1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * folio_lock
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28 * vma_start_write
29 * mapping->i_mmap_rwsem
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in block_dirty_folio)
35 * i_pages lock (widely used)
36 * lruvec->lru_lock (in folio_lruvec_lock_irq)
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
40 * i_pages lock (widely used, in set_page_dirty,
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
43 *
44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
45 * ->tasklist_lock
46 * pte map lock
47 *
48 * hugetlbfs PageHuge() take locks in this order:
49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50 * vma_lock (hugetlb specific lock for pmd_sharing)
51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52 * folio_lock
53 */
54
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77 #include <linux/oom.h>
78
79 #include <asm/tlbflush.h>
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
84
85 #include "internal.h"
86
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
89
anon_vma_alloc(void)90 static inline struct anon_vma *anon_vma_alloc(void)
91 {
92 struct anon_vma *anon_vma;
93
94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 if (anon_vma) {
96 atomic_set(&anon_vma->refcount, 1);
97 anon_vma->num_children = 0;
98 anon_vma->num_active_vmas = 0;
99 anon_vma->parent = anon_vma;
100 /*
101 * Initialise the anon_vma root to point to itself. If called
102 * from fork, the root will be reset to the parents anon_vma.
103 */
104 anon_vma->root = anon_vma;
105 }
106
107 return anon_vma;
108 }
109
anon_vma_free(struct anon_vma * anon_vma)110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112 VM_BUG_ON(atomic_read(&anon_vma->refcount));
113
114 /*
115 * Synchronize against folio_lock_anon_vma_read() such that
116 * we can safely hold the lock without the anon_vma getting
117 * freed.
118 *
119 * Relies on the full mb implied by the atomic_dec_and_test() from
120 * put_anon_vma() against the acquire barrier implied by
121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 *
123 * folio_lock_anon_vma_read() VS put_anon_vma()
124 * down_read_trylock() atomic_dec_and_test()
125 * LOCK MB
126 * atomic_read() rwsem_is_locked()
127 *
128 * LOCK should suffice since the actual taking of the lock must
129 * happen _before_ what follows.
130 */
131 might_sleep();
132 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 anon_vma_lock_write(anon_vma);
134 anon_vma_unlock_write(anon_vma);
135 }
136
137 kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139
anon_vma_chain_alloc(gfp_t gfp)140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 struct anon_vma_chain *avc,
152 struct anon_vma *anon_vma)
153 {
154 avc->vma = vma;
155 avc->anon_vma = anon_vma;
156 list_add(&avc->same_vma, &vma->anon_vma_chain);
157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159
160 /**
161 * __anon_vma_prepare - attach an anon_vma to a memory region
162 * @vma: the memory region in question
163 *
164 * This makes sure the memory mapping described by 'vma' has
165 * an 'anon_vma' attached to it, so that we can associate the
166 * anonymous pages mapped into it with that anon_vma.
167 *
168 * The common case will be that we already have one, which
169 * is handled inline by anon_vma_prepare(). But if
170 * not we either need to find an adjacent mapping that we
171 * can re-use the anon_vma from (very common when the only
172 * reason for splitting a vma has been mprotect()), or we
173 * allocate a new one.
174 *
175 * Anon-vma allocations are very subtle, because we may have
176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177 * and that may actually touch the rwsem even in the newly
178 * allocated vma (it depends on RCU to make sure that the
179 * anon_vma isn't actually destroyed).
180 *
181 * As a result, we need to do proper anon_vma locking even
182 * for the new allocation. At the same time, we do not want
183 * to do any locking for the common case of already having
184 * an anon_vma.
185 */
__anon_vma_prepare(struct vm_area_struct * vma)186 int __anon_vma_prepare(struct vm_area_struct *vma)
187 {
188 struct mm_struct *mm = vma->vm_mm;
189 struct anon_vma *anon_vma, *allocated;
190 struct anon_vma_chain *avc;
191
192 mmap_assert_locked(mm);
193 might_sleep();
194
195 avc = anon_vma_chain_alloc(GFP_KERNEL);
196 if (!avc)
197 goto out_enomem;
198
199 anon_vma = find_mergeable_anon_vma(vma);
200 allocated = NULL;
201 if (!anon_vma) {
202 anon_vma = anon_vma_alloc();
203 if (unlikely(!anon_vma))
204 goto out_enomem_free_avc;
205 anon_vma->num_children++; /* self-parent link for new root */
206 allocated = anon_vma;
207 }
208
209 anon_vma_lock_write(anon_vma);
210 /* page_table_lock to protect against threads */
211 spin_lock(&mm->page_table_lock);
212 if (likely(!vma->anon_vma)) {
213 vma->anon_vma = anon_vma;
214 anon_vma_chain_link(vma, avc, anon_vma);
215 anon_vma->num_active_vmas++;
216 allocated = NULL;
217 avc = NULL;
218 }
219 spin_unlock(&mm->page_table_lock);
220 anon_vma_unlock_write(anon_vma);
221
222 if (unlikely(allocated))
223 put_anon_vma(allocated);
224 if (unlikely(avc))
225 anon_vma_chain_free(avc);
226
227 return 0;
228
229 out_enomem_free_avc:
230 anon_vma_chain_free(avc);
231 out_enomem:
232 return -ENOMEM;
233 }
234
235 /*
236 * This is a useful helper function for locking the anon_vma root as
237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238 * have the same vma.
239 *
240 * Such anon_vma's should have the same root, so you'd expect to see
241 * just a single mutex_lock for the whole traversal.
242 */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 struct anon_vma *new_root = anon_vma->root;
246 if (new_root != root) {
247 if (WARN_ON_ONCE(root))
248 up_write(&root->rwsem);
249 root = new_root;
250 down_write(&root->rwsem);
251 }
252 return root;
253 }
254
unlock_anon_vma_root(struct anon_vma * root)255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 if (root)
258 up_write(&root->rwsem);
259 }
260
261 /*
262 * Attach the anon_vmas from src to dst.
263 * Returns 0 on success, -ENOMEM on failure.
264 *
265 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
266 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
267 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
268 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
269 * call, we can identify this case by checking (!dst->anon_vma &&
270 * src->anon_vma).
271 *
272 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
273 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
274 * This prevents degradation of anon_vma hierarchy to endless linear chain in
275 * case of constantly forking task. On the other hand, an anon_vma with more
276 * than one child isn't reused even if there was no alive vma, thus rmap
277 * walker has a good chance of avoiding scanning the whole hierarchy when it
278 * searches where page is mapped.
279 */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
281 {
282 struct anon_vma_chain *avc, *pavc;
283 struct anon_vma *root = NULL;
284
285 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
286 struct anon_vma *anon_vma;
287
288 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
289 if (unlikely(!avc)) {
290 unlock_anon_vma_root(root);
291 root = NULL;
292 avc = anon_vma_chain_alloc(GFP_KERNEL);
293 if (!avc)
294 goto enomem_failure;
295 }
296 anon_vma = pavc->anon_vma;
297 root = lock_anon_vma_root(root, anon_vma);
298 anon_vma_chain_link(dst, avc, anon_vma);
299
300 /*
301 * Reuse existing anon_vma if it has no vma and only one
302 * anon_vma child.
303 *
304 * Root anon_vma is never reused:
305 * it has self-parent reference and at least one child.
306 */
307 if (!dst->anon_vma && src->anon_vma &&
308 anon_vma->num_children < 2 &&
309 anon_vma->num_active_vmas == 0)
310 dst->anon_vma = anon_vma;
311 }
312 if (dst->anon_vma)
313 dst->anon_vma->num_active_vmas++;
314 unlock_anon_vma_root(root);
315 return 0;
316
317 enomem_failure:
318 /*
319 * dst->anon_vma is dropped here otherwise its num_active_vmas can
320 * be incorrectly decremented in unlink_anon_vmas().
321 * We can safely do this because callers of anon_vma_clone() don't care
322 * about dst->anon_vma if anon_vma_clone() failed.
323 */
324 dst->anon_vma = NULL;
325 unlink_anon_vmas(dst);
326 return -ENOMEM;
327 }
328
329 /*
330 * Attach vma to its own anon_vma, as well as to the anon_vmas that
331 * the corresponding VMA in the parent process is attached to.
332 * Returns 0 on success, non-zero on failure.
333 */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
335 {
336 struct anon_vma_chain *avc;
337 struct anon_vma *anon_vma;
338 int error;
339
340 /* Don't bother if the parent process has no anon_vma here. */
341 if (!pvma->anon_vma)
342 return 0;
343
344 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
345 vma->anon_vma = NULL;
346
347 /*
348 * First, attach the new VMA to the parent VMA's anon_vmas,
349 * so rmap can find non-COWed pages in child processes.
350 */
351 error = anon_vma_clone(vma, pvma);
352 if (error)
353 return error;
354
355 /* An existing anon_vma has been reused, all done then. */
356 if (vma->anon_vma)
357 return 0;
358
359 /* Then add our own anon_vma. */
360 anon_vma = anon_vma_alloc();
361 if (!anon_vma)
362 goto out_error;
363 anon_vma->num_active_vmas++;
364 avc = anon_vma_chain_alloc(GFP_KERNEL);
365 if (!avc)
366 goto out_error_free_anon_vma;
367
368 /*
369 * The root anon_vma's rwsem is the lock actually used when we
370 * lock any of the anon_vmas in this anon_vma tree.
371 */
372 anon_vma->root = pvma->anon_vma->root;
373 anon_vma->parent = pvma->anon_vma;
374 /*
375 * With refcounts, an anon_vma can stay around longer than the
376 * process it belongs to. The root anon_vma needs to be pinned until
377 * this anon_vma is freed, because the lock lives in the root.
378 */
379 get_anon_vma(anon_vma->root);
380 /* Mark this anon_vma as the one where our new (COWed) pages go. */
381 vma->anon_vma = anon_vma;
382 anon_vma_lock_write(anon_vma);
383 anon_vma_chain_link(vma, avc, anon_vma);
384 anon_vma->parent->num_children++;
385 anon_vma_unlock_write(anon_vma);
386
387 return 0;
388
389 out_error_free_anon_vma:
390 put_anon_vma(anon_vma);
391 out_error:
392 unlink_anon_vmas(vma);
393 return -ENOMEM;
394 }
395
unlink_anon_vmas(struct vm_area_struct * vma)396 void unlink_anon_vmas(struct vm_area_struct *vma)
397 {
398 struct anon_vma_chain *avc, *next;
399 struct anon_vma *root = NULL;
400
401 /*
402 * Unlink each anon_vma chained to the VMA. This list is ordered
403 * from newest to oldest, ensuring the root anon_vma gets freed last.
404 */
405 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 struct anon_vma *anon_vma = avc->anon_vma;
407
408 root = lock_anon_vma_root(root, anon_vma);
409 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
410
411 /*
412 * Leave empty anon_vmas on the list - we'll need
413 * to free them outside the lock.
414 */
415 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 anon_vma->parent->num_children--;
417 continue;
418 }
419
420 list_del(&avc->same_vma);
421 anon_vma_chain_free(avc);
422 }
423 if (vma->anon_vma) {
424 vma->anon_vma->num_active_vmas--;
425
426 /*
427 * vma would still be needed after unlink, and anon_vma will be prepared
428 * when handle fault.
429 */
430 vma->anon_vma = NULL;
431 }
432 unlock_anon_vma_root(root);
433
434 /*
435 * Iterate the list once more, it now only contains empty and unlinked
436 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
437 * needing to write-acquire the anon_vma->root->rwsem.
438 */
439 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
440 struct anon_vma *anon_vma = avc->anon_vma;
441
442 VM_WARN_ON(anon_vma->num_children);
443 VM_WARN_ON(anon_vma->num_active_vmas);
444 put_anon_vma(anon_vma);
445
446 list_del(&avc->same_vma);
447 anon_vma_chain_free(avc);
448 }
449 }
450
anon_vma_ctor(void * data)451 static void anon_vma_ctor(void *data)
452 {
453 struct anon_vma *anon_vma = data;
454
455 init_rwsem(&anon_vma->rwsem);
456 atomic_set(&anon_vma->refcount, 0);
457 anon_vma->rb_root = RB_ROOT_CACHED;
458 }
459
anon_vma_init(void)460 void __init anon_vma_init(void)
461 {
462 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
463 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
464 anon_vma_ctor);
465 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
466 SLAB_PANIC|SLAB_ACCOUNT);
467 }
468
469 /*
470 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
471 *
472 * Since there is no serialization what so ever against folio_remove_rmap_*()
473 * the best this function can do is return a refcount increased anon_vma
474 * that might have been relevant to this page.
