xref: /linux/mm/rmap.c (revision 00c010e130e58301db2ea0cec1eadc931e1cb8cf)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       folio_lock
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           vma_start_write
29  *             mapping->i_mmap_rwsem
30  *               anon_vma->rwsem
31  *                 mm->page_table_lock or pte_lock
32  *                   swap_lock (in swap_duplicate, swap_info_get)
33  *                     mmlist_lock (in mmput, drain_mmlist and others)
34  *                     mapping->private_lock (in block_dirty_folio)
35  *                         i_pages lock (widely used)
36  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
37  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
40  *                       i_pages lock (widely used, in set_page_dirty,
41  *                                 in arch-dependent flush_dcache_mmap_lock,
42  *                                 within bdi.wb->list_lock in __sync_single_inode)
43  *
44  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
45  *   ->tasklist_lock
46  *     pte map lock
47  *
48  * hugetlbfs PageHuge() take locks in this order:
49  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50  *     vma_lock (hugetlb specific lock for pmd_sharing)
51  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52  *         folio_lock
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77 #include <linux/oom.h>
78 
79 #include <asm/tlbflush.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
84 
85 #include "internal.h"
86 
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
89 
anon_vma_alloc(void)90 static inline struct anon_vma *anon_vma_alloc(void)
91 {
92 	struct anon_vma *anon_vma;
93 
94 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 	if (anon_vma) {
96 		atomic_set(&anon_vma->refcount, 1);
97 		anon_vma->num_children = 0;
98 		anon_vma->num_active_vmas = 0;
99 		anon_vma->parent = anon_vma;
100 		/*
101 		 * Initialise the anon_vma root to point to itself. If called
102 		 * from fork, the root will be reset to the parents anon_vma.
103 		 */
104 		anon_vma->root = anon_vma;
105 	}
106 
107 	return anon_vma;
108 }
109 
anon_vma_free(struct anon_vma * anon_vma)110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
113 
114 	/*
115 	 * Synchronize against folio_lock_anon_vma_read() such that
116 	 * we can safely hold the lock without the anon_vma getting
117 	 * freed.
118 	 *
119 	 * Relies on the full mb implied by the atomic_dec_and_test() from
120 	 * put_anon_vma() against the acquire barrier implied by
121 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 	 *
123 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
124 	 *   down_read_trylock()		  atomic_dec_and_test()
125 	 *   LOCK				  MB
126 	 *   atomic_read()			  rwsem_is_locked()
127 	 *
128 	 * LOCK should suffice since the actual taking of the lock must
129 	 * happen _before_ what follows.
130 	 */
131 	might_sleep();
132 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 		anon_vma_lock_write(anon_vma);
134 		anon_vma_unlock_write(anon_vma);
135 	}
136 
137 	kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139 
anon_vma_chain_alloc(gfp_t gfp)140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144 
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149 
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 				struct anon_vma_chain *avc,
152 				struct anon_vma *anon_vma)
153 {
154 	avc->vma = vma;
155 	avc->anon_vma = anon_vma;
156 	list_add(&avc->same_vma, &vma->anon_vma_chain);
157 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159 
160 /**
161  * __anon_vma_prepare - attach an anon_vma to a memory region
162  * @vma: the memory region in question
163  *
164  * This makes sure the memory mapping described by 'vma' has
165  * an 'anon_vma' attached to it, so that we can associate the
166  * anonymous pages mapped into it with that anon_vma.
167  *
168  * The common case will be that we already have one, which
169  * is handled inline by anon_vma_prepare(). But if
170  * not we either need to find an adjacent mapping that we
171  * can re-use the anon_vma from (very common when the only
172  * reason for splitting a vma has been mprotect()), or we
173  * allocate a new one.
174  *
175  * Anon-vma allocations are very subtle, because we may have
176  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177  * and that may actually touch the rwsem even in the newly
178  * allocated vma (it depends on RCU to make sure that the
179  * anon_vma isn't actually destroyed).
180  *
181  * As a result, we need to do proper anon_vma locking even
182  * for the new allocation. At the same time, we do not want
183  * to do any locking for the common case of already having
184  * an anon_vma.
185  */
__anon_vma_prepare(struct vm_area_struct * vma)186 int __anon_vma_prepare(struct vm_area_struct *vma)
187 {
188 	struct mm_struct *mm = vma->vm_mm;
189 	struct anon_vma *anon_vma, *allocated;
190 	struct anon_vma_chain *avc;
191 
192 	mmap_assert_locked(mm);
193 	might_sleep();
194 
195 	avc = anon_vma_chain_alloc(GFP_KERNEL);
196 	if (!avc)
197 		goto out_enomem;
198 
199 	anon_vma = find_mergeable_anon_vma(vma);
200 	allocated = NULL;
201 	if (!anon_vma) {
202 		anon_vma = anon_vma_alloc();
203 		if (unlikely(!anon_vma))
204 			goto out_enomem_free_avc;
205 		anon_vma->num_children++; /* self-parent link for new root */
206 		allocated = anon_vma;
207 	}
208 
209 	anon_vma_lock_write(anon_vma);
210 	/* page_table_lock to protect against threads */
211 	spin_lock(&mm->page_table_lock);
212 	if (likely(!vma->anon_vma)) {
213 		vma->anon_vma = anon_vma;
214 		anon_vma_chain_link(vma, avc, anon_vma);
215 		anon_vma->num_active_vmas++;
216 		allocated = NULL;
217 		avc = NULL;
218 	}
219 	spin_unlock(&mm->page_table_lock);
220 	anon_vma_unlock_write(anon_vma);
221 
222 	if (unlikely(allocated))
223 		put_anon_vma(allocated);
224 	if (unlikely(avc))
225 		anon_vma_chain_free(avc);
226 
227 	return 0;
228 
229  out_enomem_free_avc:
230 	anon_vma_chain_free(avc);
231  out_enomem:
232 	return -ENOMEM;
233 }
234 
235 /*
236  * This is a useful helper function for locking the anon_vma root as
237  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238  * have the same vma.
239  *
240  * Such anon_vma's should have the same root, so you'd expect to see
241  * just a single mutex_lock for the whole traversal.
242  */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 	struct anon_vma *new_root = anon_vma->root;
246 	if (new_root != root) {
247 		if (WARN_ON_ONCE(root))
248 			up_write(&root->rwsem);
249 		root = new_root;
250 		down_write(&root->rwsem);
251 	}
252 	return root;
253 }
254 
unlock_anon_vma_root(struct anon_vma * root)255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 	if (root)
258 		up_write(&root->rwsem);
259 }
260 
261 /*
262  * Attach the anon_vmas from src to dst.
263  * Returns 0 on success, -ENOMEM on failure.
264  *
265  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
266  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
267  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
268  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
269  * call, we can identify this case by checking (!dst->anon_vma &&
270  * src->anon_vma).
271  *
272  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
273  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
274  * This prevents degradation of anon_vma hierarchy to endless linear chain in
275  * case of constantly forking task. On the other hand, an anon_vma with more
276  * than one child isn't reused even if there was no alive vma, thus rmap
277  * walker has a good chance of avoiding scanning the whole hierarchy when it
278  * searches where page is mapped.
279  */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
281 {
282 	struct anon_vma_chain *avc, *pavc;
283 	struct anon_vma *root = NULL;
284 
285 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
286 		struct anon_vma *anon_vma;
287 
288 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
289 		if (unlikely(!avc)) {
290 			unlock_anon_vma_root(root);
291 			root = NULL;
292 			avc = anon_vma_chain_alloc(GFP_KERNEL);
293 			if (!avc)
294 				goto enomem_failure;
295 		}
296 		anon_vma = pavc->anon_vma;
297 		root = lock_anon_vma_root(root, anon_vma);
298 		anon_vma_chain_link(dst, avc, anon_vma);
299 
300 		/*
301 		 * Reuse existing anon_vma if it has no vma and only one
302 		 * anon_vma child.
303 		 *
304 		 * Root anon_vma is never reused:
305 		 * it has self-parent reference and at least one child.
306 		 */
307 		if (!dst->anon_vma && src->anon_vma &&
308 		    anon_vma->num_children < 2 &&
309 		    anon_vma->num_active_vmas == 0)
310 			dst->anon_vma = anon_vma;
311 	}
312 	if (dst->anon_vma)
313 		dst->anon_vma->num_active_vmas++;
314 	unlock_anon_vma_root(root);
315 	return 0;
316 
317  enomem_failure:
318 	/*
319 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
320 	 * be incorrectly decremented in unlink_anon_vmas().
321 	 * We can safely do this because callers of anon_vma_clone() don't care
322 	 * about dst->anon_vma if anon_vma_clone() failed.
323 	 */
324 	dst->anon_vma = NULL;
325 	unlink_anon_vmas(dst);
326 	return -ENOMEM;
327 }
328 
329 /*
330  * Attach vma to its own anon_vma, as well as to the anon_vmas that
331  * the corresponding VMA in the parent process is attached to.
332  * Returns 0 on success, non-zero on failure.
333  */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
335 {
336 	struct anon_vma_chain *avc;
337 	struct anon_vma *anon_vma;
338 	int error;
339 
340 	/* Don't bother if the parent process has no anon_vma here. */
341 	if (!pvma->anon_vma)
342 		return 0;
343 
344 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
345 	vma->anon_vma = NULL;
346 
347 	/*
348 	 * First, attach the new VMA to the parent VMA's anon_vmas,
349 	 * so rmap can find non-COWed pages in child processes.
350 	 */
351 	error = anon_vma_clone(vma, pvma);
352 	if (error)
353 		return error;
354 
355 	/* An existing anon_vma has been reused, all done then. */
356 	if (vma->anon_vma)
357 		return 0;
358 
359 	/* Then add our own anon_vma. */
360 	anon_vma = anon_vma_alloc();
361 	if (!anon_vma)
362 		goto out_error;
363 	anon_vma->num_active_vmas++;
364 	avc = anon_vma_chain_alloc(GFP_KERNEL);
365 	if (!avc)
366 		goto out_error_free_anon_vma;
367 
368 	/*
369 	 * The root anon_vma's rwsem is the lock actually used when we
370 	 * lock any of the anon_vmas in this anon_vma tree.
371 	 */
372 	anon_vma->root = pvma->anon_vma->root;
373 	anon_vma->parent = pvma->anon_vma;
374 	/*
375 	 * With refcounts, an anon_vma can stay around longer than the
376 	 * process it belongs to. The root anon_vma needs to be pinned until
377 	 * this anon_vma is freed, because the lock lives in the root.
378 	 */
379 	get_anon_vma(anon_vma->root);
380 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
381 	vma->anon_vma = anon_vma;
382 	anon_vma_lock_write(anon_vma);
383 	anon_vma_chain_link(vma, avc, anon_vma);
384 	anon_vma->parent->num_children++;
385 	anon_vma_unlock_write(anon_vma);
386 
387 	return 0;
388 
389  out_error_free_anon_vma:
390 	put_anon_vma(anon_vma);
391  out_error:
392 	unlink_anon_vmas(vma);
393 	return -ENOMEM;
394 }
395 
unlink_anon_vmas(struct vm_area_struct * vma)396 void unlink_anon_vmas(struct vm_area_struct *vma)
397 {
398 	struct anon_vma_chain *avc, *next;
399 	struct anon_vma *root = NULL;
400 
401 	/*
402 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
403 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
404 	 */
405 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 		struct anon_vma *anon_vma = avc->anon_vma;
407 
408 		root = lock_anon_vma_root(root, anon_vma);
409 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
410 
411 		/*
412 		 * Leave empty anon_vmas on the list - we'll need
413 		 * to free them outside the lock.
414 		 */
415 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 			anon_vma->parent->num_children--;
417 			continue;
418 		}
419 
420 		list_del(&avc->same_vma);
421 		anon_vma_chain_free(avc);
422 	}
423 	if (vma->anon_vma) {
424 		vma->anon_vma->num_active_vmas--;
425 
426 		/*
427 		 * vma would still be needed after unlink, and anon_vma will be prepared
428 		 * when handle fault.
429 		 */
430 		vma->anon_vma = NULL;
431 	}
432 	unlock_anon_vma_root(root);
433 
434 	/*
435 	 * Iterate the list once more, it now only contains empty and unlinked
436 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
437 	 * needing to write-acquire the anon_vma->root->rwsem.
438 	 */
439 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
440 		struct anon_vma *anon_vma = avc->anon_vma;
441 
442 		VM_WARN_ON(anon_vma->num_children);
443 		VM_WARN_ON(anon_vma->num_active_vmas);
444 		put_anon_vma(anon_vma);
445 
446 		list_del(&avc->same_vma);
447 		anon_vma_chain_free(avc);
448 	}
449 }
450 
anon_vma_ctor(void * data)451 static void anon_vma_ctor(void *data)
452 {
453 	struct anon_vma *anon_vma = data;
454 
455 	init_rwsem(&anon_vma->rwsem);
456 	atomic_set(&anon_vma->refcount, 0);
457 	anon_vma->rb_root = RB_ROOT_CACHED;
458 }
459 
anon_vma_init(void)460 void __init anon_vma_init(void)
461 {
462 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
463 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
464 			anon_vma_ctor);
465 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
466 			SLAB_PANIC|SLAB_ACCOUNT);
467 }
468 
469 /*
470  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
471  *
472  * Since there is no serialization what so ever against folio_remove_rmap_*()
473  * the best this function can do is return a refcount increased anon_vma
474  * that might have been relevant to this page.
