1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * folio_lock
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28 * vma_start_write
29 * mapping->i_mmap_rwsem
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in block_dirty_folio)
35 * i_pages lock (widely used)
36 * lruvec->lru_lock (in folio_lruvec_lock_irq)
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
40 * i_pages lock (widely used, in set_page_dirty,
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
43 *
44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
45 * ->tasklist_lock
46 * pte map lock
47 *
48 * hugetlbfs PageHuge() take locks in this order:
49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50 * vma_lock (hugetlb specific lock for pmd_sharing)
51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52 * folio_lock
53 */
54
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/leafops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77 #include <linux/oom.h>
78
79 #include <asm/tlbflush.h>
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/migrate.h>
83
84 #include "internal.h"
85
86 static struct kmem_cache *anon_vma_cachep;
87 static struct kmem_cache *anon_vma_chain_cachep;
88
anon_vma_alloc(void)89 static inline struct anon_vma *anon_vma_alloc(void)
90 {
91 struct anon_vma *anon_vma;
92
93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 if (anon_vma) {
95 atomic_set(&anon_vma->refcount, 1);
96 anon_vma->num_children = 0;
97 anon_vma->num_active_vmas = 0;
98 anon_vma->parent = anon_vma;
99 /*
100 * Initialise the anon_vma root to point to itself. If called
101 * from fork, the root will be reset to the parents anon_vma.
102 */
103 anon_vma->root = anon_vma;
104 }
105
106 return anon_vma;
107 }
108
anon_vma_free(struct anon_vma * anon_vma)109 static inline void anon_vma_free(struct anon_vma *anon_vma)
110 {
111 VM_BUG_ON(atomic_read(&anon_vma->refcount));
112
113 /*
114 * Synchronize against folio_lock_anon_vma_read() such that
115 * we can safely hold the lock without the anon_vma getting
116 * freed.
117 *
118 * Relies on the full mb implied by the atomic_dec_and_test() from
119 * put_anon_vma() against the acquire barrier implied by
120 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
121 *
122 * folio_lock_anon_vma_read() VS put_anon_vma()
123 * down_read_trylock() atomic_dec_and_test()
124 * LOCK MB
125 * atomic_read() rwsem_is_locked()
126 *
127 * LOCK should suffice since the actual taking of the lock must
128 * happen _before_ what follows.
129 */
130 might_sleep();
131 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
132 anon_vma_lock_write(anon_vma);
133 anon_vma_unlock_write(anon_vma);
134 }
135
136 kmem_cache_free(anon_vma_cachep, anon_vma);
137 }
138
anon_vma_chain_alloc(gfp_t gfp)139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
140 {
141 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
142 }
143
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
145 {
146 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
147 }
148
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)149 static void anon_vma_chain_link(struct vm_area_struct *vma,
150 struct anon_vma_chain *avc,
151 struct anon_vma *anon_vma)
152 {
153 avc->vma = vma;
154 avc->anon_vma = anon_vma;
155 list_add(&avc->same_vma, &vma->anon_vma_chain);
156 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
157 }
158
159 /**
160 * __anon_vma_prepare - attach an anon_vma to a memory region
161 * @vma: the memory region in question
162 *
163 * This makes sure the memory mapping described by 'vma' has
164 * an 'anon_vma' attached to it, so that we can associate the
165 * anonymous pages mapped into it with that anon_vma.
166 *
167 * The common case will be that we already have one, which
168 * is handled inline by anon_vma_prepare(). But if
169 * not we either need to find an adjacent mapping that we
170 * can re-use the anon_vma from (very common when the only
171 * reason for splitting a vma has been mprotect()), or we
172 * allocate a new one.
173 *
174 * Anon-vma allocations are very subtle, because we may have
175 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
176 * and that may actually touch the rwsem even in the newly
177 * allocated vma (it depends on RCU to make sure that the
178 * anon_vma isn't actually destroyed).
179 *
180 * As a result, we need to do proper anon_vma locking even
181 * for the new allocation. At the same time, we do not want
182 * to do any locking for the common case of already having
183 * an anon_vma.
184 */
__anon_vma_prepare(struct vm_area_struct * vma)185 int __anon_vma_prepare(struct vm_area_struct *vma)
186 {
187 struct mm_struct *mm = vma->vm_mm;
188 struct anon_vma *anon_vma, *allocated;
189 struct anon_vma_chain *avc;
190
191 mmap_assert_locked(mm);
192 might_sleep();
193
194 avc = anon_vma_chain_alloc(GFP_KERNEL);
195 if (!avc)
196 goto out_enomem;
197
198 anon_vma = find_mergeable_anon_vma(vma);
199 allocated = NULL;
200 if (!anon_vma) {
201 anon_vma = anon_vma_alloc();
202 if (unlikely(!anon_vma))
203 goto out_enomem_free_avc;
204 anon_vma->num_children++; /* self-parent link for new root */
205 allocated = anon_vma;
206 }
207
208 anon_vma_lock_write(anon_vma);
209 /* page_table_lock to protect against threads */
210 spin_lock(&mm->page_table_lock);
211 if (likely(!vma->anon_vma)) {
212 vma->anon_vma = anon_vma;
213 anon_vma_chain_link(vma, avc, anon_vma);
214 anon_vma->num_active_vmas++;
215 allocated = NULL;
216 avc = NULL;
217 }
218 spin_unlock(&mm->page_table_lock);
219 anon_vma_unlock_write(anon_vma);
220
221 if (unlikely(allocated))
222 put_anon_vma(allocated);
223 if (unlikely(avc))
224 anon_vma_chain_free(avc);
225
226 return 0;
227
228 out_enomem_free_avc:
229 anon_vma_chain_free(avc);
230 out_enomem:
231 return -ENOMEM;
232 }
233
234 /*
235 * This is a useful helper function for locking the anon_vma root as
236 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
237 * have the same vma.
238 *
239 * Such anon_vma's should have the same root, so you'd expect to see
240 * just a single mutex_lock for the whole traversal.
241 */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)242 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
243 {
244 struct anon_vma *new_root = anon_vma->root;
245 if (new_root != root) {
246 if (WARN_ON_ONCE(root))
247 up_write(&root->rwsem);
248 root = new_root;
249 down_write(&root->rwsem);
250 }
251 return root;
252 }
253
unlock_anon_vma_root(struct anon_vma * root)254 static inline void unlock_anon_vma_root(struct anon_vma *root)
255 {
256 if (root)
257 up_write(&root->rwsem);
258 }
259
260 /*
261 * Attach the anon_vmas from src to dst.
