xref: /linux/include/linux/rmap.h (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RMAP_H
3 #define _LINUX_RMAP_H
4 /*
5  * Declarations for Reverse Mapping functions in mm/rmap.c
6  */
7 
8 #include <linux/list.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/rwsem.h>
12 #include <linux/memcontrol.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/memremap.h>
16 #include <linux/bit_spinlock.h>
17 
18 /*
19  * The anon_vma heads a list of private "related" vmas, to scan if
20  * an anonymous page pointing to this anon_vma needs to be unmapped:
21  * the vmas on the list will be related by forking, or by splitting.
22  *
23  * Since vmas come and go as they are split and merged (particularly
24  * in mprotect), the mapping field of an anonymous page cannot point
25  * directly to a vma: instead it points to an anon_vma, on whose list
26  * the related vmas can be easily linked or unlinked.
27  *
28  * After unlinking the last vma on the list, we must garbage collect
29  * the anon_vma object itself: we're guaranteed no page can be
30  * pointing to this anon_vma once its vma list is empty.
31  */
32 struct anon_vma {
33 	struct anon_vma *root;		/* Root of this anon_vma tree */
34 	struct rw_semaphore rwsem;	/* W: modification, R: walking the list */
35 	/*
36 	 * The refcount is taken on an anon_vma when there is no
37 	 * guarantee that the vma of page tables will exist for
38 	 * the duration of the operation. A caller that takes
39 	 * the reference is responsible for clearing up the
40 	 * anon_vma if they are the last user on release
41 	 */
42 	atomic_t refcount;
43 
44 	/*
45 	 * Count of child anon_vmas. Equals to the count of all anon_vmas that
46 	 * have ->parent pointing to this one, including itself.
47 	 *
48 	 * This counter is used for making decision about reusing anon_vma
49 	 * instead of forking new one. See comments in function anon_vma_clone.
50 	 */
51 	unsigned long num_children;
52 	/* Count of VMAs whose ->anon_vma pointer points to this object. */
53 	unsigned long num_active_vmas;
54 
55 	struct anon_vma *parent;	/* Parent of this anon_vma */
56 
57 	/*
58 	 * NOTE: the LSB of the rb_root.rb_node is set by
59 	 * mm_take_all_locks() _after_ taking the above lock. So the
60 	 * rb_root must only be read/written after taking the above lock
61 	 * to be sure to see a valid next pointer. The LSB bit itself
62 	 * is serialized by a system wide lock only visible to
63 	 * mm_take_all_locks() (mm_all_locks_mutex).
64 	 */
65 
66 	/* Interval tree of private "related" vmas */
67 	struct rb_root_cached rb_root;
68 };
69 
70 /*
71  * The copy-on-write semantics of fork mean that an anon_vma
72  * can become associated with multiple processes. Furthermore,
73  * each child process will have its own anon_vma, where new
74  * pages for that process are instantiated.
75  *
76  * This structure allows us to find the anon_vmas associated
77  * with a VMA, or the VMAs associated with an anon_vma.
78  * The "same_vma" list contains the anon_vma_chains linking
79  * all the anon_vmas associated with this VMA.
80  * The "rb" field indexes on an interval tree the anon_vma_chains
81  * which link all the VMAs associated with this anon_vma.
82  */
83 struct anon_vma_chain {
84 	struct vm_area_struct *vma;
85 	struct anon_vma *anon_vma;
86 	struct list_head same_vma;   /* locked by mmap_lock & page_table_lock */
87 	struct rb_node rb;			/* locked by anon_vma->rwsem */
88 	unsigned long rb_subtree_last;
89 #ifdef CONFIG_DEBUG_VM_RB
90 	unsigned long cached_vma_start, cached_vma_last;
91 #endif
92 };
93 
94 enum ttu_flags {
95 	TTU_SPLIT_HUGE_PMD	= 0x4,	/* split huge PMD if any */
96 	TTU_IGNORE_MLOCK	= 0x8,	/* ignore mlock */
97 	TTU_SYNC		= 0x10,	/* avoid racy checks with PVMW_SYNC */
98 	TTU_HWPOISON		= 0x20,	/* do convert pte to hwpoison entry */
99 	TTU_BATCH_FLUSH		= 0x40,	/* Batch TLB flushes where possible
100 					 * and caller guarantees they will
101 					 * do a final flush if necessary */
102 	TTU_RMAP_LOCKED		= 0x80,	/* do not grab rmap lock:
103 					 * caller holds it */
104 };
105 
106 #ifdef CONFIG_MMU
get_anon_vma(struct anon_vma * anon_vma)107 static inline void get_anon_vma(struct anon_vma *anon_vma)
108 {
109 	atomic_inc(&anon_vma->refcount);
110 }
111 
112 void __put_anon_vma(struct anon_vma *anon_vma);
113 
put_anon_vma(struct anon_vma * anon_vma)114 static inline void put_anon_vma(struct anon_vma *anon_vma)
115 {
116 	if (atomic_dec_and_test(&anon_vma->refcount))
117 		__put_anon_vma(anon_vma);
118 }
119 
anon_vma_lock_write(struct anon_vma * anon_vma)120 static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
121 {
122 	down_write(&anon_vma->root->rwsem);
123 }
124 
anon_vma_trylock_write(struct anon_vma * anon_vma)125 static inline int anon_vma_trylock_write(struct anon_vma *anon_vma)
126 {
127 	return down_write_trylock(&anon_vma->root->rwsem);
128 }
129 
anon_vma_unlock_write(struct anon_vma * anon_vma)130 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
131 {
132 	up_write(&anon_vma->root->rwsem);
133 }
134 
anon_vma_lock_read(struct anon_vma * anon_vma)135 static inline void anon_vma_lock_read(struct anon_vma *anon_vma)
136 {
137 	down_read(&anon_vma->root->rwsem);
138 }
139 
anon_vma_trylock_read(struct anon_vma * anon_vma)140 static inline int anon_vma_trylock_read(struct anon_vma *anon_vma)
141 {
142 	return down_read_trylock(&anon_vma->root->rwsem);
143 }
144 
anon_vma_unlock_read(struct anon_vma * anon_vma)145 static inline void anon_vma_unlock_read(struct anon_vma *anon_vma)
146 {
147 	up_read(&anon_vma->root->rwsem);
148 }
149 
150 
151 /*
152  * anon_vma helper functions.
