xref: /linux/mm/gup.c (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
15 
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
24 
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 
28 #include "internal.h"
29 #include "swap.h"
30 
sanity_check_pinned_pages(struct page ** pages,unsigned long npages)31 static inline void sanity_check_pinned_pages(struct page **pages,
32 					     unsigned long npages)
33 {
34 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
35 		return;
36 
37 	/*
38 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
39 	 * can no longer turn them possibly shared and PageAnonExclusive() will
40 	 * stick around until the page is freed.
41 	 *
42 	 * We'd like to verify that our pinned anonymous pages are still mapped
43 	 * exclusively. The issue with anon THP is that we don't know how
44 	 * they are/were mapped when pinning them. However, for anon
45 	 * THP we can assume that either the given page (PTE-mapped THP) or
46 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
47 	 * neither is the case, there is certainly something wrong.
48 	 */
49 	for (; npages; npages--, pages++) {
50 		struct page *page = *pages;
51 		struct folio *folio;
52 
53 		if (!page)
54 			continue;
55 
56 		folio = page_folio(page);
57 
58 		if (is_zero_page(page) ||
59 		    !folio_test_anon(folio))
60 			continue;
61 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
62 			VM_WARN_ON_ONCE_FOLIO(!PageAnonExclusive(&folio->page), folio);
63 		else
64 			/* Either a PTE-mapped or a PMD-mapped THP. */
65 			VM_WARN_ON_ONCE_PAGE(!PageAnonExclusive(&folio->page) &&
66 					     !PageAnonExclusive(page), page);
67 	}
68 }
69 
70 /*
71  * Return the folio with ref appropriately incremented,
72  * or NULL if that failed.
73  */
try_get_folio(struct page * page,int refs)74 static inline struct folio *try_get_folio(struct page *page, int refs)
75 {
76 	struct folio *folio;
77 
78 retry:
79 	folio = page_folio(page);
80 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
81 		return NULL;
82 	if (unlikely(!folio_ref_try_add(folio, refs)))
83 		return NULL;
84 
85 	/*
86 	 * At this point we have a stable reference to the folio; but it
87 	 * could be that between calling page_folio() and the refcount
88 	 * increment, the folio was split, in which case we'd end up
89 	 * holding a reference on a folio that has nothing to do with the page
90 	 * we were given anymore.
91 	 * So now that the folio is stable, recheck that the page still
92 	 * belongs to this folio.
93 	 */
94 	if (unlikely(page_folio(page) != folio)) {
95 		folio_put_refs(folio, refs);
96 		goto retry;
97 	}
98 
99 	return folio;
100 }
101 
gup_put_folio(struct folio * folio,int refs,unsigned int flags)102 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
103 {
104 	if (flags & FOLL_PIN) {
105 		if (is_zero_folio(folio))
106 			return;
107 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
108 		if (folio_has_pincount(folio))
109 			atomic_sub(refs, &folio->_pincount);
110 		else
111 			refs *= GUP_PIN_COUNTING_BIAS;
112 	}
113 
114 	folio_put_refs(folio, refs);
115 }
116 
117 /**
118  * try_grab_folio() - add a folio's refcount by a flag-dependent amount
119  * @folio:    pointer to folio to be grabbed
120  * @refs:     the value to (effectively) add to the folio's refcount
121  * @flags:    gup flags: these are the FOLL_* flag values
122  *
123  * This might not do anything at all, depending on the flags argument.
124  *
125  * "grab" names in this file mean, "look at flags to decide whether to use
126  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
127  *
128  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
129  * time.
130  *
131  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
132  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
133  *
134  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the folio could not
135  *			be grabbed.
136  *
137  * It is called when we have a stable reference for the folio, typically in
138  * GUP slow path.
139  */
try_grab_folio(struct folio * folio,int refs,unsigned int flags)140 int __must_check try_grab_folio(struct folio *folio, int refs,
141 				unsigned int flags)
142 {
143 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
144 		return -ENOMEM;
145 
146 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && folio_is_pci_p2pdma(folio)))
147 		return -EREMOTEIO;
148 
149 	if (flags & FOLL_GET)
150 		folio_ref_add(folio, refs);
151 	else if (flags & FOLL_PIN) {
152 		/*
153 		 * Don't take a pin on the zero page - it's not going anywhere
154 		 * and it is used in a *lot* of places.
155 		 */
156 		if (is_zero_folio(folio))
157 			return 0;
158 
159 		/*
160 		 * Increment the normal page refcount field at least once,
161 		 * so that the page really is pinned.
162 		 */
163 		if (folio_has_pincount(folio)) {
164 			folio_ref_add(folio, refs);
165 			atomic_add(refs, &folio->_pincount);
166 		} else {
167 			folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
168 		}
169 
170 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
171 	}
172 
173 	return 0;
174 }
175 
176 /**
177  * unpin_user_page() - release a dma-pinned page
178  * @page:            pointer to page to be released
179  *
180  * Pages that were pinned via pin_user_pages*() must be released via either
181  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
182  * that such pages can be separately tracked and uniquely handled. In
183  * particular, interactions with RDMA and filesystems need special handling.
184  */
unpin_user_page(struct page * page)185 void unpin_user_page(struct page *page)
186 {
187 	sanity_check_pinned_pages(&page, 1);
188 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
189 }
190 EXPORT_SYMBOL(unpin_user_page);
191 
192 /**
193  * unpin_folio() - release a dma-pinned folio
194  * @folio:         pointer to folio to be released
195  *
196  * Folios that were pinned via memfd_pin_folios() or other similar routines
197  * must be released either using unpin_folio() or unpin_folios().
198  */
unpin_folio(struct folio * folio)199 void unpin_folio(struct folio *folio)
200 {
201 	gup_put_folio(folio, 1, FOLL_PIN);
202 }
203 EXPORT_SYMBOL_GPL(unpin_folio);
204 
205 /**
206  * folio_add_pin - Try to get an additional pin on a pinned folio
207  * @folio: The folio to be pinned
208  *
209  * Get an additional pin on a folio we already have a pin on.  Makes no change
210  * if the folio is a zero_page.
211  */
folio_add_pin(struct folio * folio)212 void folio_add_pin(struct folio *folio)
213 {
214 	if (is_zero_folio(folio))
215 		return;
216 
217 	/*
218 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
219 	 * page refcount field at least once, so that the page really is
220 	 * pinned.
221 	 */
222 	if (folio_has_pincount(folio)) {
223 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
224 		folio_ref_inc(folio);
225 		atomic_inc(&folio->_pincount);
226 	} else {
227 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
228 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
229 	}
230 }
231 
gup_folio_range_next(struct page * start,unsigned long npages,unsigned long i,unsigned int * ntails)232 static inline struct folio *gup_folio_range_next(struct page *start,
233 		unsigned long npages, unsigned long i, unsigned int *ntails)
234 {
235 	struct page *next = start + i;
236 	struct folio *folio = page_folio(next);
237 	unsigned int nr = 1;
238 
239 	if (folio_test_large(folio))
240 		nr = min_t(unsigned int, npages - i,
241 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
242 
243 	*ntails = nr;
244 	return folio;
245 }
246 
gup_folio_next(struct page ** list,unsigned long npages,unsigned long i,unsigned int * ntails)247 static inline struct folio *gup_folio_next(struct page **list,
248 		unsigned long npages, unsigned long i, unsigned int *ntails)
249 {
250 	struct folio *folio = page_folio(list[i]);
251 	unsigned int nr;
252 
253 	for (nr = i + 1; nr < npages; nr++) {
254 		if (page_folio(list[nr]) != folio)
255 			break;
256 	}
257 
258 	*ntails = nr - i;
259 	return folio;
260 }
261 
262 /**
263  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
264  * @pages:  array of pages to be maybe marked dirty, and definitely released.
265  * @npages: number of pages in the @pages array.
266  * @make_dirty: whether to mark the pages dirty
267  *
268  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
269  * variants called on that page.
270  *
271  * For each page in the @pages array, make that page (or its head page, if a
272  * compound page) dirty, if @make_dirty is true, and if the page was previously
273  * listed as clean. In any case, releases all pages using unpin_user_page(),
274  * possibly via unpin_user_pages(), for the non-dirty case.
275  *
276  * Please see the unpin_user_page() documentation for details.
277  *
278  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
279  * required, then the caller should a) verify that this is really correct,
280  * because _lock() is usually required, and b) hand code it:
281  * set_page_dirty_lock(), unpin_user_page().
282  *
283  */
unpin_user_pages_dirty_lock(struct page ** pages,unsigned long npages,bool make_dirty)284 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
285 				 bool make_dirty)
286 {
287 	unsigned long i;
288 	struct folio *folio;
289 	unsigned int nr;
290 
291 	if (!make_dirty) {
292 		unpin_user_pages(pages, npages);
293 		return;
294 	}
295 
296 	sanity_check_pinned_pages(pages, npages);
297 	for (i = 0; i < npages; i += nr) {
298 		folio = gup_folio_next(pages, npages, i, &nr);
299 		/*
300 		 * Checking PageDirty at this point may race with
301 		 * clear_page_dirty_for_io(), but that's OK. Two key
302 		 * cases:
303 		 *
304 		 * 1) This code sees the page as already dirty, so it
305 		 * skips the call to set_page_dirty(). That could happen
306 		 * because clear_page_dirty_for_io() called
307 		 * folio_mkclean(), followed by set_page_dirty().
308 		 * However, now the page is going to get written back,
309 		 * which meets the original intention of setting it
310 		 * dirty, so all is well: clear_page_dirty_for_io() goes
311 		 * on to call TestClearPageDirty(), and write the page
312 		 * back.
313 		 *
314 		 * 2) This code sees the page as clean, so it calls
315 		 * set_page_dirty(). The page stays dirty, despite being
316 		 * written back, so it gets written back again in the
317 		 * next writeback cycle. This is harmless.
318 		 */
319 		if (!folio_test_dirty(folio)) {
320 			folio_lock(folio);
321 			folio_mark_dirty(folio);
322 			folio_unlock(folio);
323 		}
324 		gup_put_folio(folio, nr, FOLL_PIN);
325 	}
326 }
327 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
328 
329 /**
330  * unpin_user_page_range_dirty_lock() - release and optionally dirty
331  * gup-pinned page range
332  *
333  * @page:  the starting page of a range maybe marked dirty, and definitely released.
334  * @npages: number of consecutive pages to release.
335  * @make_dirty: whether to mark the pages dirty
336  *
337  * "gup-pinned page range" refers to a range of pages that has had one of the
338  * pin_user_pages() variants called on that page.
339  *
340  * The page range must be truly physically contiguous: the page range
341  * corresponds to a contiguous PFN range and all pages can be iterated
342  * naturally.
343  *
344  * For the page ranges defined by [page .. page+npages], make that range (or
345  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
346  * page range was previously listed as clean.
347  *
348  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
349  * required, then the caller should a) verify that this is really correct,
350  * because _lock() is usually required, and b) hand code it:
351  * set_page_dirty_lock(), unpin_user_page().
352  *
353  */
unpin_user_page_range_dirty_lock(struct page * page,unsigned long npages,bool make_dirty)354 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
355 				      bool make_dirty)
356 {
357 	unsigned long i;
358 	struct folio *folio;
359 	unsigned int nr;
360 
361 	VM_WARN_ON_ONCE(!page_range_contiguous(page, npages));
362 
363 	for (i = 0; i < npages; i += nr) {
364 		folio = gup_folio_range_next(page, npages, i, &nr);
365 		if (make_dirty && !folio_test_dirty(folio)) {
366 			folio_lock(folio);
367 			folio_mark_dirty(folio);
368 			folio_unlock(folio);
369 		}
370 		gup_put_folio(folio, nr, FOLL_PIN);
371 	}
372 }
373 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
374 
gup_fast_unpin_user_pages(struct page ** pages,unsigned long npages)375 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
376 {
377 	unsigned long i;
378 	struct folio *folio;
379 	unsigned int nr;
380 
381 	/*
382 	 * Don't perform any sanity checks because we might have raced with
383 	 * fork() and some anonymous pages might now actually be shared --
384 	 * which is why we're unpinning after all.
385 	 */
386 	for (i = 0; i < npages; i += nr) {
387 		folio = gup_folio_next(pages, npages, i, &nr);
388 		gup_put_folio(folio, nr, FOLL_PIN);
389 	}
390 }
391 
392 /**
393  * unpin_user_pages() - release an array of gup-pinned pages.
394  * @pages:  array of pages to be marked dirty and released.
395  * @npages: number of pages in the @pages array.
396  *
397  * For each page in the @pages array, release the page using unpin_user_page().
398  *
399  * Please see the unpin_user_page() documentation for details.
400  */
unpin_user_pages(struct page ** pages,unsigned long npages)401 void unpin_user_pages(struct page **pages, unsigned long npages)
402 {
403 	unsigned long i;
404 	struct folio *folio;
405 	unsigned int nr;
406 
407 	/*
408 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
409 	 * leaving them pinned), but probably not. More likely, gup/pup returned
410 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
411 	 */
412 	if (WARN_ON(IS_ERR_VALUE(npages)))
413 		return;
414 
415 	sanity_check_pinned_pages(pages, npages);
416 	for (i = 0; i < npages; i += nr) {
417 		if (!pages[i]) {
418 			nr = 1;
419 			continue;
420 		}
421 		folio = gup_folio_next(pages, npages, i, &nr);
422 		gup_put_folio(folio, nr, FOLL_PIN);
423 	}
424 }
425 EXPORT_SYMBOL(unpin_user_pages);
426 
427 /**
428  * unpin_user_folio() - release pages of a folio
429  * @folio:  pointer to folio to be released
430  * @npages: number of pages of same folio
431  *
432  * Release npages of the folio
433  */
unpin_user_folio(struct folio * folio,unsigned long npages)434 void unpin_user_folio(struct folio *folio, unsigned long npages)
435 {
436 	gup_put_folio(folio, npages, FOLL_PIN);
437 }
438 EXPORT_SYMBOL(unpin_user_folio);
439 
440 /**
441  * unpin_folios() - release an array of gup-pinned folios.
442  * @folios:  array of folios to be marked dirty and released.
443  * @nfolios: number of folios in the @folios array.
444  *
445  * For each folio in the @folios array, release the folio using gup_put_folio.
446  *
447  * Please see the unpin_folio() documentation for details.
448  */
unpin_folios(struct folio ** folios,unsigned long nfolios)449 void unpin_folios(struct folio **folios, unsigned long nfolios)
450 {
451 	unsigned long i = 0, j;
452 
453 	/*
454 	 * If this WARN_ON() fires, then the system *might* be leaking folios
455 	 * (by leaving them pinned), but probably not. More likely, gup/pup
456 	 * returned a hard -ERRNO error to the caller, who erroneously passed
457 	 * it here.
458 	 */
459 	if (WARN_ON(IS_ERR_VALUE(nfolios)))
460 		return;
461 
462 	while (i < nfolios) {
463 		for (j = i + 1; j < nfolios; j++)
464 			if (folios[i] != folios[j])
465 				break;
466 
467 		if (folios[i])
468 			gup_put_folio(folios[i], j - i, FOLL_PIN);
469 		i = j;
470 	}
471 }
472 EXPORT_SYMBOL_GPL(unpin_folios);
473 
474 /*
475  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
476  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
477  * cache bouncing on large SMP machines for concurrent pinned gups.