475 *
476 * The page might have been remapped to a different anon_vma or the anon_vma
477 * returned may already be freed (and even reused).
478 *
479 * In case it was remapped to a different anon_vma, the new anon_vma will be a
480 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
481 * ensure that any anon_vma obtained from the page will still be valid for as
482 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
483 *
484 * All users of this function must be very careful when walking the anon_vma
485 * chain and verify that the page in question is indeed mapped in it
486 * [ something equivalent to page_mapped_in_vma() ].
487 *
488 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
489 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
490 * if there is a mapcount, we can dereference the anon_vma after observing
491 * those.
492 *
493 * NOTE: the caller should normally hold folio lock when calling this. If
494 * not, the caller needs to double check the anon_vma didn't change after
495 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
496 * concurrently without folio lock protection). See folio_lock_anon_vma_read()
497 * which has already covered that, and comment above remap_pages().
498 */
folio_get_anon_vma(const struct folio * folio)499 struct anon_vma *folio_get_anon_vma(const struct folio *folio)
500 {
501 struct anon_vma *anon_vma = NULL;
502 unsigned long anon_mapping;
503
504 rcu_read_lock();
505 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
506 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
507 goto out;
508 if (!folio_mapped(folio))
509 goto out;
510
511 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
512 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
513 anon_vma = NULL;
514 goto out;
515 }
516
517 /*
518 * If this folio is still mapped, then its anon_vma cannot have been
519 * freed. But if it has been unmapped, we have no security against the
520 * anon_vma structure being freed and reused (for another anon_vma:
521 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
522 * above cannot corrupt).
523 */
524 if (!folio_mapped(folio)) {
525 rcu_read_unlock();
526 put_anon_vma(anon_vma);
527 return NULL;
528 }
529 out:
530 rcu_read_unlock();
531
532 return anon_vma;
533 }
534
535 /*
536 * Similar to folio_get_anon_vma() except it locks the anon_vma.
537 *
538 * Its a little more complex as it tries to keep the fast path to a single
539 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
540 * reference like with folio_get_anon_vma() and then block on the mutex
541 * on !rwc->try_lock case.
542 */
folio_lock_anon_vma_read(const struct folio * folio,struct rmap_walk_control * rwc)543 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio,
544 struct rmap_walk_control *rwc)
545 {
546 struct anon_vma *anon_vma = NULL;
547 struct anon_vma *root_anon_vma;
548 unsigned long anon_mapping;
549
550 retry:
551 rcu_read_lock();
552 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
553 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
554 goto out;
555 if (!folio_mapped(folio))
556 goto out;
557
558 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
559 root_anon_vma = READ_ONCE(anon_vma->root);
560 if (down_read_trylock(&root_anon_vma->rwsem)) {
561 /*
562 * folio_move_anon_rmap() might have changed the anon_vma as we
563 * might not hold the folio lock here.
564 */
565 if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
566 anon_mapping)) {
567 up_read(&root_anon_vma->rwsem);
568 rcu_read_unlock();
569 goto retry;
570 }
571
572 /*
573 * If the folio is still mapped, then this anon_vma is still
574 * its anon_vma, and holding the mutex ensures that it will
575 * not go away, see anon_vma_free().
576 */
577 if (!folio_mapped(folio)) {
578 up_read(&root_anon_vma->rwsem);
579 anon_vma = NULL;
580 }
581 goto out;
582 }
583
584 if (rwc && rwc->try_lock) {
585 anon_vma = NULL;
586 rwc->contended = true;
587 goto out;
588 }
589
590 /* trylock failed, we got to sleep */
591 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
592 anon_vma = NULL;
593 goto out;
594 }
595
596 if (!folio_mapped(folio)) {
597 rcu_read_unlock();
598 put_anon_vma(anon_vma);
599 return NULL;
600 }
601
602 /* we pinned the anon_vma, its safe to sleep */
603 rcu_read_unlock();
604 anon_vma_lock_read(anon_vma);
605
606 /*
607 * folio_move_anon_rmap() might have changed the anon_vma as we might
608 * not hold the folio lock here.
609 */
610 if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
611 anon_mapping)) {
612 anon_vma_unlock_read(anon_vma);
613 put_anon_vma(anon_vma);
614 anon_vma = NULL;
615 goto retry;
616 }
617
618 if (atomic_dec_and_test(&anon_vma->refcount)) {
619 /*
620 * Oops, we held the last refcount, release the lock
621 * and bail -- can't simply use put_anon_vma() because
622 * we'll deadlock on the anon_vma_lock_write() recursion.
623 */
624 anon_vma_unlock_read(anon_vma);
625 __put_anon_vma(anon_vma);
626 anon_vma = NULL;
627 }
628
629 return anon_vma;
630
631 out:
632 rcu_read_unlock();
633 return anon_vma;
634 }
635
636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
637 /*
638 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
639 * important if a PTE was dirty when it was unmapped that it's flushed
640 * before any IO is initiated on the page to prevent lost writes. Similarly,
641 * it must be flushed before freeing to prevent data leakage.
642 */
try_to_unmap_flush(void)643 void try_to_unmap_flush(void)
644 {
645 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
646
647 if (!tlb_ubc->flush_required)
648 return;
649
650 arch_tlbbatch_flush(&tlb_ubc->arch);
651 tlb_ubc->flush_required = false;
652 tlb_ubc->writable = false;
653 }
654
655 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)656 void try_to_unmap_flush_dirty(void)
657 {
658 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
659
660 if (tlb_ubc->writable)
661 try_to_unmap_flush();
662 }
663
664 /*
665 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
666 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
667 */
668 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
669 #define TLB_FLUSH_BATCH_PENDING_MASK \
670 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
671 #define TLB_FLUSH_BATCH_PENDING_LARGE \
672 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
673
set_tlb_ubc_flush_pending(struct mm_struct * mm,pte_t pteval,unsigned long start,unsigned long end)674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
675 unsigned long start, unsigned long end)
676 {
677 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
678 int batch;
679 bool writable = pte_dirty(pteval);
680
681 if (!pte_accessible(mm, pteval))
682 return;
683
684 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, start, end);
685 tlb_ubc->flush_required = true;
686
687 /*
688 * Ensure compiler does not re-order the setting of tlb_flush_batched
689 * before the PTE is cleared.
690 */
691 barrier();
692 batch = atomic_read(&mm->tlb_flush_batched);
693 retry:
694 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
695 /*
696 * Prevent `pending' from catching up with `flushed' because of
697 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
698 * `pending' becomes large.
699 */
700 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
701 goto retry;
702 } else {
703 atomic_inc(&mm->tlb_flush_batched);
704 }
705
706 /*
707 * If the PTE was dirty then it's best to assume it's writable. The
708 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
709 * before the page is queued for IO.
710 */
711 if (writable)
712 tlb_ubc->writable = true;
713 }
714
715 /*
716 * Returns true if the TLB flush should be deferred to the end of a batch of
717 * unmap operations to reduce IPIs.
718 */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)719 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
720 {
721 if (!(flags & TTU_BATCH_FLUSH))
722 return false;
723
724 return arch_tlbbatch_should_defer(mm);
725 }
726
727 /*
728 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
729 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
730 * operation such as mprotect or munmap to race between reclaim unmapping
731 * the page and flushing the page. If this race occurs, it potentially allows
732 * access to data via a stale TLB entry. Tracking all mm's that have TLB
733 * batching in flight would be expensive during reclaim so instead track
734 * whether TLB batching occurred in the past and if so then do a flush here
735 * if required. This will cost one additional flush per reclaim cycle paid
736 * by the first operation at risk such as mprotect and mumap.
737 *
738 * This must be called under the PTL so that an access to tlb_flush_batched
739 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
740 * via the PTL.
741 */
flush_tlb_batched_pending(struct mm_struct * mm)742 void flush_tlb_batched_pending(struct mm_struct *mm)
743 {
744 int batch = atomic_read(&mm->tlb_flush_batched);
745 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
746 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
747
748 if (pending != flushed) {
749 arch_flush_tlb_batched_pending(mm);
750 /*
751 * If the new TLB flushing is pending during flushing, leave
752 * mm->tlb_flush_batched as is, to avoid losing flushing.
753 */
754 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
755 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
756 }
757 }
758 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,pte_t pteval,unsigned long start,unsigned long end)759 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
760 unsigned long start, unsigned long end)
761 {
762 }
763
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)764 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
765 {
766 return false;
767 }
768 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
769
770 /**
771 * page_address_in_vma - The virtual address of a page in this VMA.
772 * @folio: The folio containing the page.
773 * @page: The page within the folio.
774 * @vma: The VMA we need to know the address in.
775 *
776 * Calculates the user virtual address of this page in the specified VMA.
777 * It is the caller's responsibility to check the page is actually
778 * within the VMA. There may not currently be a PTE pointing at this
779 * page, but if a page fault occurs at this address, this is the page
780 * which will be accessed.
781 *
782 * Context: Caller should hold a reference to the folio. Caller should
783 * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the
784 * VMA from being altered.
785 *
786 * Return: The virtual address corresponding to this page in the VMA.
787 */
page_address_in_vma(const struct folio * folio,const struct page * page,const struct vm_area_struct * vma)788 unsigned long page_address_in_vma(const struct folio *folio,
789 const struct page *page, const struct vm_area_struct *vma)
790 {
791 if (folio_test_anon(folio)) {
792 struct anon_vma *anon_vma = folio_anon_vma(folio);
793 /*
794 * Note: swapoff's unuse_vma() is more efficient with this
795 * check, and needs it to match anon_vma when KSM is active.
796 */
797 if (!vma->anon_vma || !anon_vma ||
798 vma->anon_vma->root != anon_vma->root)
799 return -EFAULT;
800 } else if (!vma->vm_file) {
801 return -EFAULT;
802 } else if (vma->vm_file->f_mapping != folio->mapping) {
803 return -EFAULT;
804 }
805
806 /* KSM folios don't reach here because of the !anon_vma check */
807 return vma_address(vma, page_pgoff(folio, page), 1);
808 }
809
810 /*
811 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
812 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
813 * represents.
814 */
mm_find_pmd(struct mm_struct * mm,unsigned long address)815 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
816 {
817 pgd_t *pgd;
818 p4d_t *p4d;
819 pud_t *pud;
820 pmd_t *pmd = NULL;
821
822 pgd = pgd_offset(mm, address);
823 if (!pgd_present(*pgd))
824 goto out;
825
826 p4d = p4d_offset(pgd, address);
827 if (!p4d_present(*p4d))
828 goto out;
829
830 pud = pud_offset(p4d, address);
831 if (!pud_present(*pud))
832 goto out;
833
834 pmd = pmd_offset(pud, address);
835 out:
836 return pmd;
837 }
838
839 struct folio_referenced_arg {
840 int mapcount;
841 int referenced;
842 unsigned long vm_flags;
843 struct mem_cgroup *memcg;
844 };
845
846 /*
847 * arg: folio_referenced_arg will be passed
848 */
folio_referenced_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)849 static bool folio_referenced_one(struct folio *folio,
850 struct vm_area_struct *vma, unsigned long address, void *arg)
851 {
852 struct folio_referenced_arg *pra = arg;
853 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
854 int referenced = 0;
855 unsigned long start = address, ptes = 0;
856
857 while (page_vma_mapped_walk(&pvmw)) {
858 address = pvmw.address;
859
860 if (vma->vm_flags & VM_LOCKED) {
861 if (!folio_test_large(folio) || !pvmw.pte) {
862 /* Restore the mlock which got missed */
863 mlock_vma_folio(folio, vma);
864 page_vma_mapped_walk_done(&pvmw);
865 pra->vm_flags |= VM_LOCKED;
866 return false; /* To break the loop */
867 }
868 /*
869 * For large folio fully mapped to VMA, will
870 * be handled after the pvmw loop.
871 *
872 * For large folio cross VMA boundaries, it's
873 * expected to be picked by page reclaim. But
874 * should skip reference of pages which are in
875 * the range of VM_LOCKED vma. As page reclaim
876 * should just count the reference of pages out
877 * the range of VM_LOCKED vma.
878 */
879 ptes++;
880 pra->mapcount--;
881 continue;
882 }
883
884 /*
885 * Skip the non-shared swapbacked folio mapped solely by
886 * the exiting or OOM-reaped process. This avoids redundant
887 * swap-out followed by an immediate unmap.
