1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 #include <linux/buffer_head.h> 40 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/pagemap.h> 45 46 /* How many pages do we try to swap or page in/out together? As a power of 2 */ 47 int page_cluster; 48 static const int page_cluster_max = 31; 49 50 struct cpu_fbatches { 51 /* 52 * The following folio batches are grouped together because they are protected 53 * by disabling preemption (and interrupts remain enabled). 54 */ 55 local_lock_t lock; 56 struct folio_batch lru_add; 57 struct folio_batch lru_deactivate_file; 58 struct folio_batch lru_deactivate; 59 struct folio_batch lru_lazyfree; 60 #ifdef CONFIG_SMP 61 struct folio_batch lru_activate; 62 #endif 63 /* Protecting the following batches which require disabling interrupts */ 64 local_lock_t lock_irq; 65 struct folio_batch lru_move_tail; 66 }; 67 68 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = { 69 .lock = INIT_LOCAL_LOCK(lock), 70 .lock_irq = INIT_LOCAL_LOCK(lock_irq), 71 }; 72 73 static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp, 74 unsigned long *flagsp) 75 { 76 if (folio_test_lru(folio)) { 77 folio_lruvec_relock_irqsave(folio, lruvecp, flagsp); 78 lruvec_del_folio(*lruvecp, folio); 79 __folio_clear_lru_flags(folio); 80 } 81 } 82 83 /* 84 * This path almost never happens for VM activity - pages are normally freed 85 * in batches. But it gets used by networking - and for compound pages. 86 */ 87 static void page_cache_release(struct folio *folio) 88 { 89 struct lruvec *lruvec = NULL; 90 unsigned long flags; 91 92 __page_cache_release(folio, &lruvec, &flags); 93 if (lruvec) 94 unlock_page_lruvec_irqrestore(lruvec, flags); 95 } 96 97 void __folio_put(struct folio *folio) 98 { 99 if (unlikely(folio_is_zone_device(folio))) { 100 free_zone_device_folio(folio); 101 return; 102 } 103 104 if (folio_test_hugetlb(folio)) { 105 free_huge_folio(folio); 106 return; 107 } 108 109 page_cache_release(folio); 110 folio_unqueue_deferred_split(folio); 111 mem_cgroup_uncharge(folio); 112 free_frozen_pages(&folio->page, folio_order(folio)); 113 } 114 EXPORT_SYMBOL(__folio_put); 115 116 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio); 117 118 static void lru_add(struct lruvec *lruvec, struct folio *folio) 119 { 120 int was_unevictable = folio_test_clear_unevictable(folio); 121 long nr_pages = folio_nr_pages(folio); 122 123 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 124 125 /* 126 * Is an smp_mb__after_atomic() still required here, before 127 * folio_evictable() tests the mlocked flag, to rule out the possibility 128 * of stranding an evictable folio on an unevictable LRU? I think 129 * not, because __munlock_folio() only clears the mlocked flag 130 * while the LRU lock is held. 131 * 132 * (That is not true of __page_cache_release(), and not necessarily 133 * true of folios_put(): but those only clear the mlocked flag after 134 * folio_put_testzero() has excluded any other users of the folio.) 135 */ 136 if (folio_evictable(folio)) { 137 if (was_unevictable) 138 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 139 } else { 140 folio_clear_active(folio); 141 folio_set_unevictable(folio); 142 /* 143 * folio->mlock_count = !!folio_test_mlocked(folio)? 144 * But that leaves __mlock_folio() in doubt whether another 145 * actor has already counted the mlock or not. Err on the 146 * safe side, underestimate, let page reclaim fix it, rather 147 * than leaving a page on the unevictable LRU indefinitely. 