xref: /linux/include/linux/mm.h (revision c25f2fb1f469deaed2df8db524d91f3321a0f816)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/compiler.h>
16 #include <linux/mm_types.h>
17 #include <linux/mmap_lock.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page-flags.h>
27 #include <linux/page_ref.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 #include <linux/sched.h>
31 #include <linux/pgtable.h>
32 #include <linux/kasan.h>
33 #include <linux/memremap.h>
34 #include <linux/slab.h>
35 #include <linux/cacheinfo.h>
36 #include <linux/rcuwait.h>
37 #include <linux/bitmap.h>
38 #include <linux/bitops.h>
39 
40 struct mempolicy;
41 struct anon_vma;
42 struct anon_vma_chain;
43 struct user_struct;
44 struct pt_regs;
45 struct folio_batch;
46 
47 void arch_mm_preinit(void);
48 void mm_core_init(void);
49 void init_mm_internals(void);
50 
51 extern atomic_long_t _totalram_pages;
totalram_pages(void)52 static inline unsigned long totalram_pages(void)
53 {
54 	return (unsigned long)atomic_long_read(&_totalram_pages);
55 }
56 
totalram_pages_inc(void)57 static inline void totalram_pages_inc(void)
58 {
59 	atomic_long_inc(&_totalram_pages);
60 }
61 
totalram_pages_dec(void)62 static inline void totalram_pages_dec(void)
63 {
64 	atomic_long_dec(&_totalram_pages);
65 }
66 
totalram_pages_add(long count)67 static inline void totalram_pages_add(long count)
68 {
69 	atomic_long_add(count, &_totalram_pages);
70 }
71 
72 extern void * high_memory;
73 
74 /*
75  * Convert between pages and MB
76  * 20 is the shift for 1MB (2^20 = 1MB)
77  * PAGE_SHIFT is the shift for page size (e.g., 12 for 4KB pages)
78  * So (20 - PAGE_SHIFT) converts between pages and MB
79  */
80 #define PAGES_TO_MB(pages) ((pages) >> (20 - PAGE_SHIFT))
81 #define MB_TO_PAGES(mb)    ((mb) << (20 - PAGE_SHIFT))
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #ifndef DIRECT_MAP_PHYSMEM_END
101 # ifdef MAX_PHYSMEM_BITS
102 # define DIRECT_MAP_PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
103 # else
104 # define DIRECT_MAP_PHYSMEM_END	(((phys_addr_t)-1)&~(1ULL<<63))
105 # endif
106 #endif
107 
108 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
109 
110 #include <asm/page.h>
111 #include <asm/processor.h>
112 
113 #ifndef __pa_symbol
114 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
115 #endif
116 
117 #ifndef page_to_virt
118 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
119 #endif
120 
121 #ifndef lm_alias
122 #define lm_alias(x)	__va(__pa_symbol(x))
123 #endif
124 
125 /*
126  * To prevent common memory management code establishing
127  * a zero page mapping on a read fault.
128  * This macro should be defined within <asm/pgtable.h>.
129  * s390 does this to prevent multiplexing of hardware bits
130  * related to the physical page in case of virtualization.
131  */
132 #ifndef mm_forbids_zeropage
133 #define mm_forbids_zeropage(X)	(0)
134 #endif
135 
136 /*
137  * On some architectures it is expensive to call memset() for small sizes.
138  * If an architecture decides to implement their own version of
139  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140  * define their own version of this macro in <asm/pgtable.h>
141  */
142 #if BITS_PER_LONG == 64
143 /* This function must be updated when the size of struct page grows above 96
144  * or reduces below 56. The idea that compiler optimizes out switch()
145  * statement, and only leaves move/store instructions. Also the compiler can
146  * combine write statements if they are both assignments and can be reordered,
147  * this can result in several of the writes here being dropped.
148  */
149 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)150 static inline void __mm_zero_struct_page(struct page *page)
151 {
152 	unsigned long *_pp = (void *)page;
153 
154 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
155 	BUILD_BUG_ON(sizeof(struct page) & 7);
156 	BUILD_BUG_ON(sizeof(struct page) < 56);
157 	BUILD_BUG_ON(sizeof(struct page) > 96);
158 
159 	switch (sizeof(struct page)) {
160 	case 96:
161 		_pp[11] = 0;
162 		fallthrough;
163 	case 88:
164 		_pp[10] = 0;
165 		fallthrough;
166 	case 80:
167 		_pp[9] = 0;
168 		fallthrough;
169 	case 72:
170 		_pp[8] = 0;
171 		fallthrough;
172 	case 64:
173 		_pp[7] = 0;
174 		fallthrough;
175 	case 56:
176 		_pp[6] = 0;
177 		_pp[5] = 0;
178 		_pp[4] = 0;
179 		_pp[3] = 0;
180 		_pp[2] = 0;
181 		_pp[1] = 0;
182 		_pp[0] = 0;
183 	}
184 }
185 #else
186 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
187 #endif
188 
189 /*
190  * Default maximum number of active map areas, this limits the number of vmas
191  * per mm struct. Users can overwrite this number by sysctl but there is a
192  * problem.
193  *
194  * When a program's coredump is generated as ELF format, a section is created
195  * per a vma. In ELF, the number of sections is represented in unsigned short.
196  * This means the number of sections should be smaller than 65535 at coredump.
197  * Because the kernel adds some informative sections to a image of program at
198  * generating coredump, we need some margin. The number of extra sections is
199  * 1-3 now and depends on arch. We use "5" as safe margin, here.
200  *
201  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
202  * not a hard limit any more. Although some userspace tools can be surprised by
203  * that.
204  */
205 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
206 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
207 
208 extern int sysctl_max_map_count;
209 
210 extern unsigned long sysctl_user_reserve_kbytes;
211 extern unsigned long sysctl_admin_reserve_kbytes;
212 
213 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
214 bool page_range_contiguous(const struct page *page, unsigned long nr_pages);
215 #else
page_range_contiguous(const struct page * page,unsigned long nr_pages)216 static inline bool page_range_contiguous(const struct page *page,
217 		unsigned long nr_pages)
218 {
219 	return true;
220 }
221 #endif
222 
223 /* to align the pointer to the (next) page boundary */
224 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
225 
226 /* to align the pointer to the (prev) page boundary */
227 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
228 
229 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
230 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
231 
232 /**
233  * folio_page_idx - Return the number of a page in a folio.
234  * @folio: The folio.
235  * @page: The folio page.
236  *
237  * This function expects that the page is actually part of the folio.
238  * The returned number is relative to the start of the folio.
239  */
folio_page_idx(const struct folio * folio,const struct page * page)240 static inline unsigned long folio_page_idx(const struct folio *folio,
241 		const struct page *page)
242 {
243 	return page - &folio->page;
244 }
245 
lru_to_folio(struct list_head * head)246 static inline struct folio *lru_to_folio(struct list_head *head)
247 {
248 	return list_entry((head)->prev, struct folio, lru);
249 }
250 
251 void setup_initial_init_mm(void *start_code, void *end_code,
252 			   void *end_data, void *brk);
253 
254 /*
255  * Linux kernel virtual memory manager primitives.
256  * The idea being to have a "virtual" mm in the same way
257  * we have a virtual fs - giving a cleaner interface to the
258  * mm details, and allowing different kinds of memory mappings
259  * (from shared memory to executable loading to arbitrary
260  * mmap() functions).
261  */
262 
263 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
264 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
265 void vm_area_free(struct vm_area_struct *);
266 
267 #ifndef CONFIG_MMU
268 extern struct rb_root nommu_region_tree;
269 extern struct rw_semaphore nommu_region_sem;
270 
271 extern unsigned int kobjsize(const void *objp);
272 #endif
273 
274 /*
275  * vm_flags in vm_area_struct, see mm_types.h.
276  * When changing, update also include/trace/events/mmflags.h
277  */
278 
279 #define VM_NONE		0x00000000
280 
281 /**
282  * typedef vma_flag_t - specifies an individual VMA flag by bit number.
283  *
284  * This value is made type safe by sparse to avoid passing invalid flag values
285  * around.
286  */
287 typedef int __bitwise vma_flag_t;
288 
289 #define DECLARE_VMA_BIT(name, bitnum) \
290 	VMA_ ## name ## _BIT = ((__force vma_flag_t)bitnum)
291 #define DECLARE_VMA_BIT_ALIAS(name, aliased) \
292 	VMA_ ## name ## _BIT = (VMA_ ## aliased ## _BIT)
293 enum {
294 	DECLARE_VMA_BIT(READ, 0),
295 	DECLARE_VMA_BIT(WRITE, 1),
296 	DECLARE_VMA_BIT(EXEC, 2),
297 	DECLARE_VMA_BIT(SHARED, 3),
298 	/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
299 	DECLARE_VMA_BIT(MAYREAD, 4),	/* limits for mprotect() etc. */
300 	DECLARE_VMA_BIT(MAYWRITE, 5),
301 	DECLARE_VMA_BIT(MAYEXEC, 6),
302 	DECLARE_VMA_BIT(MAYSHARE, 7),
303 	DECLARE_VMA_BIT(GROWSDOWN, 8),	/* general info on the segment */
304 #ifdef CONFIG_MMU
305 	DECLARE_VMA_BIT(UFFD_MISSING, 9),/* missing pages tracking */
306 #else
307 	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
308 	DECLARE_VMA_BIT(MAYOVERLAY, 9),
309 #endif /* CONFIG_MMU */
310 	/* Page-ranges managed without "struct page", just pure PFN */
311 	DECLARE_VMA_BIT(PFNMAP, 10),
312 	DECLARE_VMA_BIT(MAYBE_GUARD, 11),
313 	DECLARE_VMA_BIT(UFFD_WP, 12),	/* wrprotect pages tracking */
314 	DECLARE_VMA_BIT(LOCKED, 13),
315 	DECLARE_VMA_BIT(IO, 14),	/* Memory mapped I/O or similar */
316 	DECLARE_VMA_BIT(SEQ_READ, 15),	/* App will access data sequentially */
317 	DECLARE_VMA_BIT(RAND_READ, 16),	/* App will not benefit from clustered reads */
318 	DECLARE_VMA_BIT(DONTCOPY, 17),	/* Do not copy this vma on fork */
319 	DECLARE_VMA_BIT(DONTEXPAND, 18),/* Cannot expand with mremap() */
320 	DECLARE_VMA_BIT(LOCKONFAULT, 19),/* Lock pages covered when faulted in */
321 	DECLARE_VMA_BIT(ACCOUNT, 20),	/* Is a VM accounted object */
322 	DECLARE_VMA_BIT(NORESERVE, 21),	/* should the VM suppress accounting */
323 	DECLARE_VMA_BIT(HUGETLB, 22),	/* Huge TLB Page VM */
324 	DECLARE_VMA_BIT(SYNC, 23),	/* Synchronous page faults */
325 	DECLARE_VMA_BIT(ARCH_1, 24),	/* Architecture-specific flag */
326 	DECLARE_VMA_BIT(WIPEONFORK, 25),/* Wipe VMA contents in child. */
327 	DECLARE_VMA_BIT(DONTDUMP, 26),	/* Do not include in the core dump */
328 	DECLARE_VMA_BIT(SOFTDIRTY, 27),	/* NOT soft dirty clean area */
329 	DECLARE_VMA_BIT(MIXEDMAP, 28),	/* Can contain struct page and pure PFN pages */
330 	DECLARE_VMA_BIT(HUGEPAGE, 29),	/* MADV_HUGEPAGE marked this vma */
331 	DECLARE_VMA_BIT(NOHUGEPAGE, 30),/* MADV_NOHUGEPAGE marked this vma */
332 	DECLARE_VMA_BIT(MERGEABLE, 31),	/* KSM may merge identical pages */
333 	/* These bits are reused, we define specific uses below. */
334 	DECLARE_VMA_BIT(HIGH_ARCH_0, 32),
335 	DECLARE_VMA_BIT(HIGH_ARCH_1, 33),
336 	DECLARE_VMA_BIT(HIGH_ARCH_2, 34),
337 	DECLARE_VMA_BIT(HIGH_ARCH_3, 35),
338 	DECLARE_VMA_BIT(HIGH_ARCH_4, 36),
339 	DECLARE_VMA_BIT(HIGH_ARCH_5, 37),
340 	DECLARE_VMA_BIT(HIGH_ARCH_6, 38),
341 	/*
342 	 * This flag is used to connect VFIO to arch specific KVM code. It
343 	 * indicates that the memory under this VMA is safe for use with any
344 	 * non-cachable memory type inside KVM. Some VFIO devices, on some
345 	 * platforms, are thought to be unsafe and can cause machine crashes
346 	 * if KVM does not lock down the memory type.
347 	 */
348 	DECLARE_VMA_BIT(ALLOW_ANY_UNCACHED, 39),
349 #ifdef CONFIG_PPC32
350 	DECLARE_VMA_BIT_ALIAS(DROPPABLE, ARCH_1),
351 #else
352 	DECLARE_VMA_BIT(DROPPABLE, 40),
353 #endif
354 	DECLARE_VMA_BIT(UFFD_MINOR, 41),
355 	DECLARE_VMA_BIT(SEALED, 42),
356 	/* Flags that reuse flags above. */
357 	DECLARE_VMA_BIT_ALIAS(PKEY_BIT0, HIGH_ARCH_0),
358 	DECLARE_VMA_BIT_ALIAS(PKEY_BIT1, HIGH_ARCH_1),
359 	DECLARE_VMA_BIT_ALIAS(PKEY_BIT2, HIGH_ARCH_2),
360 	DECLARE_VMA_BIT_ALIAS(PKEY_BIT3, HIGH_ARCH_3),
361 	DECLARE_VMA_BIT_ALIAS(PKEY_BIT4, HIGH_ARCH_4),
362 #if defined(CONFIG_X86_USER_SHADOW_STACK)
363 	/*
364 	 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
365 	 * support core mm.
366 	 *
367 	 * These VMAs will get a single end guard page. This helps userspace
368 	 * protect itself from attacks. A single page is enough for current
369 	 * shadow stack archs (x86). See the comments near alloc_shstk() in
370 	 * arch/x86/kernel/shstk.c for more details on the guard size.
371 	 */
372 	DECLARE_VMA_BIT_ALIAS(SHADOW_STACK, HIGH_ARCH_5),
373 #elif defined(CONFIG_ARM64_GCS)
374 	/*
375 	 * arm64's Guarded Control Stack implements similar functionality and
376 	 * has similar constraints to shadow stacks.
377 	 */
378 	DECLARE_VMA_BIT_ALIAS(SHADOW_STACK, HIGH_ARCH_6),
379 #endif
380 	DECLARE_VMA_BIT_ALIAS(SAO, ARCH_1),		/* Strong Access Ordering (powerpc) */
381 	DECLARE_VMA_BIT_ALIAS(GROWSUP, ARCH_1),		/* parisc */
382 	DECLARE_VMA_BIT_ALIAS(SPARC_ADI, ARCH_1),	/* sparc64 */
383 	DECLARE_VMA_BIT_ALIAS(ARM64_BTI, ARCH_1),	/* arm64 */
384 	DECLARE_VMA_BIT_ALIAS(ARCH_CLEAR, ARCH_1),	/* sparc64, arm64 */
385 	DECLARE_VMA_BIT_ALIAS(MAPPED_COPY, ARCH_1),	/* !CONFIG_MMU */
386 	DECLARE_VMA_BIT_ALIAS(MTE, HIGH_ARCH_4),	/* arm64 */
387 	DECLARE_VMA_BIT_ALIAS(MTE_ALLOWED, HIGH_ARCH_5),/* arm64 */
388 #ifdef CONFIG_STACK_GROWSUP
389 	DECLARE_VMA_BIT_ALIAS(STACK, GROWSUP),
390 	DECLARE_VMA_BIT_ALIAS(STACK_EARLY, GROWSDOWN),
391 #else
392 	DECLARE_VMA_BIT_ALIAS(STACK, GROWSDOWN),
393 #endif
394 };
395 #undef DECLARE_VMA_BIT
396 #undef DECLARE_VMA_BIT_ALIAS
397 
398 #define INIT_VM_FLAG(name) BIT((__force int) VMA_ ## name ## _BIT)
399 #define VM_READ		INIT_VM_FLAG(READ)
400 #define VM_WRITE	INIT_VM_FLAG(WRITE)
401 #define VM_EXEC		INIT_VM_FLAG(EXEC)
402 #define VM_SHARED	INIT_VM_FLAG(SHARED)
403 #define VM_MAYREAD	INIT_VM_FLAG(MAYREAD)
404 #define VM_MAYWRITE	INIT_VM_FLAG(MAYWRITE)
405 #define VM_MAYEXEC	INIT_VM_FLAG(MAYEXEC)
406 #define VM_MAYSHARE	INIT_VM_FLAG(MAYSHARE)
407 #define VM_GROWSDOWN	INIT_VM_FLAG(GROWSDOWN)
408 #ifdef CONFIG_MMU
409 #define VM_UFFD_MISSING	INIT_VM_FLAG(UFFD_MISSING)
410 #else
411 #define VM_UFFD_MISSING	VM_NONE
412 #define VM_MAYOVERLAY	INIT_VM_FLAG(MAYOVERLAY)
413 #endif
414 #define VM_PFNMAP	INIT_VM_FLAG(PFNMAP)
415 #define VM_MAYBE_GUARD	INIT_VM_FLAG(MAYBE_GUARD)
416 #define VM_UFFD_WP	INIT_VM_FLAG(UFFD_WP)
417 #define VM_LOCKED	INIT_VM_FLAG(LOCKED)
418 #define VM_IO		INIT_VM_FLAG(IO)
419 #define VM_SEQ_READ	INIT_VM_FLAG(SEQ_READ)
420 #define VM_RAND_READ	INIT_VM_FLAG(RAND_READ)
421 #define VM_DONTCOPY	INIT_VM_FLAG(DONTCOPY)
422 #define VM_DONTEXPAND	INIT_VM_FLAG(DONTEXPAND)
423 #define VM_LOCKONFAULT	INIT_VM_FLAG(LOCKONFAULT)
424 #define VM_ACCOUNT	INIT_VM_FLAG(ACCOUNT)
425 #define VM_NORESERVE	INIT_VM_FLAG(NORESERVE)
426 #define VM_HUGETLB	INIT_VM_FLAG(HUGETLB)
427 #define VM_SYNC		INIT_VM_FLAG(SYNC)
428 #define VM_ARCH_1	INIT_VM_FLAG(ARCH_1)
429 #define VM_WIPEONFORK	INIT_VM_FLAG(WIPEONFORK)
430 #define VM_DONTDUMP	INIT_VM_FLAG(DONTDUMP)
431 #ifdef CONFIG_MEM_SOFT_DIRTY
432 #define VM_SOFTDIRTY	INIT_VM_FLAG(SOFTDIRTY)
433 #else
434 #define VM_SOFTDIRTY	VM_NONE
435 #endif
436 #define VM_MIXEDMAP	INIT_VM_FLAG(MIXEDMAP)
437 #define VM_HUGEPAGE	INIT_VM_FLAG(HUGEPAGE)
438 #define VM_NOHUGEPAGE	INIT_VM_FLAG(NOHUGEPAGE)
439 #define VM_MERGEABLE	INIT_VM_FLAG(MERGEABLE)
440 #define VM_STACK	INIT_VM_FLAG(STACK)
441 #ifdef CONFIG_STACK_GROWSUP
442 #define VM_STACK_EARLY	INIT_VM_FLAG(STACK_EARLY)
443 #else
444 #define VM_STACK_EARLY	VM_NONE
445 #endif
446 #ifdef CONFIG_ARCH_HAS_PKEYS
447 #define VM_PKEY_SHIFT ((__force int)VMA_HIGH_ARCH_0_BIT)
448 /* Despite the naming, these are FLAGS not bits. */
449 #define VM_PKEY_BIT0 INIT_VM_FLAG(PKEY_BIT0)
450 #define VM_PKEY_BIT1 INIT_VM_FLAG(PKEY_BIT1)
451 #define VM_PKEY_BIT2 INIT_VM_FLAG(PKEY_BIT2)
452 #if CONFIG_ARCH_PKEY_BITS > 3
453 #define VM_PKEY_BIT3 INIT_VM_FLAG(PKEY_BIT3)
454 #else
455 #define VM_PKEY_BIT3  VM_NONE
456 #endif /* CONFIG_ARCH_PKEY_BITS > 3 */
457 #if CONFIG_ARCH_PKEY_BITS > 4
458 #define VM_PKEY_BIT4 INIT_VM_FLAG(PKEY_BIT4)
459 #else
460 #define VM_PKEY_BIT4  VM_NONE
461 #endif /* CONFIG_ARCH_PKEY_BITS > 4 */
462 #endif /* CONFIG_ARCH_HAS_PKEYS */
463 #if defined(CONFIG_X86_USER_SHADOW_STACK) || defined(CONFIG_ARM64_GCS)
464 #define VM_SHADOW_STACK	INIT_VM_FLAG(SHADOW_STACK)
465 #else
466 #define VM_SHADOW_STACK	VM_NONE
467 #endif
468 #if defined(CONFIG_PPC64)
469 #define VM_SAO		INIT_VM_FLAG(SAO)
470 #elif defined(CONFIG_PARISC)
471 #define VM_GROWSUP	INIT_VM_FLAG(GROWSUP)
472 #elif defined(CONFIG_SPARC64)
473 #define VM_SPARC_ADI	INIT_VM_FLAG(SPARC_ADI)
474 #define VM_ARCH_CLEAR	INIT_VM_FLAG(ARCH_CLEAR)
475 #elif defined(CONFIG_ARM64)
476 #define VM_ARM64_BTI	INIT_VM_FLAG(ARM64_BTI)
477 #define VM_ARCH_CLEAR	INIT_VM_FLAG(ARCH_CLEAR)
478 #elif !defined(CONFIG_MMU)
479 #define VM_MAPPED_COPY	INIT_VM_FLAG(MAPPED_COPY)
480 #endif
481 #ifndef VM_GROWSUP
482 #define VM_GROWSUP	VM_NONE
483 #endif
484 #ifdef CONFIG_ARM64_MTE
485 #define VM_MTE		INIT_VM_FLAG(MTE)
486 #define VM_MTE_ALLOWED	INIT_VM_FLAG(MTE_ALLOWED)
487 #else
488 #define VM_MTE		VM_NONE
489 #define VM_MTE_ALLOWED	VM_NONE
490 #endif
491 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
492 #define VM_UFFD_MINOR	INIT_VM_FLAG(UFFD_MINOR)
493 #else
494 #define VM_UFFD_MINOR	VM_NONE
495 #endif
496 #ifdef CONFIG_64BIT
497 #define VM_ALLOW_ANY_UNCACHED	INIT_VM_FLAG(ALLOW_ANY_UNCACHED)
498 #define VM_SEALED		INIT_VM_FLAG(SEALED)
499 #else
500 #define VM_ALLOW_ANY_UNCACHED	VM_NONE
501 #define VM_SEALED		VM_NONE
502 #endif
503 #if defined(CONFIG_64BIT) || defined(CONFIG_PPC32)
504 #define VM_DROPPABLE		INIT_VM_FLAG(DROPPABLE)
505 #else
506 #define VM_DROPPABLE		VM_NONE
507 #endif
508 
509 /* Bits set in the VMA until the stack is in its final location */
510 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
511 
512 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
513 
514 /* Common data flag combinations */
515 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
516 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
517 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
518 				 VM_MAYWRITE | VM_MAYEXEC)
519 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
520 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
521 
522 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
523 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
524 #endif
525 
526 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
527 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
528 #endif
529 
530 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
531 
532 #ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS
533 #define VM_SEALED_SYSMAP	VM_SEALED
534 #else
535 #define VM_SEALED_SYSMAP	VM_NONE
536 #endif
537 
538 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
539 
540 /* VMA basic access permission flags */
541 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
542 
543 /*
544  * Special vmas that are non-mergable, non-mlock()able.
