1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support six policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * weighted interleave
23 * Allocate memory interleaved over a set of nodes based on
24 * a set of weights (per-node), with normal fallback if it
25 * fails. Otherwise operates the same as interleave.
26 * Example: nodeset(0,1) & weights (2,1) - 2 pages allocated
27 * on node 0 for every 1 page allocated on node 1.
28 *
29 * bind Only allocate memory on a specific set of nodes,
30 * no fallback.
31 * FIXME: memory is allocated starting with the first node
32 * to the last. It would be better if bind would truly restrict
33 * the allocation to memory nodes instead
34 *
35 * preferred Try a specific node first before normal fallback.
36 * As a special case NUMA_NO_NODE here means do the allocation
37 * on the local CPU. This is normally identical to default,
38 * but useful to set in a VMA when you have a non default
39 * process policy.
40 *
41 * preferred many Try a set of nodes first before normal fallback. This is
42 * similar to preferred without the special case.
43 *
44 * default Allocate on the local node first, or when on a VMA
45 * use the process policy. This is what Linux always did
46 * in a NUMA aware kernel and still does by, ahem, default.
47 *
48 * The process policy is applied for most non interrupt memory allocations
49 * in that process' context. Interrupts ignore the policies and always
50 * try to allocate on the local CPU. The VMA policy is only applied for memory
51 * allocations for a VMA in the VM.
52 *
53 * Currently there are a few corner cases in swapping where the policy
54 * is not applied, but the majority should be handled. When process policy
55 * is used it is not remembered over swap outs/swap ins.
56 *
57 * Only the highest zone in the zone hierarchy gets policied. Allocations
58 * requesting a lower zone just use default policy. This implies that
59 * on systems with highmem kernel lowmem allocation don't get policied.
60 * Same with GFP_DMA allocations.
61 *
62 * For shmem/tmpfs shared memory the policy is shared between
63 * all users and remembered even when nobody has memory mapped.
64 */
65
66 /* Notebook:
67 fix mmap readahead to honour policy and enable policy for any page cache
68 object
69 statistics for bigpages
70 global policy for page cache? currently it uses process policy. Requires
71 first item above.
72 handle mremap for shared memory (currently ignored for the policy)
73 grows down?
74 make bind policy root only? It can trigger oom much faster and the
75 kernel is not always grateful with that.
76 */
77
78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
79
80 #include <linux/mempolicy.h>
81 #include <linux/pagewalk.h>
82 #include <linux/highmem.h>
83 #include <linux/hugetlb.h>
84 #include <linux/kernel.h>
85 #include <linux/sched.h>
86 #include <linux/sched/mm.h>
87 #include <linux/sched/numa_balancing.h>
88 #include <linux/sched/task.h>
89 #include <linux/nodemask.h>
90 #include <linux/cpuset.h>
91 #include <linux/slab.h>
92 #include <linux/string.h>
93 #include <linux/export.h>
94 #include <linux/nsproxy.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compat.h>
98 #include <linux/ptrace.h>
99 #include <linux/swap.h>
100 #include <linux/seq_file.h>
101 #include <linux/proc_fs.h>
102 #include <linux/migrate.h>
103 #include <linux/ksm.h>
104 #include <linux/rmap.h>
105 #include <linux/security.h>
106 #include <linux/syscalls.h>
107 #include <linux/ctype.h>
108 #include <linux/mm_inline.h>
109 #include <linux/mmu_notifier.h>
110 #include <linux/printk.h>
111 #include <linux/swapops.h>
112
113 #include <asm/tlbflush.h>
114 #include <asm/tlb.h>
115 #include <linux/uaccess.h>
116
117 #include "internal.h"
118
119 /* Internal flags */
120 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
121 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
122 #define MPOL_MF_WRLOCK (MPOL_MF_INTERNAL << 2) /* Write-lock walked vmas */
123
124 static struct kmem_cache *policy_cache;
125 static struct kmem_cache *sn_cache;
126
127 /* Highest zone. An specific allocation for a zone below that is not
128 policied. */
129 enum zone_type policy_zone = 0;
130
131 /*
132 * run-time system-wide default policy => local allocation
133 */
134 static struct mempolicy default_policy = {
135 .refcnt = ATOMIC_INIT(1), /* never free it */
136 .mode = MPOL_LOCAL,
137 };
138
139 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
140
141 /*
142 * iw_table is the sysfs-set interleave weight table, a value of 0 denotes
143 * system-default value should be used. A NULL iw_table also denotes that
144 * system-default values should be used. Until the system-default table
145 * is implemented, the system-default is always 1.
146 *
147 * iw_table is RCU protected
148 */
149 static u8 __rcu *iw_table;
150 static DEFINE_MUTEX(iw_table_lock);
151
get_il_weight(int node)152 static u8 get_il_weight(int node)
153 {
154 u8 *table;
155 u8 weight;
156
157 rcu_read_lock();
158 table = rcu_dereference(iw_table);
159 /* if no iw_table, use system default */
160 weight = table ? table[node] : 1;
161 /* if value in iw_table is 0, use system default */
162 weight = weight ? weight : 1;
163 rcu_read_unlock();
164 return weight;
165 }
166
167 /**
168 * numa_nearest_node - Find nearest node by state
169 * @node: Node id to start the search
170 * @state: State to filter the search
171 *
172 * Lookup the closest node by distance if @nid is not in state.
173 *
174 * Return: this @node if it is in state, otherwise the closest node by distance
175 */
numa_nearest_node(int node,unsigned int state)176 int numa_nearest_node(int node, unsigned int state)
177 {
178 int min_dist = INT_MAX, dist, n, min_node;
179
180 if (state >= NR_NODE_STATES)
181 return -EINVAL;
182
183 if (node == NUMA_NO_NODE || node_state(node, state))
184 return node;
185
186 min_node = node;
187 for_each_node_state(n, state) {
188 dist = node_distance(node, n);
189 if (dist < min_dist) {
190 min_dist = dist;
191 min_node = n;
192 }
193 }
194
195 return min_node;
196 }
197 EXPORT_SYMBOL_GPL(numa_nearest_node);
198
get_task_policy(struct task_struct * p)199 struct mempolicy *get_task_policy(struct task_struct *p)
200 {
201 struct mempolicy *pol = p->mempolicy;
202 int node;
203
204 if (pol)
205 return pol;
206
207 node = numa_node_id();
208 if (node != NUMA_NO_NODE) {
209 pol = &preferred_node_policy[node];
210 /* preferred_node_policy is not initialised early in boot */
211 if (pol->mode)
212 return pol;
213 }
214
215 return &default_policy;
216 }
217
218 static const struct mempolicy_operations {
219 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
220 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
221 } mpol_ops[MPOL_MAX];
222
mpol_store_user_nodemask(const struct mempolicy * pol)223 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
224 {
225 return pol->flags & MPOL_MODE_FLAGS;
226 }
227
mpol_relative_nodemask(nodemask_t * ret,const nodemask_t * orig,const nodemask_t * rel)228 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
229 const nodemask_t *rel)
230 {
231 nodemask_t tmp;
232 nodes_fold(tmp, *orig, nodes_weight(*rel));
233 nodes_onto(*ret, tmp, *rel);
234 }
235
mpol_new_nodemask(struct mempolicy * pol,const nodemask_t * nodes)236 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
237 {
238 if (nodes_empty(*nodes))
239 return -EINVAL;
240 pol->nodes = *nodes;
241 return 0;
242 }
243
mpol_new_preferred(struct mempolicy * pol,const nodemask_t * nodes)244 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
245 {
246 if (nodes_empty(*nodes))
247 return -EINVAL;
248
249 nodes_clear(pol->nodes);
250 node_set(first_node(*nodes), pol->nodes);
251 return 0;
252 }
253
254 /*
255 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
256 * any, for the new policy. mpol_new() has already validated the nodes
257 * parameter with respect to the policy mode and flags.
258 *
259 * Must be called holding task's alloc_lock to protect task's mems_allowed
260 * and mempolicy. May also be called holding the mmap_lock for write.
261 */
mpol_set_nodemask(struct mempolicy * pol,const nodemask_t * nodes,struct nodemask_scratch * nsc)262 static int mpol_set_nodemask(struct mempolicy *pol,
263 const nodemask_t *nodes, struct nodemask_scratch *nsc)
264 {
265 int ret;
266
267 /*
268 * Default (pol==NULL) resp. local memory policies are not a
269 * subject of any remapping. They also do not need any special
270 * constructor.
271 */
272 if (!pol || pol->mode == MPOL_LOCAL)
273 return 0;
274
275 /* Check N_MEMORY */
276 nodes_and(nsc->mask1,
277 cpuset_current_mems_allowed, node_states[N_MEMORY]);
278
279 VM_BUG_ON(!nodes);
280
281 if (pol->flags & MPOL_F_RELATIVE_NODES)
282 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
283 else
284 nodes_and(nsc->mask2, *nodes, nsc->mask1);
285
286 if (mpol_store_user_nodemask(pol))
287 pol->w.user_nodemask = *nodes;
288 else
289 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
290
291 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
292 return ret;
293 }
294
295 /*
296 * This function just creates a new policy, does some check and simple
297 * initialization. You must invoke mpol_set_nodemask() to set nodes.
298 */
mpol_new(unsigned short mode,unsigned short flags,nodemask_t * nodes)299 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
300 nodemask_t *nodes)
301 {
302 struct mempolicy *policy;
303
304 if (mode == MPOL_DEFAULT) {
305 if (nodes && !nodes_empty(*nodes))
306 return ERR_PTR(-EINVAL);
307 return NULL;
308 }
309 VM_BUG_ON(!nodes);
310
311 /*
312 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
313 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
314 * All other modes require a valid pointer to a non-empty nodemask.
315 */
316 if (mode == MPOL_PREFERRED) {
317 if (nodes_empty(*nodes)) {
318 if (((flags & MPOL_F_STATIC_NODES) ||
319 (flags & MPOL_F_RELATIVE_NODES)))
320 return ERR_PTR(-EINVAL);
321
322 mode = MPOL_LOCAL;
323 }
324 } else if (mode == MPOL_LOCAL) {
325 if (!nodes_empty(*nodes) ||
326 (flags & MPOL_F_STATIC_NODES) ||
327 (flags & MPOL_F_RELATIVE_NODES))
328 return ERR_PTR(-EINVAL);
329 } else if (nodes_empty(*nodes))
330 return ERR_PTR(-EINVAL);
331
332 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
333 if (!policy)
334 return ERR_PTR(-ENOMEM);
335 atomic_set(&policy->refcnt, 1);
336 policy->mode = mode;
337 policy->flags = flags;
338 policy->home_node = NUMA_NO_NODE;
339
340 return policy;
341 }
342
343 /* Slow path of a mpol destructor. */
__mpol_put(struct mempolicy * pol)344 void __mpol_put(struct mempolicy *pol)
345 {
346 if (!atomic_dec_and_test(&pol->refcnt))
347 return;
348 kmem_cache_free(policy_cache, pol);
349 }
350
mpol_rebind_default(struct mempolicy * pol,const nodemask_t * nodes)351 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
352 {
353 }
354
mpol_rebind_nodemask(struct mempolicy * pol,const nodemask_t * nodes)355 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
356 {
357 nodemask_t tmp;
358
359 if (pol->flags & MPOL_F_STATIC_NODES)
360 nodes_and(tmp, pol->w.user_nodemask, *nodes);
361 else if (pol->flags & MPOL_F_RELATIVE_NODES)
362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 else {
364 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
365 *nodes);
366 pol->w.cpuset_mems_allowed = *nodes;
367 }
368
369 if (nodes_empty(tmp))
370 tmp = *nodes;
371
372 pol->nodes = tmp;
373 }
374
mpol_rebind_preferred(struct mempolicy * pol,const nodemask_t * nodes)375 static void mpol_rebind_preferred(struct mempolicy *pol,
376 const nodemask_t *nodes)
377 {
378 pol->w.cpuset_mems_allowed = *nodes;
379 }
380
381 /*
382 * mpol_rebind_policy - Migrate a policy to a different set of nodes
383 *
384 * Per-vma policies are protected by mmap_lock. Allocations using per-task
385 * policies are protected by task->mems_allowed_seq to prevent a premature
386 * OOM/allocation failure due to parallel nodemask modification.
387 */
mpol_rebind_policy(struct mempolicy * pol,const nodemask_t * newmask)388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
389 {
390 if (!pol || pol->mode == MPOL_LOCAL)
391 return;
392 if (!mpol_store_user_nodemask(pol) &&
393 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
394 return;
395
396 mpol_ops[pol->mode].rebind(pol, newmask);
397 }
398
399 /*
400 * Wrapper for mpol_rebind_policy() that just requires task
401 * pointer, and updates task mempolicy.
402 *
403 * Called with task's alloc_lock held.
404 */
mpol_rebind_task(struct task_struct * tsk,const nodemask_t * new)405 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
406 {
407 mpol_rebind_policy(tsk->mempolicy, new);
408 }
409
410 /*
411 * Rebind each vma in mm to new nodemask.
412 *
413 * Call holding a reference to mm. Takes mm->mmap_lock during call.
414 */
mpol_rebind_mm(struct mm_struct * mm,nodemask_t * new)415 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
416 {
417 struct vm_area_struct *vma;
418 VMA_ITERATOR(vmi, mm, 0);
419
420 mmap_write_lock(mm);
421 for_each_vma(vmi, vma) {
422 vma_start_write(vma);
423 mpol_rebind_policy(vma->vm_policy, new);
424 }
425 mmap_write_unlock(mm);
426 }
427
428 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
429 [MPOL_DEFAULT] = {
430 .rebind = mpol_rebind_default,
431 },
432 [MPOL_INTERLEAVE] = {
433 .create = mpol_new_nodemask,
434 .rebind = mpol_rebind_nodemask,
435 },
436 [MPOL_PREFERRED] = {
437 .create = mpol_new_preferred,
438 .rebind = mpol_rebind_preferred,
439 },
440 [MPOL_BIND] = {
441 .create = mpol_new_nodemask,
442 .rebind = mpol_rebind_nodemask,
443 },
444 [MPOL_LOCAL] = {
445 .rebind = mpol_rebind_default,
446 },
447 [MPOL_PREFERRED_MANY] = {
448 .create = mpol_new_nodemask,
449 .rebind = mpol_rebind_preferred,
450 },
451 [MPOL_WEIGHTED_INTERLEAVE] = {
452 .create = mpol_new_nodemask,
453 .rebind = mpol_rebind_nodemask,
454 },
455 };
456
457 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
458 unsigned long flags);
459 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
460 pgoff_t ilx, int *nid);
461
strictly_unmovable(unsigned long flags)462 static bool strictly_unmovable(unsigned long flags)
463 {
464 /*
465 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO
466 * if any misplaced page is found.