888 */
889 if ((!atomic_read(&vma->vm_mm->mm_users) ||
890 check_stable_address_space(vma->vm_mm)) &&
891 folio_test_anon(folio) && folio_test_swapbacked(folio) &&
892 !folio_maybe_mapped_shared(folio)) {
893 pra->referenced = -1;
894 page_vma_mapped_walk_done(&pvmw);
895 return false;
896 }
897
898 if (lru_gen_enabled() && pvmw.pte) {
899 if (lru_gen_look_around(&pvmw))
900 referenced++;
901 } else if (pvmw.pte) {
902 if (ptep_clear_flush_young_notify(vma, address,
903 pvmw.pte))
904 referenced++;
905 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
906 if (pmdp_clear_flush_young_notify(vma, address,
907 pvmw.pmd))
908 referenced++;
909 } else {
910 /* unexpected pmd-mapped folio? */
911 WARN_ON_ONCE(1);
912 }
913
914 pra->mapcount--;
915 }
916
917 if ((vma->vm_flags & VM_LOCKED) &&
918 folio_test_large(folio) &&
919 folio_within_vma(folio, vma)) {
920 unsigned long s_align, e_align;
921
922 s_align = ALIGN_DOWN(start, PMD_SIZE);
923 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
924
925 /* folio doesn't cross page table boundary and fully mapped */
926 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
927 /* Restore the mlock which got missed */
928 mlock_vma_folio(folio, vma);
929 pra->vm_flags |= VM_LOCKED;
930 return false; /* To break the loop */
931 }
932 }
933
934 if (referenced)
935 folio_clear_idle(folio);
936 if (folio_test_clear_young(folio))
937 referenced++;
938
939 if (referenced) {
940 pra->referenced++;
941 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
942 }
943
944 if (!pra->mapcount)
945 return false; /* To break the loop */
946
947 return true;
948 }
949
invalid_folio_referenced_vma(struct vm_area_struct * vma,void * arg)950 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
951 {
952 struct folio_referenced_arg *pra = arg;
953 struct mem_cgroup *memcg = pra->memcg;
954
955 /*
956 * Ignore references from this mapping if it has no recency. If the
957 * folio has been used in another mapping, we will catch it; if this
958 * other mapping is already gone, the unmap path will have set the
959 * referenced flag or activated the folio in zap_pte_range().
960 */
961 if (!vma_has_recency(vma))
962 return true;
963
964 /*
965 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
966 * of references from different cgroups.
967 */
968 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
969 return true;
970
971 return false;
972 }
973
974 /**
975 * folio_referenced() - Test if the folio was referenced.
976 * @folio: The folio to test.
977 * @is_locked: Caller holds lock on the folio.
978 * @memcg: target memory cgroup
979 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
980 *
981 * Quick test_and_clear_referenced for all mappings of a folio,
982 *
983 * Return: The number of mappings which referenced the folio. Return -1 if
984 * the function bailed out due to rmap lock contention.
985 */
folio_referenced(struct folio * folio,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)986 int folio_referenced(struct folio *folio, int is_locked,
987 struct mem_cgroup *memcg, unsigned long *vm_flags)
988 {
989 bool we_locked = false;
990 struct folio_referenced_arg pra = {
991 .mapcount = folio_mapcount(folio),
992 .memcg = memcg,
993 };
994 struct rmap_walk_control rwc = {
995 .rmap_one = folio_referenced_one,
996 .arg = (void *)&pra,
997 .anon_lock = folio_lock_anon_vma_read,
998 .try_lock = true,
999 .invalid_vma = invalid_folio_referenced_vma,
1000 };
1001
1002 *vm_flags = 0;
1003 if (!pra.mapcount)
1004 return 0;
1005
1006 if (!folio_raw_mapping(folio))
1007 return 0;
1008
1009 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
1010 we_locked = folio_trylock(folio);
1011 if (!we_locked)
1012 return 1;
1013 }
1014
1015 rmap_walk(folio, &rwc);
1016 *vm_flags = pra.vm_flags;
1017
1018 if (we_locked)
1019 folio_unlock(folio);
1020
1021 return rwc.contended ? -1 : pra.referenced;
1022 }
1023
page_vma_mkclean_one(struct page_vma_mapped_walk * pvmw)1024 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1025 {
1026 int cleaned = 0;
1027 struct vm_area_struct *vma = pvmw->vma;
1028 struct mmu_notifier_range range;
1029 unsigned long address = pvmw->address;
1030
1031 /*
1032 * We have to assume the worse case ie pmd for invalidation. Note that
1033 * the folio can not be freed from this function.
1034 */
1035 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1036 vma->vm_mm, address, vma_address_end(pvmw));
1037 mmu_notifier_invalidate_range_start(&range);
1038
1039 while (page_vma_mapped_walk(pvmw)) {
1040 int ret = 0;
1041
1042 address = pvmw->address;
1043 if (pvmw->pte) {
1044 pte_t *pte = pvmw->pte;
1045 pte_t entry = ptep_get(pte);
1046
1047 /*
1048 * PFN swap PTEs, such as device-exclusive ones, that
1049 * actually map pages are clean and not writable from a
1050 * CPU perspective. The MMU notifier takes care of any
1051 * device aspects.
1052 */
1053 if (!pte_present(entry))
1054 continue;
1055 if (!pte_dirty(entry) && !pte_write(entry))
1056 continue;
1057
1058 flush_cache_page(vma, address, pte_pfn(entry));
1059 entry = ptep_clear_flush(vma, address, pte);
1060 entry = pte_wrprotect(entry);
1061 entry = pte_mkclean(entry);
1062 set_pte_at(vma->vm_mm, address, pte, entry);
1063 ret = 1;
1064 } else {
1065 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1066 pmd_t *pmd = pvmw->pmd;
1067 pmd_t entry;
1068
1069 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1070 continue;
1071
1072 flush_cache_range(vma, address,
1073 address + HPAGE_PMD_SIZE);
1074 entry = pmdp_invalidate(vma, address, pmd);
1075 entry = pmd_wrprotect(entry);
1076 entry = pmd_mkclean(entry);
1077 set_pmd_at(vma->vm_mm, address, pmd, entry);
1078 ret = 1;
1079 #else
1080 /* unexpected pmd-mapped folio? */
1081 WARN_ON_ONCE(1);
1082 #endif
1083 }
1084
1085 if (ret)
1086 cleaned++;
1087 }
1088
1089 mmu_notifier_invalidate_range_end(&range);
1090
1091 return cleaned;
1092 }
1093
page_mkclean_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1094 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1095 unsigned long address, void *arg)
1096 {
1097 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1098 int *cleaned = arg;
1099
1100 *cleaned += page_vma_mkclean_one(&pvmw);
1101
1102 return true;
1103 }
1104
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)1105 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1106 {
1107 if (vma->vm_flags & VM_SHARED)
1108 return false;
1109
1110 return true;
1111 }
1112
folio_mkclean(struct folio * folio)1113 int folio_mkclean(struct folio *folio)
1114 {
1115 int cleaned = 0;
1116 struct address_space *mapping;
1117 struct rmap_walk_control rwc = {
1118 .arg = (void *)&cleaned,
1119 .rmap_one = page_mkclean_one,
1120 .invalid_vma = invalid_mkclean_vma,
1121 };
1122
1123 BUG_ON(!folio_test_locked(folio));
1124
1125 if (!folio_mapped(folio))
1126 return 0;
1127
1128 mapping = folio_mapping(folio);
1129 if (!mapping)
1130 return 0;
1131
1132 rmap_walk(folio, &rwc);
1133
1134 return cleaned;
1135 }
1136 EXPORT_SYMBOL_GPL(folio_mkclean);
1137
1138 struct wrprotect_file_state {
1139 int cleaned;
1140 pgoff_t pgoff;
1141 unsigned long pfn;
1142 unsigned long nr_pages;
1143 };
1144
mapping_wrprotect_range_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1145 static bool mapping_wrprotect_range_one(struct folio *folio,
1146 struct vm_area_struct *vma, unsigned long address, void *arg)
1147 {
1148 struct wrprotect_file_state *state = (struct wrprotect_file_state *)arg;
1149 struct page_vma_mapped_walk pvmw = {
1150 .pfn = state->pfn,
1151 .nr_pages = state->nr_pages,
1152 .pgoff = state->pgoff,
1153 .vma = vma,
1154 .address = address,
1155 .flags = PVMW_SYNC,
1156 };
1157
1158 state->cleaned += page_vma_mkclean_one(&pvmw);
1159
1160 return true;
1161 }
1162
1163 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping,
1164 pgoff_t pgoff_start, unsigned long nr_pages,
1165 struct rmap_walk_control *rwc, bool locked);
1166
1167 /**
1168 * mapping_wrprotect_range() - Write-protect all mappings in a specified range.
1169 *
1170 * @mapping: The mapping whose reverse mapping should be traversed.
1171 * @pgoff: The page offset at which @pfn is mapped within @mapping.
1172 * @pfn: The PFN of the page mapped in @mapping at @pgoff.
1173 * @nr_pages: The number of physically contiguous base pages spanned.
1174 *
1175 * Traverses the reverse mapping, finding all VMAs which contain a shared
1176 * mapping of the pages in the specified range in @mapping, and write-protects
1177 * them (that is, updates the page tables to mark the mappings read-only such
1178 * that a write protection fault arises when the mappings are written to).
1179 *
1180 * The @pfn value need not refer to a folio, but rather can reference a kernel
1181 * allocation which is mapped into userland. We therefore do not require that
1182 * the page maps to a folio with a valid mapping or index field, rather the
1183 * caller specifies these in @mapping and @pgoff.
1184 *
1185 * Return: the number of write-protected PTEs, or an error.
1186 */
mapping_wrprotect_range(struct address_space * mapping,pgoff_t pgoff,unsigned long pfn,unsigned long nr_pages)1187 int mapping_wrprotect_range(struct address_space *mapping, pgoff_t pgoff,
1188 unsigned long pfn, unsigned long nr_pages)
1189 {
1190 struct wrprotect_file_state state = {
1191 .cleaned = 0,
1192 .pgoff = pgoff,
1193 .pfn = pfn,
1194 .nr_pages = nr_pages,
1195 };
1196 struct rmap_walk_control rwc = {
1197 .arg = (void *)&state,
1198 .rmap_one = mapping_wrprotect_range_one,
1199 .invalid_vma = invalid_mkclean_vma,
1200 };
1201
1202 if (!mapping)
1203 return 0;
1204
1205 __rmap_walk_file(/* folio = */NULL, mapping, pgoff, nr_pages, &rwc,
1206 /* locked = */false);
1207
1208 return state.cleaned;
1209 }
1210 EXPORT_SYMBOL_GPL(mapping_wrprotect_range);
1211
1212 /**
1213 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1214 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1215 * within the @vma of shared mappings. And since clean PTEs
1216 * should also be readonly, write protects them too.
1217 * @pfn: start pfn.
1218 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1219 * @pgoff: page offset that the @pfn mapped with.
1220 * @vma: vma that @pfn mapped within.
1221 *
1222 * Returns the number of cleaned PTEs (including PMDs).