262 * Returns 0 on success, -ENOMEM on failure.
263 *
264 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
265 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
266 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
267 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
268 * call, we can identify this case by checking (!dst->anon_vma &&
269 * src->anon_vma).
270 *
271 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
272 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
273 * This prevents degradation of anon_vma hierarchy to endless linear chain in
274 * case of constantly forking task. On the other hand, an anon_vma with more
275 * than one child isn't reused even if there was no alive vma, thus rmap
276 * walker has a good chance of avoiding scanning the whole hierarchy when it
277 * searches where page is mapped.
278 */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)279 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
280 {
281 struct anon_vma_chain *avc, *pavc;
282 struct anon_vma *root = NULL;
283
284 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
285 struct anon_vma *anon_vma;
286
287 avc = anon_vma_chain_alloc(GFP_NOWAIT);
288 if (unlikely(!avc)) {
289 unlock_anon_vma_root(root);
290 root = NULL;
291 avc = anon_vma_chain_alloc(GFP_KERNEL);
292 if (!avc)
293 goto enomem_failure;
294 }
295 anon_vma = pavc->anon_vma;
296 root = lock_anon_vma_root(root, anon_vma);
297 anon_vma_chain_link(dst, avc, anon_vma);
298
299 /*
300 * Reuse existing anon_vma if it has no vma and only one
301 * anon_vma child.
302 *
303 * Root anon_vma is never reused:
304 * it has self-parent reference and at least one child.
305 */
306 if (!dst->anon_vma && src->anon_vma &&
307 anon_vma->num_children < 2 &&
308 anon_vma->num_active_vmas == 0)
309 dst->anon_vma = anon_vma;
310 }
311 if (dst->anon_vma)
312 dst->anon_vma->num_active_vmas++;
313 unlock_anon_vma_root(root);
314 return 0;
315
316 enomem_failure:
317 /*
318 * dst->anon_vma is dropped here otherwise its num_active_vmas can
319 * be incorrectly decremented in unlink_anon_vmas().
320 * We can safely do this because callers of anon_vma_clone() don't care
321 * about dst->anon_vma if anon_vma_clone() failed.
322 */
323 dst->anon_vma = NULL;
324 unlink_anon_vmas(dst);
325 return -ENOMEM;
326 }
327
328 /*
329 * Attach vma to its own anon_vma, as well as to the anon_vmas that
330 * the corresponding VMA in the parent process is attached to.
331 * Returns 0 on success, non-zero on failure.
332 */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)333 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
334 {
335 struct anon_vma_chain *avc;
336 struct anon_vma *anon_vma;
337 int error;
338
339 /* Don't bother if the parent process has no anon_vma here. */
340 if (!pvma->anon_vma)
341 return 0;
342
343 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
344 vma->anon_vma = NULL;
345
346 /*
347 * First, attach the new VMA to the parent VMA's anon_vmas,
348 * so rmap can find non-COWed pages in child processes.
349 */
350 error = anon_vma_clone(vma, pvma);
351 if (error)
352 return error;
353
354 /* An existing anon_vma has been reused, all done then. */
355 if (vma->anon_vma)
356 return 0;
357
358 /* Then add our own anon_vma. */
359 anon_vma = anon_vma_alloc();
360 if (!anon_vma)
361 goto out_error;
362 anon_vma->num_active_vmas++;
363 avc = anon_vma_chain_alloc(GFP_KERNEL);
364 if (!avc)
365 goto out_error_free_anon_vma;
366
367 /*
368 * The root anon_vma's rwsem is the lock actually used when we
369 * lock any of the anon_vmas in this anon_vma tree.
370 */
371 anon_vma->root = pvma->anon_vma->root;
372 anon_vma->parent = pvma->anon_vma;
373 /*
374 * With refcounts, an anon_vma can stay around longer than the
375 * process it belongs to. The root anon_vma needs to be pinned until
376 * this anon_vma is freed, because the lock lives in the root.
377 */
378 get_anon_vma(anon_vma->root);
379 /* Mark this anon_vma as the one where our new (COWed) pages go. */
380 vma->anon_vma = anon_vma;
381 anon_vma_lock_write(anon_vma);
382 anon_vma_chain_link(vma, avc, anon_vma);
383 anon_vma->parent->num_children++;
384 anon_vma_unlock_write(anon_vma);
385
386 return 0;
387
388 out_error_free_anon_vma:
389 put_anon_vma(anon_vma);
390 out_error:
391 unlink_anon_vmas(vma);
392 return -ENOMEM;
393 }
394
unlink_anon_vmas(struct vm_area_struct * vma)395 void unlink_anon_vmas(struct vm_area_struct *vma)
396 {
397 struct anon_vma_chain *avc, *next;
398 struct anon_vma *root = NULL;
399
400 /*
401 * Unlink each anon_vma chained to the VMA. This list is ordered
402 * from newest to oldest, ensuring the root anon_vma gets freed last.
403 */
404 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
405 struct anon_vma *anon_vma = avc->anon_vma;
406
407 root = lock_anon_vma_root(root, anon_vma);
408 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
409
410 /*
411 * Leave empty anon_vmas on the list - we'll need
412 * to free them outside the lock.
413 */
414 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
415 anon_vma->parent->num_children--;
416 continue;
417 }
418
419 list_del(&avc->same_vma);
420 anon_vma_chain_free(avc);
421 }
422 if (vma->anon_vma) {
423 vma->anon_vma->num_active_vmas--;
424
425 /*
426 * vma would still be needed after unlink, and anon_vma will be prepared
427 * when handle fault.
428 */
429 vma->anon_vma = NULL;
430 }
431 unlock_anon_vma_root(root);
432
433 /*
434 * Iterate the list once more, it now only contains empty and unlinked
435 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
436 * needing to write-acquire the anon_vma->root->rwsem.