467 */
468 return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ==
469 MPOL_MF_STRICT;
470 }
471
472 struct migration_mpol { /* for alloc_migration_target_by_mpol() */
473 struct mempolicy *pol;
474 pgoff_t ilx;
475 };
476
477 struct queue_pages {
478 struct list_head *pagelist;
479 unsigned long flags;
480 nodemask_t *nmask;
481 unsigned long start;
482 unsigned long end;
483 struct vm_area_struct *first;
484 struct folio *large; /* note last large folio encountered */
485 long nr_failed; /* could not be isolated at this time */
486 };
487
488 /*
489 * Check if the folio's nid is in qp->nmask.
490 *
491 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
492 * in the invert of qp->nmask.
493 */
queue_folio_required(struct folio * folio,struct queue_pages * qp)494 static inline bool queue_folio_required(struct folio *folio,
495 struct queue_pages *qp)
496 {
497 int nid = folio_nid(folio);
498 unsigned long flags = qp->flags;
499
500 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
501 }
502
queue_folios_pmd(pmd_t * pmd,struct mm_walk * walk)503 static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk)
504 {
505 struct folio *folio;
506 struct queue_pages *qp = walk->private;
507
508 if (unlikely(is_pmd_migration_entry(*pmd))) {
509 qp->nr_failed++;
510 return;
511 }
512 folio = pmd_folio(*pmd);
513 if (is_huge_zero_folio(folio)) {
514 walk->action = ACTION_CONTINUE;
515 return;
516 }
517 if (!queue_folio_required(folio, qp))
518 return;
519 if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
520 !vma_migratable(walk->vma) ||
521 !migrate_folio_add(folio, qp->pagelist, qp->flags))
522 qp->nr_failed++;
523 }
524
525 /*
526 * Scan through folios, checking if they satisfy the required conditions,
527 * moving them from LRU to local pagelist for migration if they do (or not).
528 *
529 * queue_folios_pte_range() has two possible return values:
530 * 0 - continue walking to scan for more, even if an existing folio on the
531 * wrong node could not be isolated and queued for migration.
532 * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL,
533 * and an existing folio was on a node that does not follow the policy.
534 */
queue_folios_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)535 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
536 unsigned long end, struct mm_walk *walk)
537 {
538 struct vm_area_struct *vma = walk->vma;
539 struct folio *folio;
540 struct queue_pages *qp = walk->private;
541 unsigned long flags = qp->flags;
542 pte_t *pte, *mapped_pte;
543 pte_t ptent;
544 spinlock_t *ptl;
545
546 ptl = pmd_trans_huge_lock(pmd, vma);
547 if (ptl) {
548 queue_folios_pmd(pmd, walk);
549 spin_unlock(ptl);
550 goto out;
551 }
552
553 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
554 if (!pte) {
555 walk->action = ACTION_AGAIN;
556 return 0;
557 }
558 for (; addr != end; pte++, addr += PAGE_SIZE) {
559 ptent = ptep_get(pte);
560 if (pte_none(ptent))
561 continue;
562 if (!pte_present(ptent)) {
563 if (is_migration_entry(pte_to_swp_entry(ptent)))
564 qp->nr_failed++;
565 continue;
566 }
567 folio = vm_normal_folio(vma, addr, ptent);
568 if (!folio || folio_is_zone_device(folio))
569 continue;
570 /*
571 * vm_normal_folio() filters out zero pages, but there might
572 * still be reserved folios to skip, perhaps in a VDSO.
573 */
574 if (folio_test_reserved(folio))
575 continue;
576 if (!queue_folio_required(folio, qp))
577 continue;
578 if (folio_test_large(folio)) {
579 /*
580 * A large folio can only be isolated from LRU once,
581 * but may be mapped by many PTEs (and Copy-On-Write may
582 * intersperse PTEs of other, order 0, folios). This is
583 * a common case, so don't mistake it for failure (but
584 * there can be other cases of multi-mapped pages which
585 * this quick check does not help to filter out - and a
586 * search of the pagelist might grow to be prohibitive).
587 *
588 * migrate_pages(&pagelist) returns nr_failed folios, so
589 * check "large" now so that queue_pages_range() returns
590 * a comparable nr_failed folios. This does imply that
591 * if folio could not be isolated for some racy reason
592 * at its first PTE, later PTEs will not give it another
593 * chance of isolation; but keeps the accounting simple.
594 */
595 if (folio == qp->large)
596 continue;
597 qp->large = folio;
598 }
599 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
600 !vma_migratable(vma) ||
601 !migrate_folio_add(folio, qp->pagelist, flags)) {
602 qp->nr_failed++;
603 if (strictly_unmovable(flags))
604 break;
605 }
606 }
607 pte_unmap_unlock(mapped_pte, ptl);
608 cond_resched();
609 out:
610 if (qp->nr_failed && strictly_unmovable(flags))
611 return -EIO;
612 return 0;
613 }
614
queue_folios_hugetlb(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)615 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
616 unsigned long addr, unsigned long end,
617 struct mm_walk *walk)
618 {
619 #ifdef CONFIG_HUGETLB_PAGE
620 struct queue_pages *qp = walk->private;
621 unsigned long flags = qp->flags;
622 struct folio *folio;
623 spinlock_t *ptl;
624 pte_t entry;
625
626 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
627 entry = huge_ptep_get(walk->mm, addr, pte);
628 if (!pte_present(entry)) {
629 if (unlikely(is_hugetlb_entry_migration(entry)))
630 qp->nr_failed++;
631 goto unlock;
632 }
633 folio = pfn_folio(pte_pfn(entry));
634 if (!queue_folio_required(folio, qp))
635 goto unlock;
636 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
637 !vma_migratable(walk->vma)) {
638 qp->nr_failed++;
639 goto unlock;
640 }
641 /*
642 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
643 * Choosing not to migrate a shared folio is not counted as a failure.
644 *
645 * See folio_likely_mapped_shared() on possible imprecision when we
646 * cannot easily detect if a folio is shared.
647 */
648 if ((flags & MPOL_MF_MOVE_ALL) ||
649 (!folio_likely_mapped_shared(folio) && !hugetlb_pmd_shared(pte)))
650 if (!isolate_hugetlb(folio, qp->pagelist))
651 qp->nr_failed++;
652 unlock:
653 spin_unlock(ptl);
654 if (qp->nr_failed && strictly_unmovable(flags))
655 return -EIO;
656 #endif
657 return 0;
658 }
659
660 #ifdef CONFIG_NUMA_BALANCING
661 /*
662 * This is used to mark a range of virtual addresses to be inaccessible.
663 * These are later cleared by a NUMA hinting fault. Depending on these
664 * faults, pages may be migrated for better NUMA placement.
665 *
666 * This is assuming that NUMA faults are handled using PROT_NONE. If
667 * an architecture makes a different choice, it will need further
668 * changes to the core.
669 */
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)670 unsigned long change_prot_numa(struct vm_area_struct *vma,
671 unsigned long addr, unsigned long end)
672 {
673 struct mmu_gather tlb;
674 long nr_updated;
675
676 tlb_gather_mmu(&tlb, vma->vm_mm);
677
678 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
679 if (nr_updated > 0) {
680 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
681 count_memcg_events_mm(vma->vm_mm, NUMA_PTE_UPDATES, nr_updated);
682 }
683
684 tlb_finish_mmu(&tlb);
685
686 return nr_updated;
687 }
688 #endif /* CONFIG_NUMA_BALANCING */
689
queue_pages_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)690 static int queue_pages_test_walk(unsigned long start, unsigned long end,
691 struct mm_walk *walk)
692 {
693 struct vm_area_struct *next, *vma = walk->vma;
694 struct queue_pages *qp = walk->private;
695 unsigned long flags = qp->flags;
696
697 /* range check first */
698 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
699
700 if (!qp->first) {
701 qp->first = vma;
702 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
703 (qp->start < vma->vm_start))
704 /* hole at head side of range */
705 return -EFAULT;
706 }
707 next = find_vma(vma->vm_mm, vma->vm_end);
708 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
709 ((vma->vm_end < qp->end) &&
710 (!next || vma->vm_end < next->vm_start)))
711 /* hole at middle or tail of range */
712 return -EFAULT;
713
714 /*
715 * Need check MPOL_MF_STRICT to return -EIO if possible
716 * regardless of vma_migratable
717 */
718 if (!vma_migratable(vma) &&
719 !(flags & MPOL_MF_STRICT))
720 return 1;
721
722 /*
723 * Check page nodes, and queue pages to move, in the current vma.
724 * But if no moving, and no strict checking, the scan can be skipped.
725 */
726 if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
727 return 0;
728 return 1;
729 }
730
731 static const struct mm_walk_ops queue_pages_walk_ops = {
732 .hugetlb_entry = queue_folios_hugetlb,
733 .pmd_entry = queue_folios_pte_range,
734 .test_walk = queue_pages_test_walk,
735 .walk_lock = PGWALK_RDLOCK,
736 };
737
738 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
739 .hugetlb_entry = queue_folios_hugetlb,
740 .pmd_entry = queue_folios_pte_range,
741 .test_walk = queue_pages_test_walk,
742 .walk_lock = PGWALK_WRLOCK,
743 };
744
745 /*
746 * Walk through page tables and collect pages to be migrated.
747 *
748 * If pages found in a given range are not on the required set of @nodes,
749 * and migration is allowed, they are isolated and queued to @pagelist.
750 *
751 * queue_pages_range() may return:
752 * 0 - all pages already on the right node, or successfully queued for moving
753 * (or neither strict checking nor moving requested: only range checking).
754 * >0 - this number of misplaced folios could not be queued for moving
755 * (a hugetlbfs page or a transparent huge page being counted as 1).
756 * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs.
757 * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified.
758 */
759 static long
queue_pages_range(struct mm_struct * mm,unsigned long start,unsigned long end,nodemask_t * nodes,unsigned long flags,struct list_head * pagelist)760 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
761 nodemask_t *nodes, unsigned long flags,
762 struct list_head *pagelist)
763 {
764 int err;
765 struct queue_pages qp = {
766 .pagelist = pagelist,
767 .flags = flags,
768 .nmask = nodes,
769 .start = start,
770 .end = end,
771 .first = NULL,
772 };
773 const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ?
774 &queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
775
776 err = walk_page_range(mm, start, end, ops, &qp);
777
778 if (!qp.first)
779 /* whole range in hole */
780 err = -EFAULT;
781
782 return err ? : qp.nr_failed;
783 }
784
785 /*
786 * Apply policy to a single VMA
787 * This must be called with the mmap_lock held for writing.
788 */
vma_replace_policy(struct vm_area_struct * vma,struct mempolicy * pol)789 static int vma_replace_policy(struct vm_area_struct *vma,
790 struct mempolicy *pol)
791 {
792 int err;
793 struct mempolicy *old;
794 struct mempolicy *new;
795
796 vma_assert_write_locked(vma);
797
798 new = mpol_dup(pol);
799 if (IS_ERR(new))
800 return PTR_ERR(new);
801
802 if (vma->vm_ops && vma->vm_ops->set_policy) {
803 err = vma->vm_ops->set_policy(vma, new);
804 if (err)
805 goto err_out;
806 }
807
808 old = vma->vm_policy;
809 vma->vm_policy = new; /* protected by mmap_lock */
810 mpol_put(old);
811
812 return 0;
813 err_out:
814 mpol_put(new);
815 return err;
816 }
817
818 /* Split or merge the VMA (if required) and apply the new policy */
mbind_range(struct vma_iterator * vmi,struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,struct mempolicy * new_pol)819 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
820 struct vm_area_struct **prev, unsigned long start,
821 unsigned long end, struct mempolicy *new_pol)
822 {
823 unsigned long vmstart, vmend;
824
825 vmend = min(end, vma->vm_end);
826 if (start > vma->vm_start) {
827 *prev = vma;
828 vmstart = start;
829 } else {
830 vmstart = vma->vm_start;
831 }
832
833 if (mpol_equal(vma->vm_policy, new_pol)) {
834 *prev = vma;
835 return 0;
836 }
837
838 vma = vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol);
839 if (IS_ERR(vma))
840 return PTR_ERR(vma);
841
842 *prev = vma;
843 return vma_replace_policy(vma, new_pol);
844 }
845
846 /* Set the process memory policy */
do_set_mempolicy(unsigned short mode,unsigned short flags,nodemask_t * nodes)847 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
848 nodemask_t *nodes)
849 {
850 struct mempolicy *new, *old;
851 NODEMASK_SCRATCH(scratch);
852 int ret;
853
854 if (!scratch)
855 return -ENOMEM;
856
857 new = mpol_new(mode, flags, nodes);
858 if (IS_ERR(new)) {
859 ret = PTR_ERR(new);
860 goto out;
861 }
862
863 task_lock(current);
864 ret = mpol_set_nodemask(new, nodes, scratch);
865 if (ret) {
866 task_unlock(current);
867 mpol_put(new);
868 goto out;
869 }
870
871 old = current->mempolicy;
872 current->mempolicy = new;
873 if (new && (new->mode == MPOL_INTERLEAVE ||
874 new->mode == MPOL_WEIGHTED_INTERLEAVE)) {
875 current->il_prev = MAX_NUMNODES-1;
876 current->il_weight = 0;
877 }
878 task_unlock(current);
879 mpol_put(old);
880 ret = 0;
881 out:
882 NODEMASK_SCRATCH_FREE(scratch);
883 return ret;
884 }
885
886 /*
887 * Return nodemask for policy for get_mempolicy() query
888 *
889 * Called with task's alloc_lock held
890 */
get_policy_nodemask(struct mempolicy * pol,nodemask_t * nodes)891 static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes)
892 {
893 nodes_clear(*nodes);
894 if (pol == &default_policy)
895 return;
896
897 switch (pol->mode) {
898 case MPOL_BIND:
899 case MPOL_INTERLEAVE:
900 case MPOL_PREFERRED:
901 case MPOL_PREFERRED_MANY:
902 case MPOL_WEIGHTED_INTERLEAVE:
903 *nodes = pol->nodes;
904 break;
905 case MPOL_LOCAL:
906 /* return empty node mask for local allocation */
907 break;
908 default:
909 BUG();
910 }
911 }
912
lookup_node(struct mm_struct * mm,unsigned long addr)913 static int lookup_node(struct mm_struct *mm, unsigned long addr)
914 {
915 struct page *p = NULL;
916 int ret;
917
918 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
919 if (ret > 0) {
920 ret = page_to_nid(p);
921 put_page(p);
922 }
923 return ret;
924 }
925
926 /* Retrieve NUMA policy */
do_get_mempolicy(int * policy,nodemask_t * nmask,unsigned long addr,unsigned long flags)927 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
928 unsigned long addr, unsigned long flags)
929 {
930 int err;
931 struct mm_struct *mm = current->mm;
932 struct vm_area_struct *vma = NULL;
933 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
934
935 if (flags &
936 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
937 return -EINVAL;
938
939 if (flags & MPOL_F_MEMS_ALLOWED) {
940 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
941 return -EINVAL;
942 *policy = 0; /* just so it's initialized */
943 task_lock(current);
944 *nmask = cpuset_current_mems_allowed;
945 task_unlock(current);
946 return 0;
947 }
948
949 if (flags & MPOL_F_ADDR) {
950 pgoff_t ilx; /* ignored here */
951 /*
952 * Do NOT fall back to task policy if the
953 * vma/shared policy at addr is NULL. We
954 * want to return MPOL_DEFAULT in this case.