475  *
476  * The page might have been remapped to a different anon_vma or the anon_vma
477  * returned may already be freed (and even reused).
478  *
479  * In case it was remapped to a different anon_vma, the new anon_vma will be a
480  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
481  * ensure that any anon_vma obtained from the page will still be valid for as
482  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
483  *
484  * All users of this function must be very careful when walking the anon_vma
485  * chain and verify that the page in question is indeed mapped in it
486  * [ something equivalent to page_mapped_in_vma() ].
487  *
488  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
489  * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
490  * if there is a mapcount, we can dereference the anon_vma after observing
491  * those.
492  *
493  * NOTE: the caller should normally hold folio lock when calling this.  If
494  * not, the caller needs to double check the anon_vma didn't change after
495  * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
496  * concurrently without folio lock protection). See folio_lock_anon_vma_read()
497  * which has already covered that, and comment above remap_pages().
498  */
folio_get_anon_vma(const struct folio * folio)499 struct anon_vma *folio_get_anon_vma(const struct folio *folio)
500 {
501 	struct anon_vma *anon_vma = NULL;
502 	unsigned long anon_mapping;
503 
504 	rcu_read_lock();
505 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
506 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
507 		goto out;
508 	if (!folio_mapped(folio))
509 		goto out;
510 
511 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
512 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
513 		anon_vma = NULL;
514 		goto out;
515 	}
516 
517 	/*
518 	 * If this folio is still mapped, then its anon_vma cannot have been
519 	 * freed.  But if it has been unmapped, we have no security against the
520 	 * anon_vma structure being freed and reused (for another anon_vma:
521 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
522 	 * above cannot corrupt).
523 	 */
524 	if (!folio_mapped(folio)) {
525 		rcu_read_unlock();
526 		put_anon_vma(anon_vma);
527 		return NULL;
528 	}
529 out:
530 	rcu_read_unlock();
531 
532 	return anon_vma;
533 }
534 
535 /*
536  * Similar to folio_get_anon_vma() except it locks the anon_vma.
537  *
538  * Its a little more complex as it tries to keep the fast path to a single
539  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
540  * reference like with folio_get_anon_vma() and then block on the mutex
541  * on !rwc->try_lock case.
542  */
folio_lock_anon_vma_read(const struct folio * folio,struct rmap_walk_control * rwc)543 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio,
544 					  struct rmap_walk_control *rwc)
545 {
546 	struct anon_vma *anon_vma = NULL;
547 	struct anon_vma *root_anon_vma;
548 	unsigned long anon_mapping;
549 
550 retry:
551 	rcu_read_lock();
552 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
553 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
554 		goto out;
555 	if (!folio_mapped(folio))
556 		goto out;
557 
558 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
559 	root_anon_vma = READ_ONCE(anon_vma->root);
560 	if (down_read_trylock(&root_anon_vma->rwsem)) {
561 		/*
562 		 * folio_move_anon_rmap() might have changed the anon_vma as we
563 		 * might not hold the folio lock here.
564 		 */
565 		if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
566 			     anon_mapping)) {
567 			up_read(&root_anon_vma->rwsem);
568 			rcu_read_unlock();
569 			goto retry;
570 		}
571 
572 		/*
573 		 * If the folio is still mapped, then this anon_vma is still
574 		 * its anon_vma, and holding the mutex ensures that it will
575 		 * not go away, see anon_vma_free().
576 		 */
577 		if (!folio_mapped(folio)) {
578 			up_read(&root_anon_vma->rwsem);
579 			anon_vma = NULL;
580 		}
581 		goto out;
582 	}
583 
584 	if (rwc && rwc->try_lock) {
585 		anon_vma = NULL;
586 		rwc->contended = true;
587 		goto out;
588 	}
589 
590 	/* trylock failed, we got to sleep */
591 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
592 		anon_vma = NULL;
593 		goto out;
594 	}
595 
596 	if (!folio_mapped(folio)) {
597 		rcu_read_unlock();
598 		put_anon_vma(anon_vma);
599 		return NULL;
600 	}
601 
602 	/* we pinned the anon_vma, its safe to sleep */
603 	rcu_read_unlock();
604 	anon_vma_lock_read(anon_vma);
605 
606 	/*
607 	 * folio_move_anon_rmap() might have changed the anon_vma as we might
608 	 * not hold the folio lock here.
609 	 */
610 	if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
611 		     anon_mapping)) {
612 		anon_vma_unlock_read(anon_vma);
613 		put_anon_vma(anon_vma);
614 		anon_vma = NULL;
615 		goto retry;
616 	}
617 
618 	if (atomic_dec_and_test(&anon_vma->refcount)) {
619 		/*
620 		 * Oops, we held the last refcount, release the lock
621 		 * and bail -- can't simply use put_anon_vma() because
622 		 * we'll deadlock on the anon_vma_lock_write() recursion.
623 		 */
624 		anon_vma_unlock_read(anon_vma);
625 		__put_anon_vma(anon_vma);
626 		anon_vma = NULL;
627 	}
628 
629 	return anon_vma;
630 
631 out:
632 	rcu_read_unlock();
633 	return anon_vma;
634 }
635 
636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
637 /*
638  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
639  * important if a PTE was dirty when it was unmapped that it's flushed
640  * before any IO is initiated on the page to prevent lost writes. Similarly,
641  * it must be flushed before freeing to prevent data leakage.
642  */
try_to_unmap_flush(void)643 void try_to_unmap_flush(void)
644 {
645 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
646 
647 	if (!tlb_ubc->flush_required)
648 		return;
649 
650 	arch_tlbbatch_flush(&tlb_ubc->arch);
651 	tlb_ubc->flush_required = false;
652 	tlb_ubc->writable = false;
653 }
654 
655 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)656 void try_to_unmap_flush_dirty(void)
657 {
658 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
659 
660 	if (tlb_ubc->writable)
661 		try_to_unmap_flush();
662 }
663 
664 /*
665  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
666  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
667  */
668 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
669 #define TLB_FLUSH_BATCH_PENDING_MASK			\
670 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
671 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
672 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
673 
set_tlb_ubc_flush_pending(struct mm_struct * mm,pte_t pteval,unsigned long start,unsigned long end)674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
675 		unsigned long start, unsigned long end)
676 {
677 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
678 	int batch;
679 	bool writable = pte_dirty(pteval);
680 
681 	if (!pte_accessible(mm, pteval))
682 		return;
683 
684 	arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, start, end);
685 	tlb_ubc->flush_required = true;
686 
687 	/*
688 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
689 	 * before the PTE is cleared.
690 	 */
691 	barrier();
692 	batch = atomic_read(&mm->tlb_flush_batched);
693 retry:
694 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
695 		/*
696 		 * Prevent `pending' from catching up with `flushed' because of
697 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
698 		 * `pending' becomes large.
699 		 */
700 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
701 			goto retry;
702 	} else {
703 		atomic_inc(&mm->tlb_flush_batched);
704 	}
705 
706 	/*
707 	 * If the PTE was dirty then it's best to assume it's writable. The
708 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
709 	 * before the page is queued for IO.
710 	 */
711 	if (writable)
712 		tlb_ubc->writable = true;
713 }
714 
715 /*
716  * Returns true if the TLB flush should be deferred to the end of a batch of
717  * unmap operations to reduce IPIs.
718  */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)719 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
720 {
721 	if (!(flags & TTU_BATCH_FLUSH))
722 		return false;
723 
724 	return arch_tlbbatch_should_defer(mm);
725 }
726 
727 /*
728  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
729  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
730  * operation such as mprotect or munmap to race between reclaim unmapping
731  * the page and flushing the page. If this race occurs, it potentially allows
732  * access to data via a stale TLB entry. Tracking all mm's that have TLB
733  * batching in flight would be expensive during reclaim so instead track
734  * whether TLB batching occurred in the past and if so then do a flush here
735  * if required. This will cost one additional flush per reclaim cycle paid
736  * by the first operation at risk such as mprotect and mumap.
737  *
738  * This must be called under the PTL so that an access to tlb_flush_batched
739  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
740  * via the PTL.
741  */
flush_tlb_batched_pending(struct mm_struct * mm)742 void flush_tlb_batched_pending(struct mm_struct *mm)
743 {
744 	int batch = atomic_read(&mm->tlb_flush_batched);
745 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
746 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
747 
748 	if (pending != flushed) {
749 		arch_flush_tlb_batched_pending(mm);
750 		/*
751 		 * If the new TLB flushing is pending during flushing, leave
752 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
753 		 */
754 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
755 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
756 	}
757 }
758 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,pte_t pteval,unsigned long start,unsigned long end)759 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
760 		unsigned long start, unsigned long end)
761 {
762 }
763 
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)764 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
765 {
766 	return false;
767 }
768 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
769 
770 /**
771  * page_address_in_vma - The virtual address of a page in this VMA.
772  * @folio: The folio containing the page.
773  * @page: The page within the folio.
774  * @vma: The VMA we need to know the address in.
775  *
776  * Calculates the user virtual address of this page in the specified VMA.
777  * It is the caller's responsibility to check the page is actually
778  * within the VMA.  There may not currently be a PTE pointing at this
779  * page, but if a page fault occurs at this address, this is the page
780  * which will be accessed.
781  *
782  * Context: Caller should hold a reference to the folio.  Caller should
783  * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the
784  * VMA from being altered.
785  *
786  * Return: The virtual address corresponding to this page in the VMA.
787  */
page_address_in_vma(const struct folio * folio,const struct page * page,const struct vm_area_struct * vma)788 unsigned long page_address_in_vma(const struct folio *folio,
789 		const struct page *page, const struct vm_area_struct *vma)
790 {
791 	if (folio_test_anon(folio)) {
792 		struct anon_vma *anon_vma = folio_anon_vma(folio);
793 		/*
794 		 * Note: swapoff's unuse_vma() is more efficient with this
795 		 * check, and needs it to match anon_vma when KSM is active.
796 		 */
797 		if (!vma->anon_vma || !anon_vma ||
798 		    vma->anon_vma->root != anon_vma->root)
799 			return -EFAULT;
800 	} else if (!vma->vm_file) {
801 		return -EFAULT;
802 	} else if (vma->vm_file->f_mapping != folio->mapping) {
803 		return -EFAULT;
804 	}
805 
806 	/* KSM folios don't reach here because of the !anon_vma check */
807 	return vma_address(vma, page_pgoff(folio, page), 1);
808 }
809 
810 /*
811  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
812  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
813  * represents.
814  */
mm_find_pmd(struct mm_struct * mm,unsigned long address)815 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
816 {
817 	pgd_t *pgd;
818 	p4d_t *p4d;
819 	pud_t *pud;
820 	pmd_t *pmd = NULL;
821 
822 	pgd = pgd_offset(mm, address);
823 	if (!pgd_present(*pgd))
824 		goto out;
825 
826 	p4d = p4d_offset(pgd, address);
827 	if (!p4d_present(*p4d))
828 		goto out;
829 
830 	pud = pud_offset(p4d, address);
831 	if (!pud_present(*pud))
832 		goto out;
833 
834 	pmd = pmd_offset(pud, address);
835 out:
836 	return pmd;
837 }
838 
839 struct folio_referenced_arg {
840 	int mapcount;
841 	int referenced;
842 	unsigned long vm_flags;
843 	struct mem_cgroup *memcg;
844 };
845 
846 /*
847  * arg: folio_referenced_arg will be passed
848  */
folio_referenced_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)849 static bool folio_referenced_one(struct folio *folio,
850 		struct vm_area_struct *vma, unsigned long address, void *arg)
851 {
852 	struct folio_referenced_arg *pra = arg;
853 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
854 	int referenced = 0;
855 	unsigned long start = address, ptes = 0;
856 
857 	while (page_vma_mapped_walk(&pvmw)) {
858 		address = pvmw.address;
859 
860 		if (vma->vm_flags & VM_LOCKED) {
861 			if (!folio_test_large(folio) || !pvmw.pte) {
862 				/* Restore the mlock which got missed */
863 				mlock_vma_folio(folio, vma);
864 				page_vma_mapped_walk_done(&pvmw);
865 				pra->vm_flags |= VM_LOCKED;
866 				return false; /* To break the loop */
867 			}
868 			/*
869 			 * For large folio fully mapped to VMA, will
870 			 * be handled after the pvmw loop.
871 			 *
872 			 * For large folio cross VMA boundaries, it's
873 			 * expected to be picked  by page reclaim. But
874 			 * should skip reference of pages which are in
875 			 * the range of VM_LOCKED vma. As page reclaim
876 			 * should just count the reference of pages out
877 			 * the range of VM_LOCKED vma.