437 */
438 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
439 struct anon_vma *anon_vma = avc->anon_vma;
440
441 VM_WARN_ON(anon_vma->num_children);
442 VM_WARN_ON(anon_vma->num_active_vmas);
443 put_anon_vma(anon_vma);
444
445 list_del(&avc->same_vma);
446 anon_vma_chain_free(avc);
447 }
448 }
449
anon_vma_ctor(void * data)450 static void anon_vma_ctor(void *data)
451 {
452 struct anon_vma *anon_vma = data;
453
454 init_rwsem(&anon_vma->rwsem);
455 atomic_set(&anon_vma->refcount, 0);
456 anon_vma->rb_root = RB_ROOT_CACHED;
457 }
458
anon_vma_init(void)459 void __init anon_vma_init(void)
460 {
461 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
462 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
463 anon_vma_ctor);
464 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
465 SLAB_PANIC|SLAB_ACCOUNT);
466 }
467
468 /*
469 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
470 *
471 * Since there is no serialization what so ever against folio_remove_rmap_*()
472 * the best this function can do is return a refcount increased anon_vma
473 * that might have been relevant to this page.
474 *
475 * The page might have been remapped to a different anon_vma or the anon_vma
476 * returned may already be freed (and even reused).
477 *
478 * In case it was remapped to a different anon_vma, the new anon_vma will be a
479 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
480 * ensure that any anon_vma obtained from the page will still be valid for as
481 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
482 *
483 * All users of this function must be very careful when walking the anon_vma
484 * chain and verify that the page in question is indeed mapped in it
485 * [ something equivalent to page_mapped_in_vma() ].
486 *
487 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
488 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
489 * if there is a mapcount, we can dereference the anon_vma after observing
490 * those.
491 *
492 * NOTE: the caller should hold folio lock when calling this.
493 */
folio_get_anon_vma(const struct folio * folio)494 struct anon_vma *folio_get_anon_vma(const struct folio *folio)
495 {
496 struct anon_vma *anon_vma = NULL;
497 unsigned long anon_mapping;
498
499 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
500
501 rcu_read_lock();
502 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
503 if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON)
504 goto out;
505 if (!folio_mapped(folio))
506 goto out;
507
508 anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON);
509 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
510 anon_vma = NULL;
511 goto out;
512 }
513
514 /*
515 * If this folio is still mapped, then its anon_vma cannot have been
516 * freed. But if it has been unmapped, we have no security against the
517 * anon_vma structure being freed and reused (for another anon_vma:
518 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
519 * above cannot corrupt).
520 */
521 if (!folio_mapped(folio)) {
522 rcu_read_unlock();
523 put_anon_vma(anon_vma);
524 return NULL;
525 }
526 out:
527 rcu_read_unlock();
528
529 return anon_vma;
530 }
531
532 /*
533 * Similar to folio_get_anon_vma() except it locks the anon_vma.
534 *
535 * Its a little more complex as it tries to keep the fast path to a single
536 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
537 * reference like with folio_get_anon_vma() and then block on the mutex
538 * on !rwc->try_lock case.
539 */
folio_lock_anon_vma_read(const struct folio * folio,struct rmap_walk_control * rwc)540 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio,
541 struct rmap_walk_control *rwc)
542 {
543 struct anon_vma *anon_vma = NULL;
544 struct anon_vma *root_anon_vma;
545 unsigned long anon_mapping;
546
547 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
548
549 rcu_read_lock();
550 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
551 if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON)
552 goto out;
553 if (!folio_mapped(folio))
554 goto out;
555
556 anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON);
557 root_anon_vma = READ_ONCE(anon_vma->root);
558 if (down_read_trylock(&root_anon_vma->rwsem)) {
559 /*
560 * If the folio is still mapped, then this anon_vma is still
561 * its anon_vma, and holding the mutex ensures that it will
562 * not go away, see anon_vma_free().
563 */
564 if (!folio_mapped(folio)) {
565 up_read(&root_anon_vma->rwsem);
566 anon_vma = NULL;
567 }
568 goto out;
569 }
570
571 if (rwc && rwc->try_lock) {
572 anon_vma = NULL;
573 rwc->contended = true;
574 goto out;
575 }
576
577 /* trylock failed, we got to sleep */
578 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
579 anon_vma = NULL;
580 goto out;
581 }
582
583 if (!folio_mapped(folio)) {
584 rcu_read_unlock();
585 put_anon_vma(anon_vma);
586 return NULL;
587 }
588
589 /* we pinned the anon_vma, its safe to sleep */
590 rcu_read_unlock();
591 anon_vma_lock_read(anon_vma);
592
593 if (atomic_dec_and_test(&anon_vma->refcount)) {
594 /*
595 * Oops, we held the last refcount, release the lock
596 * and bail -- can't simply use put_anon_vma() because
597 * we'll deadlock on the anon_vma_lock_write() recursion.
598 */
599 anon_vma_unlock_read(anon_vma);
600 __put_anon_vma(anon_vma);
601 anon_vma = NULL;
602 }
603
604 return anon_vma;
605
606 out:
607 rcu_read_unlock();
608 return anon_vma;
609 }
610
611 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
612 /*
613 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
614 * important if a PTE was dirty when it was unmapped that it's flushed
615 * before any IO is initiated on the page to prevent lost writes. Similarly,
616 * it must be flushed before freeing to prevent data leakage.
617 */
try_to_unmap_flush(void)618 void try_to_unmap_flush(void)
619 {
620 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
621
622 if (!tlb_ubc->flush_required)
623 return;
624
625 arch_tlbbatch_flush(&tlb_ubc->arch);
626 tlb_ubc->flush_required = false;
627 tlb_ubc->writable = false;
628 }
629
630 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)631 void try_to_unmap_flush_dirty(void)
632 {
633 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
634
635 if (tlb_ubc->writable)
636 try_to_unmap_flush();
637 }
638
639 /*
640 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
641 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
642 */
643 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
644 #define TLB_FLUSH_BATCH_PENDING_MASK \
645 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
646 #define TLB_FLUSH_BATCH_PENDING_LARGE \
647 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
648
set_tlb_ubc_flush_pending(struct mm_struct * mm,pte_t pteval,unsigned long start,unsigned long end)649 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
650 unsigned long start, unsigned long end)
651 {
652 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
653 int batch;
654 bool writable = pte_dirty(pteval);
655
656 if (!pte_accessible(mm, pteval))
657 return;
658
659 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, start, end);
660 tlb_ubc->flush_required = true;
661
662 /*
663 * Ensure compiler does not re-order the setting of tlb_flush_batched
664 * before the PTE is cleared.