1223 */
pfn_mkclean_range(unsigned long pfn,unsigned long nr_pages,pgoff_t pgoff,struct vm_area_struct * vma)1224 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1225 struct vm_area_struct *vma)
1226 {
1227 struct page_vma_mapped_walk pvmw = {
1228 .pfn = pfn,
1229 .nr_pages = nr_pages,
1230 .pgoff = pgoff,
1231 .vma = vma,
1232 .flags = PVMW_SYNC,
1233 };
1234
1235 if (invalid_mkclean_vma(vma, NULL))
1236 return 0;
1237
1238 pvmw.address = vma_address(vma, pgoff, nr_pages);
1239 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1240
1241 return page_vma_mkclean_one(&pvmw);
1242 }
1243
__folio_add_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum rmap_level level,int * nr_pmdmapped)1244 static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1245 struct page *page, int nr_pages, struct vm_area_struct *vma,
1246 enum rmap_level level, int *nr_pmdmapped)
1247 {
1248 atomic_t *mapped = &folio->_nr_pages_mapped;
1249 const int orig_nr_pages = nr_pages;
1250 int first = 0, nr = 0;
1251
1252 __folio_rmap_sanity_checks(folio, page, nr_pages, level);
1253
1254 switch (level) {
1255 case RMAP_LEVEL_PTE:
1256 if (!folio_test_large(folio)) {
1257 nr = atomic_inc_and_test(&folio->_mapcount);
1258 break;
1259 }
1260
1261 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1262 nr = folio_add_return_large_mapcount(folio, orig_nr_pages, vma);
1263 if (nr == orig_nr_pages)
1264 /* Was completely unmapped. */
1265 nr = folio_large_nr_pages(folio);
1266 else
1267 nr = 0;
1268 break;
1269 }
1270
1271 do {
1272 first += atomic_inc_and_test(&page->_mapcount);
1273 } while (page++, --nr_pages > 0);
1274
1275 if (first &&
1276 atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED)
1277 nr = first;
1278
1279 folio_add_large_mapcount(folio, orig_nr_pages, vma);
1280 break;
1281 case RMAP_LEVEL_PMD:
1282 case RMAP_LEVEL_PUD:
1283 first = atomic_inc_and_test(&folio->_entire_mapcount);
1284 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1285 if (level == RMAP_LEVEL_PMD && first)
1286 *nr_pmdmapped = folio_large_nr_pages(folio);
1287 nr = folio_inc_return_large_mapcount(folio, vma);
1288 if (nr == 1)
1289 /* Was completely unmapped. */
1290 nr = folio_large_nr_pages(folio);
1291 else
1292 nr = 0;
1293 break;
1294 }
1295
1296 if (first) {
1297 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1298 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1299 nr_pages = folio_large_nr_pages(folio);
1300 /*
1301 * We only track PMD mappings of PMD-sized
1302 * folios separately.
1303 */
1304 if (level == RMAP_LEVEL_PMD)
1305 *nr_pmdmapped = nr_pages;
1306 nr = nr_pages - (nr & FOLIO_PAGES_MAPPED);
1307 /* Raced ahead of a remove and another add? */
1308 if (unlikely(nr < 0))
1309 nr = 0;
1310 } else {
1311 /* Raced ahead of a remove of ENTIRELY_MAPPED */
1312 nr = 0;
1313 }
1314 }
1315 folio_inc_large_mapcount(folio, vma);
1316 break;
1317 }
1318 return nr;
1319 }
1320
1321 /**
1322 * folio_move_anon_rmap - move a folio to our anon_vma
1323 * @folio: The folio to move to our anon_vma
1324 * @vma: The vma the folio belongs to
1325 *
1326 * When a folio belongs exclusively to one process after a COW event,
1327 * that folio can be moved into the anon_vma that belongs to just that
1328 * process, so the rmap code will not search the parent or sibling processes.
1329 */
folio_move_anon_rmap(struct folio * folio,struct vm_area_struct * vma)1330 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1331 {
1332 void *anon_vma = vma->anon_vma;
1333
1334 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1335 VM_BUG_ON_VMA(!anon_vma, vma);
1336
1337 anon_vma += PAGE_MAPPING_ANON;
1338 /*
1339 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1340 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1341 * folio_test_anon()) will not see one without the other.
1342 */
1343 WRITE_ONCE(folio->mapping, anon_vma);
1344 }
1345
1346 /**
1347 * __folio_set_anon - set up a new anonymous rmap for a folio
1348 * @folio: The folio to set up the new anonymous rmap for.
1349 * @vma: VM area to add the folio to.
1350 * @address: User virtual address of the mapping
1351 * @exclusive: Whether the folio is exclusive to the process.
1352 */
__folio_set_anon(struct folio * folio,struct vm_area_struct * vma,unsigned long address,bool exclusive)1353 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1354 unsigned long address, bool exclusive)
1355 {
1356 struct anon_vma *anon_vma = vma->anon_vma;
1357
1358 BUG_ON(!anon_vma);
1359
1360 /*
1361 * If the folio isn't exclusive to this vma, we must use the _oldest_
1362 * possible anon_vma for the folio mapping!
1363 */
1364 if (!exclusive)
1365 anon_vma = anon_vma->root;
1366
1367 /*
1368 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1369 * Make sure the compiler doesn't split the stores of anon_vma and
1370 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1371 * could mistake the mapping for a struct address_space and crash.
1372 */
1373 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1374 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1375 folio->index = linear_page_index(vma, address);
1376 }
1377
1378 /**
1379 * __page_check_anon_rmap - sanity check anonymous rmap addition
1380 * @folio: The folio containing @page.
1381 * @page: the page to check the mapping of
1382 * @vma: the vm area in which the mapping is added
1383 * @address: the user virtual address mapped
1384 */
__page_check_anon_rmap(const struct folio * folio,const struct page * page,struct vm_area_struct * vma,unsigned long address)1385 static void __page_check_anon_rmap(const struct folio *folio,
1386 const struct page *page, struct vm_area_struct *vma,
1387 unsigned long address)
1388 {
1389 /*
1390 * The page's anon-rmap details (mapping and index) are guaranteed to
1391 * be set up correctly at this point.
1392 *
1393 * We have exclusion against folio_add_anon_rmap_*() because the caller
1394 * always holds the page locked.
1395 *
1396 * We have exclusion against folio_add_new_anon_rmap because those pages
1397 * are initially only visible via the pagetables, and the pte is locked
1398 * over the call to folio_add_new_anon_rmap.
1399 */
1400 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1401 folio);
1402 VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address),
1403 page);
1404 }
1405
__folio_mod_stat(struct folio * folio,int nr,int nr_pmdmapped)1406 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
1407 {
1408 int idx;
1409
1410 if (nr) {
1411 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1412 __lruvec_stat_mod_folio(folio, idx, nr);
1413 }
1414 if (nr_pmdmapped) {
1415 if (folio_test_anon(folio)) {
1416 idx = NR_ANON_THPS;
1417 __lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1418 } else {
1419 /* NR_*_PMDMAPPED are not maintained per-memcg */
1420 idx = folio_test_swapbacked(folio) ?
1421 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1422 __mod_node_page_state(folio_pgdat(folio), idx,
1423 nr_pmdmapped);
1424 }
1425 }
1426 }
1427
__folio_add_anon_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,unsigned long address,rmap_t flags,enum rmap_level level)1428 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1429 struct page *page, int nr_pages, struct vm_area_struct *vma,
1430 unsigned long address, rmap_t flags, enum rmap_level level)
1431 {
1432 int i, nr, nr_pmdmapped = 0;
1433
1434 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1435
1436 nr = __folio_add_rmap(folio, page, nr_pages, vma, level, &nr_pmdmapped);
1437
1438 if (likely(!folio_test_ksm(folio)))
1439 __page_check_anon_rmap(folio, page, vma, address);
1440
1441 __folio_mod_stat(folio, nr, nr_pmdmapped);
1442
1443 if (flags & RMAP_EXCLUSIVE) {
1444 switch (level) {
1445 case RMAP_LEVEL_PTE:
1446 for (i = 0; i < nr_pages; i++)
1447 SetPageAnonExclusive(page + i);
1448 break;
1449 case RMAP_LEVEL_PMD:
1450 SetPageAnonExclusive(page);
1451 break;
1452 case RMAP_LEVEL_PUD:
1453 /*
1454 * Keep the compiler happy, we don't support anonymous
1455 * PUD mappings.
1456 */
1457 WARN_ON_ONCE(1);
1458 break;
1459 }
1460 }
1461
1462 VM_WARN_ON_FOLIO(!folio_test_large(folio) && PageAnonExclusive(page) &&
1463 atomic_read(&folio->_mapcount) > 0, folio);
1464 for (i = 0; i < nr_pages; i++) {
1465 struct page *cur_page = page + i;
1466
1467 VM_WARN_ON_FOLIO(folio_test_large(folio) &&
1468 folio_entire_mapcount(folio) > 1 &&
1469 PageAnonExclusive(cur_page), folio);
1470 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT))
1471 continue;
1472
1473 /*
1474 * While PTE-mapping a THP we have a PMD and a PTE
1475 * mapping.
1476 */
1477 VM_WARN_ON_FOLIO(atomic_read(&cur_page->_mapcount) > 0 &&
1478 PageAnonExclusive(cur_page), folio);
1479 }
1480
1481 /*
1482 * For large folio, only mlock it if it's fully mapped to VMA. It's
1483 * not easy to check whether the large folio is fully mapped to VMA
1484 * here. Only mlock normal 4K folio and leave page reclaim to handle
1485 * large folio.
1486 */
1487 if (!folio_test_large(folio))
1488 mlock_vma_folio(folio, vma);
1489 }
1490
1491 /**
1492 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1493 * @folio: The folio to add the mappings to
1494 * @page: The first page to add
1495 * @nr_pages: The number of pages which will be mapped
1496 * @vma: The vm area in which the mappings are added
1497 * @address: The user virtual address of the first page to map
1498 * @flags: The rmap flags
1499 *
1500 * The page range of folio is defined by [first_page, first_page + nr_pages)
1501 *
1502 * The caller needs to hold the page table lock, and the page must be locked in
1503 * the anon_vma case: to serialize mapping,index checking after setting,
1504 * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1505 * (but KSM folios are never downgraded).
1506 */
folio_add_anon_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1507 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1508 int nr_pages, struct vm_area_struct *vma, unsigned long address,
1509 rmap_t flags)
1510 {
1511 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1512 RMAP_LEVEL_PTE);
1513 }
1514
1515 /**
1516 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1517 * @folio: The folio to add the mapping to
1518 * @page: The first page to add
1519 * @vma: The vm area in which the mapping is added
1520 * @address: The user virtual address of the first page to map
1521 * @flags: The rmap flags
1522 *
1523 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1524 *
1525 * The caller needs to hold the page table lock, and the page must be locked in
1526 * the anon_vma case: to serialize mapping,index checking after setting.
1527 */
folio_add_anon_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1528 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1529 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1530 {
1531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1532 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1533 RMAP_LEVEL_PMD);
1534 #else
1535 WARN_ON_ONCE(true);
1536 #endif
1537 }
1538
1539 /**
1540 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1541 * @folio: The folio to add the mapping to.
1542 * @vma: the vm area in which the mapping is added
1543 * @address: the user virtual address mapped
1544 * @flags: The rmap flags
1545 *
1546 * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1547 * This means the inc-and-test can be bypassed.
1548 * The folio doesn't necessarily need to be locked while it's exclusive
1549 * unless two threads map it concurrently. However, the folio must be
1550 * locked if it's shared.
1551 *
1552 * If the folio is pmd-mappable, it is accounted as a THP.
1553 */
folio_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1554 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1555 unsigned long address, rmap_t flags)
1556 {
1557 const bool exclusive = flags & RMAP_EXCLUSIVE;
1558 int nr = 1, nr_pmdmapped = 0;
1559
1560 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1561 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1562
1563 /*
1564 * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1565 * under memory pressure.
1566 */
1567 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1568 __folio_set_swapbacked(folio);
1569 __folio_set_anon(folio, vma, address, exclusive);
1570
1571 if (likely(!folio_test_large(folio))) {
1572 /* increment count (starts at -1) */
1573 atomic_set(&folio->_mapcount, 0);
1574 if (exclusive)
1575 SetPageAnonExclusive(&folio->page);
1576 } else if (!folio_test_pmd_mappable(folio)) {
1577 int i;
1578
1579 nr = folio_large_nr_pages(folio);
1580 for (i = 0; i < nr; i++) {
1581 struct page *page = folio_page(folio, i);
1582
1583 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1584 /* increment count (starts at -1) */
1585 atomic_set(&page->_mapcount, 0);
1586 if (exclusive)
1587 SetPageAnonExclusive(page);
1588 }
1589
1590 folio_set_large_mapcount(folio, nr, vma);
1591 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1592 atomic_set(&folio->_nr_pages_mapped, nr);
1593 } else {
1594 nr = folio_large_nr_pages(folio);
1595 /* increment count (starts at -1) */
1596 atomic_set(&folio->_entire_mapcount, 0);
1597 folio_set_large_mapcount(folio, 1, vma);
1598 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1599 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1600 if (exclusive)
1601 SetPageAnonExclusive(&folio->page);
1602 nr_pmdmapped = nr;
1603 }
1604
1605 VM_WARN_ON_ONCE(address < vma->vm_start ||
1606 address + (nr << PAGE_SHIFT) > vma->vm_end);
1607
1608 __folio_mod_stat(folio, nr, nr_pmdmapped);
1609 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
1610 }
1611
__folio_add_file_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum rmap_level level)1612 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1613 struct page *page, int nr_pages, struct vm_area_struct *vma,
1614 enum rmap_level level)
1615 {
1616 int nr, nr_pmdmapped = 0;
1617
1618 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1619
1620 nr = __folio_add_rmap(folio, page, nr_pages, vma, level, &nr_pmdmapped);
1621 __folio_mod_stat(folio, nr, nr_pmdmapped);
1622
1623 /* See comments in folio_add_anon_rmap_*() */
1624 if (!folio_test_large(folio))
1625 mlock_vma_folio(folio, vma);
1626 }
1627
1628 /**
1629 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1630 * @folio: The folio to add the mappings to
1631 * @page: The first page to add
1632 * @nr_pages: The number of pages that will be mapped using PTEs
1633 * @vma: The vm area in which the mappings are added
1634 *
1635 * The page range of the folio is defined by [page, page + nr_pages)
1636 *
1637 * The caller needs to hold the page table lock.