545  */
546 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
547 
548 /*
549  * Physically remapped pages are special. Tell the
550  * rest of the world about it:
551  *   VM_IO tells people not to look at these pages
552  *	(accesses can have side effects).
553  *   VM_PFNMAP tells the core MM that the base pages are just
554  *	raw PFN mappings, and do not have a "struct page" associated
555  *	with them.
556  *   VM_DONTEXPAND
557  *      Disable vma merging and expanding with mremap().
558  *   VM_DONTDUMP
559  *      Omit vma from core dump, even when VM_IO turned off.
560  */
561 #define VM_REMAP_FLAGS (VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP)
562 
563 /* This mask prevents VMA from being scanned with khugepaged */
564 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
565 
566 /* This mask defines which mm->def_flags a process can inherit its parent */
567 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
568 
569 /* This mask represents all the VMA flag bits used by mlock */
570 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
571 
572 /* These flags can be updated atomically via VMA/mmap read lock. */
573 #define VM_ATOMIC_SET_ALLOWED VM_MAYBE_GUARD
574 
575 /* Arch-specific flags to clear when updating VM flags on protection change */
576 #ifndef VM_ARCH_CLEAR
577 #define VM_ARCH_CLEAR	VM_NONE
578 #endif
579 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
580 
581 /*
582  * Flags which should be 'sticky' on merge - that is, flags which, when one VMA
583  * possesses it but the other does not, the merged VMA should nonetheless have
584  * applied to it:
585  *
586  *   VM_SOFTDIRTY - if a VMA is marked soft-dirty, that is has not had its
587  *                  references cleared via /proc/$pid/clear_refs, any merged VMA
588  *                  should be considered soft-dirty also as it operates at a VMA
589  *                  granularity.
590  *
591  * VM_MAYBE_GUARD - If a VMA may have guard regions in place it implies that
592  *                  mapped page tables may contain metadata not described by the
593  *                  VMA and thus any merged VMA may also contain this metadata,
594  *                  and thus we must make this flag sticky.
595  */
596 #define VM_STICKY (VM_SOFTDIRTY | VM_MAYBE_GUARD)
597 
598 /*
599  * VMA flags we ignore for the purposes of merge, i.e. one VMA possessing one
600  * of these flags and the other not does not preclude a merge.
601  *
602  *    VM_STICKY - When merging VMAs, VMA flags must match, unless they are
603  *                'sticky'. If any sticky flags exist in either VMA, we simply
604  *                set all of them on the merged VMA.
605  */
606 #define VM_IGNORE_MERGE VM_STICKY
607 
608 /*
609  * Flags which should result in page tables being copied on fork. These are
610  * flags which indicate that the VMA maps page tables which cannot be
611  * reconsistuted upon page fault, so necessitate page table copying upon fork.
612  *
613  * Note that these flags should be compared with the DESTINATION VMA not the
614  * source, as VM_UFFD_WP may not be propagated to destination, while all other
615  * flags will be.
616  *
617  * VM_PFNMAP / VM_MIXEDMAP - These contain kernel-mapped data which cannot be
618  *                           reasonably reconstructed on page fault.
619  *
620  *              VM_UFFD_WP - Encodes metadata about an installed uffd
621  *                           write protect handler, which cannot be
622  *                           reconstructed on page fault.
623  *
624  *                           We always copy pgtables when dst_vma has uffd-wp
625  *                           enabled even if it's file-backed
626  *                           (e.g. shmem). Because when uffd-wp is enabled,
627  *                           pgtable contains uffd-wp protection information,
628  *                           that's something we can't retrieve from page cache,
629  *                           and skip copying will lose those info.
630  *
631  *          VM_MAYBE_GUARD - Could contain page guard region markers which
632  *                           by design are a property of the page tables
633  *                           only and thus cannot be reconstructed on page
634  *                           fault.
635  */
636 #define VM_COPY_ON_FORK (VM_PFNMAP | VM_MIXEDMAP | VM_UFFD_WP | VM_MAYBE_GUARD)
637 
638 /*
639  * mapping from the currently active vm_flags protection bits (the
640  * low four bits) to a page protection mask..
641  */
642 
643 /*
644  * The default fault flags that should be used by most of the
645  * arch-specific page fault handlers.
646  */
647 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
648 			     FAULT_FLAG_KILLABLE | \
649 			     FAULT_FLAG_INTERRUPTIBLE)
650 
651 /**
652  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
653  * @flags: Fault flags.
654  *
655  * This is mostly used for places where we want to try to avoid taking
656  * the mmap_lock for too long a time when waiting for another condition
657  * to change, in which case we can try to be polite to release the
658  * mmap_lock in the first round to avoid potential starvation of other
659  * processes that would also want the mmap_lock.
660  *
661  * Return: true if the page fault allows retry and this is the first
662  * attempt of the fault handling; false otherwise.
663  */
fault_flag_allow_retry_first(enum fault_flag flags)664 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
665 {
666 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
667 	    (!(flags & FAULT_FLAG_TRIED));
668 }
669 
670 #define FAULT_FLAG_TRACE \
671 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
672 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
673 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
674 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
675 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
676 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
677 	{ FAULT_FLAG_USER,		"USER" }, \
678 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
679 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
680 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
681 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
682 
683 /*
684  * vm_fault is filled by the pagefault handler and passed to the vma's
685  * ->fault function. The vma's ->fault is responsible for returning a bitmask
686  * of VM_FAULT_xxx flags that give details about how the fault was handled.
687  *
688  * MM layer fills up gfp_mask for page allocations but fault handler might
689  * alter it if its implementation requires a different allocation context.
690  *
691  * pgoff should be used in favour of virtual_address, if possible.
692  */
693 struct vm_fault {
694 	const struct {
695 		struct vm_area_struct *vma;	/* Target VMA */
696 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
697 		pgoff_t pgoff;			/* Logical page offset based on vma */
698 		unsigned long address;		/* Faulting virtual address - masked */
699 		unsigned long real_address;	/* Faulting virtual address - unmasked */
700 	};
701 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
702 					 * XXX: should really be 'const' */
703 	pmd_t *pmd;			/* Pointer to pmd entry matching
704 					 * the 'address' */
705 	pud_t *pud;			/* Pointer to pud entry matching
706 					 * the 'address'
707 					 */
708 	union {
709 		pte_t orig_pte;		/* Value of PTE at the time of fault */
710 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
711 					 * used by PMD fault only.
712 					 */
713 	};
714 
715 	struct page *cow_page;		/* Page handler may use for COW fault */
716 	struct page *page;		/* ->fault handlers should return a
717 					 * page here, unless VM_FAULT_NOPAGE
718 					 * is set (which is also implied by
719 					 * VM_FAULT_ERROR).
720 					 */
721 	/* These three entries are valid only while holding ptl lock */
722 	pte_t *pte;			/* Pointer to pte entry matching
723 					 * the 'address'. NULL if the page
724 					 * table hasn't been allocated.
725 					 */
726 	spinlock_t *ptl;		/* Page table lock.
727 					 * Protects pte page table if 'pte'
728 					 * is not NULL, otherwise pmd.
729 					 */
730 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
731 					 * vm_ops->map_pages() sets up a page
732 					 * table from atomic context.
733 					 * do_fault_around() pre-allocates
734 					 * page table to avoid allocation from
735 					 * atomic context.
736 					 */
737 };
738 
739 /*
740  * These are the virtual MM functions - opening of an area, closing and
741  * unmapping it (needed to keep files on disk up-to-date etc), pointer
742  * to the functions called when a no-page or a wp-page exception occurs.
743  */
744 struct vm_operations_struct {
745 	void (*open)(struct vm_area_struct * area);
746 	/**
747 	 * @close: Called when the VMA is being removed from the MM.
748 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
749 	 */
750 	void (*close)(struct vm_area_struct * area);
751 	/* Called any time before splitting to check if it's allowed */
752 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
753 	int (*mremap)(struct vm_area_struct *area);
754 	/*
755 	 * Called by mprotect() to make driver-specific permission
756 	 * checks before mprotect() is finalised.   The VMA must not
757 	 * be modified.  Returns 0 if mprotect() can proceed.
758 	 */
759 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
760 			unsigned long end, unsigned long newflags);
761 	vm_fault_t (*fault)(struct vm_fault *vmf);
762 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
763 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
764 			pgoff_t start_pgoff, pgoff_t end_pgoff);
765 	unsigned long (*pagesize)(struct vm_area_struct * area);
766 
767 	/* notification that a previously read-only page is about to become
768 	 * writable, if an error is returned it will cause a SIGBUS */
769 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
770 
771 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
772 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
773 
774 	/* called by access_process_vm when get_user_pages() fails, typically
775 	 * for use by special VMAs. See also generic_access_phys() for a generic
776 	 * implementation useful for any iomem mapping.
777 	 */
778 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
779 		      void *buf, int len, int write);
780 
781 	/* Called by the /proc/PID/maps code to ask the vma whether it
782 	 * has a special name.  Returning non-NULL will also cause this
783 	 * vma to be dumped unconditionally. */
784 	const char *(*name)(struct vm_area_struct *vma);
785 
786 #ifdef CONFIG_NUMA
787 	/*
788 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
789 	 * to hold the policy upon return.  Caller should pass NULL @new to
790 	 * remove a policy and fall back to surrounding context--i.e. do not
791 	 * install a MPOL_DEFAULT policy, nor the task or system default
792 	 * mempolicy.
793 	 */
794 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
795 
796 	/*
797 	 * get_policy() op must add reference [mpol_get()] to any policy at
798 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
799 	 * in mm/mempolicy.c will do this automatically.
800 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
801 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
802 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
803 	 * must return NULL--i.e., do not "fallback" to task or system default
804 	 * policy.
805 	 */
806 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
807 					unsigned long addr, pgoff_t *ilx);
808 #endif
809 #ifdef CONFIG_FIND_NORMAL_PAGE
810 	/*
811 	 * Called by vm_normal_page() for special PTEs in @vma at @addr. This
812 	 * allows for returning a "normal" page from vm_normal_page() even
813 	 * though the PTE indicates that the "struct page" either does not exist
814 	 * or should not be touched: "special".
815 	 *
816 	 * Do not add new users: this really only works when a "normal" page
817 	 * was mapped, but then the PTE got changed to something weird (+
818 	 * marked special) that would not make pte_pfn() identify the originally
819 	 * inserted page.
820 	 */
821 	struct page *(*find_normal_page)(struct vm_area_struct *vma,
822 					 unsigned long addr);
823 #endif /* CONFIG_FIND_NORMAL_PAGE */
824 };
825 
826 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)827 static inline void vma_numab_state_init(struct vm_area_struct *vma)
828 {
829 	vma->numab_state = NULL;
830 }
vma_numab_state_free(struct vm_area_struct * vma)831 static inline void vma_numab_state_free(struct vm_area_struct *vma)
832 {
833 	kfree(vma->numab_state);
834 }
835 #else
vma_numab_state_init(struct vm_area_struct * vma)836 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)837 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
838 #endif /* CONFIG_NUMA_BALANCING */
839 
840 /*
841  * These must be here rather than mmap_lock.h as dependent on vm_fault type,
842  * declared in this header.
843  */
844 #ifdef CONFIG_PER_VMA_LOCK
release_fault_lock(struct vm_fault * vmf)845 static inline void release_fault_lock(struct vm_fault *vmf)
846 {
847 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
848 		vma_end_read(vmf->vma);
849 	else
850 		mmap_read_unlock(vmf->vma->vm_mm);
851 }
852 
assert_fault_locked(const struct vm_fault * vmf)853 static inline void assert_fault_locked(const struct vm_fault *vmf)
854 {
855 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
856 		vma_assert_locked(vmf->vma);
857 	else
858 		mmap_assert_locked(vmf->vma->vm_mm);
859 }
860 #else
release_fault_lock(struct vm_fault * vmf)861 static inline void release_fault_lock(struct vm_fault *vmf)
862 {
863 	mmap_read_unlock(vmf->vma->vm_mm);
864 }
865 
assert_fault_locked(const struct vm_fault * vmf)866 static inline void assert_fault_locked(const struct vm_fault *vmf)
867 {
868 	mmap_assert_locked(vmf->vma->vm_mm);
869 }
870 #endif /* CONFIG_PER_VMA_LOCK */
871 
mm_flags_test(int flag,const struct mm_struct * mm)872 static inline bool mm_flags_test(int flag, const struct mm_struct *mm)
873 {
874 	return test_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
875 }
876 
mm_flags_test_and_set(int flag,struct mm_struct * mm)877 static inline bool mm_flags_test_and_set(int flag, struct mm_struct *mm)
878 {
879 	return test_and_set_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
880 }
881 
mm_flags_test_and_clear(int flag,struct mm_struct * mm)882 static inline bool mm_flags_test_and_clear(int flag, struct mm_struct *mm)
883 {
884 	return test_and_clear_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
885 }
886 
mm_flags_set(int flag,struct mm_struct * mm)887 static inline void mm_flags_set(int flag, struct mm_struct *mm)
888 {
889 	set_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
890 }
891 
mm_flags_clear(int flag,struct mm_struct * mm)892 static inline void mm_flags_clear(int flag, struct mm_struct *mm)
893 {
894 	clear_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
895 }
896 
mm_flags_clear_all(struct mm_struct * mm)897 static inline void mm_flags_clear_all(struct mm_struct *mm)
898 {
899 	bitmap_zero(ACCESS_PRIVATE(&mm->flags, __mm_flags), NUM_MM_FLAG_BITS);
900 }
901 
902 extern const struct vm_operations_struct vma_dummy_vm_ops;
903 
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)904 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
905 {
906 	memset(vma, 0, sizeof(*vma));
907 	vma->vm_mm = mm;
908 	vma->vm_ops = &vma_dummy_vm_ops;
909 	INIT_LIST_HEAD(&vma->anon_vma_chain);
910 	vma_lock_init(vma, false);
911 }
912 
913 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)914 static inline void vm_flags_init(struct vm_area_struct *vma,
915 				 vm_flags_t flags)
916 {
917 	VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY));
918 	vma_flags_clear_all(&vma->flags);
919 	vma_flags_overwrite_word(&vma->flags, flags);
920 }
921 
922 /*
923  * Use when VMA is part of the VMA tree and modifications need coordination
924  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
925  * it should be locked explicitly beforehand.
926  */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)927 static inline void vm_flags_reset(struct vm_area_struct *vma,
928 				  vm_flags_t flags)
929 {
930 	VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY));
931 	vma_assert_write_locked(vma);
932 	vm_flags_init(vma, flags);
933 }
934 
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)935 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
936 				       vm_flags_t flags)
937 {
938 	vma_assert_write_locked(vma);
939 	/*
940 	 * If VMA flags exist beyond the first system word, also clear these. It
941 	 * is assumed the write once behaviour is required only for the first
942 	 * system word.
943 	 */
944 	if (NUM_VMA_FLAG_BITS > BITS_PER_LONG) {
945 		unsigned long *bitmap = ACCESS_PRIVATE(&vma->flags, __vma_flags);
946 
947 		bitmap_zero(&bitmap[1], NUM_VMA_FLAG_BITS - BITS_PER_LONG);
948 	}
949 
950 	vma_flags_overwrite_word_once(&vma->flags, flags);
951 }
952 
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)953 static inline void vm_flags_set(struct vm_area_struct *vma,
954 				vm_flags_t flags)
955 {
956 	vma_start_write(vma);
957 	vma_flags_set_word(&vma->flags, flags);
958 }
959 
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)960 static inline void vm_flags_clear(struct vm_area_struct *vma,
961 				  vm_flags_t flags)
962 {
963 	VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY));
964 	vma_start_write(vma);
965 	vma_flags_clear_word(&vma->flags, flags);
966 }
967 
968 /*
969  * Use only if VMA is not part of the VMA tree or has no other users and
970  * therefore needs no locking.
971  */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)972 static inline void __vm_flags_mod(struct vm_area_struct *vma,
973 				  vm_flags_t set, vm_flags_t clear)
974 {
975 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
976 }
977 
978 /*
979  * Use only when the order of set/clear operations is unimportant, otherwise
980  * use vm_flags_{set|clear} explicitly.
981  */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)982 static inline void vm_flags_mod(struct vm_area_struct *vma,
983 				vm_flags_t set, vm_flags_t clear)
984 {
985 	vma_start_write(vma);
986 	__vm_flags_mod(vma, set, clear);
987 }
988 
__vma_flag_atomic_valid(struct vm_area_struct * vma,vma_flag_t bit)989 static inline bool __vma_flag_atomic_valid(struct vm_area_struct *vma,
990 					   vma_flag_t bit)
991 {
992 	const vm_flags_t mask = BIT((__force int)bit);
993 
994 	/* Only specific flags are permitted */
995 	if (WARN_ON_ONCE(!(mask & VM_ATOMIC_SET_ALLOWED)))
996 		return false;
997 
998 	return true;
999 }
1000 
1001 /*
1002  * Set VMA flag atomically. Requires only VMA/mmap read lock. Only specific
1003  * valid flags are allowed to do this.
1004  */
vma_flag_set_atomic(struct vm_area_struct * vma,vma_flag_t bit)1005 static inline void vma_flag_set_atomic(struct vm_area_struct *vma,
1006 				       vma_flag_t bit)
1007 {
1008 	unsigned long *bitmap = ACCESS_PRIVATE(&vma->flags, __vma_flags);
1009 
1010 	/* mmap read lock/VMA read lock must be held. */
1011 	if (!rwsem_is_locked(&vma->vm_mm->mmap_lock))
1012 		vma_assert_locked(vma);
1013 
1014 	if (__vma_flag_atomic_valid(vma, bit))
1015 		set_bit((__force int)bit, bitmap);
1016 }
1017 
1018 /*
1019  * Test for VMA flag atomically. Requires no locks. Only specific valid flags
1020  * are allowed to do this.
