf_result {
3969 	MF_IGNORED,	/* Error: cannot be handled */
3970 	MF_FAILED,	/* Error: handling failed */
3971 	MF_DELAYED,	/* Will be handled later */
3972 	MF_RECOVERED,	/* Successfully recovered */
3973 };
3974 
3975 enum mf_action_page_type {
3976 	MF_MSG_KERNEL,
3977 	MF_MSG_KERNEL_HIGH_ORDER,
3978 	MF_MSG_DIFFERENT_COMPOUND,
3979 	MF_MSG_HUGE,
3980 	MF_MSG_FREE_HUGE,
3981 	MF_MSG_GET_HWPOISON,
3982 	MF_MSG_UNMAP_FAILED,
3983 	MF_MSG_DIRTY_SWAPCACHE,
3984 	MF_MSG_CLEAN_SWAPCACHE,
3985 	MF_MSG_DIRTY_MLOCKED_LRU,
3986 	MF_MSG_CLEAN_MLOCKED_LRU,
3987 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3988 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3989 	MF_MSG_DIRTY_LRU,
3990 	MF_MSG_CLEAN_LRU,
3991 	MF_MSG_TRUNCATED_LRU,
3992 	MF_MSG_BUDDY,
3993 	MF_MSG_DAX,
3994 	MF_MSG_UNSPLIT_THP,
3995 	MF_MSG_ALREADY_POISONED,
3996 	MF_MSG_UNKNOWN,
3997 };
3998 
3999 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4000 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4001 int copy_user_large_folio(struct folio *dst, struct folio *src,
4002 			  unsigned long addr_hint,
4003 			  struct vm_area_struct *vma);
4004 long copy_folio_from_user(struct folio *dst_folio,
4005 			   const void __user *usr_src,
4006 			   bool allow_pagefault);
4007 
4008 /**
4009  * vma_is_special_huge - Are transhuge page-table entries considered special?
4010  * @vma: Pointer to the struct vm_area_struct to consider
4011  *
4012  * Whether transhuge page-table entries are considered "special" following
4013  * the definition in vm_normal_page().
4014  *
4015  * Return: true if transhuge page-table entries should be considered special,
4016  * false otherwise.
4017  */
vma_is_special_huge(const struct vm_area_struct * vma)4018 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4019 {
4020 	return vma_is_dax(vma) || (vma->vm_file &&
4021 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4022 }
4023 
4024 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4025 
4026 #if MAX_NUMNODES > 1
4027 void __init setup_nr_node_ids(void);
4028 #else
setup_nr_node_ids(void)4029 static inline void setup_nr_node_ids(void) {}
4030 #endif
4031 
4032 extern int memcmp_pages(struct page *page1, struct page *page2);
4033 
pages_identical(struct page * page1,struct page * page2)4034 static inline int pages_identical(struct page *page1, struct page *page2)
4035 {
4036 	return !memcmp_pages(page1, page2);
4037 }
4038 
4039 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4040 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4041 						pgoff_t first_index, pgoff_t nr,
4042 						pgoff_t bitmap_pgoff,
4043 						unsigned long *bitmap,
4044 						pgoff_t *start,
4045 						pgoff_t *end);
4046 
4047 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4048 				      pgoff_t first_index, pgoff_t nr);
4049 #endif
4050 
4051 #ifdef CONFIG_ANON_VMA_NAME
4052 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4053 			  unsigned long len_in,
4054 			  struct anon_vma_name *anon_name);
4055 #else
4056 static inline int
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)4057 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4058 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4059 	return 0;
4060 }
4061 #endif
4062 
4063 #ifdef CONFIG_UNACCEPTED_MEMORY
4064 
4065 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4066 void accept_memory(phys_addr_t start, unsigned long size);
4067 
4068 #else
4069 
range_contains_unaccepted_memory(phys_addr_t start,unsigned long size)4070 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4071 						    unsigned long size)
4072 {
4073 	return false;
4074 }
4075 
accept_memory(phys_addr_t start,unsigned long size)4076 static inline void accept_memory(phys_addr_t start, unsigned long size)
4077 {
4078 }
4079 
4080 #endif
4081 
pfn_is_unaccepted_memory(unsigned long pfn)4082 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4083 {
4084 	return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4085 }
4086 
4087 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4088 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4089 
4090 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4091 int reserve_mem_release_by_name(const char *name);
4092 
4093 #ifdef CONFIG_64BIT
4094 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4095 #else
do_mseal(unsigned long start,size_t len_in,unsigned long flags)4096 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4097 {
4098 	/* noop on 32 bit */
4099 	return 0;
4100 }
4101 #endif
4102 
4103 /*
4104  * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4105  * be zeroed or not.