148 */ 149 folio->mlock_count = 0; 150 if (!was_unevictable) 151 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 152 } 153 154 lruvec_add_folio(lruvec, folio); 155 trace_mm_lru_insertion(folio); 156 } 157 158 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn) 159 { 160 int i; 161 struct lruvec *lruvec = NULL; 162 unsigned long flags = 0; 163 164 for (i = 0; i < folio_batch_count(fbatch); i++) { 165 struct folio *folio = fbatch->folios[i]; 166 167 folio_lruvec_relock_irqsave(folio, &lruvec, &flags); 168 move_fn(lruvec, folio); 169 170 folio_set_lru(folio); 171 } 172 173 if (lruvec) 174 unlock_page_lruvec_irqrestore(lruvec, flags); 175 folios_put(fbatch); 176 } 177 178 static void __folio_batch_add_and_move(struct folio_batch __percpu *fbatch, 179 struct folio *folio, move_fn_t move_fn, 180 bool on_lru, bool disable_irq) 181 { 182 unsigned long flags; 183 184 if (on_lru && !folio_test_clear_lru(folio)) 185 return; 186 187 folio_get(folio); 188 189 if (disable_irq) 190 local_lock_irqsave(&cpu_fbatches.lock_irq, flags); 191 else 192 local_lock(&cpu_fbatches.lock); 193 194 if (!folio_batch_add(this_cpu_ptr(fbatch), folio) || folio_test_large(folio) || 195 lru_cache_disabled()) 196 folio_batch_move_lru(this_cpu_ptr(fbatch), move_fn); 197 198 if (disable_irq) 199 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags); 200 else 201 local_unlock(&cpu_fbatches.lock); 202 } 203 204 #define folio_batch_add_and_move(folio, op, on_lru) \ 205 __folio_batch_add_and_move( \ 206 &cpu_fbatches.op, \ 207 folio, \ 208 op, \ 209 on_lru, \ 210 offsetof(struct cpu_fbatches, op) >= offsetof(struct cpu_fbatches, lock_irq) \ 211 ) 212 213 static void lru_move_tail(struct lruvec *lruvec, struct folio *folio) 214 { 215 if (folio_test_unevictable(folio)) 216 return; 217 218 lruvec_del_folio(lruvec, folio); 219 folio_clear_active(folio); 220 lruvec_add_folio_tail(lruvec, folio); 221 __count_vm_events(PGROTATED, folio_nr_pages(folio)); 222 } 223 224 /* 225 * Writeback is about to end against a folio which has been marked for 226 * immediate reclaim. If it still appears to be reclaimable, move it 227 * to the tail of the inactive list. 228 * 229 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races. 230 */ 231 void folio_rotate_reclaimable(struct folio *folio) 232 { 233 if (folio_test_locked(folio) || folio_test_dirty(folio) || 234 folio_test_unevictable(folio)) 235 return; 236 237 folio_batch_add_and_move(folio, lru_move_tail, true); 238 } 239 240 void lru_note_cost_unlock_irq(struct lruvec *lruvec, bool file, 241 unsigned int nr_io, unsigned int nr_rotated) 242 __releases(lruvec->lru_lock) 243 { 244 unsigned long cost; 245 246 /* 247 * Reflect the relative cost of incurring IO and spending CPU 248 * time on rotations. This doesn't attempt to make a precise 249 * comparison, it just says: if reloads are about comparable 250 * between the LRU lists, or rotations are overwhelmingly 251 * different between them, adjust scan balance for CPU work. 252 */ 253 cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated; 254 if (!cost) { 255 spin_unlock_irq(&lruvec->lru_lock); 256 return; 257 } 258 259 for (;;) { 260 unsigned long lrusize; 261 262 /* Record cost event */ 263 if (file) 264 lruvec->file_cost += cost; 265 else 266 lruvec->anon_cost += cost; 267 268 /* 269 * Decay previous events 270 * 271 * Because workloads change over time (and to avoid 272 * overflow) we keep these statistics as a floating 273 * average, which ends up weighing recent refaults 274 * more than old ones. 275 */ 276 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 277 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 278 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 279 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 280 281 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 282 lruvec->file_cost /= 2; 283 lruvec->anon_cost /= 2; 284 } 285 286 spin_unlock_irq(&lruvec->lru_lock); 287 lruvec = parent_lruvec(lruvec); 288 if (!lruvec) 289 break; 290 spin_lock_irq(&lruvec->lru_lock); 291 } 292 } 293 294 void lru_note_cost_refault(struct folio *folio) 295 { 296 struct lruvec *lruvec; 297 298 lruvec = folio_lruvec_lock_irq(folio); 299 lru_note_cost_unlock_irq(lruvec, folio_is_file_lru(folio), 300 folio_nr_pages(folio), 0); 301 } 302 303 static void lru_activate(struct lruvec *lruvec, struct folio *folio) 304 { 305 long nr_pages = folio_nr_pages(folio); 306 307 if (folio_test_active(folio) || folio_test_unevictable(folio)) 308 return; 309 310 311 lruvec_del_folio(lruvec, folio); 312 folio_set_active(folio); 313 lruvec_add_folio(lruvec, folio); 314 trace_mm_lru_activate(folio); 315 316 __count_vm_events(PGACTIVATE, nr_pages); 