153  */
154 void anon_vma_init(void);	/* create anon_vma_cachep */
155 int  __anon_vma_prepare(struct vm_area_struct *);
156 void unlink_anon_vmas(struct vm_area_struct *);
157 int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
158 int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
159 
anon_vma_prepare(struct vm_area_struct * vma)160 static inline int anon_vma_prepare(struct vm_area_struct *vma)
161 {
162 	if (likely(vma->anon_vma))
163 		return 0;
164 
165 	return __anon_vma_prepare(vma);
166 }
167 
anon_vma_merge(struct vm_area_struct * vma,struct vm_area_struct * next)168 static inline void anon_vma_merge(struct vm_area_struct *vma,
169 				  struct vm_area_struct *next)
170 {
171 	VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma);
172 	unlink_anon_vmas(next);
173 }
174 
175 struct anon_vma *folio_get_anon_vma(const struct folio *folio);
176 
177 #ifdef CONFIG_MM_ID
folio_lock_large_mapcount(struct folio * folio)178 static __always_inline void folio_lock_large_mapcount(struct folio *folio)
179 {
180 	bit_spin_lock(FOLIO_MM_IDS_LOCK_BITNUM, &folio->_mm_ids);
181 }
182 
folio_unlock_large_mapcount(struct folio * folio)183 static __always_inline void folio_unlock_large_mapcount(struct folio *folio)
184 {
185 	__bit_spin_unlock(FOLIO_MM_IDS_LOCK_BITNUM, &folio->_mm_ids);
186 }
187 
folio_mm_id(const struct folio * folio,int idx)188 static inline unsigned int folio_mm_id(const struct folio *folio, int idx)
189 {
190 	VM_WARN_ON_ONCE(idx != 0 && idx != 1);
191 	return folio->_mm_id[idx] & MM_ID_MASK;
192 }
193 
folio_set_mm_id(struct folio * folio,int idx,mm_id_t id)194 static inline void folio_set_mm_id(struct folio *folio, int idx, mm_id_t id)
195 {
196 	VM_WARN_ON_ONCE(idx != 0 && idx != 1);
197 	folio->_mm_id[idx] &= ~MM_ID_MASK;
198 	folio->_mm_id[idx] |= id;
199 }
200 
__folio_large_mapcount_sanity_checks(const struct folio * folio,int diff,mm_id_t mm_id)201 static inline void __folio_large_mapcount_sanity_checks(const struct folio *folio,
202 		int diff, mm_id_t mm_id)
203 {
204 	VM_WARN_ON_ONCE(!folio_test_large(folio) || folio_test_hugetlb(folio));
205 	VM_WARN_ON_ONCE(diff <= 0);
206 	VM_WARN_ON_ONCE(mm_id < MM_ID_MIN || mm_id > MM_ID_MAX);
207 
208 	/*
209 	 * Make sure we can detect at least one complete PTE mapping of the
210 	 * folio in a single MM as "exclusively mapped". This is primarily
211 	 * a check on 32bit, where we currently reduce the size of the per-MM
212 	 * mapcount to a short.
213 	 */
214 	VM_WARN_ON_ONCE(diff > folio_large_nr_pages(folio));
215 	VM_WARN_ON_ONCE(folio_large_nr_pages(folio) - 1 > MM_ID_MAPCOUNT_MAX);
216 
217 	VM_WARN_ON_ONCE(folio_mm_id(folio, 0) == MM_ID_DUMMY &&
218 			folio->_mm_id_mapcount[0] != -1);
219 	VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != MM_ID_DUMMY &&
220 			folio->_mm_id_mapcount[0] < 0);
221 	VM_WARN_ON_ONCE(folio_mm_id(folio, 1) == MM_ID_DUMMY &&
222 			folio->_mm_id_mapcount[1] != -1);
223 	VM_WARN_ON_ONCE(folio_mm_id(folio, 1) != MM_ID_DUMMY &&
224 			folio->_mm_id_mapcount[1] < 0);
225 	VM_WARN_ON_ONCE(!folio_mapped(folio) &&
226 			test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids));
227 }
228 
folio_set_large_mapcount(struct folio * folio,int mapcount,struct vm_area_struct * vma)229 static __always_inline void folio_set_large_mapcount(struct folio *folio,
230 		int mapcount, struct vm_area_struct *vma)
231 {
232 	__folio_large_mapcount_sanity_checks(folio, mapcount, vma->vm_mm->mm_id);
233 
234 	VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != MM_ID_DUMMY);
235 	VM_WARN_ON_ONCE(folio_mm_id(folio, 1) != MM_ID_DUMMY);
236 
237 	/* Note: mapcounts start at -1. */
238 	atomic_set(&folio->_large_mapcount, mapcount - 1);
239 	folio->_mm_id_mapcount[0] = mapcount - 1;
240 	folio_set_mm_id(folio, 0, vma->vm_mm->mm_id);
241 }
242 
folio_add_return_large_mapcount(struct folio * folio,int diff,struct vm_area_struct * vma)243 static __always_inline int folio_add_return_large_mapcount(struct folio *folio,
244 		int diff, struct vm_area_struct *vma)
245 {
246 	const mm_id_t mm_id = vma->vm_mm->mm_id;
247 	int new_mapcount_val;
248 
249 	folio_lock_large_mapcount(folio);
250 	__folio_large_mapcount_sanity_checks(folio, diff, mm_id);
251 
252 	new_mapcount_val = atomic_read(&folio->_large_mapcount) + diff;
253 	atomic_set(&folio->_large_mapcount, new_mapcount_val);
254 
255 	/*
256 	 * If a folio is mapped more than once into an MM on 32bit, we
257 	 * can in theory overflow the per-MM mapcount (although only for
258 	 * fairly large folios), turning it negative. In that case, just
259 	 * free up the slot and mark the folio "mapped shared", otherwise
260 	 * we might be in trouble when unmapping pages later.