878 			 */
879 			ptes++;
880 			pra->mapcount--;
881 			continue;
882 		}
883 
884 		/*
885 		 * Skip the non-shared swapbacked folio mapped solely by
886 		 * the exiting or OOM-reaped process. This avoids redundant
887 		 * swap-out followed by an immediate unmap.
888 		 */
889 		if ((!atomic_read(&vma->vm_mm->mm_users) ||
890 		    check_stable_address_space(vma->vm_mm)) &&
891 		    folio_test_anon(folio) && folio_test_swapbacked(folio) &&
892 		    !folio_maybe_mapped_shared(folio)) {
893 			pra->referenced = -1;
894 			page_vma_mapped_walk_done(&pvmw);
895 			return false;
896 		}
897 
898 		if (lru_gen_enabled() && pvmw.pte) {
899 			if (lru_gen_look_around(&pvmw))
900 				referenced++;
901 		} else if (pvmw.pte) {
902 			if (ptep_clear_flush_young_notify(vma, address,
903 						pvmw.pte))
904 				referenced++;
905 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
906 			if (pmdp_clear_flush_young_notify(vma, address,
907 						pvmw.pmd))
908 				referenced++;
909 		} else {
910 			/* unexpected pmd-mapped folio? */
911 			WARN_ON_ONCE(1);
912 		}
913 
914 		pra->mapcount--;
915 	}
916 
917 	if ((vma->vm_flags & VM_LOCKED) &&
918 			folio_test_large(folio) &&
919 			folio_within_vma(folio, vma)) {
920 		unsigned long s_align, e_align;
921 
922 		s_align = ALIGN_DOWN(start, PMD_SIZE);
923 		e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
924 
925 		/* folio doesn't cross page table boundary and fully mapped */
926 		if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
927 			/* Restore the mlock which got missed */
928 			mlock_vma_folio(folio, vma);
929 			pra->vm_flags |= VM_LOCKED;
930 			return false; /* To break the loop */
931 		}
932 	}
933 
934 	if (referenced)
935 		folio_clear_idle(folio);
936 	if (folio_test_clear_young(folio))
937 		referenced++;
938 
939 	if (referenced) {
940 		pra->referenced++;
941 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
942 	}
943 
944 	if (!pra->mapcount)
945 		return false; /* To break the loop */
946 
947 	return true;
948 }
949 
invalid_folio_referenced_vma(struct vm_area_struct * vma,void * arg)950 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
951 {
952 	struct folio_referenced_arg *pra = arg;
953 	struct mem_cgroup *memcg = pra->memcg;
954 
955 	/*
956 	 * Ignore references from this mapping if it has no recency. If the
957 	 * folio has been used in another mapping, we will catch it; if this
958 	 * other mapping is already gone, the unmap path will have set the
959 	 * referenced flag or activated the folio in zap_pte_range().
960 	 */
961 	if (!vma_has_recency(vma))
962 		return true;
963 
964 	/*
965 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
966 	 * of references from different cgroups.
967 	 */
968 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
969 		return true;
970 
971 	return false;
972 }
973 
974 /**
975  * folio_referenced() - Test if the folio was referenced.
976  * @folio: The folio to test.
977  * @is_locked: Caller holds lock on the folio.
978  * @memcg: target memory cgroup
979  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
980  *
981  * Quick test_and_clear_referenced for all mappings of a folio,
982  *
983  * Return: The number of mappings which referenced the folio. Return -1 if
984  * the function bailed out due to rmap lock contention.
985  */
folio_referenced(struct folio * folio,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)986 int folio_referenced(struct folio *folio, int is_locked,
987 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
988 {
989 	bool we_locked = false;
990 	struct folio_referenced_arg pra = {
991 		.mapcount = folio_mapcount(folio),
992 		.memcg = memcg,
993 	};
994 	struct rmap_walk_control rwc = {
995 		.rmap_one = folio_referenced_one,
996 		.arg = (void *)&pra,
997 		.anon_lock = folio_lock_anon_vma_read,
998 		.try_lock = true,
999 		.invalid_vma = invalid_folio_referenced_vma,
1000 	};
1001 
1002 	*vm_flags = 0;
1003 	if (!pra.mapcount)
1004 		return 0;
1005 
1006 	if (!folio_raw_mapping(folio))
1007 		return 0;
1008 
1009 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
1010 		we_locked = folio_trylock(folio);
1011 		if (!we_locked)
1012 			return 1;
1013 	}
1014 
1015 	rmap_walk(folio, &rwc);
1016 	*vm_flags = pra.vm_flags;
1017 
1018 	if (we_locked)
1019 		folio_unlock(folio);
1020 
1021 	return rwc.contended ? -1 : pra.referenced;
1022 }
1023 
page_vma_mkclean_one(struct page_vma_mapped_walk * pvmw)1024 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1025 {
1026 	int cleaned = 0;
1027 	struct vm_area_struct *vma = pvmw->vma;
1028 	struct mmu_notifier_range range;
1029 	unsigned long address = pvmw->address;
1030 
1031 	/*
1032 	 * We have to assume the worse case ie pmd for invalidation. Note that
1033 	 * the folio can not be freed from this function.
1034 	 */
1035 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1036 				vma->vm_mm, address, vma_address_end(pvmw));
1037 	mmu_notifier_invalidate_range_start(&range);
1038 
1039 	while (page_vma_mapped_walk(pvmw)) {
1040 		int ret = 0;
1041 
1042 		address = pvmw->address;
1043 		if (pvmw->pte) {
1044 			pte_t *pte = pvmw->pte;
1045 			pte_t entry = ptep_get(pte);
1046 
1047 			/*
1048 			 * PFN swap PTEs, such as device-exclusive ones, that
1049 			 * actually map pages are clean and not writable from a
1050 			 * CPU perspective. The MMU notifier takes care of any
1051 			 * device aspects.
1052 			 */
1053 			if (!pte_present(entry))
1054 				continue;
1055 			if (!pte_dirty(entry) && !pte_write(entry))
1056 				continue;
1057 
1058 			flush_cache_page(vma, address, pte_pfn(entry));
1059 			entry = ptep_clear_flush(vma, address, pte);
1060 			entry = pte_wrprotect(entry);
1061 			entry = pte_mkclean(entry);
1062 			set_pte_at(vma->vm_mm, address, pte, entry);
1063 			ret = 1;
1064 		} else {
1065 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1066 			pmd_t *pmd = pvmw->pmd;
1067 			pmd_t entry;
1068 
1069 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1070 				continue;
1071 
1072 			flush_cache_range(vma, address,
1073 					  address + HPAGE_PMD_SIZE);
1074 			entry = pmdp_invalidate(vma, address, pmd);
1075 			entry = pmd_wrprotect(entry);
1076 			entry = pmd_mkclean(entry);
1077 			set_pmd_at(vma->vm_mm, address, pmd, entry);
1078 			ret = 1;
1079 #else
1080 			/* unexpected pmd-mapped folio? */
1081 			WARN_ON_ONCE(1);
1082 #endif
1083 		}
1084 
1085 		if (ret)
1086 			cleaned++;
1087 	}
1088 
1089 	mmu_notifier_invalidate_range_end(&range);
1090 
1091 	return cleaned;
1092 }
1093 
page_mkclean_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1094 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1095 			     unsigned long address, void *arg)
1096 {
1097 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1098 	int *cleaned = arg;
1099 
1100 	*cleaned += page_vma_mkclean_one(&pvmw);
1101 
1102 	return true;
1103 }
1104 
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)1105 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1106 {
1107 	if (vma->vm_flags & VM_SHARED)
1108 		return false;
1109 
1110 	return true;
1111 }
1112 
folio_mkclean(struct folio * folio)1113 int folio_mkclean(struct folio *folio)
1114 {
1115 	int cleaned = 0;
1116 	struct address_space *mapping;
1117 	struct rmap_walk_control rwc = {
1118 		.arg = (void *)&cleaned,
1119 		.rmap_one = page_mkclean_one,
1120 		.invalid_vma = invalid_mkclean_vma,
1121 	};
1122 
1123 	BUG_ON(!folio_test_locked(folio));
1124 
1125 	if (!folio_mapped(folio))
1126 		return 0;
1127 
1128 	mapping = folio_mapping(folio);
1129 	if (!mapping)
1130 		return 0;
1131 
1132 	rmap_walk(folio, &rwc);
1133 
1134 	return cleaned;
1135 }
1136 EXPORT_SYMBOL_GPL(folio_mkclean);
1137 
1138 struct wrprotect_file_state {
1139 	int cleaned;
1140 	pgoff_t pgoff;
1141 	unsigned long pfn;
1142 	unsigned long nr_pages;
1143 };
1144 
mapping_wrprotect_range_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1145 static bool mapping_wrprotect_range_one(struct folio *folio,
1146 		struct vm_area_struct *vma, unsigned long address, void *arg)
1147 {
1148 	struct wrprotect_file_state *state = (struct wrprotect_file_state *)arg;
1149 	struct page_vma_mapped_walk pvmw = {
1150 		.pfn		= state->pfn,
1151 		.nr_pages	= state->nr_pages,
1152 		.pgoff		= state->pgoff,
1153 		.vma		= vma,
1154 		.address	= address,
1155 		.flags		= PVMW_SYNC,
1156 	};
1157 
1158 	state->cleaned += page_vma_mkclean_one(&pvmw);
1159 
1160 	return true;
1161 }
1162 
1163 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping,
1164 			     pgoff_t pgoff_start, unsigned long nr_pages,
1165 			     struct rmap_walk_control *rwc, bool locked);
1166 
1167 /**
1168  * mapping_wrprotect_range() - Write-protect all mappings in a specified range.
1169  *
1170  * @mapping:	The mapping whose reverse mapping should be traversed.
1171  * @pgoff:	The page offset at which @pfn is mapped within @mapping.
1172  * @pfn:	The PFN of the page mapped in @mapping at @pgoff.
1173  * @nr_pages:	The number of physically contiguous base pages spanned.
1174  *
1175  * Traverses the reverse mapping, finding all VMAs which contain a shared
1176  * mapping of the pages in the specified range in @mapping, and write-protects
1177  * them (that is, updates the page tables to mark the mappings read-only such
1178  * that a write protection fault arises when the mappings are written to).
1179  *
1180  * The @pfn value need not refer to a folio, but rather can reference a kernel
1181  * allocation which is mapped into userland. We therefore do not require that
1182  * the page maps to a folio with a valid mapping or index field, rather the
1183  * caller specifies these in @mapping and @pgoff.
1184  *
1185  * Return: the number of write-protected PTEs, or an error.
1186  */
mapping_wrprotect_range(struct address_space * mapping,pgoff_t pgoff,unsigned long pfn,unsigned long nr_pages)1187 int mapping_wrprotect_range(struct address_space *mapping, pgoff_t pgoff,
1188 		unsigned long pfn, unsigned long nr_pages)
1189 {
1190 	struct wrprotect_file_state state = {
1191 		.cleaned = 0,
1192 		.pgoff = pgoff,
1193 		.pfn = pfn,
1194 		.nr_pages = nr_pages,
1195 	};
1196 	struct rmap_walk_control rwc = {
1197 		.arg = (void *)&state,
1198 		.rmap_one = mapping_wrprotect_range_one,
1199 		.invalid_vma = invalid_mkclean_vma,
1200 	};
1201 
1202 	if (!mapping)
1203 		return 0;
1204 
1205 	__rmap_walk_file(/* folio = */NULL, mapping, pgoff, nr_pages, &rwc,
1206 			 /* locked = */false);
1207 
1208 	return state.cleaned;
1209 }
1210 EXPORT_SYMBOL_GPL(mapping_wrprotect_range);
1211 
1212 /**
1213  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1214  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1215  *                     within the @vma of shared mappings. And since clean PTEs
1216  *                     should also be readonly, write protects them too.
1217  * @pfn: start pfn.
1218  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1219  * @pgoff: page offset that the @pfn mapped with.
1220  * @vma: vma that @pfn mapped within.
1221  *
1222  * Returns the number of cleaned PTEs (including PMDs).