1021  *
1022  * This is necessarily racey, so callers must ensure that serialisation is
1023  * achieved through some other means, or that races are permissible.
1024  */
vma_flag_test_atomic(struct vm_area_struct * vma,vma_flag_t bit)1025 static inline bool vma_flag_test_atomic(struct vm_area_struct *vma,
1026 					vma_flag_t bit)
1027 {
1028 	if (__vma_flag_atomic_valid(vma, bit))
1029 		return test_bit((__force int)bit, &vma->vm_flags);
1030 
1031 	return false;
1032 }
1033 
vma_set_anonymous(struct vm_area_struct * vma)1034 static inline void vma_set_anonymous(struct vm_area_struct *vma)
1035 {
1036 	vma->vm_ops = NULL;
1037 }
1038 
vma_is_anonymous(struct vm_area_struct * vma)1039 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1040 {
1041 	return !vma->vm_ops;
1042 }
1043 
1044 /*
1045  * Indicate if the VMA is a heap for the given task; for
1046  * /proc/PID/maps that is the heap of the main task.
1047  */
vma_is_initial_heap(const struct vm_area_struct * vma)1048 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
1049 {
1050 	return vma->vm_start < vma->vm_mm->brk &&
1051 		vma->vm_end > vma->vm_mm->start_brk;
1052 }
1053 
1054 /*
1055  * Indicate if the VMA is a stack for the given task; for
1056  * /proc/PID/maps that is the stack of the main task.
1057  */
vma_is_initial_stack(const struct vm_area_struct * vma)1058 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
1059 {
1060 	/*
1061 	 * We make no effort to guess what a given thread considers to be
1062 	 * its "stack".  It's not even well-defined for programs written
1063 	 * languages like Go.
1064 	 */
1065 	return vma->vm_start <= vma->vm_mm->start_stack &&
1066 		vma->vm_end >= vma->vm_mm->start_stack;
1067 }
1068 
vma_is_temporary_stack(const struct vm_area_struct * vma)1069 static inline bool vma_is_temporary_stack(const struct vm_area_struct *vma)
1070 {
1071 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1072 
1073 	if (!maybe_stack)
1074 		return false;
1075 
1076 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1077 						VM_STACK_INCOMPLETE_SETUP)
1078 		return true;
1079 
1080 	return false;
1081 }
1082 
vma_is_foreign(const struct vm_area_struct * vma)1083 static inline bool vma_is_foreign(const struct vm_area_struct *vma)
1084 {
1085 	if (!current->mm)
1086 		return true;
1087 
1088 	if (current->mm != vma->vm_mm)
1089 		return true;
1090 
1091 	return false;
1092 }
1093 
vma_is_accessible(const struct vm_area_struct * vma)1094 static inline bool vma_is_accessible(const struct vm_area_struct *vma)
1095 {
1096 	return vma->vm_flags & VM_ACCESS_FLAGS;
1097 }
1098 
is_shared_maywrite(vm_flags_t vm_flags)1099 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
1100 {
1101 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
1102 		(VM_SHARED | VM_MAYWRITE);
1103 }
1104 
vma_is_shared_maywrite(const struct vm_area_struct * vma)1105 static inline bool vma_is_shared_maywrite(const struct vm_area_struct *vma)
1106 {
1107 	return is_shared_maywrite(vma->vm_flags);
1108 }
1109 
1110 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)1111 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
1112 {
1113 	return mas_find(&vmi->mas, max - 1);
1114 }
1115 
vma_next(struct vma_iterator * vmi)1116 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1117 {
1118 	/*
1119 	 * Uses mas_find() to get the first VMA when the iterator starts.
1120 	 * Calling mas_next() could skip the first entry.
1121 	 */
1122 	return mas_find(&vmi->mas, ULONG_MAX);
1123 }
1124 
1125 static inline
vma_iter_next_range(struct vma_iterator * vmi)1126 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1127 {
1128 	return mas_next_range(&vmi->mas, ULONG_MAX);
1129 }
1130 
1131 
vma_prev(struct vma_iterator * vmi)1132 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1133 {
1134 	return mas_prev(&vmi->mas, 0);
1135 }
1136 
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)1137 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1138 			unsigned long start, unsigned long end, gfp_t gfp)
1139 {
1140 	__mas_set_range(&vmi->mas, start, end - 1);
1141 	mas_store_gfp(&vmi->mas, NULL, gfp);
1142 	if (unlikely(mas_is_err(&vmi->mas)))
1143 		return -ENOMEM;
1144 
1145 	return 0;
1146 }
1147 
1148 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)1149 static inline void vma_iter_free(struct vma_iterator *vmi)
1150 {
1151 	mas_destroy(&vmi->mas);
1152 }
1153 
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)1154 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1155 				      struct vm_area_struct *vma)
1156 {
1157 	vmi->mas.index = vma->vm_start;
1158 	vmi->mas.last = vma->vm_end - 1;
1159 	mas_store(&vmi->mas, vma);
1160 	if (unlikely(mas_is_err(&vmi->mas)))
1161 		return -ENOMEM;
1162 
1163 	vma_mark_attached(vma);
1164 	return 0;
1165 }
1166 
vma_iter_invalidate(struct vma_iterator * vmi)1167 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1168 {
1169 	mas_pause(&vmi->mas);
1170 }
1171 
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)1172 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1173 {
1174 	mas_set(&vmi->mas, addr);
1175 }
1176 
1177 #define for_each_vma(__vmi, __vma)					\
1178 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1179 
1180 /* The MM code likes to work with exclusive end addresses */
1181 #define for_each_vma_range(__vmi, __vma, __end)				\
1182 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1183 
1184 #ifdef CONFIG_SHMEM
1185 /*
1186  * The vma_is_shmem is not inline because it is used only by slow
1187  * paths in userfault.
1188  */
1189 bool vma_is_shmem(const struct vm_area_struct *vma);
1190 bool vma_is_anon_shmem(const struct vm_area_struct *vma);
1191 #else
vma_is_shmem(const struct vm_area_struct * vma)1192 static inline bool vma_is_shmem(const struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(const struct vm_area_struct * vma)1193 static inline bool vma_is_anon_shmem(const struct vm_area_struct *vma) { return false; }
1194 #endif
1195 
1196 int vma_is_stack_for_current(const struct vm_area_struct *vma);
1197 
1198 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1199 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1200 
1201 struct mmu_gather;
1202 struct inode;
1203 
1204 extern void prep_compound_page(struct page *page, unsigned int order);
1205 
folio_large_order(const struct folio * folio)1206 static inline unsigned int folio_large_order(const struct folio *folio)
1207 {
1208 	return folio->_flags_1 & 0xff;
1209 }
1210 
1211 #ifdef NR_PAGES_IN_LARGE_FOLIO
folio_large_nr_pages(const struct folio * folio)1212 static inline unsigned long folio_large_nr_pages(const struct folio *folio)
1213 {
1214 	return folio->_nr_pages;
1215 }
1216 #else
folio_large_nr_pages(const struct folio * folio)1217 static inline unsigned long folio_large_nr_pages(const struct folio *folio)
1218 {
1219 	return 1L << folio_large_order(folio);
1220 }
1221 #endif
1222 
1223 /*
1224  * compound_order() can be called without holding a reference, which means
1225  * that niceties like page_folio() don't work.  These callers should be
1226  * prepared to handle wild return values.  For example, PG_head may be
1227  * set before the order is initialised, or this may be a tail page.
1228  * See compaction.c for some good examples.
1229  */
compound_order(const struct page * page)1230 static inline unsigned int compound_order(const struct page *page)
1231 {
1232 	const struct folio *folio = (struct folio *)page;
1233 
1234 	if (!test_bit(PG_head, &folio->flags.f))
1235 		return 0;
1236 	return folio_large_order(folio);
1237 }
1238 
1239 /**
1240  * folio_order - The allocation order of a folio.
1241  * @folio: The folio.
1242  *
1243  * A folio is composed of 2^order pages.  See get_order() for the definition
1244  * of order.
1245  *
1246  * Return: The order of the folio.
1247  */
folio_order(const struct folio * folio)1248 static inline unsigned int folio_order(const struct folio *folio)
1249 {
1250 	if (!folio_test_large(folio))
1251 		return 0;
1252 	return folio_large_order(folio);
1253 }
1254 
1255 /**
1256  * folio_reset_order - Reset the folio order and derived _nr_pages
1257  * @folio: The folio.
1258  *
1259  * Reset the order and derived _nr_pages to 0. Must only be used in the
1260  * process of splitting large folios.
1261  */
folio_reset_order(struct folio * folio)1262 static inline void folio_reset_order(struct folio *folio)
1263 {
1264 	if (WARN_ON_ONCE(!folio_test_large(folio)))
1265 		return;
1266 	folio->_flags_1 &= ~0xffUL;
1267 #ifdef NR_PAGES_IN_LARGE_FOLIO
1268 	folio->_nr_pages = 0;
1269 #endif
1270 }
1271 
1272 #include <linux/huge_mm.h>
1273 
1274 /*
1275  * Methods to modify the page usage count.
1276  *
1277  * What counts for a page usage:
1278  * - cache mapping   (page->mapping)
1279  * - private data    (page->private)
1280  * - page mapped in a task's page tables, each mapping
1281  *   is counted separately
1282  *
1283  * Also, many kernel routines increase the page count before a critical
1284  * routine so they can be sure the page doesn't go away from under them.
1285  */
1286 
1287 /*
1288  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1289  */
put_page_testzero(struct page * page)1290 static inline int put_page_testzero(struct page *page)
1291 {
1292 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1293 	return page_ref_dec_and_test(page);
1294 }
1295 
folio_put_testzero(struct folio * folio)1296 static inline int folio_put_testzero(struct folio *folio)
1297 {
1298 	return put_page_testzero(&folio->page);
1299 }
1300 
1301 /*
1302  * Try to grab a ref unless the page has a refcount of zero, return false if
1303  * that is the case.
1304  * This can be called when MMU is off so it must not access
1305  * any of the virtual mappings.
1306  */
get_page_unless_zero(struct page * page)1307 static inline bool get_page_unless_zero(struct page *page)
1308 {
1309 	return page_ref_add_unless(page, 1, 0);
1310 }
1311 
folio_get_nontail_page(struct page * page)1312 static inline struct folio *folio_get_nontail_page(struct page *page)
1313 {
1314 	if (unlikely(!get_page_unless_zero(page)))
1315 		return NULL;
1316 	return (struct folio *)page;
1317 }
1318 
1319 extern int page_is_ram(unsigned long pfn);
1320 
1321 enum {
1322 	REGION_INTERSECTS,
1323 	REGION_DISJOINT,
1324 	REGION_MIXED,
1325 };
1326 
1327 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1328 		      unsigned long desc);
1329 
1330 /* Support for virtually mapped pages */
1331 struct page *vmalloc_to_page(const void *addr);
1332 unsigned long vmalloc_to_pfn(const void *addr);
1333 
1334 /*
1335  * Determine if an address is within the vmalloc range
1336  *
1337  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1338  * is no special casing required.
1339  */
1340 #ifdef CONFIG_MMU
1341 extern bool is_vmalloc_addr(const void *x);
1342 extern int is_vmalloc_or_module_addr(const void *x);
1343 #else
is_vmalloc_addr(const void * x)1344 static inline bool is_vmalloc_addr(const void *x)
1345 {
1346 	return false;
1347 }
is_vmalloc_or_module_addr(const void * x)1348 static inline int is_vmalloc_or_module_addr(const void *x)
1349 {
1350 	return 0;
1351 }
1352 #endif
1353 
1354 /*
1355  * How many times the entire folio is mapped as a single unit (eg by a
1356  * PMD or PUD entry).  This is probably not what you want, except for
1357  * debugging purposes or implementation of other core folio_*() primitives.
1358  */
folio_entire_mapcount(const struct folio * folio)1359 static inline int folio_entire_mapcount(const struct folio *folio)
1360 {
1361 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1362 	if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
1363 		return 0;
1364 	return atomic_read(&folio->_entire_mapcount) + 1;
1365 }
1366 
folio_large_mapcount(const struct folio * folio)1367 static inline int folio_large_mapcount(const struct folio *folio)
1368 {
1369 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1370 	return atomic_read(&folio->_large_mapcount) + 1;
1371 }
1372 
1373 /**
1374  * folio_mapcount() - Number of mappings of this folio.
1375  * @folio: The folio.
1376  *
1377  * The folio mapcount corresponds to the number of present user page table
1378  * entries that reference any part of a folio. Each such present user page
1379  * table entry must be paired with exactly on folio reference.
1380  *
1381  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1382  * exactly once.
1383  *
1384  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1385  * references the entire folio counts exactly once, even when such special
1386  * page table entries are comprised of multiple ordinary page table entries.
1387  *
1388  * Will report 0 for pages which cannot be mapped into userspace, such as
1389  * slab, page tables and similar.
1390  *
1391  * Return: The number of times this folio is mapped.
1392  */
folio_mapcount(const struct folio * folio)1393 static inline int folio_mapcount(const struct folio *folio)
1394 {
1395 	int mapcount;
1396 
1397 	if (likely(!folio_test_large(folio))) {
1398 		mapcount = atomic_read(&folio->_mapcount) + 1;
1399 		if (page_mapcount_is_type(mapcount))
1400 			mapcount = 0;
1401 		return mapcount;
1402 	}
1403 	return folio_large_mapcount(folio);
1404 }
1405 
1406 /**
1407  * folio_mapped - Is this folio mapped into userspace?
1408  * @folio: The folio.
1409  *
1410  * Return: True if any page in this folio is referenced by user page tables.
1411  */
folio_mapped(const struct folio * folio)1412 static inline bool folio_mapped(const struct folio *folio)
1413 {
1414 	return folio_mapcount(folio) >= 1;
1415 }
1416 
1417 /*
1418  * Return true if this page is mapped into pagetables.
1419  * For compound page it returns true if any sub-page of compound page is mapped,
1420  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1421  */
page_mapped(const struct page * page)1422 static inline bool page_mapped(const struct page *page)
1423 {
1424 	return folio_mapped(page_folio(page));
1425 }
1426 
virt_to_head_page(const void * x)1427 static inline struct page *virt_to_head_page(const void *x)
1428 {
1429 	struct page *page = virt_to_page(x);
1430 
1431 	return compound_head(page);
1432 }
1433 
virt_to_folio(const void * x)1434 static inline struct folio *virt_to_folio(const void *x)
1435 {
1436 	struct page *page = virt_to_page(x);
1437 
1438 	return page_folio(page);
1439 }
1440 
1441 void __folio_put(struct folio *folio);
1442 
1443 void split_page(struct page *page, unsigned int order);
1444 void folio_copy(struct folio *dst, struct folio *src);
1445 int folio_mc_copy(struct folio *dst, struct folio *src);
1446 
1447 unsigned long nr_free_buffer_pages(void);
1448 
1449 /* Returns the number of bytes in this potentially compound page. */
page_size(const struct page * page)1450 static inline unsigned long page_size(const struct page *page)
1451 {
1452 	return PAGE_SIZE << compound_order(page);
1453 }
1454 
1455 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1456 static inline unsigned int page_shift(struct page *page)
1457 {
1458 	return PAGE_SHIFT + compound_order(page);
1459 }
1460 
1461 /**
1462  * thp_order - Order of a transparent huge page.
1463  * @page: Head page of a transparent huge page.
1464  */
thp_order(struct page * page)1465 static inline unsigned int thp_order(struct page *page)
1466 {
1467 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1468 	return compound_order(page);
1469 }
1470 
1471 /**
1472  * thp_size - Size of a transparent huge page.
1473  * @page: Head page of a transparent huge page.
1474  *
1475  * Return: Number of bytes in this page.
1476  */
thp_size(struct page * page)1477 static inline unsigned long thp_size(struct page *page)
1478 {
1479 	return PAGE_SIZE << thp_order(page);
1480 }
1481 
1482 #ifdef CONFIG_MMU
1483 /*
1484  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1485  * servicing faults for write access.  In the normal case, do always want
1486  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1487  * that do not have writing enabled, when used by access_process_vm.
1488  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1489 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1490 {
1491 	if (likely(vma->vm_flags & VM_WRITE))
1492 		pte = pte_mkwrite(pte, vma);
1493 	return pte;
1494 }
1495 
1496 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page);
1497 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1498 		struct page *page, unsigned int nr, unsigned long addr);
1499 
1500 vm_fault_t finish_fault(struct vm_fault *vmf);
1501 #endif
1502 
1503 /*
1504  * Multiple processes may "see" the same page. E.g. for untouched
1505  * mappings of /dev/null, all processes see the same page full of
1506  * zeroes, and text pages of executables and shared libraries have
1507  * only one copy in memory, at most, normally.
1508  *
1509  * For the non-reserved pages, page_count(page) denotes a reference count.
1510  *   page_count() == 0 means the page is free. page->lru is then used for
1511  *   freelist management in the buddy allocator.
1512  *   page_count() > 0  means the page has been allocated.
1513  *
1514  * Pages are allocated by the slab allocator in order to provide memory
1515  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1516  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1517  * unless a particular usage is carefully commented. (the responsibility of
1518  * freeing the kmalloc memory is the caller's, of course).
1519  *
1520  * A page may be used by anyone else who does a __get_free_page().
1521  * In this case, page_count still tracks the references, and should only
1522  * be used through the normal accessor functions. The top bits of page->flags
1523  * and page->virtual store page management information, but all other fields
1524  * are unused and could be used privately, carefully. The management of this
1525  * page is the responsibility of the one who allocated it, and those who have
1526  * subsequently been given references to it.
1527  *
1528  * The other pages (we may call them "pagecache pages") are completely
1529  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1530  * The following discussion applies only to them.
1531  *
1532  * A pagecache page contains an opaque `private' member, which belongs to the
1533  * page's address_space. Usually, this is the address of a circular list of
1534  * the page's disk buffers. PG_private must be set to tell the VM to call
1535  * into the filesystem to release these pages.
1536  *
1537  * A folio may belong to an inode's memory mapping. In this case,
1538  * folio->mapping points to the inode, and folio->index is the file
1539  * offset of the folio, in units of PAGE_SIZE.
1540  *
1541  * If pagecache pages are not associated with an inode, they are said to be
1542  * anonymous pages. These may become associated with the swapcache, and in that
1543  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1544  *
1545  * In either case (swapcache or inode backed), the pagecache itself holds one
1546  * reference to the page. Setting PG_private should also increment the
1547  * refcount. The each user mapping also has a reference to the page.
1548  *
1549  * The pagecache pages are stored in a per-mapping radix tree, which is
1550  * rooted at mapping->i_pages, and indexed by offset.
1551  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1552  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1553  *
1554  * All pagecache pages may be subject to I/O:
1555  * - inode pages may need to be read from disk,
1556  * - inode pages which have been modified and are MAP_SHARED may need
1557  *   to be written back to the inode on disk,
1558  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1559  *   modified may need to be swapped out to swap space and (later) to be read
1560  *   back into memory.
1561  */
1562 
1563 /* 127: arbitrary random number, small enough to assemble well */
1564 #define folio_ref_zero_or_close_to_overflow(folio) \
1565 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1566 
1567 /**
1568  * folio_get - Increment the reference count on a folio.
1569  * @folio: The folio.
1570  *
1571  * Context: May be called in any context, as long as you know that
1572  * you have a refcount on the folio.  If you do not already have one,
1573  * folio_try_get() may be the right interface for you to use.
1574  */
folio_get(struct folio * folio)1575 static inline void folio_get(struct folio *folio)
1576 {
1577 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1578 	folio_ref_inc(folio);
1579 }
1580 
get_page(struct page * page)1581 static inline void get_page(struct page *page)
1582 {
1583 	struct folio *folio = page_folio(page);
1584 	if (WARN_ON_ONCE(folio_test_slab(folio)))
1585 		return;
1586 	if (WARN_ON_ONCE(folio_test_large_kmalloc(folio)))
1587 		return;
1588 	folio_get(folio);
1589 }
1590 
try_get_page(struct page * page)1591 static inline __must_check bool try_get_page(struct page *page)
1592 {
1593 	page = compound_head(page);
1594 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1595 		return false;
1596 	page_ref_inc(page);
1597 	return true;
1598 }
1599 
1600 /**
1601  * folio_put - Decrement the reference count on a folio.
1602  * @folio: The folio.
1603  *
1604  * If the folio's reference count reaches zero, the memory will be
1605  * released back to the page allocator and may be used by another
1606  * allocation immediately.  Do not access the memory or the struct folio
1607  * after calling folio_put() unless you can be sure that it wasn't the
1608  * last reference.