317 count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages); 318 } 319 320 #ifdef CONFIG_SMP 321 static void folio_activate_drain(int cpu) 322 { 323 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.lru_activate, cpu); 324 325 if (folio_batch_count(fbatch)) 326 folio_batch_move_lru(fbatch, lru_activate); 327 } 328 329 void folio_activate(struct folio *folio) 330 { 331 if (folio_test_active(folio) || folio_test_unevictable(folio)) 332 return; 333 334 folio_batch_add_and_move(folio, lru_activate, true); 335 } 336 337 #else 338 static inline void folio_activate_drain(int cpu) 339 { 340 } 341 342 void folio_activate(struct folio *folio) 343 { 344 struct lruvec *lruvec; 345 346 if (!folio_test_clear_lru(folio)) 347 return; 348 349 lruvec = folio_lruvec_lock_irq(folio); 350 lru_activate(lruvec, folio); 351 unlock_page_lruvec_irq(lruvec); 352 folio_set_lru(folio); 353 } 354 #endif 355 356 static void __lru_cache_activate_folio(struct folio *folio) 357 { 358 struct folio_batch *fbatch; 359 int i; 360 361 local_lock(&cpu_fbatches.lock); 362 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add); 363 364 /* 365 * Search backwards on the optimistic assumption that the folio being 366 * activated has just been added to this batch. Note that only 367 * the local batch is examined as a !LRU folio could be in the 368 * process of being released, reclaimed, migrated or on a remote 369 * batch that is currently being drained. Furthermore, marking 370 * a remote batch's folio active potentially hits a race where 371 * a folio is marked active just after it is added to the inactive 372 * list causing accounting errors and BUG_ON checks to trigger. 373 */ 374 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) { 375 struct folio *batch_folio = fbatch->folios[i]; 376 377 if (batch_folio == folio) { 378 folio_set_active(folio); 379 break; 380 } 381 } 382 383 local_unlock(&cpu_fbatches.lock); 384 } 385 386 #ifdef CONFIG_LRU_GEN 387 388 static void lru_gen_inc_refs(struct folio *folio) 389 { 390 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 391 392 if (folio_test_unevictable(folio)) 393 return; 394 395 /* see the comment on LRU_REFS_FLAGS */ 396 if (!folio_test_referenced(folio)) { 397 set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced)); 398 return; 399 } 400 401 do { 402 if ((old_flags & LRU_REFS_MASK) == LRU_REFS_MASK) { 403 if (!folio_test_workingset(folio)) 404 folio_set_workingset(folio); 405 return; 406 } 407 408 new_flags = old_flags + BIT(LRU_REFS_PGOFF); 409 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 410 } 411 412 static bool lru_gen_clear_refs(struct folio *folio) 413 { 414 struct lru_gen_folio *lrugen; 415 int gen = folio_lru_gen(folio); 416 int type = folio_is_file_lru(folio); 417 418 if (gen < 0) 419 return true; 420 421 set_mask_bits(&folio->flags, LRU_REFS_FLAGS | BIT(PG_workingset), 0); 422 423 lrugen = &folio_lruvec(folio)->lrugen; 424 /* whether can do without shuffling under the LRU lock */ 425 return gen == lru_gen_from_seq(READ_ONCE(lrugen->min_seq[type])); 426 } 427 428 #else /* !CONFIG_LRU_GEN */ 429 430 static void lru_gen_inc_refs(struct folio *folio) 431 { 432 } 433 434 static bool lru_gen_clear_refs(struct folio *folio) 435 { 436 return false; 437 } 438 439 #endif /* CONFIG_LRU_GEN */ 440 441 /** 442 * folio_mark_accessed - Mark a folio as having seen activity. 443 * @folio: The folio to mark. 444 * 445 * This function will perform one of the following transitions: 446 * 447 * * inactive,unreferenced -> inactive,referenced 448 * * inactive,referenced -> active,unreferenced 449 * * active,unreferenced -> active,referenced 450 * 451 * When a newly allocated folio is not yet visible, so safe for non-atomic ops, 452 * __folio_set_referenced() may be substituted for folio_mark_accessed(). 453 */ 454 void folio_mark_accessed(struct folio *folio) 455 { 456 if (folio_test_dropbehind(folio)) 457 return; 458 if (lru_gen_enabled()) { 459 lru_gen_inc_refs(folio); 460 return; 461 } 462 463 if (!folio_test_referenced(folio)) { 464 folio_set_referenced(folio); 465 } else if (folio_test_unevictable(folio)) { 466 /* 467 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 468 * this list is never rotated or maintained, so marking an 469 * unevictable page accessed has no effect. 