955 */
956 mmap_read_lock(mm);
957 vma = vma_lookup(mm, addr);
958 if (!vma) {
959 mmap_read_unlock(mm);
960 return -EFAULT;
961 }
962 pol = __get_vma_policy(vma, addr, &ilx);
963 } else if (addr)
964 return -EINVAL;
965
966 if (!pol)
967 pol = &default_policy; /* indicates default behavior */
968
969 if (flags & MPOL_F_NODE) {
970 if (flags & MPOL_F_ADDR) {
971 /*
972 * Take a refcount on the mpol, because we are about to
973 * drop the mmap_lock, after which only "pol" remains
974 * valid, "vma" is stale.
975 */
976 pol_refcount = pol;
977 vma = NULL;
978 mpol_get(pol);
979 mmap_read_unlock(mm);
980 err = lookup_node(mm, addr);
981 if (err < 0)
982 goto out;
983 *policy = err;
984 } else if (pol == current->mempolicy &&
985 pol->mode == MPOL_INTERLEAVE) {
986 *policy = next_node_in(current->il_prev, pol->nodes);
987 } else if (pol == current->mempolicy &&
988 pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
989 if (current->il_weight)
990 *policy = current->il_prev;
991 else
992 *policy = next_node_in(current->il_prev,
993 pol->nodes);
994 } else {
995 err = -EINVAL;
996 goto out;
997 }
998 } else {
999 *policy = pol == &default_policy ? MPOL_DEFAULT :
1000 pol->mode;
1001 /*
1002 * Internal mempolicy flags must be masked off before exposing
1003 * the policy to userspace.
1004 */
1005 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1006 }
1007
1008 err = 0;
1009 if (nmask) {
1010 if (mpol_store_user_nodemask(pol)) {
1011 *nmask = pol->w.user_nodemask;
1012 } else {
1013 task_lock(current);
1014 get_policy_nodemask(pol, nmask);
1015 task_unlock(current);
1016 }
1017 }
1018
1019 out:
1020 mpol_cond_put(pol);
1021 if (vma)
1022 mmap_read_unlock(mm);
1023 if (pol_refcount)
1024 mpol_put(pol_refcount);
1025 return err;
1026 }
1027
1028 #ifdef CONFIG_MIGRATION
migrate_folio_add(struct folio * folio,struct list_head * foliolist,unsigned long flags)1029 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1030 unsigned long flags)
1031 {
1032 /*
1033 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
1034 * Choosing not to migrate a shared folio is not counted as a failure.
1035 *
1036 * See folio_likely_mapped_shared() on possible imprecision when we
1037 * cannot easily detect if a folio is shared.
1038 */
1039 if ((flags & MPOL_MF_MOVE_ALL) || !folio_likely_mapped_shared(folio)) {
1040 if (folio_isolate_lru(folio)) {
1041 list_add_tail(&folio->lru, foliolist);
1042 node_stat_mod_folio(folio,
1043 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1044 folio_nr_pages(folio));
1045 } else {
1046 /*
1047 * Non-movable folio may reach here. And, there may be
1048 * temporary off LRU folios or non-LRU movable folios.
1049 * Treat them as unmovable folios since they can't be
1050 * isolated, so they can't be moved at the moment.
1051 */
1052 return false;
1053 }
1054 }
1055 return true;
1056 }
1057
1058 /*
1059 * Migrate pages from one node to a target node.
1060 * Returns error or the number of pages not migrated.
1061 */
migrate_to_node(struct mm_struct * mm,int source,int dest,int flags)1062 static long migrate_to_node(struct mm_struct *mm, int source, int dest,
1063 int flags)
1064 {
1065 nodemask_t nmask;
1066 struct vm_area_struct *vma;
1067 LIST_HEAD(pagelist);
1068 long nr_failed;
1069 long err = 0;
1070 struct migration_target_control mtc = {
1071 .nid = dest,
1072 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1073 .reason = MR_SYSCALL,
1074 };
1075
1076 nodes_clear(nmask);
1077 node_set(source, nmask);
1078
1079 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1080
1081 mmap_read_lock(mm);
1082 vma = find_vma(mm, 0);
1083 if (unlikely(!vma)) {
1084 mmap_read_unlock(mm);
1085 return 0;
1086 }
1087
1088 /*
1089 * This does not migrate the range, but isolates all pages that
1090 * need migration. Between passing in the full user address
1091 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail,
1092 * but passes back the count of pages which could not be isolated.
1093 */
1094 nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1095 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1096 mmap_read_unlock(mm);
1097
1098 if (!list_empty(&pagelist)) {
1099 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1100 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1101 if (err)
1102 putback_movable_pages(&pagelist);
1103 }
1104
1105 if (err >= 0)
1106 err += nr_failed;
1107 return err;
1108 }
1109
1110 /*
1111 * Move pages between the two nodesets so as to preserve the physical
1112 * layout as much as possible.
1113 *
1114 * Returns the number of page that could not be moved.
1115 */
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1116 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1117 const nodemask_t *to, int flags)
1118 {
1119 long nr_failed = 0;
1120 long err = 0;
1121 nodemask_t tmp;
1122
1123 lru_cache_disable();
1124
1125 /*
1126 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1127 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1128 * bit in 'tmp', and return that <source, dest> pair for migration.
1129 * The pair of nodemasks 'to' and 'from' define the map.
1130 *
1131 * If no pair of bits is found that way, fallback to picking some
1132 * pair of 'source' and 'dest' bits that are not the same. If the
1133 * 'source' and 'dest' bits are the same, this represents a node
1134 * that will be migrating to itself, so no pages need move.
1135 *
1136 * If no bits are left in 'tmp', or if all remaining bits left
1137 * in 'tmp' correspond to the same bit in 'to', return false
1138 * (nothing left to migrate).
1139 *
1140 * This lets us pick a pair of nodes to migrate between, such that
1141 * if possible the dest node is not already occupied by some other
1142 * source node, minimizing the risk of overloading the memory on a
1143 * node that would happen if we migrated incoming memory to a node
1144 * before migrating outgoing memory source that same node.
1145 *
1146 * A single scan of tmp is sufficient. As we go, we remember the
1147 * most recent <s, d> pair that moved (s != d). If we find a pair
1148 * that not only moved, but what's better, moved to an empty slot
1149 * (d is not set in tmp), then we break out then, with that pair.
1150 * Otherwise when we finish scanning from_tmp, we at least have the
1151 * most recent <s, d> pair that moved. If we get all the way through
1152 * the scan of tmp without finding any node that moved, much less
1153 * moved to an empty node, then there is nothing left worth migrating.
1154 */
1155
1156 tmp = *from;
1157 while (!nodes_empty(tmp)) {
1158 int s, d;
1159 int source = NUMA_NO_NODE;
1160 int dest = 0;
1161
1162 for_each_node_mask(s, tmp) {
1163
1164 /*
1165 * do_migrate_pages() tries to maintain the relative
1166 * node relationship of the pages established between
1167 * threads and memory areas.
1168 *
1169 * However if the number of source nodes is not equal to
1170 * the number of destination nodes we can not preserve
1171 * this node relative relationship. In that case, skip
1172 * copying memory from a node that is in the destination
1173 * mask.
1174 *
1175 * Example: [2,3,4] -> [3,4,5] moves everything.
1176 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1177 */
1178
1179 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1180 (node_isset(s, *to)))
1181 continue;
1182
1183 d = node_remap(s, *from, *to);
1184 if (s == d)
1185 continue;
1186
1187 source = s; /* Node moved. Memorize */
1188 dest = d;
1189
1190 /* dest not in remaining from nodes? */
1191 if (!node_isset(dest, tmp))
1192 break;
1193 }
1194 if (source == NUMA_NO_NODE)
1195 break;
1196
1197 node_clear(source, tmp);
1198 err = migrate_to_node(mm, source, dest, flags);
1199 if (err > 0)
1200 nr_failed += err;
1201 if (err < 0)
1202 break;
1203 }
1204
1205 lru_cache_enable();
1206 if (err < 0)
1207 return err;
1208 return (nr_failed < INT_MAX) ? nr_failed : INT_MAX;
1209 }
1210
1211 /*
1212 * Allocate a new folio for page migration, according to NUMA mempolicy.
1213 */
alloc_migration_target_by_mpol(struct folio * src,unsigned long private)1214 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1215 unsigned long private)
1216 {
1217 struct migration_mpol *mmpol = (struct migration_mpol *)private;
1218 struct mempolicy *pol = mmpol->pol;
1219 pgoff_t ilx = mmpol->ilx;
1220 unsigned int order;
1221 int nid = numa_node_id();
1222 gfp_t gfp;
1223
1224 order = folio_order(src);
1225 ilx += src->index >> order;
1226
1227 if (folio_test_hugetlb(src)) {
1228 nodemask_t *nodemask;
1229 struct hstate *h;
1230
1231 h = folio_hstate(src);
1232 gfp = htlb_alloc_mask(h);
1233 nodemask = policy_nodemask(gfp, pol, ilx, &nid);
1234 return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp,
1235 htlb_allow_alloc_fallback(MR_MEMPOLICY_MBIND));
1236 }
1237
1238 if (folio_test_large(src))
1239 gfp = GFP_TRANSHUGE;
1240 else
1241 gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP;
1242
1243 return folio_alloc_mpol(gfp, order, pol, ilx, nid);
1244 }
1245 #else
1246
migrate_folio_add(struct folio * folio,struct list_head * foliolist,unsigned long flags)1247 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1248 unsigned long flags)
1249 {
1250 return false;
1251 }
1252
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1253 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1254 const nodemask_t *to, int flags)
1255 {
1256 return -ENOSYS;
1257 }
1258
alloc_migration_target_by_mpol(struct folio * src,unsigned long private)1259 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1260 unsigned long private)
1261 {
1262 return NULL;
1263 }
1264 #endif
1265
do_mbind(unsigned long start,unsigned long len,unsigned short mode,unsigned short mode_flags,nodemask_t * nmask,unsigned long flags)1266 static long do_mbind(unsigned long start, unsigned long len,
1267 unsigned short mode, unsigned short mode_flags,
1268 nodemask_t *nmask, unsigned long flags)
1269 {
1270 struct mm_struct *mm = current->mm;
1271 struct vm_area_struct *vma, *prev;
1272 struct vma_iterator vmi;
1273 struct migration_mpol mmpol;
1274 struct mempolicy *new;
1275 unsigned long end;
1276 long err;
1277 long nr_failed;
1278 LIST_HEAD(pagelist);
1279
1280 if (flags & ~(unsigned long)MPOL_MF_VALID)
1281 return -EINVAL;
1282 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1283 return -EPERM;
1284
1285 if (start & ~PAGE_MASK)
1286 return -EINVAL;
1287
1288 if (mode == MPOL_DEFAULT)
1289 flags &= ~MPOL_MF_STRICT;
1290
1291 len = PAGE_ALIGN(len);
1292 end = start + len;
1293
1294 if (end < start)
1295 return -EINVAL;
1296 if (end == start)
1297 return 0;
1298
1299 new = mpol_new(mode, mode_flags, nmask);
1300 if (IS_ERR(new))
1301 return PTR_ERR(new);
1302
1303 /*
1304 * If we are using the default policy then operation
1305 * on discontinuous address spaces is okay after all
1306 */
1307 if (!new)
1308 flags |= MPOL_MF_DISCONTIG_OK;
1309
1310 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1311 lru_cache_disable();
1312 {
1313 NODEMASK_SCRATCH(scratch);
1314 if (scratch) {
1315 mmap_write_lock(mm);
1316 err = mpol_set_nodemask(new, nmask, scratch);
1317 if (err)
1318 mmap_write_unlock(mm);
1319 } else
1320 err = -ENOMEM;
1321 NODEMASK_SCRATCH_FREE(scratch);
1322 }
1323 if (err)
1324 goto mpol_out;
1325
1326 /*
1327 * Lock the VMAs before scanning for pages to migrate,
1328 * to ensure we don't miss a concurrently inserted page.
1329 */
1330 nr_failed = queue_pages_range(mm, start, end, nmask,
1331 flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist);
1332
1333 if (nr_failed < 0) {
1334 err = nr_failed;
1335 nr_failed = 0;
1336 } else {
1337 vma_iter_init(&vmi, mm, start);
1338 prev = vma_prev(&vmi);
1339 for_each_vma_range(vmi, vma, end) {
1340 err = mbind_range(&vmi, vma, &prev, start, end, new);
1341 if (err)
1342 break;
1343 }
1344 }
1345
1346 if (!err && !list_empty(&pagelist)) {
1347 /* Convert MPOL_DEFAULT's NULL to task or default policy */
1348 if (!new) {
1349 new = get_task_policy(current);
1350 mpol_get(new);
1351 }
1352 mmpol.pol = new;
1353 mmpol.ilx = 0;
1354
1355 /*
1356 * In the interleaved case, attempt to allocate on exactly the
1357 * targeted nodes, for the first VMA to be migrated; for later
1358 * VMAs, the nodes will still be interleaved from the targeted
1359 * nodemask, but one by one may be selected differently.
1360 */
1361 if (new->mode == MPOL_INTERLEAVE ||
1362 new->mode == MPOL_WEIGHTED_INTERLEAVE) {
1363 struct folio *folio;
1364 unsigned int order;
1365 unsigned long addr = -EFAULT;
1366
1367 list_for_each_entry(folio, &pagelist, lru) {
1368 if (!folio_test_ksm(folio))
1369 break;
1370 }
1371 if (!list_entry_is_head(folio, &pagelist, lru)) {
1372 vma_iter_init(&vmi, mm, start);
1373 for_each_vma_range(vmi, vma, end) {
1374 addr = page_address_in_vma(folio,
1375 folio_page(folio, 0), vma);
1376 if (addr != -EFAULT)
1377 break;
1378 }
1379 }
1380 if (addr != -EFAULT) {
1381 order = folio_order(folio);
1382 /* We already know the pol, but not the ilx */
1383 mpol_cond_put(get_vma_policy(vma, addr, order,
1384 &mmpol.ilx));
1385 /* Set base from which to increment by index */
1386 mmpol.ilx -= folio->index >> order;
1387 }
1388 }
1389 }
1390
1391 mmap_write_unlock(mm);
1392
1393 if (!err && !list_empty(&pagelist)) {
1394 nr_failed |= migrate_pages(&pagelist,
1395 alloc_migration_target_by_mpol, NULL,
1396 (unsigned long)&mmpol, MIGRATE_SYNC,
1397 MR_MEMPOLICY_MBIND, NULL);
1398 }
1399
1400 if (nr_failed && (flags & MPOL_MF_STRICT))
1401 err = -EIO;
1402 if (!list_empty(&pagelist))
1403 putback_movable_pages(&pagelist);
1404 mpol_out:
1405 mpol_put(new);
1406 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1407 lru_cache_enable();
1408 return err;
1409 }
1410
1411 /*
1412 * User space interface with variable sized bitmaps for nodelists.