478  */
mm_set_has_pinned_flag(struct mm_struct * mm)479 static inline void mm_set_has_pinned_flag(struct mm_struct *mm)
480 {
481 	if (!mm_flags_test(MMF_HAS_PINNED, mm))
482 		mm_flags_set(MMF_HAS_PINNED, mm);
483 }
484 
485 #ifdef CONFIG_MMU
486 
487 #ifdef CONFIG_HAVE_GUP_FAST
488 /**
489  * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
490  * @page:  pointer to page to be grabbed
491  * @refs:  the value to (effectively) add to the folio's refcount
492  * @flags: gup flags: these are the FOLL_* flag values.
493  *
494  * "grab" names in this file mean, "look at flags to decide whether to use
495  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
496  *
497  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
498  * same time. (That's true throughout the get_user_pages*() and
499  * pin_user_pages*() APIs.) Cases:
500  *
501  *    FOLL_GET: folio's refcount will be incremented by @refs.
502  *
503  *    FOLL_PIN on large folios: folio's refcount will be incremented by
504  *    @refs, and its pincount will be incremented by @refs.
505  *
506  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
507  *    @refs * GUP_PIN_COUNTING_BIAS.
508  *
509  * Return: The folio containing @page (with refcount appropriately
510  * incremented) for success, or NULL upon failure. If neither FOLL_GET
511  * nor FOLL_PIN was set, that's considered failure, and furthermore,
512  * a likely bug in the caller, so a warning is also emitted.
513  *
514  * It uses add ref unless zero to elevate the folio refcount and must be called
515  * in fast path only.
516  */
try_grab_folio_fast(struct page * page,int refs,unsigned int flags)517 static struct folio *try_grab_folio_fast(struct page *page, int refs,
518 					 unsigned int flags)
519 {
520 	struct folio *folio;
521 
522 	/* Raise warn if it is not called in fast GUP */
523 	VM_WARN_ON_ONCE(!irqs_disabled());
524 
525 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
526 		return NULL;
527 
528 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
529 		return NULL;
530 
531 	if (flags & FOLL_GET)
532 		return try_get_folio(page, refs);
533 
534 	/* FOLL_PIN is set */
535 
536 	/*
537 	 * Don't take a pin on the zero page - it's not going anywhere
538 	 * and it is used in a *lot* of places.
539 	 */
540 	if (is_zero_page(page))
541 		return page_folio(page);
542 
543 	folio = try_get_folio(page, refs);
544 	if (!folio)
545 		return NULL;
546 
547 	/*
548 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
549 	 * right zone, so fail and let the caller fall back to the slow
550 	 * path.
551 	 */
552 	if (unlikely((flags & FOLL_LONGTERM) &&
553 		     !folio_is_longterm_pinnable(folio))) {
554 		folio_put_refs(folio, refs);
555 		return NULL;
556 	}
557 
558 	/*
559 	 * When pinning a large folio, use an exact count to track it.
560 	 *
561 	 * However, be sure to *also* increment the normal folio
562 	 * refcount field at least once, so that the folio really
563 	 * is pinned.  That's why the refcount from the earlier
564 	 * try_get_folio() is left intact.
565 	 */
566 	if (folio_has_pincount(folio))
567 		atomic_add(refs, &folio->_pincount);
568 	else
569 		folio_ref_add(folio,
570 				refs * (GUP_PIN_COUNTING_BIAS - 1));
571 	/*
572 	 * Adjust the pincount before re-checking the PTE for changes.
573 	 * This is essentially a smp_mb() and is paired with a memory
574 	 * barrier in folio_try_share_anon_rmap_*().
575 	 */
576 	smp_mb__after_atomic();
577 
578 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
579 
580 	return folio;
581 }
582 #endif	/* CONFIG_HAVE_GUP_FAST */
583 
584 /* Common code for can_follow_write_* */
can_follow_write_common(struct page * page,struct vm_area_struct * vma,unsigned int flags)585 static inline bool can_follow_write_common(struct page *page,
586 		struct vm_area_struct *vma, unsigned int flags)
587 {
588 	/* Maybe FOLL_FORCE is set to override it? */
589 	if (!(flags & FOLL_FORCE))
590 		return false;
591 
592 	/* But FOLL_FORCE has no effect on shared mappings */
593 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
594 		return false;
595 
596 	/* ... or read-only private ones */
597 	if (!(vma->vm_flags & VM_MAYWRITE))
598 		return false;
599 
600 	/* ... or already writable ones that just need to take a write fault */
601 	if (vma->vm_flags & VM_WRITE)
602 		return false;
603 
604 	/*
605 	 * See can_change_pte_writable(): we broke COW and could map the page
606 	 * writable if we have an exclusive anonymous page ...
607 	 */
608 	return page && PageAnon(page) && PageAnonExclusive(page);
609 }
610 
no_page_table(struct vm_area_struct * vma,unsigned int flags,unsigned long address)611 static struct page *no_page_table(struct vm_area_struct *vma,
612 				  unsigned int flags, unsigned long address)
613 {
614 	if (!(flags & FOLL_DUMP))
615 		return NULL;
616 
617 	/*
618 	 * When core dumping, we don't want to allocate unnecessary pages or
619 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
620 	 * then get_dump_page() will return NULL to leave a hole in the dump.
621 	 * But we can only make this optimization where a hole would surely
622 	 * be zero-filled if handle_mm_fault() actually did handle it.
623 	 */
624 	if (is_vm_hugetlb_page(vma)) {
625 		struct hstate *h = hstate_vma(vma);
626 
627 		if (!hugetlbfs_pagecache_present(h, vma, address))
628 			return ERR_PTR(-EFAULT);
629 	} else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
630 		return ERR_PTR(-EFAULT);
631 	}
632 
633 	return NULL;
634 }
635 
636 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
637 /* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */
can_follow_write_pud(pud_t pud,struct page * page,struct vm_area_struct * vma,unsigned int flags)638 static inline bool can_follow_write_pud(pud_t pud, struct page *page,
639 					struct vm_area_struct *vma,
640 					unsigned int flags)
641 {
642 	/* If the pud is writable, we can write to the page. */
643 	if (pud_write(pud))
644 		return true;
645 
646 	return can_follow_write_common(page, vma, flags);
647 }
648 
follow_huge_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp,int flags,unsigned long * page_mask)649 static struct page *follow_huge_pud(struct vm_area_struct *vma,
650 				    unsigned long addr, pud_t *pudp,
651 				    int flags, unsigned long *page_mask)
652 {
653 	struct mm_struct *mm = vma->vm_mm;
654 	struct page *page;
655 	pud_t pud = *pudp;
656 	unsigned long pfn = pud_pfn(pud);
657 	int ret;
658 
659 	assert_spin_locked(pud_lockptr(mm, pudp));
660 
661 	if (!pud_present(pud))
662 		return NULL;
663 
664 	if ((flags & FOLL_WRITE) &&
665 	    !can_follow_write_pud(pud, pfn_to_page(pfn), vma, flags))
666 		return NULL;
667 
668 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
669 	page = pfn_to_page(pfn);
670 
671 	if (!pud_write(pud) && gup_must_unshare(vma, flags, page))
672 		return ERR_PTR(-EMLINK);
673 
674 	ret = try_grab_folio(page_folio(page), 1, flags);
675 	if (ret)
676 		page = ERR_PTR(ret);
677 	else
678 		*page_mask = HPAGE_PUD_NR - 1;
679 
680 	return page;
681 }
682 
683 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
can_follow_write_pmd(pmd_t pmd,struct page * page,struct vm_area_struct * vma,unsigned int flags)684 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
685 					struct vm_area_struct *vma,
686 					unsigned int flags)
687 {
688 	/* If the pmd is writable, we can write to the page. */
689 	if (pmd_write(pmd))
690 		return true;
691 
692 	if (!can_follow_write_common(page, vma, flags))
693 		return false;
694 
695 	/* ... and a write-fault isn't required for other reasons. */
696 	if (pmd_needs_soft_dirty_wp(vma, pmd))
697 		return false;
698 	return !userfaultfd_huge_pmd_wp(vma, pmd);
699 }
700 
follow_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags,unsigned long * page_mask)701 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
702 				    unsigned long addr, pmd_t *pmd,
703 				    unsigned int flags,
704 				    unsigned long *page_mask)
705 {
706 	struct mm_struct *mm = vma->vm_mm;
707 	pmd_t pmdval = *pmd;
708 	struct page *page;
709 	int ret;
710 
711 	assert_spin_locked(pmd_lockptr(mm, pmd));
712 
713 	page = pmd_page(pmdval);
714 	if ((flags & FOLL_WRITE) &&
715 	    !can_follow_write_pmd(pmdval, page, vma, flags))
716 		return NULL;
717 
718 	/* Avoid dumping huge zero page */
719 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
720 		return ERR_PTR(-EFAULT);
721 
722 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
723 		return NULL;
724 
725 	if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
726 		return ERR_PTR(-EMLINK);
727 
728 	VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
729 			     !PageAnonExclusive(page), page);
730 
731 	ret = try_grab_folio(page_folio(page), 1, flags);
732 	if (ret)
733 		return ERR_PTR(ret);
734 
735 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
736 	if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
737 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
738 #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
739 
740 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
741 	*page_mask = HPAGE_PMD_NR - 1;
742 
743 	return page;
744 }
745 
746 #else  /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
follow_huge_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp,int flags,unsigned long * page_mask)747 static struct page *follow_huge_pud(struct vm_area_struct *vma,
748 				    unsigned long addr, pud_t *pudp,
749 				    int flags, unsigned long *page_mask)
750 {
751 	return NULL;
752 }
753 
follow_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags,unsigned long * page_mask)754 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
755 				    unsigned long addr, pmd_t *pmd,
756 				    unsigned int flags,
757 				    unsigned long *page_mask)
758 {
759 	return NULL;
760 }
761 #endif	/* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
762 
follow_pfn_pte(struct vm_area_struct * vma,unsigned long address,pte_t * pte,unsigned int flags)763 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
764 		pte_t *pte, unsigned int flags)
765 {
766 	if (flags & FOLL_TOUCH) {
767 		pte_t orig_entry = ptep_get(pte);
768 		pte_t entry = orig_entry;
769 
770 		if (flags & FOLL_WRITE)
771 			entry = pte_mkdirty(entry);
772 		entry = pte_mkyoung(entry);
773 
774 		if (!pte_same(orig_entry, entry)) {
775 			set_pte_at(vma->vm_mm, address, pte, entry);
776 			update_mmu_cache(vma, address, pte);
777 		}
778 	}
779 
780 	/* Proper page table entry exists, but no corresponding struct page */
781 	return -EEXIST;
782 }
783 
784 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
can_follow_write_pte(pte_t pte,struct page * page,struct vm_area_struct * vma,unsigned int flags)785 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
786 					struct vm_area_struct *vma,
787 					unsigned int flags)
788 {
789 	/* If the pte is writable, we can write to the page. */
790 	if (pte_write(pte))
791 		return true;
792 
793 	if (!can_follow_write_common(page, vma, flags))
794 		return false;
795 
796 	/* ... and a write-fault isn't required for other reasons. */
797 	if (pte_needs_soft_dirty_wp(vma, pte))
798 		return false;
799 	return !userfaultfd_pte_wp(vma, pte);
800 }
801 
follow_page_pte(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags)802 static struct page *follow_page_pte(struct vm_area_struct *vma,
803 		unsigned long address, pmd_t *pmd, unsigned int flags)
804 {
805 	struct mm_struct *mm = vma->vm_mm;
806 	struct folio *folio;
807 	struct page *page;
808 	spinlock_t *ptl;
809 	pte_t *ptep, pte;
810 	int ret;
811 
812 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
813 	if (!ptep)
814 		return no_page_table(vma, flags, address);
815 	pte = ptep_get(ptep);
816 	if (!pte_present(pte))
817 		goto no_page;
818 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
819 		goto no_page;
820 
821 	page = vm_normal_page(vma, address, pte);
822 
823 	/*
824 	 * We only care about anon pages in can_follow_write_pte().
825 	 */
826 	if ((flags & FOLL_WRITE) &&
827 	    !can_follow_write_pte(pte, page, vma, flags)) {
828 		page = NULL;
829 		goto out;
830 	}
831 
832 	if (unlikely(!page)) {
833 		if (flags & FOLL_DUMP) {
834 			/* Avoid special (like zero) pages in core dumps */
835 			page = ERR_PTR(-EFAULT);
836 			goto out;
837 		}
838 
839 		if (is_zero_pfn(pte_pfn(pte))) {
840 			page = pte_page(pte);
841 		} else {
842 			ret = follow_pfn_pte(vma, address, ptep, flags);
843 			page = ERR_PTR(ret);
844 			goto out;
845 		}
846 	}
847 	folio = page_folio(page);
848 
849 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
850 		page = ERR_PTR(-EMLINK);
851 		goto out;
852 	}
853 
854 	VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
855 			     !PageAnonExclusive(page), page);
856 
857 	/* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
858 	ret = try_grab_folio(folio, 1, flags);
859 	if (unlikely(ret)) {
860 		page = ERR_PTR(ret);
861 		goto out;
862 	}
863 
864 	/*
865 	 * We need to make the page accessible if and only if we are going
866 	 * to access its content (the FOLL_PIN case).  Please see
867 	 * Documentation/core-api/pin_user_pages.rst for details.
868 	 */
869 	if (flags & FOLL_PIN) {
870 		ret = arch_make_folio_accessible(folio);
871 		if (ret) {
872 			unpin_user_page(page);
873 			page = ERR_PTR(ret);
874 			goto out;
875 		}
876 	}
877 	if (flags & FOLL_TOUCH) {
878 		if ((flags & FOLL_WRITE) &&
879 		    !pte_dirty(pte) && !folio_test_dirty(folio))
880 			folio_mark_dirty(folio);
881 		/*
882 		 * pte_mkyoung() would be more correct here, but atomic care
883 		 * is needed to avoid losing the dirty bit: it is easier to use
884 		 * folio_mark_accessed().