470 */ 471 } else if (!folio_test_active(folio)) { 472 /* 473 * If the folio is on the LRU, queue it for activation via 474 * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a 475 * folio_batch, mark it active and it'll be moved to the active 476 * LRU on the next drain. 477 */ 478 if (folio_test_lru(folio)) 479 folio_activate(folio); 480 else 481 __lru_cache_activate_folio(folio); 482 folio_clear_referenced(folio); 483 workingset_activation(folio); 484 } 485 if (folio_test_idle(folio)) 486 folio_clear_idle(folio); 487 } 488 EXPORT_SYMBOL(folio_mark_accessed); 489 490 /** 491 * folio_add_lru - Add a folio to an LRU list. 492 * @folio: The folio to be added to the LRU. 493 * 494 * Queue the folio for addition to the LRU. The decision on whether 495 * to add the page to the [in]active [file|anon] list is deferred until the 496 * folio_batch is drained. This gives a chance for the caller of folio_add_lru() 497 * have the folio added to the active list using folio_mark_accessed(). 498 */ 499 void folio_add_lru(struct folio *folio) 500 { 501 VM_BUG_ON_FOLIO(folio_test_active(folio) && 502 folio_test_unevictable(folio), folio); 503 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 504 505 /* see the comment in lru_gen_folio_seq() */ 506 if (lru_gen_enabled() && !folio_test_unevictable(folio) && 507 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC)) 508 folio_set_active(folio); 509 510 folio_batch_add_and_move(folio, lru_add, false); 511 } 512 EXPORT_SYMBOL(folio_add_lru); 513 514 /** 515 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA. 516 * @folio: The folio to be added to the LRU. 517 * @vma: VMA in which the folio is mapped. 518 * 519 * If the VMA is mlocked, @folio is added to the unevictable list. 520 * Otherwise, it is treated the same way as folio_add_lru(). 521 */ 522 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma) 523 { 524 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 525 526 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED)) 527 mlock_new_folio(folio); 528 else 529 folio_add_lru(folio); 530 } 531 532 /* 533 * If the folio cannot be invalidated, it is moved to the 534 * inactive list to speed up its reclaim. It is moved to the 535 * head of the list, rather than the tail, to give the flusher 536 * threads some time to write it out, as this is much more 537 * effective than the single-page writeout from reclaim. 538 * 539 * If the folio isn't mapped and dirty/writeback, the folio 540 * could be reclaimed asap using the reclaim flag. 541 * 542 * 1. active, mapped folio -> none 543 * 2. active, dirty/writeback folio -> inactive, head, reclaim 544 * 3. inactive, mapped folio -> none 545 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim 546 * 5. inactive, clean -> inactive, tail 547 * 6. Others -> none 548 * 549 * In 4, it moves to the head of the inactive list so the folio is 550 * written out by flusher threads as this is much more efficient 551 * than the single-page writeout from reclaim. 552 */ 553 static void lru_deactivate_file(struct lruvec *lruvec, struct folio *folio) 554 { 555 bool active = folio_test_active(folio) || lru_gen_enabled(); 556 long nr_pages = folio_nr_pages(folio); 557 558 if (folio_test_unevictable(folio)) 559 return; 560 561 /* Some processes are using the folio */ 562 if (folio_mapped(folio)) 563 return; 564 565 lruvec_del_folio(lruvec, folio); 566 folio_clear_active(folio); 567 folio_clear_referenced(folio); 568 569 if (folio_test_writeback(folio) || folio_test_dirty(folio)) { 570 /* 571 * Setting the reclaim flag could race with 572 * folio_end_writeback() and confuse readahead. But the 573 * race window is _really_ small and it's not a critical 574 * problem. 575 */ 576 lruvec_add_folio(lruvec, folio); 577 folio_set_reclaim(folio); 578 } else { 579 /* 580 * The folio's writeback ended while it was in the batch. 