1609  *
1610  * Context: May be called in process or interrupt context, but not in NMI
1611  * context.  May be called while holding a spinlock.
1612  */
folio_put(struct folio * folio)1613 static inline void folio_put(struct folio *folio)
1614 {
1615 	if (folio_put_testzero(folio))
1616 		__folio_put(folio);
1617 }
1618 
1619 /**
1620  * folio_put_refs - Reduce the reference count on a folio.
1621  * @folio: The folio.
1622  * @refs: The amount to subtract from the folio's reference count.
1623  *
1624  * If the folio's reference count reaches zero, the memory will be
1625  * released back to the page allocator and may be used by another
1626  * allocation immediately.  Do not access the memory or the struct folio
1627  * after calling folio_put_refs() unless you can be sure that these weren't
1628  * the last references.
1629  *
1630  * Context: May be called in process or interrupt context, but not in NMI
1631  * context.  May be called while holding a spinlock.
1632  */
folio_put_refs(struct folio * folio,int refs)1633 static inline void folio_put_refs(struct folio *folio, int refs)
1634 {
1635 	if (folio_ref_sub_and_test(folio, refs))
1636 		__folio_put(folio);
1637 }
1638 
1639 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1640 
1641 /*
1642  * union release_pages_arg - an array of pages or folios
1643  *
1644  * release_pages() releases a simple array of multiple pages, and
1645  * accepts various different forms of said page array: either
1646  * a regular old boring array of pages, an array of folios, or
1647  * an array of encoded page pointers.
1648  *
1649  * The transparent union syntax for this kind of "any of these
1650  * argument types" is all kinds of ugly, so look away.
1651  */
1652 typedef union {
1653 	struct page **pages;
1654 	struct folio **folios;
1655 	struct encoded_page **encoded_pages;
1656 } release_pages_arg __attribute__ ((__transparent_union__));
1657 
1658 void release_pages(release_pages_arg, int nr);
1659 
1660 /**
1661  * folios_put - Decrement the reference count on an array of folios.
1662  * @folios: The folios.
1663  *
1664  * Like folio_put(), but for a batch of folios.  This is more efficient
1665  * than writing the loop yourself as it will optimise the locks which need
1666  * to be taken if the folios are freed.  The folios batch is returned
1667  * empty and ready to be reused for another batch; there is no need to
1668  * reinitialise it.
1669  *
1670  * Context: May be called in process or interrupt context, but not in NMI
1671  * context.  May be called while holding a spinlock.
1672  */
folios_put(struct folio_batch * folios)1673 static inline void folios_put(struct folio_batch *folios)
1674 {
1675 	folios_put_refs(folios, NULL);
1676 }
1677 
put_page(struct page * page)1678 static inline void put_page(struct page *page)
1679 {
1680 	struct folio *folio = page_folio(page);
1681 
1682 	if (folio_test_slab(folio) || folio_test_large_kmalloc(folio))
1683 		return;
1684 
1685 	folio_put(folio);
1686 }
1687 
1688 /*
1689  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1690  * the page's refcount so that two separate items are tracked: the original page
1691  * reference count, and also a new count of how many pin_user_pages() calls were
1692  * made against the page. ("gup-pinned" is another term for the latter).
1693  *
1694  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1695  * distinct from normal pages. As such, the unpin_user_page() call (and its
1696  * variants) must be used in order to release gup-pinned pages.
1697  *
1698  * Choice of value:
1699  *
1700  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1701  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1702  * simpler, due to the fact that adding an even power of two to the page
1703  * refcount has the effect of using only the upper N bits, for the code that
1704  * counts up using the bias value. This means that the lower bits are left for
1705  * the exclusive use of the original code that increments and decrements by one
1706  * (or at least, by much smaller values than the bias value).
1707  *
1708  * Of course, once the lower bits overflow into the upper bits (and this is
1709  * OK, because subtraction recovers the original values), then visual inspection
1710  * no longer suffices to directly view the separate counts. However, for normal
1711  * applications that don't have huge page reference counts, this won't be an
1712  * issue.
1713  *
1714  * Locking: the lockless algorithm described in folio_try_get_rcu()
1715  * provides safe operation for get_user_pages(), folio_mkclean() and
1716  * other calls that race to set up page table entries.
1717  */
1718 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1719 
1720 void unpin_user_page(struct page *page);
1721 void unpin_folio(struct folio *folio);
1722 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1723 				 bool make_dirty);
1724 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1725 				      bool make_dirty);
1726 void unpin_user_pages(struct page **pages, unsigned long npages);
1727 void unpin_user_folio(struct folio *folio, unsigned long npages);
1728 void unpin_folios(struct folio **folios, unsigned long nfolios);
1729 
is_cow_mapping(vm_flags_t flags)1730 static inline bool is_cow_mapping(vm_flags_t flags)
1731 {
1732 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1733 }
1734 
1735 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1736 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1737 {
1738 	/*
1739 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1740 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1741 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1742 	 * underlying memory if ptrace is active, so this is only possible if
1743 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1744 	 * write permissions later.
1745 	 */
1746 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1747 }
1748 #endif
1749 
1750 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1751 #define SECTION_IN_PAGE_FLAGS
1752 #endif
1753 
1754 /*
1755  * The identification function is mainly used by the buddy allocator for
1756  * determining if two pages could be buddies. We are not really identifying
1757  * the zone since we could be using the section number id if we do not have
1758  * node id available in page flags.
1759  * We only guarantee that it will return the same value for two combinable
1760  * pages in a zone.
1761  */
page_zone_id(struct page * page)1762 static inline int page_zone_id(struct page *page)
1763 {
1764 	return (page->flags.f >> ZONEID_PGSHIFT) & ZONEID_MASK;
1765 }
1766 
1767 #ifdef NODE_NOT_IN_PAGE_FLAGS
1768 int memdesc_nid(memdesc_flags_t mdf);
1769 #else
memdesc_nid(memdesc_flags_t mdf)1770 static inline int memdesc_nid(memdesc_flags_t mdf)
1771 {
1772 	return (mdf.f >> NODES_PGSHIFT) & NODES_MASK;
1773 }
1774 #endif
1775 
page_to_nid(const struct page * page)1776 static inline int page_to_nid(const struct page *page)
1777 {
1778 	return memdesc_nid(PF_POISONED_CHECK(page)->flags);
1779 }
1780 
folio_nid(const struct folio * folio)1781 static inline int folio_nid(const struct folio *folio)
1782 {
1783 	return memdesc_nid(folio->flags);
1784 }
1785 
1786 #ifdef CONFIG_NUMA_BALANCING
1787 /* page access time bits needs to hold at least 4 seconds */
1788 #define PAGE_ACCESS_TIME_MIN_BITS	12
1789 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1790 #define PAGE_ACCESS_TIME_BUCKETS				\
1791 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1792 #else
1793 #define PAGE_ACCESS_TIME_BUCKETS	0
1794 #endif
1795 
1796 #define PAGE_ACCESS_TIME_MASK				\
1797 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1798 
cpu_pid_to_cpupid(int cpu,int pid)1799 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1800 {
1801 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1802 }
1803 
cpupid_to_pid(int cpupid)1804 static inline int cpupid_to_pid(int cpupid)
1805 {
1806 	return cpupid & LAST__PID_MASK;
1807 }
1808 
cpupid_to_cpu(int cpupid)1809 static inline int cpupid_to_cpu(int cpupid)
1810 {
1811 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1812 }
1813 
cpupid_to_nid(int cpupid)1814 static inline int cpupid_to_nid(int cpupid)
1815 {
1816 	return cpu_to_node(cpupid_to_cpu(cpupid));
1817 }
1818 
cpupid_pid_unset(int cpupid)1819 static inline bool cpupid_pid_unset(int cpupid)
1820 {
1821 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1822 }
1823 
cpupid_cpu_unset(int cpupid)1824 static inline bool cpupid_cpu_unset(int cpupid)
1825 {
1826 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1827 }
1828 
__cpupid_match_pid(pid_t task_pid,int cpupid)1829 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1830 {
1831 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1832 }
1833 
1834 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1835 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1836 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1837 {
1838 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1839 }
1840 
folio_last_cpupid(struct folio * folio)1841 static inline int folio_last_cpupid(struct folio *folio)
1842 {
1843 	return folio->_last_cpupid;
1844 }
page_cpupid_reset_last(struct page * page)1845 static inline void page_cpupid_reset_last(struct page *page)
1846 {
1847 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1848 }
1849 #else
folio_last_cpupid(struct folio * folio)1850 static inline int folio_last_cpupid(struct folio *folio)
1851 {
1852 	return (folio->flags.f >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1853 }
1854 
1855 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1856 
page_cpupid_reset_last(struct page * page)1857 static inline void page_cpupid_reset_last(struct page *page)
1858 {
1859 	page->flags.f |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1860 }
1861 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1862 
folio_xchg_access_time(struct folio * folio,int time)1863 static inline int folio_xchg_access_time(struct folio *folio, int time)
1864 {
1865 	int last_time;
1866 
1867 	last_time = folio_xchg_last_cpupid(folio,
1868 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1869 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1870 }
1871 
vma_set_access_pid_bit(struct vm_area_struct * vma)1872 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1873 {
1874 	unsigned int pid_bit;
1875 
1876 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1877 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1878 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1879 	}
1880 }
1881 
1882 bool folio_use_access_time(struct folio *folio);
1883 #else /* !CONFIG_NUMA_BALANCING */
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1884 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1885 {
1886 	return folio_nid(folio); /* XXX */
1887 }
1888 
folio_xchg_access_time(struct folio * folio,int time)1889 static inline int folio_xchg_access_time(struct folio *folio, int time)
1890 {
1891 	return 0;
1892 }
1893 
folio_last_cpupid(struct folio * folio)1894 static inline int folio_last_cpupid(struct folio *folio)
1895 {
1896 	return folio_nid(folio); /* XXX */
1897 }
1898 
cpupid_to_nid(int cpupid)1899 static inline int cpupid_to_nid(int cpupid)
1900 {
1901 	return -1;
1902 }
1903 
cpupid_to_pid(int cpupid)1904 static inline int cpupid_to_pid(int cpupid)
1905 {
1906 	return -1;
1907 }
1908 
cpupid_to_cpu(int cpupid)1909 static inline int cpupid_to_cpu(int cpupid)
1910 {
1911 	return -1;
1912 }
1913 
cpu_pid_to_cpupid(int nid,int pid)1914 static inline int cpu_pid_to_cpupid(int nid, int pid)
1915 {
1916 	return -1;
1917 }
1918 
cpupid_pid_unset(int cpupid)1919 static inline bool cpupid_pid_unset(int cpupid)
1920 {
1921 	return true;
1922 }
1923 
page_cpupid_reset_last(struct page * page)1924 static inline void page_cpupid_reset_last(struct page *page)
1925 {
1926 }
1927 
cpupid_match_pid(struct task_struct * task,int cpupid)1928 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1929 {
1930 	return false;
1931 }
1932 
vma_set_access_pid_bit(struct vm_area_struct * vma)1933 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1934 {
1935 }
folio_use_access_time(struct folio * folio)1936 static inline bool folio_use_access_time(struct folio *folio)
1937 {
1938 	return false;
1939 }
1940 #endif /* CONFIG_NUMA_BALANCING */
1941 
1942 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1943 
1944 /*
1945  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1946  * setting tags for all pages to native kernel tag value 0xff, as the default
1947  * value 0x00 maps to 0xff.
1948  */
1949 
page_kasan_tag(const struct page * page)1950 static inline u8 page_kasan_tag(const struct page *page)
1951 {
1952 	u8 tag = KASAN_TAG_KERNEL;
1953 
1954 	if (kasan_enabled()) {
1955 		tag = (page->flags.f >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1956 		tag ^= 0xff;
1957 	}
1958 
1959 	return tag;
1960 }
1961 
page_kasan_tag_set(struct page * page,u8 tag)1962 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1963 {
1964 	unsigned long old_flags, flags;
1965 
1966 	if (!kasan_enabled())
1967 		return;
1968 
1969 	tag ^= 0xff;
1970 	old_flags = READ_ONCE(page->flags.f);
1971 	do {
1972 		flags = old_flags;
1973 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1974 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1975 	} while (unlikely(!try_cmpxchg(&page->flags.f, &old_flags, flags)));
1976 }
1977 
page_kasan_tag_reset(struct page * page)1978 static inline void page_kasan_tag_reset(struct page *page)
1979 {
1980 	if (kasan_enabled())
1981 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1982 }
1983 
1984 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1985 
page_kasan_tag(const struct page * page)1986 static inline u8 page_kasan_tag(const struct page *page)
1987 {
1988 	return 0xff;
1989 }
1990 
page_kasan_tag_set(struct page * page,u8 tag)1991 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1992 static inline void page_kasan_tag_reset(struct page *page) { }
1993 
1994 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1995 
page_zone(const struct page * page)1996 static inline struct zone *page_zone(const struct page *page)
1997 {
1998 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1999 }
2000 
page_pgdat(const struct page * page)2001 static inline pg_data_t *page_pgdat(const struct page *page)
2002 {
2003 	return NODE_DATA(page_to_nid(page));
2004 }
2005 
folio_pgdat(const struct folio * folio)2006 static inline pg_data_t *folio_pgdat(const struct folio *folio)
2007 {
2008 	return NODE_DATA(folio_nid(folio));
2009 }
2010 
folio_zone(const struct folio * folio)2011 static inline struct zone *folio_zone(const struct folio *folio)
2012 {
2013 	return &folio_pgdat(folio)->node_zones[folio_zonenum(folio)];
2014 }
2015 
2016 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)2017 static inline void set_page_section(struct page *page, unsigned long section)
2018 {
2019 	page->flags.f &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
2020 	page->flags.f |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
2021 }
2022 
memdesc_section(memdesc_flags_t mdf)2023 static inline unsigned long memdesc_section(memdesc_flags_t mdf)
2024 {
2025 	return (mdf.f >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
2026 }
2027 #else /* !SECTION_IN_PAGE_FLAGS */
memdesc_section(memdesc_flags_t mdf)2028 static inline unsigned long memdesc_section(memdesc_flags_t mdf)
2029 {
2030 	return 0;
2031 }
2032 #endif /* SECTION_IN_PAGE_FLAGS */
2033 
2034 /**
2035  * folio_pfn - Return the Page Frame Number of a folio.
2036  * @folio: The folio.
2037  *
2038  * A folio may contain multiple pages.  The pages have consecutive
2039  * Page Frame Numbers.
2040  *
2041  * Return: The Page Frame Number of the first page in the folio.
2042  */
folio_pfn(const struct folio * folio)2043 static inline unsigned long folio_pfn(const struct folio *folio)
2044 {
2045 	return page_to_pfn(&folio->page);
2046 }
2047 
pfn_folio(unsigned long pfn)2048 static inline struct folio *pfn_folio(unsigned long pfn)
2049 {
2050 	return page_folio(pfn_to_page(pfn));
2051 }
2052 
2053 #ifdef CONFIG_MMU
mk_pte(const struct page * page,pgprot_t pgprot)2054 static inline pte_t mk_pte(const struct page *page, pgprot_t pgprot)
2055 {
2056 	return pfn_pte(page_to_pfn(page), pgprot);
2057 }
2058 
2059 /**
2060  * folio_mk_pte - Create a PTE for this folio
2061  * @folio: The folio to create a PTE for
2062  * @pgprot: The page protection bits to use
2063  *
2064  * Create a page table entry for the first page of this folio.
2065  * This is suitable for passing to set_ptes().
2066  *
2067  * Return: A page table entry suitable for mapping this folio.
2068  */
folio_mk_pte(const struct folio * folio,pgprot_t pgprot)2069 static inline pte_t folio_mk_pte(const struct folio *folio, pgprot_t pgprot)
2070 {
2071 	return pfn_pte(folio_pfn(folio), pgprot);
2072 }
2073 
2074 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2075 /**
2076  * folio_mk_pmd - Create a PMD for this folio
2077  * @folio: The folio to create a PMD for
2078  * @pgprot: The page protection bits to use
2079  *
2080  * Create a page table entry for the first page of this folio.
2081  * This is suitable for passing to set_pmd_at().
2082  *
2083  * Return: A page table entry suitable for mapping this folio.
2084  */
folio_mk_pmd(const struct folio * folio,pgprot_t pgprot)2085 static inline pmd_t folio_mk_pmd(const struct folio *folio, pgprot_t pgprot)
2086 {
2087 	return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot));
2088 }
2089 
2090 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2091 /**
2092  * folio_mk_pud - Create a PUD for this folio
2093  * @folio: The folio to create a PUD for
2094  * @pgprot: The page protection bits to use
2095  *
2096  * Create a page table entry for the first page of this folio.
2097  * This is suitable for passing to set_pud_at().
2098  *
2099  * Return: A page table entry suitable for mapping this folio.
2100  */
folio_mk_pud(const struct folio * folio,pgprot_t pgprot)2101 static inline pud_t folio_mk_pud(const struct folio *folio, pgprot_t pgprot)
2102 {
2103 	return pud_mkhuge(pfn_pud(folio_pfn(folio), pgprot));
2104 }
2105 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2106 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2107 #endif /* CONFIG_MMU */
2108 
folio_has_pincount(const struct folio * folio)2109 static inline bool folio_has_pincount(const struct folio *folio)
2110 {
2111 	if (IS_ENABLED(CONFIG_64BIT))
2112 		return folio_test_large(folio);
2113 	return folio_order(folio) > 1;
2114 }
2115 
2116 /**
2117  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
2118  * @folio: The folio.
2119  *
2120  * This function checks if a folio has been pinned via a call to
2121  * a function in the pin_user_pages() family.
2122  *
2123  * For small folios, the return value is partially fuzzy: false is not fuzzy,
2124  * because it means "definitely not pinned for DMA", but true means "probably
2125  * pinned for DMA, but possibly a false positive due to having at least
2126  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
2127  *
2128  * False positives are OK, because: a) it's unlikely for a folio to
2129  * get that many refcounts, and b) all the callers of this routine are
2130  * expected to be able to deal gracefully with a false positive.
2131  *
2132  * For most large folios, the result will be exactly correct. That's because
2133  * we have more tracking data available: the _pincount field is used
2134  * instead of the GUP_PIN_COUNTING_BIAS scheme.
2135  *
2136  * For more information, please see Documentation/core-api/pin_user_pages.rst.
2137  *
2138  * Return: True, if it is likely that the folio has been "dma-pinned".
2139  * False, if the folio is definitely not dma-pinned.
2140  */
folio_maybe_dma_pinned(struct folio * folio)2141 static inline bool folio_maybe_dma_pinned(struct folio *folio)
2142 {
2143 	if (folio_has_pincount(folio))
2144 		return atomic_read(&folio->_pincount) > 0;
2145 
2146 	/*
2147 	 * folio_ref_count() is signed. If that refcount overflows, then
2148 	 * folio_ref_count() returns a negative value, and callers will avoid
2149 	 * further incrementing the refcount.
2150 	 *
2151 	 * Here, for that overflow case, use the sign bit to count a little
2152 	 * bit higher via unsigned math, and thus still get an accurate result.
2153 	 */
2154 	return ((unsigned int)folio_ref_count(folio)) >=
2155 		GUP_PIN_COUNTING_BIAS;
2156 }
2157 
2158 /*
2159  * This should most likely only be called during fork() to see whether we
2160  * should break the cow immediately for an anon page on the src mm.
2161  *
2162  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
2163  */
folio_needs_cow_for_dma(struct vm_area_struct * vma,struct folio * folio)2164 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
2165 					  struct folio *folio)
2166 {
2167 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
2168 
2169 	if (!mm_flags_test(MMF_HAS_PINNED, vma->vm_mm))
2170 		return false;
2171 
2172 	return folio_maybe_dma_pinned(folio);
2173 }
2174 
2175 /**
2176  * is_zero_page - Query if a page is a zero page
2177  * @page: The page to query
2178  *
2179  * This returns true if @page is one of the permanent zero pages.
2180  */
is_zero_page(const struct page * page)2181 static inline bool is_zero_page(const struct page *page)
2182 {
2183 	return is_zero_pfn(page_to_pfn(page));
2184 }
2185 
2186 /**
2187  * is_zero_folio - Query if a folio is a zero page
2188  * @folio: The folio to query
2189  *
2190  * This returns true if @folio is one of the permanent zero pages.