1638 */
folio_add_file_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma)1639 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1640 int nr_pages, struct vm_area_struct *vma)
1641 {
1642 __folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1643 }
1644
1645 /**
1646 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1647 * @folio: The folio to add the mapping to
1648 * @page: The first page to add
1649 * @vma: The vm area in which the mapping is added
1650 *
1651 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1652 *
1653 * The caller needs to hold the page table lock.
1654 */
folio_add_file_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma)1655 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1656 struct vm_area_struct *vma)
1657 {
1658 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1659 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1660 #else
1661 WARN_ON_ONCE(true);
1662 #endif
1663 }
1664
1665 /**
1666 * folio_add_file_rmap_pud - add a PUD mapping to a page range of a folio
1667 * @folio: The folio to add the mapping to
1668 * @page: The first page to add
1669 * @vma: The vm area in which the mapping is added
1670 *
1671 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR)
1672 *
1673 * The caller needs to hold the page table lock.
1674 */
folio_add_file_rmap_pud(struct folio * folio,struct page * page,struct vm_area_struct * vma)1675 void folio_add_file_rmap_pud(struct folio *folio, struct page *page,
1676 struct vm_area_struct *vma)
1677 {
1678 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1679 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1680 __folio_add_file_rmap(folio, page, HPAGE_PUD_NR, vma, RMAP_LEVEL_PUD);
1681 #else
1682 WARN_ON_ONCE(true);
1683 #endif
1684 }
1685
__folio_remove_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum rmap_level level)1686 static __always_inline void __folio_remove_rmap(struct folio *folio,
1687 struct page *page, int nr_pages, struct vm_area_struct *vma,
1688 enum rmap_level level)
1689 {
1690 atomic_t *mapped = &folio->_nr_pages_mapped;
1691 int last = 0, nr = 0, nr_pmdmapped = 0;
1692 bool partially_mapped = false;
1693
1694 __folio_rmap_sanity_checks(folio, page, nr_pages, level);
1695
1696 switch (level) {
1697 case RMAP_LEVEL_PTE:
1698 if (!folio_test_large(folio)) {
1699 nr = atomic_add_negative(-1, &folio->_mapcount);
1700 break;
1701 }
1702
1703 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1704 nr = folio_sub_return_large_mapcount(folio, nr_pages, vma);
1705 if (!nr) {
1706 /* Now completely unmapped. */
1707 nr = folio_nr_pages(folio);
1708 } else {
1709 partially_mapped = nr < folio_large_nr_pages(folio) &&
1710 !folio_entire_mapcount(folio);
1711 nr = 0;
1712 }
1713 break;
1714 }
1715
1716 folio_sub_large_mapcount(folio, nr_pages, vma);
1717 do {
1718 last += atomic_add_negative(-1, &page->_mapcount);
1719 } while (page++, --nr_pages > 0);
1720
1721 if (last &&
1722 atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED)
1723 nr = last;
1724
1725 partially_mapped = nr && atomic_read(mapped);
1726 break;
1727 case RMAP_LEVEL_PMD:
1728 case RMAP_LEVEL_PUD:
1729 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1730 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1731 if (level == RMAP_LEVEL_PMD && last)
1732 nr_pmdmapped = folio_large_nr_pages(folio);
1733 nr = folio_dec_return_large_mapcount(folio, vma);
1734 if (!nr) {
1735 /* Now completely unmapped. */
1736 nr = folio_large_nr_pages(folio);
1737 } else {
1738 partially_mapped = last &&
1739 nr < folio_large_nr_pages(folio);
1740 nr = 0;
1741 }
1742 break;
1743 }
1744
1745 folio_dec_large_mapcount(folio, vma);
1746 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1747 if (last) {
1748 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1749 if (likely(nr < ENTIRELY_MAPPED)) {
1750 nr_pages = folio_large_nr_pages(folio);
1751 if (level == RMAP_LEVEL_PMD)
1752 nr_pmdmapped = nr_pages;
1753 nr = nr_pages - (nr & FOLIO_PAGES_MAPPED);
1754 /* Raced ahead of another remove and an add? */
1755 if (unlikely(nr < 0))
1756 nr = 0;
1757 } else {
1758 /* An add of ENTIRELY_MAPPED raced ahead */
1759 nr = 0;
1760 }
1761 }
1762
1763 partially_mapped = nr && nr < nr_pmdmapped;
1764 break;
1765 }
1766
1767 /*
1768 * Queue anon large folio for deferred split if at least one page of
1769 * the folio is unmapped and at least one page is still mapped.
1770 *
1771 * Check partially_mapped first to ensure it is a large folio.
1772 */
1773 if (partially_mapped && folio_test_anon(folio) &&
1774 !folio_test_partially_mapped(folio))
1775 deferred_split_folio(folio, true);
1776
1777 __folio_mod_stat(folio, -nr, -nr_pmdmapped);
1778
1779 /*
1780 * It would be tidy to reset folio_test_anon mapping when fully
1781 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1782 * which increments mapcount after us but sets mapping before us:
1783 * so leave the reset to free_pages_prepare, and remember that
1784 * it's only reliable while mapped.
1785 */
1786
1787 munlock_vma_folio(folio, vma);
1788 }
1789
1790 /**
1791 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1792 * @folio: The folio to remove the mappings from
1793 * @page: The first page to remove
1794 * @nr_pages: The number of pages that will be removed from the mapping
1795 * @vma: The vm area from which the mappings are removed
1796 *
1797 * The page range of the folio is defined by [page, page + nr_pages)
1798 *
1799 * The caller needs to hold the page table lock.
1800 */
folio_remove_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma)1801 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1802 int nr_pages, struct vm_area_struct *vma)
1803 {
1804 __folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1805 }
1806
1807 /**
1808 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1809 * @folio: The folio to remove the mapping from
1810 * @page: The first page to remove
1811 * @vma: The vm area from which the mapping is removed
1812 *
1813 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1814 *
1815 * The caller needs to hold the page table lock.
1816 */
folio_remove_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma)1817 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1818 struct vm_area_struct *vma)
1819 {
1820 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1821 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1822 #else
1823 WARN_ON_ONCE(true);
1824 #endif
1825 }
1826
1827 /**
1828 * folio_remove_rmap_pud - remove a PUD mapping from a page range of a folio
1829 * @folio: The folio to remove the mapping from
1830 * @page: The first page to remove
1831 * @vma: The vm area from which the mapping is removed
1832 *
1833 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR)
1834 *
1835 * The caller needs to hold the page table lock.
1836 */
folio_remove_rmap_pud(struct folio * folio,struct page * page,struct vm_area_struct * vma)1837 void folio_remove_rmap_pud(struct folio *folio, struct page *page,
1838 struct vm_area_struct *vma)
1839 {
1840 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1841 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1842 __folio_remove_rmap(folio, page, HPAGE_PUD_NR, vma, RMAP_LEVEL_PUD);
1843 #else
1844 WARN_ON_ONCE(true);
1845 #endif
1846 }
1847
1848 /* We support batch unmapping of PTEs for lazyfree large folios */
can_batch_unmap_folio_ptes(unsigned long addr,struct folio * folio,pte_t * ptep)1849 static inline bool can_batch_unmap_folio_ptes(unsigned long addr,
1850 struct folio *folio, pte_t *ptep)
1851 {
1852 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1853 int max_nr = folio_nr_pages(folio);
1854 pte_t pte = ptep_get(ptep);
1855
1856 if (!folio_test_anon(folio) || folio_test_swapbacked(folio))
1857 return false;
1858 if (pte_unused(pte))
1859 return false;
1860 if (pte_pfn(pte) != folio_pfn(folio))
1861 return false;
1862
1863 return folio_pte_batch(folio, addr, ptep, pte, max_nr, fpb_flags, NULL,
1864 NULL, NULL) == max_nr;
1865 }
1866
1867 /*
1868 * @arg: enum ttu_flags will be passed to this argument
1869 */
try_to_unmap_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1870 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1871 unsigned long address, void *arg)
1872 {
1873 struct mm_struct *mm = vma->vm_mm;
1874 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1875 bool anon_exclusive, ret = true;
1876 pte_t pteval;
1877 struct page *subpage;
1878 struct mmu_notifier_range range;
1879 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1880 unsigned long nr_pages = 1, end_addr;
1881 unsigned long pfn;
1882 unsigned long hsz = 0;
1883
1884 /*
1885 * When racing against e.g. zap_pte_range() on another cpu,
1886 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1887 * try_to_unmap() may return before page_mapped() has become false,
1888 * if page table locking is skipped: use TTU_SYNC to wait for that.
1889 */
1890 if (flags & TTU_SYNC)
1891 pvmw.flags = PVMW_SYNC;
1892
1893 /*
1894 * For THP, we have to assume the worse case ie pmd for invalidation.
1895 * For hugetlb, it could be much worse if we need to do pud
1896 * invalidation in the case of pmd sharing.
1897 *
1898 * Note that the folio can not be freed in this function as call of
1899 * try_to_unmap() must hold a reference on the folio.
1900 */
1901 range.end = vma_address_end(&pvmw);
1902 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1903 address, range.end);
1904 if (folio_test_hugetlb(folio)) {
1905 /*
1906 * If sharing is possible, start and end will be adjusted
1907 * accordingly.
1908 */
1909 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1910 &range.end);
1911
1912 /* We need the huge page size for set_huge_pte_at() */
1913 hsz = huge_page_size(hstate_vma(vma));
1914 }
1915 mmu_notifier_invalidate_range_start(&range);
1916
1917 while (page_vma_mapped_walk(&pvmw)) {
1918 /*
1919 * If the folio is in an mlock()d vma, we must not swap it out.
1920 */
1921 if (!(flags & TTU_IGNORE_MLOCK) &&
1922 (vma->vm_flags & VM_LOCKED)) {
1923 /* Restore the mlock which got missed */
1924 if (!folio_test_large(folio))
1925 mlock_vma_folio(folio, vma);
1926 goto walk_abort;
1927 }
1928
1929 if (!pvmw.pte) {
1930 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1931 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, folio))
1932 goto walk_done;
1933 /*
1934 * unmap_huge_pmd_locked has either already marked
1935 * the folio as swap-backed or decided to retain it
1936 * due to GUP or speculative references.
1937 */
1938 goto walk_abort;
1939 }
1940
1941 if (flags & TTU_SPLIT_HUGE_PMD) {
1942 /*
1943 * We temporarily have to drop the PTL and
1944 * restart so we can process the PTE-mapped THP.
1945 */
1946 split_huge_pmd_locked(vma, pvmw.address,
1947 pvmw.pmd, false);
1948 flags &= ~TTU_SPLIT_HUGE_PMD;
1949 page_vma_mapped_walk_restart(&pvmw);
1950 continue;
1951 }
1952 }
1953
1954 /* Unexpected PMD-mapped THP? */
1955 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1956
1957 /*
1958 * Handle PFN swap PTEs, such as device-exclusive ones, that
1959 * actually map pages.
1960 */
1961 pteval = ptep_get(pvmw.pte);
1962 if (likely(pte_present(pteval))) {
1963 pfn = pte_pfn(pteval);
1964 } else {
1965 pfn = swp_offset_pfn(pte_to_swp_entry(pteval));
1966 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1967 }
1968
1969 subpage = folio_page(folio, pfn - folio_pfn(folio));
1970 address = pvmw.address;
1971 anon_exclusive = folio_test_anon(folio) &&
1972 PageAnonExclusive(subpage);
1973
1974 if (folio_test_hugetlb(folio)) {
1975 bool anon = folio_test_anon(folio);
1976
1977 /*
1978 * The try_to_unmap() is only passed a hugetlb page
1979 * in the case where the hugetlb page is poisoned.