581 * We move that folio to the tail of the inactive list. 582 */ 583 lruvec_add_folio_tail(lruvec, folio); 584 __count_vm_events(PGROTATED, nr_pages); 585 } 586 587 if (active) { 588 __count_vm_events(PGDEACTIVATE, nr_pages); 589 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 590 nr_pages); 591 } 592 } 593 594 static void lru_deactivate(struct lruvec *lruvec, struct folio *folio) 595 { 596 long nr_pages = folio_nr_pages(folio); 597 598 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled())) 599 return; 600 601 lruvec_del_folio(lruvec, folio); 602 folio_clear_active(folio); 603 folio_clear_referenced(folio); 604 lruvec_add_folio(lruvec, folio); 605 606 __count_vm_events(PGDEACTIVATE, nr_pages); 607 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages); 608 } 609 610 static void lru_lazyfree(struct lruvec *lruvec, struct folio *folio) 611 { 612 long nr_pages = folio_nr_pages(folio); 613 614 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) || 615 folio_test_swapcache(folio) || folio_test_unevictable(folio)) 616 return; 617 618 lruvec_del_folio(lruvec, folio); 619 folio_clear_active(folio); 620 if (lru_gen_enabled()) 621 lru_gen_clear_refs(folio); 622 else 623 folio_clear_referenced(folio); 624 /* 625 * Lazyfree folios are clean anonymous folios. They have 626 * the swapbacked flag cleared, to distinguish them from normal 627 * anonymous folios 628 */ 629 folio_clear_swapbacked(folio); 630 lruvec_add_folio(lruvec, folio); 631 632 __count_vm_events(PGLAZYFREE, nr_pages); 633 count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages); 634 } 635 636 /* 637 * Drain pages out of the cpu's folio_batch. 638 * Either "cpu" is the current CPU, and preemption has already been 639 * disabled; or "cpu" is being hot-unplugged, and is already dead. 640 */ 641 void lru_add_drain_cpu(int cpu) 642 { 643 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 644 struct folio_batch *fbatch = &fbatches->lru_add; 645 646 if (folio_batch_count(fbatch)) 647 folio_batch_move_lru(fbatch, lru_add); 648 649 fbatch = &fbatches->lru_move_tail; 650 /* Disabling interrupts below acts as a compiler barrier. */ 651 if (data_race(folio_batch_count(fbatch))) { 652 unsigned long flags; 653 654 /* No harm done if a racing interrupt already did this */ 655 local_lock_irqsave(&cpu_fbatches.lock_irq, flags); 656 folio_batch_move_lru(fbatch, lru_move_tail); 657 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags); 658 } 659 660 fbatch = &fbatches->lru_deactivate_file; 661 if (folio_batch_count(fbatch)) 662 folio_batch_move_lru(fbatch, lru_deactivate_file); 663 664 fbatch = &fbatches->lru_deactivate; 665 if (folio_batch_count(fbatch)) 666 folio_batch_move_lru(fbatch, lru_deactivate); 667 668 fbatch = &fbatches->lru_lazyfree; 669 if (folio_batch_count(fbatch)) 670 folio_batch_move_lru(fbatch, lru_lazyfree); 671 672 folio_activate_drain(cpu); 673 } 674 675 /** 676 * deactivate_file_folio() - Deactivate a file folio. 677 * @folio: Folio to deactivate. 678 * 679 * This function hints to the VM that @folio is a good reclaim candidate, 680 * for example if its invalidation fails due to the folio being dirty 681 * or under writeback. 682 * 683 * Context: Caller holds a reference on the folio. 684 */ 685 void deactivate_file_folio(struct folio *folio) 686 { 687 /* Deactivating an unevictable folio will not accelerate reclaim */ 688 if (folio_test_unevictable(folio)) 689 return; 690 691 if (lru_gen_enabled() && lru_gen_clear_refs(folio)) 692 return; 693 694 folio_batch_add_and_move(folio, lru_deactivate_file, true); 695 } 696 697 /* 698 * folio_deactivate - deactivate a folio 699 * @folio: folio to deactivate 700 * 701 * folio_deactivate() moves @folio to the inactive list if @folio was on the 702 * active list and was not unevictable. This is done to accelerate the 703 * reclaim of @folio. 704 */ 705 void folio_deactivate(struct folio *folio) 706 { 707 if (folio_test_unevictable(folio)) 708 return; 709 710 if (lru_gen_enabled() ? lru_gen_clear_refs(folio) : !folio_test_active(folio)) 711 return; 712 713 folio_batch_add_and_move(folio, lru_deactivate, true); 714 } 715 716 /** 717 * folio_mark_lazyfree - make an anon folio lazyfree 718 * @folio: folio to deactivate 719 * 720 * folio_mark_lazyfree() moves @folio to the inactive file list. 721 * This is done to accelerate the reclaim of @folio. 