1413 */
get_bitmap(unsigned long * mask,const unsigned long __user * nmask,unsigned long maxnode)1414 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1415 unsigned long maxnode)
1416 {
1417 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1418 int ret;
1419
1420 if (in_compat_syscall())
1421 ret = compat_get_bitmap(mask,
1422 (const compat_ulong_t __user *)nmask,
1423 maxnode);
1424 else
1425 ret = copy_from_user(mask, nmask,
1426 nlongs * sizeof(unsigned long));
1427
1428 if (ret)
1429 return -EFAULT;
1430
1431 if (maxnode % BITS_PER_LONG)
1432 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1433
1434 return 0;
1435 }
1436
1437 /* Copy a node mask from user space. */
get_nodes(nodemask_t * nodes,const unsigned long __user * nmask,unsigned long maxnode)1438 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1439 unsigned long maxnode)
1440 {
1441 --maxnode;
1442 nodes_clear(*nodes);
1443 if (maxnode == 0 || !nmask)
1444 return 0;
1445 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1446 return -EINVAL;
1447
1448 /*
1449 * When the user specified more nodes than supported just check
1450 * if the non supported part is all zero, one word at a time,
1451 * starting at the end.
1452 */
1453 while (maxnode > MAX_NUMNODES) {
1454 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1455 unsigned long t;
1456
1457 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1458 return -EFAULT;
1459
1460 if (maxnode - bits >= MAX_NUMNODES) {
1461 maxnode -= bits;
1462 } else {
1463 maxnode = MAX_NUMNODES;
1464 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1465 }
1466 if (t)
1467 return -EINVAL;
1468 }
1469
1470 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1471 }
1472
1473 /* Copy a kernel node mask to user space */
copy_nodes_to_user(unsigned long __user * mask,unsigned long maxnode,nodemask_t * nodes)1474 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1475 nodemask_t *nodes)
1476 {
1477 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1478 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1479 bool compat = in_compat_syscall();
1480
1481 if (compat)
1482 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1483
1484 if (copy > nbytes) {
1485 if (copy > PAGE_SIZE)
1486 return -EINVAL;
1487 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1488 return -EFAULT;
1489 copy = nbytes;
1490 maxnode = nr_node_ids;
1491 }
1492
1493 if (compat)
1494 return compat_put_bitmap((compat_ulong_t __user *)mask,
1495 nodes_addr(*nodes), maxnode);
1496
1497 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1498 }
1499
1500 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
sanitize_mpol_flags(int * mode,unsigned short * flags)1501 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1502 {
1503 *flags = *mode & MPOL_MODE_FLAGS;
1504 *mode &= ~MPOL_MODE_FLAGS;
1505
1506 if ((unsigned int)(*mode) >= MPOL_MAX)
1507 return -EINVAL;
1508 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1509 return -EINVAL;
1510 if (*flags & MPOL_F_NUMA_BALANCING) {
1511 if (*mode == MPOL_BIND || *mode == MPOL_PREFERRED_MANY)
1512 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1513 else
1514 return -EINVAL;
1515 }
1516 return 0;
1517 }
1518
kernel_mbind(unsigned long start,unsigned long len,unsigned long mode,const unsigned long __user * nmask,unsigned long maxnode,unsigned int flags)1519 static long kernel_mbind(unsigned long start, unsigned long len,
1520 unsigned long mode, const unsigned long __user *nmask,
1521 unsigned long maxnode, unsigned int flags)
1522 {
1523 unsigned short mode_flags;
1524 nodemask_t nodes;
1525 int lmode = mode;
1526 int err;
1527
1528 start = untagged_addr(start);
1529 err = sanitize_mpol_flags(&lmode, &mode_flags);
1530 if (err)
1531 return err;
1532
1533 err = get_nodes(&nodes, nmask, maxnode);
1534 if (err)
1535 return err;
1536
1537 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1538 }
1539
SYSCALL_DEFINE4(set_mempolicy_home_node,unsigned long,start,unsigned long,len,unsigned long,home_node,unsigned long,flags)1540 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1541 unsigned long, home_node, unsigned long, flags)
1542 {
1543 struct mm_struct *mm = current->mm;
1544 struct vm_area_struct *vma, *prev;
1545 struct mempolicy *new, *old;
1546 unsigned long end;
1547 int err = -ENOENT;
1548 VMA_ITERATOR(vmi, mm, start);
1549
1550 start = untagged_addr(start);
1551 if (start & ~PAGE_MASK)
1552 return -EINVAL;
1553 /*
1554 * flags is used for future extension if any.
1555 */
1556 if (flags != 0)
1557 return -EINVAL;
1558
1559 /*
1560 * Check home_node is online to avoid accessing uninitialized
1561 * NODE_DATA.
1562 */
1563 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1564 return -EINVAL;
1565
1566 len = PAGE_ALIGN(len);
1567 end = start + len;
1568
1569 if (end < start)
1570 return -EINVAL;
1571 if (end == start)
1572 return 0;
1573 mmap_write_lock(mm);
1574 prev = vma_prev(&vmi);
1575 for_each_vma_range(vmi, vma, end) {
1576 /*
1577 * If any vma in the range got policy other than MPOL_BIND
1578 * or MPOL_PREFERRED_MANY we return error. We don't reset
1579 * the home node for vmas we already updated before.
1580 */
1581 old = vma_policy(vma);
1582 if (!old) {
1583 prev = vma;
1584 continue;
1585 }
1586 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1587 err = -EOPNOTSUPP;
1588 break;
1589 }
1590 new = mpol_dup(old);
1591 if (IS_ERR(new)) {
1592 err = PTR_ERR(new);
1593 break;
1594 }
1595
1596 vma_start_write(vma);
1597 new->home_node = home_node;
1598 err = mbind_range(&vmi, vma, &prev, start, end, new);
1599 mpol_put(new);
1600 if (err)
1601 break;
1602 }
1603 mmap_write_unlock(mm);
1604 return err;
1605 }
1606
SYSCALL_DEFINE6(mbind,unsigned long,start,unsigned long,len,unsigned long,mode,const unsigned long __user *,nmask,unsigned long,maxnode,unsigned int,flags)1607 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1608 unsigned long, mode, const unsigned long __user *, nmask,
1609 unsigned long, maxnode, unsigned int, flags)
1610 {
1611 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1612 }
1613
1614 /* Set the process memory policy */
kernel_set_mempolicy(int mode,const unsigned long __user * nmask,unsigned long maxnode)1615 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1616 unsigned long maxnode)
1617 {
1618 unsigned short mode_flags;
1619 nodemask_t nodes;
1620 int lmode = mode;
1621 int err;
1622
1623 err = sanitize_mpol_flags(&lmode, &mode_flags);
1624 if (err)
1625 return err;
1626
1627 err = get_nodes(&nodes, nmask, maxnode);
1628 if (err)
1629 return err;
1630
1631 return do_set_mempolicy(lmode, mode_flags, &nodes);
1632 }
1633
SYSCALL_DEFINE3(set_mempolicy,int,mode,const unsigned long __user *,nmask,unsigned long,maxnode)1634 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1635 unsigned long, maxnode)
1636 {
1637 return kernel_set_mempolicy(mode, nmask, maxnode);
1638 }
1639
kernel_migrate_pages(pid_t pid,unsigned long maxnode,const unsigned long __user * old_nodes,const unsigned long __user * new_nodes)1640 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1641 const unsigned long __user *old_nodes,
1642 const unsigned long __user *new_nodes)
1643 {
1644 struct mm_struct *mm = NULL;
1645 struct task_struct *task;
1646 nodemask_t task_nodes;
1647 int err;
1648 nodemask_t *old;
1649 nodemask_t *new;
1650 NODEMASK_SCRATCH(scratch);
1651
1652 if (!scratch)
1653 return -ENOMEM;
1654
1655 old = &scratch->mask1;
1656 new = &scratch->mask2;
1657
1658 err = get_nodes(old, old_nodes, maxnode);
1659 if (err)
1660 goto out;
1661
1662 err = get_nodes(new, new_nodes, maxnode);
1663 if (err)
1664 goto out;
1665
1666 /* Find the mm_struct */
1667 rcu_read_lock();
1668 task = pid ? find_task_by_vpid(pid) : current;
1669 if (!task) {
1670 rcu_read_unlock();
1671 err = -ESRCH;
1672 goto out;
1673 }
1674 get_task_struct(task);
1675
1676 err = -EINVAL;
1677
1678 /*
1679 * Check if this process has the right to modify the specified process.
1680 * Use the regular "ptrace_may_access()" checks.
1681 */
1682 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1683 rcu_read_unlock();
1684 err = -EPERM;
1685 goto out_put;
1686 }
1687 rcu_read_unlock();
1688
1689 task_nodes = cpuset_mems_allowed(task);
1690 /* Is the user allowed to access the target nodes? */
1691 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1692 err = -EPERM;
1693 goto out_put;
1694 }
1695
1696 task_nodes = cpuset_mems_allowed(current);
1697 nodes_and(*new, *new, task_nodes);
1698 if (nodes_empty(*new))
1699 goto out_put;
1700
1701 err = security_task_movememory(task);
1702 if (err)
1703 goto out_put;
1704
1705 mm = get_task_mm(task);
1706 put_task_struct(task);
1707
1708 if (!mm) {
1709 err = -EINVAL;
1710 goto out;
1711 }
1712
1713 err = do_migrate_pages(mm, old, new,
1714 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1715
1716 mmput(mm);
1717 out:
1718 NODEMASK_SCRATCH_FREE(scratch);
1719
1720 return err;
1721
1722 out_put:
1723 put_task_struct(task);
1724 goto out;
1725 }
1726
SYSCALL_DEFINE4(migrate_pages,pid_t,pid,unsigned long,maxnode,const unsigned long __user *,old_nodes,const unsigned long __user *,new_nodes)1727 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1728 const unsigned long __user *, old_nodes,
1729 const unsigned long __user *, new_nodes)
1730 {
1731 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1732 }
1733
1734 /* Retrieve NUMA policy */
kernel_get_mempolicy(int __user * policy,unsigned long __user * nmask,unsigned long maxnode,unsigned long addr,unsigned long flags)1735 static int kernel_get_mempolicy(int __user *policy,
1736 unsigned long __user *nmask,
1737 unsigned long maxnode,
1738 unsigned long addr,
1739 unsigned long flags)
1740 {
1741 int err;
1742 int pval;
1743 nodemask_t nodes;
1744
1745 if (nmask != NULL && maxnode < nr_node_ids)
1746 return -EINVAL;
1747
1748 addr = untagged_addr(addr);
1749
1750 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1751
1752 if (err)
1753 return err;
1754
1755 if (policy && put_user(pval, policy))
1756 return -EFAULT;
1757
1758 if (nmask)
1759 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1760
1761 return err;
1762 }
1763
SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,unsigned long __user *,nmask,unsigned long,maxnode,unsigned long,addr,unsigned long,flags)1764 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1765 unsigned long __user *, nmask, unsigned long, maxnode,
1766 unsigned long, addr, unsigned long, flags)
1767 {
1768 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1769 }
1770
vma_migratable(struct vm_area_struct * vma)1771 bool vma_migratable(struct vm_area_struct *vma)
1772 {
1773 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1774 return false;
1775
1776 /*
1777 * DAX device mappings require predictable access latency, so avoid
1778 * incurring periodic faults.
1779 */
1780 if (vma_is_dax(vma))
1781 return false;
1782
1783 if (is_vm_hugetlb_page(vma) &&
1784 !hugepage_migration_supported(hstate_vma(vma)))
1785 return false;
1786
1787 /*
1788 * Migration allocates pages in the highest zone. If we cannot
1789 * do so then migration (at least from node to node) is not
1790 * possible.
1791 */
1792 if (vma->vm_file &&
1793 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1794 < policy_zone)
1795 return false;
1796 return true;
1797 }
1798
__get_vma_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)1799 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1800 unsigned long addr, pgoff_t *ilx)
1801 {
1802 *ilx = 0;
1803 return (vma->vm_ops && vma->vm_ops->get_policy) ?
1804 vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy;
1805 }
1806
1807 /*
1808 * get_vma_policy(@vma, @addr, @order, @ilx)
1809 * @vma: virtual memory area whose policy is sought
1810 * @addr: address in @vma for shared policy lookup
1811 * @order: 0, or appropriate huge_page_order for interleaving
1812 * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE or
1813 * MPOL_WEIGHTED_INTERLEAVE
1814 *
1815 * Returns effective policy for a VMA at specified address.
1816 * Falls back to current->mempolicy or system default policy, as necessary.
1817 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1818 * count--added by the get_policy() vm_op, as appropriate--to protect against
1819 * freeing by another task. It is the caller's responsibility to free the
1820 * extra reference for shared policies.
1821 */
get_vma_policy(struct vm_area_struct * vma,unsigned long addr,int order,pgoff_t * ilx)1822 struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1823 unsigned long addr, int order, pgoff_t *ilx)
1824 {
1825 struct mempolicy *pol;
1826
1827 pol = __get_vma_policy(vma, addr, ilx);
1828 if (!pol)
1829 pol = get_task_policy(current);
1830 if (pol->mode == MPOL_INTERLEAVE ||
1831 pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
1832 *ilx += vma->vm_pgoff >> order;
1833 *ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
1834 }
1835 return pol;
1836 }
1837
vma_policy_mof(struct vm_area_struct * vma)1838 bool vma_policy_mof(struct vm_area_struct *vma)
1839 {
1840 struct mempolicy *pol;
1841
1842 if (vma->vm_ops && vma->vm_ops->get_policy) {
1843 bool ret = false;
1844 pgoff_t ilx; /* ignored here */
1845
1846 pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx);
1847 if (pol && (pol->flags & MPOL_F_MOF))
1848 ret = true;
1849 mpol_cond_put(pol);
1850
1851 return ret;
1852 }
1853
1854 pol = vma->vm_policy;
1855 if (!pol)
1856 pol = get_task_policy(current);
1857
1858 return pol->flags & MPOL_F_MOF;
1859 }
1860
apply_policy_zone(struct mempolicy * policy,enum zone_type zone)1861 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1862 {
1863 enum zone_type dynamic_policy_zone = policy_zone;
1864
1865 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1866
1867 /*
1868 * if policy->nodes has movable memory only,
1869 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1870 *
1871 * policy->nodes is intersect with node_states[N_MEMORY].
1872 * so if the following test fails, it implies
1873 * policy->nodes has movable memory only.