1980 */
1981 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1982 /*
1983 * huge_pmd_unshare may unmap an entire PMD page.
1984 * There is no way of knowing exactly which PMDs may
1985 * be cached for this mm, so we must flush them all.
1986 * start/end were already adjusted above to cover this
1987 * range.
1988 */
1989 flush_cache_range(vma, range.start, range.end);
1990
1991 /*
1992 * To call huge_pmd_unshare, i_mmap_rwsem must be
1993 * held in write mode. Caller needs to explicitly
1994 * do this outside rmap routines.
1995 *
1996 * We also must hold hugetlb vma_lock in write mode.
1997 * Lock order dictates acquiring vma_lock BEFORE
1998 * i_mmap_rwsem. We can only try lock here and fail
1999 * if unsuccessful.
2000 */
2001 if (!anon) {
2002 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2003 if (!hugetlb_vma_trylock_write(vma))
2004 goto walk_abort;
2005 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2006 hugetlb_vma_unlock_write(vma);
2007 flush_tlb_range(vma,
2008 range.start, range.end);
2009 /*
2010 * The ref count of the PMD page was
2011 * dropped which is part of the way map
2012 * counting is done for shared PMDs.
2013 * Return 'true' here. When there is
2014 * no other sharing, huge_pmd_unshare
2015 * returns false and we will unmap the
2016 * actual page and drop map count
2017 * to zero.
2018 */
2019 goto walk_done;
2020 }
2021 hugetlb_vma_unlock_write(vma);
2022 }
2023 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2024 if (pte_dirty(pteval))
2025 folio_mark_dirty(folio);
2026 } else if (likely(pte_present(pteval))) {
2027 if (folio_test_large(folio) && !(flags & TTU_HWPOISON) &&
2028 can_batch_unmap_folio_ptes(address, folio, pvmw.pte))
2029 nr_pages = folio_nr_pages(folio);
2030 end_addr = address + nr_pages * PAGE_SIZE;
2031 flush_cache_range(vma, address, end_addr);
2032
2033 /* Nuke the page table entry. */
2034 pteval = get_and_clear_full_ptes(mm, address, pvmw.pte, nr_pages, 0);
2035 /*
2036 * We clear the PTE but do not flush so potentially
2037 * a remote CPU could still be writing to the folio.
2038 * If the entry was previously clean then the
2039 * architecture must guarantee that a clear->dirty
2040 * transition on a cached TLB entry is written through
2041 * and traps if the PTE is unmapped.
2042 */
2043 if (should_defer_flush(mm, flags))
2044 set_tlb_ubc_flush_pending(mm, pteval, address, end_addr);
2045 else
2046 flush_tlb_range(vma, address, end_addr);
2047 if (pte_dirty(pteval))
2048 folio_mark_dirty(folio);
2049 } else {
2050 pte_clear(mm, address, pvmw.pte);
2051 }
2052
2053 /*
2054 * Now the pte is cleared. If this pte was uffd-wp armed,
2055 * we may want to replace a none pte with a marker pte if
2056 * it's file-backed, so we don't lose the tracking info.
2057 */
2058 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
2059
2060 /* Update high watermark before we lower rss */
2061 update_hiwater_rss(mm);
2062
2063 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
2064 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2065 if (folio_test_hugetlb(folio)) {
2066 hugetlb_count_sub(folio_nr_pages(folio), mm);
2067 set_huge_pte_at(mm, address, pvmw.pte, pteval,
2068 hsz);
2069 } else {
2070 dec_mm_counter(mm, mm_counter(folio));
2071 set_pte_at(mm, address, pvmw.pte, pteval);
2072 }
2073 } else if (likely(pte_present(pteval)) && pte_unused(pteval) &&
2074 !userfaultfd_armed(vma)) {
2075 /*
2076 * The guest indicated that the page content is of no
2077 * interest anymore. Simply discard the pte, vmscan
2078 * will take care of the rest.
2079 * A future reference will then fault in a new zero
2080 * page. When userfaultfd is active, we must not drop
2081 * this page though, as its main user (postcopy
2082 * migration) will not expect userfaults on already
2083 * copied pages.
2084 */
2085 dec_mm_counter(mm, mm_counter(folio));
2086 } else if (folio_test_anon(folio)) {
2087 swp_entry_t entry = page_swap_entry(subpage);
2088 pte_t swp_pte;
2089 /*
2090 * Store the swap location in the pte.
2091 * See handle_pte_fault() ...
2092 */
2093 if (unlikely(folio_test_swapbacked(folio) !=
2094 folio_test_swapcache(folio))) {
2095 WARN_ON_ONCE(1);
2096 goto walk_abort;
2097 }
2098
2099 /* MADV_FREE page check */
2100 if (!folio_test_swapbacked(folio)) {
2101 int ref_count, map_count;
2102
2103 /*
2104 * Synchronize with gup_pte_range():
2105 * - clear PTE; barrier; read refcount
2106 * - inc refcount; barrier; read PTE
2107 */
2108 smp_mb();
2109
2110 ref_count = folio_ref_count(folio);
2111 map_count = folio_mapcount(folio);
2112
2113 /*
2114 * Order reads for page refcount and dirty flag
2115 * (see comments in __remove_mapping()).
2116 */
2117 smp_rmb();
2118
2119 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
2120 /*
2121 * redirtied either using the page table or a previously
2122 * obtained GUP reference.
2123 */
2124 set_ptes(mm, address, pvmw.pte, pteval, nr_pages);
2125 folio_set_swapbacked(folio);
2126 goto walk_abort;
2127 } else if (ref_count != 1 + map_count) {
2128 /*
2129 * Additional reference. Could be a GUP reference or any
2130 * speculative reference. GUP users must mark the folio
2131 * dirty if there was a modification. This folio cannot be
2132 * reclaimed right now either way, so act just like nothing
2133 * happened.
2134 * We'll come back here later and detect if the folio was
2135 * dirtied when the additional reference is gone.
2136 */
2137 set_ptes(mm, address, pvmw.pte, pteval, nr_pages);
2138 goto walk_abort;
2139 }
2140 add_mm_counter(mm, MM_ANONPAGES, -nr_pages);
2141 goto discard;
2142 }
2143
2144 if (swap_duplicate(entry) < 0) {
2145 set_pte_at(mm, address, pvmw.pte, pteval);
2146 goto walk_abort;
2147 }
2148
2149 /*
2150 * arch_unmap_one() is expected to be a NOP on
2151 * architectures where we could have PFN swap PTEs,
2152 * so we'll not check/care.
2153 */
2154 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2155 swap_free(entry);
2156 set_pte_at(mm, address, pvmw.pte, pteval);
2157 goto walk_abort;
2158 }
2159
2160 /* See folio_try_share_anon_rmap(): clear PTE first. */
2161 if (anon_exclusive &&
2162 folio_try_share_anon_rmap_pte(folio, subpage)) {
2163 swap_free(entry);
2164 set_pte_at(mm, address, pvmw.pte, pteval);
2165 goto walk_abort;
2166 }
2167 if (list_empty(&mm->mmlist)) {
2168 spin_lock(&mmlist_lock);
2169 if (list_empty(&mm->mmlist))
2170 list_add(&mm->mmlist, &init_mm.mmlist);
2171 spin_unlock(&mmlist_lock);
2172 }
2173 dec_mm_counter(mm, MM_ANONPAGES);
2174 inc_mm_counter(mm, MM_SWAPENTS);
2175 swp_pte = swp_entry_to_pte(entry);
2176 if (anon_exclusive)
2177 swp_pte = pte_swp_mkexclusive(swp_pte);
2178 if (likely(pte_present(pteval))) {
2179 if (pte_soft_dirty(pteval))
2180 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2181 if (pte_uffd_wp(pteval))
2182 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2183 } else {
2184 if (pte_swp_soft_dirty(pteval))
2185 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2186 if (pte_swp_uffd_wp(pteval))
2187 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2188 }
2189 set_pte_at(mm, address, pvmw.pte, swp_pte);
2190 } else {
2191 /*
2192 * This is a locked file-backed folio,
2193 * so it cannot be removed from the page
2194 * cache and replaced by a new folio before
2195 * mmu_notifier_invalidate_range_end, so no
2196 * concurrent thread might update its page table
2197 * to point at a new folio while a device is
2198 * still using this folio.
2199 *
2200 * See Documentation/mm/mmu_notifier.rst
2201 */
2202 dec_mm_counter(mm, mm_counter_file(folio));
2203 }
2204 discard:
2205 if (unlikely(folio_test_hugetlb(folio))) {
2206 hugetlb_remove_rmap(folio);
2207 } else {
2208 folio_remove_rmap_ptes(folio, subpage, nr_pages, vma);
2209 folio_ref_sub(folio, nr_pages - 1);
2210 }
2211 if (vma->vm_flags & VM_LOCKED)
2212 mlock_drain_local();
2213 folio_put(folio);
2214 /* We have already batched the entire folio */
2215 if (nr_pages > 1)
2216 goto walk_done;
2217 continue;
2218 walk_abort:
2219 ret = false;
2220 walk_done:
2221 page_vma_mapped_walk_done(&pvmw);
2222 break;
2223 }
2224
2225 mmu_notifier_invalidate_range_end(&range);
2226
2227 return ret;
2228 }
2229
invalid_migration_vma(struct vm_area_struct * vma,void * arg)2230 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
2231 {
2232 return vma_is_temporary_stack(vma);
2233 }
2234
folio_not_mapped(struct folio * folio)2235 static int folio_not_mapped(struct folio *folio)
2236 {
2237 return !folio_mapped(folio);
2238 }
2239
2240 /**
2241 * try_to_unmap - Try to remove all page table mappings to a folio.
2242 * @folio: The folio to unmap.
2243 * @flags: action and flags
2244 *
2245 * Tries to remove all the page table entries which are mapping this
2246 * folio. It is the caller's responsibility to check if the folio is
2247 * still mapped if needed (use TTU_SYNC to prevent accounting races).
2248 *
2249 * Context: Caller must hold the folio lock.
2250 */
try_to_unmap(struct folio * folio,enum ttu_flags flags)2251 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
2252 {
2253 struct rmap_walk_control rwc = {
2254 .rmap_one = try_to_unmap_one,
2255 .arg = (void *)flags,
2256 .done = folio_not_mapped,
2257 .anon_lock = folio_lock_anon_vma_read,
2258 };
2259
2260 if (flags & TTU_RMAP_LOCKED)
2261 rmap_walk_locked(folio, &rwc);
2262 else
2263 rmap_walk(folio, &rwc);
2264 }
2265
2266 /*
2267 * @arg: enum ttu_flags will be passed to this argument.
2268 *
2269 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
2270 * containing migration entries.
2271 */
try_to_migrate_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)2272 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
2273 unsigned long address, void *arg)
2274 {
2275 struct mm_struct *mm = vma->vm_mm;
2276 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2277 bool anon_exclusive, writable, ret = true;
2278 pte_t pteval;
2279 struct page *subpage;
2280 struct mmu_notifier_range range;
2281 enum ttu_flags flags = (enum ttu_flags)(long)arg;
2282 unsigned long pfn;
2283 unsigned long hsz = 0;
2284
2285 /*
2286 * When racing against e.g. zap_pte_range() on another cpu,
2287 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2288 * try_to_migrate() may return before page_mapped() has become false,
2289 * if page table locking is skipped: use TTU_SYNC to wait for that.
2290 */
2291 if (flags & TTU_SYNC)
2292 pvmw.flags = PVMW_SYNC;
2293
2294 /*
2295 * For THP, we have to assume the worse case ie pmd for invalidation.
2296 * For hugetlb, it could be much worse if we need to do pud
2297 * invalidation in the case of pmd sharing.
2298 *
2299 * Note that the page can not be free in this function as call of
2300 * try_to_unmap() must hold a reference on the page.
2301 */
2302 range.end = vma_address_end(&pvmw);
2303 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2304 address, range.end);
2305 if (folio_test_hugetlb(folio)) {
2306 /*
2307 * If sharing is possible, start and end will be adjusted
2308 * accordingly.