885 		 */
886 		folio_mark_accessed(folio);
887 	}
888 out:
889 	pte_unmap_unlock(ptep, ptl);
890 	return page;
891 no_page:
892 	pte_unmap_unlock(ptep, ptl);
893 	if (!pte_none(pte))
894 		return NULL;
895 	return no_page_table(vma, flags, address);
896 }
897 
follow_pmd_mask(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,unsigned int flags,unsigned long * page_mask)898 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
899 				    unsigned long address, pud_t *pudp,
900 				    unsigned int flags,
901 				    unsigned long *page_mask)
902 {
903 	pmd_t *pmd, pmdval;
904 	spinlock_t *ptl;
905 	struct page *page;
906 	struct mm_struct *mm = vma->vm_mm;
907 
908 	pmd = pmd_offset(pudp, address);
909 	pmdval = pmdp_get_lockless(pmd);
910 	if (pmd_none(pmdval))
911 		return no_page_table(vma, flags, address);
912 	if (!pmd_present(pmdval))
913 		return no_page_table(vma, flags, address);
914 	if (likely(!pmd_leaf(pmdval)))
915 		return follow_page_pte(vma, address, pmd, flags);
916 
917 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
918 		return no_page_table(vma, flags, address);
919 
920 	ptl = pmd_lock(mm, pmd);
921 	pmdval = *pmd;
922 	if (unlikely(!pmd_present(pmdval))) {
923 		spin_unlock(ptl);
924 		return no_page_table(vma, flags, address);
925 	}
926 	if (unlikely(!pmd_leaf(pmdval))) {
927 		spin_unlock(ptl);
928 		return follow_page_pte(vma, address, pmd, flags);
929 	}
930 	if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
931 		spin_unlock(ptl);
932 		split_huge_pmd(vma, pmd, address);
933 		/* If pmd was left empty, stuff a page table in there quickly */
934 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
935 			follow_page_pte(vma, address, pmd, flags);
936 	}
937 	page = follow_huge_pmd(vma, address, pmd, flags, page_mask);
938 	spin_unlock(ptl);
939 	return page;
940 }
941 
follow_pud_mask(struct vm_area_struct * vma,unsigned long address,p4d_t * p4dp,unsigned int flags,unsigned long * page_mask)942 static struct page *follow_pud_mask(struct vm_area_struct *vma,
943 				    unsigned long address, p4d_t *p4dp,
944 				    unsigned int flags,
945 				    unsigned long *page_mask)
946 {
947 	pud_t *pudp, pud;
948 	spinlock_t *ptl;
949 	struct page *page;
950 	struct mm_struct *mm = vma->vm_mm;
951 
952 	pudp = pud_offset(p4dp, address);
953 	pud = READ_ONCE(*pudp);
954 	if (!pud_present(pud))
955 		return no_page_table(vma, flags, address);
956 	if (pud_leaf(pud)) {
957 		ptl = pud_lock(mm, pudp);
958 		page = follow_huge_pud(vma, address, pudp, flags, page_mask);
959 		spin_unlock(ptl);
960 		if (page)
961 			return page;
962 		return no_page_table(vma, flags, address);
963 	}
964 	if (unlikely(pud_bad(pud)))
965 		return no_page_table(vma, flags, address);
966 
967 	return follow_pmd_mask(vma, address, pudp, flags, page_mask);
968 }
969 
follow_p4d_mask(struct vm_area_struct * vma,unsigned long address,pgd_t * pgdp,unsigned int flags,unsigned long * page_mask)970 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
971 				    unsigned long address, pgd_t *pgdp,
972 				    unsigned int flags,
973 				    unsigned long *page_mask)
974 {
975 	p4d_t *p4dp, p4d;
976 
977 	p4dp = p4d_offset(pgdp, address);
978 	p4d = READ_ONCE(*p4dp);
979 	BUILD_BUG_ON(p4d_leaf(p4d));
980 
981 	if (!p4d_present(p4d) || p4d_bad(p4d))
982 		return no_page_table(vma, flags, address);
983 
984 	return follow_pud_mask(vma, address, p4dp, flags, page_mask);
985 }
986 
987 /**
988  * follow_page_mask - look up a page descriptor from a user-virtual address
989  * @vma: vm_area_struct mapping @address
990  * @address: virtual address to look up
991  * @flags: flags modifying lookup behaviour
992  * @page_mask: a pointer to output page_mask
993  *
994  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
995  *
996  * When getting an anonymous page and the caller has to trigger unsharing
997  * of a shared anonymous page first, -EMLINK is returned. The caller should
998  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
999  * relevant with FOLL_PIN and !FOLL_WRITE.
1000  *
1001  * On output, @page_mask is set according to the size of the page.
1002  *
1003  * Return: the mapped (struct page *), %NULL if no mapping exists, or
1004  * an error pointer if there is a mapping to something not represented
1005  * by a page descriptor (see also vm_normal_page()).
1006  */
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * page_mask)1007 static struct page *follow_page_mask(struct vm_area_struct *vma,
1008 			      unsigned long address, unsigned int flags,
1009 			      unsigned long *page_mask)
1010 {
1011 	pgd_t *pgd;
1012 	struct mm_struct *mm = vma->vm_mm;
1013 	struct page *page;
1014 
1015 	vma_pgtable_walk_begin(vma);
1016 
1017 	*page_mask = 0;
1018 	pgd = pgd_offset(mm, address);
1019 
1020 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1021 		page = no_page_table(vma, flags, address);
1022 	else
1023 		page = follow_p4d_mask(vma, address, pgd, flags, page_mask);
1024 
1025 	vma_pgtable_walk_end(vma);
1026 
1027 	return page;
1028 }
1029 
get_gate_page(struct mm_struct * mm,unsigned long address,unsigned int gup_flags,struct vm_area_struct ** vma,struct page ** page)1030 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1031 		unsigned int gup_flags, struct vm_area_struct **vma,
1032 		struct page **page)
1033 {
1034 	pgd_t *pgd;
1035 	p4d_t *p4d;
1036 	pud_t *pud;
1037 	pmd_t *pmd;
1038 	pte_t *pte;
1039 	pte_t entry;
1040 	int ret = -EFAULT;
1041 
1042 	/* user gate pages are read-only */
1043 	if (gup_flags & FOLL_WRITE)
1044 		return -EFAULT;
1045 	pgd = pgd_offset(mm, address);
1046 	if (pgd_none(*pgd))
1047 		return -EFAULT;
1048 	p4d = p4d_offset(pgd, address);
1049 	if (p4d_none(*p4d))
1050 		return -EFAULT;
1051 	pud = pud_offset(p4d, address);
1052 	if (pud_none(*pud))
1053 		return -EFAULT;
1054 	pmd = pmd_offset(pud, address);
1055 	if (!pmd_present(*pmd))
1056 		return -EFAULT;
1057 	pte = pte_offset_map(pmd, address);
1058 	if (!pte)
1059 		return -EFAULT;
1060 	entry = ptep_get(pte);
1061 	if (pte_none(entry))
1062 		goto unmap;
1063 	*vma = get_gate_vma(mm);
1064 	if (!page)
1065 		goto out;
1066 	*page = vm_normal_page(*vma, address, entry);
1067 	if (!*page) {
1068 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1069 			goto unmap;
1070 		*page = pte_page(entry);
1071 	}
1072 	ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1073 	if (unlikely(ret))
1074 		goto unmap;
1075 out:
1076 	ret = 0;
1077 unmap:
1078 	pte_unmap(pte);
1079 	return ret;
1080 }
1081 
1082 /*
1083  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
1084  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
1085  * to 0 and -EBUSY returned.
1086  */
faultin_page(struct vm_area_struct * vma,unsigned long address,unsigned int flags,bool unshare,int * locked)1087 static int faultin_page(struct vm_area_struct *vma,
1088 		unsigned long address, unsigned int flags, bool unshare,
1089 		int *locked)
1090 {
1091 	unsigned int fault_flags = 0;
1092 	vm_fault_t ret;
1093 
1094 	if (flags & FOLL_NOFAULT)
1095 		return -EFAULT;
1096 	if (flags & FOLL_WRITE)
1097 		fault_flags |= FAULT_FLAG_WRITE;
1098 	if (flags & FOLL_REMOTE)
1099 		fault_flags |= FAULT_FLAG_REMOTE;
1100 	if (flags & FOLL_UNLOCKABLE) {
1101 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1102 		/*
1103 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1104 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1105 		 * That's because some callers may not be prepared to
1106 		 * handle early exits caused by non-fatal signals.
1107 		 */
1108 		if (flags & FOLL_INTERRUPTIBLE)
1109 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1110 	}
1111 	if (flags & FOLL_NOWAIT)
1112 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1113 	if (flags & FOLL_TRIED) {
1114 		/*
1115 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1116 		 * can co-exist
1117 		 */
1118 		fault_flags |= FAULT_FLAG_TRIED;
1119 	}
1120 	if (unshare) {
1121 		fault_flags |= FAULT_FLAG_UNSHARE;
1122 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1123 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_WRITE);
1124 	}
1125 
1126 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1127 
1128 	if (ret & VM_FAULT_COMPLETED) {
1129 		/*
1130 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1131 		 * mmap lock in the page fault handler. Sanity check this.
1132 		 */
1133 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1134 		*locked = 0;
1135 
1136 		/*
1137 		 * We should do the same as VM_FAULT_RETRY, but let's not
1138 		 * return -EBUSY since that's not reflecting the reality of
1139 		 * what has happened - we've just fully completed a page
1140 		 * fault, with the mmap lock released.  Use -EAGAIN to show
1141 		 * that we want to take the mmap lock _again_.
1142 		 */
1143 		return -EAGAIN;
1144 	}
1145 
1146 	if (ret & VM_FAULT_ERROR) {
1147 		int err = vm_fault_to_errno(ret, flags);
1148 
1149 		if (err)
1150 			return err;
1151 		BUG();
1152 	}
1153 
1154 	if (ret & VM_FAULT_RETRY) {
1155 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1156 			*locked = 0;
1157 		return -EBUSY;
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 /*
1164  * Writing to file-backed mappings which require folio dirty tracking using GUP
1165  * is a fundamentally broken operation, as kernel write access to GUP mappings
1166  * do not adhere to the semantics expected by a file system.
1167  *
1168  * Consider the following scenario:-
1169  *
1170  * 1. A folio is written to via GUP which write-faults the memory, notifying
1171  *    the file system and dirtying the folio.
1172  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1173  *    the PTE being marked read-only.
1174  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1175  *    direct mapping.
1176  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1177  *    (though it does not have to).
1178  *
1179  * This results in both data being written to a folio without writenotify, and
1180  * the folio being dirtied unexpectedly (if the caller decides to do so).
1181  */
writable_file_mapping_allowed(struct vm_area_struct * vma,unsigned long gup_flags)1182 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1183 					  unsigned long gup_flags)
1184 {
1185 	/*
1186 	 * If we aren't pinning then no problematic write can occur. A long term
1187 	 * pin is the most egregious case so this is the case we disallow.
1188 	 */
1189 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1190 	    (FOLL_PIN | FOLL_LONGTERM))
1191 		return true;
1192 
1193 	/*
1194 	 * If the VMA does not require dirty tracking then no problematic write
1195 	 * can occur either.
1196 	 */
1197 	return !vma_needs_dirty_tracking(vma);
1198 }
1199 
check_vma_flags(struct vm_area_struct * vma,unsigned long gup_flags)1200 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1201 {
1202 	vm_flags_t vm_flags = vma->vm_flags;
1203 	int write = (gup_flags & FOLL_WRITE);
1204 	int foreign = (gup_flags & FOLL_REMOTE);
1205 	bool vma_anon = vma_is_anonymous(vma);
1206 
1207 	if (vm_flags & (VM_IO | VM_PFNMAP))
1208 		return -EFAULT;
1209 
1210 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1211 		return -EFAULT;
1212 
1213 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1214 		return -EOPNOTSUPP;
1215 
1216 	if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma))
1217 		return -EOPNOTSUPP;
1218 
1219 	if (vma_is_secretmem(vma))
1220 		return -EFAULT;
1221 
1222 	if (write) {
1223 		if (!vma_anon &&
1224 		    !writable_file_mapping_allowed(vma, gup_flags))
1225 			return -EFAULT;
1226 
1227 		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1228 			if (!(gup_flags & FOLL_FORCE))
1229 				return -EFAULT;
1230 			/*
1231 			 * We used to let the write,force case do COW in a
1232 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1233 			 * set a breakpoint in a read-only mapping of an
1234 			 * executable, without corrupting the file (yet only
1235 			 * when that file had been opened for writing!).
1236 			 * Anon pages in shared mappings are surprising: now
1237 			 * just reject it.
1238 			 */
1239 			if (!is_cow_mapping(vm_flags))
1240 				return -EFAULT;
1241 		}
1242 	} else if (!(vm_flags & VM_READ)) {
1243 		if (!(gup_flags & FOLL_FORCE))
1244 			return -EFAULT;
1245 		/*
1246 		 * Is there actually any vma we can reach here which does not
1247 		 * have VM_MAYREAD set?
1248 		 */
1249 		if (!(vm_flags & VM_MAYREAD))
1250 			return -EFAULT;
1251 	}
1252 	/*
1253 	 * gups are always data accesses, not instruction
1254 	 * fetches, so execute=false here
1255 	 */
1256 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1257 		return -EFAULT;
1258 	return 0;
1259 }
1260 
1261 /*
1262  * This is "vma_lookup()", but with a warning if we would have
1263  * historically expanded the stack in the GUP code.
1264  */
gup_vma_lookup(struct mm_struct * mm,unsigned long addr)1265 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1266 	 unsigned long addr)
1267 {
1268 #ifdef CONFIG_STACK_GROWSUP
1269 	return vma_lookup(mm, addr);
1270 #else
1271 	static volatile unsigned long next_warn;
1272 	struct vm_area_struct *vma;
1273 	unsigned long now, next;
1274 
1275 	vma = find_vma(mm, addr);
1276 	if (!vma || (addr >= vma->vm_start))
1277 		return vma;
1278 
1279 	/* Only warn for half-way relevant accesses */
1280 	if (!(vma->vm_flags & VM_GROWSDOWN))
1281 		return NULL;
1282 	if (vma->vm_start - addr > 65536)
1283 		return NULL;
1284 
1285 	/* Let's not warn more than once an hour.. */
1286 	now = jiffies; next = next_warn;
1287 	if (next && time_before(now, next))
1288 		return NULL;
1289 	next_warn = now + 60*60*HZ;
1290 
1291 	/* Let people know things may have changed. */
1292 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1293 		current->comm, task_pid_nr(current),
1294 		vma->vm_start, vma->vm_end, addr);
1295 	dump_stack();
1296 	return NULL;
1297 #endif
1298 }
1299 
1300 /**
1301  * __get_user_pages() - pin user pages in memory
1302  * @mm:		mm_struct of target mm
1303  * @start:	starting user address
1304  * @nr_pages:	number of pages from start to pin
1305  * @gup_flags:	flags modifying pin behaviour
1306  * @pages:	array that receives pointers to the pages pinned.
1307  *		Should be at least nr_pages long. Or NULL, if caller
1308  *		only intends to ensure the pages are faulted in.
1309  * @locked:     whether we're still with the mmap_lock held
1310  *
1311  * Returns either number of pages pinned (which may be less than the
1312  * number requested), or an error. Details about the return value:
1313  *
1314  * -- If nr_pages is 0, returns 0.
1315  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1316  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1317  *    pages pinned. Again, this may be less than nr_pages.
1318  * -- 0 return value is possible when the fault would need to be retried.
1319  *
1320  * The caller is responsible for releasing returned @pages, via put_page().
1321  *
1322  * Must be called with mmap_lock held.  It may be released.  See below.
1323  *
1324  * __get_user_pages walks a process's page tables and takes a reference to
1325  * each struct page that each user address corresponds to at a given
1326  * instant. That is, it takes the page that would be accessed if a user
1327  * thread accesses the given user virtual address at that instant.