2191  */
is_zero_folio(const struct folio * folio)2192 static inline bool is_zero_folio(const struct folio *folio)
2193 {
2194 	return is_zero_page(&folio->page);
2195 }
2196 
2197 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2198 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)2199 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2200 {
2201 #ifdef CONFIG_CMA
2202 	int mt = folio_migratetype(folio);
2203 
2204 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2205 		return false;
2206 #endif
2207 	/* The zero page can be "pinned" but gets special handling. */
2208 	if (is_zero_folio(folio))
2209 		return true;
2210 
2211 	/* Coherent device memory must always allow eviction. */
2212 	if (folio_is_device_coherent(folio))
2213 		return false;
2214 
2215 	/*
2216 	 * Filesystems can only tolerate transient delays to truncate and
2217 	 * hole-punch operations
2218 	 */
2219 	if (folio_is_fsdax(folio))
2220 		return false;
2221 
2222 	/* Otherwise, non-movable zone folios can be pinned. */
2223 	return !folio_is_zone_movable(folio);
2224 
2225 }
2226 #else
folio_is_longterm_pinnable(struct folio * folio)2227 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2228 {
2229 	return true;
2230 }
2231 #endif
2232 
set_page_zone(struct page * page,enum zone_type zone)2233 static inline void set_page_zone(struct page *page, enum zone_type zone)
2234 {
2235 	page->flags.f &= ~(ZONES_MASK << ZONES_PGSHIFT);
2236 	page->flags.f |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2237 }
2238 
set_page_node(struct page * page,unsigned long node)2239 static inline void set_page_node(struct page *page, unsigned long node)
2240 {
2241 	page->flags.f &= ~(NODES_MASK << NODES_PGSHIFT);
2242 	page->flags.f |= (node & NODES_MASK) << NODES_PGSHIFT;
2243 }
2244 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)2245 static inline void set_page_links(struct page *page, enum zone_type zone,
2246 	unsigned long node, unsigned long pfn)
2247 {
2248 	set_page_zone(page, zone);
2249 	set_page_node(page, node);
2250 #ifdef SECTION_IN_PAGE_FLAGS
2251 	set_page_section(page, pfn_to_section_nr(pfn));
2252 #endif
2253 }
2254 
2255 /**
2256  * folio_nr_pages - The number of pages in the folio.
2257  * @folio: The folio.
2258  *
2259  * Return: A positive power of two.
2260  */
folio_nr_pages(const struct folio * folio)2261 static inline unsigned long folio_nr_pages(const struct folio *folio)
2262 {
2263 	if (!folio_test_large(folio))
2264 		return 1;
2265 	return folio_large_nr_pages(folio);
2266 }
2267 
2268 #if !defined(CONFIG_HAVE_GIGANTIC_FOLIOS)
2269 /*
2270  * We don't expect any folios that exceed buddy sizes (and consequently
2271  * memory sections).
2272  */
2273 #define MAX_FOLIO_ORDER		MAX_PAGE_ORDER
2274 #elif defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
2275 /*
2276  * Only pages within a single memory section are guaranteed to be
2277  * contiguous. By limiting folios to a single memory section, all folio
2278  * pages are guaranteed to be contiguous.
2279  */
2280 #define MAX_FOLIO_ORDER		PFN_SECTION_SHIFT
2281 #elif defined(CONFIG_HUGETLB_PAGE)
2282 /*
2283  * There is no real limit on the folio size. We limit them to the maximum we
2284  * currently expect (see CONFIG_HAVE_GIGANTIC_FOLIOS): with hugetlb, we expect
2285  * no folios larger than 16 GiB on 64bit and 1 GiB on 32bit.
2286  */
2287 #define MAX_FOLIO_ORDER		get_order(IS_ENABLED(CONFIG_64BIT) ? SZ_16G : SZ_1G)
2288 #else
2289 /*
2290  * Without hugetlb, gigantic folios that are bigger than a single PUD are
2291  * currently impossible.
2292  */
2293 #define MAX_FOLIO_ORDER		PUD_ORDER
2294 #endif
2295 
2296 #define MAX_FOLIO_NR_PAGES	(1UL << MAX_FOLIO_ORDER)
2297 
2298 /*
2299  * compound_nr() returns the number of pages in this potentially compound
2300  * page.  compound_nr() can be called on a tail page, and is defined to
2301  * return 1 in that case.
2302  */
compound_nr(const struct page * page)2303 static inline unsigned long compound_nr(const struct page *page)
2304 {
2305 	const struct folio *folio = (struct folio *)page;
2306 
2307 	if (!test_bit(PG_head, &folio->flags.f))
2308 		return 1;
2309 	return folio_large_nr_pages(folio);
2310 }
2311 
2312 /**
2313  * folio_next - Move to the next physical folio.
2314  * @folio: The folio we're currently operating on.
2315  *
2316  * If you have physically contiguous memory which may span more than
2317  * one folio (eg a &struct bio_vec), use this function to move from one
2318  * folio to the next.  Do not use it if the memory is only virtually
2319  * contiguous as the folios are almost certainly not adjacent to each
2320  * other.  This is the folio equivalent to writing ``page++``.
2321  *
2322  * Context: We assume that the folios are refcounted and/or locked at a
2323  * higher level and do not adjust the reference counts.
2324  * Return: The next struct folio.
2325  */
folio_next(struct folio * folio)2326 static inline struct folio *folio_next(struct folio *folio)
2327 {
2328 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2329 }
2330 
2331 /**
2332  * folio_shift - The size of the memory described by this folio.
2333  * @folio: The folio.
2334  *
2335  * A folio represents a number of bytes which is a power-of-two in size.
2336  * This function tells you which power-of-two the folio is.  See also
2337  * folio_size() and folio_order().
2338  *
2339  * Context: The caller should have a reference on the folio to prevent
2340  * it from being split.  It is not necessary for the folio to be locked.
2341  * Return: The base-2 logarithm of the size of this folio.
2342  */
folio_shift(const struct folio * folio)2343 static inline unsigned int folio_shift(const struct folio *folio)
2344 {
2345 	return PAGE_SHIFT + folio_order(folio);
2346 }
2347 
2348 /**
2349  * folio_size - The number of bytes in a folio.
2350  * @folio: The folio.
2351  *
2352  * Context: The caller should have a reference on the folio to prevent
2353  * it from being split.  It is not necessary for the folio to be locked.
2354  * Return: The number of bytes in this folio.
2355  */
folio_size(const struct folio * folio)2356 static inline size_t folio_size(const struct folio *folio)
2357 {
2358 	return PAGE_SIZE << folio_order(folio);
2359 }
2360 
2361 /**
2362  * folio_maybe_mapped_shared - Whether the folio is mapped into the page
2363  *			       tables of more than one MM
2364  * @folio: The folio.
2365  *
2366  * This function checks if the folio maybe currently mapped into more than one
2367  * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
2368  * MM ("mapped exclusively").
2369  *
2370  * For KSM folios, this function also returns "mapped shared" when a folio is
2371  * mapped multiple times into the same MM, because the individual page mappings
2372  * are independent.
2373  *
2374  * For small anonymous folios and anonymous hugetlb folios, the return
2375  * value will be exactly correct: non-KSM folios can only be mapped at most once
2376  * into an MM, and they cannot be partially mapped. KSM folios are
2377  * considered shared even if mapped multiple times into the same MM.
2378  *
2379  * For other folios, the result can be fuzzy:
2380  *    #. For partially-mappable large folios (THP), the return value can wrongly
2381  *       indicate "mapped shared" (false positive) if a folio was mapped by
2382  *       more than two MMs at one point in time.
2383  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2384  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2385  *       cover the same file range.
2386  *
2387  * Further, this function only considers current page table mappings that
2388  * are tracked using the folio mapcount(s).
2389  *
2390  * This function does not consider:
2391  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2392  *       pagecache, temporary unmapping for migration).
2393  *    #. If the folio is mapped differently (VM_PFNMAP).
2394  *    #. If hugetlb page table sharing applies. Callers might want to check
2395  *       hugetlb_pmd_shared().
2396  *
2397  * Return: Whether the folio is estimated to be mapped into more than one MM.
2398  */
folio_maybe_mapped_shared(struct folio * folio)2399 static inline bool folio_maybe_mapped_shared(struct folio *folio)
2400 {
2401 	int mapcount = folio_mapcount(folio);
2402 
2403 	/* Only partially-mappable folios require more care. */
2404 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2405 		return mapcount > 1;
2406 
2407 	/*
2408 	 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
2409 	 * simply assume "mapped shared", nobody should really care
2410 	 * about this for arbitrary kernel allocations.
2411 	 */
2412 	if (!IS_ENABLED(CONFIG_MM_ID))
2413 		return true;
2414 
2415 	/*
2416 	 * A single mapping implies "mapped exclusively", even if the
2417 	 * folio flag says something different: it's easier to handle this
2418 	 * case here instead of on the RMAP hot path.
2419 	 */
2420 	if (mapcount <= 1)
2421 		return false;
2422 	return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids);
2423 }
2424 
2425 /**
2426  * folio_expected_ref_count - calculate the expected folio refcount
2427  * @folio: the folio
2428  *
2429  * Calculate the expected folio refcount, taking references from the pagecache,
2430  * swapcache, PG_private and page table mappings into account. Useful in
2431  * combination with folio_ref_count() to detect unexpected references (e.g.,
2432  * GUP or other temporary references).
2433  *
2434  * Does currently not consider references from the LRU cache. If the folio
2435  * was isolated from the LRU (which is the case during migration or split),
2436  * the LRU cache does not apply.
2437  *
2438  * Calling this function on an unmapped folio -- !folio_mapped() -- that is
2439  * locked will return a stable result.
2440  *
2441  * Calling this function on a mapped folio will not result in a stable result,
2442  * because nothing stops additional page table mappings from coming (e.g.,
2443  * fork()) or going (e.g., munmap()).
2444  *
2445  * Calling this function without the folio lock will also not result in a
2446  * stable result: for example, the folio might get dropped from the swapcache
2447  * concurrently.
2448  *
2449  * However, even when called without the folio lock or on a mapped folio,
2450  * this function can be used to detect unexpected references early (for example,
2451  * if it makes sense to even lock the folio and unmap it).
2452  *
2453  * The caller must add any reference (e.g., from folio_try_get()) it might be
2454  * holding itself to the result.
2455  *
2456  * Returns the expected folio refcount.
2457  */
folio_expected_ref_count(const struct folio * folio)2458 static inline int folio_expected_ref_count(const struct folio *folio)
2459 {
2460 	const int order = folio_order(folio);
2461 	int ref_count = 0;
2462 
2463 	if (WARN_ON_ONCE(page_has_type(&folio->page) && !folio_test_hugetlb(folio)))
2464 		return 0;
2465 
2466 	/* One reference per page from the swapcache. */
2467 	ref_count += folio_test_swapcache(folio) << order;
2468 
2469 	if (!folio_test_anon(folio)) {
2470 		/* One reference per page from the pagecache. */
2471 		ref_count += !!folio->mapping << order;
2472 		/* One reference from PG_private. */
2473 		ref_count += folio_test_private(folio);
2474 	}
2475 
2476 	/* One reference per page table mapping. */
2477 	return ref_count + folio_mapcount(folio);
2478 }
2479 
2480 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2481 static inline int arch_make_folio_accessible(struct folio *folio)
2482 {
2483 	return 0;
2484 }
2485 #endif
2486 
2487 /*
2488  * Some inline functions in vmstat.h depend on page_zone()
2489  */
2490 #include <linux/vmstat.h>
2491 
2492 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2493 #define HASHED_PAGE_VIRTUAL
2494 #endif
2495 
2496 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2497 static inline void *page_address(const struct page *page)
2498 {
2499 	return page->virtual;
2500 }
set_page_address(struct page * page,void * address)2501 static inline void set_page_address(struct page *page, void *address)
2502 {
2503 	page->virtual = address;
2504 }
2505 #define page_address_init()  do { } while(0)
2506 #endif
2507 
2508 #if defined(HASHED_PAGE_VIRTUAL)
2509 void *page_address(const struct page *page);
2510 void set_page_address(struct page *page, void *virtual);
2511 void page_address_init(void);
2512 #endif
2513 
lowmem_page_address(const struct page * page)2514 static __always_inline void *lowmem_page_address(const struct page *page)
2515 {
2516 	return page_to_virt(page);
2517 }
2518 
2519 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2520 #define page_address(page) lowmem_page_address(page)
2521 #define set_page_address(page, address)  do { } while(0)
2522 #define page_address_init()  do { } while(0)
2523 #endif
2524 
folio_address(const struct folio * folio)2525 static inline void *folio_address(const struct folio *folio)
2526 {
2527 	return page_address(&folio->page);
2528 }
2529 
2530 /*
2531  * Return true only if the page has been allocated with
2532  * ALLOC_NO_WATERMARKS and the low watermark was not
2533  * met implying that the system is under some pressure.
2534  */
page_is_pfmemalloc(const struct page * page)2535 static inline bool page_is_pfmemalloc(const struct page *page)
2536 {
2537 	/*
2538 	 * lru.next has bit 1 set if the page is allocated from the
2539 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2540 	 * they do not need to preserve that information.
2541 	 */
2542 	return (uintptr_t)page->lru.next & BIT(1);
2543 }
2544 
2545 /*
2546  * Return true only if the folio has been allocated with
2547  * ALLOC_NO_WATERMARKS and the low watermark was not
2548  * met implying that the system is under some pressure.
2549  */
folio_is_pfmemalloc(const struct folio * folio)2550 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2551 {
2552 	/*
2553 	 * lru.next has bit 1 set if the page is allocated from the
2554 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2555 	 * they do not need to preserve that information.
2556 	 */
2557 	return (uintptr_t)folio->lru.next & BIT(1);
2558 }
2559 
2560 /*
2561  * Only to be called by the page allocator on a freshly allocated
2562  * page.
2563  */
set_page_pfmemalloc(struct page * page)2564 static inline void set_page_pfmemalloc(struct page *page)
2565 {
2566 	page->lru.next = (void *)BIT(1);
2567 }
2568 
clear_page_pfmemalloc(struct page * page)2569 static inline void clear_page_pfmemalloc(struct page *page)
2570 {
2571 	page->lru.next = NULL;
2572 }
2573 
2574 /*
2575  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2576  */
2577 extern void pagefault_out_of_memory(void);
2578 
2579 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2580 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2581 
2582 /*
2583  * Parameter block passed down to zap_pte_range in exceptional cases.
2584  */
2585 struct zap_details {
2586 	struct folio *single_folio;	/* Locked folio to be unmapped */
2587 	bool even_cows;			/* Zap COWed private pages too? */
2588 	bool reclaim_pt;		/* Need reclaim page tables? */
2589 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2590 };
2591 
2592 /*
2593  * Whether to drop the pte markers, for example, the uffd-wp information for
2594  * file-backed memory.  This should only be specified when we will completely
2595  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2596  * default, the flag is not set.
2597  */
2598 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2599 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2600 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2601 
2602 #ifdef CONFIG_MMU
2603 extern bool can_do_mlock(void);
2604 #else
can_do_mlock(void)2605 static inline bool can_do_mlock(void) { return false; }
2606 #endif
2607 extern int user_shm_lock(size_t, struct ucounts *);
2608 extern void user_shm_unlock(size_t, struct ucounts *);
2609 
2610 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2611 			     pte_t pte);
2612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2613 			     pte_t pte);
2614 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2615 				  unsigned long addr, pmd_t pmd);
2616 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2617 				pmd_t pmd);
2618 struct page *vm_normal_page_pud(struct vm_area_struct *vma, unsigned long addr,
2619 		pud_t pud);
2620 
2621 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2622 		  unsigned long size);
2623 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2624 			   unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2625 static inline void zap_vma_pages(struct vm_area_struct *vma)
2626 {
2627 	zap_page_range_single(vma, vma->vm_start,
2628 			      vma->vm_end - vma->vm_start, NULL);
2629 }
2630 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2631 		struct vm_area_struct *start_vma, unsigned long start,
2632 		unsigned long end, unsigned long tree_end);
2633 
2634 struct mmu_notifier_range;
2635 
2636 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2637 		unsigned long end, unsigned long floor, unsigned long ceiling);
2638 int
2639 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2640 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2641 			void *buf, int len, int write);
2642 
2643 struct follow_pfnmap_args {
2644 	/**
2645 	 * Inputs:
2646 	 * @vma: Pointer to @vm_area_struct struct
2647 	 * @address: the virtual address to walk
2648 	 */
2649 	struct vm_area_struct *vma;
2650 	unsigned long address;
2651 	/**
2652 	 * Internals:
2653 	 *
2654 	 * The caller shouldn't touch any of these.
2655 	 */
2656 	spinlock_t *lock;
2657 	pte_t *ptep;
2658 	/**
2659 	 * Outputs:
2660 	 *
2661 	 * @pfn: the PFN of the address
2662 	 * @addr_mask: address mask covering pfn
2663 	 * @pgprot: the pgprot_t of the mapping
2664 	 * @writable: whether the mapping is writable
2665 	 * @special: whether the mapping is a special mapping (real PFN maps)
2666 	 */
2667 	unsigned long pfn;
2668 	unsigned long addr_mask;
2669 	pgprot_t pgprot;
2670 	bool writable;
2671 	bool special;
2672 };
2673 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2674 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2675 
2676 extern void truncate_pagecache(struct inode *inode, loff_t new);
2677 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2678 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2679 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2680 int generic_error_remove_folio(struct address_space *mapping,
2681 		struct folio *folio);
2682 
2683 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2684 		unsigned long address, struct pt_regs *regs);
2685 
2686 #ifdef CONFIG_MMU
2687 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2688 				  unsigned long address, unsigned int flags,
2689 				  struct pt_regs *regs);
2690 extern int fixup_user_fault(struct mm_struct *mm,
2691 			    unsigned long address, unsigned int fault_flags,
2692 			    bool *unlocked);
2693 void unmap_mapping_pages(struct address_space *mapping,
2694 		pgoff_t start, pgoff_t nr, bool even_cows);
2695 void unmap_mapping_range(struct address_space *mapping,
2696 		loff_t const holebegin, loff_t const holelen, int even_cows);
2697 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2698 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2699 					 unsigned long address, unsigned int flags,
2700 					 struct pt_regs *regs)
2701 {
2702 	/* should never happen if there's no MMU */
2703 	BUG();
2704 	return VM_FAULT_SIGBUS;
2705 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2706 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2707 		unsigned int fault_flags, bool *unlocked)
2708 {
2709 	/* should never happen if there's no MMU */
2710 	BUG();
2711 	return -EFAULT;
2712 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2713 static inline void unmap_mapping_pages(struct address_space *mapping,
2714 		pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2715 static inline void unmap_mapping_range(struct address_space *mapping,
2716 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2717 #endif
2718 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2719 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2720 		loff_t const holebegin, loff_t const holelen)
2721 {
2722 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2723 }
2724 
2725 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2726 						unsigned long addr);
2727 
2728 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2729 		void *buf, int len, unsigned int gup_flags);
2730 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2731 		void *buf, int len, unsigned int gup_flags);
2732 
2733 #ifdef CONFIG_BPF_SYSCALL
2734 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
2735 			      void *buf, int len, unsigned int gup_flags);
2736 #endif
2737 
2738 long get_user_pages_remote(struct mm_struct *mm,
2739 			   unsigned long start, unsigned long nr_pages,
2740 			   unsigned int gup_flags, struct page **pages,
2741 			   int *locked);
2742 long pin_user_pages_remote(struct mm_struct *mm,
2743 			   unsigned long start, unsigned long nr_pages,
2744 			   unsigned int gup_flags, struct page **pages,
2745 			   int *locked);
2746 
2747 /*
2748  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2749  */
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2750 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2751 						    unsigned long addr,
2752 						    int gup_flags,
2753 						    struct vm_area_struct **vmap)
2754 {
2755 	struct page *page;
2756 	struct vm_area_struct *vma;
2757 	int got;
2758 
2759 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2760 		return ERR_PTR(-EINVAL);
2761 
2762 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2763 
2764 	if (got < 0)
2765 		return ERR_PTR(got);
2766 
2767 	vma = vma_lookup(mm, addr);
2768 	if (WARN_ON_ONCE(!vma)) {
2769 		put_page(page);
2770 		return ERR_PTR(-EINVAL);
2771 	}
2772 
2773 	*vmap = vma;
2774 	return page;
2775 }
2776 
2777 long get_user_pages(unsigned long start, unsigned long nr_pages,
2778 		    unsigned int gup_flags, struct page **pages);
2779 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2780 		    unsigned int gup_flags, struct page **pages);
2781 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2782 		    struct page **pages, unsigned int gup_flags);
2783 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2784 		    struct page **pages, unsigned int gup_flags);
2785 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2786 		      struct folio **folios, unsigned int max_folios,
2787 		      pgoff_t *offset);
2788 int folio_add_pins(struct folio *folio, unsigned int pins);
2789 
2790 int get_user_pages_fast(unsigned long start, int nr_pages,
2791 			unsigned int gup_flags, struct page **pages);
2792 int pin_user_pages_fast(unsigned long start, int nr_pages,
2793 			unsigned int gup_flags, struct page **pages);
2794 void folio_add_pin(struct folio *folio);
2795 
2796 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2797 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2798 			const struct task_struct *task, bool bypass_rlim);
2799 
2800 struct kvec;
2801 struct page *get_dump_page(unsigned long addr, int *locked);
2802 
2803 bool folio_mark_dirty(struct folio *folio);
2804 bool folio_mark_dirty_lock(struct folio *folio);
2805 bool set_page_dirty(struct page *page);
2806 int set_page_dirty_lock(struct page *page);
2807 
2808 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2809 
2810 /*
2811  * Flags used by change_protection().  For now we make it a bitmap so
2812  * that we can pass in multiple flags just like parameters.  However
2813  * for now all the callers are only use one of the flags at the same
2814  * time.