261 	 */
262 	if (folio_mm_id(folio, 0) == mm_id) {
263 		folio->_mm_id_mapcount[0] += diff;
264 		if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio->_mm_id_mapcount[0] < 0)) {
265 			folio->_mm_id_mapcount[0] = -1;
266 			folio_set_mm_id(folio, 0, MM_ID_DUMMY);
267 			folio->_mm_ids |= FOLIO_MM_IDS_SHARED_BIT;
268 		}
269 	} else if (folio_mm_id(folio, 1) == mm_id) {
270 		folio->_mm_id_mapcount[1] += diff;
271 		if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio->_mm_id_mapcount[1] < 0)) {
272 			folio->_mm_id_mapcount[1] = -1;
273 			folio_set_mm_id(folio, 1, MM_ID_DUMMY);
274 			folio->_mm_ids |= FOLIO_MM_IDS_SHARED_BIT;
275 		}
276 	} else if (folio_mm_id(folio, 0) == MM_ID_DUMMY) {
277 		folio_set_mm_id(folio, 0, mm_id);
278 		folio->_mm_id_mapcount[0] = diff - 1;
279 		/* We might have other mappings already. */
280 		if (new_mapcount_val != diff - 1)
281 			folio->_mm_ids |= FOLIO_MM_IDS_SHARED_BIT;
282 	} else if (folio_mm_id(folio, 1) == MM_ID_DUMMY) {
283 		folio_set_mm_id(folio, 1, mm_id);
284 		folio->_mm_id_mapcount[1] = diff - 1;
285 		/* Slot 0 certainly has mappings as well. */
286 		folio->_mm_ids |= FOLIO_MM_IDS_SHARED_BIT;
287 	}
288 	folio_unlock_large_mapcount(folio);
289 	return new_mapcount_val + 1;
290 }
291 #define folio_add_large_mapcount folio_add_return_large_mapcount
292 
folio_sub_return_large_mapcount(struct folio * folio,int diff,struct vm_area_struct * vma)293 static __always_inline int folio_sub_return_large_mapcount(struct folio *folio,
294 		int diff, struct vm_area_struct *vma)
295 {
296 	const mm_id_t mm_id = vma->vm_mm->mm_id;
297 	int new_mapcount_val;
298 
299 	folio_lock_large_mapcount(folio);
300 	__folio_large_mapcount_sanity_checks(folio, diff, mm_id);
301 
302 	new_mapcount_val = atomic_read(&folio->_large_mapcount) - diff;
303 	atomic_set(&folio->_large_mapcount, new_mapcount_val);
304 
305 	/*
306 	 * There are valid corner cases where we might underflow a per-MM
307 	 * mapcount (some mappings added when no slot was free, some mappings
308 	 * added once a slot was free), so we always set it to -1 once we go
309 	 * negative.
310 	 */
311 	if (folio_mm_id(folio, 0) == mm_id) {
312 		folio->_mm_id_mapcount[0] -= diff;
313 		if (folio->_mm_id_mapcount[0] >= 0)
314 			goto out;
315 		folio->_mm_id_mapcount[0] = -1;
316 		folio_set_mm_id(folio, 0, MM_ID_DUMMY);
317 	} else if (folio_mm_id(folio, 1) == mm_id) {
318 		folio->_mm_id_mapcount[1] -= diff;
319 		if (folio->_mm_id_mapcount[1] >= 0)
320 			goto out;
321 		folio->_mm_id_mapcount[1] = -1;
322 		folio_set_mm_id(folio, 1, MM_ID_DUMMY);
323 	}
324 
325 	/*
326 	 * If one MM slot owns all mappings, the folio is mapped exclusively.
327 	 * Note that if the folio is now unmapped (new_mapcount_val == -1), both
328 	 * slots must be free (mapcount == -1), and we'll also mark it as
329 	 * exclusive.
330 	 */
331 	if (folio->_mm_id_mapcount[0] == new_mapcount_val ||
332 	    folio->_mm_id_mapcount[1] == new_mapcount_val)
333 		folio->_mm_ids &= ~FOLIO_MM_IDS_SHARED_BIT;
334 out:
335 	folio_unlock_large_mapcount(folio);
336 	return new_mapcount_val + 1;
337 }
338 #define folio_sub_large_mapcount folio_sub_return_large_mapcount
339 #else /* !CONFIG_MM_ID */
340 /*
341  * See __folio_rmap_sanity_checks(), we might map large folios even without
342  * CONFIG_TRANSPARENT_HUGEPAGE. We'll keep that working for now.
343  */
folio_set_large_mapcount(struct folio * folio,int mapcount,struct vm_area_struct * vma)344 static inline void folio_set_large_mapcount(struct folio *folio, int mapcount,
345 		struct vm_area_struct *vma)
346 {
347 	/* Note: mapcounts start at -1. */
348 	atomic_set(&folio->_large_mapcount, mapcount - 1);
349 }
350 
folio_add_large_mapcount(struct folio * folio,int diff,struct vm_area_struct * vma)351 static inline void folio_add_large_mapcount(struct folio *folio,
352 		int diff, struct vm_area_struct *vma)
353 {
354 	atomic_add(diff, &folio->_large_mapcount);
355 }
356 
folio_add_return_large_mapcount(struct folio * folio,int diff,struct vm_area_struct * vma)357 static inline int folio_add_return_large_mapcount(struct folio *folio,
358 		int diff, struct vm_area_struct *vma)
359 {
360 	BUILD_BUG();
361 }
362 
folio_sub_large_mapcount(struct folio * folio,int diff,struct vm_area_struct * vma)363 static inline void folio_sub_large_mapcount(struct folio *folio,
364 		int diff, struct vm_area_struct *vma)
365 {
366 	atomic_sub(diff, &folio->_large_mapcount);
367 }
368 
folio_sub_return_large_mapcount(struct folio * folio,int diff,struct vm_area_struct * vma)369 static inline int folio_sub_return_large_mapcount(struct folio *folio,
370 		int diff, struct vm_area_struct *vma)
371 {
372 	BUILD_BUG();
373 }
374 #endif /* CONFIG_MM_ID */
375 
376 #define folio_inc_large_mapcount(folio, vma) \
377 	folio_add_large_mapcount(folio, 1, vma)
378 #define folio_inc_return_large_mapcount(folio, vma) \
379 	folio_add_return_large_mapcount(folio, 1, vma)
380 #define folio_dec_large_mapcount(folio, vma) \
381 	folio_sub_large_mapcount(folio, 1, vma)
382 #define folio_dec_return_large_mapcount(folio, vma) \
383 	folio_sub_return_large_mapcount(folio, 1, vma)
384 
385 /* RMAP flags, currently only relevant for some anon rmap operations. */
386 typedef int __bitwise rmap_t;
387 
388 /*
389  * No special request: A mapped anonymous (sub)page is possibly shared between
390  * processes.