665 */
666 barrier();
667 batch = atomic_read(&mm->tlb_flush_batched);
668 retry:
669 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
670 /*
671 * Prevent `pending' from catching up with `flushed' because of
672 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
673 * `pending' becomes large.
674 */
675 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
676 goto retry;
677 } else {
678 atomic_inc(&mm->tlb_flush_batched);
679 }
680
681 /*
682 * If the PTE was dirty then it's best to assume it's writable. The
683 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
684 * before the page is queued for IO.
685 */
686 if (writable)
687 tlb_ubc->writable = true;
688 }
689
690 /*
691 * Returns true if the TLB flush should be deferred to the end of a batch of
692 * unmap operations to reduce IPIs.
693 */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)694 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
695 {
696 if (!(flags & TTU_BATCH_FLUSH))
697 return false;
698
699 return arch_tlbbatch_should_defer(mm);
700 }
701
702 /*
703 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
704 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
705 * operation such as mprotect or munmap to race between reclaim unmapping
706 * the page and flushing the page. If this race occurs, it potentially allows
707 * access to data via a stale TLB entry. Tracking all mm's that have TLB
708 * batching in flight would be expensive during reclaim so instead track
709 * whether TLB batching occurred in the past and if so then do a flush here
710 * if required. This will cost one additional flush per reclaim cycle paid
711 * by the first operation at risk such as mprotect and mumap.
712 *
713 * This must be called under the PTL so that an access to tlb_flush_batched
714 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
715 * via the PTL.
716 */
flush_tlb_batched_pending(struct mm_struct * mm)717 void flush_tlb_batched_pending(struct mm_struct *mm)
718 {
719 int batch = atomic_read(&mm->tlb_flush_batched);
720 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
721 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
722
723 if (pending != flushed) {
724 flush_tlb_mm(mm);
725 /*
726 * If the new TLB flushing is pending during flushing, leave
727 * mm->tlb_flush_batched as is, to avoid losing flushing.
728 */
729 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
730 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
731 }
732 }
733 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,pte_t pteval,unsigned long start,unsigned long end)734 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
735 unsigned long start, unsigned long end)
736 {
737 }
738
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)739 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
740 {
741 return false;
742 }
743 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
744
745 /**
746 * page_address_in_vma - The virtual address of a page in this VMA.
747 * @folio: The folio containing the page.
748 * @page: The page within the folio.
749 * @vma: The VMA we need to know the address in.
750 *
751 * Calculates the user virtual address of this page in the specified VMA.
752 * It is the caller's responsibility to check the page is actually
753 * within the VMA. There may not currently be a PTE pointing at this
754 * page, but if a page fault occurs at this address, this is the page
755 * which will be accessed.
756 *
757 * Context: Caller should hold a reference to the folio. Caller should
758 * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the
759 * VMA from being altered.
760 *
761 * Return: The virtual address corresponding to this page in the VMA.
762 */
page_address_in_vma(const struct folio * folio,const struct page * page,const struct vm_area_struct * vma)763 unsigned long page_address_in_vma(const struct folio *folio,
764 const struct page *page, const struct vm_area_struct *vma)
765 {
766 if (folio_test_anon(folio)) {
767 struct anon_vma *anon_vma = folio_anon_vma(folio);
768 /*
769 * Note: swapoff's unuse_vma() is more efficient with this
770 * check, and needs it to match anon_vma when KSM is active.
771 */
772 if (!vma->anon_vma || !anon_vma ||
773 vma->anon_vma->root != anon_vma->root)
774 return -EFAULT;
775 } else if (!vma->vm_file) {
776 return -EFAULT;
777 } else if (vma->vm_file->f_mapping != folio->mapping) {
778 return -EFAULT;
779 }
780
781 /* KSM folios don't reach here because of the !anon_vma check */
782 return vma_address(vma, page_pgoff(folio, page), 1);
783 }
784
785 /*
786 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
787 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
788 * represents.
789 */
mm_find_pmd(struct mm_struct * mm,unsigned long address)790 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
791 {
792 pgd_t *pgd;
793 p4d_t *p4d;
794 pud_t *pud;
795 pmd_t *pmd = NULL;
796
797 pgd = pgd_offset(mm, address);
798 if (!pgd_present(*pgd))
799 goto out;
800
801 p4d = p4d_offset(pgd, address);
802 if (!p4d_present(*p4d))
803 goto out;
804
805 pud = pud_offset(p4d, address);
806 if (!pud_present(*pud))
807 goto out;
808
809 pmd = pmd_offset(pud, address);
810 out:
811 return pmd;
812 }
813
814 struct folio_referenced_arg {
815 int mapcount;
816 int referenced;
817 vm_flags_t vm_flags;
818 struct mem_cgroup *memcg;
819 };
820
821 /*
822 * arg: folio_referenced_arg will be passed
823 */
folio_referenced_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)824 static bool folio_referenced_one(struct folio *folio,
825 struct vm_area_struct *vma, unsigned long address, void *arg)
826 {
827 struct folio_referenced_arg *pra = arg;
828 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
829 int ptes = 0, referenced = 0;
830
831 while (page_vma_mapped_walk(&pvmw)) {
832 address = pvmw.address;
833
834 if (vma->vm_flags & VM_LOCKED) {
835 ptes++;
836 pra->mapcount--;
837
838 /* Only mlock fully mapped pages */
839 if (pvmw.pte && ptes != pvmw.nr_pages)
840 continue;
841
842 /*
843 * All PTEs must be protected by page table lock in
844 * order to mlock the page.
845 *
846 * If page table boundary has been cross, current ptl
847 * only protect part of ptes.
848 */
849 if (pvmw.flags & PVMW_PGTABLE_CROSSED)
850 continue;
851
852 /* Restore the mlock which got missed */
853 mlock_vma_folio(folio, vma);
854 page_vma_mapped_walk_done(&pvmw);
855 pra->vm_flags |= VM_LOCKED;
856 return false; /* To break the loop */
857 }
858
859 /*
860 * Skip the non-shared swapbacked folio mapped solely by
861 * the exiting or OOM-reaped process. This avoids redundant
862 * swap-out followed by an immediate unmap.