1223  */
pfn_mkclean_range(unsigned long pfn,unsigned long nr_pages,pgoff_t pgoff,struct vm_area_struct * vma)1224 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1225 		      struct vm_area_struct *vma)
1226 {
1227 	struct page_vma_mapped_walk pvmw = {
1228 		.pfn		= pfn,
1229 		.nr_pages	= nr_pages,
1230 		.pgoff		= pgoff,
1231 		.vma		= vma,
1232 		.flags		= PVMW_SYNC,
1233 	};
1234 
1235 	if (invalid_mkclean_vma(vma, NULL))
1236 		return 0;
1237 
1238 	pvmw.address = vma_address(vma, pgoff, nr_pages);
1239 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1240 
1241 	return page_vma_mkclean_one(&pvmw);
1242 }
1243 
__folio_add_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum rmap_level level,int * nr_pmdmapped)1244 static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1245 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1246 		enum rmap_level level, int *nr_pmdmapped)
1247 {
1248 	atomic_t *mapped = &folio->_nr_pages_mapped;
1249 	const int orig_nr_pages = nr_pages;
1250 	int first = 0, nr = 0;
1251 
1252 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1253 
1254 	switch (level) {
1255 	case RMAP_LEVEL_PTE:
1256 		if (!folio_test_large(folio)) {
1257 			nr = atomic_inc_and_test(&folio->_mapcount);
1258 			break;
1259 		}
1260 
1261 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1262 			nr = folio_add_return_large_mapcount(folio, orig_nr_pages, vma);
1263 			if (nr == orig_nr_pages)
1264 				/* Was completely unmapped. */
1265 				nr = folio_large_nr_pages(folio);
1266 			else
1267 				nr = 0;
1268 			break;
1269 		}
1270 
1271 		do {
1272 			first += atomic_inc_and_test(&page->_mapcount);
1273 		} while (page++, --nr_pages > 0);
1274 
1275 		if (first &&
1276 		    atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED)
1277 			nr = first;
1278 
1279 		folio_add_large_mapcount(folio, orig_nr_pages, vma);
1280 		break;
1281 	case RMAP_LEVEL_PMD:
1282 	case RMAP_LEVEL_PUD:
1283 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1284 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1285 			if (level == RMAP_LEVEL_PMD && first)
1286 				*nr_pmdmapped = folio_large_nr_pages(folio);
1287 			nr = folio_inc_return_large_mapcount(folio, vma);
1288 			if (nr == 1)
1289 				/* Was completely unmapped. */
1290 				nr = folio_large_nr_pages(folio);
1291 			else
1292 				nr = 0;
1293 			break;
1294 		}
1295 
1296 		if (first) {
1297 			nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1298 			if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1299 				nr_pages = folio_large_nr_pages(folio);
1300 				/*
1301 				 * We only track PMD mappings of PMD-sized
1302 				 * folios separately.
1303 				 */
1304 				if (level == RMAP_LEVEL_PMD)
1305 					*nr_pmdmapped = nr_pages;
1306 				nr = nr_pages - (nr & FOLIO_PAGES_MAPPED);
1307 				/* Raced ahead of a remove and another add? */
1308 				if (unlikely(nr < 0))
1309 					nr = 0;
1310 			} else {
1311 				/* Raced ahead of a remove of ENTIRELY_MAPPED */
1312 				nr = 0;
1313 			}
1314 		}
1315 		folio_inc_large_mapcount(folio, vma);
1316 		break;
1317 	}
1318 	return nr;
1319 }
1320 
1321 /**
1322  * folio_move_anon_rmap - move a folio to our anon_vma
1323  * @folio:	The folio to move to our anon_vma
1324  * @vma:	The vma the folio belongs to
1325  *
1326  * When a folio belongs exclusively to one process after a COW event,
1327  * that folio can be moved into the anon_vma that belongs to just that
1328  * process, so the rmap code will not search the parent or sibling processes.
1329  */
folio_move_anon_rmap(struct folio * folio,struct vm_area_struct * vma)1330 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1331 {
1332 	void *anon_vma = vma->anon_vma;
1333 
1334 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1335 	VM_BUG_ON_VMA(!anon_vma, vma);
1336 
1337 	anon_vma += PAGE_MAPPING_ANON;
1338 	/*
1339 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1340 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1341 	 * folio_test_anon()) will not see one without the other.
1342 	 */
1343 	WRITE_ONCE(folio->mapping, anon_vma);
1344 }
1345 
1346 /**
1347  * __folio_set_anon - set up a new anonymous rmap for a folio
1348  * @folio:	The folio to set up the new anonymous rmap for.
1349  * @vma:	VM area to add the folio to.
1350  * @address:	User virtual address of the mapping
1351  * @exclusive:	Whether the folio is exclusive to the process.
1352  */
__folio_set_anon(struct folio * folio,struct vm_area_struct * vma,unsigned long address,bool exclusive)1353 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1354 			     unsigned long address, bool exclusive)
1355 {
1356 	struct anon_vma *anon_vma = vma->anon_vma;
1357 
1358 	BUG_ON(!anon_vma);
1359 
1360 	/*
1361 	 * If the folio isn't exclusive to this vma, we must use the _oldest_
1362 	 * possible anon_vma for the folio mapping!
1363 	 */
1364 	if (!exclusive)
1365 		anon_vma = anon_vma->root;
1366 
1367 	/*
1368 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1369 	 * Make sure the compiler doesn't split the stores of anon_vma and
1370 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1371 	 * could mistake the mapping for a struct address_space and crash.
1372 	 */
1373 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1374 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1375 	folio->index = linear_page_index(vma, address);
1376 }
1377 
1378 /**
1379  * __page_check_anon_rmap - sanity check anonymous rmap addition
1380  * @folio:	The folio containing @page.
1381  * @page:	the page to check the mapping of
1382  * @vma:	the vm area in which the mapping is added
1383  * @address:	the user virtual address mapped
1384  */
__page_check_anon_rmap(const struct folio * folio,const struct page * page,struct vm_area_struct * vma,unsigned long address)1385 static void __page_check_anon_rmap(const struct folio *folio,
1386 		const struct page *page, struct vm_area_struct *vma,
1387 		unsigned long address)
1388 {
1389 	/*
1390 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1391 	 * be set up correctly at this point.
1392 	 *
1393 	 * We have exclusion against folio_add_anon_rmap_*() because the caller
1394 	 * always holds the page locked.
1395 	 *
1396 	 * We have exclusion against folio_add_new_anon_rmap because those pages
1397 	 * are initially only visible via the pagetables, and the pte is locked
1398 	 * over the call to folio_add_new_anon_rmap.
1399 	 */
1400 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1401 			folio);
1402 	VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address),
1403 		       page);
1404 }
1405 
__folio_mod_stat(struct folio * folio,int nr,int nr_pmdmapped)1406 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
1407 {
1408 	int idx;
1409 
1410 	if (nr) {
1411 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1412 		__lruvec_stat_mod_folio(folio, idx, nr);
1413 	}
1414 	if (nr_pmdmapped) {
1415 		if (folio_test_anon(folio)) {
1416 			idx = NR_ANON_THPS;
1417 			__lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1418 		} else {
1419 			/* NR_*_PMDMAPPED are not maintained per-memcg */
1420 			idx = folio_test_swapbacked(folio) ?
1421 				NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1422 			__mod_node_page_state(folio_pgdat(folio), idx,
1423 					      nr_pmdmapped);
1424 		}
1425 	}
1426 }
1427 
__folio_add_anon_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,unsigned long address,rmap_t flags,enum rmap_level level)1428 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1429 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1430 		unsigned long address, rmap_t flags, enum rmap_level level)
1431 {
1432 	int i, nr, nr_pmdmapped = 0;
1433 
1434 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1435 
1436 	nr = __folio_add_rmap(folio, page, nr_pages, vma, level, &nr_pmdmapped);
1437 
1438 	if (likely(!folio_test_ksm(folio)))
1439 		__page_check_anon_rmap(folio, page, vma, address);
1440 
1441 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1442 
1443 	if (flags & RMAP_EXCLUSIVE) {
1444 		switch (level) {
1445 		case RMAP_LEVEL_PTE:
1446 			for (i = 0; i < nr_pages; i++)
1447 				SetPageAnonExclusive(page + i);
1448 			break;
1449 		case RMAP_LEVEL_PMD:
1450 			SetPageAnonExclusive(page);
1451 			break;
1452 		case RMAP_LEVEL_PUD:
1453 			/*
1454 			 * Keep the compiler happy, we don't support anonymous
1455 			 * PUD mappings.
1456 			 */
1457 			WARN_ON_ONCE(1);
1458 			break;
1459 		}
1460 	}
1461 
1462 	VM_WARN_ON_FOLIO(!folio_test_large(folio) && PageAnonExclusive(page) &&
1463 			 atomic_read(&folio->_mapcount) > 0, folio);
1464 	for (i = 0; i < nr_pages; i++) {
1465 		struct page *cur_page = page + i;
1466 
1467 		VM_WARN_ON_FOLIO(folio_test_large(folio) &&
1468 				 folio_entire_mapcount(folio) > 1 &&
1469 				 PageAnonExclusive(cur_page), folio);
1470 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT))
1471 			continue;
1472 
1473 		/*
1474 		 * While PTE-mapping a THP we have a PMD and a PTE
1475 		 * mapping.
1476 		 */
1477 		VM_WARN_ON_FOLIO(atomic_read(&cur_page->_mapcount) > 0 &&
1478 				 PageAnonExclusive(cur_page), folio);
1479 	}
1480 
1481 	/*
1482 	 * For large folio, only mlock it if it's fully mapped to VMA. It's
1483 	 * not easy to check whether the large folio is fully mapped to VMA
1484 	 * here. Only mlock normal 4K folio and leave page reclaim to handle
1485 	 * large folio.
1486 	 */
1487 	if (!folio_test_large(folio))
1488 		mlock_vma_folio(folio, vma);
1489 }
1490 
1491 /**
1492  * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1493  * @folio:	The folio to add the mappings to
1494  * @page:	The first page to add
1495  * @nr_pages:	The number of pages which will be mapped
1496  * @vma:	The vm area in which the mappings are added
1497  * @address:	The user virtual address of the first page to map
1498  * @flags:	The rmap flags
1499  *
1500  * The page range of folio is defined by [first_page, first_page + nr_pages)
1501  *
1502  * The caller needs to hold the page table lock, and the page must be locked in
1503  * the anon_vma case: to serialize mapping,index checking after setting,
1504  * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1505  * (but KSM folios are never downgraded).
1506  */
folio_add_anon_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1507 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1508 		int nr_pages, struct vm_area_struct *vma, unsigned long address,
1509 		rmap_t flags)
1510 {
1511 	__folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1512 			      RMAP_LEVEL_PTE);
1513 }
1514 
1515 /**
1516  * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1517  * @folio:	The folio to add the mapping to
1518  * @page:	The first page to add
1519  * @vma:	The vm area in which the mapping is added
1520  * @address:	The user virtual address of the first page to map
1521  * @flags:	The rmap flags
1522  *
1523  * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1524  *
1525  * The caller needs to hold the page table lock, and the page must be locked in
1526  * the anon_vma case: to serialize mapping,index checking after setting.
1527  */
folio_add_anon_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1528 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1529 		struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1530 {
1531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1532 	__folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1533 			      RMAP_LEVEL_PMD);
1534 #else
1535 	WARN_ON_ONCE(true);
1536 #endif
1537 }
1538 
1539 /**
1540  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1541  * @folio:	The folio to add the mapping to.
1542  * @vma:	the vm area in which the mapping is added
1543  * @address:	the user virtual address mapped
1544  * @flags:	The rmap flags
1545  *
1546  * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1547  * This means the inc-and-test can be bypassed.
1548  * The folio doesn't necessarily need to be locked while it's exclusive
1549  * unless two threads map it concurrently. However, the folio must be
1550  * locked if it's shared.
1551  *
1552  * If the folio is pmd-mappable, it is accounted as a THP.
1553  */
folio_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1554 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1555 		unsigned long address, rmap_t flags)
1556 {
1557 	const bool exclusive = flags & RMAP_EXCLUSIVE;
1558 	int nr = 1, nr_pmdmapped = 0;
1559 
1560 	VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1561 	VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1562 
1563 	/*
1564 	 * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1565 	 * under memory pressure.
1566 	 */
1567 	if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1568 		__folio_set_swapbacked(folio);
1569 	__folio_set_anon(folio, vma, address, exclusive);
1570 
1571 	if (likely(!folio_test_large(folio))) {
1572 		/* increment count (starts at -1) */
1573 		atomic_set(&folio->_mapcount, 0);
1574 		if (exclusive)
1575 			SetPageAnonExclusive(&folio->page);
1576 	} else if (!folio_test_pmd_mappable(folio)) {
1577 		int i;
1578 
1579 		nr = folio_large_nr_pages(folio);
1580 		for (i = 0; i < nr; i++) {
1581 			struct page *page = folio_page(folio, i);
1582 
1583 			if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1584 				/* increment count (starts at -1) */
1585 				atomic_set(&page->_mapcount, 0);
1586 			if (exclusive)
1587 				SetPageAnonExclusive(page);
1588 		}
1589 
1590 		folio_set_large_mapcount(folio, nr, vma);
1591 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1592 			atomic_set(&folio->_nr_pages_mapped, nr);
1593 	} else {
1594 		nr = folio_large_nr_pages(folio);
1595 		/* increment count (starts at -1) */
1596 		atomic_set(&folio->_entire_mapcount, 0);
1597 		folio_set_large_mapcount(folio, 1, vma);
1598 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1599 			atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1600 		if (exclusive)
1601 			SetPageAnonExclusive(&folio->page);
1602 		nr_pmdmapped = nr;
1603 	}
1604 
1605 	VM_WARN_ON_ONCE(address < vma->vm_start ||
1606 			address + (nr << PAGE_SHIFT) > vma->vm_end);
1607 
1608 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1609 	mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
1610 }
1611 
__folio_add_file_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum rmap_level level)1612 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1613 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1614 		enum rmap_level level)
1615 {
1616 	int nr, nr_pmdmapped = 0;
1617 
1618 	VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1619 
1620 	nr = __folio_add_rmap(folio, page, nr_pages, vma, level, &nr_pmdmapped);
1621 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1622 
1623 	/* See comments in folio_add_anon_rmap_*() */
1624 	if (!folio_test_large(folio))
1625 		mlock_vma_folio(folio, vma);
1626 }
1627 
1628 /**
1629  * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1630  * @folio:	The folio to add the mappings to
1631  * @page:	The first page to add
1632  * @nr_pages:	The number of pages that will be mapped using PTEs
1633  * @vma:	The vm area in which the mappings are added
1634  *
1635  * The page range of the folio is defined by [page, page + nr_pages)
1636  *
1637  * The caller needs to hold the page table lock.