391  */
392 #define RMAP_NONE		((__force rmap_t)0)
393 
394 /* The anonymous (sub)page is exclusive to a single process. */
395 #define RMAP_EXCLUSIVE		((__force rmap_t)BIT(0))
396 
__folio_rmap_sanity_checks(const struct folio * folio,const struct page * page,int nr_pages,enum pgtable_level level)397 static __always_inline void __folio_rmap_sanity_checks(const struct folio *folio,
398 		const struct page *page, int nr_pages, enum pgtable_level level)
399 {
400 	/* hugetlb folios are handled separately. */
401 	VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
402 
403 	/* When (un)mapping zeropages, we should never touch ref+mapcount. */
404 	VM_WARN_ON_FOLIO(is_zero_folio(folio), folio);
405 
406 	/*
407 	 * TODO: we get driver-allocated folios that have nothing to do with
408 	 * the rmap using vm_insert_page(); therefore, we cannot assume that
409 	 * folio_test_large_rmappable() holds for large folios. We should
410 	 * handle any desired mapcount+stats accounting for these folios in
411 	 * VM_MIXEDMAP VMAs separately, and then sanity-check here that
412 	 * we really only get rmappable folios.
413 	 */
414 
415 	VM_WARN_ON_ONCE(nr_pages <= 0);
416 	VM_WARN_ON_FOLIO(page_folio(page) != folio, folio);
417 	VM_WARN_ON_FOLIO(page_folio(page + nr_pages - 1) != folio, folio);
418 
419 	switch (level) {
420 	case PGTABLE_LEVEL_PTE:
421 		break;
422 	case PGTABLE_LEVEL_PMD:
423 		/*
424 		 * We don't support folios larger than a single PMD yet. So
425 		 * when PGTABLE_LEVEL_PMD is set, we assume that we are creating
426 		 * a single "entire" mapping of the folio.
427 		 */
428 		VM_WARN_ON_FOLIO(folio_nr_pages(folio) != HPAGE_PMD_NR, folio);
429 		VM_WARN_ON_FOLIO(nr_pages != HPAGE_PMD_NR, folio);
430 		break;
431 	case PGTABLE_LEVEL_PUD:
432 		/*
433 		 * Assume that we are creating a single "entire" mapping of the
434 		 * folio.
435 		 */
436 		VM_WARN_ON_FOLIO(folio_nr_pages(folio) != HPAGE_PUD_NR, folio);
437 		VM_WARN_ON_FOLIO(nr_pages != HPAGE_PUD_NR, folio);
438 		break;
439 	default:
440 		BUILD_BUG();
441 	}
442 
443 	/*
444 	 * Anon folios must have an associated live anon_vma as long as they're
445 	 * mapped into userspace.
446 	 * Note that the atomic_read() mainly does two things:
447 	 *
448 	 * 1. In KASAN builds with CONFIG_SLUB_RCU_DEBUG, it causes KASAN to
449 	 *    check that the associated anon_vma has not yet been freed (subject
450 	 *    to KASAN's usual limitations). This check will pass if the
451 	 *    anon_vma's refcount has already dropped to 0 but an RCU grace
452 	 *    period hasn't passed since then.
453 	 * 2. If the anon_vma has not yet been freed, it checks that the
454 	 *    anon_vma still has a nonzero refcount (as opposed to being in the
455 	 *    middle of an RCU delay for getting freed).
