xref: /linux/mm/swap.c (revision beace86e61e465dba204a268ab3f3377153a4973)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40 
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45 
46 /* How many pages do we try to swap or page in/out together? As a power of 2 */
47 int page_cluster;
48 static const int page_cluster_max = 31;
49 
50 struct cpu_fbatches {
51 	/*
52 	 * The following folio batches are grouped together because they are protected
53 	 * by disabling preemption (and interrupts remain enabled).
54 	 */
55 	local_lock_t lock;
56 	struct folio_batch lru_add;
57 	struct folio_batch lru_deactivate_file;
58 	struct folio_batch lru_deactivate;
59 	struct folio_batch lru_lazyfree;
60 #ifdef CONFIG_SMP
61 	struct folio_batch lru_activate;
62 #endif
63 	/* Protecting the following batches which require disabling interrupts */
64 	local_lock_t lock_irq;
65 	struct folio_batch lru_move_tail;
66 };
67 
68 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
69 	.lock = INIT_LOCAL_LOCK(lock),
70 	.lock_irq = INIT_LOCAL_LOCK(lock_irq),
71 };
72 
73 static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp,
74 		unsigned long *flagsp)
75 {
76 	if (folio_test_lru(folio)) {
77 		folio_lruvec_relock_irqsave(folio, lruvecp, flagsp);
78 		lruvec_del_folio(*lruvecp, folio);
79 		__folio_clear_lru_flags(folio);
80 	}
81 }
82 
83 /*
84  * This path almost never happens for VM activity - pages are normally freed
85  * in batches.  But it gets used by networking - and for compound pages.
86  */
87 static void page_cache_release(struct folio *folio)
88 {
89 	struct lruvec *lruvec = NULL;
90 	unsigned long flags;
91 
92 	__page_cache_release(folio, &lruvec, &flags);
93 	if (lruvec)
94 		unlock_page_lruvec_irqrestore(lruvec, flags);
95 }
96 
97 void __folio_put(struct folio *folio)
98 {
99 	if (unlikely(folio_is_zone_device(folio))) {
100 		free_zone_device_folio(folio);
101 		return;
102 	}
103 
104 	if (folio_test_hugetlb(folio)) {
105 		free_huge_folio(folio);
106 		return;
107 	}
108 
109 	page_cache_release(folio);
110 	folio_unqueue_deferred_split(folio);
111 	mem_cgroup_uncharge(folio);
112 	free_frozen_pages(&folio->page, folio_order(folio));
113 }
114 EXPORT_SYMBOL(__folio_put);
115 
116 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
117 
118 static void lru_add(struct lruvec *lruvec, struct folio *folio)
119 {
120 	int was_unevictable = folio_test_clear_unevictable(folio);
121 	long nr_pages = folio_nr_pages(folio);
122 
123 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
124 
125 	/*
126 	 * Is an smp_mb__after_atomic() still required here, before
127 	 * folio_evictable() tests the mlocked flag, to rule out the possibility
128 	 * of stranding an evictable folio on an unevictable LRU?  I think
129 	 * not, because __munlock_folio() only clears the mlocked flag
130 	 * while the LRU lock is held.
131 	 *
132 	 * (That is not true of __page_cache_release(), and not necessarily
133 	 * true of folios_put(): but those only clear the mlocked flag after
134 	 * folio_put_testzero() has excluded any other users of the folio.)
135 	 */
136 	if (folio_evictable(folio)) {
137 		if (was_unevictable)
138 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
139 	} else {
140 		folio_clear_active(folio);
141 		folio_set_unevictable(folio);
142 		/*
143 		 * folio->mlock_count = !!folio_test_mlocked(folio)?
144 		 * But that leaves __mlock_folio() in doubt whether another
145 		 * actor has already counted the mlock or not.  Err on the
146 		 * safe side, underestimate, let page reclaim fix it, rather
147 		 * than leaving a page on the unevictable LRU indefinitely.