863 */
864 if ((!atomic_read(&vma->vm_mm->mm_users) ||
865 check_stable_address_space(vma->vm_mm)) &&
866 folio_test_anon(folio) && folio_test_swapbacked(folio) &&
867 !folio_maybe_mapped_shared(folio)) {
868 pra->referenced = -1;
869 page_vma_mapped_walk_done(&pvmw);
870 return false;
871 }
872
873 if (lru_gen_enabled() && pvmw.pte) {
874 if (lru_gen_look_around(&pvmw))
875 referenced++;
876 } else if (pvmw.pte) {
877 if (ptep_clear_flush_young_notify(vma, address,
878 pvmw.pte))
879 referenced++;
880 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
881 if (pmdp_clear_flush_young_notify(vma, address,
882 pvmw.pmd))
883 referenced++;
884 } else {
885 /* unexpected pmd-mapped folio? */
886 WARN_ON_ONCE(1);
887 }
888
889 pra->mapcount--;
890 }
891
892 if (referenced)
893 folio_clear_idle(folio);
894 if (folio_test_clear_young(folio))
895 referenced++;
896
897 if (referenced) {
898 pra->referenced++;
899 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
900 }
901
902 if (!pra->mapcount)
903 return false; /* To break the loop */
904
905 return true;
906 }
907
invalid_folio_referenced_vma(struct vm_area_struct * vma,void * arg)908 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
909 {
910 struct folio_referenced_arg *pra = arg;
911 struct mem_cgroup *memcg = pra->memcg;
912
913 /*
914 * Ignore references from this mapping if it has no recency. If the
915 * folio has been used in another mapping, we will catch it; if this
916 * other mapping is already gone, the unmap path will have set the
917 * referenced flag or activated the folio in zap_pte_range().
918 */
919 if (!vma_has_recency(vma))
920 return true;
921
922 /*
923 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
924 * of references from different cgroups.
925 */
926 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
927 return true;
928
929 return false;
930 }
931
932 /**
933 * folio_referenced() - Test if the folio was referenced.
934 * @folio: The folio to test.
935 * @is_locked: Caller holds lock on the folio.
936 * @memcg: target memory cgroup
937 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
938 *
939 * Quick test_and_clear_referenced for all mappings of a folio,
940 *
941 * Return: The number of mappings which referenced the folio. Return -1 if
942 * the function bailed out due to rmap lock contention.
943 */
folio_referenced(struct folio * folio,int is_locked,struct mem_cgroup * memcg,vm_flags_t * vm_flags)944 int folio_referenced(struct folio *folio, int is_locked,
945 struct mem_cgroup *memcg, vm_flags_t *vm_flags)
946 {
947 bool we_locked = false;
948 struct folio_referenced_arg pra = {
949 .mapcount = folio_mapcount(folio),
950 .memcg = memcg,
951 };
952 struct rmap_walk_control rwc = {
953 .rmap_one = folio_referenced_one,
954 .arg = (void *)&pra,
955 .anon_lock = folio_lock_anon_vma_read,
956 .try_lock = true,
957 .invalid_vma = invalid_folio_referenced_vma,
958 };
959
960 *vm_flags = 0;
961 if (!pra.mapcount)
962 return 0;
963
964 if (!folio_raw_mapping(folio))
965 return 0;
966
967 if (!is_locked) {
968 we_locked = folio_trylock(folio);
969 if (!we_locked)
970 return 1;
971 }
972
973 rmap_walk(folio, &rwc);
974 *vm_flags = pra.vm_flags;
975
976 if (we_locked)
977 folio_unlock(folio);
978
979 return rwc.contended ? -1 : pra.referenced;
980 }
981
page_vma_mkclean_one(struct page_vma_mapped_walk * pvmw)982 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
983 {
984 int cleaned = 0;
985 struct vm_area_struct *vma = pvmw->vma;
986 struct mmu_notifier_range range;
987 unsigned long address = pvmw->address;
988
989 /*
990 * We have to assume the worse case ie pmd for invalidation. Note that
991 * the folio can not be freed from this function.
992 */
993 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
994 vma->vm_mm, address, vma_address_end(pvmw));
995 mmu_notifier_invalidate_range_start(&range);
996
997 while (page_vma_mapped_walk(pvmw)) {
998 int ret = 0;
999
1000 address = pvmw->address;
1001 if (pvmw->pte) {
1002 pte_t *pte = pvmw->pte;
1003 pte_t entry = ptep_get(pte);
1004
1005 /*
1006 * PFN swap PTEs, such as device-exclusive ones, that
1007 * actually map pages are clean and not writable from a
1008 * CPU perspective. The MMU notifier takes care of any
1009 * device aspects.
1010 */
1011 if (!pte_present(entry))
1012 continue;
1013 if (!pte_dirty(entry) && !pte_write(entry))
1014 continue;
1015
1016 flush_cache_page(vma, address, pte_pfn(entry));
1017 entry = ptep_clear_flush(vma, address, pte);
1018 entry = pte_wrprotect(entry);
1019 entry = pte_mkclean(entry);
1020 set_pte_at(vma->vm_mm, address, pte, entry);
1021 ret = 1;
1022 } else {
1023 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1024 pmd_t *pmd = pvmw->pmd;
1025 pmd_t entry = pmdp_get(pmd);
1026
1027 /*
1028 * Please see the comment above (!pte_present).
1029 * A non present PMD is not writable from a CPU
1030 * perspective.