456 	 */
457 	if (folio_test_anon(folio) && !folio_test_ksm(folio)) {
458 		unsigned long mapping = (unsigned long)folio->mapping;
459 		struct anon_vma *anon_vma;
460 
461 		anon_vma = (void *)(mapping - FOLIO_MAPPING_ANON);
462 		VM_WARN_ON_FOLIO(atomic_read(&anon_vma->refcount) == 0, folio);
463 	}
464 }
465 
466 /*
467  * rmap interfaces called when adding or removing pte of page
468  */
469 void folio_move_anon_rmap(struct folio *, struct vm_area_struct *);
470 void folio_add_anon_rmap_ptes(struct folio *, struct page *, int nr_pages,
471 		struct vm_area_struct *, unsigned long address, rmap_t flags);
472 #define folio_add_anon_rmap_pte(folio, page, vma, address, flags) \
473 	folio_add_anon_rmap_ptes(folio, page, 1, vma, address, flags)
474 void folio_add_anon_rmap_pmd(struct folio *, struct page *,
475 		struct vm_area_struct *, unsigned long address, rmap_t flags);
476 void folio_add_new_anon_rmap(struct folio *, struct vm_area_struct *,
477 		unsigned long address, rmap_t flags);
478 void folio_add_file_rmap_ptes(struct folio *, struct page *, int nr_pages,
479 		struct vm_area_struct *);
480 #define folio_add_file_rmap_pte(folio, page, vma) \
481 	folio_add_file_rmap_ptes(folio, page, 1, vma)
482 void folio_add_file_rmap_pmd(struct folio *, struct page *,
483 		struct vm_area_struct *);
484 void folio_add_file_rmap_pud(struct folio *, struct page *,
485 		struct vm_area_struct *);
486 void folio_remove_rmap_ptes(struct folio *, struct page *, int nr_pages,
487 		struct vm_area_struct *);
488 #define folio_remove_rmap_pte(folio, page, vma) \
489 	folio_remove_rmap_ptes(folio, page, 1, vma)
490 void folio_remove_rmap_pmd(struct folio *, struct page *,
491 		struct vm_area_struct *);
492 void folio_remove_rmap_pud(struct folio *, struct page *,
493 		struct vm_area_struct *);
494 
495 void hugetlb_add_anon_rmap(struct folio *, struct vm_area_struct *,
496 		unsigned long address, rmap_t flags);
497 void hugetlb_add_new_anon_rmap(struct folio *, struct vm_area_struct *,
498 		unsigned long address);
499 
500 /* See folio_try_dup_anon_rmap_*() */
hugetlb_try_dup_anon_rmap(struct folio * folio,struct vm_area_struct * vma)501 static inline int hugetlb_try_dup_anon_rmap(struct folio *folio,
502 		struct vm_area_struct *vma)
503 {
504 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
505 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
506 
507 	if (PageAnonExclusive(&folio->page)) {
508 		if (unlikely(folio_needs_cow_for_dma(vma, folio)))
509 			return -EBUSY;
510 		ClearPageAnonExclusive(&folio->page);
511 	}
512 	atomic_inc(&folio->_entire_mapcount);
513 	atomic_inc(&folio->_large_mapcount);
514 	return 0;
515 }
516 
517 /* See folio_try_share_anon_rmap_*() */
hugetlb_try_share_anon_rmap(struct folio * folio)518 static inline int hugetlb_try_share_anon_rmap(struct folio *folio)
519 {
520 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
521 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
522 	VM_WARN_ON_FOLIO(!PageAnonExclusive(&folio->page), folio);
523 
524 	/* Paired with the memory barrier in try_grab_folio(). */
525 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
526 		smp_mb();
527 
528 	if (unlikely(folio_maybe_dma_pinned(folio)))
529 		return -EBUSY;
530 	ClearPageAnonExclusive(&folio->page);
531 
532 	/*
533 	 * This is conceptually a smp_wmb() paired with the smp_rmb() in
534 	 * gup_must_unshare().
535 	 */
536 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
537 		smp_mb__after_atomic();
538 	return 0;
539 }
540 
hugetlb_add_file_rmap(struct folio * folio)541 static inline void hugetlb_add_file_rmap(struct folio *folio)
542 {
543 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
544 	VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
545 
546 	atomic_inc(&folio->_entire_mapcount);
547 	atomic_inc(&folio->_large_mapcount);
548 }
549 
hugetlb_remove_rmap(struct folio * folio)550 static inline void hugetlb_remove_rmap(struct folio *folio)
551 {
552 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
553 
554 	atomic_dec(&folio->_entire_mapcount);
555 	atomic_dec(&folio->_large_mapcount);
556 }
557 
__folio_dup_file_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * dst_vma,enum pgtable_level level)558 static __always_inline void __folio_dup_file_rmap(struct folio *folio,
559 		struct page *page, int nr_pages, struct vm_area_struct *dst_vma,
560 		enum pgtable_level level)
561 {
562 	const int orig_nr_pages = nr_pages;
563 
564 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
565 
566 	switch (level) {
567 	case PGTABLE_LEVEL_PTE:
568 		if (!folio_test_large(folio)) {
569 			atomic_inc(&folio->_mapcount);
570 			break;
571 		}
572 
573 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) {
574 			do {
575 				atomic_inc(&page->_mapcount);
576 			} while (page++, --nr_pages > 0);
577 		}
578 		folio_add_large_mapcount(folio, orig_nr_pages, dst_vma);
579 		break;
580 	case PGTABLE_LEVEL_PMD:
581 	case PGTABLE_LEVEL_PUD:
582 		atomic_inc(&folio->_entire_mapcount);
583 		folio_inc_large_mapcount(folio, dst_vma);
584 		break;
585 	default:
586 		BUILD_BUG();
587 	}
588 }
589 
590 /**
591  * folio_dup_file_rmap_ptes - duplicate PTE mappings of a page range of a folio
592  * @folio:	The folio to duplicate the mappings of
593  * @page:	The first page to duplicate the mappings of
594  * @nr_pages:	The number of pages of which the mapping will be duplicated
595  * @dst_vma:	The destination vm area
596  *
597  * The page range of the folio is defined by [page, page + nr_pages)
598  *
599  * The caller needs to hold the page table lock.
600  */
folio_dup_file_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * dst_vma)601 static inline void folio_dup_file_rmap_ptes(struct folio *folio,
602 		struct page *page, int nr_pages, struct vm_area_struct *dst_vma)
603 {
604 	__folio_dup_file_rmap(folio, page, nr_pages, dst_vma, PGTABLE_LEVEL_PTE);
605 }
606 
folio_dup_file_rmap_pte(struct folio * folio,struct page * page,struct vm_area_struct * dst_vma)607 static __always_inline void folio_dup_file_rmap_pte(struct folio *folio,
608 		struct page *page, struct vm_area_struct *dst_vma)
609 {
610 	__folio_dup_file_rmap(folio, page, 1, dst_vma, PGTABLE_LEVEL_PTE);
611 }
612 
613 /**
614  * folio_dup_file_rmap_pmd - duplicate a PMD mapping of a page range of a folio
615  * @folio:	The folio to duplicate the mapping of
616  * @page:	The first page to duplicate the mapping of
617  * @dst_vma:	The destination vm area
618  *
619  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
620  *
621  * The caller needs to hold the page table lock.