2815  */
2816 /*
2817  * Whether we should manually check if we can map individual PTEs writable,
2818  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2819  * PTEs automatically in a writable mapping.
2820  */
2821 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2822 /* Whether this protection change is for NUMA hints */
2823 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2824 /* Whether this change is for write protecting */
2825 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2826 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2827 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2828 					    MM_CP_UFFD_WP_RESOLVE)
2829 
2830 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2831 			     pte_t pte);
2832 extern long change_protection(struct mmu_gather *tlb,
2833 			      struct vm_area_struct *vma, unsigned long start,
2834 			      unsigned long end, unsigned long cp_flags);
2835 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2836 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2837 	  unsigned long start, unsigned long end, vm_flags_t newflags);
2838 
2839 /*
2840  * doesn't attempt to fault and will return short.
2841  */
2842 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2843 			     unsigned int gup_flags, struct page **pages);
2844 
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2845 static inline bool get_user_page_fast_only(unsigned long addr,
2846 			unsigned int gup_flags, struct page **pagep)
2847 {
2848 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2849 }
2850 /*
2851  * per-process(per-mm_struct) statistics.
2852  */
get_mm_counter(struct mm_struct * mm,int member)2853 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2854 {
2855 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2856 }
2857 
get_mm_counter_sum(struct mm_struct * mm,int member)2858 static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member)
2859 {
2860 	return percpu_counter_sum_positive(&mm->rss_stat[member]);
2861 }
2862 
2863 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2864 
add_mm_counter(struct mm_struct * mm,int member,long value)2865 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2866 {
2867 	percpu_counter_add(&mm->rss_stat[member], value);
2868 
2869 	mm_trace_rss_stat(mm, member);
2870 }
2871 
inc_mm_counter(struct mm_struct * mm,int member)2872 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2873 {
2874 	percpu_counter_inc(&mm->rss_stat[member]);
2875 
2876 	mm_trace_rss_stat(mm, member);
2877 }
2878 
dec_mm_counter(struct mm_struct * mm,int member)2879 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2880 {
2881 	percpu_counter_dec(&mm->rss_stat[member]);
2882 
2883 	mm_trace_rss_stat(mm, member);
2884 }
2885 
2886 /* Optimized variant when folio is already known not to be anon */
mm_counter_file(struct folio * folio)2887 static inline int mm_counter_file(struct folio *folio)
2888 {
2889 	if (folio_test_swapbacked(folio))
2890 		return MM_SHMEMPAGES;
2891 	return MM_FILEPAGES;
2892 }
2893 
mm_counter(struct folio * folio)2894 static inline int mm_counter(struct folio *folio)
2895 {
2896 	if (folio_test_anon(folio))
2897 		return MM_ANONPAGES;
2898 	return mm_counter_file(folio);
2899 }
2900 
get_mm_rss(struct mm_struct * mm)2901 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2902 {
2903 	return get_mm_counter(mm, MM_FILEPAGES) +
2904 		get_mm_counter(mm, MM_ANONPAGES) +
2905 		get_mm_counter(mm, MM_SHMEMPAGES);
2906 }
2907 
get_mm_hiwater_rss(struct mm_struct * mm)2908 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2909 {
2910 	return max(mm->hiwater_rss, get_mm_rss(mm));
2911 }
2912 
get_mm_hiwater_vm(struct mm_struct * mm)2913 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2914 {
2915 	return max(mm->hiwater_vm, mm->total_vm);
2916 }
2917 
update_hiwater_rss(struct mm_struct * mm)2918 static inline void update_hiwater_rss(struct mm_struct *mm)
2919 {
2920 	unsigned long _rss = get_mm_rss(mm);
2921 
2922 	if (data_race(mm->hiwater_rss) < _rss)
2923 		data_race(mm->hiwater_rss = _rss);
2924 }
2925 
update_hiwater_vm(struct mm_struct * mm)2926 static inline void update_hiwater_vm(struct mm_struct *mm)
2927 {
2928 	if (mm->hiwater_vm < mm->total_vm)
2929 		mm->hiwater_vm = mm->total_vm;
2930 }
2931 
reset_mm_hiwater_rss(struct mm_struct * mm)2932 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2933 {
2934 	mm->hiwater_rss = get_mm_rss(mm);
2935 }
2936 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2937 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2938 					 struct mm_struct *mm)
2939 {
2940 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2941 
2942 	if (*maxrss < hiwater_rss)
2943 		*maxrss = hiwater_rss;
2944 }
2945 
2946 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2947 static inline int pte_special(pte_t pte)
2948 {
2949 	return 0;
2950 }
2951 
pte_mkspecial(pte_t pte)2952 static inline pte_t pte_mkspecial(pte_t pte)
2953 {
2954 	return pte;
2955 }
2956 #endif
2957 
2958 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)2959 static inline bool pmd_special(pmd_t pmd)
2960 {
2961 	return false;
2962 }
2963 
pmd_mkspecial(pmd_t pmd)2964 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2965 {
2966 	return pmd;
2967 }
2968 #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2969 
2970 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)2971 static inline bool pud_special(pud_t pud)
2972 {
2973 	return false;
2974 }
2975 
pud_mkspecial(pud_t pud)2976 static inline pud_t pud_mkspecial(pud_t pud)
2977 {
2978 	return pud;
2979 }
2980 #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2981 
2982 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2983 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2984 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2985 				    spinlock_t **ptl)
2986 {
2987 	pte_t *ptep;
2988 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2989 	return ptep;
2990 }
2991 
2992 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2993 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2994 						unsigned long address)
2995 {
2996 	return 0;
2997 }
2998 #else
2999 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
3000 #endif
3001 
3002 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)3003 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
3004 						unsigned long address)
3005 {
3006 	return 0;
3007 }
mm_inc_nr_puds(struct mm_struct * mm)3008 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)3009 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
3010 
3011 #else
3012 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
3013 
mm_inc_nr_puds(struct mm_struct * mm)3014 static inline void mm_inc_nr_puds(struct mm_struct *mm)
3015 {
3016 	if (mm_pud_folded(mm))
3017 		return;
3018 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
3019 }
3020 
mm_dec_nr_puds(struct mm_struct * mm)3021 static inline void mm_dec_nr_puds(struct mm_struct *mm)
3022 {
3023 	if (mm_pud_folded(mm))
3024 		return;
3025 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
3026 }
3027 #endif
3028 
3029 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)3030 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
3031 						unsigned long address)
3032 {
3033 	return 0;
3034 }
3035 
mm_inc_nr_pmds(struct mm_struct * mm)3036 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)3037 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
3038 
3039 #else
3040 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
3041 
mm_inc_nr_pmds(struct mm_struct * mm)3042 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
3043 {
3044 	if (mm_pmd_folded(mm))
3045 		return;
3046 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
3047 }
3048 
mm_dec_nr_pmds(struct mm_struct * mm)3049 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
3050 {
3051 	if (mm_pmd_folded(mm))
3052 		return;
3053 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
3054 }
3055 #endif
3056 
3057 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)3058 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
3059 {
3060 	atomic_long_set(&mm->pgtables_bytes, 0);
3061 }
3062 
mm_pgtables_bytes(const struct mm_struct * mm)3063 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
3064 {
3065 	return atomic_long_read(&mm->pgtables_bytes);
3066 }
3067 
mm_inc_nr_ptes(struct mm_struct * mm)3068 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
3069 {
3070 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
3071 }
3072 
mm_dec_nr_ptes(struct mm_struct * mm)3073 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
3074 {
3075 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
3076 }
3077 #else
3078 
mm_pgtables_bytes_init(struct mm_struct * mm)3079 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)3080 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
3081 {
3082 	return 0;
3083 }
3084 
mm_inc_nr_ptes(struct mm_struct * mm)3085 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)3086 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
3087 #endif
3088 
3089 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
3090 int __pte_alloc_kernel(pmd_t *pmd);
3091 
3092 #if defined(CONFIG_MMU)
3093 
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)3094 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
3095 		unsigned long address)
3096 {
3097 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
3098 		NULL : p4d_offset(pgd, address);
3099 }
3100 
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)3101 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
3102 		unsigned long address)
3103 {
3104 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
3105 		NULL : pud_offset(p4d, address);
3106 }
3107 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)3108 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3109 {
3110 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
3111 		NULL: pmd_offset(pud, address);
3112 }
3113 #endif /* CONFIG_MMU */
3114 
3115 enum pt_flags {
3116 	PT_kernel = PG_referenced,
3117 	PT_reserved = PG_reserved,
3118 	/* High bits are used for zone/node/section */
3119 };
3120 
virt_to_ptdesc(const void * x)3121 static inline struct ptdesc *virt_to_ptdesc(const void *x)
3122 {
3123 	return page_ptdesc(virt_to_page(x));
3124 }
3125 
3126 /**
3127  * ptdesc_address - Virtual address of page table.
3128  * @pt: Page table descriptor.
3129  *
3130  * Return: The first byte of the page table described by @pt.
3131  */
ptdesc_address(const struct ptdesc * pt)3132 static inline void *ptdesc_address(const struct ptdesc *pt)
3133 {
3134 	return folio_address(ptdesc_folio(pt));
3135 }
3136 
pagetable_is_reserved(struct ptdesc * pt)3137 static inline bool pagetable_is_reserved(struct ptdesc *pt)
3138 {
3139 	return test_bit(PT_reserved, &pt->pt_flags.f);
3140 }
3141 
3142 /**
3143  * ptdesc_set_kernel - Mark a ptdesc used to map the kernel
3144  * @ptdesc: The ptdesc to be marked
3145  *
3146  * Kernel page tables often need special handling. Set a flag so that
3147  * the handling code knows this ptdesc will not be used for userspace.
3148  */
ptdesc_set_kernel(struct ptdesc * ptdesc)3149 static inline void ptdesc_set_kernel(struct ptdesc *ptdesc)
3150 {
3151 	set_bit(PT_kernel, &ptdesc->pt_flags.f);
3152 }
3153 
3154 /**
3155  * ptdesc_clear_kernel - Mark a ptdesc as no longer used to map the kernel
3156  * @ptdesc: The ptdesc to be unmarked
3157  *
3158  * Use when the ptdesc is no longer used to map the kernel and no longer
3159  * needs special handling.
3160  */
ptdesc_clear_kernel(struct ptdesc * ptdesc)3161 static inline void ptdesc_clear_kernel(struct ptdesc *ptdesc)
3162 {
3163 	/*
3164 	 * Note: the 'PG_referenced' bit does not strictly need to be
3165 	 * cleared before freeing the page. But this is nice for
3166 	 * symmetry.
3167 	 */
3168 	clear_bit(PT_kernel, &ptdesc->pt_flags.f);
3169 }
3170 
3171 /**
3172  * ptdesc_test_kernel - Check if a ptdesc is used to map the kernel
3173  * @ptdesc: The ptdesc being tested
3174  *
3175  * Call to tell if the ptdesc used to map the kernel.
3176  */
ptdesc_test_kernel(const struct ptdesc * ptdesc)3177 static inline bool ptdesc_test_kernel(const struct ptdesc *ptdesc)
3178 {
3179 	return test_bit(PT_kernel, &ptdesc->pt_flags.f);
3180 }
3181 
3182 /**
3183  * pagetable_alloc - Allocate pagetables
3184  * @gfp:    GFP flags
3185  * @order:  desired pagetable order
3186  *
3187  * pagetable_alloc allocates memory for page tables as well as a page table
3188  * descriptor to describe that memory.
3189  *
3190  * Return: The ptdesc describing the allocated page tables.
3191  */
pagetable_alloc_noprof(gfp_t gfp,unsigned int order)3192 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
3193 {
3194 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
3195 
3196 	return page_ptdesc(page);
3197 }
3198 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
3199 
__pagetable_free(struct ptdesc * pt)3200 static inline void __pagetable_free(struct ptdesc *pt)
3201 {
3202 	struct page *page = ptdesc_page(pt);
3203 
3204 	__free_pages(page, compound_order(page));
3205 }
3206 
3207 #ifdef CONFIG_ASYNC_KERNEL_PGTABLE_FREE
3208 void pagetable_free_kernel(struct ptdesc *pt);
3209 #else
pagetable_free_kernel(struct ptdesc * pt)3210 static inline void pagetable_free_kernel(struct ptdesc *pt)
3211 {
3212 	__pagetable_free(pt);
3213 }
3214 #endif
3215 /**
3216  * pagetable_free - Free pagetables
3217  * @pt:	The page table descriptor
3218  *
3219  * pagetable_free frees the memory of all page tables described by a page
3220  * table descriptor and the memory for the descriptor itself.
3221  */
pagetable_free(struct ptdesc * pt)3222 static inline void pagetable_free(struct ptdesc *pt)
3223 {
3224 	if (ptdesc_test_kernel(pt)) {
3225 		ptdesc_clear_kernel(pt);
3226 		pagetable_free_kernel(pt);
3227 	} else {
3228 		__pagetable_free(pt);
3229 	}
3230 }
3231 
3232 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
3233 #if ALLOC_SPLIT_PTLOCKS
3234 void __init ptlock_cache_init(void);
3235 bool ptlock_alloc(struct ptdesc *ptdesc);
3236 void ptlock_free(struct ptdesc *ptdesc);
3237 
ptlock_ptr(struct ptdesc * ptdesc)3238 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3239 {
3240 	return ptdesc->ptl;
3241 }
3242 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)3243 static inline void ptlock_cache_init(void)
3244 {
3245 }
3246 
ptlock_alloc(struct ptdesc * ptdesc)3247 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
3248 {
3249 	return true;
3250 }
3251 
ptlock_free(struct ptdesc * ptdesc)3252 static inline void ptlock_free(struct ptdesc *ptdesc)
3253 {
3254 }
3255 
ptlock_ptr(struct ptdesc * ptdesc)3256 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3257 {
3258 	return &ptdesc->ptl;
3259 }
3260 #endif /* ALLOC_SPLIT_PTLOCKS */
3261 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)3262 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3263 {
3264 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
3265 }
3266 
ptep_lockptr(struct mm_struct * mm,pte_t * pte)3267 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3268 {
3269 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
3270 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
3271 	return ptlock_ptr(virt_to_ptdesc(pte));
3272 }
3273 
ptlock_init(struct ptdesc * ptdesc)3274 static inline bool ptlock_init(struct ptdesc *ptdesc)
3275 {
3276 	/*
3277 	 * prep_new_page() initialize page->private (and therefore page->ptl)
3278 	 * with 0. Make sure nobody took it in use in between.
3279 	 *
3280 	 * It can happen if arch try to use slab for page table allocation:
3281 	 * slab code uses page->slab_cache, which share storage with page->ptl.
3282 	 */
3283 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
3284 	if (!ptlock_alloc(ptdesc))
3285 		return false;
3286 	spin_lock_init(ptlock_ptr(ptdesc));
3287 	return true;
3288 }
3289 
3290 #else	/* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3291 /*
3292  * We use mm->page_table_lock to guard all pagetable pages of the mm.
3293  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)3294 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3295 {
3296 	return &mm->page_table_lock;
3297 }
ptep_lockptr(struct mm_struct * mm,pte_t * pte)3298 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3299 {
3300 	return &mm->page_table_lock;
3301 }
ptlock_cache_init(void)3302 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)3303 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)3304 static inline void ptlock_free(struct ptdesc *ptdesc) {}
3305 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3306 
ptdesc_nr_pages(const struct ptdesc * ptdesc)3307 static inline unsigned long ptdesc_nr_pages(const struct ptdesc *ptdesc)
3308 {
3309 	return compound_nr(ptdesc_page(ptdesc));
3310 }
3311 
__pagetable_ctor(struct ptdesc * ptdesc)3312 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
3313 {
3314 	pg_data_t *pgdat = NODE_DATA(memdesc_nid(ptdesc->pt_flags));
3315 
3316 	__SetPageTable(ptdesc_page(ptdesc));
3317 	mod_node_page_state(pgdat, NR_PAGETABLE, ptdesc_nr_pages(ptdesc));
3318 }
3319 
pagetable_dtor(struct ptdesc * ptdesc)3320 static inline void pagetable_dtor(struct ptdesc *ptdesc)
3321 {
3322 	pg_data_t *pgdat = NODE_DATA(memdesc_nid(ptdesc->pt_flags));
3323 
3324 	ptlock_free(ptdesc);
3325 	__ClearPageTable(ptdesc_page(ptdesc));
3326 	mod_node_page_state(pgdat, NR_PAGETABLE, -ptdesc_nr_pages(ptdesc));
3327 }
3328 
pagetable_dtor_free(struct ptdesc * ptdesc)3329 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
3330 {
3331 	pagetable_dtor(ptdesc);
3332 	pagetable_free(ptdesc);
3333 }
3334 
pagetable_pte_ctor(struct mm_struct * mm,struct ptdesc * ptdesc)3335 static inline bool pagetable_pte_ctor(struct mm_struct *mm,
3336 				      struct ptdesc *ptdesc)
3337 {
3338 	if (mm != &init_mm && !ptlock_init(ptdesc))
3339 		return false;
3340 	__pagetable_ctor(ptdesc);
3341 	return true;
3342 }
3343 
3344 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
__pte_offset_map(pmd_t * pmd,unsigned long addr,pmd_t * pmdvalp)3345 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3346 			pmd_t *pmdvalp)
3347 {
3348 	pte_t *pte;
3349 
3350 	__cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3351 	return pte;
3352 }
pte_offset_map(pmd_t * pmd,unsigned long addr)3353 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3354 {
3355 	return __pte_offset_map(pmd, addr, NULL);
3356 }
3357 
3358 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3359 			unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)3360 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3361 			unsigned long addr, spinlock_t **ptlp)
3362 {
3363 	pte_t *pte;
3364 
3365 	__cond_lock(RCU, __cond_lock(*ptlp,
3366 			pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3367 	return pte;
3368 }
3369 
3370 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3371 				unsigned long addr, spinlock_t **ptlp);
3372 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3373 				unsigned long addr, pmd_t *pmdvalp,
3374 				spinlock_t **ptlp);
3375 
3376 #define pte_unmap_unlock(pte, ptl)	do {		\
3377 	spin_unlock(ptl);				\
3378 	pte_unmap(pte);					\
3379 } while (0)
3380 
3381 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3382 
3383 #define pte_alloc_map(mm, pmd, address)			\
3384 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3385 
3386 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3387 	(pte_alloc(mm, pmd) ?			\
3388 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3389 
3390 #define pte_alloc_kernel(pmd, address)			\
3391 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3392 		NULL: pte_offset_kernel(pmd, address))
3393 
3394 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3395 
pmd_pgtable_page(pmd_t * pmd)3396 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3397 {
3398 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3399 	return virt_to_page((void *)((unsigned long) pmd & mask));
3400 }
3401 
pmd_ptdesc(pmd_t * pmd)3402 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3403 {
3404 	return page_ptdesc(pmd_pgtable_page(pmd));
3405 }
3406 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3407 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3408 {
3409 	return ptlock_ptr(pmd_ptdesc(pmd));
3410 }
3411 
pmd_ptlock_init(struct ptdesc * ptdesc)3412 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3413 {
3414 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3415 	ptdesc->pmd_huge_pte = NULL;
3416 #endif
3417 	return ptlock_init(ptdesc);
3418 }
3419 
3420 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3421 
3422 #else
3423 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3424 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3425 {
3426 	return &mm->page_table_lock;
3427 }
3428 
pmd_ptlock_init(struct ptdesc * ptdesc)3429 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3430 
3431 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3432 
3433 #endif
3434 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3435 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3436 {
3437 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3438 	spin_lock(ptl);
3439 	return ptl;
3440 }
3441 
pagetable_pmd_ctor(struct mm_struct * mm,struct ptdesc * ptdesc)3442 static inline bool pagetable_pmd_ctor(struct mm_struct *mm,
3443 				      struct ptdesc *ptdesc)
3444 {
3445 	if (mm != &init_mm && !pmd_ptlock_init(ptdesc))
3446 		return false;
3447 	ptdesc_pmd_pts_init(ptdesc);
3448 	__pagetable_ctor(ptdesc);
3449 	return true;
3450 }
3451 
3452 /*
3453  * No scalability reason to split PUD locks yet, but follow the same pattern
3454  * as the PMD locks to make it easier if we decide to.  The VM should not be
3455  * considered ready to switch to split PUD locks yet; there may be places
3456  * which need to be converted from page_table_lock.