1328  *
1329  * This does not guarantee that the page exists in the user mappings when
1330  * __get_user_pages returns, and there may even be a completely different
1331  * page there in some cases (eg. if mmapped pagecache has been invalidated
1332  * and subsequently re-faulted). However it does guarantee that the page
1333  * won't be freed completely. And mostly callers simply care that the page
1334  * contains data that was valid *at some point in time*. Typically, an IO
1335  * or similar operation cannot guarantee anything stronger anyway because
1336  * locks can't be held over the syscall boundary.
1337  *
1338  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1339  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1340  * appropriate) must be called after the page is finished with, and
1341  * before put_page is called.
1342  *
1343  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1344  * be released. If this happens *@locked will be set to 0 on return.
1345  *
1346  * A caller using such a combination of @gup_flags must therefore hold the
1347  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1348  * it must be held for either reading or writing and will not be released.
1349  *
1350  * In most cases, get_user_pages or get_user_pages_fast should be used
1351  * instead of __get_user_pages. __get_user_pages should be used only if
1352  * you need some special @gup_flags.
1353  */
__get_user_pages(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)1354 static long __get_user_pages(struct mm_struct *mm,
1355 		unsigned long start, unsigned long nr_pages,
1356 		unsigned int gup_flags, struct page **pages,
1357 		int *locked)
1358 {
1359 	long ret = 0, i = 0;
1360 	struct vm_area_struct *vma = NULL;
1361 	unsigned long page_mask = 0;
1362 
1363 	if (!nr_pages)
1364 		return 0;
1365 
1366 	start = untagged_addr_remote(mm, start);
1367 
1368 	VM_WARN_ON_ONCE(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1369 
1370 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1371 	VM_WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
1372 			(FOLL_PIN | FOLL_GET));
1373 
1374 	do {
1375 		struct page *page;
1376 		unsigned int page_increm;
1377 
1378 		/* first iteration or cross vma bound */
1379 		if (!vma || start >= vma->vm_end) {
1380 			/*
1381 			 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1382 			 * lookups+error reporting differently.
1383 			 */
1384 			if (gup_flags & FOLL_MADV_POPULATE) {
1385 				vma = vma_lookup(mm, start);
1386 				if (!vma) {
1387 					ret = -ENOMEM;
1388 					goto out;
1389 				}
1390 				if (check_vma_flags(vma, gup_flags)) {
1391 					ret = -EINVAL;
1392 					goto out;
1393 				}
1394 				goto retry;
1395 			}
1396 			vma = gup_vma_lookup(mm, start);
1397 			if (!vma && in_gate_area(mm, start)) {
1398 				ret = get_gate_page(mm, start & PAGE_MASK,
1399 						gup_flags, &vma,
1400 						pages ? &page : NULL);
1401 				if (ret)
1402 					goto out;
1403 				page_mask = 0;
1404 				goto next_page;
1405 			}
1406 
1407 			if (!vma) {
1408 				ret = -EFAULT;
1409 				goto out;
1410 			}
1411 			ret = check_vma_flags(vma, gup_flags);
1412 			if (ret)
1413 				goto out;
1414 		}
1415 retry:
1416 		/*
1417 		 * If we have a pending SIGKILL, don't keep faulting pages and
1418 		 * potentially allocating memory.
1419 		 */
1420 		if (fatal_signal_pending(current)) {
1421 			ret = -EINTR;
1422 			goto out;
1423 		}
1424 		cond_resched();
1425 
1426 		page = follow_page_mask(vma, start, gup_flags, &page_mask);
1427 		if (!page || PTR_ERR(page) == -EMLINK) {
1428 			ret = faultin_page(vma, start, gup_flags,
1429 					   PTR_ERR(page) == -EMLINK, locked);
1430 			switch (ret) {
1431 			case 0:
1432 				goto retry;
1433 			case -EBUSY:
1434 			case -EAGAIN:
1435 				ret = 0;
1436 				fallthrough;
1437 			case -EFAULT:
1438 			case -ENOMEM:
1439 			case -EHWPOISON:
1440 				goto out;
1441 			}
1442 			BUG();
1443 		} else if (PTR_ERR(page) == -EEXIST) {
1444 			/*
1445 			 * Proper page table entry exists, but no corresponding
1446 			 * struct page. If the caller expects **pages to be
1447 			 * filled in, bail out now, because that can't be done
1448 			 * for this page.
1449 			 */
1450 			if (pages) {
1451 				ret = PTR_ERR(page);
1452 				goto out;
1453 			}
1454 		} else if (IS_ERR(page)) {
1455 			ret = PTR_ERR(page);
1456 			goto out;
1457 		}
1458 next_page:
1459 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1460 		if (page_increm > nr_pages)
1461 			page_increm = nr_pages;
1462 
1463 		if (pages) {
1464 			struct page *subpage;
1465 			unsigned int j;
1466 
1467 			/*
1468 			 * This must be a large folio (and doesn't need to
1469 			 * be the whole folio; it can be part of it), do
1470 			 * the refcount work for all the subpages too.
1471 			 *
1472 			 * NOTE: here the page may not be the head page
1473 			 * e.g. when start addr is not thp-size aligned.
1474 			 * try_grab_folio() should have taken care of tail
1475 			 * pages.
1476 			 */
1477 			if (page_increm > 1) {
1478 				struct folio *folio = page_folio(page);
1479 
1480 				/*
1481 				 * Since we already hold refcount on the
1482 				 * large folio, this should never fail.
1483 				 */
1484 				if (try_grab_folio(folio, page_increm - 1,
1485 						   gup_flags)) {
1486 					/*
1487 					 * Release the 1st page ref if the
1488 					 * folio is problematic, fail hard.
1489 					 */
1490 					gup_put_folio(folio, 1, gup_flags);
1491 					ret = -EFAULT;
1492 					goto out;
1493 				}
1494 			}
1495 
1496 			for (j = 0; j < page_increm; j++) {
1497 				subpage = page + j;
1498 				pages[i + j] = subpage;
1499 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1500 				flush_dcache_page(subpage);
1501 			}
1502 		}
1503 
1504 		i += page_increm;
1505 		start += page_increm * PAGE_SIZE;
1506 		nr_pages -= page_increm;
1507 	} while (nr_pages);
1508 out:
1509 	return i ? i : ret;
1510 }
1511 
vma_permits_fault(struct vm_area_struct * vma,unsigned int fault_flags)1512 static bool vma_permits_fault(struct vm_area_struct *vma,
1513 			      unsigned int fault_flags)
1514 {
1515 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1516 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1517 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1518 
1519 	if (!(vm_flags & vma->vm_flags))
1520 		return false;
1521 
1522 	/*
1523 	 * The architecture might have a hardware protection
1524 	 * mechanism other than read/write that can deny access.
1525 	 *
1526 	 * gup always represents data access, not instruction
1527 	 * fetches, so execute=false here:
1528 	 */
1529 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1530 		return false;
1531 
1532 	return true;
1533 }
1534 
1535 /**
1536  * fixup_user_fault() - manually resolve a user page fault
1537  * @mm:		mm_struct of target mm
1538  * @address:	user address
1539  * @fault_flags:flags to pass down to handle_mm_fault()
1540  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1541  *		does not allow retry. If NULL, the caller must guarantee
1542  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1543  *
1544  * This is meant to be called in the specific scenario where for locking reasons
1545  * we try to access user memory in atomic context (within a pagefault_disable()
1546  * section), this returns -EFAULT, and we want to resolve the user fault before
1547  * trying again.
1548  *
1549  * Typically this is meant to be used by the futex code.
1550  *
1551  * The main difference with get_user_pages() is that this function will
1552  * unconditionally call handle_mm_fault() which will in turn perform all the
1553  * necessary SW fixup of the dirty and young bits in the PTE, while
1554  * get_user_pages() only guarantees to update these in the struct page.
1555  *
1556  * This is important for some architectures where those bits also gate the
1557  * access permission to the page because they are maintained in software.  On
1558  * such architectures, gup() will not be enough to make a subsequent access
1559  * succeed.
1560  *
1561  * This function will not return with an unlocked mmap_lock. So it has not the
1562  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1563  */
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1564 int fixup_user_fault(struct mm_struct *mm,
1565 		     unsigned long address, unsigned int fault_flags,
1566 		     bool *unlocked)
1567 {
1568 	struct vm_area_struct *vma;
1569 	vm_fault_t ret;
1570 
1571 	address = untagged_addr_remote(mm, address);
1572 
1573 	if (unlocked)
1574 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1575 
1576 retry:
1577 	vma = gup_vma_lookup(mm, address);
1578 	if (!vma)
1579 		return -EFAULT;
1580 
1581 	if (!vma_permits_fault(vma, fault_flags))
1582 		return -EFAULT;
1583 
1584 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1585 	    fatal_signal_pending(current))
1586 		return -EINTR;
1587 
1588 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1589 
1590 	if (ret & VM_FAULT_COMPLETED) {
1591 		/*
1592 		 * NOTE: it's a pity that we need to retake the lock here
1593 		 * to pair with the unlock() in the callers. Ideally we
1594 		 * could tell the callers so they do not need to unlock.
1595 		 */
1596 		mmap_read_lock(mm);
1597 		*unlocked = true;
1598 		return 0;
1599 	}
1600 
1601 	if (ret & VM_FAULT_ERROR) {
1602 		int err = vm_fault_to_errno(ret, 0);
1603 
1604 		if (err)
1605 			return err;
1606 		BUG();
1607 	}
1608 
1609 	if (ret & VM_FAULT_RETRY) {
1610 		mmap_read_lock(mm);
1611 		*unlocked = true;
1612 		fault_flags |= FAULT_FLAG_TRIED;
1613 		goto retry;
1614 	}
1615 
1616 	return 0;
1617 }
1618 EXPORT_SYMBOL_GPL(fixup_user_fault);
1619 
1620 /*
1621  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1622  * specified, it'll also respond to generic signals.  The caller of GUP
1623  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1624  */
gup_signal_pending(unsigned int flags)1625 static bool gup_signal_pending(unsigned int flags)
1626 {
1627 	if (fatal_signal_pending(current))
1628 		return true;
1629 
1630 	if (!(flags & FOLL_INTERRUPTIBLE))
1631 		return false;
1632 
1633 	return signal_pending(current);
1634 }
1635 
1636 /*
1637  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1638  * the caller. This function may drop the mmap_lock. If it does so, then it will
1639  * set (*locked = 0).
1640  *
1641  * (*locked == 0) means that the caller expects this function to acquire and
1642  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1643  * the function returns, even though it may have changed temporarily during
1644  * function execution.
1645  *
1646  * Please note that this function, unlike __get_user_pages(), will not return 0
1647  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1648  */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int flags)1649 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1650 						unsigned long start,
1651 						unsigned long nr_pages,
1652 						struct page **pages,
1653 						int *locked,
1654 						unsigned int flags)
1655 {
1656 	long ret, pages_done;
1657 	bool must_unlock = false;
1658 
1659 	if (!nr_pages)
1660 		return 0;
1661 
1662 	/*
1663 	 * The internal caller expects GUP to manage the lock internally and the
1664 	 * lock must be released when this returns.
1665 	 */
1666 	if (!*locked) {
1667 		if (mmap_read_lock_killable(mm))
1668 			return -EAGAIN;
1669 		must_unlock = true;
1670 		*locked = 1;
1671 	}
1672 	else
1673 		mmap_assert_locked(mm);
1674 
1675 	if (flags & FOLL_PIN)
1676 		mm_set_has_pinned_flag(mm);
1677 
1678 	/*
1679 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1680 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1681 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1682 	 * for FOLL_GET, not for the newer FOLL_PIN.
1683 	 *
1684 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1685 	 * that here, as any failures will be obvious enough.
1686 	 */
1687 	if (pages && !(flags & FOLL_PIN))
1688 		flags |= FOLL_GET;
1689 
1690 	pages_done = 0;
1691 	for (;;) {
1692 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1693 				       locked);
1694 		if (!(flags & FOLL_UNLOCKABLE)) {
1695 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1696 			pages_done = ret;
1697 			break;
1698 		}
1699 
1700 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1701 		VM_WARN_ON_ONCE(!*locked && (ret < 0 || ret >= nr_pages));
1702 
1703 		if (ret > 0) {
1704 			nr_pages -= ret;
1705 			pages_done += ret;
1706 			if (!nr_pages)
1707 				break;
1708 		}
1709 		if (*locked) {
1710 			/*
1711 			 * VM_FAULT_RETRY didn't trigger or it was a
1712 			 * FOLL_NOWAIT.
1713 			 */
1714 			if (!pages_done)
1715 				pages_done = ret;
1716 			break;
1717 		}
1718 		/*
1719 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1720 		 * For the prefault case (!pages) we only update counts.
1721 		 */
1722 		if (likely(pages))
1723 			pages += ret;
1724 		start += ret << PAGE_SHIFT;
1725 
1726 		/* The lock was temporarily dropped, so we must unlock later */
1727 		must_unlock = true;
1728 
1729 retry:
1730 		/*
1731 		 * Repeat on the address that fired VM_FAULT_RETRY
1732 		 * with both FAULT_FLAG_ALLOW_RETRY and
1733 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1734 		 * by fatal signals of even common signals, depending on
1735 		 * the caller's request. So we need to check it before we
1736 		 * start trying again otherwise it can loop forever.
1737 		 */
1738 		if (gup_signal_pending(flags)) {
1739 			if (!pages_done)
1740 				pages_done = -EINTR;
1741 			break;
1742 		}
1743 
1744 		ret = mmap_read_lock_killable(mm);
1745 		if (ret) {
1746 			if (!pages_done)
1747 				pages_done = ret;
1748 			break;
1749 		}
1750 
1751 		*locked = 1;
1752 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1753 				       pages, locked);
1754 		if (!*locked) {
1755 			/* Continue to retry until we succeeded */
1756 			VM_WARN_ON_ONCE(ret != 0);
1757 			goto retry;
1758 		}
1759 		if (ret != 1) {
1760 			VM_WARN_ON_ONCE(ret > 1);
1761 			if (!pages_done)
1762 				pages_done = ret;
1763 			break;
1764 		}
1765 		nr_pages--;
1766 		pages_done++;
1767 		if (!nr_pages)
1768 			break;
1769 		if (likely(pages))
1770 			pages++;
1771 		start += PAGE_SIZE;
1772 	}
1773 	if (must_unlock && *locked) {
1774 		/*
1775 		 * We either temporarily dropped the lock, or the caller
1776 		 * requested that we both acquire and drop the lock. Either way,
1777 		 * we must now unlock, and notify the caller of that state.
1778 		 */
1779 		mmap_read_unlock(mm);
1780 		*locked = 0;
1781 	}
1782 
1783 	/*
1784 	 * Failing to pin anything implies something has gone wrong (except when
1785 	 * FOLL_NOWAIT is specified).
1786 	 */
1787 	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1788 		return -EFAULT;
1789 
1790 	return pages_done;
1791 }
1792 
1793 /**
1794  * populate_vma_page_range() -  populate a range of pages in the vma.
1795  * @vma:   target vma
1796  * @start: start address
1797  * @end:   end address
1798  * @locked: whether the mmap_lock is still held
1799  *
1800  * This takes care of mlocking the pages too if VM_LOCKED is set.