722 */ 723 void folio_mark_lazyfree(struct folio *folio) 724 { 725 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) || 726 folio_test_swapcache(folio) || folio_test_unevictable(folio)) 727 return; 728 729 folio_batch_add_and_move(folio, lru_lazyfree, true); 730 } 731 732 void lru_add_drain(void) 733 { 734 local_lock(&cpu_fbatches.lock); 735 lru_add_drain_cpu(smp_processor_id()); 736 local_unlock(&cpu_fbatches.lock); 737 mlock_drain_local(); 738 } 739 740 /* 741 * It's called from per-cpu workqueue context in SMP case so 742 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on 743 * the same cpu. It shouldn't be a problem in !SMP case since 744 * the core is only one and the locks will disable preemption. 745 */ 746 static void lru_add_and_bh_lrus_drain(void) 747 { 748 local_lock(&cpu_fbatches.lock); 749 lru_add_drain_cpu(smp_processor_id()); 750 local_unlock(&cpu_fbatches.lock); 751 invalidate_bh_lrus_cpu(); 752 mlock_drain_local(); 753 } 754 755 void lru_add_drain_cpu_zone(struct zone *zone) 756 { 757 local_lock(&cpu_fbatches.lock); 758 lru_add_drain_cpu(smp_processor_id()); 759 drain_local_pages(zone); 760 local_unlock(&cpu_fbatches.lock); 761 mlock_drain_local(); 762 } 763 764 #ifdef CONFIG_SMP 765 766 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 767 768 static void lru_add_drain_per_cpu(struct work_struct *dummy) 769 { 770 lru_add_and_bh_lrus_drain(); 771 } 772 773 static bool cpu_needs_drain(unsigned int cpu) 774 { 775 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 776 777 /* Check these in order of likelihood that they're not zero */ 778 return folio_batch_count(&fbatches->lru_add) || 779 folio_batch_count(&fbatches->lru_move_tail) || 780 folio_batch_count(&fbatches->lru_deactivate_file) || 781 folio_batch_count(&fbatches->lru_deactivate) || 782 folio_batch_count(&fbatches->lru_lazyfree) || 783 folio_batch_count(&fbatches->lru_activate) || 784 need_mlock_drain(cpu) || 785 has_bh_in_lru(cpu, NULL); 786 } 787 788 /* 789 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 790 * kworkers being shut down before our page_alloc_cpu_dead callback is 791 * executed on the offlined cpu. 792 * Calling this function with cpu hotplug locks held can actually lead 793 * to obscure indirect dependencies via WQ context. 794 */ 795 static inline void __lru_add_drain_all(bool force_all_cpus) 796 { 797 /* 798 * lru_drain_gen - Global pages generation number 799 * 800 * (A) Definition: global lru_drain_gen = x implies that all generations 801 * 0 < n <= x are already *scheduled* for draining. 802 * 803 * This is an optimization for the highly-contended use case where a 804 * user space workload keeps constantly generating a flow of pages for 805 * each CPU. 806 */ 807 static unsigned int lru_drain_gen; 808 static struct cpumask has_work; 809 static DEFINE_MUTEX(lock); 810 unsigned cpu, this_gen; 811 812 /* 813 * Make sure nobody triggers this path before mm_percpu_wq is fully 814 * initialized. 815 */ 816 if (WARN_ON(!mm_percpu_wq)) 817 return; 818 819 /* 820 * Guarantee folio_batch counter stores visible by this CPU 821 * are visible to other CPUs before loading the current drain 822 * generation. 823 */ 824 smp_mb(); 825 826 /* 827 * (B) Locally cache global LRU draining generation number 828 * 829 * The read barrier ensures that the counter is loaded before the mutex 830 * is taken. It pairs with smp_mb() inside the mutex critical section 831 * at (D). 832 */ 833 this_gen = smp_load_acquire(&lru_drain_gen); 834 835 mutex_lock(&lock); 836 837 /* 838 * (C) Exit the draining operation if a newer generation, from another 839 * lru_add_drain_all(), was already scheduled for draining. Check (A). 840 */ 841 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus)) 842 goto done; 843 844 /* 845 * (D) Increment global generation number 846 * 847 * Pairs with smp_load_acquire() at (B), outside of the critical 848 * section. Use a full memory barrier to guarantee that the 849 * new global drain generation number is stored before loading 850 * folio_batch counters. 