1874 */
1875 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1876 dynamic_policy_zone = ZONE_MOVABLE;
1877
1878 return zone >= dynamic_policy_zone;
1879 }
1880
weighted_interleave_nodes(struct mempolicy * policy)1881 static unsigned int weighted_interleave_nodes(struct mempolicy *policy)
1882 {
1883 unsigned int node;
1884 unsigned int cpuset_mems_cookie;
1885
1886 retry:
1887 /* to prevent miscount use tsk->mems_allowed_seq to detect rebind */
1888 cpuset_mems_cookie = read_mems_allowed_begin();
1889 node = current->il_prev;
1890 if (!current->il_weight || !node_isset(node, policy->nodes)) {
1891 node = next_node_in(node, policy->nodes);
1892 if (read_mems_allowed_retry(cpuset_mems_cookie))
1893 goto retry;
1894 if (node == MAX_NUMNODES)
1895 return node;
1896 current->il_prev = node;
1897 current->il_weight = get_il_weight(node);
1898 }
1899 current->il_weight--;
1900 return node;
1901 }
1902
1903 /* Do dynamic interleaving for a process */
interleave_nodes(struct mempolicy * policy)1904 static unsigned int interleave_nodes(struct mempolicy *policy)
1905 {
1906 unsigned int nid;
1907 unsigned int cpuset_mems_cookie;
1908
1909 /* to prevent miscount, use tsk->mems_allowed_seq to detect rebind */
1910 do {
1911 cpuset_mems_cookie = read_mems_allowed_begin();
1912 nid = next_node_in(current->il_prev, policy->nodes);
1913 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1914
1915 if (nid < MAX_NUMNODES)
1916 current->il_prev = nid;
1917 return nid;
1918 }
1919
1920 /*
1921 * Depending on the memory policy provide a node from which to allocate the
1922 * next slab entry.
1923 */
mempolicy_slab_node(void)1924 unsigned int mempolicy_slab_node(void)
1925 {
1926 struct mempolicy *policy;
1927 int node = numa_mem_id();
1928
1929 if (!in_task())
1930 return node;
1931
1932 policy = current->mempolicy;
1933 if (!policy)
1934 return node;
1935
1936 switch (policy->mode) {
1937 case MPOL_PREFERRED:
1938 return first_node(policy->nodes);
1939
1940 case MPOL_INTERLEAVE:
1941 return interleave_nodes(policy);
1942
1943 case MPOL_WEIGHTED_INTERLEAVE:
1944 return weighted_interleave_nodes(policy);
1945
1946 case MPOL_BIND:
1947 case MPOL_PREFERRED_MANY:
1948 {
1949 struct zoneref *z;
1950
1951 /*
1952 * Follow bind policy behavior and start allocation at the
1953 * first node.
1954 */
1955 struct zonelist *zonelist;
1956 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1957 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1958 z = first_zones_zonelist(zonelist, highest_zoneidx,
1959 &policy->nodes);
1960 return zonelist_zone(z) ? zonelist_node_idx(z) : node;
1961 }
1962 case MPOL_LOCAL:
1963 return node;
1964
1965 default:
1966 BUG();
1967 }
1968 }
1969
read_once_policy_nodemask(struct mempolicy * pol,nodemask_t * mask)1970 static unsigned int read_once_policy_nodemask(struct mempolicy *pol,
1971 nodemask_t *mask)
1972 {
1973 /*
1974 * barrier stabilizes the nodemask locally so that it can be iterated
1975 * over safely without concern for changes. Allocators validate node
1976 * selection does not violate mems_allowed, so this is safe.
1977 */
1978 barrier();
1979 memcpy(mask, &pol->nodes, sizeof(nodemask_t));
1980 barrier();
1981 return nodes_weight(*mask);
1982 }
1983
weighted_interleave_nid(struct mempolicy * pol,pgoff_t ilx)1984 static unsigned int weighted_interleave_nid(struct mempolicy *pol, pgoff_t ilx)
1985 {
1986 nodemask_t nodemask;
1987 unsigned int target, nr_nodes;
1988 u8 *table;
1989 unsigned int weight_total = 0;
1990 u8 weight;
1991 int nid;
1992
1993 nr_nodes = read_once_policy_nodemask(pol, &nodemask);
1994 if (!nr_nodes)
1995 return numa_node_id();
1996
1997 rcu_read_lock();
1998 table = rcu_dereference(iw_table);
1999 /* calculate the total weight */
2000 for_each_node_mask(nid, nodemask) {
2001 /* detect system default usage */
2002 weight = table ? table[nid] : 1;
2003 weight = weight ? weight : 1;
2004 weight_total += weight;
2005 }
2006
2007 /* Calculate the node offset based on totals */
2008 target = ilx % weight_total;
2009 nid = first_node(nodemask);
2010 while (target) {
2011 /* detect system default usage */
2012 weight = table ? table[nid] : 1;
2013 weight = weight ? weight : 1;
2014 if (target < weight)
2015 break;
2016 target -= weight;
2017 nid = next_node_in(nid, nodemask);
2018 }
2019 rcu_read_unlock();
2020 return nid;
2021 }
2022
2023 /*
2024 * Do static interleaving for interleave index @ilx. Returns the ilx'th
2025 * node in pol->nodes (starting from ilx=0), wrapping around if ilx
2026 * exceeds the number of present nodes.
2027 */
interleave_nid(struct mempolicy * pol,pgoff_t ilx)2028 static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx)
2029 {
2030 nodemask_t nodemask;
2031 unsigned int target, nnodes;
2032 int i;
2033 int nid;
2034
2035 nnodes = read_once_policy_nodemask(pol, &nodemask);
2036 if (!nnodes)
2037 return numa_node_id();
2038 target = ilx % nnodes;
2039 nid = first_node(nodemask);
2040 for (i = 0; i < target; i++)
2041 nid = next_node(nid, nodemask);
2042 return nid;
2043 }
2044
2045 /*
2046 * Return a nodemask representing a mempolicy for filtering nodes for
2047 * page allocation, together with preferred node id (or the input node id).
2048 */
policy_nodemask(gfp_t gfp,struct mempolicy * pol,pgoff_t ilx,int * nid)2049 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
2050 pgoff_t ilx, int *nid)
2051 {
2052 nodemask_t *nodemask = NULL;
2053
2054 switch (pol->mode) {
2055 case MPOL_PREFERRED:
2056 /* Override input node id */
2057 *nid = first_node(pol->nodes);
2058 break;
2059 case MPOL_PREFERRED_MANY:
2060 nodemask = &pol->nodes;
2061 if (pol->home_node != NUMA_NO_NODE)
2062 *nid = pol->home_node;
2063 break;
2064 case MPOL_BIND:
2065 /* Restrict to nodemask (but not on lower zones) */
2066 if (apply_policy_zone(pol, gfp_zone(gfp)) &&
2067 cpuset_nodemask_valid_mems_allowed(&pol->nodes))
2068 nodemask = &pol->nodes;
2069 if (pol->home_node != NUMA_NO_NODE)
2070 *nid = pol->home_node;
2071 /*
2072 * __GFP_THISNODE shouldn't even be used with the bind policy
2073 * because we might easily break the expectation to stay on the
2074 * requested node and not break the policy.
2075 */
2076 WARN_ON_ONCE(gfp & __GFP_THISNODE);
2077 break;
2078 case MPOL_INTERLEAVE:
2079 /* Override input node id */
2080 *nid = (ilx == NO_INTERLEAVE_INDEX) ?
2081 interleave_nodes(pol) : interleave_nid(pol, ilx);
2082 break;
2083 case MPOL_WEIGHTED_INTERLEAVE:
2084 *nid = (ilx == NO_INTERLEAVE_INDEX) ?
2085 weighted_interleave_nodes(pol) :
2086 weighted_interleave_nid(pol, ilx);
2087 break;
2088 }
2089
2090 return nodemask;
2091 }
2092
2093 #ifdef CONFIG_HUGETLBFS
2094 /*
2095 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2096 * @vma: virtual memory area whose policy is sought
2097 * @addr: address in @vma for shared policy lookup and interleave policy
2098 * @gfp_flags: for requested zone
2099 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2100 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2101 *
2102 * Returns a nid suitable for a huge page allocation and a pointer
2103 * to the struct mempolicy for conditional unref after allocation.
2104 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2105 * to the mempolicy's @nodemask for filtering the zonelist.
2106 */
huge_node(struct vm_area_struct * vma,unsigned long addr,gfp_t gfp_flags,struct mempolicy ** mpol,nodemask_t ** nodemask)2107 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2108 struct mempolicy **mpol, nodemask_t **nodemask)
2109 {
2110 pgoff_t ilx;
2111 int nid;
2112
2113 nid = numa_node_id();
2114 *mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx);
2115 *nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid);
2116 return nid;
2117 }
2118
2119 /*
2120 * init_nodemask_of_mempolicy
2121 *
2122 * If the current task's mempolicy is "default" [NULL], return 'false'
2123 * to indicate default policy. Otherwise, extract the policy nodemask
2124 * for 'bind' or 'interleave' policy into the argument nodemask, or
2125 * initialize the argument nodemask to contain the single node for
2126 * 'preferred' or 'local' policy and return 'true' to indicate presence
2127 * of non-default mempolicy.
2128 *
2129 * We don't bother with reference counting the mempolicy [mpol_get/put]
2130 * because the current task is examining it's own mempolicy and a task's
2131 * mempolicy is only ever changed by the task itself.
2132 *
2133 * N.B., it is the caller's responsibility to free a returned nodemask.
2134 */
init_nodemask_of_mempolicy(nodemask_t * mask)2135 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2136 {
2137 struct mempolicy *mempolicy;
2138
2139 if (!(mask && current->mempolicy))
2140 return false;
2141
2142 task_lock(current);
2143 mempolicy = current->mempolicy;
2144 switch (mempolicy->mode) {
2145 case MPOL_PREFERRED:
2146 case MPOL_PREFERRED_MANY:
2147 case MPOL_BIND:
2148 case MPOL_INTERLEAVE:
2149 case MPOL_WEIGHTED_INTERLEAVE:
2150 *mask = mempolicy->nodes;
2151 break;
2152
2153 case MPOL_LOCAL:
2154 init_nodemask_of_node(mask, numa_node_id());
2155 break;
2156
2157 default:
2158 BUG();
2159 }
2160 task_unlock(current);
2161
2162 return true;
2163 }
2164 #endif
2165
2166 /*
2167 * mempolicy_in_oom_domain
2168 *
2169 * If tsk's mempolicy is "bind", check for intersection between mask and
2170 * the policy nodemask. Otherwise, return true for all other policies
2171 * including "interleave", as a tsk with "interleave" policy may have
2172 * memory allocated from all nodes in system.
2173 *
2174 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2175 */
mempolicy_in_oom_domain(struct task_struct * tsk,const nodemask_t * mask)2176 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2177 const nodemask_t *mask)
2178 {
2179 struct mempolicy *mempolicy;
2180 bool ret = true;
2181
2182 if (!mask)
2183 return ret;
2184
2185 task_lock(tsk);
2186 mempolicy = tsk->mempolicy;
2187 if (mempolicy && mempolicy->mode == MPOL_BIND)
2188 ret = nodes_intersects(mempolicy->nodes, *mask);
2189 task_unlock(tsk);
2190
2191 return ret;
2192 }
2193
alloc_pages_preferred_many(gfp_t gfp,unsigned int order,int nid,nodemask_t * nodemask)2194 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2195 int nid, nodemask_t *nodemask)
2196 {
2197 struct page *page;
2198 gfp_t preferred_gfp;
2199
2200 /*
2201 * This is a two pass approach. The first pass will only try the
2202 * preferred nodes but skip the direct reclaim and allow the
2203 * allocation to fail, while the second pass will try all the
2204 * nodes in system.
2205 */
2206 preferred_gfp = gfp | __GFP_NOWARN;
2207 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2208 page = __alloc_pages_noprof(preferred_gfp, order, nid, nodemask);
2209 if (!page)
2210 page = __alloc_pages_noprof(gfp, order, nid, NULL);
2211
2212 return page;
2213 }
2214
2215 /**
2216 * alloc_pages_mpol - Allocate pages according to NUMA mempolicy.
2217 * @gfp: GFP flags.
2218 * @order: Order of the page allocation.
2219 * @pol: Pointer to the NUMA mempolicy.
2220 * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()).
2221 * @nid: Preferred node (usually numa_node_id() but @mpol may override it).
2222 *
2223 * Return: The page on success or NULL if allocation fails.
2224 */
alloc_pages_mpol_noprof(gfp_t gfp,unsigned int order,struct mempolicy * pol,pgoff_t ilx,int nid)2225 struct page *alloc_pages_mpol_noprof(gfp_t gfp, unsigned int order,
2226 struct mempolicy *pol, pgoff_t ilx, int nid)
2227 {
2228 nodemask_t *nodemask;
2229 struct page *page;
2230
2231 nodemask = policy_nodemask(gfp, pol, ilx, &nid);
2232
2233 if (pol->mode == MPOL_PREFERRED_MANY)
2234 return alloc_pages_preferred_many(gfp, order, nid, nodemask);
2235
2236 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2237 /* filter "hugepage" allocation, unless from alloc_pages() */
2238 order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) {
2239 /*
2240 * For hugepage allocation and non-interleave policy which
2241 * allows the current node (or other explicitly preferred
2242 * node) we only try to allocate from the current/preferred
2243 * node and don't fall back to other nodes, as the cost of
2244 * remote accesses would likely offset THP benefits.
2245 *
2246 * If the policy is interleave or does not allow the current
2247 * node in its nodemask, we allocate the standard way.
2248 */
2249 if (pol->mode != MPOL_INTERLEAVE &&
2250 pol->mode != MPOL_WEIGHTED_INTERLEAVE &&
2251 (!nodemask || node_isset(nid, *nodemask))) {
2252 /*
2253 * First, try to allocate THP only on local node, but
2254 * don't reclaim unnecessarily, just compact.
2255 */
2256 page = __alloc_pages_node_noprof(nid,
2257 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2258 if (page || !(gfp & __GFP_DIRECT_RECLAIM))
2259 return page;
2260 /*
2261 * If hugepage allocations are configured to always
2262 * synchronous compact or the vma has been madvised
2263 * to prefer hugepage backing, retry allowing remote
2264 * memory with both reclaim and compact as well.
2265 */
2266 }
2267 }
2268
2269 page = __alloc_pages_noprof(gfp, order, nid, nodemask);
2270
2271 if (unlikely(pol->mode == MPOL_INTERLEAVE) && page) {
2272 /* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */
2273 if (static_branch_likely(&vm_numa_stat_key) &&
2274 page_to_nid(page) == nid) {
2275 preempt_disable();
2276 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2277 preempt_enable();
2278 }
2279 }
2280
2281 return page;
2282 }
2283
folio_alloc_mpol_noprof(gfp_t gfp,unsigned int order,struct mempolicy * pol,pgoff_t ilx,int nid)2284 struct folio *folio_alloc_mpol_noprof(gfp_t gfp, unsigned int order,
2285 struct mempolicy *pol, pgoff_t ilx, int nid)
2286 {
2287 return page_rmappable_folio(alloc_pages_mpol_noprof(gfp | __GFP_COMP,
2288 order, pol, ilx, nid));
2289 }
2290
2291 /**
2292 * vma_alloc_folio - Allocate a folio for a VMA.