148 		 */
149 		folio->mlock_count = 0;
150 		if (!was_unevictable)
151 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
152 	}
153 
154 	lruvec_add_folio(lruvec, folio);
155 	trace_mm_lru_insertion(folio);
156 }
157 
158 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
159 {
160 	int i;
161 	struct lruvec *lruvec = NULL;
162 	unsigned long flags = 0;
163 
164 	for (i = 0; i < folio_batch_count(fbatch); i++) {
165 		struct folio *folio = fbatch->folios[i];
166 
167 		folio_lruvec_relock_irqsave(folio, &lruvec, &flags);
168 		move_fn(lruvec, folio);
169 
170 		folio_set_lru(folio);
171 	}
172 
173 	if (lruvec)
174 		unlock_page_lruvec_irqrestore(lruvec, flags);
175 	folios_put(fbatch);
176 }
177 
178 static void __folio_batch_add_and_move(struct folio_batch __percpu *fbatch,
179 		struct folio *folio, move_fn_t move_fn,
180 		bool on_lru, bool disable_irq)
181 {
182 	unsigned long flags;
183 
184 	if (on_lru && !folio_test_clear_lru(folio))
185 		return;
186 
187 	folio_get(folio);
188 
189 	if (disable_irq)
190 		local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
191 	else
192 		local_lock(&cpu_fbatches.lock);
193 
194 	if (!folio_batch_add(this_cpu_ptr(fbatch), folio) || folio_test_large(folio) ||
195 	    lru_cache_disabled())
196 		folio_batch_move_lru(this_cpu_ptr(fbatch), move_fn);
197 
198 	if (disable_irq)
199 		local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
200 	else
201 		local_unlock(&cpu_fbatches.lock);
202 }
203 
204 #define folio_batch_add_and_move(folio, op, on_lru)						\
205 	__folio_batch_add_and_move(								\
206 		&cpu_fbatches.op,								\
207 		folio,										\
208 		op,										\
209 		on_lru,										\
210 		offsetof(struct cpu_fbatches, op) >= offsetof(struct cpu_fbatches, lock_irq)	\
211 	)
212 
213 static void lru_move_tail(struct lruvec *lruvec, struct folio *folio)
214 {
215 	if (folio_test_unevictable(folio))
216 		return;
217 
218 	lruvec_del_folio(lruvec, folio);
219 	folio_clear_active(folio);
220 	lruvec_add_folio_tail(lruvec, folio);
221 	__count_vm_events(PGROTATED, folio_nr_pages(folio));
222 }
223 
224 /*
225  * Writeback is about to end against a folio which has been marked for
226  * immediate reclaim.  If it still appears to be reclaimable, move it
227  * to the tail of the inactive list.
228  *
229  * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
230  */
231 void folio_rotate_reclaimable(struct folio *folio)
232 {
233 	if (folio_test_locked(folio) || folio_test_dirty(folio) ||
234 	    folio_test_unevictable(folio))
235 		return;
236 
237 	folio_batch_add_and_move(folio, lru_move_tail, true);
238 }
239 
240 void lru_note_cost_unlock_irq(struct lruvec *lruvec, bool file,
241 		unsigned int nr_io, unsigned int nr_rotated)
242 		__releases(lruvec->lru_lock)
243 {
244 	unsigned long cost;
245 
246 	/*
247 	 * Reflect the relative cost of incurring IO and spending CPU
248 	 * time on rotations. This doesn't attempt to make a precise
249 	 * comparison, it just says: if reloads are about comparable
250 	 * between the LRU lists, or rotations are overwhelmingly
251 	 * different between them, adjust scan balance for CPU work.
252 	 */
253 	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
254 	if (!cost) {
255 		spin_unlock_irq(&lruvec->lru_lock);
256 		return;
257 	}
258 
259 	for (;;) {
260 		unsigned long lrusize;
261 
262 		/* Record cost event */
263 		if (file)
264 			lruvec->file_cost += cost;
265 		else
266 			lruvec->anon_cost += cost;
267 
268 		/*
269 		 * Decay previous events
270 		 *
271 		 * Because workloads change over time (and to avoid
272 		 * overflow) we keep these statistics as a floating
273 		 * average, which ends up weighing recent refaults
274 		 * more than old ones.