1801  *
1802  * Return either number of pages pinned in the vma, or a negative error
1803  * code on error.
1804  *
1805  * vma->vm_mm->mmap_lock must be held.
1806  *
1807  * If @locked is NULL, it may be held for read or write and will
1808  * be unperturbed.
1809  *
1810  * If @locked is non-NULL, it must held for read only and may be
1811  * released.  If it's released, *@locked will be set to 0.
1812  */
populate_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int * locked)1813 long populate_vma_page_range(struct vm_area_struct *vma,
1814 		unsigned long start, unsigned long end, int *locked)
1815 {
1816 	struct mm_struct *mm = vma->vm_mm;
1817 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1818 	int local_locked = 1;
1819 	int gup_flags;
1820 	long ret;
1821 
1822 	VM_WARN_ON_ONCE(!PAGE_ALIGNED(start));
1823 	VM_WARN_ON_ONCE(!PAGE_ALIGNED(end));
1824 	VM_WARN_ON_ONCE_VMA(start < vma->vm_start, vma);
1825 	VM_WARN_ON_ONCE_VMA(end   > vma->vm_end, vma);
1826 	mmap_assert_locked(mm);
1827 
1828 	/*
1829 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1830 	 * faultin_page() to break COW, so it has no work to do here.
1831 	 */
1832 	if (vma->vm_flags & VM_LOCKONFAULT)
1833 		return nr_pages;
1834 
1835 	/* ... similarly, we've never faulted in PROT_NONE pages */
1836 	if (!vma_is_accessible(vma))
1837 		return -EFAULT;
1838 
1839 	gup_flags = FOLL_TOUCH;
1840 	/*
1841 	 * We want to touch writable mappings with a write fault in order
1842 	 * to break COW, except for shared mappings because these don't COW
1843 	 * and we would not want to dirty them for nothing.
1844 	 *
1845 	 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1846 	 * readable (ie write-only or executable).
1847 	 */
1848 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1849 		gup_flags |= FOLL_WRITE;
1850 	else
1851 		gup_flags |= FOLL_FORCE;
1852 
1853 	if (locked)
1854 		gup_flags |= FOLL_UNLOCKABLE;
1855 
1856 	/*
1857 	 * We made sure addr is within a VMA, so the following will
1858 	 * not result in a stack expansion that recurses back here.
1859 	 */
1860 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1861 			       NULL, locked ? locked : &local_locked);
1862 	lru_add_drain();
1863 	return ret;
1864 }
1865 
1866 /*
1867  * faultin_page_range() - populate (prefault) page tables inside the
1868  *			  given range readable/writable
1869  *
1870  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1871  *
1872  * @mm: the mm to populate page tables in
1873  * @start: start address
1874  * @end: end address
1875  * @write: whether to prefault readable or writable
1876  * @locked: whether the mmap_lock is still held
1877  *
1878  * Returns either number of processed pages in the MM, or a negative error
1879  * code on error (see __get_user_pages()). Note that this function reports
1880  * errors related to VMAs, such as incompatible mappings, as expected by
1881  * MADV_POPULATE_(READ|WRITE).
1882  *
1883  * The range must be page-aligned.
1884  *
1885  * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1886  */
faultin_page_range(struct mm_struct * mm,unsigned long start,unsigned long end,bool write,int * locked)1887 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1888 			unsigned long end, bool write, int *locked)
1889 {
1890 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1891 	int gup_flags;
1892 	long ret;
1893 
1894 	VM_WARN_ON_ONCE(!PAGE_ALIGNED(start));
1895 	VM_WARN_ON_ONCE(!PAGE_ALIGNED(end));
1896 	mmap_assert_locked(mm);
1897 
1898 	/*
1899 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1900 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1901 	 *	       difference with !FOLL_FORCE, because the page is writable
1902 	 *	       in the page table.
1903 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1904 	 *		  a poisoned page.
1905 	 * !FOLL_FORCE: Require proper access permissions.
1906 	 */
1907 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1908 		    FOLL_MADV_POPULATE;
1909 	if (write)
1910 		gup_flags |= FOLL_WRITE;
1911 
1912 	ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1913 				      gup_flags);
1914 	lru_add_drain();
1915 	return ret;
1916 }
1917 
1918 /*
1919  * __mm_populate - populate and/or mlock pages within a range of address space.
1920  *
1921  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1922  * flags. VMAs must be already marked with the desired vm_flags, and
1923  * mmap_lock must not be held.
1924  */
__mm_populate(unsigned long start,unsigned long len,int ignore_errors)1925 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1926 {
1927 	struct mm_struct *mm = current->mm;
1928 	unsigned long end, nstart, nend;
1929 	struct vm_area_struct *vma = NULL;
1930 	int locked = 0;
1931 	long ret = 0;
1932 
1933 	end = start + len;
1934 
1935 	for (nstart = start; nstart < end; nstart = nend) {
1936 		/*
1937 		 * We want to fault in pages for [nstart; end) address range.
1938 		 * Find first corresponding VMA.
1939 		 */
1940 		if (!locked) {
1941 			locked = 1;
1942 			mmap_read_lock(mm);
1943 			vma = find_vma_intersection(mm, nstart, end);
1944 		} else if (nstart >= vma->vm_end)
1945 			vma = find_vma_intersection(mm, vma->vm_end, end);
1946 
1947 		if (!vma)
1948 			break;
1949 		/*
1950 		 * Set [nstart; nend) to intersection of desired address
1951 		 * range with the first VMA. Also, skip undesirable VMA types.
1952 		 */
1953 		nend = min(end, vma->vm_end);
1954 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1955 			continue;
1956 		if (nstart < vma->vm_start)
1957 			nstart = vma->vm_start;
1958 		/*
1959 		 * Now fault in a range of pages. populate_vma_page_range()
1960 		 * double checks the vma flags, so that it won't mlock pages
1961 		 * if the vma was already munlocked.
1962 		 */
1963 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1964 		if (ret < 0) {
1965 			if (ignore_errors) {
1966 				ret = 0;
1967 				continue;	/* continue at next VMA */
1968 			}
1969 			break;
1970 		}
1971 		nend = nstart + ret * PAGE_SIZE;
1972 		ret = 0;
1973 	}
1974 	if (locked)
1975 		mmap_read_unlock(mm);
1976 	return ret;	/* 0 or negative error code */
1977 }
1978 #else /* CONFIG_MMU */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int foll_flags)1979 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1980 		unsigned long nr_pages, struct page **pages,
1981 		int *locked, unsigned int foll_flags)
1982 {
1983 	struct vm_area_struct *vma;
1984 	bool must_unlock = false;
1985 	vm_flags_t vm_flags;
1986 	long i;
1987 
1988 	if (!nr_pages)
1989 		return 0;
1990 
1991 	/*
1992 	 * The internal caller expects GUP to manage the lock internally and the
1993 	 * lock must be released when this returns.
1994 	 */
1995 	if (!*locked) {
1996 		if (mmap_read_lock_killable(mm))
1997 			return -EAGAIN;
1998 		must_unlock = true;
1999 		*locked = 1;
2000 	}
2001 
2002 	/* calculate required read or write permissions.
2003 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
2004 	 */
2005 	vm_flags  = (foll_flags & FOLL_WRITE) ?
2006 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2007 	vm_flags &= (foll_flags & FOLL_FORCE) ?
2008 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2009 
2010 	for (i = 0; i < nr_pages; i++) {
2011 		vma = find_vma(mm, start);
2012 		if (!vma)
2013 			break;
2014 
2015 		/* protect what we can, including chardevs */
2016 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2017 		    !(vm_flags & vma->vm_flags))
2018 			break;
2019 
2020 		if (pages) {
2021 			pages[i] = virt_to_page((void *)start);
2022 			if (pages[i])
2023 				get_page(pages[i]);
2024 		}
2025 
2026 		start = (start + PAGE_SIZE) & PAGE_MASK;
2027 	}
2028 
2029 	if (must_unlock && *locked) {
2030 		mmap_read_unlock(mm);
2031 		*locked = 0;
2032 	}
2033 
2034 	return i ? : -EFAULT;
2035 }
2036 #endif /* !CONFIG_MMU */
2037 
2038 /**
2039  * fault_in_writeable - fault in userspace address range for writing
2040  * @uaddr: start of address range
2041  * @size: size of address range
2042  *
2043  * Returns the number of bytes not faulted in (like copy_to_user() and
2044  * copy_from_user()).
2045  */
fault_in_writeable(char __user * uaddr,size_t size)2046 size_t fault_in_writeable(char __user *uaddr, size_t size)
2047 {
2048 	const unsigned long start = (unsigned long)uaddr;
2049 	const unsigned long end = start + size;
2050 	unsigned long cur;
2051 
2052 	if (unlikely(size == 0))
2053 		return 0;
2054 	if (!user_write_access_begin(uaddr, size))
2055 		return size;
2056 
2057 	/* Stop once we overflow to 0. */
2058 	for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2059 		unsafe_put_user(0, (char __user *)cur, out);
2060 out:
2061 	user_write_access_end();
2062 	if (size > cur - start)
2063 		return size - (cur - start);
2064 	return 0;
2065 }
2066 EXPORT_SYMBOL(fault_in_writeable);
2067 
2068 /**
2069  * fault_in_subpage_writeable - fault in an address range for writing
2070  * @uaddr: start of address range
2071  * @size: size of address range
2072  *
2073  * Fault in a user address range for writing while checking for permissions at
2074  * sub-page granularity (e.g. arm64 MTE). This function should be used when
2075  * the caller cannot guarantee forward progress of a copy_to_user() loop.
2076  *
2077  * Returns the number of bytes not faulted in (like copy_to_user() and
2078  * copy_from_user()).
2079  */
fault_in_subpage_writeable(char __user * uaddr,size_t size)2080 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2081 {
2082 	size_t faulted_in;
2083 
2084 	/*
2085 	 * Attempt faulting in at page granularity first for page table
2086 	 * permission checking. The arch-specific probe_subpage_writeable()
2087 	 * functions may not check for this.
2088 	 */
2089 	faulted_in = size - fault_in_writeable(uaddr, size);
2090 	if (faulted_in)
2091 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2092 
2093 	return size - faulted_in;
2094 }
2095 EXPORT_SYMBOL(fault_in_subpage_writeable);
2096 
2097 /*
2098  * fault_in_safe_writeable - fault in an address range for writing
2099  * @uaddr: start of address range
2100  * @size: length of address range
2101  *
2102  * Faults in an address range for writing.  This is primarily useful when we
2103  * already know that some or all of the pages in the address range aren't in
2104  * memory.
2105  *
2106  * Unlike fault_in_writeable(), this function is non-destructive.
2107  *
2108  * Note that we don't pin or otherwise hold the pages referenced that we fault
2109  * in.  There's no guarantee that they'll stay in memory for any duration of
2110  * time.
2111  *
2112  * Returns the number of bytes not faulted in, like copy_to_user() and
2113  * copy_from_user().
2114  */
fault_in_safe_writeable(const char __user * uaddr,size_t size)2115 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2116 {
2117 	const unsigned long start = (unsigned long)uaddr;
2118 	const unsigned long end = start + size;
2119 	unsigned long cur;
2120 	struct mm_struct *mm = current->mm;
2121 	bool unlocked = false;
2122 
2123 	if (unlikely(size == 0))
2124 		return 0;
2125 
2126 	mmap_read_lock(mm);
2127 	/* Stop once we overflow to 0. */
2128 	for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2129 		if (fixup_user_fault(mm, cur, FAULT_FLAG_WRITE, &unlocked))
2130 			break;
2131 	mmap_read_unlock(mm);
2132 
2133 	if (size > cur - start)
2134 		return size - (cur - start);
2135 	return 0;
2136 }
2137 EXPORT_SYMBOL(fault_in_safe_writeable);
2138 
2139 /**
2140  * fault_in_readable - fault in userspace address range for reading
2141  * @uaddr: start of user address range
2142  * @size: size of user address range
2143  *
2144  * Returns the number of bytes not faulted in (like copy_to_user() and
2145  * copy_from_user()).
2146  */
fault_in_readable(const char __user * uaddr,size_t size)2147 size_t fault_in_readable(const char __user *uaddr, size_t size)
2148 {
2149 	const unsigned long start = (unsigned long)uaddr;
2150 	const unsigned long end = start + size;
2151 	unsigned long cur;
2152 	volatile char c;
2153 
2154 	if (unlikely(size == 0))
2155 		return 0;
2156 	if (!user_read_access_begin(uaddr, size))
2157 		return size;
2158 
2159 	/* Stop once we overflow to 0. */
2160 	for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2161 		unsafe_get_user(c, (const char __user *)cur, out);
2162 out:
2163 	user_read_access_end();
2164 	(void)c;
2165 	if (size > cur - start)
2166 		return size - (cur - start);
2167 	return 0;
2168 }
2169 EXPORT_SYMBOL(fault_in_readable);
2170 
2171 /**
2172  * get_dump_page() - pin user page in memory while writing it to core dump
2173  * @addr: user address
2174  * @locked: a pointer to an int denoting whether the mmap sem is held
2175  *
2176  * Returns struct page pointer of user page pinned for dump,
2177  * to be freed afterwards by put_page().
2178  *
2179  * Returns NULL on any kind of failure - a hole must then be inserted into
2180  * the corefile, to preserve alignment with its headers; and also returns
2181  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2182  * allowing a hole to be left in the corefile to save disk space.
2183  *
2184  * Called without mmap_lock (takes and releases the mmap_lock by itself).
2185  */
2186 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr,int * locked)2187 struct page *get_dump_page(unsigned long addr, int *locked)
2188 {
2189 	struct page *page;
2190 	int ret;
2191 
2192 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, locked,
2193 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2194 	return (ret == 1) ? page : NULL;
2195 }
2196 #endif /* CONFIG_ELF_CORE */
2197 
2198 #ifdef CONFIG_MIGRATION
2199 
2200 /*
2201  * An array of either pages or folios ("pofs"). Although it may seem tempting to
2202  * avoid this complication, by simply interpreting a list of folios as a list of
2203  * pages, that approach won't work in the longer term, because eventually the
2204  * layouts of struct page and struct folio will become completely different.
2205  * Furthermore, this pof approach avoids excessive page_folio() calls.