2293 * @gfp: GFP flags.
2294 * @order: Order of the folio.
2295 * @vma: Pointer to VMA.
2296 * @addr: Virtual address of the allocation. Must be inside @vma.
2297 *
2298 * Allocate a folio for a specific address in @vma, using the appropriate
2299 * NUMA policy. The caller must hold the mmap_lock of the mm_struct of the
2300 * VMA to prevent it from going away. Should be used for all allocations
2301 * for folios that will be mapped into user space, excepting hugetlbfs, and
2302 * excepting where direct use of alloc_pages_mpol() is more appropriate.
2303 *
2304 * Return: The folio on success or NULL if allocation fails.
2305 */
vma_alloc_folio_noprof(gfp_t gfp,int order,struct vm_area_struct * vma,unsigned long addr)2306 struct folio *vma_alloc_folio_noprof(gfp_t gfp, int order, struct vm_area_struct *vma,
2307 unsigned long addr)
2308 {
2309 struct mempolicy *pol;
2310 pgoff_t ilx;
2311 struct folio *folio;
2312
2313 if (vma->vm_flags & VM_DROPPABLE)
2314 gfp |= __GFP_NOWARN;
2315
2316 pol = get_vma_policy(vma, addr, order, &ilx);
2317 folio = folio_alloc_mpol_noprof(gfp, order, pol, ilx, numa_node_id());
2318 mpol_cond_put(pol);
2319 return folio;
2320 }
2321 EXPORT_SYMBOL(vma_alloc_folio_noprof);
2322
2323 /**
2324 * alloc_pages - Allocate pages.
2325 * @gfp: GFP flags.
2326 * @order: Power of two of number of pages to allocate.
2327 *
2328 * Allocate 1 << @order contiguous pages. The physical address of the
2329 * first page is naturally aligned (eg an order-3 allocation will be aligned
2330 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2331 * process is honoured when in process context.
2332 *
2333 * Context: Can be called from any context, providing the appropriate GFP
2334 * flags are used.
2335 * Return: The page on success or NULL if allocation fails.
2336 */
alloc_pages_noprof(gfp_t gfp,unsigned int order)2337 struct page *alloc_pages_noprof(gfp_t gfp, unsigned int order)
2338 {
2339 struct mempolicy *pol = &default_policy;
2340
2341 /*
2342 * No reference counting needed for current->mempolicy
2343 * nor system default_policy
2344 */
2345 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2346 pol = get_task_policy(current);
2347
2348 return alloc_pages_mpol_noprof(gfp, order, pol, NO_INTERLEAVE_INDEX,
2349 numa_node_id());
2350 }
2351 EXPORT_SYMBOL(alloc_pages_noprof);
2352
folio_alloc_noprof(gfp_t gfp,unsigned int order)2353 struct folio *folio_alloc_noprof(gfp_t gfp, unsigned int order)
2354 {
2355 return page_rmappable_folio(alloc_pages_noprof(gfp | __GFP_COMP, order));
2356 }
2357 EXPORT_SYMBOL(folio_alloc_noprof);
2358
alloc_pages_bulk_array_interleave(gfp_t gfp,struct mempolicy * pol,unsigned long nr_pages,struct page ** page_array)2359 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2360 struct mempolicy *pol, unsigned long nr_pages,
2361 struct page **page_array)
2362 {
2363 int nodes;
2364 unsigned long nr_pages_per_node;
2365 int delta;
2366 int i;
2367 unsigned long nr_allocated;
2368 unsigned long total_allocated = 0;
2369
2370 nodes = nodes_weight(pol->nodes);
2371 nr_pages_per_node = nr_pages / nodes;
2372 delta = nr_pages - nodes * nr_pages_per_node;
2373
2374 for (i = 0; i < nodes; i++) {
2375 if (delta) {
2376 nr_allocated = alloc_pages_bulk_noprof(gfp,
2377 interleave_nodes(pol), NULL,
2378 nr_pages_per_node + 1, NULL,
2379 page_array);
2380 delta--;
2381 } else {
2382 nr_allocated = alloc_pages_bulk_noprof(gfp,
2383 interleave_nodes(pol), NULL,
2384 nr_pages_per_node, NULL, page_array);
2385 }
2386
2387 page_array += nr_allocated;
2388 total_allocated += nr_allocated;
2389 }
2390
2391 return total_allocated;
2392 }
2393
alloc_pages_bulk_array_weighted_interleave(gfp_t gfp,struct mempolicy * pol,unsigned long nr_pages,struct page ** page_array)2394 static unsigned long alloc_pages_bulk_array_weighted_interleave(gfp_t gfp,
2395 struct mempolicy *pol, unsigned long nr_pages,
2396 struct page **page_array)
2397 {
2398 struct task_struct *me = current;
2399 unsigned int cpuset_mems_cookie;
2400 unsigned long total_allocated = 0;
2401 unsigned long nr_allocated = 0;
2402 unsigned long rounds;
2403 unsigned long node_pages, delta;
2404 u8 *table, *weights, weight;
2405 unsigned int weight_total = 0;
2406 unsigned long rem_pages = nr_pages;
2407 nodemask_t nodes;
2408 int nnodes, node;
2409 int resume_node = MAX_NUMNODES - 1;
2410 u8 resume_weight = 0;
2411 int prev_node;
2412 int i;
2413
2414 if (!nr_pages)
2415 return 0;
2416
2417 /* read the nodes onto the stack, retry if done during rebind */
2418 do {
2419 cpuset_mems_cookie = read_mems_allowed_begin();
2420 nnodes = read_once_policy_nodemask(pol, &nodes);
2421 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2422
2423 /* if the nodemask has become invalid, we cannot do anything */
2424 if (!nnodes)
2425 return 0;
2426
2427 /* Continue allocating from most recent node and adjust the nr_pages */
2428 node = me->il_prev;
2429 weight = me->il_weight;
2430 if (weight && node_isset(node, nodes)) {
2431 node_pages = min(rem_pages, weight);
2432 nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2433 NULL, page_array);
2434 page_array += nr_allocated;
2435 total_allocated += nr_allocated;
2436 /* if that's all the pages, no need to interleave */
2437 if (rem_pages <= weight) {
2438 me->il_weight -= rem_pages;
2439 return total_allocated;
2440 }
2441 /* Otherwise we adjust remaining pages, continue from there */
2442 rem_pages -= weight;
2443 }
2444 /* clear active weight in case of an allocation failure */
2445 me->il_weight = 0;
2446 prev_node = node;
2447
2448 /* create a local copy of node weights to operate on outside rcu */
2449 weights = kzalloc(nr_node_ids, GFP_KERNEL);
2450 if (!weights)
2451 return total_allocated;
2452
2453 rcu_read_lock();
2454 table = rcu_dereference(iw_table);
2455 if (table)
2456 memcpy(weights, table, nr_node_ids);
2457 rcu_read_unlock();
2458
2459 /* calculate total, detect system default usage */
2460 for_each_node_mask(node, nodes) {
2461 if (!weights[node])
2462 weights[node] = 1;
2463 weight_total += weights[node];
2464 }
2465
2466 /*
2467 * Calculate rounds/partial rounds to minimize __alloc_pages_bulk calls.
2468 * Track which node weighted interleave should resume from.
2469 *
2470 * if (rounds > 0) and (delta == 0), resume_node will always be
2471 * the node following prev_node and its weight.
2472 */
2473 rounds = rem_pages / weight_total;
2474 delta = rem_pages % weight_total;
2475 resume_node = next_node_in(prev_node, nodes);
2476 resume_weight = weights[resume_node];
2477 for (i = 0; i < nnodes; i++) {
2478 node = next_node_in(prev_node, nodes);
2479 weight = weights[node];
2480 node_pages = weight * rounds;
2481 /* If a delta exists, add this node's portion of the delta */
2482 if (delta > weight) {
2483 node_pages += weight;
2484 delta -= weight;
2485 } else if (delta) {
2486 /* when delta is depleted, resume from that node */
2487 node_pages += delta;
2488 resume_node = node;
2489 resume_weight = weight - delta;
2490 delta = 0;
2491 }
2492 /* node_pages can be 0 if an allocation fails and rounds == 0 */
2493 if (!node_pages)
2494 break;
2495 nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2496 NULL, page_array);
2497 page_array += nr_allocated;
2498 total_allocated += nr_allocated;
2499 if (total_allocated == nr_pages)
2500 break;
2501 prev_node = node;
2502 }
2503 me->il_prev = resume_node;
2504 me->il_weight = resume_weight;
2505 kfree(weights);
2506 return total_allocated;
2507 }
2508
alloc_pages_bulk_array_preferred_many(gfp_t gfp,int nid,struct mempolicy * pol,unsigned long nr_pages,struct page ** page_array)2509 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2510 struct mempolicy *pol, unsigned long nr_pages,
2511 struct page **page_array)
2512 {
2513 gfp_t preferred_gfp;
2514 unsigned long nr_allocated = 0;
2515
2516 preferred_gfp = gfp | __GFP_NOWARN;
2517 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2518
2519 nr_allocated = alloc_pages_bulk_noprof(preferred_gfp, nid, &pol->nodes,
2520 nr_pages, NULL, page_array);
2521
2522 if (nr_allocated < nr_pages)
2523 nr_allocated += alloc_pages_bulk_noprof(gfp, numa_node_id(), NULL,
2524 nr_pages - nr_allocated, NULL,
2525 page_array + nr_allocated);
2526 return nr_allocated;
2527 }
2528
2529 /* alloc pages bulk and mempolicy should be considered at the
2530 * same time in some situation such as vmalloc.
2531 *
2532 * It can accelerate memory allocation especially interleaving
2533 * allocate memory.
2534 */
alloc_pages_bulk_array_mempolicy_noprof(gfp_t gfp,unsigned long nr_pages,struct page ** page_array)2535 unsigned long alloc_pages_bulk_array_mempolicy_noprof(gfp_t gfp,
2536 unsigned long nr_pages, struct page **page_array)
2537 {
2538 struct mempolicy *pol = &default_policy;
2539 nodemask_t *nodemask;
2540 int nid;
2541
2542 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2543 pol = get_task_policy(current);
2544
2545 if (pol->mode == MPOL_INTERLEAVE)
2546 return alloc_pages_bulk_array_interleave(gfp, pol,
2547 nr_pages, page_array);
2548
2549 if (pol->mode == MPOL_WEIGHTED_INTERLEAVE)
2550 return alloc_pages_bulk_array_weighted_interleave(
2551 gfp, pol, nr_pages, page_array);
2552
2553 if (pol->mode == MPOL_PREFERRED_MANY)
2554 return alloc_pages_bulk_array_preferred_many(gfp,
2555 numa_node_id(), pol, nr_pages, page_array);
2556
2557 nid = numa_node_id();
2558 nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid);
2559 return alloc_pages_bulk_noprof(gfp, nid, nodemask,
2560 nr_pages, NULL, page_array);
2561 }
2562
vma_dup_policy(struct vm_area_struct * src,struct vm_area_struct * dst)2563 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2564 {
2565 struct mempolicy *pol = mpol_dup(src->vm_policy);
2566
2567 if (IS_ERR(pol))
2568 return PTR_ERR(pol);
2569 dst->vm_policy = pol;
2570 return 0;
2571 }
2572
2573 /*
2574 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2575 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2576 * with the mems_allowed returned by cpuset_mems_allowed(). This
2577 * keeps mempolicies cpuset relative after its cpuset moves. See
2578 * further kernel/cpuset.c update_nodemask().
2579 *
2580 * current's mempolicy may be rebinded by the other task(the task that changes
2581 * cpuset's mems), so we needn't do rebind work for current task.
2582 */
2583
2584 /* Slow path of a mempolicy duplicate */
__mpol_dup(struct mempolicy * old)2585 struct mempolicy *__mpol_dup(struct mempolicy *old)
2586 {
2587 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2588
2589 if (!new)
2590 return ERR_PTR(-ENOMEM);
2591
2592 /* task's mempolicy is protected by alloc_lock */
2593 if (old == current->mempolicy) {
2594 task_lock(current);
2595 *new = *old;
2596 task_unlock(current);
2597 } else
2598 *new = *old;
2599
2600 if (current_cpuset_is_being_rebound()) {
2601 nodemask_t mems = cpuset_mems_allowed(current);
2602 mpol_rebind_policy(new, &mems);
2603 }
2604 atomic_set(&new->refcnt, 1);
2605 return new;
2606 }
2607
2608 /* Slow path of a mempolicy comparison */
__mpol_equal(struct mempolicy * a,struct mempolicy * b)2609 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2610 {
2611 if (!a || !b)
2612 return false;
2613 if (a->mode != b->mode)
2614 return false;
2615 if (a->flags != b->flags)
2616 return false;
2617 if (a->home_node != b->home_node)
2618 return false;
2619 if (mpol_store_user_nodemask(a))
2620 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2621 return false;
2622
2623 switch (a->mode) {
2624 case MPOL_BIND:
2625 case MPOL_INTERLEAVE:
2626 case MPOL_PREFERRED:
2627 case MPOL_PREFERRED_MANY:
2628 case MPOL_WEIGHTED_INTERLEAVE:
2629 return !!nodes_equal(a->nodes, b->nodes);
2630 case MPOL_LOCAL:
2631 return true;
2632 default:
2633 BUG();
2634 return false;
2635 }
2636 }
2637
2638 /*
2639 * Shared memory backing store policy support.
2640 *
2641 * Remember policies even when nobody has shared memory mapped.
2642 * The policies are kept in Red-Black tree linked from the inode.
2643 * They are protected by the sp->lock rwlock, which should be held
2644 * for any accesses to the tree.
2645 */
2646
2647 /*
2648 * lookup first element intersecting start-end. Caller holds sp->lock for
2649 * reading or for writing
2650 */
sp_lookup(struct shared_policy * sp,pgoff_t start,pgoff_t end)2651 static struct sp_node *sp_lookup(struct shared_policy *sp,
2652 pgoff_t start, pgoff_t end)
2653 {
2654 struct rb_node *n = sp->root.rb_node;
2655
2656 while (n) {
2657 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2658
2659 if (start >= p->end)
2660 n = n->rb_right;
2661 else if (end <= p->start)
2662 n = n->rb_left;
2663 else
2664 break;
2665 }
2666 if (!n)
2667 return NULL;
2668 for (;;) {
2669 struct sp_node *w = NULL;
2670 struct rb_node *prev = rb_prev(n);
2671 if (!prev)
2672 break;
2673 w = rb_entry(prev, struct sp_node, nd);
2674 if (w->end <= start)
2675 break;
2676 n = prev;
2677 }
2678 return rb_entry(n, struct sp_node, nd);
2679 }
2680
2681 /*
2682 * Insert a new shared policy into the list. Caller holds sp->lock for
2683 * writing.