275 		 */
276 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
277 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
278 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
279 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
280 
281 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
282 			lruvec->file_cost /= 2;
283 			lruvec->anon_cost /= 2;
284 		}
285 
286 		spin_unlock_irq(&lruvec->lru_lock);
287 		lruvec = parent_lruvec(lruvec);
288 		if (!lruvec)
289 			break;
290 		spin_lock_irq(&lruvec->lru_lock);
291 	}
292 }
293 
294 void lru_note_cost_refault(struct folio *folio)
295 {
296 	struct lruvec *lruvec;
297 
298 	lruvec = folio_lruvec_lock_irq(folio);
299 	lru_note_cost_unlock_irq(lruvec, folio_is_file_lru(folio),
300 				folio_nr_pages(folio), 0);
301 }
302 
303 static void lru_activate(struct lruvec *lruvec, struct folio *folio)
304 {
305 	long nr_pages = folio_nr_pages(folio);
306 
307 	if (folio_test_active(folio) || folio_test_unevictable(folio))
308 		return;
309 
310 
311 	lruvec_del_folio(lruvec, folio);
312 	folio_set_active(folio);
313 	lruvec_add_folio(lruvec, folio);
314 	trace_mm_lru_activate(folio);
315 
316 	__count_vm_events(PGACTIVATE, nr_pages);
317 	count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages);
318 }
319 
320 #ifdef CONFIG_SMP
321 static void folio_activate_drain(int cpu)
322 {
323 	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.lru_activate, cpu);
324 
325 	if (folio_batch_count(fbatch))
326 		folio_batch_move_lru(fbatch, lru_activate);
327 }
328 
329 void folio_activate(struct folio *folio)
330 {
331 	if (folio_test_active(folio) || folio_test_unevictable(folio))
332 		return;
333 
334 	folio_batch_add_and_move(folio, lru_activate, true);
335 }
336 
337 #else
338 static inline void folio_activate_drain(int cpu)
339 {
340 }
341 
342 void folio_activate(struct folio *folio)
343 {
344 	struct lruvec *lruvec;
345 
346 	if (!folio_test_clear_lru(folio))
347 		return;
348 
349 	lruvec = folio_lruvec_lock_irq(folio);
350 	lru_activate(lruvec, folio);
351 	unlock_page_lruvec_irq(lruvec);
352 	folio_set_lru(folio);
353 }
354 #endif
355 
356 static void __lru_cache_activate_folio(struct folio *folio)
357 {
358 	struct folio_batch *fbatch;
359 	int i;
360 
361 	local_lock(&cpu_fbatches.lock);
362 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
363 
364 	/*
365 	 * Search backwards on the optimistic assumption that the folio being
366 	 * activated has just been added to this batch. Note that only
367 	 * the local batch is examined as a !LRU folio could be in the
368 	 * process of being released, reclaimed, migrated or on a remote
369 	 * batch that is currently being drained. Furthermore, marking
370 	 * a remote batch's folio active potentially hits a race where
371 	 * a folio is marked active just after it is added to the inactive
372 	 * list causing accounting errors and BUG_ON checks to trigger.
373 	 */
374 	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
375 		struct folio *batch_folio = fbatch->folios[i];
376 
377 		if (batch_folio == folio) {
378 			folio_set_active(folio);
379 			break;
380 		}
381 	}
382 
383 	local_unlock(&cpu_fbatches.lock);
384 }
385 
386 #ifdef CONFIG_LRU_GEN
387 
388 static void lru_gen_inc_refs(struct folio *folio)
389 {
390 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
391 
392 	if (folio_test_unevictable(folio))
393 		return;
394 
395 	/* see the comment on LRU_REFS_FLAGS */
396 	if (!folio_test_referenced(folio)) {
397 		set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
398 		return;
399 	}
400 
401 	do {
402 		if ((old_flags & LRU_REFS_MASK) == LRU_REFS_MASK) {
403 			if (!folio_test_workingset(folio))
404 				folio_set_workingset(folio);
405 			return;
406 		}
407 
408 		new_flags = old_flags + BIT(LRU_REFS_PGOFF);
409 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
410 }
411 
412 static bool lru_gen_clear_refs(struct folio *folio)
413 {
414 	struct lru_gen_folio *lrugen;
415 	int gen = folio_lru_gen(folio);
416 	int type = folio_is_file_lru(folio);
417 
418 	if (gen < 0)
419 		return true;
420 
421 	set_mask_bits(&folio->flags, LRU_REFS_FLAGS | BIT(PG_workingset), 0);
422 
423 	lrugen = &folio_lruvec(folio)->lrugen;
424 	/* whether can do without shuffling under the LRU lock */
425 	return gen == lru_gen_from_seq(READ_ONCE(lrugen->min_seq[type]));
426 }
427 
428 #else /* !CONFIG_LRU_GEN */
429 
430 static void lru_gen_inc_refs(struct folio *folio)
431 {
432 }
433 
434 static bool lru_gen_clear_refs(struct folio *folio)
435 {
436 	return false;
437 }
438 
439 #endif /* CONFIG_LRU_GEN */
440 
441 /**
442  * folio_mark_accessed - Mark a folio as having seen activity.
443  * @folio: The folio to mark.
444  *
445  * This function will perform one of the following transitions:
446  *
447  * * inactive,unreferenced	->	inactive,referenced
448  * * inactive,referenced	->	active,unreferenced
449  * * active,unreferenced	->	active,referenced
450  *
451  * When a newly allocated folio is not yet visible, so safe for non-atomic ops,
452  * __folio_set_referenced() may be substituted for folio_mark_accessed().