622  */
folio_dup_file_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * dst_vma)623 static inline void folio_dup_file_rmap_pmd(struct folio *folio,
624 		struct page *page, struct vm_area_struct *dst_vma)
625 {
626 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
627 	__folio_dup_file_rmap(folio, page, HPAGE_PMD_NR, dst_vma, PGTABLE_LEVEL_PTE);
628 #else
629 	WARN_ON_ONCE(true);
630 #endif
631 }
632 
__folio_try_dup_anon_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,enum pgtable_level level)633 static __always_inline int __folio_try_dup_anon_rmap(struct folio *folio,
634 		struct page *page, int nr_pages, struct vm_area_struct *dst_vma,
635 		struct vm_area_struct *src_vma, enum pgtable_level level)
636 {
637 	const int orig_nr_pages = nr_pages;
638 	bool maybe_pinned;
639 	int i;
640 
641 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
642 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
643 
644 	/*
645 	 * If this folio may have been pinned by the parent process,
646 	 * don't allow to duplicate the mappings but instead require to e.g.,
647 	 * copy the subpage immediately for the child so that we'll always
648 	 * guarantee the pinned folio won't be randomly replaced in the
649 	 * future on write faults.
650 	 */
651 	maybe_pinned = likely(!folio_is_device_private(folio)) &&
652 		       unlikely(folio_needs_cow_for_dma(src_vma, folio));
653 
654 	/*
655 	 * No need to check+clear for already shared PTEs/PMDs of the
656 	 * folio. But if any page is PageAnonExclusive, we must fallback to
657 	 * copying if the folio maybe pinned.
658 	 */
659 	switch (level) {
660 	case PGTABLE_LEVEL_PTE:
661 		if (unlikely(maybe_pinned)) {
662 			for (i = 0; i < nr_pages; i++)
663 				if (PageAnonExclusive(page + i))
664 					return -EBUSY;
665 		}
666 
667 		if (!folio_test_large(folio)) {
668 			if (PageAnonExclusive(page))
669 				ClearPageAnonExclusive(page);
670 			atomic_inc(&folio->_mapcount);
671 			break;
672 		}
673 
674 		do {
675 			if (PageAnonExclusive(page))
676 				ClearPageAnonExclusive(page);
677 			if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
678 				atomic_inc(&page->_mapcount);
679 		} while (page++, --nr_pages > 0);
680 		folio_add_large_mapcount(folio, orig_nr_pages, dst_vma);
681 		break;
682 	case PGTABLE_LEVEL_PMD:
683 	case PGTABLE_LEVEL_PUD:
684 		if (PageAnonExclusive(page)) {
685 			if (unlikely(maybe_pinned))
686 				return -EBUSY;
687 			ClearPageAnonExclusive(page);
688 		}
689 		atomic_inc(&folio->_entire_mapcount);
690 		folio_inc_large_mapcount(folio, dst_vma);
691 		break;
692 	default:
693 		BUILD_BUG();
694 	}
695 	return 0;
696 }
697 
698 /**
699  * folio_try_dup_anon_rmap_ptes - try duplicating PTE mappings of a page range
700  *				  of a folio
701  * @folio:	The folio to duplicate the mappings of
702  * @page:	The first page to duplicate the mappings of
703  * @nr_pages:	The number of pages of which the mapping will be duplicated
704  * @dst_vma:	The destination vm area
705  * @src_vma:	The vm area from which the mappings are duplicated
706  *
707  * The page range of the folio is defined by [page, page + nr_pages)
708  *
709  * The caller needs to hold the page table lock and the
710  * vma->vma_mm->write_protect_seq.
711  *
712  * Duplicating the mappings can only fail if the folio may be pinned; device
713  * private folios cannot get pinned and consequently this function cannot fail
714  * for them.
715  *
716  * If duplicating the mappings succeeded, the duplicated PTEs have to be R/O in
717  * the parent and the child. They must *not* be writable after this call
718  * succeeded.
719  *
720  * Returns 0 if duplicating the mappings succeeded. Returns -EBUSY otherwise.
721  */
folio_try_dup_anon_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)722 static inline int folio_try_dup_anon_rmap_ptes(struct folio *folio,
723 		struct page *page, int nr_pages, struct vm_area_struct *dst_vma,
724 		struct vm_area_struct *src_vma)
725 {
726 	return __folio_try_dup_anon_rmap(folio, page, nr_pages, dst_vma,
727 					 src_vma, PGTABLE_LEVEL_PTE);
728 }
729 
folio_try_dup_anon_rmap_pte(struct folio * folio,struct page * page,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)730 static __always_inline int folio_try_dup_anon_rmap_pte(struct folio *folio,
731 		struct page *page, struct vm_area_struct *dst_vma,
732 		struct vm_area_struct *src_vma)
733 {
734 	return __folio_try_dup_anon_rmap(folio, page, 1, dst_vma, src_vma,
735 					 PGTABLE_LEVEL_PTE);
736 }
737 
738 /**
739  * folio_try_dup_anon_rmap_pmd - try duplicating a PMD mapping of a page range
740  *				 of a folio
741  * @folio:	The folio to duplicate the mapping of
742  * @page:	The first page to duplicate the mapping of
743  * @dst_vma:	The destination vm area
744  * @src_vma:	The vm area from which the mapping is duplicated
745  *
746  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
747  *
748  * The caller needs to hold the page table lock and the
749  * vma->vma_mm->write_protect_seq.
750  *
751  * Duplicating the mapping can only fail if the folio may be pinned; device
752  * private folios cannot get pinned and consequently this function cannot fail
753  * for them.
754  *
755  * If duplicating the mapping succeeds, the duplicated PMD has to be R/O in
756  * the parent and the child. They must *not* be writable after this call
757  * succeeded.
758  *
759  * Returns 0 if duplicating the mapping succeeded. Returns -EBUSY otherwise.
760  */
folio_try_dup_anon_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)761 static inline int folio_try_dup_anon_rmap_pmd(struct folio *folio,
762 		struct page *page, struct vm_area_struct *dst_vma,
763 		struct vm_area_struct *src_vma)
764 {
765 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
766 	return __folio_try_dup_anon_rmap(folio, page, HPAGE_PMD_NR, dst_vma,
767 					 src_vma, PGTABLE_LEVEL_PMD);
768 #else
769 	WARN_ON_ONCE(true);
770 	return -EBUSY;
771 #endif
772 }
773 
__folio_try_share_anon_rmap(struct folio * folio,struct page * page,int nr_pages,enum pgtable_level level)774 static __always_inline int __folio_try_share_anon_rmap(struct folio *folio,
775 		struct page *page, int nr_pages, enum pgtable_level level)
776 {
777 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
778 	VM_WARN_ON_FOLIO(!PageAnonExclusive(page), folio);
779 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
780 
781 	/* device private folios cannot get pinned via GUP. */
782 	if (unlikely(folio_is_device_private(folio))) {
783 		ClearPageAnonExclusive(page);
784 		return 0;
785 	}
786 
787 	/*
788 	 * We have to make sure that when we clear PageAnonExclusive, that
789 	 * the page is not pinned and that concurrent GUP-fast won't succeed in
790 	 * concurrently pinning the page.