2684 */
sp_insert(struct shared_policy * sp,struct sp_node * new)2685 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2686 {
2687 struct rb_node **p = &sp->root.rb_node;
2688 struct rb_node *parent = NULL;
2689 struct sp_node *nd;
2690
2691 while (*p) {
2692 parent = *p;
2693 nd = rb_entry(parent, struct sp_node, nd);
2694 if (new->start < nd->start)
2695 p = &(*p)->rb_left;
2696 else if (new->end > nd->end)
2697 p = &(*p)->rb_right;
2698 else
2699 BUG();
2700 }
2701 rb_link_node(&new->nd, parent, p);
2702 rb_insert_color(&new->nd, &sp->root);
2703 }
2704
2705 /* Find shared policy intersecting idx */
mpol_shared_policy_lookup(struct shared_policy * sp,pgoff_t idx)2706 struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
2707 pgoff_t idx)
2708 {
2709 struct mempolicy *pol = NULL;
2710 struct sp_node *sn;
2711
2712 if (!sp->root.rb_node)
2713 return NULL;
2714 read_lock(&sp->lock);
2715 sn = sp_lookup(sp, idx, idx+1);
2716 if (sn) {
2717 mpol_get(sn->policy);
2718 pol = sn->policy;
2719 }
2720 read_unlock(&sp->lock);
2721 return pol;
2722 }
2723
sp_free(struct sp_node * n)2724 static void sp_free(struct sp_node *n)
2725 {
2726 mpol_put(n->policy);
2727 kmem_cache_free(sn_cache, n);
2728 }
2729
2730 /**
2731 * mpol_misplaced - check whether current folio node is valid in policy
2732 *
2733 * @folio: folio to be checked
2734 * @vmf: structure describing the fault
2735 * @addr: virtual address in @vma for shared policy lookup and interleave policy
2736 *
2737 * Lookup current policy node id for vma,addr and "compare to" folio's
2738 * node id. Policy determination "mimics" alloc_page_vma().
2739 * Called from fault path where we know the vma and faulting address.
2740 *
2741 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2742 * policy, or a suitable node ID to allocate a replacement folio from.
2743 */
mpol_misplaced(struct folio * folio,struct vm_fault * vmf,unsigned long addr)2744 int mpol_misplaced(struct folio *folio, struct vm_fault *vmf,
2745 unsigned long addr)
2746 {
2747 struct mempolicy *pol;
2748 pgoff_t ilx;
2749 struct zoneref *z;
2750 int curnid = folio_nid(folio);
2751 struct vm_area_struct *vma = vmf->vma;
2752 int thiscpu = raw_smp_processor_id();
2753 int thisnid = numa_node_id();
2754 int polnid = NUMA_NO_NODE;
2755 int ret = NUMA_NO_NODE;
2756
2757 /*
2758 * Make sure ptl is held so that we don't preempt and we
2759 * have a stable smp processor id
2760 */
2761 lockdep_assert_held(vmf->ptl);
2762 pol = get_vma_policy(vma, addr, folio_order(folio), &ilx);
2763 if (!(pol->flags & MPOL_F_MOF))
2764 goto out;
2765
2766 switch (pol->mode) {
2767 case MPOL_INTERLEAVE:
2768 polnid = interleave_nid(pol, ilx);
2769 break;
2770
2771 case MPOL_WEIGHTED_INTERLEAVE:
2772 polnid = weighted_interleave_nid(pol, ilx);
2773 break;
2774
2775 case MPOL_PREFERRED:
2776 if (node_isset(curnid, pol->nodes))
2777 goto out;
2778 polnid = first_node(pol->nodes);
2779 break;
2780
2781 case MPOL_LOCAL:
2782 polnid = numa_node_id();
2783 break;
2784
2785 case MPOL_BIND:
2786 case MPOL_PREFERRED_MANY:
2787 /*
2788 * Even though MPOL_PREFERRED_MANY can allocate pages outside
2789 * policy nodemask we don't allow numa migration to nodes
2790 * outside policy nodemask for now. This is done so that if we
2791 * want demotion to slow memory to happen, before allocating
2792 * from some DRAM node say 'x', we will end up using a
2793 * MPOL_PREFERRED_MANY mask excluding node 'x'. In such scenario
2794 * we should not promote to node 'x' from slow memory node.
2795 */
2796 if (pol->flags & MPOL_F_MORON) {
2797 /*
2798 * Optimize placement among multiple nodes
2799 * via NUMA balancing
2800 */
2801 if (node_isset(thisnid, pol->nodes))
2802 break;
2803 goto out;
2804 }
2805
2806 /*
2807 * use current page if in policy nodemask,
2808 * else select nearest allowed node, if any.
2809 * If no allowed nodes, use current [!misplaced].
2810 */
2811 if (node_isset(curnid, pol->nodes))
2812 goto out;
2813 z = first_zones_zonelist(
2814 node_zonelist(thisnid, GFP_HIGHUSER),
2815 gfp_zone(GFP_HIGHUSER),
2816 &pol->nodes);
2817 polnid = zonelist_node_idx(z);
2818 break;
2819
2820 default:
2821 BUG();
2822 }
2823
2824 /* Migrate the folio towards the node whose CPU is referencing it */
2825 if (pol->flags & MPOL_F_MORON) {
2826 polnid = thisnid;
2827
2828 if (!should_numa_migrate_memory(current, folio, curnid,
2829 thiscpu))
2830 goto out;
2831 }
2832
2833 if (curnid != polnid)
2834 ret = polnid;
2835 out:
2836 mpol_cond_put(pol);
2837
2838 return ret;
2839 }
2840
2841 /*
2842 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2843 * dropped after task->mempolicy is set to NULL so that any allocation done as
2844 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2845 * policy.
2846 */
mpol_put_task_policy(struct task_struct * task)2847 void mpol_put_task_policy(struct task_struct *task)
2848 {
2849 struct mempolicy *pol;
2850
2851 task_lock(task);
2852 pol = task->mempolicy;
2853 task->mempolicy = NULL;
2854 task_unlock(task);
2855 mpol_put(pol);
2856 }
2857
sp_delete(struct shared_policy * sp,struct sp_node * n)2858 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2859 {
2860 rb_erase(&n->nd, &sp->root);
2861 sp_free(n);
2862 }
2863
sp_node_init(struct sp_node * node,unsigned long start,unsigned long end,struct mempolicy * pol)2864 static void sp_node_init(struct sp_node *node, unsigned long start,
2865 unsigned long end, struct mempolicy *pol)
2866 {
2867 node->start = start;
2868 node->end = end;
2869 node->policy = pol;
2870 }
2871
sp_alloc(unsigned long start,unsigned long end,struct mempolicy * pol)2872 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2873 struct mempolicy *pol)
2874 {
2875 struct sp_node *n;
2876 struct mempolicy *newpol;
2877
2878 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2879 if (!n)
2880 return NULL;
2881
2882 newpol = mpol_dup(pol);
2883 if (IS_ERR(newpol)) {
2884 kmem_cache_free(sn_cache, n);
2885 return NULL;
2886 }
2887 newpol->flags |= MPOL_F_SHARED;
2888 sp_node_init(n, start, end, newpol);
2889
2890 return n;
2891 }
2892
2893 /* Replace a policy range. */
shared_policy_replace(struct shared_policy * sp,pgoff_t start,pgoff_t end,struct sp_node * new)2894 static int shared_policy_replace(struct shared_policy *sp, pgoff_t start,
2895 pgoff_t end, struct sp_node *new)
2896 {
2897 struct sp_node *n;
2898 struct sp_node *n_new = NULL;
2899 struct mempolicy *mpol_new = NULL;
2900 int ret = 0;
2901
2902 restart:
2903 write_lock(&sp->lock);
2904 n = sp_lookup(sp, start, end);
2905 /* Take care of old policies in the same range. */
2906 while (n && n->start < end) {
2907 struct rb_node *next = rb_next(&n->nd);
2908 if (n->start >= start) {
2909 if (n->end <= end)
2910 sp_delete(sp, n);
2911 else
2912 n->start = end;
2913 } else {
2914 /* Old policy spanning whole new range. */
2915 if (n->end > end) {
2916 if (!n_new)
2917 goto alloc_new;
2918
2919 *mpol_new = *n->policy;
2920 atomic_set(&mpol_new->refcnt, 1);
2921 sp_node_init(n_new, end, n->end, mpol_new);
2922 n->end = start;
2923 sp_insert(sp, n_new);
2924 n_new = NULL;
2925 mpol_new = NULL;
2926 break;
2927 } else
2928 n->end = start;
2929 }
2930 if (!next)
2931 break;
2932 n = rb_entry(next, struct sp_node, nd);
2933 }
2934 if (new)
2935 sp_insert(sp, new);
2936 write_unlock(&sp->lock);
2937 ret = 0;
2938
2939 err_out:
2940 if (mpol_new)
2941 mpol_put(mpol_new);
2942 if (n_new)
2943 kmem_cache_free(sn_cache, n_new);
2944
2945 return ret;
2946
2947 alloc_new:
2948 write_unlock(&sp->lock);
2949 ret = -ENOMEM;
2950 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2951 if (!n_new)
2952 goto err_out;
2953 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2954 if (!mpol_new)
2955 goto err_out;
2956 atomic_set(&mpol_new->refcnt, 1);
2957 goto restart;
2958 }
2959
2960 /**
2961 * mpol_shared_policy_init - initialize shared policy for inode
2962 * @sp: pointer to inode shared policy
2963 * @mpol: struct mempolicy to install
2964 *
2965 * Install non-NULL @mpol in inode's shared policy rb-tree.
2966 * On entry, the current task has a reference on a non-NULL @mpol.
2967 * This must be released on exit.
2968 * This is called at get_inode() calls and we can use GFP_KERNEL.
2969 */
mpol_shared_policy_init(struct shared_policy * sp,struct mempolicy * mpol)2970 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2971 {
2972 int ret;
2973
2974 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2975 rwlock_init(&sp->lock);
2976
2977 if (mpol) {
2978 struct sp_node *sn;
2979 struct mempolicy *npol;
2980 NODEMASK_SCRATCH(scratch);
2981
2982 if (!scratch)
2983 goto put_mpol;
2984
2985 /* contextualize the tmpfs mount point mempolicy to this file */
2986 npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2987 if (IS_ERR(npol))
2988 goto free_scratch; /* no valid nodemask intersection */
2989
2990 task_lock(current);
2991 ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch);
2992 task_unlock(current);
2993 if (ret)
2994 goto put_npol;
2995
2996 /* alloc node covering entire file; adds ref to file's npol */
2997 sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol);
2998 if (sn)
2999 sp_insert(sp, sn);
3000 put_npol:
3001 mpol_put(npol); /* drop initial ref on file's npol */
3002 free_scratch:
3003 NODEMASK_SCRATCH_FREE(scratch);
3004 put_mpol:
3005 mpol_put(mpol); /* drop our incoming ref on sb mpol */
3006 }
3007 }
3008
mpol_set_shared_policy(struct shared_policy * sp,struct vm_area_struct * vma,struct mempolicy * pol)3009 int mpol_set_shared_policy(struct shared_policy *sp,
3010 struct vm_area_struct *vma, struct mempolicy *pol)
3011 {
3012 int err;
3013 struct sp_node *new = NULL;
3014 unsigned long sz = vma_pages(vma);
3015
3016 if (pol) {
3017 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol);
3018 if (!new)
3019 return -ENOMEM;
3020 }
3021 err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new);
3022 if (err && new)
3023 sp_free(new);
3024 return err;
3025 }
3026
3027 /* Free a backing policy store on inode delete. */
mpol_free_shared_policy(struct shared_policy * sp)3028 void mpol_free_shared_policy(struct shared_policy *sp)
3029 {
3030 struct sp_node *n;
3031 struct rb_node *next;
3032
3033 if (!sp->root.rb_node)
3034 return;
3035 write_lock(&sp->lock);
3036 next = rb_first(&sp->root);
3037 while (next) {
3038 n = rb_entry(next, struct sp_node, nd);
3039 next = rb_next(&n->nd);
3040 sp_delete(sp, n);
3041 }
3042 write_unlock(&sp->lock);
3043 }
3044
3045 #ifdef CONFIG_NUMA_BALANCING
3046 static int __initdata numabalancing_override;
3047
check_numabalancing_enable(void)3048 static void __init check_numabalancing_enable(void)
3049 {
3050 bool numabalancing_default = false;
3051
3052 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
3053 numabalancing_default = true;
3054
3055 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
3056 if (numabalancing_override)
3057 set_numabalancing_state(numabalancing_override == 1);
3058
3059 if (num_online_nodes() > 1 && !numabalancing_override) {
3060 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
3061 numabalancing_default ? "Enabling" : "Disabling");
3062 set_numabalancing_state(numabalancing_default);
3063 }
3064 }
3065
setup_numabalancing(char * str)3066 static int __init setup_numabalancing(char *str)
3067 {
3068 int ret = 0;
3069 if (!str)
3070 goto out;
3071
3072 if (!strcmp(str, "enable")) {
3073 numabalancing_override = 1;
3074 ret = 1;
3075 } else if (!strcmp(str, "disable")) {
3076 numabalancing_override = -1;
3077 ret = 1;
3078 }
3079 out:
3080 if (!ret)
3081 pr_warn("Unable to parse numa_balancing=\n");
3082
3083 return ret;
3084 }
3085 __setup("numa_balancing=", setup_numabalancing);
3086 #else
check_numabalancing_enable(void)3087 static inline void __init check_numabalancing_enable(void)
3088 {
3089 }
3090 #endif /* CONFIG_NUMA_BALANCING */
3091
numa_policy_init(void)3092 void __init numa_policy_init(void)
3093 {
3094 nodemask_t interleave_nodes;
3095 unsigned long largest = 0;
3096 int nid, prefer = 0;
3097
3098 policy_cache = kmem_cache_create("numa_policy",
3099 sizeof(struct mempolicy),
3100 0, SLAB_PANIC, NULL);
3101
3102 sn_cache = kmem_cache_create("shared_policy_node",
3103 sizeof(struct sp_node),
3104 0, SLAB_PANIC, NULL);
3105
3106 for_each_node(nid) {
3107 preferred_node_policy[nid] = (struct mempolicy) {
3108 .refcnt = ATOMIC_INIT(1),
3109 .mode = MPOL_PREFERRED,
3110 .flags = MPOL_F_MOF | MPOL_F_MORON,
3111 .nodes = nodemask_of_node(nid),
3112 };
3113 }
3114
3115 /*
3116 * Set interleaving policy for system init. Interleaving is only
3117 * enabled across suitably sized nodes (default is >= 16MB), or
3118 * fall back to the largest node if they're all smaller.