2206  */
2207 struct pages_or_folios {
2208 	union {
2209 		struct page **pages;
2210 		struct folio **folios;
2211 		void **entries;
2212 	};
2213 	bool has_folios;
2214 	long nr_entries;
2215 };
2216 
pofs_get_folio(struct pages_or_folios * pofs,long i)2217 static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i)
2218 {
2219 	if (pofs->has_folios)
2220 		return pofs->folios[i];
2221 	return page_folio(pofs->pages[i]);
2222 }
2223 
pofs_clear_entry(struct pages_or_folios * pofs,long i)2224 static void pofs_clear_entry(struct pages_or_folios *pofs, long i)
2225 {
2226 	pofs->entries[i] = NULL;
2227 }
2228 
pofs_unpin(struct pages_or_folios * pofs)2229 static void pofs_unpin(struct pages_or_folios *pofs)
2230 {
2231 	if (pofs->has_folios)
2232 		unpin_folios(pofs->folios, pofs->nr_entries);
2233 	else
2234 		unpin_user_pages(pofs->pages, pofs->nr_entries);
2235 }
2236 
pofs_next_folio(struct folio * folio,struct pages_or_folios * pofs,long * index_ptr)2237 static struct folio *pofs_next_folio(struct folio *folio,
2238 		struct pages_or_folios *pofs, long *index_ptr)
2239 {
2240 	long i = *index_ptr + 1;
2241 
2242 	if (!pofs->has_folios && folio_test_large(folio)) {
2243 		const unsigned long start_pfn = folio_pfn(folio);
2244 		const unsigned long end_pfn = start_pfn + folio_nr_pages(folio);
2245 
2246 		for (; i < pofs->nr_entries; i++) {
2247 			unsigned long pfn = page_to_pfn(pofs->pages[i]);
2248 
2249 			/* Is this page part of this folio? */
2250 			if (pfn < start_pfn || pfn >= end_pfn)
2251 				break;
2252 		}
2253 	}
2254 
2255 	if (unlikely(i == pofs->nr_entries))
2256 		return NULL;
2257 	*index_ptr = i;
2258 
2259 	return pofs_get_folio(pofs, i);
2260 }
2261 
2262 /*
2263  * Returns the number of collected folios. Return value is always >= 0.
2264  */
collect_longterm_unpinnable_folios(struct list_head * movable_folio_list,struct pages_or_folios * pofs)2265 static unsigned long collect_longterm_unpinnable_folios(
2266 		struct list_head *movable_folio_list,
2267 		struct pages_or_folios *pofs)
2268 {
2269 	unsigned long collected = 0;
2270 	struct folio *folio;
2271 	int drained = 0;
2272 	long i = 0;
2273 
2274 	for (folio = pofs_get_folio(pofs, i); folio;
2275 	     folio = pofs_next_folio(folio, pofs, &i)) {
2276 
2277 		if (folio_is_longterm_pinnable(folio))
2278 			continue;
2279 
2280 		collected++;
2281 
2282 		if (folio_is_device_coherent(folio))
2283 			continue;
2284 
2285 		if (folio_test_hugetlb(folio)) {
2286 			folio_isolate_hugetlb(folio, movable_folio_list);
2287 			continue;
2288 		}
2289 
2290 		if (drained == 0 && folio_may_be_lru_cached(folio) &&
2291 				folio_ref_count(folio) !=
2292 				folio_expected_ref_count(folio) + 1) {
2293 			lru_add_drain();
2294 			drained = 1;
2295 		}
2296 		if (drained == 1 && folio_may_be_lru_cached(folio) &&
2297 				folio_ref_count(folio) !=
2298 				folio_expected_ref_count(folio) + 1) {
2299 			lru_add_drain_all();
2300 			drained = 2;
2301 		}
2302 
2303 		if (!folio_isolate_lru(folio))
2304 			continue;
2305 
2306 		list_add_tail(&folio->lru, movable_folio_list);
2307 		node_stat_mod_folio(folio,
2308 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2309 				    folio_nr_pages(folio));
2310 	}
2311 
2312 	return collected;
2313 }
2314 
2315 /*
2316  * Unpins all folios and migrates device coherent folios and movable_folio_list.
2317  * Returns -EAGAIN if all folios were successfully migrated or -errno for
2318  * failure (or partial success).
2319  */
2320 static int
migrate_longterm_unpinnable_folios(struct list_head * movable_folio_list,struct pages_or_folios * pofs)2321 migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list,
2322 				   struct pages_or_folios *pofs)
2323 {
2324 	int ret;
2325 	unsigned long i;
2326 
2327 	for (i = 0; i < pofs->nr_entries; i++) {
2328 		struct folio *folio = pofs_get_folio(pofs, i);
2329 
2330 		if (folio_is_device_coherent(folio)) {
2331 			/*
2332 			 * Migration will fail if the folio is pinned, so
2333 			 * convert the pin on the source folio to a normal
2334 			 * reference.
2335 			 */
2336 			pofs_clear_entry(pofs, i);
2337 			folio_get(folio);
2338 			gup_put_folio(folio, 1, FOLL_PIN);
2339 
2340 			if (migrate_device_coherent_folio(folio)) {
2341 				ret = -EBUSY;
2342 				goto err;
2343 			}
2344 
2345 			continue;
2346 		}
2347 
2348 		/*
2349 		 * We can't migrate folios with unexpected references, so drop
2350 		 * the reference obtained by __get_user_pages_locked().
2351 		 * Migrating folios have been added to movable_folio_list after
2352 		 * calling folio_isolate_lru() which takes a reference so the
2353 		 * folio won't be freed if it's migrating.
2354 		 */
2355 		unpin_folio(folio);
2356 		pofs_clear_entry(pofs, i);
2357 	}
2358 
2359 	if (!list_empty(movable_folio_list)) {
2360 		struct migration_target_control mtc = {
2361 			.nid = NUMA_NO_NODE,
2362 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2363 			.reason = MR_LONGTERM_PIN,
2364 		};
2365 
2366 		if (migrate_pages(movable_folio_list, alloc_migration_target,
2367 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2368 				  MR_LONGTERM_PIN, NULL)) {
2369 			ret = -ENOMEM;
2370 			goto err;
2371 		}
2372 	}
2373 
2374 	putback_movable_pages(movable_folio_list);
2375 
2376 	return -EAGAIN;
2377 
2378 err:
2379 	pofs_unpin(pofs);
2380 	putback_movable_pages(movable_folio_list);
2381 
2382 	return ret;
2383 }
2384 
2385 static long
check_and_migrate_movable_pages_or_folios(struct pages_or_folios * pofs)2386 check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs)
2387 {
2388 	LIST_HEAD(movable_folio_list);
2389 	unsigned long collected;
2390 
2391 	collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2392 						       pofs);
2393 	if (!collected)
2394 		return 0;
2395 
2396 	return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs);
2397 }
2398 
2399 /*
2400  * Check whether all folios are *allowed* to be pinned indefinitely (long term).
2401  * Rather confusingly, all folios in the range are required to be pinned via
2402  * FOLL_PIN, before calling this routine.
2403  *
2404  * Return values:
2405  *
2406  * 0: if everything is OK and all folios in the range are allowed to be pinned,
2407  * then this routine leaves all folios pinned and returns zero for success.
2408  *
2409  * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2410  * routine will migrate those folios away, unpin all the folios in the range. If
2411  * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2412  * caller should re-pin the entire range with FOLL_PIN and then call this
2413  * routine again.
2414  *
2415  * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2416  * indicates a migration failure. The caller should give up, and propagate the
2417  * error back up the call stack. The caller does not need to unpin any folios in
2418  * that case, because this routine will do the unpinning.
2419  */
check_and_migrate_movable_folios(unsigned long nr_folios,struct folio ** folios)2420 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2421 					     struct folio **folios)
2422 {
2423 	struct pages_or_folios pofs = {
2424 		.folios = folios,
2425 		.has_folios = true,
2426 		.nr_entries = nr_folios,
2427 	};
2428 
2429 	return check_and_migrate_movable_pages_or_folios(&pofs);
2430 }
2431 
2432 /*
2433  * Return values and behavior are the same as those for
2434  * check_and_migrate_movable_folios().
2435  */
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2436 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2437 					    struct page **pages)
2438 {
2439 	struct pages_or_folios pofs = {
2440 		.pages = pages,
2441 		.has_folios = false,
2442 		.nr_entries = nr_pages,
2443 	};
2444 
2445 	return check_and_migrate_movable_pages_or_folios(&pofs);
2446 }
2447 #else
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2448 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2449 					    struct page **pages)
2450 {
2451 	return 0;
2452 }
2453 
check_and_migrate_movable_folios(unsigned long nr_folios,struct folio ** folios)2454 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2455 					     struct folio **folios)
2456 {
2457 	return 0;
2458 }
2459 #endif /* CONFIG_MIGRATION */
2460 
2461 /*
2462  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2463  * allows us to process the FOLL_LONGTERM flag.
2464  */
__gup_longterm_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int gup_flags)2465 static long __gup_longterm_locked(struct mm_struct *mm,
2466 				  unsigned long start,
2467 				  unsigned long nr_pages,
2468 				  struct page **pages,
2469 				  int *locked,
2470 				  unsigned int gup_flags)
2471 {
2472 	unsigned int flags;
2473 	long rc, nr_pinned_pages;
2474 
2475 	if (!(gup_flags & FOLL_LONGTERM))
2476 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2477 					       locked, gup_flags);
2478 
2479 	flags = memalloc_pin_save();
2480 	do {
2481 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2482 							  pages, locked,
2483 							  gup_flags);
2484 		if (nr_pinned_pages <= 0) {
2485 			rc = nr_pinned_pages;
2486 			break;
2487 		}
2488 
2489 		/* FOLL_LONGTERM implies FOLL_PIN */
2490 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2491 	} while (rc == -EAGAIN);
2492 	memalloc_pin_restore(flags);
2493 	return rc ? rc : nr_pinned_pages;
2494 }
2495 
2496 /*
2497  * Check that the given flags are valid for the exported gup/pup interface, and
2498  * update them with the required flags that the caller must have set.
2499  */
is_valid_gup_args(struct page ** pages,int * locked,unsigned int * gup_flags_p,unsigned int to_set)2500 static bool is_valid_gup_args(struct page **pages, int *locked,
2501 			      unsigned int *gup_flags_p, unsigned int to_set)
2502 {
2503 	unsigned int gup_flags = *gup_flags_p;
2504 
2505 	/*
2506 	 * These flags not allowed to be specified externally to the gup
2507 	 * interfaces:
2508 	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2509 	 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2510 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2511 	 */
2512 	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2513 		return false;
2514 
2515 	gup_flags |= to_set;
2516 	if (locked) {
2517 		/* At the external interface locked must be set */
2518 		if (WARN_ON_ONCE(*locked != 1))
2519 			return false;
2520 
2521 		gup_flags |= FOLL_UNLOCKABLE;
2522 	}
2523 
2524 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2525 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2526 			 (FOLL_PIN | FOLL_GET)))
2527 		return false;
2528 
2529 	/* LONGTERM can only be specified when pinning */
2530 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2531 		return false;
2532 
2533 	/* Pages input must be given if using GET/PIN */
2534 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2535 		return false;
2536 
2537 	/* We want to allow the pgmap to be hot-unplugged at all times */
2538 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2539 			 (gup_flags & FOLL_PCI_P2PDMA)))
2540 		return false;
2541 
2542 	*gup_flags_p = gup_flags;
2543 	return true;
2544 }
2545 
2546 #ifdef CONFIG_MMU
2547 /**
2548  * get_user_pages_remote() - pin user pages in memory
2549  * @mm:		mm_struct of target mm
2550  * @start:	starting user address
2551  * @nr_pages:	number of pages from start to pin
2552  * @gup_flags:	flags modifying lookup behaviour
2553  * @pages:	array that receives pointers to the pages pinned.
2554  *		Should be at least nr_pages long. Or NULL, if caller
2555  *		only intends to ensure the pages are faulted in.
2556  * @locked:	pointer to lock flag indicating whether lock is held and
2557  *		subsequently whether VM_FAULT_RETRY functionality can be
2558  *		utilised. Lock must initially be held.
2559  *
2560  * Returns either number of pages pinned (which may be less than the
2561  * number requested), or an error. Details about the return value:
2562  *
2563  * -- If nr_pages is 0, returns 0.
2564  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2565  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2566  *    pages pinned. Again, this may be less than nr_pages.
2567  *
2568  * The caller is responsible for releasing returned @pages, via put_page().
2569  *
2570  * Must be called with mmap_lock held for read or write.
2571  *
2572  * get_user_pages_remote walks a process's page tables and takes a reference
2573  * to each struct page that each user address corresponds to at a given
2574  * instant. That is, it takes the page that would be accessed if a user
2575  * thread accesses the given user virtual address at that instant.
2576  *
2577  * This does not guarantee that the page exists in the user mappings when
2578  * get_user_pages_remote returns, and there may even be a completely different
2579  * page there in some cases (eg. if mmapped pagecache has been invalidated
2580  * and subsequently re-faulted). However it does guarantee that the page
2581  * won't be freed completely. And mostly callers simply care that the page
2582  * contains data that was valid *at some point in time*. Typically, an IO
2583  * or similar operation cannot guarantee anything stronger anyway because
2584  * locks can't be held over the syscall boundary.
2585  *
2586  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2587  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2588  * be called after the page is finished with, and before put_page is called.
2589  *
2590  * get_user_pages_remote is typically used for fewer-copy IO operations,
2591  * to get a handle on the memory by some means other than accesses
2592  * via the user virtual addresses. The pages may be submitted for
2593  * DMA to devices or accessed via their kernel linear mapping (via the
2594  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2595  *
2596  * See also get_user_pages_fast, for performance critical applications.
2597  *
2598  * get_user_pages_remote should be phased out in favor of
2599  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2600  * should use get_user_pages_remote because it cannot pass
2601  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2602  */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)2603 long get_user_pages_remote(struct mm_struct *mm,
2604 		unsigned long start, unsigned long nr_pages,
2605 		unsigned int gup_flags, struct page **pages,
2606 		int *locked)
2607 {
2608 	int local_locked = 1;
2609 
2610 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2611 			       FOLL_TOUCH | FOLL_REMOTE))
2612 		return -EINVAL;
2613 
2614 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2615 				       locked ? locked : &local_locked,
2616 				       gup_flags);
2617 }
2618 EXPORT_SYMBOL(get_user_pages_remote);
2619 
2620 #else /* CONFIG_MMU */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)2621 long get_user_pages_remote(struct mm_struct *mm,
2622 			   unsigned long start, unsigned long nr_pages,
2623 			   unsigned int gup_flags, struct page **pages,
2624 			   int *locked)
2625 {
2626 	return 0;
2627 }
2628 #endif /* !CONFIG_MMU */
2629 
2630 /**
2631  * get_user_pages() - pin user pages in memory
2632  * @start:      starting user address
2633  * @nr_pages:   number of pages from start to pin
2634  * @gup_flags:  flags modifying lookup behaviour
2635  * @pages:      array that receives pointers to the pages pinned.
2636  *              Should be at least nr_pages long. Or NULL, if caller
2637  *              only intends to ensure the pages are faulted in.
2638  *
2639  * This is the same as get_user_pages_remote(), just with a less-flexible
2640  * calling convention where we assume that the mm being operated on belongs to
2641  * the current task, and doesn't allow passing of a locked parameter.  We also
2642  * obviously don't pass FOLL_REMOTE in here.
2643  */
get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)2644 long get_user_pages(unsigned long start, unsigned long nr_pages,
2645 		    unsigned int gup_flags, struct page **pages)
2646 {
2647 	int locked = 1;
2648 
2649 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2650 		return -EINVAL;
2651 
2652 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2653 				       &locked, gup_flags);
2654 }
2655 EXPORT_SYMBOL(get_user_pages);
2656 
2657 /*
2658  * get_user_pages_unlocked() is suitable to replace the form:
2659  *
2660  *      mmap_read_lock(mm);
2661  *      get_user_pages(mm, ..., pages, NULL);
2662  *      mmap_read_unlock(mm);
2663  *
2664  *  with:
2665  *
2666  *      get_user_pages_unlocked(mm, ..., pages);
2667  *
2668  * It is functionally equivalent to get_user_pages_fast so
2669  * get_user_pages_fast should be used instead if specific gup_flags
2670  * (e.g. FOLL_FORCE) are not required.