453  */
454 void folio_mark_accessed(struct folio *folio)
455 {
456 	if (folio_test_dropbehind(folio))
457 		return;
458 	if (lru_gen_enabled()) {
459 		lru_gen_inc_refs(folio);
460 		return;
461 	}
462 
463 	if (!folio_test_referenced(folio)) {
464 		folio_set_referenced(folio);
465 	} else if (folio_test_unevictable(folio)) {
466 		/*
467 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
468 		 * this list is never rotated or maintained, so marking an
469 		 * unevictable page accessed has no effect.
470 		 */
471 	} else if (!folio_test_active(folio)) {
472 		/*
473 		 * If the folio is on the LRU, queue it for activation via
474 		 * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a
475 		 * folio_batch, mark it active and it'll be moved to the active
476 		 * LRU on the next drain.
477 		 */
478 		if (folio_test_lru(folio))
479 			folio_activate(folio);
480 		else
481 			__lru_cache_activate_folio(folio);
482 		folio_clear_referenced(folio);
483 		workingset_activation(folio);
484 	}
485 	if (folio_test_idle(folio))
486 		folio_clear_idle(folio);
487 }
488 EXPORT_SYMBOL(folio_mark_accessed);
489 
490 /**
491  * folio_add_lru - Add a folio to an LRU list.
492  * @folio: The folio to be added to the LRU.
493  *
494  * Queue the folio for addition to the LRU. The decision on whether
495  * to add the page to the [in]active [file|anon] list is deferred until the
496  * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
497  * have the folio added to the active list using folio_mark_accessed().
498  */
499 void folio_add_lru(struct folio *folio)
500 {
501 	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
502 			folio_test_unevictable(folio), folio);
503 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
504 
505 	/* see the comment in lru_gen_folio_seq() */
506 	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
507 	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
508 		folio_set_active(folio);
509 
510 	folio_batch_add_and_move(folio, lru_add, false);
511 }
512 EXPORT_SYMBOL(folio_add_lru);
513 
514 /**
515  * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
516  * @folio: The folio to be added to the LRU.
517  * @vma: VMA in which the folio is mapped.
518  *
519  * If the VMA is mlocked, @folio is added to the unevictable list.
520  * Otherwise, it is treated the same way as folio_add_lru().
521  */
522 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
523 {
524 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
525 
526 	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
527 		mlock_new_folio(folio);
528 	else
529 		folio_add_lru(folio);
530 }
531 
532 /*
533  * If the folio cannot be invalidated, it is moved to the
534  * inactive list to speed up its reclaim.  It is moved to the
535  * head of the list, rather than the tail, to give the flusher
536  * threads some time to write it out, as this is much more
537  * effective than the single-page writeout from reclaim.
538  *
539  * If the folio isn't mapped and dirty/writeback, the folio
540  * could be reclaimed asap using the reclaim flag.
541  *
542  * 1. active, mapped folio -> none
543  * 2. active, dirty/writeback folio -> inactive, head, reclaim
544  * 3. inactive, mapped folio -> none
545  * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
546  * 5. inactive, clean -> inactive, tail
547  * 6. Others -> none
548  *
549  * In 4, it moves to the head of the inactive list so the folio is
550  * written out by flusher threads as this is much more efficient
551  * than the single-page writeout from reclaim.
552  */
553 static void lru_deactivate_file(struct lruvec *lruvec, struct folio *folio)
554 {
555 	bool active = folio_test_active(folio) || lru_gen_enabled();
556 	long nr_pages = folio_nr_pages(folio);
557 
558 	if (folio_test_unevictable(folio))
559 		return;
560 
561 	/* Some processes are using the folio */
562 	if (folio_mapped(folio))
563 		return;
564 
565 	lruvec_del_folio(lruvec, folio);
566 	folio_clear_active(folio);
567 	folio_clear_referenced(folio);
568 
569 	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
570 		/*
571 		 * Setting the reclaim flag could race with
572 		 * folio_end_writeback() and confuse readahead.  But the
573 		 * race window is _really_ small and  it's not a critical
574 		 * problem.
575 		 */
576 		lruvec_add_folio(lruvec, folio);
577 		folio_set_reclaim(folio);
578 	} else {
579 		/*
580 		 * The folio's writeback ended while it was in the batch.
581 		 * We move that folio to the tail of the inactive list.