1031 */
1032 if (!pmd_present(entry))
1033 continue;
1034 if (!pmd_dirty(entry) && !pmd_write(entry))
1035 continue;
1036
1037 flush_cache_range(vma, address,
1038 address + HPAGE_PMD_SIZE);
1039 entry = pmdp_invalidate(vma, address, pmd);
1040 entry = pmd_wrprotect(entry);
1041 entry = pmd_mkclean(entry);
1042 set_pmd_at(vma->vm_mm, address, pmd, entry);
1043 ret = 1;
1044 #else
1045 /* unexpected pmd-mapped folio? */
1046 WARN_ON_ONCE(1);
1047 #endif
1048 }
1049
1050 if (ret)
1051 cleaned++;
1052 }
1053
1054 mmu_notifier_invalidate_range_end(&range);
1055
1056 return cleaned;
1057 }
1058
page_mkclean_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1059 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1060 unsigned long address, void *arg)
1061 {
1062 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1063 int *cleaned = arg;
1064
1065 *cleaned += page_vma_mkclean_one(&pvmw);
1066
1067 return true;
1068 }
1069
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)1070 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1071 {
1072 if (vma->vm_flags & VM_SHARED)
1073 return false;
1074
1075 return true;
1076 }
1077
folio_mkclean(struct folio * folio)1078 int folio_mkclean(struct folio *folio)
1079 {
1080 int cleaned = 0;
1081 struct address_space *mapping;
1082 struct rmap_walk_control rwc = {
1083 .arg = (void *)&cleaned,
1084 .rmap_one = page_mkclean_one,
1085 .invalid_vma = invalid_mkclean_vma,
1086 };
1087
1088 BUG_ON(!folio_test_locked(folio));
1089
1090 if (!folio_mapped(folio))
1091 return 0;
1092
1093 mapping = folio_mapping(folio);
1094 if (!mapping)
1095 return 0;
1096
1097 rmap_walk(folio, &rwc);
1098
1099 return cleaned;
1100 }
1101 EXPORT_SYMBOL_GPL(folio_mkclean);
1102
1103 struct wrprotect_file_state {
1104 int cleaned;
1105 pgoff_t pgoff;
1106 unsigned long pfn;
1107 unsigned long nr_pages;
1108 };
1109
mapping_wrprotect_range_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1110 static bool mapping_wrprotect_range_one(struct folio *folio,
1111 struct vm_area_struct *vma, unsigned long address, void *arg)
1112 {
1113 struct wrprotect_file_state *state = (struct wrprotect_file_state *)arg;
1114 struct page_vma_mapped_walk pvmw = {
1115 .pfn = state->pfn,
1116 .nr_pages = state->nr_pages,
1117 .pgoff = state->pgoff,
1118 .vma = vma,
1119 .address = address,
1120 .flags = PVMW_SYNC,
1121 };
1122
1123 state->cleaned += page_vma_mkclean_one(&pvmw);
1124
1125 return true;
1126 }
1127
1128 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping,
1129 pgoff_t pgoff_start, unsigned long nr_pages,
1130 struct rmap_walk_control *rwc, bool locked);
1131
1132 /**
1133 * mapping_wrprotect_range() - Write-protect all mappings in a specified range.
1134 *
1135 * @mapping: The mapping whose reverse mapping should be traversed.
1136 * @pgoff: The page offset at which @pfn is mapped within @mapping.
1137 * @pfn: The PFN of the page mapped in @mapping at @pgoff.
1138 * @nr_pages: The number of physically contiguous base pages spanned.
1139 *
1140 * Traverses the reverse mapping, finding all VMAs which contain a shared
1141 * mapping of the pages in the specified range in @mapping, and write-protects
1142 * them (that is, updates the page tables to mark the mappings read-only such
1143 * that a write protection fault arises when the mappings are written to).
1144 *
1145 * The @pfn value need not refer to a folio, but rather can reference a kernel
1146 * allocation which is mapped into userland. We therefore do not require that
1147 * the page maps to a folio with a valid mapping or index field, rather the
1148 * caller specifies these in @mapping and @pgoff.
1149 *
1150 * Return: the number of write-protected PTEs, or an error.
1151 */
mapping_wrprotect_range(struct address_space * mapping,pgoff_t pgoff,unsigned long pfn,unsigned long nr_pages)1152 int mapping_wrprotect_range(struct address_space *mapping, pgoff_t pgoff,
1153 unsigned long pfn, unsigned long nr_pages)
1154 {
1155 struct wrprotect_file_state state = {
1156 .cleaned = 0,
1157 .pgoff = pgoff,
1158 .pfn = pfn,
1159 .nr_pages = nr_pages,
1160 };
1161 struct rmap_walk_control rwc = {
1162 .arg = (void *)&state,
1163 .rmap_one = mapping_wrprotect_range_one,
1164 .invalid_vma = invalid_mkclean_vma,
1165 };
1166
1167 if (!mapping)
1168 return 0;
1169
1170 __rmap_walk_file(/* folio = */NULL, mapping, pgoff, nr_pages, &rwc,
1171 /* locked = */false);
1172
1173 return state.cleaned;
1174 }
1175 EXPORT_SYMBOL_GPL(mapping_wrprotect_range);
1176
1177 /**
1178 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1179 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1180 * within the @vma of shared mappings. And since clean PTEs
1181 * should also be readonly, write protects them too.
1182 * @pfn: start pfn.
1183 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1184 * @pgoff: page offset that the @pfn mapped with.
1185 * @vma: vma that @pfn mapped within.
1186 *
1187 * Returns the number of cleaned PTEs (including PMDs).
1188 */
pfn_mkclean_range(unsigned long pfn,unsigned long nr_pages,pgoff_t pgoff,struct vm_area_struct * vma)1189 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1190 struct vm_area_struct *vma)
1191 {
1192 struct page_vma_mapped_walk pvmw = {
1193 .pfn = pfn,
1194 .nr_pages = nr_pages,
1195 .pgoff = pgoff,
1196 .vma = vma,
1197 .flags = PVMW_SYNC,
1198 };
1199
1200 if (invalid_mkclean_vma(vma, NULL))
1201 return 0;
1202
1203 pvmw.address = vma_address(vma, pgoff, nr_pages);
1204 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1205
1206 return page_vma_mkclean_one(&pvmw);
1207 }
1208
__folio_mod_stat(struct folio * folio,int nr,int nr_pmdmapped)1209 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
1210 {
1211 int idx;
1212
1213 if (nr) {
1214 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1215 lruvec_stat_mod_folio(folio, idx, nr);
1216 }
1217 if (nr_pmdmapped) {
1218 if (folio_test_anon(folio)) {
1219 idx = NR_ANON_THPS;
1220 lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1221 } else {
1222 /* NR_*_PMDMAPPED are not maintained per-memcg */
1223 idx = folio_test_swapbacked(folio) ?