3457  */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3458 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3459 {
3460 	return &mm->page_table_lock;
3461 }
3462 
pud_lock(struct mm_struct * mm,pud_t * pud)3463 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3464 {
3465 	spinlock_t *ptl = pud_lockptr(mm, pud);
3466 
3467 	spin_lock(ptl);
3468 	return ptl;
3469 }
3470 
pagetable_pud_ctor(struct ptdesc * ptdesc)3471 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3472 {
3473 	__pagetable_ctor(ptdesc);
3474 }
3475 
pagetable_p4d_ctor(struct ptdesc * ptdesc)3476 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3477 {
3478 	__pagetable_ctor(ptdesc);
3479 }
3480 
pagetable_pgd_ctor(struct ptdesc * ptdesc)3481 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3482 {
3483 	__pagetable_ctor(ptdesc);
3484 }
3485 
3486 extern void __init pagecache_init(void);
3487 extern void free_initmem(void);
3488 
3489 /*
3490  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3491  * into the buddy system. The freed pages will be poisoned with pattern
3492  * "poison" if it's within range [0, UCHAR_MAX].
3493  * Return pages freed into the buddy system.
3494  */
3495 extern unsigned long free_reserved_area(void *start, void *end,
3496 					int poison, const char *s);
3497 
3498 extern void adjust_managed_page_count(struct page *page, long count);
3499 
3500 extern void reserve_bootmem_region(phys_addr_t start,
3501 				   phys_addr_t end, int nid);
3502 
3503 /* Free the reserved page into the buddy system, so it gets managed. */
3504 void free_reserved_page(struct page *page);
3505 
mark_page_reserved(struct page * page)3506 static inline void mark_page_reserved(struct page *page)
3507 {
3508 	SetPageReserved(page);
3509 	adjust_managed_page_count(page, -1);
3510 }
3511 
free_reserved_ptdesc(struct ptdesc * pt)3512 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3513 {
3514 	free_reserved_page(ptdesc_page(pt));
3515 }
3516 
3517 /*
3518  * Default method to free all the __init memory into the buddy system.
3519  * The freed pages will be poisoned with pattern "poison" if it's within
3520  * range [0, UCHAR_MAX].
3521  * Return pages freed into the buddy system.
3522  */
free_initmem_default(int poison)3523 static inline unsigned long free_initmem_default(int poison)
3524 {
3525 	extern char __init_begin[], __init_end[];
3526 
3527 	return free_reserved_area(&__init_begin, &__init_end,
3528 				  poison, "unused kernel image (initmem)");
3529 }
3530 
get_num_physpages(void)3531 static inline unsigned long get_num_physpages(void)
3532 {
3533 	int nid;
3534 	unsigned long phys_pages = 0;
3535 
3536 	for_each_online_node(nid)
3537 		phys_pages += node_present_pages(nid);
3538 
3539 	return phys_pages;
3540 }
3541 
3542 /*
3543  * Using memblock node mappings, an architecture may initialise its
3544  * zones, allocate the backing mem_map and account for memory holes in an
3545  * architecture independent manner.
3546  *
3547  * An architecture is expected to register range of page frames backed by
3548  * physical memory with memblock_add[_node]() before calling
3549  * free_area_init() passing in the PFN each zone ends at. At a basic
3550  * usage, an architecture is expected to do something like
3551  *
3552  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3553  * 							 max_highmem_pfn};
3554  * for_each_valid_physical_page_range()
3555  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3556  * free_area_init(max_zone_pfns);
3557  */
3558 void free_area_init(unsigned long *max_zone_pfn);
3559 unsigned long node_map_pfn_alignment(void);
3560 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3561 						unsigned long end_pfn);
3562 extern void get_pfn_range_for_nid(unsigned int nid,
3563 			unsigned long *start_pfn, unsigned long *end_pfn);
3564 
3565 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3566 static inline int early_pfn_to_nid(unsigned long pfn)
3567 {
3568 	return 0;
3569 }
3570 #else
3571 /* please see mm/page_alloc.c */
3572 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3573 #endif
3574 
3575 extern void mem_init(void);
3576 extern void __init mmap_init(void);
3577 
3578 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3579 static inline void show_mem(void)
3580 {
3581 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3582 }
3583 extern long si_mem_available(void);
3584 extern void si_meminfo(struct sysinfo * val);
3585 extern void si_meminfo_node(struct sysinfo *val, int nid);
3586 
3587 extern __printf(3, 4)
3588 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3589 
3590 extern void setup_per_cpu_pageset(void);
3591 
3592 /* nommu.c */
3593 extern atomic_long_t mmap_pages_allocated;
3594 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3595 
3596 /* interval_tree.c */
3597 void vma_interval_tree_insert(struct vm_area_struct *node,
3598 			      struct rb_root_cached *root);
3599 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3600 				    struct vm_area_struct *prev,
3601 				    struct rb_root_cached *root);
3602 void vma_interval_tree_remove(struct vm_area_struct *node,
3603 			      struct rb_root_cached *root);
3604 struct vm_area_struct *vma_interval_tree_subtree_search(struct vm_area_struct *node,
3605 				unsigned long start, unsigned long last);
3606 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3607 				unsigned long start, unsigned long last);
3608 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3609 				unsigned long start, unsigned long last);
3610 
3611 #define vma_interval_tree_foreach(vma, root, start, last)		\
3612 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3613 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3614 
3615 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3616 				   struct rb_root_cached *root);
3617 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3618 				   struct rb_root_cached *root);
3619 struct anon_vma_chain *
3620 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3621 				  unsigned long start, unsigned long last);
3622 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3623 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3624 #ifdef CONFIG_DEBUG_VM_RB
3625 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3626 #endif
3627 
3628 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3629 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3630 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3631 
3632 /* mmap.c */
3633 extern int __vm_enough_memory(const struct mm_struct *mm, long pages, int cap_sys_admin);
3634 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3635 extern void exit_mmap(struct mm_struct *);
3636 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3637 				 unsigned long addr, bool write);
3638 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3639 static inline int check_data_rlimit(unsigned long rlim,
3640 				    unsigned long new,
3641 				    unsigned long start,
3642 				    unsigned long end_data,
3643 				    unsigned long start_data)
3644 {
3645 	if (rlim < RLIM_INFINITY) {
3646 		if (((new - start) + (end_data - start_data)) > rlim)
3647 			return -ENOSPC;
3648 	}
3649 
3650 	return 0;
3651 }
3652 
3653 extern int mm_take_all_locks(struct mm_struct *mm);
3654 extern void mm_drop_all_locks(struct mm_struct *mm);
3655 
3656 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3657 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3658 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3659 extern struct file *get_task_exe_file(struct task_struct *task);
3660 
3661 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3662 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3663 
3664 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3665 				   const struct vm_special_mapping *sm);
3666 struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3667 				   unsigned long addr, unsigned long len,
3668 				   vm_flags_t vm_flags,
3669 				   const struct vm_special_mapping *spec);
3670 
3671 unsigned long randomize_stack_top(unsigned long stack_top);
3672 unsigned long randomize_page(unsigned long start, unsigned long range);
3673 
3674 unsigned long
3675 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3676 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3677 
3678 static inline unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3679 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3680 		  unsigned long pgoff, unsigned long flags)
3681 {
3682 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3683 }
3684 
3685 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3686 	unsigned long len, unsigned long prot, unsigned long flags,
3687 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3688 	struct list_head *uf);
3689 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3690 			 unsigned long start, size_t len, struct list_head *uf,
3691 			 bool unlock);
3692 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3693 		    struct mm_struct *mm, unsigned long start,
3694 		    unsigned long end, struct list_head *uf, bool unlock);
3695 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3696 		     struct list_head *uf);
3697 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3698 
3699 #ifdef CONFIG_MMU
3700 extern int __mm_populate(unsigned long addr, unsigned long len,
3701 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3702 static inline void mm_populate(unsigned long addr, unsigned long len)
3703 {
3704 	/* Ignore errors */
3705 	(void) __mm_populate(addr, len, 1);
3706 }
3707 #else
mm_populate(unsigned long addr,unsigned long len)3708 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3709 #endif
3710 
3711 /* This takes the mm semaphore itself */
3712 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3713 extern int vm_munmap(unsigned long, size_t);
3714 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3715         unsigned long, unsigned long,
3716         unsigned long, unsigned long);
3717 
3718 struct vm_unmapped_area_info {
3719 #define VM_UNMAPPED_AREA_TOPDOWN 1
3720 	unsigned long flags;
3721 	unsigned long length;
3722 	unsigned long low_limit;
3723 	unsigned long high_limit;
3724 	unsigned long align_mask;
3725 	unsigned long align_offset;
3726 	unsigned long start_gap;
3727 };
3728 
3729 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3730 
3731 /* truncate.c */
3732 void truncate_inode_pages(struct address_space *mapping, loff_t lstart);
3733 void truncate_inode_pages_range(struct address_space *mapping, loff_t lstart,
3734 		uoff_t lend);
3735 void truncate_inode_pages_final(struct address_space *mapping);
3736 
3737 /* generic vm_area_ops exported for stackable file systems */
3738 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3739 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3740 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3741 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3742 
3743 extern unsigned long stack_guard_gap;
3744 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3745 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3746 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3747 
3748 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3749 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3750 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3751 					     struct vm_area_struct **pprev);
3752 
3753 /*
3754  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3755  * NULL if none.  Assume start_addr < end_addr.
3756  */
3757 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3758 			unsigned long start_addr, unsigned long end_addr);
3759 
3760 /**
3761  * vma_lookup() - Find a VMA at a specific address
3762  * @mm: The process address space.
3763  * @addr: The user address.
3764  *
3765  * Return: The vm_area_struct at the given address, %NULL otherwise.
3766  */
3767 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3768 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3769 {
3770 	return mtree_load(&mm->mm_mt, addr);
3771 }
3772 
stack_guard_start_gap(const struct vm_area_struct * vma)3773 static inline unsigned long stack_guard_start_gap(const struct vm_area_struct *vma)
3774 {
3775 	if (vma->vm_flags & VM_GROWSDOWN)
3776 		return stack_guard_gap;
3777 
3778 	/* See reasoning around the VM_SHADOW_STACK definition */
3779 	if (vma->vm_flags & VM_SHADOW_STACK)
3780 		return PAGE_SIZE;
3781 
3782 	return 0;
3783 }
3784 
vm_start_gap(const struct vm_area_struct * vma)3785 static inline unsigned long vm_start_gap(const struct vm_area_struct *vma)
3786 {
3787 	unsigned long gap = stack_guard_start_gap(vma);
3788 	unsigned long vm_start = vma->vm_start;
3789 
3790 	vm_start -= gap;
3791 	if (vm_start > vma->vm_start)
3792 		vm_start = 0;
3793 	return vm_start;
3794 }
3795 
vm_end_gap(const struct vm_area_struct * vma)3796 static inline unsigned long vm_end_gap(const struct vm_area_struct *vma)
3797 {
3798 	unsigned long vm_end = vma->vm_end;
3799 
3800 	if (vma->vm_flags & VM_GROWSUP) {
3801 		vm_end += stack_guard_gap;
3802 		if (vm_end < vma->vm_end)
3803 			vm_end = -PAGE_SIZE;
3804 	}
3805 	return vm_end;
3806 }
3807 
vma_pages(const struct vm_area_struct * vma)3808 static inline unsigned long vma_pages(const struct vm_area_struct *vma)
3809 {
3810 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3811 }
3812 
vma_desc_size(const struct vm_area_desc * desc)3813 static inline unsigned long vma_desc_size(const struct vm_area_desc *desc)
3814 {
3815 	return desc->end - desc->start;
3816 }
3817 
vma_desc_pages(const struct vm_area_desc * desc)3818 static inline unsigned long vma_desc_pages(const struct vm_area_desc *desc)
3819 {
3820 	return vma_desc_size(desc) >> PAGE_SHIFT;
3821 }
3822 
3823 /**
3824  * mmap_action_remap - helper for mmap_prepare hook to specify that a pure PFN
3825  * remap is required.
3826  * @desc: The VMA descriptor for the VMA requiring remap.
3827  * @start: The virtual address to start the remap from, must be within the VMA.
3828  * @start_pfn: The first PFN in the range to remap.
3829  * @size: The size of the range to remap, in bytes, at most spanning to the end
3830  * of the VMA.
3831  */
mmap_action_remap(struct vm_area_desc * desc,unsigned long start,unsigned long start_pfn,unsigned long size)3832 static inline void mmap_action_remap(struct vm_area_desc *desc,
3833 				     unsigned long start,
3834 				     unsigned long start_pfn,
3835 				     unsigned long size)
3836 {
3837 	struct mmap_action *action = &desc->action;
3838 
3839 	/* [start, start + size) must be within the VMA. */
3840 	WARN_ON_ONCE(start < desc->start || start >= desc->end);
3841 	WARN_ON_ONCE(start + size > desc->end);
3842 
3843 	action->type = MMAP_REMAP_PFN;
3844 	action->remap.start = start;
3845 	action->remap.start_pfn = start_pfn;
3846 	action->remap.size = size;
3847 	action->remap.pgprot = desc->page_prot;
3848 }
3849 
3850 /**
3851  * mmap_action_remap_full - helper for mmap_prepare hook to specify that the
3852  * entirety of a VMA should be PFN remapped.
3853  * @desc: The VMA descriptor for the VMA requiring remap.
3854  * @start_pfn: The first PFN in the range to remap.
3855  */
mmap_action_remap_full(struct vm_area_desc * desc,unsigned long start_pfn)3856 static inline void mmap_action_remap_full(struct vm_area_desc *desc,
3857 					  unsigned long start_pfn)
3858 {
3859 	mmap_action_remap(desc, desc->start, start_pfn, vma_desc_size(desc));
3860 }
3861 
3862 /**
3863  * mmap_action_ioremap - helper for mmap_prepare hook to specify that a pure PFN
3864  * I/O remap is required.
3865  * @desc: The VMA descriptor for the VMA requiring remap.
3866  * @start: The virtual address to start the remap from, must be within the VMA.
3867  * @start_pfn: The first PFN in the range to remap.
3868  * @size: The size of the range to remap, in bytes, at most spanning to the end
3869  * of the VMA.
3870  */
mmap_action_ioremap(struct vm_area_desc * desc,unsigned long start,unsigned long start_pfn,unsigned long size)3871 static inline void mmap_action_ioremap(struct vm_area_desc *desc,
3872 				       unsigned long start,
3873 				       unsigned long start_pfn,
3874 				       unsigned long size)
3875 {
3876 	mmap_action_remap(desc, start, start_pfn, size);
3877 	desc->action.type = MMAP_IO_REMAP_PFN;
3878 }
3879 
3880 /**
3881  * mmap_action_ioremap_full - helper for mmap_prepare hook to specify that the
3882  * entirety of a VMA should be PFN I/O remapped.
3883  * @desc: The VMA descriptor for the VMA requiring remap.
3884  * @start_pfn: The first PFN in the range to remap.
3885  */
mmap_action_ioremap_full(struct vm_area_desc * desc,unsigned long start_pfn)3886 static inline void mmap_action_ioremap_full(struct vm_area_desc *desc,
3887 					  unsigned long start_pfn)
3888 {
3889 	mmap_action_ioremap(desc, desc->start, start_pfn, vma_desc_size(desc));
3890 }
3891 
3892 void mmap_action_prepare(struct mmap_action *action,
3893 			 struct vm_area_desc *desc);
3894 int mmap_action_complete(struct mmap_action *action,
3895 			 struct vm_area_struct *vma);
3896 
3897 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3898 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3899 				unsigned long vm_start, unsigned long vm_end)
3900 {
3901 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3902 
3903 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3904 		vma = NULL;
3905 
3906 	return vma;
3907 }
3908 
range_in_vma(const struct vm_area_struct * vma,unsigned long start,unsigned long end)3909 static inline bool range_in_vma(const struct vm_area_struct *vma,
3910 				unsigned long start, unsigned long end)
3911 {
3912 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3913 }
3914 
3915 #ifdef CONFIG_MMU
3916 pgprot_t vm_get_page_prot(vm_flags_t vm_flags);
3917 void vma_set_page_prot(struct vm_area_struct *vma);
3918 #else
vm_get_page_prot(vm_flags_t vm_flags)3919 static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags)
3920 {
3921 	return __pgprot(0);
3922 }
vma_set_page_prot(struct vm_area_struct * vma)3923 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3924 {
3925 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3926 }
3927 #endif
3928 
3929 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3930 
3931 #ifdef CONFIG_NUMA_BALANCING
3932 unsigned long change_prot_numa(struct vm_area_struct *vma,
3933 			unsigned long start, unsigned long end);
3934 #endif
3935 
3936 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3937 		unsigned long addr);
3938 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
3939 		    unsigned long pfn, unsigned long size, pgprot_t pgprot);
3940 
3941 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3942 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3943 			struct page **pages, unsigned long *num);
3944 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3945 				unsigned long num);
3946 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3947 				unsigned long num);
3948 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
3949 			bool write);
3950 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3951 			unsigned long pfn);
3952 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3953 			unsigned long pfn, pgprot_t pgprot);
3954 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3955 			unsigned long pfn);
3956 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3957 		unsigned long addr, unsigned long pfn);
3958 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3959 
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3960 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3961 				unsigned long addr, struct page *page)
3962 {
3963 	int err = vm_insert_page(vma, addr, page);
3964 
3965 	if (err == -ENOMEM)
3966 		return VM_FAULT_OOM;
3967 	if (err < 0 && err != -EBUSY)
3968 		return VM_FAULT_SIGBUS;
3969 
3970 	return VM_FAULT_NOPAGE;
3971 }
3972 
3973 #ifndef io_remap_pfn_range_pfn
io_remap_pfn_range_pfn(unsigned long pfn,unsigned long size)3974 static inline unsigned long io_remap_pfn_range_pfn(unsigned long pfn,
3975 		unsigned long size)
3976 {
3977 	return pfn;
3978 }
3979 #endif
3980 
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long orig_pfn,unsigned long size,pgprot_t orig_prot)3981 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3982 				     unsigned long addr, unsigned long orig_pfn,
3983 				     unsigned long size, pgprot_t orig_prot)
3984 {
3985 	const unsigned long pfn = io_remap_pfn_range_pfn(orig_pfn, size);
3986 	const pgprot_t prot = pgprot_decrypted(orig_prot);
3987 
3988 	return remap_pfn_range(vma, addr, pfn, size, prot);
3989 }
3990 
vmf_error(int err)3991 static inline vm_fault_t vmf_error(int err)
3992 {
3993 	if (err == -ENOMEM)
3994 		return VM_FAULT_OOM;
3995 	else if (err == -EHWPOISON)
3996 		return VM_FAULT_HWPOISON;
3997 	return VM_FAULT_SIGBUS;
3998 }
3999 
4000 /*
4001  * Convert errno to return value for ->page_mkwrite() calls.
4002  *
4003  * This should eventually be merged with vmf_error() above, but will need a
4004  * careful audit of all vmf_error() callers.
4005  */
vmf_fs_error(int err)4006 static inline vm_fault_t vmf_fs_error(int err)
4007 {
4008 	if (err == 0)
4009 		return VM_FAULT_LOCKED;
4010 	if (err == -EFAULT || err == -EAGAIN)
4011 		return VM_FAULT_NOPAGE;
4012 	if (err == -ENOMEM)
4013 		return VM_FAULT_OOM;
4014 	/* -ENOSPC, -EDQUOT, -EIO ... */
4015 	return VM_FAULT_SIGBUS;
4016 }
4017 
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)4018 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
4019 {
4020 	if (vm_fault & VM_FAULT_OOM)
4021 		return -ENOMEM;
4022 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
4023 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
4024 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
4025 		return -EFAULT;
4026 	return 0;
4027 }
4028 
4029 /*
4030  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
4031  * a (NUMA hinting) fault is required.
4032  */
gup_can_follow_protnone(const struct vm_area_struct * vma,unsigned int flags)4033 static inline bool gup_can_follow_protnone(const struct vm_area_struct *vma,
4034 					   unsigned int flags)
4035 {
4036 	/*
4037 	 * If callers don't want to honor NUMA hinting faults, no need to
4038 	 * determine if we would actually have to trigger a NUMA hinting fault.