582 		 */
583 		lruvec_add_folio_tail(lruvec, folio);
584 		__count_vm_events(PGROTATED, nr_pages);
585 	}
586 
587 	if (active) {
588 		__count_vm_events(PGDEACTIVATE, nr_pages);
589 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
590 				     nr_pages);
591 	}
592 }
593 
594 static void lru_deactivate(struct lruvec *lruvec, struct folio *folio)
595 {
596 	long nr_pages = folio_nr_pages(folio);
597 
598 	if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled()))
599 		return;
600 
601 	lruvec_del_folio(lruvec, folio);
602 	folio_clear_active(folio);
603 	folio_clear_referenced(folio);
604 	lruvec_add_folio(lruvec, folio);
605 
606 	__count_vm_events(PGDEACTIVATE, nr_pages);
607 	count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages);
608 }
609 
610 static void lru_lazyfree(struct lruvec *lruvec, struct folio *folio)
611 {
612 	long nr_pages = folio_nr_pages(folio);
613 
614 	if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
615 	    folio_test_swapcache(folio) || folio_test_unevictable(folio))
616 		return;
617 
618 	lruvec_del_folio(lruvec, folio);
619 	folio_clear_active(folio);
620 	if (lru_gen_enabled())
621 		lru_gen_clear_refs(folio);
622 	else
623 		folio_clear_referenced(folio);
624 	/*
625 	 * Lazyfree folios are clean anonymous folios.  They have
626 	 * the swapbacked flag cleared, to distinguish them from normal
627 	 * anonymous folios
628 	 */
629 	folio_clear_swapbacked(folio);
630 	lruvec_add_folio(lruvec, folio);
631 
632 	__count_vm_events(PGLAZYFREE, nr_pages);
633 	count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages);
634 }
635 
636 /*
637  * Drain pages out of the cpu's folio_batch.
638  * Either "cpu" is the current CPU, and preemption has already been
639  * disabled; or "cpu" is being hot-unplugged, and is already dead.
640  */
641 void lru_add_drain_cpu(int cpu)
642 {
643 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
644 	struct folio_batch *fbatch = &fbatches->lru_add;
645 
646 	if (folio_batch_count(fbatch))
647 		folio_batch_move_lru(fbatch, lru_add);
648 
649 	fbatch = &fbatches->lru_move_tail;
650 	/* Disabling interrupts below acts as a compiler barrier. */
651 	if (data_race(folio_batch_count(fbatch))) {
652 		unsigned long flags;
653 
654 		/* No harm done if a racing interrupt already did this */
655 		local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
656 		folio_batch_move_lru(fbatch, lru_move_tail);
657 		local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
658 	}
659 
660 	fbatch = &fbatches->lru_deactivate_file;
661 	if (folio_batch_count(fbatch))
662 		folio_batch_move_lru(fbatch, lru_deactivate_file);
663 
664 	fbatch = &fbatches->lru_deactivate;
665 	if (folio_batch_count(fbatch))
666 		folio_batch_move_lru(fbatch, lru_deactivate);
667 
668 	fbatch = &fbatches->lru_lazyfree;
669 	if (folio_batch_count(fbatch))
670 		folio_batch_move_lru(fbatch, lru_lazyfree);
671 
672 	folio_activate_drain(cpu);
673 }
674 
675 /**
676  * deactivate_file_folio() - Deactivate a file folio.
677  * @folio: Folio to deactivate.
678  *
679  * This function hints to the VM that @folio is a good reclaim candidate,
680  * for example if its invalidation fails due to the folio being dirty
681  * or under writeback.
682  *
683  * Context: Caller holds a reference on the folio.
684  */
685 void deactivate_file_folio(struct folio *folio)
686 {
687 	/* Deactivating an unevictable folio will not accelerate reclaim */
688 	if (folio_test_unevictable(folio))
689 		return;
690 
691 	if (lru_gen_enabled() && lru_gen_clear_refs(folio))
692 		return;
693 
694 	folio_batch_add_and_move(folio, lru_deactivate_file, true);
695 }
696 
697 /*
698  * folio_deactivate - deactivate a folio
699  * @folio: folio to deactivate
700  *
701  * folio_deactivate() moves @folio to the inactive list if @folio was on the
702  * active list and was not unevictable. This is done to accelerate the
703  * reclaim of @folio.
704  */
705 void folio_deactivate(struct folio *folio)
706 {
707 	if (folio_test_unevictable(folio))
708 		return;
709 
710 	if (lru_gen_enabled() ? lru_gen_clear_refs(folio) : !folio_test_active(folio))
711 		return;
712 
713 	folio_batch_add_and_move(folio, lru_deactivate, true);
714 }
715 
716 /**
717  * folio_mark_lazyfree - make an anon folio lazyfree
718  * @folio: folio to deactivate
719  *
720  * folio_mark_lazyfree() moves @folio to the inactive file list.