1224 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1225 __mod_node_page_state(folio_pgdat(folio), idx,
1226 nr_pmdmapped);
1227 }
1228 }
1229 }
1230
__folio_add_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum pgtable_level level)1231 static __always_inline void __folio_add_rmap(struct folio *folio,
1232 struct page *page, int nr_pages, struct vm_area_struct *vma,
1233 enum pgtable_level level)
1234 {
1235 atomic_t *mapped = &folio->_nr_pages_mapped;
1236 const int orig_nr_pages = nr_pages;
1237 int first = 0, nr = 0, nr_pmdmapped = 0;
1238
1239 __folio_rmap_sanity_checks(folio, page, nr_pages, level);
1240
1241 switch (level) {
1242 case PGTABLE_LEVEL_PTE:
1243 if (!folio_test_large(folio)) {
1244 nr = atomic_inc_and_test(&folio->_mapcount);
1245 break;
1246 }
1247
1248 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1249 nr = folio_add_return_large_mapcount(folio, orig_nr_pages, vma);
1250 if (nr == orig_nr_pages)
1251 /* Was completely unmapped. */
1252 nr = folio_large_nr_pages(folio);
1253 else
1254 nr = 0;
1255 break;
1256 }
1257
1258 do {
1259 first += atomic_inc_and_test(&page->_mapcount);
1260 } while (page++, --nr_pages > 0);
1261
1262 if (first &&
1263 atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED)
1264 nr = first;
1265
1266 folio_add_large_mapcount(folio, orig_nr_pages, vma);
1267 break;
1268 case PGTABLE_LEVEL_PMD:
1269 case PGTABLE_LEVEL_PUD:
1270 first = atomic_inc_and_test(&folio->_entire_mapcount);
1271 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1272 if (level == PGTABLE_LEVEL_PMD && first)
1273 nr_pmdmapped = folio_large_nr_pages(folio);
1274 nr = folio_inc_return_large_mapcount(folio, vma);
1275 if (nr == 1)
1276 /* Was completely unmapped. */
1277 nr = folio_large_nr_pages(folio);
1278 else
1279 nr = 0;
1280 break;
1281 }
1282
1283 if (first) {
1284 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1285 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1286 nr_pages = folio_large_nr_pages(folio);
1287 /*
1288 * We only track PMD mappings of PMD-sized
1289 * folios separately.
1290 */
1291 if (level == PGTABLE_LEVEL_PMD)
1292 nr_pmdmapped = nr_pages;
1293 nr = nr_pages - (nr & FOLIO_PAGES_MAPPED);
1294 /* Raced ahead of a remove and another add? */
1295 if (unlikely(nr < 0))
1296 nr = 0;
1297 } else {
1298 /* Raced ahead of a remove of ENTIRELY_MAPPED */
1299 nr = 0;
1300 }
1301 }
1302 folio_inc_large_mapcount(folio, vma);
1303 break;
1304 default:
1305 BUILD_BUG();
1306 }
1307 __folio_mod_stat(folio, nr, nr_pmdmapped);
1308 }
1309
1310 /**
1311 * folio_move_anon_rmap - move a folio to our anon_vma
1312 * @folio: The folio to move to our anon_vma
1313 * @vma: The vma the folio belongs to
1314 *
1315 * When a folio belongs exclusively to one process after a COW event,
1316 * that folio can be moved into the anon_vma that belongs to just that
1317 * process, so the rmap code will not search the parent or sibling processes.
1318 */
folio_move_anon_rmap(struct folio * folio,struct vm_area_struct * vma)1319 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1320 {
1321 void *anon_vma = vma->anon_vma;
1322
1323 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1324 VM_BUG_ON_VMA(!anon_vma, vma);
1325
1326 anon_vma += FOLIO_MAPPING_ANON;
1327 /*
1328 * Ensure that anon_vma and the FOLIO_MAPPING_ANON bit are written
1329 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1330 * folio_test_anon()) will not see one without the other.
1331 */
1332 WRITE_ONCE(folio->mapping, anon_vma);
1333 }
1334
1335 /**
1336 * __folio_set_anon - set up a new anonymous rmap for a folio
1337 * @folio: The folio to set up the new anonymous rmap for.
1338 * @vma: VM area to add the folio to.
1339 * @address: User virtual address of the mapping
1340 * @exclusive: Whether the folio is exclusive to the process.
1341 */
__folio_set_anon(struct folio * folio,struct vm_area_struct * vma,unsigned long address,bool exclusive)1342 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1343 unsigned long address, bool exclusive)
1344 {
1345 struct anon_vma *anon_vma = vma->anon_vma;
1346
1347 BUG_ON(!anon_vma);
1348
1349 /*
1350 * If the folio isn't exclusive to this vma, we must use the _oldest_
1351 * possible anon_vma for the folio mapping!
1352 */
1353 if (!exclusive)
1354 anon_vma = anon_vma->root;
1355
1356 /*
1357 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1358 * Make sure the compiler doesn't split the stores of anon_vma and
1359 * the FOLIO_MAPPING_ANON type identifier, otherwise the rmap code
1360 * could mistake the mapping for a struct address_space and crash.
1361 */
1362 anon_vma = (void *) anon_vma + FOLIO_MAPPING_ANON;
1363 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1364 folio->index = linear_page_index(vma, address);
1365 }
1366
1367 /**
1368 * __page_check_anon_rmap - sanity check anonymous rmap addition
1369 * @folio: The folio containing @page.
1370 * @page: the page to check the mapping of
1371 * @vma: the vm area in which the mapping is added
1372 * @address: the user virtual address mapped
1373 */
__page_check_anon_rmap(const struct folio * folio,const struct page * page,struct vm_area_struct * vma,unsigned long address)1374 static void __page_check_anon_rmap(const struct folio *folio,
1375 const struct page *page, struct vm_area_struct *vma,
1376 unsigned long address)
1377 {
1378 /*
1379 * The page's anon-rmap details (mapping and index) are guaranteed to
1380 * be set up correctly at this point.
1381 *
1382 * We have exclusion against folio_add_anon_rmap_*() because the caller
1383 * always holds the page locked.
1384 *
1385 * We have exclusion against folio_add_new_anon_rmap because those pages
1386 * are initially only visible via the pagetables, and the pte is locked
1387 * over the call to folio_add_new_anon_rmap.