4039 	 */
4040 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
4041 		return true;
4042 
4043 	/*
4044 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
4045 	 *
4046 	 * Requiring a fault here even for inaccessible VMAs would mean that
4047 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
4048 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
4049 	 */
4050 	return !vma_is_accessible(vma);
4051 }
4052 
4053 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
4054 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
4055 			       unsigned long size, pte_fn_t fn, void *data);
4056 extern int apply_to_existing_page_range(struct mm_struct *mm,
4057 				   unsigned long address, unsigned long size,
4058 				   pte_fn_t fn, void *data);
4059 
4060 #ifdef CONFIG_PAGE_POISONING
4061 extern void __kernel_poison_pages(struct page *page, int numpages);
4062 extern void __kernel_unpoison_pages(struct page *page, int numpages);
4063 extern bool _page_poisoning_enabled_early;
4064 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)4065 static inline bool page_poisoning_enabled(void)
4066 {
4067 	return _page_poisoning_enabled_early;
4068 }
4069 /*
4070  * For use in fast paths after init_mem_debugging() has run, or when a
4071  * false negative result is not harmful when called too early.
4072  */
page_poisoning_enabled_static(void)4073 static inline bool page_poisoning_enabled_static(void)
4074 {
4075 	return static_branch_unlikely(&_page_poisoning_enabled);
4076 }
kernel_poison_pages(struct page * page,int numpages)4077 static inline void kernel_poison_pages(struct page *page, int numpages)
4078 {
4079 	if (page_poisoning_enabled_static())
4080 		__kernel_poison_pages(page, numpages);
4081 }
kernel_unpoison_pages(struct page * page,int numpages)4082 static inline void kernel_unpoison_pages(struct page *page, int numpages)
4083 {
4084 	if (page_poisoning_enabled_static())
4085 		__kernel_unpoison_pages(page, numpages);
4086 }
4087 #else
page_poisoning_enabled(void)4088 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)4089 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)4090 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)4091 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)4092 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
4093 #endif
4094 
4095 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)4096 static inline bool want_init_on_alloc(gfp_t flags)
4097 {
4098 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4099 				&init_on_alloc))
4100 		return true;
4101 	return flags & __GFP_ZERO;
4102 }
4103 
4104 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)4105 static inline bool want_init_on_free(void)
4106 {
4107 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
4108 				   &init_on_free);
4109 }
4110 
4111 extern bool _debug_pagealloc_enabled_early;
4112 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
4113 
debug_pagealloc_enabled(void)4114 static inline bool debug_pagealloc_enabled(void)
4115 {
4116 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
4117 		_debug_pagealloc_enabled_early;
4118 }
4119 
4120 /*
4121  * For use in fast paths after mem_debugging_and_hardening_init() has run,
4122  * or when a false negative result is not harmful when called too early.
4123  */
debug_pagealloc_enabled_static(void)4124 static inline bool debug_pagealloc_enabled_static(void)
4125 {
4126 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
4127 		return false;
4128 
4129 	return static_branch_unlikely(&_debug_pagealloc_enabled);
4130 }
4131 
4132 /*
4133  * To support DEBUG_PAGEALLOC architecture must ensure that
4134  * __kernel_map_pages() never fails
4135  */
4136 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
4137 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)4138 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
4139 {
4140 	if (debug_pagealloc_enabled_static())
4141 		__kernel_map_pages(page, numpages, 1);
4142 }
4143 
debug_pagealloc_unmap_pages(struct page * page,int numpages)4144 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
4145 {
4146 	if (debug_pagealloc_enabled_static())
4147 		__kernel_map_pages(page, numpages, 0);
4148 }
4149 
4150 extern unsigned int _debug_guardpage_minorder;
4151 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
4152 
debug_guardpage_minorder(void)4153 static inline unsigned int debug_guardpage_minorder(void)
4154 {
4155 	return _debug_guardpage_minorder;
4156 }
4157 
debug_guardpage_enabled(void)4158 static inline bool debug_guardpage_enabled(void)
4159 {
4160 	return static_branch_unlikely(&_debug_guardpage_enabled);
4161 }
4162 
page_is_guard(const struct page * page)4163 static inline bool page_is_guard(const struct page *page)
4164 {
4165 	if (!debug_guardpage_enabled())
4166 		return false;
4167 
4168 	return PageGuard(page);
4169 }
4170 
4171 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
set_page_guard(struct zone * zone,struct page * page,unsigned int order)4172 static inline bool set_page_guard(struct zone *zone, struct page *page,
4173 				  unsigned int order)
4174 {
4175 	if (!debug_guardpage_enabled())
4176 		return false;
4177 	return __set_page_guard(zone, page, order);
4178 }
4179 
4180 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)4181 static inline void clear_page_guard(struct zone *zone, struct page *page,
4182 				    unsigned int order)
4183 {
4184 	if (!debug_guardpage_enabled())
4185 		return;
4186 	__clear_page_guard(zone, page, order);
4187 }
4188 
4189 #else	/* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)4190 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)4191 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)4192 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)4193 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(const struct page * page)4194 static inline bool page_is_guard(const struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order)4195 static inline bool set_page_guard(struct zone *zone, struct page *page,
4196 			unsigned int order) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)4197 static inline void clear_page_guard(struct zone *zone, struct page *page,
4198 				unsigned int order) {}
4199 #endif	/* CONFIG_DEBUG_PAGEALLOC */
4200 
4201 #ifdef __HAVE_ARCH_GATE_AREA
4202 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
4203 extern int in_gate_area_no_mm(unsigned long addr);
4204 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
4205 #else
get_gate_vma(struct mm_struct * mm)4206 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
4207 {
4208 	return NULL;
4209 }
in_gate_area_no_mm(unsigned long addr)4210 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)4211 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
4212 {
4213 	return 0;
4214 }
4215 #endif	/* __HAVE_ARCH_GATE_AREA */
4216 
4217 bool process_shares_mm(const struct task_struct *p, const struct mm_struct *mm);
4218 
4219 void drop_slab(void);
4220 
4221 #ifndef CONFIG_MMU
4222 #define randomize_va_space 0
4223 #else
4224 extern int randomize_va_space;
4225 #endif
4226 
4227 const char * arch_vma_name(struct vm_area_struct *vma);
4228 #ifdef CONFIG_MMU
4229 void print_vma_addr(char *prefix, unsigned long rip);
4230 #else
print_vma_addr(char * prefix,unsigned long rip)4231 static inline void print_vma_addr(char *prefix, unsigned long rip)
4232 {
4233 }
4234 #endif
4235 
4236 void *sparse_buffer_alloc(unsigned long size);
4237 unsigned long section_map_size(void);
4238 struct page * __populate_section_memmap(unsigned long pfn,
4239 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
4240 		struct dev_pagemap *pgmap);
4241 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
4242 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
4243 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
4244 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
4245 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4246 			    struct vmem_altmap *altmap, unsigned long ptpfn,
4247 			    unsigned long flags);
4248 void *vmemmap_alloc_block(unsigned long size, int node);
4249 struct vmem_altmap;
4250 void *vmemmap_alloc_block_buf(unsigned long size, int node,
4251 			      struct vmem_altmap *altmap);
4252 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
4253 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
4254 		     unsigned long addr, unsigned long next);
4255 int vmemmap_check_pmd(pmd_t *pmd, int node,
4256 		      unsigned long addr, unsigned long next);
4257 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
4258 			       int node, struct vmem_altmap *altmap);
4259 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
4260 			       int node, struct vmem_altmap *altmap);
4261 int vmemmap_populate(unsigned long start, unsigned long end, int node,
4262 		struct vmem_altmap *altmap);
4263 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
4264 			 unsigned long headsize);
4265 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
4266 		     unsigned long headsize);
4267 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
4268 			  unsigned long headsize);
4269 void vmemmap_populate_print_last(void);
4270 #ifdef CONFIG_MEMORY_HOTPLUG
4271 void vmemmap_free(unsigned long start, unsigned long end,
4272 		struct vmem_altmap *altmap);
4273 #endif
4274 
4275 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmem_altmap_offset(const struct vmem_altmap * altmap)4276 static inline unsigned long vmem_altmap_offset(const struct vmem_altmap *altmap)
4277 {
4278 	/* number of pfns from base where pfn_to_page() is valid */
4279 	if (altmap)
4280 		return altmap->reserve + altmap->free;
4281 	return 0;
4282 }
4283 
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)4284 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
4285 				    unsigned long nr_pfns)
4286 {
4287 	altmap->alloc -= nr_pfns;
4288 }
4289 #else
vmem_altmap_offset(const struct vmem_altmap * altmap)4290 static inline unsigned long vmem_altmap_offset(const struct vmem_altmap *altmap)
4291 {
4292 	return 0;
4293 }
4294 
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)4295 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
4296 				    unsigned long nr_pfns)
4297 {
4298 }
4299 #endif
4300 
4301 #define VMEMMAP_RESERVE_NR	2
4302 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)4303 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
4304 					  struct dev_pagemap *pgmap)
4305 {
4306 	unsigned long nr_pages;
4307 	unsigned long nr_vmemmap_pages;
4308 
4309 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
4310 		return false;
4311 
4312 	nr_pages = pgmap_vmemmap_nr(pgmap);
4313 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
4314 	/*
4315 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
4316 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
4317 	 */
4318 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
4319 }
4320 /*
4321  * If we don't have an architecture override, use the generic rule
4322  */
4323 #ifndef vmemmap_can_optimize
4324 #define vmemmap_can_optimize __vmemmap_can_optimize
4325 #endif
4326 
4327 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)4328 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
4329 					   struct dev_pagemap *pgmap)
4330 {
4331 	return false;
4332 }
4333 #endif
4334 
4335 enum mf_flags {
4336 	MF_COUNT_INCREASED = 1 << 0,
4337 	MF_ACTION_REQUIRED = 1 << 1,
4338 	MF_MUST_KILL = 1 << 2,
4339 	MF_SOFT_OFFLINE = 1 << 3,
4340 	MF_UNPOISON = 1 << 4,
4341 	MF_SW_SIMULATED = 1 << 5,
4342 	MF_NO_RETRY = 1 << 6,
4343 	MF_MEM_PRE_REMOVE = 1 << 7,
4344 };
4345 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
4346 		      unsigned long count, int mf_flags);
4347 extern int memory_failure(unsigned long pfn, int flags);
4348 extern int unpoison_memory(unsigned long pfn);
4349 extern atomic_long_t num_poisoned_pages __read_mostly;
4350 extern int soft_offline_page(unsigned long pfn, int flags);
4351 #ifdef CONFIG_MEMORY_FAILURE
4352 /*
4353  * Sysfs entries for memory failure handling statistics.
4354  */
4355 extern const struct attribute_group memory_failure_attr_group;
4356 extern void memory_failure_queue(unsigned long pfn, int flags);
4357 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4358 					bool *migratable_cleared);
4359 void num_poisoned_pages_inc(unsigned long pfn);
4360 void num_poisoned_pages_sub(unsigned long pfn, long i);
4361 #else
memory_failure_queue(unsigned long pfn,int flags)4362 static inline void memory_failure_queue(unsigned long pfn, int flags)
4363 {
4364 }
4365 
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)4366 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4367 					bool *migratable_cleared)
4368 {
4369 	return 0;
4370 }
4371 
num_poisoned_pages_inc(unsigned long pfn)4372 static inline void num_poisoned_pages_inc(unsigned long pfn)
4373 {
4374 }
4375 
num_poisoned_pages_sub(unsigned long pfn,long i)4376 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4377 {
4378 }
4379 #endif
4380 
4381 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4382 extern void memblk_nr_poison_inc(unsigned long pfn);
4383 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4384 #else
memblk_nr_poison_inc(unsigned long pfn)4385 static inline void memblk_nr_poison_inc(unsigned long pfn)
4386 {
4387 }
4388 
memblk_nr_poison_sub(unsigned long pfn,long i)4389 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4390 {
4391 }
4392 #endif
4393 
4394 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)4395 static inline int arch_memory_failure(unsigned long pfn, int flags)
4396 {
4397 	return -ENXIO;
4398 }
4399 #endif
4400 
4401 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)4402 static inline bool arch_is_platform_page(u64 paddr)
4403 {
4404 	return false;
4405 }
4406 #endif
4407 
4408 /*
4409  * Error handlers for various types of pages.
4410  */
4411 enum mf_result {
4412 	MF_IGNORED,	/* Error: cannot be handled */
4413 	MF_FAILED,	/* Error: handling failed */
4414 	MF_DELAYED,	/* Will be handled later */
4415 	MF_RECOVERED,	/* Successfully recovered */
4416 };
4417 
4418 enum mf_action_page_type {
4419 	MF_MSG_KERNEL,
4420 	MF_MSG_KERNEL_HIGH_ORDER,
4421 	MF_MSG_DIFFERENT_COMPOUND,
4422 	MF_MSG_HUGE,
4423 	MF_MSG_FREE_HUGE,
4424 	MF_MSG_GET_HWPOISON,
4425 	MF_MSG_UNMAP_FAILED,
4426 	MF_MSG_DIRTY_SWAPCACHE,
4427 	MF_MSG_CLEAN_SWAPCACHE,
4428 	MF_MSG_DIRTY_MLOCKED_LRU,
4429 	MF_MSG_CLEAN_MLOCKED_LRU,
4430 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4431 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4432 	MF_MSG_DIRTY_LRU,
4433 	MF_MSG_CLEAN_LRU,
4434 	MF_MSG_TRUNCATED_LRU,
4435 	MF_MSG_BUDDY,
4436 	MF_MSG_DAX,
4437 	MF_MSG_UNSPLIT_THP,
4438 	MF_MSG_ALREADY_POISONED,
4439 	MF_MSG_PFN_MAP,
4440 	MF_MSG_UNKNOWN,
4441 };
4442 
4443 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4444 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4445 int copy_user_large_folio(struct folio *dst, struct folio *src,
4446 			  unsigned long addr_hint,
4447 			  struct vm_area_struct *vma);
4448 long copy_folio_from_user(struct folio *dst_folio,
4449 			   const void __user *usr_src,
4450 			   bool allow_pagefault);
4451 
4452 /**
4453  * vma_is_special_huge - Are transhuge page-table entries considered special?
4454  * @vma: Pointer to the struct vm_area_struct to consider
4455  *
4456  * Whether transhuge page-table entries are considered "special" following
4457  * the definition in vm_normal_page().
4458  *
4459  * Return: true if transhuge page-table entries should be considered special,
4460  * false otherwise.
4461  */
vma_is_special_huge(const struct vm_area_struct * vma)4462 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4463 {
4464 	return vma_is_dax(vma) || (vma->vm_file &&
4465 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4466 }
4467 
4468 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4469 
4470 #if MAX_NUMNODES > 1
4471 void __init setup_nr_node_ids(void);
4472 #else
setup_nr_node_ids(void)4473 static inline void setup_nr_node_ids(void) {}
4474 #endif
4475 
4476 extern int memcmp_pages(struct page *page1, struct page *page2);
4477 
pages_identical(struct page * page1,struct page * page2)4478 static inline int pages_identical(struct page *page1, struct page *page2)
4479 {
4480 	return !memcmp_pages(page1, page2);
4481 }
4482 
4483 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4484 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4485 						pgoff_t first_index, pgoff_t nr,
4486 						pgoff_t bitmap_pgoff,
4487 						unsigned long *bitmap,
4488 						pgoff_t *start,
4489 						pgoff_t *end);
4490 
4491 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4492 				      pgoff_t first_index, pgoff_t nr);
4493 #endif
4494 
4495 #ifdef CONFIG_ANON_VMA_NAME
4496 int set_anon_vma_name(unsigned long addr, unsigned long size,
4497 		      const char __user *uname);
4498 #else
4499 static inline
set_anon_vma_name(unsigned long addr,unsigned long size,const char __user * uname)4500 int set_anon_vma_name(unsigned long addr, unsigned long size,
4501 		      const char __user *uname)
4502 {
4503 	return -EINVAL;
4504 }
4505 #endif
4506 
4507 #ifdef CONFIG_UNACCEPTED_MEMORY
4508 
4509 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4510 void accept_memory(phys_addr_t start, unsigned long size);
4511 
4512 #else
4513 
range_contains_unaccepted_memory(phys_addr_t start,unsigned long size)4514 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4515 						    unsigned long size)
4516 {
4517 	return false;
4518 }
4519 
accept_memory(phys_addr_t start,unsigned long size)4520 static inline void accept_memory(phys_addr_t start, unsigned long size)
4521 {
4522 }
4523 
4524 #endif
4525 
pfn_is_unaccepted_memory(unsigned long pfn)4526 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4527 {
4528 	return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4529 }
4530 
4531 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4532 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4533 
4534 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4535 int reserve_mem_release_by_name(const char *name);
4536 
4537 #ifdef CONFIG_64BIT
4538 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4539 #else
do_mseal(unsigned long start,size_t len_in,unsigned long flags)4540 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4541 {
4542 	/* noop on 32 bit */
4543 	return 0;
4544 }
4545 #endif
4546 
4547 /*
4548  * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4549  * be zeroed or not.
4550  */
user_alloc_needs_zeroing(void)4551 static inline bool user_alloc_needs_zeroing(void)
4552 {
4553 	/*
4554 	 * for user folios, arch with cache aliasing requires cache flush and
4555 	 * arc changes folio->flags to make icache coherent with dcache, so
4556 	 * always return false to make caller use
4557 	 * clear_user_page()/clear_user_highpage().
4558 	 */
4559 	return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4560 	       !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4561 				   &init_on_alloc);
4562 }
4563 
4564 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4565 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4566 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4567 
4568 /*
4569  * DMA mapping IDs for page_pool
4570  *
4571  * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and
4572  * stashes it in the upper bits of page->pp_magic. We always want to be able to
4573  * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP
4574  * pages can have arbitrary kernel pointers stored in the same field as pp_magic
4575  * (since it overlaps with page->lru.next), so we must ensure that we cannot
4576  * mistake a valid kernel pointer with any of the values we write into this
4577  * field.
4578  *
4579  * On architectures that set POISON_POINTER_DELTA, this is already ensured,
4580  * since this value becomes part of PP_SIGNATURE; meaning we can just use the
4581  * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the
4582  * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is
4583  * 0, we use the lowest bit of PAGE_OFFSET as the boundary if that value is
4584  * known at compile-time.
4585  *
4586  * If the value of PAGE_OFFSET is not known at compile time, or if it is too
4587  * small to leave at least 8 bits available above PP_SIGNATURE, we define the
4588  * number of bits to be 0, which turns off the DMA index tracking altogether
4589  * (see page_pool_register_dma_index()).
4590  */
4591 #define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA))
4592 #if POISON_POINTER_DELTA > 0
4593 /* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA
4594  * index to not overlap with that if set
4595  */
4596 #define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT)
4597 #else
4598 /* Use the lowest bit of PAGE_OFFSET if there's at least 8 bits available; see above */
4599 #define PP_DMA_INDEX_MIN_OFFSET (1 << (PP_DMA_INDEX_SHIFT + 8))
4600 #define PP_DMA_INDEX_BITS ((__builtin_constant_p(PAGE_OFFSET) && \
4601 			    PAGE_OFFSET >= PP_DMA_INDEX_MIN_OFFSET && \
4602 			    !(PAGE_OFFSET & (PP_DMA_INDEX_MIN_OFFSET - 1))) ? \
4603 			      MIN(32, __ffs(PAGE_OFFSET) - PP_DMA_INDEX_SHIFT) : 0)
4604 
4605 #endif
4606 
4607 #define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \
4608 				  PP_DMA_INDEX_SHIFT)
4609 
4610 /* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is
4611  * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for
4612  * the head page of compound page and bit 1 for pfmemalloc page, as well as the
4613  * bits used for the DMA index. page_is_pfmemalloc() is checked in
4614  * __page_pool_put_page() to avoid recycling the pfmemalloc page.
4615  */
4616 #define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL)
4617 
4618 #ifdef CONFIG_PAGE_POOL
page_pool_page_is_pp(const struct page * page)4619 static inline bool page_pool_page_is_pp(const struct page *page)
4620 {
4621 	return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE;
4622 }
4623 #else
page_pool_page_is_pp(const struct page * page)4624 static inline bool page_pool_page_is_pp(const struct page *page)
4625 {
4626 	return false;
4627 }
4628 #endif
4629 
4630 #define PAGE_SNAPSHOT_FAITHFUL (1 << 0)
4631 #define PAGE_SNAPSHOT_PG_BUDDY (1 << 1)
4632 #define PAGE_SNAPSHOT_PG_IDLE  (1 << 2)
4633 
4634 struct page_snapshot {
4635 	struct folio folio_snapshot;
4636 	struct page page_snapshot;
4637 	unsigned long pfn;
4638 	unsigned long idx;
4639 	unsigned long flags;
4640 };
4641 
snapshot_page_is_faithful(const struct page_snapshot * ps)4642 static inline bool snapshot_page_is_faithful(const struct page_snapshot *ps)
4643 {
4644 	return ps->flags & PAGE_SNAPSHOT_FAITHFUL;
4645 }
4646 
4647 void snapshot_page(struct page_snapshot *ps, const struct page *page);
4648 
4649 #endif /* _LINUX_MM_H */
4650