721  * This is done to accelerate the reclaim of @folio.
722  */
723 void folio_mark_lazyfree(struct folio *folio)
724 {
725 	if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
726 	    folio_test_swapcache(folio) || folio_test_unevictable(folio))
727 		return;
728 
729 	folio_batch_add_and_move(folio, lru_lazyfree, true);
730 }
731 
732 void lru_add_drain(void)
733 {
734 	local_lock(&cpu_fbatches.lock);
735 	lru_add_drain_cpu(smp_processor_id());
736 	local_unlock(&cpu_fbatches.lock);
737 	mlock_drain_local();
738 }
739 
740 /*
741  * It's called from per-cpu workqueue context in SMP case so
742  * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
743  * the same cpu. It shouldn't be a problem in !SMP case since
744  * the core is only one and the locks will disable preemption.
745  */
746 static void lru_add_and_bh_lrus_drain(void)
747 {
748 	local_lock(&cpu_fbatches.lock);
749 	lru_add_drain_cpu(smp_processor_id());
750 	local_unlock(&cpu_fbatches.lock);
751 	invalidate_bh_lrus_cpu();
752 	mlock_drain_local();
753 }
754 
755 void lru_add_drain_cpu_zone(struct zone *zone)
756 {
757 	local_lock(&cpu_fbatches.lock);
758 	lru_add_drain_cpu(smp_processor_id());
759 	drain_local_pages(zone);
760 	local_unlock(&cpu_fbatches.lock);
761 	mlock_drain_local();
762 }
763 
764 #ifdef CONFIG_SMP
765 
766 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
767 
768 static void lru_add_drain_per_cpu(struct work_struct *dummy)
769 {
770 	lru_add_and_bh_lrus_drain();
771 }
772 
773 static bool cpu_needs_drain(unsigned int cpu)
774 {
775 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
776 
777 	/* Check these in order of likelihood that they're not zero */
778 	return folio_batch_count(&fbatches->lru_add) ||
779 		folio_batch_count(&fbatches->lru_move_tail) ||
780 		folio_batch_count(&fbatches->lru_deactivate_file) ||
781 		folio_batch_count(&fbatches->lru_deactivate) ||
782 		folio_batch_count(&fbatches->lru_lazyfree) ||
783 		folio_batch_count(&fbatches->lru_activate) ||
784 		need_mlock_drain(cpu) ||
785 		has_bh_in_lru(cpu, NULL);
786 }
787 
788 /*
789  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
790  * kworkers being shut down before our page_alloc_cpu_dead callback is
791  * executed on the offlined cpu.
792  * Calling this function with cpu hotplug locks held can actually lead
793  * to obscure indirect dependencies via WQ context.
794  */
795 static inline void __lru_add_drain_all(bool force_all_cpus)
796 {
797 	/*
798 	 * lru_drain_gen - Global pages generation number
799 	 *
800 	 * (A) Definition: global lru_drain_gen = x implies that all generations
801 	 *     0 < n <= x are already *scheduled* for draining.
802 	 *
803 	 * This is an optimization for the highly-contended use case where a
804 	 * user space workload keeps constantly generating a flow of pages for
805 	 * each CPU.
806 	 */
807 	static unsigned int lru_drain_gen;
808 	static struct cpumask has_work;
809 	static DEFINE_MUTEX(lock);
810 	unsigned cpu, this_gen;
811 
812 	/*
813 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
814 	 * initialized.
815 	 */
816 	if (WARN_ON(!mm_percpu_wq))
817 		return;
818 
819 	/*
820 	 * Guarantee folio_batch counter stores visible by this CPU
821 	 * are visible to other CPUs before loading the current drain
822 	 * generation.
823 	 */
824 	smp_mb();
825 
826 	/*
827 	 * (B) Locally cache global LRU draining generation number
828 	 *
829 	 * The read barrier ensures that the counter is loaded before the mutex
830 	 * is taken. It pairs with smp_mb() inside the mutex critical section
831 	 * at (D).
832 	 */
833 	this_gen = smp_load_acquire(&lru_drain_gen);
834 
835 	mutex_lock(&lock);
836 
837 	/*
838 	 * (C) Exit the draining operation if a newer generation, from another
839 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
840 	 */
841 	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
842 		goto done;
843 
844 	/*
845 	 * (D) Increment global generation number
846 	 *
847 	 * Pairs with smp_load_acquire() at (B), outside of the critical
848 	 * section. Use a full memory barrier to guarantee that the
849 	 * new global drain generation number is stored before loading
850 	 * folio_batch counters.