2671  */
get_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)2672 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2673 			     struct page **pages, unsigned int gup_flags)
2674 {
2675 	int locked = 0;
2676 
2677 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2678 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2679 		return -EINVAL;
2680 
2681 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2682 				       &locked, gup_flags);
2683 }
2684 EXPORT_SYMBOL(get_user_pages_unlocked);
2685 
2686 /*
2687  * GUP-fast
2688  *
2689  * get_user_pages_fast attempts to pin user pages by walking the page
2690  * tables directly and avoids taking locks. Thus the walker needs to be
2691  * protected from page table pages being freed from under it, and should
2692  * block any THP splits.
2693  *
2694  * One way to achieve this is to have the walker disable interrupts, and
2695  * rely on IPIs from the TLB flushing code blocking before the page table
2696  * pages are freed. This is unsuitable for architectures that do not need
2697  * to broadcast an IPI when invalidating TLBs.
2698  *
2699  * Another way to achieve this is to batch up page table containing pages
2700  * belonging to more than one mm_user, then rcu_sched a callback to free those
2701  * pages. Disabling interrupts will allow the gup_fast() walker to both block
2702  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2703  * (which is a relatively rare event). The code below adopts this strategy.
2704  *
2705  * Before activating this code, please be aware that the following assumptions
2706  * are currently made:
2707  *
2708  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2709  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2710  *
2711  *  *) ptes can be read atomically by the architecture.
2712  *
2713  *  *) valid user addesses are below TASK_MAX_SIZE
2714  *
2715  * The last two assumptions can be relaxed by the addition of helper functions.
2716  *
2717  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2718  */
2719 #ifdef CONFIG_HAVE_GUP_FAST
2720 /*
2721  * Used in the GUP-fast path to determine whether GUP is permitted to work on
2722  * a specific folio.
2723  *
2724  * This call assumes the caller has pinned the folio, that the lowest page table
2725  * level still points to this folio, and that interrupts have been disabled.
2726  *
2727  * GUP-fast must reject all secretmem folios.
2728  *
2729  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2730  * (see comment describing the writable_file_mapping_allowed() function). We
2731  * therefore try to avoid the most egregious case of a long-term mapping doing
2732  * so.
2733  *
2734  * This function cannot be as thorough as that one as the VMA is not available
2735  * in the fast path, so instead we whitelist known good cases and if in doubt,
2736  * fall back to the slow path.
2737  */
gup_fast_folio_allowed(struct folio * folio,unsigned int flags)2738 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2739 {
2740 	bool reject_file_backed = false;
2741 	struct address_space *mapping;
2742 	bool check_secretmem = false;
2743 	unsigned long mapping_flags;
2744 
2745 	/*
2746 	 * If we aren't pinning then no problematic write can occur. A long term
2747 	 * pin is the most egregious case so this is the one we disallow.
2748 	 */
2749 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2750 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2751 		reject_file_backed = true;
2752 
2753 	/* We hold a folio reference, so we can safely access folio fields. */
2754 
2755 	/* secretmem folios are always order-0 folios. */
2756 	if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2757 		check_secretmem = true;
2758 
2759 	if (!reject_file_backed && !check_secretmem)
2760 		return true;
2761 
2762 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2763 		return false;
2764 
2765 	/* hugetlb neither requires dirty-tracking nor can be secretmem. */
2766 	if (folio_test_hugetlb(folio))
2767 		return true;
2768 
2769 	/*
2770 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2771 	 * cannot proceed, which means no actions performed under RCU can
2772 	 * proceed either.
2773 	 *
2774 	 * inodes and thus their mappings are freed under RCU, which means the
2775 	 * mapping cannot be freed beneath us and thus we can safely dereference
2776 	 * it.
2777 	 */
2778 	lockdep_assert_irqs_disabled();
2779 
2780 	/*
2781 	 * However, there may be operations which _alter_ the mapping, so ensure
2782 	 * we read it once and only once.
2783 	 */
2784 	mapping = READ_ONCE(folio->mapping);
2785 
2786 	/*
2787 	 * The mapping may have been truncated, in any case we cannot determine
2788 	 * if this mapping is safe - fall back to slow path to determine how to
2789 	 * proceed.
2790 	 */
2791 	if (!mapping)
2792 		return false;
2793 
2794 	/* Anonymous folios pose no problem. */
2795 	mapping_flags = (unsigned long)mapping & FOLIO_MAPPING_FLAGS;
2796 	if (mapping_flags)
2797 		return mapping_flags & FOLIO_MAPPING_ANON;
2798 
2799 	/*
2800 	 * At this point, we know the mapping is non-null and points to an
2801 	 * address_space object.
2802 	 */
2803 	if (check_secretmem && secretmem_mapping(mapping))
2804 		return false;
2805 	/* The only remaining allowed file system is shmem. */
2806 	return !reject_file_backed || shmem_mapping(mapping);
2807 }
2808 
gup_fast_undo_dev_pagemap(int * nr,int nr_start,unsigned int flags,struct page ** pages)2809 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2810 		unsigned int flags, struct page **pages)
2811 {
2812 	while ((*nr) - nr_start) {
2813 		struct folio *folio = page_folio(pages[--(*nr)]);
2814 
2815 		folio_clear_referenced(folio);
2816 		gup_put_folio(folio, 1, flags);
2817 	}
2818 }
2819 
2820 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2821 /*
2822  * GUP-fast relies on pte change detection to avoid concurrent pgtable
2823  * operations.
2824  *
2825  * To pin the page, GUP-fast needs to do below in order:
2826  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2827  *
2828  * For the rest of pgtable operations where pgtable updates can be racy
2829  * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2830  * is pinned.
2831  *
2832  * Above will work for all pte-level operations, including THP split.
2833  *
2834  * For THP collapse, it's a bit more complicated because GUP-fast may be
2835  * walking a pgtable page that is being freed (pte is still valid but pmd
2836  * can be cleared already).  To avoid race in such condition, we need to
2837  * also check pmd here to make sure pmd doesn't change (corresponds to
2838  * pmdp_collapse_flush() in the THP collapse code path).
2839  */
gup_fast_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2840 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2841 		unsigned long end, unsigned int flags, struct page **pages,
2842 		int *nr)
2843 {
2844 	int ret = 0;
2845 	pte_t *ptep, *ptem;
2846 
2847 	ptem = ptep = pte_offset_map(&pmd, addr);
2848 	if (!ptep)
2849 		return 0;
2850 	do {
2851 		pte_t pte = ptep_get_lockless(ptep);
2852 		struct page *page;
2853 		struct folio *folio;
2854 
2855 		/*
2856 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2857 		 * pte_access_permitted() better should reject these pages
2858 		 * either way: otherwise, GUP-fast might succeed in
2859 		 * cases where ordinary GUP would fail due to VMA access
2860 		 * permissions.
2861 		 */
2862 		if (pte_protnone(pte))
2863 			goto pte_unmap;
2864 
2865 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2866 			goto pte_unmap;
2867 
2868 		if (pte_special(pte))
2869 			goto pte_unmap;
2870 
2871 		/* If it's not marked as special it must have a valid memmap. */
2872 		VM_WARN_ON_ONCE(!pfn_valid(pte_pfn(pte)));
2873 		page = pte_page(pte);
2874 
2875 		folio = try_grab_folio_fast(page, 1, flags);
2876 		if (!folio)
2877 			goto pte_unmap;
2878 
2879 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2880 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2881 			gup_put_folio(folio, 1, flags);
2882 			goto pte_unmap;
2883 		}
2884 
2885 		if (!gup_fast_folio_allowed(folio, flags)) {
2886 			gup_put_folio(folio, 1, flags);
2887 			goto pte_unmap;
2888 		}
2889 
2890 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2891 			gup_put_folio(folio, 1, flags);
2892 			goto pte_unmap;
2893 		}
2894 
2895 		/*
2896 		 * We need to make the page accessible if and only if we are
2897 		 * going to access its content (the FOLL_PIN case).  Please
2898 		 * see Documentation/core-api/pin_user_pages.rst for
2899 		 * details.
2900 		 */
2901 		if ((flags & FOLL_PIN) && arch_make_folio_accessible(folio)) {
2902 			gup_put_folio(folio, 1, flags);
2903 			goto pte_unmap;
2904 		}
2905 		folio_set_referenced(folio);
2906 		pages[*nr] = page;
2907 		(*nr)++;
2908 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2909 
2910 	ret = 1;
2911 
2912 pte_unmap:
2913 	pte_unmap(ptem);
2914 	return ret;
2915 }
2916 #else
2917 
2918 /*
2919  * If we can't determine whether or not a pte is special, then fail immediately
2920  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2921  * to be special.
2922  *
2923  * For a futex to be placed on a THP tail page, get_futex_key requires a
2924  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2925  * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2926  */
gup_fast_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2927 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2928 		unsigned long end, unsigned int flags, struct page **pages,
2929 		int *nr)
2930 {
2931 	return 0;
2932 }
2933 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2934 
gup_fast_pmd_leaf(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2935 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2936 		unsigned long end, unsigned int flags, struct page **pages,
2937 		int *nr)
2938 {
2939 	struct page *page;
2940 	struct folio *folio;
2941 	int refs;
2942 
2943 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2944 		return 0;
2945 
2946 	if (pmd_special(orig))
2947 		return 0;
2948 
2949 	refs = (end - addr) >> PAGE_SHIFT;
2950 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2951 
2952 	folio = try_grab_folio_fast(page, refs, flags);
2953 	if (!folio)
2954 		return 0;
2955 
2956 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2957 		gup_put_folio(folio, refs, flags);
2958 		return 0;
2959 	}
2960 
2961 	if (!gup_fast_folio_allowed(folio, flags)) {
2962 		gup_put_folio(folio, refs, flags);
2963 		return 0;
2964 	}
2965 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2966 		gup_put_folio(folio, refs, flags);
2967 		return 0;
2968 	}
2969 
2970 	pages += *nr;
2971 	*nr += refs;
2972 	for (; refs; refs--)
2973 		*(pages++) = page++;
2974 	folio_set_referenced(folio);
2975 	return 1;
2976 }
2977 
gup_fast_pud_leaf(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2978 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
2979 		unsigned long end, unsigned int flags, struct page **pages,
2980 		int *nr)
2981 {
2982 	struct page *page;
2983 	struct folio *folio;
2984 	int refs;
2985 
2986 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2987 		return 0;
2988 
2989 	if (pud_special(orig))
2990 		return 0;
2991 
2992 	refs = (end - addr) >> PAGE_SHIFT;
2993 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2994 
2995 	folio = try_grab_folio_fast(page, refs, flags);
2996 	if (!folio)
2997 		return 0;
2998 
2999 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3000 		gup_put_folio(folio, refs, flags);
3001 		return 0;
3002 	}
3003 
3004 	if (!gup_fast_folio_allowed(folio, flags)) {
3005 		gup_put_folio(folio, refs, flags);
3006 		return 0;
3007 	}
3008 
3009 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3010 		gup_put_folio(folio, refs, flags);
3011 		return 0;
3012 	}
3013 
3014 	pages += *nr;
3015 	*nr += refs;
3016 	for (; refs; refs--)
3017 		*(pages++) = page++;
3018 	folio_set_referenced(folio);
3019 	return 1;
3020 }
3021 
gup_fast_pmd_range(pud_t * pudp,pud_t pud,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3022 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3023 		unsigned long end, unsigned int flags, struct page **pages,
3024 		int *nr)
3025 {
3026 	unsigned long next;
3027 	pmd_t *pmdp;
3028 
3029 	pmdp = pmd_offset_lockless(pudp, pud, addr);
3030 	do {
3031 		pmd_t pmd = pmdp_get_lockless(pmdp);
3032 
3033 		next = pmd_addr_end(addr, end);
3034 		if (!pmd_present(pmd))
3035 			return 0;
3036 
3037 		if (unlikely(pmd_leaf(pmd))) {
3038 			/* See gup_fast_pte_range() */
3039 			if (pmd_protnone(pmd))
3040 				return 0;
3041 
3042 			if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3043 				pages, nr))
3044 				return 0;
3045 
3046 		} else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3047 					       pages, nr))
3048 			return 0;
3049 	} while (pmdp++, addr = next, addr != end);
3050 
3051 	return 1;
3052 }
3053 
gup_fast_pud_range(p4d_t * p4dp,p4d_t p4d,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3054 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3055 		unsigned long end, unsigned int flags, struct page **pages,
3056 		int *nr)
3057 {
3058 	unsigned long next;
3059 	pud_t *pudp;
3060 
3061 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3062 	do {
3063 		pud_t pud = READ_ONCE(*pudp);
3064 
3065 		next = pud_addr_end(addr, end);
3066 		if (unlikely(!pud_present(pud)))
3067 			return 0;
3068 		if (unlikely(pud_leaf(pud))) {
3069 			if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3070 					       pages, nr))
3071 				return 0;
3072 		} else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3073 					       pages, nr))
3074 			return 0;
3075 	} while (pudp++, addr = next, addr != end);
3076 
3077 	return 1;
3078 }
3079 
gup_fast_p4d_range(pgd_t * pgdp,pgd_t pgd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3080 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3081 		unsigned long end, unsigned int flags, struct page **pages,
3082 		int *nr)
3083 {
3084 	unsigned long next;
3085 	p4d_t *p4dp;
3086 
3087 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3088 	do {
3089 		p4d_t p4d = READ_ONCE(*p4dp);
3090 
3091 		next = p4d_addr_end(addr, end);
3092 		if (!p4d_present(p4d))
3093 			return 0;
3094 		BUILD_BUG_ON(p4d_leaf(p4d));
3095 		if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3096 					pages, nr))
3097 			return 0;
3098 	} while (p4dp++, addr = next, addr != end);
3099 
3100 	return 1;
3101 }
3102 
gup_fast_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3103 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3104 		unsigned int flags, struct page **pages, int *nr)
3105 {
3106 	unsigned long next;
3107 	pgd_t *pgdp;
3108 
3109 	pgdp = pgd_offset(current->mm, addr);
3110 	do {
3111 		pgd_t pgd = READ_ONCE(*pgdp);
3112 
3113 		next = pgd_addr_end(addr, end);
3114 		if (pgd_none(pgd))
3115 			return;
3116 		BUILD_BUG_ON(pgd_leaf(pgd));
3117 		if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3118 					pages, nr))
3119 			return;
3120 	} while (pgdp++, addr = next, addr != end);
3121 }
3122 #else
gup_fast_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3123 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3124 		unsigned int flags, struct page **pages, int *nr)
3125 {
3126 }
3127 #endif /* CONFIG_HAVE_GUP_FAST */
3128 
3129 #ifndef gup_fast_permitted
3130 /*
3131  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3132  * we need to fall back to the slow version:
3133  */
gup_fast_permitted(unsigned long start,unsigned long end)3134 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3135 {
3136 	return true;
3137 }
3138 #endif
3139 
gup_fast(unsigned long start,unsigned long end,unsigned int gup_flags,struct page ** pages)3140 static unsigned long gup_fast(unsigned long start, unsigned long end,
3141 		unsigned int gup_flags, struct page **pages)
3142 {
3143 	unsigned long flags;
3144 	int nr_pinned = 0;
3145 	unsigned seq;
3146 
3147 	if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3148 	    !gup_fast_permitted(start, end))
3149 		return 0;
3150 
3151 	if (gup_flags & FOLL_PIN) {
3152 		if (!raw_seqcount_try_begin(&current->mm->write_protect_seq, seq))
3153 			return 0;
3154 	}
3155 
3156 	/*
3157 	 * Disable interrupts. The nested form is used, in order to allow full,
3158 	 * general purpose use of this routine.