2309 */
2310 adjust_range_if_pmd_sharing_possible(vma, &range.start,
2311 &range.end);
2312
2313 /* We need the huge page size for set_huge_pte_at() */
2314 hsz = huge_page_size(hstate_vma(vma));
2315 }
2316 mmu_notifier_invalidate_range_start(&range);
2317
2318 while (page_vma_mapped_walk(&pvmw)) {
2319 /* PMD-mapped THP migration entry */
2320 if (!pvmw.pte) {
2321 if (flags & TTU_SPLIT_HUGE_PMD) {
2322 split_huge_pmd_locked(vma, pvmw.address,
2323 pvmw.pmd, true);
2324 ret = false;
2325 page_vma_mapped_walk_done(&pvmw);
2326 break;
2327 }
2328 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2329 subpage = folio_page(folio,
2330 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2331 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2332 !folio_test_pmd_mappable(folio), folio);
2333
2334 if (set_pmd_migration_entry(&pvmw, subpage)) {
2335 ret = false;
2336 page_vma_mapped_walk_done(&pvmw);
2337 break;
2338 }
2339 continue;
2340 #endif
2341 }
2342
2343 /* Unexpected PMD-mapped THP? */
2344 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2345
2346 /*
2347 * Handle PFN swap PTEs, such as device-exclusive ones, that
2348 * actually map pages.
2349 */
2350 pteval = ptep_get(pvmw.pte);
2351 if (likely(pte_present(pteval))) {
2352 pfn = pte_pfn(pteval);
2353 } else {
2354 pfn = swp_offset_pfn(pte_to_swp_entry(pteval));
2355 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
2356 }
2357
2358 subpage = folio_page(folio, pfn - folio_pfn(folio));
2359 address = pvmw.address;
2360 anon_exclusive = folio_test_anon(folio) &&
2361 PageAnonExclusive(subpage);
2362
2363 if (folio_test_hugetlb(folio)) {
2364 bool anon = folio_test_anon(folio);
2365
2366 /*
2367 * huge_pmd_unshare may unmap an entire PMD page.
2368 * There is no way of knowing exactly which PMDs may
2369 * be cached for this mm, so we must flush them all.
2370 * start/end were already adjusted above to cover this
2371 * range.
2372 */
2373 flush_cache_range(vma, range.start, range.end);
2374
2375 /*
2376 * To call huge_pmd_unshare, i_mmap_rwsem must be
2377 * held in write mode. Caller needs to explicitly
2378 * do this outside rmap routines.
2379 *
2380 * We also must hold hugetlb vma_lock in write mode.
2381 * Lock order dictates acquiring vma_lock BEFORE
2382 * i_mmap_rwsem. We can only try lock here and
2383 * fail if unsuccessful.
2384 */
2385 if (!anon) {
2386 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2387 if (!hugetlb_vma_trylock_write(vma)) {
2388 page_vma_mapped_walk_done(&pvmw);
2389 ret = false;
2390 break;
2391 }
2392 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2393 hugetlb_vma_unlock_write(vma);
2394 flush_tlb_range(vma,
2395 range.start, range.end);
2396
2397 /*
2398 * The ref count of the PMD page was
2399 * dropped which is part of the way map
2400 * counting is done for shared PMDs.
2401 * Return 'true' here. When there is
2402 * no other sharing, huge_pmd_unshare
2403 * returns false and we will unmap the
2404 * actual page and drop map count
2405 * to zero.
2406 */
2407 page_vma_mapped_walk_done(&pvmw);
2408 break;
2409 }
2410 hugetlb_vma_unlock_write(vma);
2411 }
2412 /* Nuke the hugetlb page table entry */
2413 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2414 if (pte_dirty(pteval))
2415 folio_mark_dirty(folio);
2416 writable = pte_write(pteval);
2417 } else if (likely(pte_present(pteval))) {
2418 flush_cache_page(vma, address, pfn);
2419 /* Nuke the page table entry. */
2420 if (should_defer_flush(mm, flags)) {
2421 /*
2422 * We clear the PTE but do not flush so potentially
2423 * a remote CPU could still be writing to the folio.
2424 * If the entry was previously clean then the
2425 * architecture must guarantee that a clear->dirty
2426 * transition on a cached TLB entry is written through
2427 * and traps if the PTE is unmapped.
2428 */
2429 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2430
2431 set_tlb_ubc_flush_pending(mm, pteval, address, address + PAGE_SIZE);
2432 } else {
2433 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2434 }
2435 if (pte_dirty(pteval))
2436 folio_mark_dirty(folio);
2437 writable = pte_write(pteval);
2438 } else {
2439 pte_clear(mm, address, pvmw.pte);
2440 writable = is_writable_device_private_entry(pte_to_swp_entry(pteval));
2441 }
2442
2443 VM_WARN_ON_FOLIO(writable && folio_test_anon(folio) &&
2444 !anon_exclusive, folio);
2445
2446 /* Update high watermark before we lower rss */
2447 update_hiwater_rss(mm);
2448
2449 if (PageHWPoison(subpage)) {
2450 VM_WARN_ON_FOLIO(folio_is_device_private(folio), folio);
2451
2452 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2453 if (folio_test_hugetlb(folio)) {
2454 hugetlb_count_sub(folio_nr_pages(folio), mm);
2455 set_huge_pte_at(mm, address, pvmw.pte, pteval,
2456 hsz);
2457 } else {
2458 dec_mm_counter(mm, mm_counter(folio));
2459 set_pte_at(mm, address, pvmw.pte, pteval);
2460 }
2461 } else if (likely(pte_present(pteval)) && pte_unused(pteval) &&
2462 !userfaultfd_armed(vma)) {
2463 /*
2464 * The guest indicated that the page content is of no
2465 * interest anymore. Simply discard the pte, vmscan
2466 * will take care of the rest.
2467 * A future reference will then fault in a new zero
2468 * page. When userfaultfd is active, we must not drop
2469 * this page though, as its main user (postcopy
2470 * migration) will not expect userfaults on already
2471 * copied pages.
2472 */
2473 dec_mm_counter(mm, mm_counter(folio));
2474 } else {
2475 swp_entry_t entry;
2476 pte_t swp_pte;
2477
2478 /*
2479 * arch_unmap_one() is expected to be a NOP on
2480 * architectures where we could have PFN swap PTEs,
2481 * so we'll not check/care.
2482 */
2483 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2484 if (folio_test_hugetlb(folio))
2485 set_huge_pte_at(mm, address, pvmw.pte,
2486 pteval, hsz);
2487 else
2488 set_pte_at(mm, address, pvmw.pte, pteval);
2489 ret = false;
2490 page_vma_mapped_walk_done(&pvmw);
2491 break;
2492 }
2493
2494 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2495 if (folio_test_hugetlb(folio)) {
2496 if (anon_exclusive &&
2497 hugetlb_try_share_anon_rmap(folio)) {
2498 set_huge_pte_at(mm, address, pvmw.pte,
2499 pteval, hsz);
2500 ret = false;
2501 page_vma_mapped_walk_done(&pvmw);
2502 break;
2503 }
2504 } else if (anon_exclusive &&
2505 folio_try_share_anon_rmap_pte(folio, subpage)) {
2506 set_pte_at(mm, address, pvmw.pte, pteval);
2507 ret = false;
2508 page_vma_mapped_walk_done(&pvmw);
2509 break;
2510 }
2511
2512 /*
2513 * Store the pfn of the page in a special migration
2514 * pte. do_swap_page() will wait until the migration
2515 * pte is removed and then restart fault handling.
2516 */
2517 if (writable)
2518 entry = make_writable_migration_entry(
2519 page_to_pfn(subpage));
2520 else if (anon_exclusive)
2521 entry = make_readable_exclusive_migration_entry(
2522 page_to_pfn(subpage));
2523 else
2524 entry = make_readable_migration_entry(
2525 page_to_pfn(subpage));
2526 if (likely(pte_present(pteval))) {
2527 if (pte_young(pteval))
2528 entry = make_migration_entry_young(entry);
2529 if (pte_dirty(pteval))
2530 entry = make_migration_entry_dirty(entry);
2531 swp_pte = swp_entry_to_pte(entry);
2532 if (pte_soft_dirty(pteval))
2533 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2534 if (pte_uffd_wp(pteval))
2535 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2536 } else {
2537 swp_pte = swp_entry_to_pte(entry);
2538 if (pte_swp_soft_dirty(pteval))
2539 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2540 if (pte_swp_uffd_wp(pteval))
2541 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2542 }
2543 if (folio_test_hugetlb(folio))
2544 set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2545 hsz);
2546 else
2547 set_pte_at(mm, address, pvmw.pte, swp_pte);
2548 trace_set_migration_pte(address, pte_val(swp_pte),
2549 folio_order(folio));
2550 /*
2551 * No need to invalidate here it will synchronize on
2552 * against the special swap migration pte.
2553 */
2554 }
2555
2556 if (unlikely(folio_test_hugetlb(folio)))
2557 hugetlb_remove_rmap(folio);
2558 else
2559 folio_remove_rmap_pte(folio, subpage, vma);
2560 if (vma->vm_flags & VM_LOCKED)
2561 mlock_drain_local();
2562 folio_put(folio);
2563 }
2564
2565 mmu_notifier_invalidate_range_end(&range);
2566
2567 return ret;
2568 }
2569
2570 /**
2571 * try_to_migrate - try to replace all page table mappings with swap entries
2572 * @folio: the folio to replace page table entries for
2573 * @flags: action and flags
2574 *
2575 * Tries to remove all the page table entries which are mapping this folio and
2576 * replace them with special swap entries. Caller must hold the folio lock.
2577 */
try_to_migrate(struct folio * folio,enum ttu_flags flags)2578 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2579 {
2580 struct rmap_walk_control rwc = {
2581 .rmap_one = try_to_migrate_one,
2582 .arg = (void *)flags,
2583 .done = folio_not_mapped,
2584 .anon_lock = folio_lock_anon_vma_read,
2585 };
2586
2587 /*
2588 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2589 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2590 */
2591 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2592 TTU_SYNC | TTU_BATCH_FLUSH)))
2593 return;
2594
2595 if (folio_is_zone_device(folio) &&
2596 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2597 return;
2598
2599 /*
2600 * During exec, a temporary VMA is setup and later moved.
2601 * The VMA is moved under the anon_vma lock but not the
2602 * page tables leading to a race where migration cannot
2603 * find the migration ptes. Rather than increasing the
2604 * locking requirements of exec(), migration skips
2605 * temporary VMAs until after exec() completes.
2606 */
2607 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2608 rwc.invalid_vma = invalid_migration_vma;
2609
2610 if (flags & TTU_RMAP_LOCKED)
2611 rmap_walk_locked(folio, &rwc);
2612 else
2613 rmap_walk(folio, &rwc);
2614 }
2615
2616 #ifdef CONFIG_DEVICE_PRIVATE
2617 /**
2618 * make_device_exclusive() - Mark a page for exclusive use by a device
2619 * @mm: mm_struct of associated target process
2620 * @addr: the virtual address to mark for exclusive device access
2621 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2622 * @foliop: folio pointer will be stored here on success.
2623 *
2624 * This function looks up the page mapped at the given address, grabs a
2625 * folio reference, locks the folio and replaces the PTE with special
2626 * device-exclusive PFN swap entry, preventing access through the process
2627 * page tables. The function will return with the folio locked and referenced.
2628 *
2629 * On fault, the device-exclusive entries are replaced with the original PTE
2630 * under folio lock, after calling MMU notifiers.
2631 *
2632 * Only anonymous non-hugetlb folios are supported and the VMA must have
2633 * write permissions such that we can fault in the anonymous page writable
2634 * in order to mark it exclusive. The caller must hold the mmap_lock in read
2635 * mode.
2636 *
2637 * A driver using this to program access from a device must use a mmu notifier
2638 * critical section to hold a device specific lock during programming. Once
2639 * programming is complete it should drop the folio lock and reference after
2640 * which point CPU access to the page will revoke the exclusive access.
2641 *
2642 * Notes:
2643 * #. This function always operates on individual PTEs mapping individual
2644 * pages. PMD-sized THPs are first remapped to be mapped by PTEs before
2645 * the conversion happens on a single PTE corresponding to @addr.
2646 * #. While concurrent access through the process page tables is prevented,
2647 * concurrent access through other page references (e.g., earlier GUP
2648 * invocation) is not handled and not supported.
2649 * #. device-exclusive entries are considered "clean" and "old" by core-mm.
2650 * Device drivers must update the folio state when informed by MMU
2651 * notifiers.
2652 *
2653 * Returns: pointer to mapped page on success, otherwise a negative error.