3119 */
3120 nodes_clear(interleave_nodes);
3121 for_each_node_state(nid, N_MEMORY) {
3122 unsigned long total_pages = node_present_pages(nid);
3123
3124 /* Preserve the largest node */
3125 if (largest < total_pages) {
3126 largest = total_pages;
3127 prefer = nid;
3128 }
3129
3130 /* Interleave this node? */
3131 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
3132 node_set(nid, interleave_nodes);
3133 }
3134
3135 /* All too small, use the largest */
3136 if (unlikely(nodes_empty(interleave_nodes)))
3137 node_set(prefer, interleave_nodes);
3138
3139 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
3140 pr_err("%s: interleaving failed\n", __func__);
3141
3142 check_numabalancing_enable();
3143 }
3144
3145 /* Reset policy of current process to default */
numa_default_policy(void)3146 void numa_default_policy(void)
3147 {
3148 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
3149 }
3150
3151 /*
3152 * Parse and format mempolicy from/to strings
3153 */
3154 static const char * const policy_modes[] =
3155 {
3156 [MPOL_DEFAULT] = "default",
3157 [MPOL_PREFERRED] = "prefer",
3158 [MPOL_BIND] = "bind",
3159 [MPOL_INTERLEAVE] = "interleave",
3160 [MPOL_WEIGHTED_INTERLEAVE] = "weighted interleave",
3161 [MPOL_LOCAL] = "local",
3162 [MPOL_PREFERRED_MANY] = "prefer (many)",
3163 };
3164
3165 #ifdef CONFIG_TMPFS
3166 /**
3167 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
3168 * @str: string containing mempolicy to parse
3169 * @mpol: pointer to struct mempolicy pointer, returned on success.
3170 *
3171 * Format of input:
3172 * <mode>[=<flags>][:<nodelist>]
3173 *
3174 * Return: %0 on success, else %1
3175 */
mpol_parse_str(char * str,struct mempolicy ** mpol)3176 int mpol_parse_str(char *str, struct mempolicy **mpol)
3177 {
3178 struct mempolicy *new = NULL;
3179 unsigned short mode_flags;
3180 nodemask_t nodes;
3181 char *nodelist = strchr(str, ':');
3182 char *flags = strchr(str, '=');
3183 int err = 1, mode;
3184
3185 if (flags)
3186 *flags++ = '\0'; /* terminate mode string */
3187
3188 if (nodelist) {
3189 /* NUL-terminate mode or flags string */
3190 *nodelist++ = '\0';
3191 if (nodelist_parse(nodelist, nodes))
3192 goto out;
3193 if (!nodes_subset(nodes, node_states[N_MEMORY]))
3194 goto out;
3195 } else
3196 nodes_clear(nodes);
3197
3198 mode = match_string(policy_modes, MPOL_MAX, str);
3199 if (mode < 0)
3200 goto out;
3201
3202 switch (mode) {
3203 case MPOL_PREFERRED:
3204 /*
3205 * Insist on a nodelist of one node only, although later
3206 * we use first_node(nodes) to grab a single node, so here
3207 * nodelist (or nodes) cannot be empty.
3208 */
3209 if (nodelist) {
3210 char *rest = nodelist;
3211 while (isdigit(*rest))
3212 rest++;
3213 if (*rest)
3214 goto out;
3215 if (nodes_empty(nodes))
3216 goto out;
3217 }
3218 break;
3219 case MPOL_INTERLEAVE:
3220 case MPOL_WEIGHTED_INTERLEAVE:
3221 /*
3222 * Default to online nodes with memory if no nodelist
3223 */
3224 if (!nodelist)
3225 nodes = node_states[N_MEMORY];
3226 break;
3227 case MPOL_LOCAL:
3228 /*
3229 * Don't allow a nodelist; mpol_new() checks flags
3230 */
3231 if (nodelist)
3232 goto out;
3233 break;
3234 case MPOL_DEFAULT:
3235 /*
3236 * Insist on a empty nodelist
3237 */
3238 if (!nodelist)
3239 err = 0;
3240 goto out;
3241 case MPOL_PREFERRED_MANY:
3242 case MPOL_BIND:
3243 /*
3244 * Insist on a nodelist
3245 */
3246 if (!nodelist)
3247 goto out;
3248 }
3249
3250 mode_flags = 0;
3251 if (flags) {
3252 /*
3253 * Currently, we only support two mutually exclusive
3254 * mode flags.
3255 */
3256 if (!strcmp(flags, "static"))
3257 mode_flags |= MPOL_F_STATIC_NODES;
3258 else if (!strcmp(flags, "relative"))
3259 mode_flags |= MPOL_F_RELATIVE_NODES;
3260 else
3261 goto out;
3262 }
3263
3264 new = mpol_new(mode, mode_flags, &nodes);
3265 if (IS_ERR(new))
3266 goto out;
3267
3268 /*
3269 * Save nodes for mpol_to_str() to show the tmpfs mount options
3270 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3271 */
3272 if (mode != MPOL_PREFERRED) {
3273 new->nodes = nodes;
3274 } else if (nodelist) {
3275 nodes_clear(new->nodes);
3276 node_set(first_node(nodes), new->nodes);
3277 } else {
3278 new->mode = MPOL_LOCAL;
3279 }
3280
3281 /*
3282 * Save nodes for contextualization: this will be used to "clone"
3283 * the mempolicy in a specific context [cpuset] at a later time.
3284 */
3285 new->w.user_nodemask = nodes;
3286
3287 err = 0;
3288
3289 out:
3290 /* Restore string for error message */
3291 if (nodelist)
3292 *--nodelist = ':';
3293 if (flags)
3294 *--flags = '=';
3295 if (!err)
3296 *mpol = new;
3297 return err;
3298 }
3299 #endif /* CONFIG_TMPFS */
3300
3301 /**
3302 * mpol_to_str - format a mempolicy structure for printing
3303 * @buffer: to contain formatted mempolicy string
3304 * @maxlen: length of @buffer
3305 * @pol: pointer to mempolicy to be formatted
3306 *
3307 * Convert @pol into a string. If @buffer is too short, truncate the string.
3308 * Recommend a @maxlen of at least 51 for the longest mode, "weighted
3309 * interleave", plus the longest flag flags, "relative|balancing", and to
3310 * display at least a few node ids.
3311 */
mpol_to_str(char * buffer,int maxlen,struct mempolicy * pol)3312 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3313 {
3314 char *p = buffer;
3315 nodemask_t nodes = NODE_MASK_NONE;
3316 unsigned short mode = MPOL_DEFAULT;
3317 unsigned short flags = 0;
3318
3319 if (pol &&
3320 pol != &default_policy &&
3321 !(pol >= &preferred_node_policy[0] &&
3322 pol <= &preferred_node_policy[ARRAY_SIZE(preferred_node_policy) - 1])) {
3323 mode = pol->mode;
3324 flags = pol->flags;
3325 }
3326
3327 switch (mode) {
3328 case MPOL_DEFAULT:
3329 case MPOL_LOCAL:
3330 break;
3331 case MPOL_PREFERRED:
3332 case MPOL_PREFERRED_MANY:
3333 case MPOL_BIND:
3334 case MPOL_INTERLEAVE:
3335 case MPOL_WEIGHTED_INTERLEAVE:
3336 nodes = pol->nodes;
3337 break;
3338 default:
3339 WARN_ON_ONCE(1);
3340 snprintf(p, maxlen, "unknown");
3341 return;
3342 }
3343
3344 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3345
3346 if (flags & MPOL_MODE_FLAGS) {
3347 p += snprintf(p, buffer + maxlen - p, "=");
3348
3349 /*
3350 * Static and relative are mutually exclusive.
3351 */
3352 if (flags & MPOL_F_STATIC_NODES)
3353 p += snprintf(p, buffer + maxlen - p, "static");
3354 else if (flags & MPOL_F_RELATIVE_NODES)
3355 p += snprintf(p, buffer + maxlen - p, "relative");
3356
3357 if (flags & MPOL_F_NUMA_BALANCING) {
3358 if (!is_power_of_2(flags & MPOL_MODE_FLAGS))
3359 p += snprintf(p, buffer + maxlen - p, "|");
3360 p += snprintf(p, buffer + maxlen - p, "balancing");
3361 }
3362 }
3363
3364 if (!nodes_empty(nodes))
3365 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3366 nodemask_pr_args(&nodes));
3367 }
3368
3369 #ifdef CONFIG_SYSFS
3370 struct iw_node_attr {
3371 struct kobj_attribute kobj_attr;
3372 int nid;
3373 };
3374
node_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3375 static ssize_t node_show(struct kobject *kobj, struct kobj_attribute *attr,
3376 char *buf)
3377 {
3378 struct iw_node_attr *node_attr;
3379 u8 weight;
3380
3381 node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3382 weight = get_il_weight(node_attr->nid);
3383 return sysfs_emit(buf, "%d\n", weight);
3384 }
3385
node_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3386 static ssize_t node_store(struct kobject *kobj, struct kobj_attribute *attr,
3387 const char *buf, size_t count)
3388 {
3389 struct iw_node_attr *node_attr;
3390 u8 *new;
3391 u8 *old;
3392 u8 weight = 0;
3393
3394 node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3395 if (count == 0 || sysfs_streq(buf, ""))
3396 weight = 0;
3397 else if (kstrtou8(buf, 0, &weight))
3398 return -EINVAL;
3399
3400 new = kzalloc(nr_node_ids, GFP_KERNEL);
3401 if (!new)
3402 return -ENOMEM;
3403
3404 mutex_lock(&iw_table_lock);
3405 old = rcu_dereference_protected(iw_table,
3406 lockdep_is_held(&iw_table_lock));
3407 if (old)
3408 memcpy(new, old, nr_node_ids);
3409 new[node_attr->nid] = weight;
3410 rcu_assign_pointer(iw_table, new);
3411 mutex_unlock(&iw_table_lock);
3412 synchronize_rcu();
3413 kfree(old);
3414 return count;
3415 }
3416
3417 static struct iw_node_attr **node_attrs;
3418
sysfs_wi_node_release(struct iw_node_attr * node_attr,struct kobject * parent)3419 static void sysfs_wi_node_release(struct iw_node_attr *node_attr,
3420 struct kobject *parent)
3421 {
3422 if (!node_attr)
3423 return;
3424 sysfs_remove_file(parent, &node_attr->kobj_attr.attr);
3425 kfree(node_attr->kobj_attr.attr.name);
3426 kfree(node_attr);
3427 }
3428
sysfs_wi_release(struct kobject * wi_kobj)3429 static void sysfs_wi_release(struct kobject *wi_kobj)
3430 {
3431 int i;
3432
3433 for (i = 0; i < nr_node_ids; i++)
3434 sysfs_wi_node_release(node_attrs[i], wi_kobj);
3435 kobject_put(wi_kobj);
3436 }
3437
3438 static const struct kobj_type wi_ktype = {
3439 .sysfs_ops = &kobj_sysfs_ops,
3440 .release = sysfs_wi_release,
3441 };
3442
add_weight_node(int nid,struct kobject * wi_kobj)3443 static int add_weight_node(int nid, struct kobject *wi_kobj)
3444 {
3445 struct iw_node_attr *node_attr;
3446 char *name;
3447
3448 node_attr = kzalloc(sizeof(*node_attr), GFP_KERNEL);
3449 if (!node_attr)
3450 return -ENOMEM;
3451
3452 name = kasprintf(GFP_KERNEL, "node%d", nid);
3453 if (!name) {
3454 kfree(node_attr);
3455 return -ENOMEM;
3456 }
3457
3458 sysfs_attr_init(&node_attr->kobj_attr.attr);
3459 node_attr->kobj_attr.attr.name = name;
3460 node_attr->kobj_attr.attr.mode = 0644;
3461 node_attr->kobj_attr.show = node_show;
3462 node_attr->kobj_attr.store = node_store;
3463 node_attr->nid = nid;
3464
3465 if (sysfs_create_file(wi_kobj, &node_attr->kobj_attr.attr)) {
3466 kfree(node_attr->kobj_attr.attr.name);
3467 kfree(node_attr);
3468 pr_err("failed to add attribute to weighted_interleave\n");
3469 return -ENOMEM;
3470 }
3471
3472 node_attrs[nid] = node_attr;
3473 return 0;
3474 }
3475
add_weighted_interleave_group(struct kobject * root_kobj)3476 static int add_weighted_interleave_group(struct kobject *root_kobj)
3477 {
3478 struct kobject *wi_kobj;
3479 int nid, err;
3480
3481 wi_kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
3482 if (!wi_kobj)
3483 return -ENOMEM;
3484
3485 err = kobject_init_and_add(wi_kobj, &wi_ktype, root_kobj,
3486 "weighted_interleave");
3487 if (err) {
3488 kfree(wi_kobj);
3489 return err;
3490 }
3491
3492 for_each_node_state(nid, N_POSSIBLE) {
3493 err = add_weight_node(nid, wi_kobj);
3494 if (err) {
3495 pr_err("failed to add sysfs [node%d]\n", nid);
3496 break;
3497 }
3498 }
3499 if (err)
3500 kobject_put(wi_kobj);
3501 return 0;
3502 }
3503
mempolicy_kobj_release(struct kobject * kobj)3504 static void mempolicy_kobj_release(struct kobject *kobj)
3505 {
3506 u8 *old;
3507
3508 mutex_lock(&iw_table_lock);
3509 old = rcu_dereference_protected(iw_table,
3510 lockdep_is_held(&iw_table_lock));
3511 rcu_assign_pointer(iw_table, NULL);
3512 mutex_unlock(&iw_table_lock);
3513 synchronize_rcu();
3514 kfree(old);
3515 kfree(node_attrs);
3516 kfree(kobj);
3517 }
3518
3519 static const struct kobj_type mempolicy_ktype = {
3520 .release = mempolicy_kobj_release
3521 };
3522
mempolicy_sysfs_init(void)3523 static int __init mempolicy_sysfs_init(void)
3524 {
3525 int err;
3526 static struct kobject *mempolicy_kobj;
3527
3528 mempolicy_kobj = kzalloc(sizeof(*mempolicy_kobj), GFP_KERNEL);
3529 if (!mempolicy_kobj) {
3530 err = -ENOMEM;
3531 goto err_out;
3532 }
3533
3534 node_attrs = kcalloc(nr_node_ids, sizeof(struct iw_node_attr *),
3535 GFP_KERNEL);
3536 if (!node_attrs) {
3537 err = -ENOMEM;
3538 goto mempol_out;
3539 }
3540
3541 err = kobject_init_and_add(mempolicy_kobj, &mempolicy_ktype, mm_kobj,
3542 "mempolicy");
3543 if (err)
3544 goto node_out;
3545
3546 err = add_weighted_interleave_group(mempolicy_kobj);
3547 if (err) {
3548 pr_err("mempolicy sysfs structure failed to initialize\n");
3549 kobject_put(mempolicy_kobj);
3550 return err;
3551 }
3552
3553 return err;
3554 node_out:
3555 kfree(node_attrs);
3556 mempol_out:
3557 kfree(mempolicy_kobj);
3558 err_out:
3559 pr_err("failed to add mempolicy kobject to the system\n");
3560 return err;
3561 }
3562
3563 late_initcall(mempolicy_sysfs_init);
3564 #endif /* CONFIG_SYSFS */
3565