3159 	 *
3160 	 * With interrupts disabled, we block page table pages from being freed
3161 	 * from under us. See struct mmu_table_batch comments in
3162 	 * include/asm-generic/tlb.h for more details.
3163 	 *
3164 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3165 	 * that come from callers of tlb_remove_table_sync_one().
3166 	 */
3167 	local_irq_save(flags);
3168 	gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3169 	local_irq_restore(flags);
3170 
3171 	/*
3172 	 * When pinning pages for DMA there could be a concurrent write protect
3173 	 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3174 	 */
3175 	if (gup_flags & FOLL_PIN) {
3176 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3177 			gup_fast_unpin_user_pages(pages, nr_pinned);
3178 			return 0;
3179 		} else {
3180 			sanity_check_pinned_pages(pages, nr_pinned);
3181 		}
3182 	}
3183 	return nr_pinned;
3184 }
3185 
gup_fast_fallback(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)3186 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3187 		unsigned int gup_flags, struct page **pages)
3188 {
3189 	unsigned long len, end;
3190 	unsigned long nr_pinned;
3191 	int locked = 0;
3192 	int ret;
3193 
3194 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3195 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3196 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3197 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3198 		return -EINVAL;
3199 
3200 	if (gup_flags & FOLL_PIN)
3201 		mm_set_has_pinned_flag(current->mm);
3202 
3203 	if (!(gup_flags & FOLL_FAST_ONLY))
3204 		might_lock_read(&current->mm->mmap_lock);
3205 
3206 	start = untagged_addr(start) & PAGE_MASK;
3207 	len = nr_pages << PAGE_SHIFT;
3208 	if (check_add_overflow(start, len, &end))
3209 		return -EOVERFLOW;
3210 	if (end > TASK_SIZE_MAX)
3211 		return -EFAULT;
3212 
3213 	nr_pinned = gup_fast(start, end, gup_flags, pages);
3214 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3215 		return nr_pinned;
3216 
3217 	/* Slow path: try to get the remaining pages with get_user_pages */
3218 	start += nr_pinned << PAGE_SHIFT;
3219 	pages += nr_pinned;
3220 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3221 				    pages, &locked,
3222 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3223 	if (ret < 0) {
3224 		/*
3225 		 * The caller has to unpin the pages we already pinned so
3226 		 * returning -errno is not an option
3227 		 */
3228 		if (nr_pinned)
3229 			return nr_pinned;
3230 		return ret;
3231 	}
3232 	return ret + nr_pinned;
3233 }
3234 
3235 /**
3236  * get_user_pages_fast_only() - pin user pages in memory
3237  * @start:      starting user address
3238  * @nr_pages:   number of pages from start to pin
3239  * @gup_flags:  flags modifying pin behaviour
3240  * @pages:      array that receives pointers to the pages pinned.
3241  *              Should be at least nr_pages long.
3242  *
3243  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3244  * the regular GUP.
3245  *
3246  * If the architecture does not support this function, simply return with no
3247  * pages pinned.
3248  *
3249  * Careful, careful! COW breaking can go either way, so a non-write
3250  * access can get ambiguous page results. If you call this function without
3251  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3252  */
get_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3253 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3254 			     unsigned int gup_flags, struct page **pages)
3255 {
3256 	/*
3257 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3258 	 * because gup fast is always a "pin with a +1 page refcount" request.
3259 	 *
3260 	 * FOLL_FAST_ONLY is required in order to match the API description of
3261 	 * this routine: no fall back to regular ("slow") GUP.
3262 	 */
3263 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3264 			       FOLL_GET | FOLL_FAST_ONLY))
3265 		return -EINVAL;
3266 
3267 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3268 }
3269 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3270 
3271 /**
3272  * get_user_pages_fast() - pin user pages in memory
3273  * @start:      starting user address
3274  * @nr_pages:   number of pages from start to pin
3275  * @gup_flags:  flags modifying pin behaviour
3276  * @pages:      array that receives pointers to the pages pinned.
3277  *              Should be at least nr_pages long.
3278  *
3279  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3280  * If not successful, it will fall back to taking the lock and
3281  * calling get_user_pages().
3282  *
3283  * Returns number of pages pinned. This may be fewer than the number requested.
3284  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3285  * -errno.
3286  */
get_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3287 int get_user_pages_fast(unsigned long start, int nr_pages,
3288 			unsigned int gup_flags, struct page **pages)
3289 {
3290 	/*
3291 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3292 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3293 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3294 	 * request.
3295 	 */
3296 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3297 		return -EINVAL;
3298 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3299 }
3300 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3301 
3302 /**
3303  * pin_user_pages_fast() - pin user pages in memory without taking locks
3304  *
3305  * @start:      starting user address
3306  * @nr_pages:   number of pages from start to pin
3307  * @gup_flags:  flags modifying pin behaviour
3308  * @pages:      array that receives pointers to the pages pinned.
3309  *              Should be at least nr_pages long.
3310  *
3311  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3312  * get_user_pages_fast() for documentation on the function arguments, because
3313  * the arguments here are identical.
3314  *
3315  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3316  * see Documentation/core-api/pin_user_pages.rst for further details.
3317  *
3318  * Note that if a zero_page is amongst the returned pages, it will not have
3319  * pins in it and unpin_user_page() will not remove pins from it.
3320  */
pin_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3321 int pin_user_pages_fast(unsigned long start, int nr_pages,
3322 			unsigned int gup_flags, struct page **pages)
3323 {
3324 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3325 		return -EINVAL;
3326 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3327 }
3328 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3329 
3330 /**
3331  * pin_user_pages_remote() - pin pages of a remote process
3332  *
3333  * @mm:		mm_struct of target mm
3334  * @start:	starting user address
3335  * @nr_pages:	number of pages from start to pin
3336  * @gup_flags:	flags modifying lookup behaviour
3337  * @pages:	array that receives pointers to the pages pinned.
3338  *		Should be at least nr_pages long.
3339  * @locked:	pointer to lock flag indicating whether lock is held and
3340  *		subsequently whether VM_FAULT_RETRY functionality can be
3341  *		utilised. Lock must initially be held.
3342  *
3343  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3344  * get_user_pages_remote() for documentation on the function arguments, because
3345  * the arguments here are identical.
3346  *
3347  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3348  * see Documentation/core-api/pin_user_pages.rst for details.
3349  *
3350  * Note that if a zero_page is amongst the returned pages, it will not have
3351  * pins in it and unpin_user_page*() will not remove pins from it.
3352  */
pin_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)3353 long pin_user_pages_remote(struct mm_struct *mm,
3354 			   unsigned long start, unsigned long nr_pages,
3355 			   unsigned int gup_flags, struct page **pages,
3356 			   int *locked)
3357 {
3358 	int local_locked = 1;
3359 
3360 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3361 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3362 		return 0;
3363 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3364 				     locked ? locked : &local_locked,
3365 				     gup_flags);
3366 }
3367 EXPORT_SYMBOL(pin_user_pages_remote);
3368 
3369 /**
3370  * pin_user_pages() - pin user pages in memory for use by other devices
3371  *
3372  * @start:	starting user address
3373  * @nr_pages:	number of pages from start to pin
3374  * @gup_flags:	flags modifying lookup behaviour
3375  * @pages:	array that receives pointers to the pages pinned.
3376  *		Should be at least nr_pages long.
3377  *
3378  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3379  * FOLL_PIN is set.
3380  *
3381  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3382  * see Documentation/core-api/pin_user_pages.rst for details.
3383  *
3384  * Note that if a zero_page is amongst the returned pages, it will not have
3385  * pins in it and unpin_user_page*() will not remove pins from it.
3386  */
pin_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)3387 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3388 		    unsigned int gup_flags, struct page **pages)
3389 {
3390 	int locked = 1;
3391 
3392 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3393 		return 0;
3394 	return __gup_longterm_locked(current->mm, start, nr_pages,
3395 				     pages, &locked, gup_flags);
3396 }
3397 EXPORT_SYMBOL(pin_user_pages);
3398 
3399 /*
3400  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3401  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3402  * FOLL_PIN and rejects FOLL_GET.
3403  *
3404  * Note that if a zero_page is amongst the returned pages, it will not have
3405  * pins in it and unpin_user_page*() will not remove pins from it.
3406  */
pin_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)3407 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3408 			     struct page **pages, unsigned int gup_flags)
3409 {
3410 	int locked = 0;
3411 
3412 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3413 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3414 		return 0;
3415 
3416 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3417 				     &locked, gup_flags);
3418 }
3419 EXPORT_SYMBOL(pin_user_pages_unlocked);
3420 
3421 /**
3422  * memfd_pin_folios() - pin folios associated with a memfd
3423  * @memfd:      the memfd whose folios are to be pinned
3424  * @start:      the first memfd offset
3425  * @end:        the last memfd offset (inclusive)
3426  * @folios:     array that receives pointers to the folios pinned
3427  * @max_folios: maximum number of entries in @folios
3428  * @offset:     the offset into the first folio
3429  *
3430  * Attempt to pin folios associated with a memfd in the contiguous range
3431  * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3432  * the folios can either be found in the page cache or need to be allocated
3433  * if necessary. Once the folios are located, they are all pinned via
3434  * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3435  * And, eventually, these pinned folios must be released either using
3436  * unpin_folios() or unpin_folio().
3437  *
3438  * It must be noted that the folios may be pinned for an indefinite amount
3439  * of time. And, in most cases, the duration of time they may stay pinned
3440  * would be controlled by the userspace. This behavior is effectively the
3441  * same as using FOLL_LONGTERM with other GUP APIs.
3442  *
3443  * Returns number of folios pinned, which could be less than @max_folios
3444  * as it depends on the folio sizes that cover the range [start, end].
3445  * If no folios were pinned, it returns -errno.
3446  */
memfd_pin_folios(struct file * memfd,loff_t start,loff_t end,struct folio ** folios,unsigned int max_folios,pgoff_t * offset)3447 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3448 		      struct folio **folios, unsigned int max_folios,
3449 		      pgoff_t *offset)
3450 {
3451 	unsigned int flags, nr_folios, nr_found;
3452 	unsigned int i, pgshift = PAGE_SHIFT;
3453 	pgoff_t start_idx, end_idx;
3454 	struct folio *folio = NULL;
3455 	struct folio_batch fbatch;
3456 	struct hstate *h;
3457 	long ret = -EINVAL;
3458 
3459 	if (start < 0 || start > end || !max_folios)
3460 		return -EINVAL;
3461 
3462 	if (!memfd)
3463 		return -EINVAL;
3464 
3465 	if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3466 		return -EINVAL;
3467 
3468 	if (end >= i_size_read(file_inode(memfd)))
3469 		return -EINVAL;
3470 
3471 	if (is_file_hugepages(memfd)) {
3472 		h = hstate_file(memfd);
3473 		pgshift = huge_page_shift(h);
3474 	}
3475 
3476 	flags = memalloc_pin_save();
3477 	do {
3478 		nr_folios = 0;
3479 		start_idx = start >> pgshift;
3480 		end_idx = end >> pgshift;
3481 		if (is_file_hugepages(memfd)) {
3482 			start_idx <<= huge_page_order(h);
3483 			end_idx <<= huge_page_order(h);
3484 		}
3485 
3486 		folio_batch_init(&fbatch);
3487 		while (start_idx <= end_idx && nr_folios < max_folios) {
3488 			/*
3489 			 * In most cases, we should be able to find the folios
3490 			 * in the page cache. If we cannot find them for some
3491 			 * reason, we try to allocate them and add them to the
3492 			 * page cache.
3493 			 */
3494 			nr_found = filemap_get_folios_contig(memfd->f_mapping,
3495 							     &start_idx,
3496 							     end_idx,
3497 							     &fbatch);
3498 			if (folio) {
3499 				folio_put(folio);
3500 				folio = NULL;
3501 			}
3502 
3503 			for (i = 0; i < nr_found; i++) {
3504 				folio = fbatch.folios[i];
3505 
3506 				if (try_grab_folio(folio, 1, FOLL_PIN)) {
3507 					folio_batch_release(&fbatch);
3508 					ret = -EINVAL;
3509 					goto err;
3510 				}
3511 
3512 				if (nr_folios == 0)
3513 					*offset = offset_in_folio(folio, start);
3514 
3515 				folios[nr_folios] = folio;
3516 				if (++nr_folios == max_folios)
3517 					break;
3518 			}
3519 
3520 			folio = NULL;
3521 			folio_batch_release(&fbatch);
3522 			if (!nr_found) {
3523 				folio = memfd_alloc_folio(memfd, start_idx);
3524 				if (IS_ERR(folio)) {
3525 					ret = PTR_ERR(folio);
3526 					if (ret != -EEXIST)
3527 						goto err;
3528 					folio = NULL;
3529 				}
3530 			}
3531 		}
3532 
3533 		ret = check_and_migrate_movable_folios(nr_folios, folios);
3534 	} while (ret == -EAGAIN);
3535 
3536 	memalloc_pin_restore(flags);
3537 	return ret ? ret : nr_folios;
3538 err:
3539 	memalloc_pin_restore(flags);
3540 	unpin_folios(folios, nr_folios);
3541 
3542 	return ret;
3543 }
3544 EXPORT_SYMBOL_GPL(memfd_pin_folios);
3545 
3546 /**
3547  * folio_add_pins() - add pins to an already-pinned folio
3548  * @folio: the folio to add more pins to
3549  * @pins: number of pins to add
3550  *
3551  * Try to add more pins to an already-pinned folio. The semantics
3552  * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot
3553  * be changed.
3554  *
3555  * This function is helpful when having obtained a pin on a large folio
3556  * using memfd_pin_folios(), but wanting to logically unpin parts
3557  * (e.g., individual pages) of the folio later, for example, using
3558  * unpin_user_page_range_dirty_lock().
3559  *
3560  * This is not the right interface to initially pin a folio.
3561  */
folio_add_pins(struct folio * folio,unsigned int pins)3562 int folio_add_pins(struct folio *folio, unsigned int pins)
3563 {
3564 	VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio));
3565 
3566 	return try_grab_folio(folio, pins, FOLL_PIN);
3567 }
3568 EXPORT_SYMBOL_GPL(folio_add_pins);
3569