1638  */
folio_add_file_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma)1639 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1640 		int nr_pages, struct vm_area_struct *vma)
1641 {
1642 	__folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1643 }
1644 
1645 /**
1646  * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1647  * @folio:	The folio to add the mapping to
1648  * @page:	The first page to add
1649  * @vma:	The vm area in which the mapping is added
1650  *
1651  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1652  *
1653  * The caller needs to hold the page table lock.
1654  */
folio_add_file_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma)1655 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1656 		struct vm_area_struct *vma)
1657 {
1658 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1659 	__folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1660 #else
1661 	WARN_ON_ONCE(true);
1662 #endif
1663 }
1664 
1665 /**
1666  * folio_add_file_rmap_pud - add a PUD mapping to a page range of a folio
1667  * @folio:	The folio to add the mapping to
1668  * @page:	The first page to add
1669  * @vma:	The vm area in which the mapping is added
1670  *
1671  * The page range of the folio is defined by [page, page + HPAGE_PUD_NR)
1672  *
1673  * The caller needs to hold the page table lock.
1674  */
folio_add_file_rmap_pud(struct folio * folio,struct page * page,struct vm_area_struct * vma)1675 void folio_add_file_rmap_pud(struct folio *folio, struct page *page,
1676 		struct vm_area_struct *vma)
1677 {
1678 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1679 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1680 	__folio_add_file_rmap(folio, page, HPAGE_PUD_NR, vma, RMAP_LEVEL_PUD);
1681 #else
1682 	WARN_ON_ONCE(true);
1683 #endif
1684 }
1685 
__folio_remove_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum rmap_level level)1686 static __always_inline void __folio_remove_rmap(struct folio *folio,
1687 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1688 		enum rmap_level level)
1689 {
1690 	atomic_t *mapped = &folio->_nr_pages_mapped;
1691 	int last = 0, nr = 0, nr_pmdmapped = 0;
1692 	bool partially_mapped = false;
1693 
1694 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1695 
1696 	switch (level) {
1697 	case RMAP_LEVEL_PTE:
1698 		if (!folio_test_large(folio)) {
1699 			nr = atomic_add_negative(-1, &folio->_mapcount);
1700 			break;
1701 		}
1702 
1703 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1704 			nr = folio_sub_return_large_mapcount(folio, nr_pages, vma);
1705 			if (!nr) {
1706 				/* Now completely unmapped. */
1707 				nr = folio_nr_pages(folio);
1708 			} else {
1709 				partially_mapped = nr < folio_large_nr_pages(folio) &&
1710 						   !folio_entire_mapcount(folio);
1711 				nr = 0;
1712 			}
1713 			break;
1714 		}
1715 
1716 		folio_sub_large_mapcount(folio, nr_pages, vma);
1717 		do {
1718 			last += atomic_add_negative(-1, &page->_mapcount);
1719 		} while (page++, --nr_pages > 0);
1720 
1721 		if (last &&
1722 		    atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED)
1723 			nr = last;
1724 
1725 		partially_mapped = nr && atomic_read(mapped);
1726 		break;
1727 	case RMAP_LEVEL_PMD:
1728 	case RMAP_LEVEL_PUD:
1729 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1730 			last = atomic_add_negative(-1, &folio->_entire_mapcount);
1731 			if (level == RMAP_LEVEL_PMD && last)
1732 				nr_pmdmapped = folio_large_nr_pages(folio);
1733 			nr = folio_dec_return_large_mapcount(folio, vma);
1734 			if (!nr) {
1735 				/* Now completely unmapped. */
1736 				nr = folio_large_nr_pages(folio);
1737 			} else {
1738 				partially_mapped = last &&
1739 						   nr < folio_large_nr_pages(folio);
1740 				nr = 0;
1741 			}
1742 			break;
1743 		}
1744 
1745 		folio_dec_large_mapcount(folio, vma);
1746 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1747 		if (last) {
1748 			nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1749 			if (likely(nr < ENTIRELY_MAPPED)) {
1750 				nr_pages = folio_large_nr_pages(folio);
1751 				if (level == RMAP_LEVEL_PMD)
1752 					nr_pmdmapped = nr_pages;
1753 				nr = nr_pages - (nr & FOLIO_PAGES_MAPPED);
1754 				/* Raced ahead of another remove and an add? */
1755 				if (unlikely(nr < 0))
1756 					nr = 0;
1757 			} else {
1758 				/* An add of ENTIRELY_MAPPED raced ahead */
1759 				nr = 0;
1760 			}
1761 		}
1762 
1763 		partially_mapped = nr && nr < nr_pmdmapped;
1764 		break;
1765 	}
1766 
1767 	/*
1768 	 * Queue anon large folio for deferred split if at least one page of
1769 	 * the folio is unmapped and at least one page is still mapped.
1770 	 *
1771 	 * Check partially_mapped first to ensure it is a large folio.
1772 	 */
1773 	if (partially_mapped && folio_test_anon(folio) &&
1774 	    !folio_test_partially_mapped(folio))
1775 		deferred_split_folio(folio, true);
1776 
1777 	__folio_mod_stat(folio, -nr, -nr_pmdmapped);
1778 
1779 	/*
1780 	 * It would be tidy to reset folio_test_anon mapping when fully
1781 	 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1782 	 * which increments mapcount after us but sets mapping before us:
1783 	 * so leave the reset to free_pages_prepare, and remember that
1784 	 * it's only reliable while mapped.
1785 	 */
1786 
1787 	munlock_vma_folio(folio, vma);
1788 }
1789 
1790 /**
1791  * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1792  * @folio:	The folio to remove the mappings from
1793  * @page:	The first page to remove
1794  * @nr_pages:	The number of pages that will be removed from the mapping
1795  * @vma:	The vm area from which the mappings are removed
1796  *
1797  * The page range of the folio is defined by [page, page + nr_pages)
1798  *
1799  * The caller needs to hold the page table lock.
1800  */
folio_remove_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma)1801 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1802 		int nr_pages, struct vm_area_struct *vma)
1803 {
1804 	__folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1805 }
1806 
1807 /**
1808  * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1809  * @folio:	The folio to remove the mapping from
1810  * @page:	The first page to remove
1811  * @vma:	The vm area from which the mapping is removed
1812  *
1813  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1814  *
1815  * The caller needs to hold the page table lock.
1816  */
folio_remove_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma)1817 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1818 		struct vm_area_struct *vma)
1819 {
1820 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1821 	__folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1822 #else
1823 	WARN_ON_ONCE(true);
1824 #endif
1825 }
1826 
1827 /**
1828  * folio_remove_rmap_pud - remove a PUD mapping from a page range of a folio
1829  * @folio:	The folio to remove the mapping from
1830  * @page:	The first page to remove
1831  * @vma:	The vm area from which the mapping is removed
1832  *
1833  * The page range of the folio is defined by [page, page + HPAGE_PUD_NR)
1834  *
1835  * The caller needs to hold the page table lock.
1836  */
folio_remove_rmap_pud(struct folio * folio,struct page * page,struct vm_area_struct * vma)1837 void folio_remove_rmap_pud(struct folio *folio, struct page *page,
1838 		struct vm_area_struct *vma)
1839 {
1840 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1841 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1842 	__folio_remove_rmap(folio, page, HPAGE_PUD_NR, vma, RMAP_LEVEL_PUD);
1843 #else
1844 	WARN_ON_ONCE(true);
1845 #endif
1846 }
1847 
1848 /* We support batch unmapping of PTEs for lazyfree large folios */
can_batch_unmap_folio_ptes(unsigned long addr,struct folio * folio,pte_t * ptep)1849 static inline bool can_batch_unmap_folio_ptes(unsigned long addr,
1850 			struct folio *folio, pte_t *ptep)
1851 {
1852 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1853 	int max_nr = folio_nr_pages(folio);
1854 	pte_t pte = ptep_get(ptep);
1855 
1856 	if (!folio_test_anon(folio) || folio_test_swapbacked(folio))
1857 		return false;
1858 	if (pte_unused(pte))
1859 		return false;
1860 	if (pte_pfn(pte) != folio_pfn(folio))
1861 		return false;
1862 
1863 	return folio_pte_batch(folio, addr, ptep, pte, max_nr, fpb_flags, NULL,
1864 			       NULL, NULL) == max_nr;
1865 }
1866 
1867 /*
1868  * @arg: enum ttu_flags will be passed to this argument
1869  */
try_to_unmap_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1870 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1871 		     unsigned long address, void *arg)
1872 {
1873 	struct mm_struct *mm = vma->vm_mm;
1874 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1875 	bool anon_exclusive, ret = true;
1876 	pte_t pteval;
1877 	struct page *subpage;
1878 	struct mmu_notifier_range range;
1879 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1880 	unsigned long nr_pages = 1, end_addr;
1881 	unsigned long pfn;
1882 	unsigned long hsz = 0;
1883 
1884 	/*
1885 	 * When racing against e.g. zap_pte_range() on another cpu,
1886 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1887 	 * try_to_unmap() may return before page_mapped() has become false,
1888 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1889 	 */
1890 	if (flags & TTU_SYNC)
1891 		pvmw.flags = PVMW_SYNC;
1892 
1893 	/*
1894 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1895 	 * For hugetlb, it could be much worse if we need to do pud
1896 	 * invalidation in the case of pmd sharing.
1897 	 *
1898 	 * Note that the folio can not be freed in this function as call of
1899 	 * try_to_unmap() must hold a reference on the folio.
1900 	 */
1901 	range.end = vma_address_end(&pvmw);
1902 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1903 				address, range.end);
1904 	if (folio_test_hugetlb(folio)) {
1905 		/*
1906 		 * If sharing is possible, start and end will be adjusted
1907 		 * accordingly.
1908 		 */
1909 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1910 						     &range.end);
1911 
1912 		/* We need the huge page size for set_huge_pte_at() */
1913 		hsz = huge_page_size(hstate_vma(vma));
1914 	}
1915 	mmu_notifier_invalidate_range_start(&range);
1916 
1917 	while (page_vma_mapped_walk(&pvmw)) {
1918 		/*
1919 		 * If the folio is in an mlock()d vma, we must not swap it out.
1920 		 */
1921 		if (!(flags & TTU_IGNORE_MLOCK) &&
1922 		    (vma->vm_flags & VM_LOCKED)) {
1923 			/* Restore the mlock which got missed */
1924 			if (!folio_test_large(folio))
1925 				mlock_vma_folio(folio, vma);
1926 			goto walk_abort;
1927 		}
1928 
1929 		if (!pvmw.pte) {
1930 			if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1931 				if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, folio))
1932 					goto walk_done;
1933 				/*
1934 				 * unmap_huge_pmd_locked has either already marked
1935 				 * the folio as swap-backed or decided to retain it
1936 				 * due to GUP or speculative references.
1937 				 */
1938 				goto walk_abort;
1939 			}
1940 
1941 			if (flags & TTU_SPLIT_HUGE_PMD) {
1942 				/*
1943 				 * We temporarily have to drop the PTL and
1944 				 * restart so we can process the PTE-mapped THP.
1945 				 */
1946 				split_huge_pmd_locked(vma, pvmw.address,
1947 						      pvmw.pmd, false);
1948 				flags &= ~TTU_SPLIT_HUGE_PMD;
1949 				page_vma_mapped_walk_restart(&pvmw);
1950 				continue;
1951 			}
1952 		}
1953 
1954 		/* Unexpected PMD-mapped THP? */
1955 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1956 
1957 		/*
1958 		 * Handle PFN swap PTEs, such as device-exclusive ones, that
1959 		 * actually map pages.
1960 		 */
1961 		pteval = ptep_get(pvmw.pte);
1962 		if (likely(pte_present(pteval))) {
1963 			pfn = pte_pfn(pteval);
1964 		} else {
1965 			pfn = swp_offset_pfn(pte_to_swp_entry(pteval));
1966 			VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1967 		}
1968 
1969 		subpage = folio_page(folio, pfn - folio_pfn(folio));
1970 		address = pvmw.address;
1971 		anon_exclusive = folio_test_anon(folio) &&
1972 				 PageAnonExclusive(subpage);
1973 
1974 		if (folio_test_hugetlb(folio)) {
1975 			bool anon = folio_test_anon(folio);
1976 
1977 			/*
1978 			 * The try_to_unmap() is only passed a hugetlb page
1979 			 * in the case where the hugetlb page is poisoned.