2654 */
make_device_exclusive(struct mm_struct * mm,unsigned long addr,void * owner,struct folio ** foliop)2655 struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr,
2656 void *owner, struct folio **foliop)
2657 {
2658 struct mmu_notifier_range range;
2659 struct folio *folio, *fw_folio;
2660 struct vm_area_struct *vma;
2661 struct folio_walk fw;
2662 struct page *page;
2663 swp_entry_t entry;
2664 pte_t swp_pte;
2665 int ret;
2666
2667 mmap_assert_locked(mm);
2668 addr = PAGE_ALIGN_DOWN(addr);
2669
2670 /*
2671 * Fault in the page writable and try to lock it; note that if the
2672 * address would already be marked for exclusive use by a device,
2673 * the GUP call would undo that first by triggering a fault.
2674 *
2675 * If any other device would already map this page exclusively, the
2676 * fault will trigger a conversion to an ordinary
2677 * (non-device-exclusive) PTE and issue a MMU_NOTIFY_EXCLUSIVE.
2678 */
2679 retry:
2680 page = get_user_page_vma_remote(mm, addr,
2681 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2682 &vma);
2683 if (IS_ERR(page))
2684 return page;
2685 folio = page_folio(page);
2686
2687 if (!folio_test_anon(folio) || folio_test_hugetlb(folio)) {
2688 folio_put(folio);
2689 return ERR_PTR(-EOPNOTSUPP);
2690 }
2691
2692 ret = folio_lock_killable(folio);
2693 if (ret) {
2694 folio_put(folio);
2695 return ERR_PTR(ret);
2696 }
2697
2698 /*
2699 * Inform secondary MMUs that we are going to convert this PTE to
2700 * device-exclusive, such that they unmap it now. Note that the
2701 * caller must filter this event out to prevent livelocks.
2702 */
2703 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2704 mm, addr, addr + PAGE_SIZE, owner);
2705 mmu_notifier_invalidate_range_start(&range);
2706
2707 /*
2708 * Let's do a second walk and make sure we still find the same page
2709 * mapped writable. Note that any page of an anonymous folio can
2710 * only be mapped writable using exactly one PTE ("exclusive"), so
2711 * there cannot be other mappings.
2712 */
2713 fw_folio = folio_walk_start(&fw, vma, addr, 0);
2714 if (fw_folio != folio || fw.page != page ||
2715 fw.level != FW_LEVEL_PTE || !pte_write(fw.pte)) {
2716 if (fw_folio)
2717 folio_walk_end(&fw, vma);
2718 mmu_notifier_invalidate_range_end(&range);
2719 folio_unlock(folio);
2720 folio_put(folio);
2721 goto retry;
2722 }
2723
2724 /* Nuke the page table entry so we get the uptodate dirty bit. */
2725 flush_cache_page(vma, addr, page_to_pfn(page));
2726 fw.pte = ptep_clear_flush(vma, addr, fw.ptep);
2727
2728 /* Set the dirty flag on the folio now the PTE is gone. */
2729 if (pte_dirty(fw.pte))
2730 folio_mark_dirty(folio);
2731
2732 /*
2733 * Store the pfn of the page in a special device-exclusive PFN swap PTE.
2734 * do_swap_page() will trigger the conversion back while holding the
2735 * folio lock.
2736 */
2737 entry = make_device_exclusive_entry(page_to_pfn(page));
2738 swp_pte = swp_entry_to_pte(entry);
2739 if (pte_soft_dirty(fw.pte))
2740 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2741 /* The pte is writable, uffd-wp does not apply. */
2742 set_pte_at(mm, addr, fw.ptep, swp_pte);
2743
2744 folio_walk_end(&fw, vma);
2745 mmu_notifier_invalidate_range_end(&range);
2746 *foliop = folio;
2747 return page;
2748 }
2749 EXPORT_SYMBOL_GPL(make_device_exclusive);
2750 #endif
2751
__put_anon_vma(struct anon_vma * anon_vma)2752 void __put_anon_vma(struct anon_vma *anon_vma)
2753 {
2754 struct anon_vma *root = anon_vma->root;
2755
2756 anon_vma_free(anon_vma);
2757 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2758 anon_vma_free(root);
2759 }
2760
rmap_walk_anon_lock(const struct folio * folio,struct rmap_walk_control * rwc)2761 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio,
2762 struct rmap_walk_control *rwc)
2763 {
2764 struct anon_vma *anon_vma;
2765
2766 if (rwc->anon_lock)
2767 return rwc->anon_lock(folio, rwc);
2768
2769 /*
2770 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2771 * because that depends on page_mapped(); but not all its usages
2772 * are holding mmap_lock. Users without mmap_lock are required to
2773 * take a reference count to prevent the anon_vma disappearing
2774 */
2775 anon_vma = folio_anon_vma(folio);
2776 if (!anon_vma)
2777 return NULL;
2778
2779 if (anon_vma_trylock_read(anon_vma))
2780 goto out;
2781
2782 if (rwc->try_lock) {
2783 anon_vma = NULL;
2784 rwc->contended = true;
2785 goto out;
2786 }
2787
2788 anon_vma_lock_read(anon_vma);
2789 out:
2790 return anon_vma;
2791 }
2792
2793 /*
2794 * rmap_walk_anon - do something to anonymous page using the object-based
2795 * rmap method
2796 * @folio: the folio to be handled
2797 * @rwc: control variable according to each walk type
2798 * @locked: caller holds relevant rmap lock
2799 *
2800 * Find all the mappings of a folio using the mapping pointer and the vma
2801 * chains contained in the anon_vma struct it points to.
2802 */
rmap_walk_anon(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2803 static void rmap_walk_anon(struct folio *folio,
2804 struct rmap_walk_control *rwc, bool locked)
2805 {
2806 struct anon_vma *anon_vma;
2807 pgoff_t pgoff_start, pgoff_end;
2808 struct anon_vma_chain *avc;
2809
2810 if (locked) {
2811 anon_vma = folio_anon_vma(folio);
2812 /* anon_vma disappear under us? */
2813 VM_BUG_ON_FOLIO(!anon_vma, folio);
2814 } else {
2815 anon_vma = rmap_walk_anon_lock(folio, rwc);
2816 }
2817 if (!anon_vma)
2818 return;
2819
2820 pgoff_start = folio_pgoff(folio);
2821 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2822 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2823 pgoff_start, pgoff_end) {
2824 struct vm_area_struct *vma = avc->vma;
2825 unsigned long address = vma_address(vma, pgoff_start,
2826 folio_nr_pages(folio));
2827
2828 VM_BUG_ON_VMA(address == -EFAULT, vma);
2829 cond_resched();
2830
2831 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2832 continue;
2833
2834 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2835 break;
2836 if (rwc->done && rwc->done(folio))
2837 break;
2838 }
2839
2840 if (!locked)
2841 anon_vma_unlock_read(anon_vma);
2842 }
2843
2844 /**
2845 * __rmap_walk_file() - Traverse the reverse mapping for a file-backed mapping
2846 * of a page mapped within a specified page cache object at a specified offset.
2847 *
2848 * @folio: Either the folio whose mappings to traverse, or if NULL,
2849 * the callbacks specified in @rwc will be configured such
2850 * as to be able to look up mappings correctly.
2851 * @mapping: The page cache object whose mapping VMAs we intend to
2852 * traverse. If @folio is non-NULL, this should be equal to
2853 * folio_mapping(folio).
2854 * @pgoff_start: The offset within @mapping of the page which we are
2855 * looking up. If @folio is non-NULL, this should be equal
2856 * to folio_pgoff(folio).
2857 * @nr_pages: The number of pages mapped by the mapping. If @folio is
2858 * non-NULL, this should be equal to folio_nr_pages(folio).
2859 * @rwc: The reverse mapping walk control object describing how
2860 * the traversal should proceed.
2861 * @locked: Is the @mapping already locked? If not, we acquire the
2862 * lock.
2863 */
__rmap_walk_file(struct folio * folio,struct address_space * mapping,pgoff_t pgoff_start,unsigned long nr_pages,struct rmap_walk_control * rwc,bool locked)2864 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping,
2865 pgoff_t pgoff_start, unsigned long nr_pages,
2866 struct rmap_walk_control *rwc, bool locked)
2867 {
2868 pgoff_t pgoff_end = pgoff_start + nr_pages - 1;
2869 struct vm_area_struct *vma;
2870
2871 VM_WARN_ON_FOLIO(folio && mapping != folio_mapping(folio), folio);
2872 VM_WARN_ON_FOLIO(folio && pgoff_start != folio_pgoff(folio), folio);
2873 VM_WARN_ON_FOLIO(folio && nr_pages != folio_nr_pages(folio), folio);
2874
2875 if (!locked) {
2876 if (i_mmap_trylock_read(mapping))
2877 goto lookup;
2878
2879 if (rwc->try_lock) {
2880 rwc->contended = true;
2881 return;
2882 }
2883
2884 i_mmap_lock_read(mapping);
2885 }
2886 lookup:
2887 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2888 pgoff_start, pgoff_end) {
2889 unsigned long address = vma_address(vma, pgoff_start, nr_pages);
2890
2891 VM_BUG_ON_VMA(address == -EFAULT, vma);
2892 cond_resched();
2893
2894 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2895 continue;
2896
2897 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2898 goto done;
2899 if (rwc->done && rwc->done(folio))
2900 goto done;
2901 }
2902 done:
2903 if (!locked)
2904 i_mmap_unlock_read(mapping);
2905 }
2906
2907 /*
2908 * rmap_walk_file - do something to file page using the object-based rmap method
2909 * @folio: the folio to be handled
2910 * @rwc: control variable according to each walk type
2911 * @locked: caller holds relevant rmap lock
2912 *
2913 * Find all the mappings of a folio using the mapping pointer and the vma chains
2914 * contained in the address_space struct it points to.
2915 */
rmap_walk_file(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2916 static void rmap_walk_file(struct folio *folio,
2917 struct rmap_walk_control *rwc, bool locked)
2918 {
2919 /*
2920 * The folio lock not only makes sure that folio->mapping cannot
2921 * suddenly be NULLified by truncation, it makes sure that the structure
2922 * at mapping cannot be freed and reused yet, so we can safely take
2923 * mapping->i_mmap_rwsem.
2924 */
2925 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2926
2927 if (!folio->mapping)
2928 return;
2929
2930 __rmap_walk_file(folio, folio->mapping, folio->index,
2931 folio_nr_pages(folio), rwc, locked);
2932 }
2933
rmap_walk(struct folio * folio,struct rmap_walk_control * rwc)2934 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2935 {
2936 if (unlikely(folio_test_ksm(folio)))
2937 rmap_walk_ksm(folio, rwc);
2938 else if (folio_test_anon(folio))
2939 rmap_walk_anon(folio, rwc, false);
2940 else
2941 rmap_walk_file(folio, rwc, false);
2942 }
2943
2944 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct folio * folio,struct rmap_walk_control * rwc)2945 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2946 {
2947 /* no ksm support for now */
2948 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2949 if (folio_test_anon(folio))
2950 rmap_walk_anon(folio, rwc, true);
2951 else
2952 rmap_walk_file(folio, rwc, true);
2953 }
2954
2955 #ifdef CONFIG_HUGETLB_PAGE
2956 /*
2957 * The following two functions are for anonymous (private mapped) hugepages.
2958 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2959 * and no lru code, because we handle hugepages differently from common pages.
2960 */
hugetlb_add_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address,rmap_t flags)2961 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2962 unsigned long address, rmap_t flags)
2963 {
2964 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2965 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2966
2967 atomic_inc(&folio->_entire_mapcount);
2968 atomic_inc(&folio->_large_mapcount);
2969 if (flags & RMAP_EXCLUSIVE)
2970 SetPageAnonExclusive(&folio->page);
2971 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2972 PageAnonExclusive(&folio->page), folio);
2973 }
2974
hugetlb_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address)2975 void hugetlb_add_new_anon_rmap(struct folio *folio,
2976 struct vm_area_struct *vma, unsigned long address)
2977 {
2978 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2979
2980 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2981 /* increment count (starts at -1) */
2982 atomic_set(&folio->_entire_mapcount, 0);
2983 atomic_set(&folio->_large_mapcount, 0);
2984 folio_clear_hugetlb_restore_reserve(folio);
2985 __folio_set_anon(folio, vma, address, true);
2986 SetPageAnonExclusive(&folio->page);
2987 }
2988 #endif /* CONFIG_HUGETLB_PAGE */
2989