4106  */
user_alloc_needs_zeroing(void)4107 static inline bool user_alloc_needs_zeroing(void)
4108 {
4109 	/*
4110 	 * for user folios, arch with cache aliasing requires cache flush and
4111 	 * arc changes folio->flags to make icache coherent with dcache, so
4112 	 * always return false to make caller use
4113 	 * clear_user_page()/clear_user_highpage().
4114 	 */
4115 	return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4116 	       !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4117 				   &init_on_alloc);
4118 }
4119 
4120 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4121 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4122 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4123 
4124 
4125 /*
4126  * mseal of userspace process's system mappings.
4127  */
4128 #ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS
4129 #define VM_SEALED_SYSMAP	VM_SEALED
4130 #else
4131 #define VM_SEALED_SYSMAP	VM_NONE
4132 #endif
4133 
4134 /*
4135  * DMA mapping IDs for page_pool
4136  *
4137  * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and
4138  * stashes it in the upper bits of page->pp_magic. We always want to be able to
4139  * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP
4140  * pages can have arbitrary kernel pointers stored in the same field as pp_magic
4141  * (since it overlaps with page->lru.next), so we must ensure that we cannot
4142  * mistake a valid kernel pointer with any of the values we write into this
4143  * field.
4144  *
4145  * On architectures that set POISON_POINTER_DELTA, this is already ensured,
4146  * since this value becomes part of PP_SIGNATURE; meaning we can just use the
4147  * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the
4148  * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is
4149  * 0, we make sure that we leave the two topmost bits empty, as that guarantees
4150  * we won't mistake a valid kernel pointer for a value we set, regardless of the
4151  * VMSPLIT setting.
4152  *
4153  * Altogether, this means that the number of bits available is constrained by
4154  * the size of an unsigned long (at the upper end, subtracting two bits per the
4155  * above), and the definition of PP_SIGNATURE (with or without
4156  * POISON_POINTER_DELTA).
4157  */
4158 #define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA))
4159 #if POISON_POINTER_DELTA > 0
4160 /* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA
4161  * index to not overlap with that if set
4162  */
4163 #define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT)
4164 #else
4165 /* Always leave out the topmost two; see above. */
4166 #define PP_DMA_INDEX_BITS MIN(32, BITS_PER_LONG - PP_DMA_INDEX_SHIFT - 2)
4167 #endif
4168 
4169 #define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \
4170 				  PP_DMA_INDEX_SHIFT)
4171 
4172 /* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is
4173  * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for
4174  * the head page of compound page and bit 1 for pfmemalloc page, as well as the
4175  * bits used for the DMA index. page_is_pfmemalloc() is checked in
4176  * __page_pool_put_page() to avoid recycling the pfmemalloc page.
4177  */
4178 #define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL)
4179 
4180 #ifdef CONFIG_PAGE_POOL
page_pool_page_is_pp(struct page * page)4181 static inline bool page_pool_page_is_pp(struct page *page)
4182 {
4183 	return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE;
4184 }
4185 #else
page_pool_page_is_pp(struct page * page)4186 static inline bool page_pool_page_is_pp(struct page *page)
4187 {
4188 	return false;
4189 }
4190 #endif
4191 
4192 #endif /* _LINUX_MM_H */
4193