791 	 *
792 	 * Conceptually, PageAnonExclusive clearing consists of:
793 	 * (A1) Clear PTE
794 	 * (A2) Check if the page is pinned; back off if so.
795 	 * (A3) Clear PageAnonExclusive
796 	 * (A4) Restore PTE (optional, but certainly not writable)
797 	 *
798 	 * When clearing PageAnonExclusive, we cannot possibly map the page
799 	 * writable again, because anon pages that may be shared must never
800 	 * be writable. So in any case, if the PTE was writable it cannot
801 	 * be writable anymore afterwards and there would be a PTE change. Only
802 	 * if the PTE wasn't writable, there might not be a PTE change.
803 	 *
804 	 * Conceptually, GUP-fast pinning of an anon page consists of:
805 	 * (B1) Read the PTE
806 	 * (B2) FOLL_WRITE: check if the PTE is not writable; back off if so.
807 	 * (B3) Pin the mapped page
808 	 * (B4) Check if the PTE changed by re-reading it; back off if so.
809 	 * (B5) If the original PTE is not writable, check if
810 	 *	PageAnonExclusive is not set; back off if so.
811 	 *
812 	 * If the PTE was writable, we only have to make sure that GUP-fast
813 	 * observes a PTE change and properly backs off.
814 	 *
815 	 * If the PTE was not writable, we have to make sure that GUP-fast either
816 	 * detects a (temporary) PTE change or that PageAnonExclusive is cleared
817 	 * and properly backs off.
818 	 *
819 	 * Consequently, when clearing PageAnonExclusive(), we have to make
820 	 * sure that (A1), (A2)/(A3) and (A4) happen in the right memory
821 	 * order. In GUP-fast pinning code, we have to make sure that (B3),(B4)
822 	 * and (B5) happen in the right memory order.
823 	 *
824 	 * We assume that there might not be a memory barrier after
825 	 * clearing/invalidating the PTE (A1) and before restoring the PTE (A4),
826 	 * so we use explicit ones here.
827 	 */
828 
829 	/* Paired with the memory barrier in try_grab_folio(). */
830 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
831 		smp_mb();
832 
833 	if (unlikely(folio_maybe_dma_pinned(folio)))
834 		return -EBUSY;
835 	ClearPageAnonExclusive(page);
836 
837 	/*
838 	 * This is conceptually a smp_wmb() paired with the smp_rmb() in
839 	 * gup_must_unshare().
840 	 */
841 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
842 		smp_mb__after_atomic();
843 	return 0;
844 }
845 
846 /**
847  * folio_try_share_anon_rmap_pte - try marking an exclusive anonymous page
848  *				   mapped by a PTE possibly shared to prepare
849  *				   for KSM or temporary unmapping
850  * @folio:	The folio to share a mapping of
851  * @page:	The mapped exclusive page
852  *
853  * The caller needs to hold the page table lock and has to have the page table
854  * entries cleared/invalidated.
855  *
856  * This is similar to folio_try_dup_anon_rmap_pte(), however, not used during
857  * fork() to duplicate mappings, but instead to prepare for KSM or temporarily
858  * unmapping parts of a folio (swap, migration) via folio_remove_rmap_pte().
859  *
860  * Marking the mapped page shared can only fail if the folio maybe pinned;
861  * device private folios cannot get pinned and consequently this function cannot
862  * fail.
863  *
864  * Returns 0 if marking the mapped page possibly shared succeeded. Returns
865  * -EBUSY otherwise.
866  */
folio_try_share_anon_rmap_pte(struct folio * folio,struct page * page)867 static inline int folio_try_share_anon_rmap_pte(struct folio *folio,
868 		struct page *page)
869 {
870 	return __folio_try_share_anon_rmap(folio, page, 1, PGTABLE_LEVEL_PTE);
871 }
872 
873 /**
874  * folio_try_share_anon_rmap_pmd - try marking an exclusive anonymous page
875  *				   range mapped by a PMD possibly shared to
876  *				   prepare for temporary unmapping
877  * @folio:	The folio to share the mapping of
878  * @page:	The first page to share the mapping of
879  *
880  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
881  *
882  * The caller needs to hold the page table lock and has to have the page table
883  * entries cleared/invalidated.
884  *
885  * This is similar to folio_try_dup_anon_rmap_pmd(), however, not used during
886  * fork() to duplicate a mapping, but instead to prepare for temporarily
887  * unmapping parts of a folio (swap, migration) via folio_remove_rmap_pmd().
888  *
889  * Marking the mapped pages shared can only fail if the folio maybe pinned;
890  * device private folios cannot get pinned and consequently this function cannot
891  * fail.
892  *
893  * Returns 0 if marking the mapped pages possibly shared succeeded. Returns
894  * -EBUSY otherwise.