851 * 852 * This pairing must be done here, before the for_each_online_cpu loop 853 * below which drains the page vectors. 854 * 855 * Let x, y, and z represent some system CPU numbers, where x < y < z. 856 * Assume CPU #z is in the middle of the for_each_online_cpu loop 857 * below and has already reached CPU #y's per-cpu data. CPU #x comes 858 * along, adds some pages to its per-cpu vectors, then calls 859 * lru_add_drain_all(). 860 * 861 * If the paired barrier is done at any later step, e.g. after the 862 * loop, CPU #x will just exit at (C) and miss flushing out all of its 863 * added pages. 864 */ 865 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 866 smp_mb(); 867 868 cpumask_clear(&has_work); 869 for_each_online_cpu(cpu) { 870 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 871 872 if (cpu_needs_drain(cpu)) { 873 INIT_WORK(work, lru_add_drain_per_cpu); 874 queue_work_on(cpu, mm_percpu_wq, work); 875 __cpumask_set_cpu(cpu, &has_work); 876 } 877 } 878 879 for_each_cpu(cpu, &has_work) 880 flush_work(&per_cpu(lru_add_drain_work, cpu)); 881 882 done: 883 mutex_unlock(&lock); 884 } 885 886 void lru_add_drain_all(void) 887 { 888 __lru_add_drain_all(false); 889 } 890 #else 891 void lru_add_drain_all(void) 892 { 893 lru_add_drain(); 894 } 895 #endif /* CONFIG_SMP */ 896 897 atomic_t lru_disable_count = ATOMIC_INIT(0); 898 899 /* 900 * lru_cache_disable() needs to be called before we start compiling 901 * a list of folios to be migrated using folio_isolate_lru(). 902 * It drains folios on LRU cache and then disable on all cpus until 903 * lru_cache_enable is called. 904 * 905 * Must be paired with a call to lru_cache_enable(). 906 */ 907 void lru_cache_disable(void) 908 { 909 atomic_inc(&lru_disable_count); 910 /* 911 * Readers of lru_disable_count are protected by either disabling 912 * preemption or rcu_read_lock: 913 * 914 * preempt_disable, local_irq_disable [bh_lru_lock()] 915 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT] 916 * preempt_disable [local_lock !CONFIG_PREEMPT_RT] 917 * 918 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on 919 * preempt_disable() regions of code. So any CPU which sees 920 * lru_disable_count = 0 will have exited the critical 921 * section when synchronize_rcu() returns. 922 */ 923 synchronize_rcu_expedited(); 924 #ifdef CONFIG_SMP 925 __lru_add_drain_all(true); 926 #else 927 lru_add_and_bh_lrus_drain(); 928 #endif 929 } 930 931 /** 932 * folios_put_refs - Reduce the reference count on a batch of folios. 933 * @folios: The folios. 934 * @refs: The number of refs to subtract from each folio. 935 * 936 * Like folio_put(), but for a batch of folios. This is more efficient 937 * than writing the loop yourself as it will optimise the locks which need 938 * to be taken if the folios are freed. The folios batch is returned 939 * empty and ready to be reused for another batch; there is no need 940 * to reinitialise it. If @refs is NULL, we subtract one from each 941 * folio refcount. 942 * 943 * Context: May be called in process or interrupt context, but not in NMI 944 * context. May be called while holding a spinlock. 945 */ 946 void folios_put_refs(struct folio_batch *folios, unsigned int *refs) 947 { 948 int i, j; 949 struct lruvec *lruvec = NULL; 950 unsigned long flags = 0; 951 952 for (i = 0, j = 0; i < folios->nr; i++) { 953 struct folio *folio = folios->folios[i]; 954 unsigned int nr_refs = refs ? refs[i] : 1; 955 956 if (is_huge_zero_folio(folio)) 957 continue; 958 959 if (folio_is_zone_device(folio)) { 960 if (lruvec) { 961 unlock_page_lruvec_irqrestore(lruvec, flags); 962 lruvec = NULL; 963 } 964 if (folio_ref_sub_and_test(folio, nr_refs)) 965 free_zone_device_folio(folio); 966 continue; 967 } 968 969 if (!folio_ref_sub_and_test(folio, nr_refs)) 970 continue; 971 972 /* hugetlb has its own memcg */ 973 if (folio_test_hugetlb(folio)) { 974 if (lruvec) { 975 