1980 			 */
1981 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1982 			/*
1983 			 * huge_pmd_unshare may unmap an entire PMD page.
1984 			 * There is no way of knowing exactly which PMDs may
1985 			 * be cached for this mm, so we must flush them all.
1986 			 * start/end were already adjusted above to cover this
1987 			 * range.
1988 			 */
1989 			flush_cache_range(vma, range.start, range.end);
1990 
1991 			/*
1992 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1993 			 * held in write mode.  Caller needs to explicitly
1994 			 * do this outside rmap routines.
1995 			 *
1996 			 * We also must hold hugetlb vma_lock in write mode.
1997 			 * Lock order dictates acquiring vma_lock BEFORE
1998 			 * i_mmap_rwsem.  We can only try lock here and fail
1999 			 * if unsuccessful.
2000 			 */
2001 			if (!anon) {
2002 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2003 				if (!hugetlb_vma_trylock_write(vma))
2004 					goto walk_abort;
2005 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2006 					hugetlb_vma_unlock_write(vma);
2007 					flush_tlb_range(vma,
2008 						range.start, range.end);
2009 					/*
2010 					 * The ref count of the PMD page was
2011 					 * dropped which is part of the way map
2012 					 * counting is done for shared PMDs.
2013 					 * Return 'true' here.  When there is
2014 					 * no other sharing, huge_pmd_unshare
2015 					 * returns false and we will unmap the
2016 					 * actual page and drop map count
2017 					 * to zero.
2018 					 */
2019 					goto walk_done;
2020 				}
2021 				hugetlb_vma_unlock_write(vma);
2022 			}
2023 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2024 			if (pte_dirty(pteval))
2025 				folio_mark_dirty(folio);
2026 		} else if (likely(pte_present(pteval))) {
2027 			if (folio_test_large(folio) && !(flags & TTU_HWPOISON) &&
2028 			    can_batch_unmap_folio_ptes(address, folio, pvmw.pte))
2029 				nr_pages = folio_nr_pages(folio);
2030 			end_addr = address + nr_pages * PAGE_SIZE;
2031 			flush_cache_range(vma, address, end_addr);
2032 
2033 			/* Nuke the page table entry. */
2034 			pteval = get_and_clear_full_ptes(mm, address, pvmw.pte, nr_pages, 0);
2035 			/*
2036 			 * We clear the PTE but do not flush so potentially
2037 			 * a remote CPU could still be writing to the folio.
2038 			 * If the entry was previously clean then the
2039 			 * architecture must guarantee that a clear->dirty
2040 			 * transition on a cached TLB entry is written through
2041 			 * and traps if the PTE is unmapped.
2042 			 */
2043 			if (should_defer_flush(mm, flags))
2044 				set_tlb_ubc_flush_pending(mm, pteval, address, end_addr);
2045 			else
2046 				flush_tlb_range(vma, address, end_addr);
2047 			if (pte_dirty(pteval))
2048 				folio_mark_dirty(folio);
2049 		} else {
2050 			pte_clear(mm, address, pvmw.pte);
2051 		}
2052 
2053 		/*
2054 		 * Now the pte is cleared. If this pte was uffd-wp armed,
2055 		 * we may want to replace a none pte with a marker pte if
2056 		 * it's file-backed, so we don't lose the tracking info.
2057 		 */
2058 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
2059 
2060 		/* Update high watermark before we lower rss */
2061 		update_hiwater_rss(mm);
2062 
2063 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
2064 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2065 			if (folio_test_hugetlb(folio)) {
2066 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2067 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
2068 						hsz);
2069 			} else {
2070 				dec_mm_counter(mm, mm_counter(folio));
2071 				set_pte_at(mm, address, pvmw.pte, pteval);
2072 			}
2073 		} else if (likely(pte_present(pteval)) && pte_unused(pteval) &&
2074 			   !userfaultfd_armed(vma)) {
2075 			/*
2076 			 * The guest indicated that the page content is of no
2077 			 * interest anymore. Simply discard the pte, vmscan
2078 			 * will take care of the rest.
2079 			 * A future reference will then fault in a new zero
2080 			 * page. When userfaultfd is active, we must not drop
2081 			 * this page though, as its main user (postcopy
2082 			 * migration) will not expect userfaults on already
2083 			 * copied pages.
2084 			 */
2085 			dec_mm_counter(mm, mm_counter(folio));
2086 		} else if (folio_test_anon(folio)) {
2087 			swp_entry_t entry = page_swap_entry(subpage);
2088 			pte_t swp_pte;
2089 			/*
2090 			 * Store the swap location in the pte.
2091 			 * See handle_pte_fault() ...
2092 			 */
2093 			if (unlikely(folio_test_swapbacked(folio) !=
2094 					folio_test_swapcache(folio))) {
2095 				WARN_ON_ONCE(1);
2096 				goto walk_abort;
2097 			}
2098 
2099 			/* MADV_FREE page check */
2100 			if (!folio_test_swapbacked(folio)) {
2101 				int ref_count, map_count;
2102 
2103 				/*
2104 				 * Synchronize with gup_pte_range():
2105 				 * - clear PTE; barrier; read refcount
2106 				 * - inc refcount; barrier; read PTE
2107 				 */
2108 				smp_mb();
2109 
2110 				ref_count = folio_ref_count(folio);
2111 				map_count = folio_mapcount(folio);
2112 
2113 				/*
2114 				 * Order reads for page refcount and dirty flag
2115 				 * (see comments in __remove_mapping()).
2116 				 */
2117 				smp_rmb();
2118 
2119 				if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
2120 					/*
2121 					 * redirtied either using the page table or a previously
2122 					 * obtained GUP reference.
2123 					 */
2124 					set_ptes(mm, address, pvmw.pte, pteval, nr_pages);
2125 					folio_set_swapbacked(folio);
2126 					goto walk_abort;
2127 				} else if (ref_count != 1 + map_count) {
2128 					/*
2129 					 * Additional reference. Could be a GUP reference or any
2130 					 * speculative reference. GUP users must mark the folio
2131 					 * dirty if there was a modification. This folio cannot be
2132 					 * reclaimed right now either way, so act just like nothing
2133 					 * happened.
2134 					 * We'll come back here later and detect if the folio was
2135 					 * dirtied when the additional reference is gone.
2136 					 */
2137 					set_ptes(mm, address, pvmw.pte, pteval, nr_pages);
2138 					goto walk_abort;
2139 				}
2140 				add_mm_counter(mm, MM_ANONPAGES, -nr_pages);
2141 				goto discard;
2142 			}
2143 
2144 			if (swap_duplicate(entry) < 0) {
2145 				set_pte_at(mm, address, pvmw.pte, pteval);
2146 				goto walk_abort;
2147 			}
2148 
2149 			/*
2150 			 * arch_unmap_one() is expected to be a NOP on
2151 			 * architectures where we could have PFN swap PTEs,
2152 			 * so we'll not check/care.
2153 			 */
2154 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2155 				swap_free(entry);
2156 				set_pte_at(mm, address, pvmw.pte, pteval);
2157 				goto walk_abort;
2158 			}
2159 
2160 			/* See folio_try_share_anon_rmap(): clear PTE first. */
2161 			if (anon_exclusive &&
2162 			    folio_try_share_anon_rmap_pte(folio, subpage)) {
2163 				swap_free(entry);
2164 				set_pte_at(mm, address, pvmw.pte, pteval);
2165 				goto walk_abort;
2166 			}
2167 			if (list_empty(&mm->mmlist)) {
2168 				spin_lock(&mmlist_lock);
2169 				if (list_empty(&mm->mmlist))
2170 					list_add(&mm->mmlist, &init_mm.mmlist);
2171 				spin_unlock(&mmlist_lock);
2172 			}
2173 			dec_mm_counter(mm, MM_ANONPAGES);
2174 			inc_mm_counter(mm, MM_SWAPENTS);
2175 			swp_pte = swp_entry_to_pte(entry);
2176 			if (anon_exclusive)
2177 				swp_pte = pte_swp_mkexclusive(swp_pte);
2178 			if (likely(pte_present(pteval))) {
2179 				if (pte_soft_dirty(pteval))
2180 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2181 				if (pte_uffd_wp(pteval))
2182 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2183 			} else {
2184 				if (pte_swp_soft_dirty(pteval))
2185 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2186 				if (pte_swp_uffd_wp(pteval))
2187 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2188 			}
2189 			set_pte_at(mm, address, pvmw.pte, swp_pte);
2190 		} else {
2191 			/*
2192 			 * This is a locked file-backed folio,
2193 			 * so it cannot be removed from the page
2194 			 * cache and replaced by a new folio before
2195 			 * mmu_notifier_invalidate_range_end, so no
2196 			 * concurrent thread might update its page table
2197 			 * to point at a new folio while a device is
2198 			 * still using this folio.
2199 			 *
2200 			 * See Documentation/mm/mmu_notifier.rst
2201 			 */
2202 			dec_mm_counter(mm, mm_counter_file(folio));
2203 		}
2204 discard:
2205 		if (unlikely(folio_test_hugetlb(folio))) {
2206 			hugetlb_remove_rmap(folio);
2207 		} else {
2208 			folio_remove_rmap_ptes(folio, subpage, nr_pages, vma);
2209 			folio_ref_sub(folio, nr_pages - 1);
2210 		}
2211 		if (vma->vm_flags & VM_LOCKED)
2212 			mlock_drain_local();
2213 		folio_put(folio);
2214 		/* We have already batched the entire folio */
2215 		if (nr_pages > 1)
2216 			goto walk_done;
2217 		continue;
2218 walk_abort:
2219 		ret = false;
2220 walk_done:
2221 		page_vma_mapped_walk_done(&pvmw);
2222 		break;
2223 	}
2224 
2225 	mmu_notifier_invalidate_range_end(&range);
2226 
2227 	return ret;
2228 }
2229 
invalid_migration_vma(struct vm_area_struct * vma,void * arg)2230 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
2231 {
2232 	return vma_is_temporary_stack(vma);
2233 }
2234 
folio_not_mapped(struct folio * folio)2235 static int folio_not_mapped(struct folio *folio)
2236 {
2237 	return !folio_mapped(folio);
2238 }
2239 
2240 /**
2241  * try_to_unmap - Try to remove all page table mappings to a folio.
2242  * @folio: The folio to unmap.
2243  * @flags: action and flags
2244  *
2245  * Tries to remove all the page table entries which are mapping this
2246  * folio.  It is the caller's responsibility to check if the folio is
2247  * still mapped if needed (use TTU_SYNC to prevent accounting races).
2248  *
2249  * Context: Caller must hold the folio lock.
2250  */
try_to_unmap(struct folio * folio,enum ttu_flags flags)2251 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
2252 {
2253 	struct rmap_walk_control rwc = {
2254 		.rmap_one = try_to_unmap_one,
2255 		.arg = (void *)flags,
2256 		.done = folio_not_mapped,
2257 		.anon_lock = folio_lock_anon_vma_read,
2258 	};
2259 
2260 	if (flags & TTU_RMAP_LOCKED)
2261 		rmap_walk_locked(folio, &rwc);
2262 	else
2263 		rmap_walk(folio, &rwc);
2264 }
2265 
2266 /*
2267  * @arg: enum ttu_flags will be passed to this argument.
2268  *
2269  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
2270  * containing migration entries.
2271  */
try_to_migrate_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)2272 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
2273 		     unsigned long address, void *arg)
2274 {
2275 	struct mm_struct *mm = vma->vm_mm;
2276 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2277 	bool anon_exclusive, writable, ret = true;
2278 	pte_t pteval;
2279 	struct page *subpage;
2280 	struct mmu_notifier_range range;
2281 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
2282 	unsigned long pfn;
2283 	unsigned long hsz = 0;
2284 
2285 	/*
2286 	 * When racing against e.g. zap_pte_range() on another cpu,
2287 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2288 	 * try_to_migrate() may return before page_mapped() has become false,
2289 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
2290 	 */
2291 	if (flags & TTU_SYNC)
2292 		pvmw.flags = PVMW_SYNC;
2293 
2294 	/*
2295 	 * For THP, we have to assume the worse case ie pmd for invalidation.
2296 	 * For hugetlb, it could be much worse if we need to do pud
2297 	 * invalidation in the case of pmd sharing.
2298 	 *
2299 	 * Note that the page can not be free in this function as call of
2300 	 * try_to_unmap() must hold a reference on the page.
2301 	 */
2302 	range.end = vma_address_end(&pvmw);
2303 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2304 				address, range.end);
2305 	if (folio_test_hugetlb(folio)) {
2306 		/*
2307 		 * If sharing is possible, start and end will be adjusted
2308 		 * accordingly.