895  */
folio_try_share_anon_rmap_pmd(struct folio * folio,struct page * page)896 static inline int folio_try_share_anon_rmap_pmd(struct folio *folio,
897 		struct page *page)
898 {
899 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
900 	return __folio_try_share_anon_rmap(folio, page, HPAGE_PMD_NR,
901 					   PGTABLE_LEVEL_PMD);
902 #else
903 	WARN_ON_ONCE(true);
904 	return -EBUSY;
905 #endif
906 }
907 
908 /*
909  * Called from mm/vmscan.c to handle paging out
910  */
911 int folio_referenced(struct folio *, int is_locked,
912 			struct mem_cgroup *memcg, vm_flags_t *vm_flags);
913 
914 void try_to_migrate(struct folio *folio, enum ttu_flags flags);
915 void try_to_unmap(struct folio *, enum ttu_flags flags);
916 
917 struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr,
918 		void *owner, struct folio **foliop);
919 
920 /* Avoid racy checks */
921 #define PVMW_SYNC		(1 << 0)
922 /* Look for migration entries rather than present PTEs */
923 #define PVMW_MIGRATION		(1 << 1)
924 
925 /* Result flags */
926 
927 /* The page is mapped across page table boundary */
928 #define PVMW_PGTABLE_CROSSED	(1 << 16)
929 
930 struct page_vma_mapped_walk {
931 	unsigned long pfn;
932 	unsigned long nr_pages;
933 	pgoff_t pgoff;
934 	struct vm_area_struct *vma;
935 	unsigned long address;
936 	pmd_t *pmd;
937 	pte_t *pte;
938 	spinlock_t *ptl;
939 	unsigned int flags;
940 };
941 
942 #define DEFINE_FOLIO_VMA_WALK(name, _folio, _vma, _address, _flags)	\
943 	struct page_vma_mapped_walk name = {				\
944 		.pfn = folio_pfn(_folio),				\
945 		.nr_pages = folio_nr_pages(_folio),			\
946 		.pgoff = folio_pgoff(_folio),				\
947 		.vma = _vma,						\
948 		.address = _address,					\
949 		.flags = _flags,					\
950 	}
951 
page_vma_mapped_walk_done(struct page_vma_mapped_walk * pvmw)952 static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw)
953 {
954 	/* HugeTLB pte is set to the relevant page table entry without pte_mapped. */
955 	if (pvmw->pte && !is_vm_hugetlb_page(pvmw->vma))
956 		pte_unmap(pvmw->pte);
957 	if (pvmw->ptl)
958 		spin_unlock(pvmw->ptl);
959 }
960 
961 /**
962  * page_vma_mapped_walk_restart - Restart the page table walk.
963  * @pvmw: Pointer to struct page_vma_mapped_walk.
964  *
965  * It restarts the page table walk when changes occur in the page
966  * table, such as splitting a PMD. Ensures that the PTL held during
967  * the previous walk is released and resets the state to allow for
968  * a new walk starting at the current address stored in pvmw->address.
969  */
970 static inline void
page_vma_mapped_walk_restart(struct page_vma_mapped_walk * pvmw)971 page_vma_mapped_walk_restart(struct page_vma_mapped_walk *pvmw)
972 {
973 	WARN_ON_ONCE(!pvmw->pmd && !pvmw->pte);
974 
975 	if (likely(pvmw->ptl))
976 		spin_unlock(pvmw->ptl);
977 	else
978 		WARN_ON_ONCE(1);
979 
980 	pvmw->ptl = NULL;
981 	pvmw->pmd = NULL;
982 	pvmw->pte = NULL;
983 }
984 
985 bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw);
986 unsigned long page_address_in_vma(const struct folio *folio,
987 		const struct page *, const struct vm_area_struct *);
988 
989 /*
990  * Cleans the PTEs of shared mappings.
991  * (and since clean PTEs should also be readonly, write protects them too)
992  *
993  * returns the number of cleaned PTEs.
994  */
995 int folio_mkclean(struct folio *);
996 
997 int mapping_wrprotect_range(struct address_space *mapping, pgoff_t pgoff,
998 		unsigned long pfn, unsigned long nr_pages);
999 
1000 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1001 		      struct vm_area_struct *vma);
1002 
1003 enum rmp_flags {
1004 	RMP_LOCKED		= 1 << 0,
1005 	RMP_USE_SHARED_ZEROPAGE	= 1 << 1,
1006 };
1007 
1008 void remove_migration_ptes(struct folio *src, struct folio *dst, int flags);
1009 
1010 /*
1011  * rmap_walk_control: To control rmap traversing for specific needs
1012  *
1013  * arg: passed to rmap_one() and invalid_vma()
1014  * try_lock: bail out if the rmap lock is contended
1015  * contended: indicate the rmap traversal bailed out due to lock contention
1016  * rmap_one: executed on each vma where page is mapped
1017  * done: for checking traversing termination condition
1018  * anon_lock: for getting anon_lock by optimized way rather than default
1019  * invalid_vma: for skipping uninterested vma
1020  */
1021 struct rmap_walk_control {
1022 	void *arg;
1023 	bool try_lock;
1024 	bool contended;
1025 	/*
1026 	 * Return false if page table scanning in rmap_walk should be stopped.
1027 	 * Otherwise, return true.
1028 	 */
1029 	bool (*rmap_one)(struct folio *folio, struct vm_area_struct *vma,
1030 					unsigned long addr, void *arg);
1031 	int (*done)(struct folio *folio);
1032 	struct anon_vma *(*anon_lock)(const struct folio *folio,
1033 				      struct rmap_walk_control *rwc);
1034 	bool (*invalid_vma)(struct vm_area_struct *vma, void *arg);
1035 };
1036 
1037 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc);
1038 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc);
1039 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio,
1040 					  struct rmap_walk_control *rwc);
1041 
1042 #else	/* !CONFIG_MMU */
1043 
1044 #define anon_vma_init()		do {} while (0)
1045 #define anon_vma_prepare(vma)	(0)
1046 
folio_referenced(struct folio * folio,int is_locked,struct mem_cgroup * memcg,vm_flags_t * vm_flags)1047 static inline int folio_referenced(struct folio *folio, int is_locked,
1048 				  struct mem_cgroup *memcg,
1049 				  vm_flags_t *vm_flags)
1050 {
1051 	*vm_flags = 0;
1052 	return 0;
1053 }
1054 
try_to_unmap(struct folio * folio,enum ttu_flags flags)1055 static inline void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1056 {
1057 }
1058 
folio_mkclean(struct folio * folio)1059 static inline int folio_mkclean(struct folio *folio)
1060 {
1061 	return 0;
1062 }
1063 #endif	/* CONFIG_MMU */
1064 
1065 #endif	/* _LINUX_RMAP_H */
1066