unlock_page_lruvec_irqrestore(lruvec, flags); 976 lruvec = NULL; 977 } 978 free_huge_folio(folio); 979 continue; 980 } 981 folio_unqueue_deferred_split(folio); 982 __page_cache_release(folio, &lruvec, &flags); 983 984 if (j != i) 985 folios->folios[j] = folio; 986 j++; 987 } 988 if (lruvec) 989 unlock_page_lruvec_irqrestore(lruvec, flags); 990 if (!j) { 991 folio_batch_reinit(folios); 992 return; 993 } 994 995 folios->nr = j; 996 mem_cgroup_uncharge_folios(folios); 997 free_unref_folios(folios); 998 } 999 EXPORT_SYMBOL(folios_put_refs); 1000 1001 /** 1002 * release_pages - batched put_page() 1003 * @arg: array of pages to release 1004 * @nr: number of pages 1005 * 1006 * Decrement the reference count on all the pages in @arg. If it 1007 * fell to zero, remove the page from the LRU and free it. 1008 * 1009 * Note that the argument can be an array of pages, encoded pages, 1010 * or folio pointers. We ignore any encoded bits, and turn any of 1011 * them into just a folio that gets free'd. 1012 */ 1013 void release_pages(release_pages_arg arg, int nr) 1014 { 1015 struct folio_batch fbatch; 1016 int refs[PAGEVEC_SIZE]; 1017 struct encoded_page **encoded = arg.encoded_pages; 1018 int i; 1019 1020 folio_batch_init(&fbatch); 1021 for (i = 0; i < nr; i++) { 1022 /* Turn any of the argument types into a folio */ 1023 struct folio *folio = page_folio(encoded_page_ptr(encoded[i])); 1024 1025 /* Is our next entry actually "nr_pages" -> "nr_refs" ? */ 1026 refs[fbatch.nr] = 1; 1027 if (unlikely(encoded_page_flags(encoded[i]) & 1028 ENCODED_PAGE_BIT_NR_PAGES_NEXT)) 1029 refs[fbatch.nr] = encoded_nr_pages(encoded[++i]); 1030 1031 if (folio_batch_add(&fbatch, folio) > 0) 1032 continue; 1033 folios_put_refs(&fbatch, refs); 1034 } 1035 1036 if (fbatch.nr) 1037 folios_put_refs(&fbatch, refs); 1038 } 1039 EXPORT_SYMBOL(release_pages); 1040 1041 /* 1042 * The folios which we're about to release may be in the deferred lru-addition 1043 * queues. That would prevent them from really being freed right now. That's 1044 * OK from a correctness point of view but is inefficient - those folios may be 1045 * cache-warm and we want to give them back to the page allocator ASAP. 1046 * 1047 * So __folio_batch_release() will drain those queues here. 1048 * folio_batch_move_lru() calls folios_put() directly to avoid 1049 * mutual recursion. 1050 */ 1051 void __folio_batch_release(struct folio_batch *fbatch) 1052 { 1053 if (!fbatch->percpu_pvec_drained) { 1054 lru_add_drain(); 1055 fbatch->percpu_pvec_drained = true; 1056 } 1057 folios_put(fbatch); 1058 } 1059 EXPORT_SYMBOL(__folio_batch_release); 1060 1061 /** 1062 * folio_batch_remove_exceptionals() - Prune non-folios from a batch. 1063 * @fbatch: The batch to prune 1064 * 1065 * find_get_entries() fills a batch with both folios and shadow/swap/DAX 1066 * entries. This function prunes all the non-folio entries from @fbatch 1067 * without leaving holes, so that it can be passed on to folio-only batch 1068 * operations. 1069 */ 1070 void folio_batch_remove_exceptionals(struct folio_batch *fbatch) 1071 { 1072 unsigned int i, j; 1073 1074 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) { 1075 struct folio *folio = fbatch->folios[i]; 1076 if (!xa_is_value(folio)) 1077 fbatch->folios[j++] = folio; 1078 } 1079 fbatch->nr = j; 1080 } 1081 1082 static const struct ctl_table swap_sysctl_table[] = { 1083 { 1084 .procname = "page-cluster", 1085 .data = &page_cluster, 1086 .maxlen = sizeof(int), 1087 .mode = 0644, 1088 .proc_handler = proc_dointvec_minmax, 1089 .extra1 = SYSCTL_ZERO, 1090 .extra2 = (void *)&page_cluster_max, 1091 } 1092 }; 1093 1094 /* 1095 * Perform any setup for the swap system 1096 */ 1097 void __init swap_setup(void) 1098 { 1099 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1100 1101 /* Use a smaller cluster for small-memory machines */ 1102 if (megs < 16) 1103 page_cluster = 2; 1104 else 1105 page_cluster = 3; 1106 /* 1107 * Right now other parts of the system means that we 1108 * _really_ don't want to cluster much more 1109 */ 1110 1111 register_sysctl_init("vm", swap_sysctl_table); 1112 } 1113