2309 		 */
2310 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
2311 						     &range.end);
2312 
2313 		/* We need the huge page size for set_huge_pte_at() */
2314 		hsz = huge_page_size(hstate_vma(vma));
2315 	}
2316 	mmu_notifier_invalidate_range_start(&range);
2317 
2318 	while (page_vma_mapped_walk(&pvmw)) {
2319 		/* PMD-mapped THP migration entry */
2320 		if (!pvmw.pte) {
2321 			if (flags & TTU_SPLIT_HUGE_PMD) {
2322 				split_huge_pmd_locked(vma, pvmw.address,
2323 						      pvmw.pmd, true);
2324 				ret = false;
2325 				page_vma_mapped_walk_done(&pvmw);
2326 				break;
2327 			}
2328 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2329 			subpage = folio_page(folio,
2330 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2331 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2332 					!folio_test_pmd_mappable(folio), folio);
2333 
2334 			if (set_pmd_migration_entry(&pvmw, subpage)) {
2335 				ret = false;
2336 				page_vma_mapped_walk_done(&pvmw);
2337 				break;
2338 			}
2339 			continue;
2340 #endif
2341 		}
2342 
2343 		/* Unexpected PMD-mapped THP? */
2344 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2345 
2346 		/*
2347 		 * Handle PFN swap PTEs, such as device-exclusive ones, that
2348 		 * actually map pages.
2349 		 */
2350 		pteval = ptep_get(pvmw.pte);
2351 		if (likely(pte_present(pteval))) {
2352 			pfn = pte_pfn(pteval);
2353 		} else {
2354 			pfn = swp_offset_pfn(pte_to_swp_entry(pteval));
2355 			VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
2356 		}
2357 
2358 		subpage = folio_page(folio, pfn - folio_pfn(folio));
2359 		address = pvmw.address;
2360 		anon_exclusive = folio_test_anon(folio) &&
2361 				 PageAnonExclusive(subpage);
2362 
2363 		if (folio_test_hugetlb(folio)) {
2364 			bool anon = folio_test_anon(folio);
2365 
2366 			/*
2367 			 * huge_pmd_unshare may unmap an entire PMD page.
2368 			 * There is no way of knowing exactly which PMDs may
2369 			 * be cached for this mm, so we must flush them all.
2370 			 * start/end were already adjusted above to cover this
2371 			 * range.
2372 			 */
2373 			flush_cache_range(vma, range.start, range.end);
2374 
2375 			/*
2376 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
2377 			 * held in write mode.  Caller needs to explicitly
2378 			 * do this outside rmap routines.
2379 			 *
2380 			 * We also must hold hugetlb vma_lock in write mode.
2381 			 * Lock order dictates acquiring vma_lock BEFORE
2382 			 * i_mmap_rwsem.  We can only try lock here and
2383 			 * fail if unsuccessful.
2384 			 */
2385 			if (!anon) {
2386 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2387 				if (!hugetlb_vma_trylock_write(vma)) {
2388 					page_vma_mapped_walk_done(&pvmw);
2389 					ret = false;
2390 					break;
2391 				}
2392 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2393 					hugetlb_vma_unlock_write(vma);
2394 					flush_tlb_range(vma,
2395 						range.start, range.end);
2396 
2397 					/*
2398 					 * The ref count of the PMD page was
2399 					 * dropped which is part of the way map
2400 					 * counting is done for shared PMDs.
2401 					 * Return 'true' here.  When there is
2402 					 * no other sharing, huge_pmd_unshare
2403 					 * returns false and we will unmap the
2404 					 * actual page and drop map count
2405 					 * to zero.
2406 					 */
2407 					page_vma_mapped_walk_done(&pvmw);
2408 					break;
2409 				}
2410 				hugetlb_vma_unlock_write(vma);
2411 			}
2412 			/* Nuke the hugetlb page table entry */
2413 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2414 			if (pte_dirty(pteval))
2415 				folio_mark_dirty(folio);
2416 			writable = pte_write(pteval);
2417 		} else if (likely(pte_present(pteval))) {
2418 			flush_cache_page(vma, address, pfn);
2419 			/* Nuke the page table entry. */
2420 			if (should_defer_flush(mm, flags)) {
2421 				/*
2422 				 * We clear the PTE but do not flush so potentially
2423 				 * a remote CPU could still be writing to the folio.
2424 				 * If the entry was previously clean then the
2425 				 * architecture must guarantee that a clear->dirty
2426 				 * transition on a cached TLB entry is written through
2427 				 * and traps if the PTE is unmapped.
2428 				 */
2429 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2430 
2431 				set_tlb_ubc_flush_pending(mm, pteval, address, address + PAGE_SIZE);
2432 			} else {
2433 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
2434 			}
2435 			if (pte_dirty(pteval))
2436 				folio_mark_dirty(folio);
2437 			writable = pte_write(pteval);
2438 		} else {
2439 			pte_clear(mm, address, pvmw.pte);
2440 			writable = is_writable_device_private_entry(pte_to_swp_entry(pteval));
2441 		}
2442 
2443 		VM_WARN_ON_FOLIO(writable && folio_test_anon(folio) &&
2444 				!anon_exclusive, folio);
2445 
2446 		/* Update high watermark before we lower rss */
2447 		update_hiwater_rss(mm);
2448 
2449 		if (PageHWPoison(subpage)) {
2450 			VM_WARN_ON_FOLIO(folio_is_device_private(folio), folio);
2451 
2452 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2453 			if (folio_test_hugetlb(folio)) {
2454 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2455 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
2456 						hsz);
2457 			} else {
2458 				dec_mm_counter(mm, mm_counter(folio));
2459 				set_pte_at(mm, address, pvmw.pte, pteval);
2460 			}
2461 		} else if (likely(pte_present(pteval)) && pte_unused(pteval) &&
2462 			   !userfaultfd_armed(vma)) {
2463 			/*
2464 			 * The guest indicated that the page content is of no
2465 			 * interest anymore. Simply discard the pte, vmscan
2466 			 * will take care of the rest.
2467 			 * A future reference will then fault in a new zero
2468 			 * page. When userfaultfd is active, we must not drop
2469 			 * this page though, as its main user (postcopy
2470 			 * migration) will not expect userfaults on already
2471 			 * copied pages.
2472 			 */
2473 			dec_mm_counter(mm, mm_counter(folio));
2474 		} else {
2475 			swp_entry_t entry;
2476 			pte_t swp_pte;
2477 
2478 			/*
2479 			 * arch_unmap_one() is expected to be a NOP on
2480 			 * architectures where we could have PFN swap PTEs,
2481 			 * so we'll not check/care.
2482 			 */
2483 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2484 				if (folio_test_hugetlb(folio))
2485 					set_huge_pte_at(mm, address, pvmw.pte,
2486 							pteval, hsz);
2487 				else
2488 					set_pte_at(mm, address, pvmw.pte, pteval);
2489 				ret = false;
2490 				page_vma_mapped_walk_done(&pvmw);
2491 				break;
2492 			}
2493 
2494 			/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2495 			if (folio_test_hugetlb(folio)) {
2496 				if (anon_exclusive &&
2497 				    hugetlb_try_share_anon_rmap(folio)) {
2498 					set_huge_pte_at(mm, address, pvmw.pte,
2499 							pteval, hsz);
2500 					ret = false;
2501 					page_vma_mapped_walk_done(&pvmw);
2502 					break;
2503 				}
2504 			} else if (anon_exclusive &&
2505 				   folio_try_share_anon_rmap_pte(folio, subpage)) {
2506 				set_pte_at(mm, address, pvmw.pte, pteval);
2507 				ret = false;
2508 				page_vma_mapped_walk_done(&pvmw);
2509 				break;
2510 			}
2511 
2512 			/*
2513 			 * Store the pfn of the page in a special migration
2514 			 * pte. do_swap_page() will wait until the migration
2515 			 * pte is removed and then restart fault handling.
2516 			 */
2517 			if (writable)
2518 				entry = make_writable_migration_entry(
2519 							page_to_pfn(subpage));
2520 			else if (anon_exclusive)
2521 				entry = make_readable_exclusive_migration_entry(
2522 							page_to_pfn(subpage));
2523 			else
2524 				entry = make_readable_migration_entry(
2525 							page_to_pfn(subpage));
2526 			if (likely(pte_present(pteval))) {
2527 				if (pte_young(pteval))
2528 					entry = make_migration_entry_young(entry);
2529 				if (pte_dirty(pteval))
2530 					entry = make_migration_entry_dirty(entry);
2531 				swp_pte = swp_entry_to_pte(entry);
2532 				if (pte_soft_dirty(pteval))
2533 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2534 				if (pte_uffd_wp(pteval))
2535 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2536 			} else {
2537 				swp_pte = swp_entry_to_pte(entry);
2538 				if (pte_swp_soft_dirty(pteval))
2539 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2540 				if (pte_swp_uffd_wp(pteval))
2541 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2542 			}
2543 			if (folio_test_hugetlb(folio))
2544 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2545 						hsz);
2546 			else
2547 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2548 			trace_set_migration_pte(address, pte_val(swp_pte),
2549 						folio_order(folio));
2550 			/*
2551 			 * No need to invalidate here it will synchronize on
2552 			 * against the special swap migration pte.
2553 			 */
2554 		}
2555 
2556 		if (unlikely(folio_test_hugetlb(folio)))
2557 			hugetlb_remove_rmap(folio);
2558 		else
2559 			folio_remove_rmap_pte(folio, subpage, vma);
2560 		if (vma->vm_flags & VM_LOCKED)
2561 			mlock_drain_local();
2562 		folio_put(folio);
2563 	}
2564 
2565 	mmu_notifier_invalidate_range_end(&range);
2566 
2567 	return ret;
2568 }
2569 
2570 /**
2571  * try_to_migrate - try to replace all page table mappings with swap entries
2572  * @folio: the folio to replace page table entries for
2573  * @flags: action and flags
2574  *
2575  * Tries to remove all the page table entries which are mapping this folio and
2576  * replace them with special swap entries. Caller must hold the folio lock.
2577  */
try_to_migrate(struct folio * folio,enum ttu_flags flags)2578 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2579 {
2580 	struct rmap_walk_control rwc = {
2581 		.rmap_one = try_to_migrate_one,
2582 		.arg = (void *)flags,
2583 		.done = folio_not_mapped,
2584 		.anon_lock = folio_lock_anon_vma_read,
2585 	};
2586 
2587 	/*
2588 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2589 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2590 	 */
2591 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2592 					TTU_SYNC | TTU_BATCH_FLUSH)))
2593 		return;
2594 
2595 	if (folio_is_zone_device(folio) &&
2596 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2597 		return;
2598 
2599 	/*
2600 	 * During exec, a temporary VMA is setup and later moved.
2601 	 * The VMA is moved under the anon_vma lock but not the
2602 	 * page tables leading to a race where migration cannot
2603 	 * find the migration ptes. Rather than increasing the
2604 	 * locking requirements of exec(), migration skips
2605 	 * temporary VMAs until after exec() completes.
2606 	 */
2607 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2608 		rwc.invalid_vma = invalid_migration_vma;
2609 
2610 	if (flags & TTU_RMAP_LOCKED)
2611 		rmap_walk_locked(folio, &rwc);
2612 	else
2613 		rmap_walk(folio, &rwc);
2614 }
2615 
2616 #ifdef CONFIG_DEVICE_PRIVATE
2617 /**
2618  * make_device_exclusive() - Mark a page for exclusive use by a device
2619  * @mm: mm_struct of associated target process
2620  * @addr: the virtual address to mark for exclusive device access
2621  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2622  * @foliop: folio pointer will be stored here on success.
2623  *
2624  * This function looks up the page mapped at the given address, grabs a
2625  * folio reference, locks the folio and replaces the PTE with special
2626  * device-exclusive PFN swap entry, preventing access through the process
2627  * page tables. The function will return with the folio locked and referenced.
2628  *
2629  * On fault, the device-exclusive entries are replaced with the original PTE
2630  * under folio lock, after calling MMU notifiers.
2631  *
2632  * Only anonymous non-hugetlb folios are supported and the VMA must have
2633  * write permissions such that we can fault in the anonymous page writable
2634  * in order to mark it exclusive. The caller must hold the mmap_lock in read
2635  * mode.
2636  *
2637  * A driver using this to program access from a device must use a mmu notifier
2638  * critical section to hold a device specific lock during programming. Once
2639  * programming is complete it should drop the folio lock and reference after
2640  * which point CPU access to the page will revoke the exclusive access.
2641  *
2642  * Notes:
2643  *   #. This function always operates on individual PTEs mapping individual
2644  *      pages. PMD-sized THPs are first remapped to be mapped by PTEs before
2645  *      the conversion happens on a single PTE corresponding to @addr.
2646  *   #. While concurrent access through the process page tables is prevented,
2647  *      concurrent access through other page references (e.g., earlier GUP
2648  *      invocation) is not handled and not supported.
2649  *   #. device-exclusive entries are considered "clean" and "old" by core-mm.
2650  *      Device drivers must update the folio state when informed by MMU
2651  *      notifiers.
2652  *
2653  * Returns: pointer to mapped page on success, otherwise a negative error.