851 	 *
852 	 * This pairing must be done here, before the for_each_online_cpu loop
853 	 * below which drains the page vectors.
854 	 *
855 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
856 	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
857 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
858 	 * along, adds some pages to its per-cpu vectors, then calls
859 	 * lru_add_drain_all().
860 	 *
861 	 * If the paired barrier is done at any later step, e.g. after the
862 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
863 	 * added pages.
864 	 */
865 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
866 	smp_mb();
867 
868 	cpumask_clear(&has_work);
869 	for_each_online_cpu(cpu) {
870 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
871 
872 		if (cpu_needs_drain(cpu)) {
873 			INIT_WORK(work, lru_add_drain_per_cpu);
874 			queue_work_on(cpu, mm_percpu_wq, work);
875 			__cpumask_set_cpu(cpu, &has_work);
876 		}
877 	}
878 
879 	for_each_cpu(cpu, &has_work)
880 		flush_work(&per_cpu(lru_add_drain_work, cpu));
881 
882 done:
883 	mutex_unlock(&lock);
884 }
885 
886 void lru_add_drain_all(void)
887 {
888 	__lru_add_drain_all(false);
889 }
890 #else
891 void lru_add_drain_all(void)
892 {
893 	lru_add_drain();
894 }
895 #endif /* CONFIG_SMP */
896 
897 atomic_t lru_disable_count = ATOMIC_INIT(0);
898 
899 /*
900  * lru_cache_disable() needs to be called before we start compiling
901  * a list of folios to be migrated using folio_isolate_lru().
902  * It drains folios on LRU cache and then disable on all cpus until
903  * lru_cache_enable is called.
904  *
905  * Must be paired with a call to lru_cache_enable().
906  */
907 void lru_cache_disable(void)
908 {
909 	atomic_inc(&lru_disable_count);
910 	/*
911 	 * Readers of lru_disable_count are protected by either disabling
912 	 * preemption or rcu_read_lock:
913 	 *
914 	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
915 	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
916 	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
917 	 *
918 	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
919 	 * preempt_disable() regions of code. So any CPU which sees
920 	 * lru_disable_count = 0 will have exited the critical
921 	 * section when synchronize_rcu() returns.
922 	 */
923 	synchronize_rcu_expedited();
924 #ifdef CONFIG_SMP
925 	__lru_add_drain_all(true);
926 #else
927 	lru_add_and_bh_lrus_drain();
928 #endif
929 }
930 
931 /**
932  * folios_put_refs - Reduce the reference count on a batch of folios.
933  * @folios: The folios.
934  * @refs: The number of refs to subtract from each folio.
935  *
936  * Like folio_put(), but for a batch of folios.  This is more efficient
937  * than writing the loop yourself as it will optimise the locks which need
938  * to be taken if the folios are freed.  The folios batch is returned
939  * empty and ready to be reused for another batch; there is no need
940  * to reinitialise it.  If @refs is NULL, we subtract one from each
941  * folio refcount.
942  *
943  * Context: May be called in process or interrupt context, but not in NMI
944  * context.  May be called while holding a spinlock.
945  */
946 void folios_put_refs(struct folio_batch *folios, unsigned int *refs)
947 {
948 	int i, j;
949 	struct lruvec *lruvec = NULL;
950 	unsigned long flags = 0;
951 
952 	for (i = 0, j = 0; i < folios->nr; i++) {
953 		struct folio *folio = folios->folios[i];
954 		unsigned int nr_refs = refs ? refs[i] : 1;
955 
956 		if (is_huge_zero_folio(folio))
957 			continue;
958 
959 		if (folio_is_zone_device(folio)) {
960 			if (lruvec) {
961 				unlock_page_lruvec_irqrestore(lruvec, flags);
962 				lruvec = NULL;
963 			}
964 			if (folio_ref_sub_and_test(folio, nr_refs))
965 				free_zone_device_folio(folio);
966 			continue;
967 		}
968 
969 		if (!folio_ref_sub_and_test(folio, nr_refs))
970 			continue;
971 
972 		/* hugetlb has its own memcg */
973 		if (folio_test_hugetlb(folio)) {
974 			if (lruvec) {
975 				unlock_page_lruvec_irqrestore(lruvec, flags);
976 				lruvec = NULL;
977 			}
978 			free_huge_folio(folio);
979 			continue;
980 		}
981 		folio_unqueue_deferred_split(folio);
982 		__page_cache_release(folio, &lruvec, &flags);
983 
984 		if (j != i)
985 			folios->folios[j] = folio;
986 		j++;
987 	}
988 	if (lruvec)
989 		unlock_page_lruvec_irqrestore(lruvec, flags);
990 	if (!j) {
991 		folio_batch_reinit(folios);
992 		return;
993 	}
994 
995 	folios->nr = j;
996 	mem_cgroup_uncharge_folios(folios);
997 	free_unref_folios(folios);
998 }
999 EXPORT_SYMBOL(folios_put_refs);
1000 
1001 /**
1002  * release_pages - batched put_page()
1003  * @arg: array of pages to release
1004  * @nr: number of pages
1005  *
1006  * Decrement the reference count on all the pages in @arg.  If it
1007  * fell to zero, remove the page from the LRU and free it.