2654  */
make_device_exclusive(struct mm_struct * mm,unsigned long addr,void * owner,struct folio ** foliop)2655 struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr,
2656 		void *owner, struct folio **foliop)
2657 {
2658 	struct mmu_notifier_range range;
2659 	struct folio *folio, *fw_folio;
2660 	struct vm_area_struct *vma;
2661 	struct folio_walk fw;
2662 	struct page *page;
2663 	swp_entry_t entry;
2664 	pte_t swp_pte;
2665 	int ret;
2666 
2667 	mmap_assert_locked(mm);
2668 	addr = PAGE_ALIGN_DOWN(addr);
2669 
2670 	/*
2671 	 * Fault in the page writable and try to lock it; note that if the
2672 	 * address would already be marked for exclusive use by a device,
2673 	 * the GUP call would undo that first by triggering a fault.
2674 	 *
2675 	 * If any other device would already map this page exclusively, the
2676 	 * fault will trigger a conversion to an ordinary
2677 	 * (non-device-exclusive) PTE and issue a MMU_NOTIFY_EXCLUSIVE.
2678 	 */
2679 retry:
2680 	page = get_user_page_vma_remote(mm, addr,
2681 					FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2682 					&vma);
2683 	if (IS_ERR(page))
2684 		return page;
2685 	folio = page_folio(page);
2686 
2687 	if (!folio_test_anon(folio) || folio_test_hugetlb(folio)) {
2688 		folio_put(folio);
2689 		return ERR_PTR(-EOPNOTSUPP);
2690 	}
2691 
2692 	ret = folio_lock_killable(folio);
2693 	if (ret) {
2694 		folio_put(folio);
2695 		return ERR_PTR(ret);
2696 	}
2697 
2698 	/*
2699 	 * Inform secondary MMUs that we are going to convert this PTE to
2700 	 * device-exclusive, such that they unmap it now. Note that the
2701 	 * caller must filter this event out to prevent livelocks.
2702 	 */
2703 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2704 				      mm, addr, addr + PAGE_SIZE, owner);
2705 	mmu_notifier_invalidate_range_start(&range);
2706 
2707 	/*
2708 	 * Let's do a second walk and make sure we still find the same page
2709 	 * mapped writable. Note that any page of an anonymous folio can
2710 	 * only be mapped writable using exactly one PTE ("exclusive"), so
2711 	 * there cannot be other mappings.
2712 	 */
2713 	fw_folio = folio_walk_start(&fw, vma, addr, 0);
2714 	if (fw_folio != folio || fw.page != page ||
2715 	    fw.level != FW_LEVEL_PTE || !pte_write(fw.pte)) {
2716 		if (fw_folio)
2717 			folio_walk_end(&fw, vma);
2718 		mmu_notifier_invalidate_range_end(&range);
2719 		folio_unlock(folio);
2720 		folio_put(folio);
2721 		goto retry;
2722 	}
2723 
2724 	/* Nuke the page table entry so we get the uptodate dirty bit. */
2725 	flush_cache_page(vma, addr, page_to_pfn(page));
2726 	fw.pte = ptep_clear_flush(vma, addr, fw.ptep);
2727 
2728 	/* Set the dirty flag on the folio now the PTE is gone. */
2729 	if (pte_dirty(fw.pte))
2730 		folio_mark_dirty(folio);
2731 
2732 	/*
2733 	 * Store the pfn of the page in a special device-exclusive PFN swap PTE.
2734 	 * do_swap_page() will trigger the conversion back while holding the
2735 	 * folio lock.
2736 	 */
2737 	entry = make_device_exclusive_entry(page_to_pfn(page));
2738 	swp_pte = swp_entry_to_pte(entry);
2739 	if (pte_soft_dirty(fw.pte))
2740 		swp_pte = pte_swp_mksoft_dirty(swp_pte);
2741 	/* The pte is writable, uffd-wp does not apply. */
2742 	set_pte_at(mm, addr, fw.ptep, swp_pte);
2743 
2744 	folio_walk_end(&fw, vma);
2745 	mmu_notifier_invalidate_range_end(&range);
2746 	*foliop = folio;
2747 	return page;
2748 }
2749 EXPORT_SYMBOL_GPL(make_device_exclusive);
2750 #endif
2751 
__put_anon_vma(struct anon_vma * anon_vma)2752 void __put_anon_vma(struct anon_vma *anon_vma)
2753 {
2754 	struct anon_vma *root = anon_vma->root;
2755 
2756 	anon_vma_free(anon_vma);
2757 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2758 		anon_vma_free(root);
2759 }
2760 
rmap_walk_anon_lock(const struct folio * folio,struct rmap_walk_control * rwc)2761 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio,
2762 					    struct rmap_walk_control *rwc)
2763 {
2764 	struct anon_vma *anon_vma;
2765 
2766 	if (rwc->anon_lock)
2767 		return rwc->anon_lock(folio, rwc);
2768 
2769 	/*
2770 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2771 	 * because that depends on page_mapped(); but not all its usages
2772 	 * are holding mmap_lock. Users without mmap_lock are required to
2773 	 * take a reference count to prevent the anon_vma disappearing
2774 	 */
2775 	anon_vma = folio_anon_vma(folio);
2776 	if (!anon_vma)
2777 		return NULL;
2778 
2779 	if (anon_vma_trylock_read(anon_vma))
2780 		goto out;
2781 
2782 	if (rwc->try_lock) {
2783 		anon_vma = NULL;
2784 		rwc->contended = true;
2785 		goto out;
2786 	}
2787 
2788 	anon_vma_lock_read(anon_vma);
2789 out:
2790 	return anon_vma;
2791 }
2792 
2793 /*
2794  * rmap_walk_anon - do something to anonymous page using the object-based
2795  * rmap method
2796  * @folio: the folio to be handled
2797  * @rwc: control variable according to each walk type
2798  * @locked: caller holds relevant rmap lock
2799  *
2800  * Find all the mappings of a folio using the mapping pointer and the vma
2801  * chains contained in the anon_vma struct it points to.
2802  */
rmap_walk_anon(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2803 static void rmap_walk_anon(struct folio *folio,
2804 		struct rmap_walk_control *rwc, bool locked)
2805 {
2806 	struct anon_vma *anon_vma;
2807 	pgoff_t pgoff_start, pgoff_end;
2808 	struct anon_vma_chain *avc;
2809 
2810 	if (locked) {
2811 		anon_vma = folio_anon_vma(folio);
2812 		/* anon_vma disappear under us? */
2813 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2814 	} else {
2815 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2816 	}
2817 	if (!anon_vma)
2818 		return;
2819 
2820 	pgoff_start = folio_pgoff(folio);
2821 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2822 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2823 			pgoff_start, pgoff_end) {
2824 		struct vm_area_struct *vma = avc->vma;
2825 		unsigned long address = vma_address(vma, pgoff_start,
2826 				folio_nr_pages(folio));
2827 
2828 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2829 		cond_resched();
2830 
2831 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2832 			continue;
2833 
2834 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2835 			break;
2836 		if (rwc->done && rwc->done(folio))
2837 			break;
2838 	}
2839 
2840 	if (!locked)
2841 		anon_vma_unlock_read(anon_vma);
2842 }
2843 
2844 /**
2845  * __rmap_walk_file() - Traverse the reverse mapping for a file-backed mapping
2846  * of a page mapped within a specified page cache object at a specified offset.
2847  *
2848  * @folio: 		Either the folio whose mappings to traverse, or if NULL,
2849  * 			the callbacks specified in @rwc will be configured such
2850  * 			as to be able to look up mappings correctly.
2851  * @mapping: 		The page cache object whose mapping VMAs we intend to
2852  * 			traverse. If @folio is non-NULL, this should be equal to
2853  *			folio_mapping(folio).
2854  * @pgoff_start:	The offset within @mapping of the page which we are
2855  * 			looking up. If @folio is non-NULL, this should be equal
2856  * 			to folio_pgoff(folio).
2857  * @nr_pages:		The number of pages mapped by the mapping. If @folio is
2858  *			non-NULL, this should be equal to folio_nr_pages(folio).
2859  * @rwc:		The reverse mapping walk control object describing how
2860  *			the traversal should proceed.
2861  * @locked:		Is the @mapping already locked? If not, we acquire the
2862  *			lock.
2863  */
__rmap_walk_file(struct folio * folio,struct address_space * mapping,pgoff_t pgoff_start,unsigned long nr_pages,struct rmap_walk_control * rwc,bool locked)2864 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping,
2865 			     pgoff_t pgoff_start, unsigned long nr_pages,
2866 			     struct rmap_walk_control *rwc, bool locked)
2867 {
2868 	pgoff_t pgoff_end = pgoff_start + nr_pages - 1;
2869 	struct vm_area_struct *vma;
2870 
2871 	VM_WARN_ON_FOLIO(folio && mapping != folio_mapping(folio), folio);
2872 	VM_WARN_ON_FOLIO(folio && pgoff_start != folio_pgoff(folio), folio);
2873 	VM_WARN_ON_FOLIO(folio && nr_pages != folio_nr_pages(folio), folio);
2874 
2875 	if (!locked) {
2876 		if (i_mmap_trylock_read(mapping))
2877 			goto lookup;
2878 
2879 		if (rwc->try_lock) {
2880 			rwc->contended = true;
2881 			return;
2882 		}
2883 
2884 		i_mmap_lock_read(mapping);
2885 	}
2886 lookup:
2887 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2888 			pgoff_start, pgoff_end) {
2889 		unsigned long address = vma_address(vma, pgoff_start, nr_pages);
2890 
2891 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2892 		cond_resched();
2893 
2894 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2895 			continue;
2896 
2897 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2898 			goto done;
2899 		if (rwc->done && rwc->done(folio))
2900 			goto done;
2901 	}
2902 done:
2903 	if (!locked)
2904 		i_mmap_unlock_read(mapping);
2905 }
2906 
2907 /*
2908  * rmap_walk_file - do something to file page using the object-based rmap method
2909  * @folio: the folio to be handled
2910  * @rwc: control variable according to each walk type
2911  * @locked: caller holds relevant rmap lock
2912  *
2913  * Find all the mappings of a folio using the mapping pointer and the vma chains
2914  * contained in the address_space struct it points to.
2915  */
rmap_walk_file(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2916 static void rmap_walk_file(struct folio *folio,
2917 		struct rmap_walk_control *rwc, bool locked)
2918 {
2919 	/*
2920 	 * The folio lock not only makes sure that folio->mapping cannot
2921 	 * suddenly be NULLified by truncation, it makes sure that the structure
2922 	 * at mapping cannot be freed and reused yet, so we can safely take
2923 	 * mapping->i_mmap_rwsem.
2924 	 */
2925 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2926 
2927 	if (!folio->mapping)
2928 		return;
2929 
2930 	__rmap_walk_file(folio, folio->mapping, folio->index,
2931 			 folio_nr_pages(folio), rwc, locked);
2932 }
2933 
rmap_walk(struct folio * folio,struct rmap_walk_control * rwc)2934 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2935 {
2936 	if (unlikely(folio_test_ksm(folio)))
2937 		rmap_walk_ksm(folio, rwc);
2938 	else if (folio_test_anon(folio))
2939 		rmap_walk_anon(folio, rwc, false);
2940 	else
2941 		rmap_walk_file(folio, rwc, false);
2942 }
2943 
2944 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct folio * folio,struct rmap_walk_control * rwc)2945 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2946 {
2947 	/* no ksm support for now */
2948 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2949 	if (folio_test_anon(folio))
2950 		rmap_walk_anon(folio, rwc, true);
2951 	else
2952 		rmap_walk_file(folio, rwc, true);
2953 }
2954 
2955 #ifdef CONFIG_HUGETLB_PAGE
2956 /*
2957  * The following two functions are for anonymous (private mapped) hugepages.
2958  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2959  * and no lru code, because we handle hugepages differently from common pages.
2960  */
hugetlb_add_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address,rmap_t flags)2961 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2962 		unsigned long address, rmap_t flags)
2963 {
2964 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2965 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2966 
2967 	atomic_inc(&folio->_entire_mapcount);
2968 	atomic_inc(&folio->_large_mapcount);
2969 	if (flags & RMAP_EXCLUSIVE)
2970 		SetPageAnonExclusive(&folio->page);
2971 	VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2972 			 PageAnonExclusive(&folio->page), folio);
2973 }
2974 
hugetlb_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address)2975 void hugetlb_add_new_anon_rmap(struct folio *folio,
2976 		struct vm_area_struct *vma, unsigned long address)
2977 {
2978 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2979 
2980 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2981 	/* increment count (starts at -1) */
2982 	atomic_set(&folio->_entire_mapcount, 0);
2983 	atomic_set(&folio->_large_mapcount, 0);
2984 	folio_clear_hugetlb_restore_reserve(folio);
2985 	__folio_set_anon(folio, vma, address, true);
2986 	SetPageAnonExclusive(&folio->page);
2987 }
2988 #endif /* CONFIG_HUGETLB_PAGE */
2989