1008  *
1009  * Note that the argument can be an array of pages, encoded pages,
1010  * or folio pointers. We ignore any encoded bits, and turn any of
1011  * them into just a folio that gets free'd.
1012  */
1013 void release_pages(release_pages_arg arg, int nr)
1014 {
1015 	struct folio_batch fbatch;
1016 	int refs[PAGEVEC_SIZE];
1017 	struct encoded_page **encoded = arg.encoded_pages;
1018 	int i;
1019 
1020 	folio_batch_init(&fbatch);
1021 	for (i = 0; i < nr; i++) {
1022 		/* Turn any of the argument types into a folio */
1023 		struct folio *folio = page_folio(encoded_page_ptr(encoded[i]));
1024 
1025 		/* Is our next entry actually "nr_pages" -> "nr_refs" ? */
1026 		refs[fbatch.nr] = 1;
1027 		if (unlikely(encoded_page_flags(encoded[i]) &
1028 			     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
1029 			refs[fbatch.nr] = encoded_nr_pages(encoded[++i]);
1030 
1031 		if (folio_batch_add(&fbatch, folio) > 0)
1032 			continue;
1033 		folios_put_refs(&fbatch, refs);
1034 	}
1035 
1036 	if (fbatch.nr)
1037 		folios_put_refs(&fbatch, refs);
1038 }
1039 EXPORT_SYMBOL(release_pages);
1040 
1041 /*
1042  * The folios which we're about to release may be in the deferred lru-addition
1043  * queues.  That would prevent them from really being freed right now.  That's
1044  * OK from a correctness point of view but is inefficient - those folios may be
1045  * cache-warm and we want to give them back to the page allocator ASAP.
1046  *
1047  * So __folio_batch_release() will drain those queues here.
1048  * folio_batch_move_lru() calls folios_put() directly to avoid
1049  * mutual recursion.
1050  */
1051 void __folio_batch_release(struct folio_batch *fbatch)
1052 {
1053 	if (!fbatch->percpu_pvec_drained) {
1054 		lru_add_drain();
1055 		fbatch->percpu_pvec_drained = true;
1056 	}
1057 	folios_put(fbatch);
1058 }
1059 EXPORT_SYMBOL(__folio_batch_release);
1060 
1061 /**
1062  * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1063  * @fbatch: The batch to prune
1064  *
1065  * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1066  * entries.  This function prunes all the non-folio entries from @fbatch
1067  * without leaving holes, so that it can be passed on to folio-only batch
1068  * operations.
1069  */
1070 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1071 {
1072 	unsigned int i, j;
1073 
1074 	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1075 		struct folio *folio = fbatch->folios[i];
1076 		if (!xa_is_value(folio))
1077 			fbatch->folios[j++] = folio;
1078 	}
1079 	fbatch->nr = j;
1080 }
1081 
1082 static const struct ctl_table swap_sysctl_table[] = {
1083 	{
1084 		.procname	= "page-cluster",
1085 		.data		= &page_cluster,
1086 		.maxlen		= sizeof(int),
1087 		.mode		= 0644,
1088 		.proc_handler	= proc_dointvec_minmax,
1089 		.extra1		= SYSCTL_ZERO,
1090 		.extra2		= (void *)&page_cluster_max,
1091 	}
1092 };
1093 
1094 /*
1095  * Perform any setup for the swap system
1096  */
1097 void __init swap_setup(void)
1098 {
1099 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1100 
1101 	/* Use a smaller cluster for small-memory machines */
1102 	if (megs < 16)
1103 		page_cluster = 2;
1104 	else
1105 		page_cluster = 3;
1106 	/*
1107 	 * Right now other parts of the system means that we
1108 	 * _really_ don't want to cluster much more
1109 	 */
1110 
1111 	register_sysctl_init("vm", swap_sysctl_table);
1112 }
1113