1388 */
1389 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1390 folio);
1391 VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address),
1392 page);
1393 }
1394
__folio_add_anon_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,unsigned long address,rmap_t flags,enum pgtable_level level)1395 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1396 struct page *page, int nr_pages, struct vm_area_struct *vma,
1397 unsigned long address, rmap_t flags, enum pgtable_level level)
1398 {
1399 int i;
1400
1401 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1402
1403 __folio_add_rmap(folio, page, nr_pages, vma, level);
1404
1405 if (likely(!folio_test_ksm(folio)))
1406 __page_check_anon_rmap(folio, page, vma, address);
1407
1408 if (flags & RMAP_EXCLUSIVE) {
1409 switch (level) {
1410 case PGTABLE_LEVEL_PTE:
1411 for (i = 0; i < nr_pages; i++)
1412 SetPageAnonExclusive(page + i);
1413 break;
1414 case PGTABLE_LEVEL_PMD:
1415 SetPageAnonExclusive(page);
1416 break;
1417 case PGTABLE_LEVEL_PUD:
1418 /*
1419 * Keep the compiler happy, we don't support anonymous
1420 * PUD mappings.
1421 */
1422 WARN_ON_ONCE(1);
1423 break;
1424 default:
1425 BUILD_BUG();
1426 }
1427 }
1428
1429 VM_WARN_ON_FOLIO(!folio_test_large(folio) && PageAnonExclusive(page) &&
1430 atomic_read(&folio->_mapcount) > 0, folio);
1431 for (i = 0; i < nr_pages; i++) {
1432 struct page *cur_page = page + i;
1433
1434 VM_WARN_ON_FOLIO(folio_test_large(folio) &&
1435 folio_entire_mapcount(folio) > 1 &&
1436 PageAnonExclusive(cur_page), folio);
1437 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT))
1438 continue;
1439
1440 /*
1441 * While PTE-mapping a THP we have a PMD and a PTE
1442 * mapping.
1443 */
1444 VM_WARN_ON_FOLIO(atomic_read(&cur_page->_mapcount) > 0 &&
1445 PageAnonExclusive(cur_page), folio);
1446 }
1447
1448 /*
1449 * Only mlock it if the folio is fully mapped to the VMA.
1450 *
1451 * Partially mapped folios can be split on reclaim and part outside
1452 * of mlocked VMA can be evicted or freed.
1453 */
1454 if (folio_nr_pages(folio) == nr_pages)
1455 mlock_vma_folio(folio, vma);
1456 }
1457
1458 /**
1459 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1460 * @folio: The folio to add the mappings to
1461 * @page: The first page to add
1462 * @nr_pages: The number of pages which will be mapped
1463 * @vma: The vm area in which the mappings are added
1464 * @address: The user virtual address of the first page to map
1465 * @flags: The rmap flags
1466 *
1467 * The page range of folio is defined by [first_page, first_page + nr_pages)
1468 *
1469 * The caller needs to hold the page table lock, and the page must be locked in
1470 * the anon_vma case: to serialize mapping,index checking after setting,
1471 * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1472 * (but KSM folios are never downgraded).
1473 */
folio_add_anon_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1474 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1475 int nr_pages, struct vm_area_struct *vma, unsigned long address,
1476 rmap_t flags)
1477 {
1478 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1479 PGTABLE_LEVEL_PTE);
1480 }
1481
1482 /**
1483 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1484 * @folio: The folio to add the mapping to
1485 * @page: The first page to add
1486 * @vma: The vm area in which the mapping is added
1487 * @address: The user virtual address of the first page to map
1488 * @flags: The rmap flags
1489 *
1490 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1491 *
1492 * The caller needs to hold the page table lock, and the page must be locked in
1493 * the anon_vma case: to serialize mapping,index checking after setting.
1494 */
folio_add_anon_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1495 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1496 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1497 {
1498 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1499 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1500 PGTABLE_LEVEL_PMD);
1501 #else
1502 WARN_ON_ONCE(true);
1503 #endif
1504 }
1505
1506 /**
1507 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1508 * @folio: The folio to add the mapping to.
1509 * @vma: the vm area in which the mapping is added
1510 * @address: the user virtual address mapped
1511 * @flags: The rmap flags
1512 *
1513 * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1514 * This means the inc-and-test can be bypassed.
1515 * The folio doesn't necessarily need to be locked while it's exclusive
1516 * unless two threads map it concurrently. However, the folio must be
1517 * locked if it's shared.
1518 *
1519 * If the folio is pmd-mappable, it is accounted as a THP.
1520 */
folio_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1521 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1522 unsigned long address, rmap_t flags)
1523 {
1524 const bool exclusive = flags & RMAP_EXCLUSIVE;
1525 int nr = 1, nr_pmdmapped = 0;
1526
1527 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1528 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1529
1530 /*
1531 * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1532 * under memory pressure.
1533 */
1534 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1535 __folio_set_swapbacked(folio);
1536 __folio_set_anon(folio, vma, address, exclusive);
1537
1538 if (likely(!folio_test_large(folio))) {
1539 /* increment count (starts at -1) */
1540 atomic_set(&folio->_mapcount, 0);
1541 if (exclusive)
1542 SetPageAnonExclusive(&folio->page);
1543 } else if (!folio_test_pmd_mappable(folio)) {
1544 int i;
1545
1546 nr = folio_large_nr_pages(folio);
1547 for (i = 0; i < nr; i++) {
1548 struct page *page = folio_page(folio, i);
1549
1550 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1551 /* increment count (starts at -1) */
1552 atomic_set(&page->_mapcount, 0);
1553 if (exclusive)
1554 SetPageAnonExclusive(page);
1555 }
1556
1557 folio_set_large_mapcount(folio, nr, vma);
1558 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1559 atomic_set(&folio->_nr_pages_mapped, nr);
1560 } else {
1561 nr = folio_large_nr_pages(folio);
1562 /* increment count (starts at -1) */
1563 atomic_set(&folio->_entire_mapcount, 0);
1564 folio_set_large_mapcount(folio, 1, vma);
1565 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1566 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1567 if (exclusive)
1568 SetPageAnonExclusive(&folio->page);
1569 nr_pmdmapped = nr;
1570 }
1571
1572 VM_WARN_ON_ONCE(address < vma->vm_start ||
1573 address + (nr << PAGE_SHIFT) > vma->vm_end);
1574
1575 __folio_mod_stat(folio, nr, nr_pmdmapped);
1576 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
1577 }
1578
__folio_add_file_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum pgtable_level level)1579 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1580 struct page *page, int nr_pages, struct vm_area_struct *vma,
1581 enum pgtable_level level)
1582 {
1583 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1584
1585 __folio_add_rmap(folio, page, nr_pages, vma, level);
1586
1587 /*
1588 * Only mlock it if the folio is fully mapped to the VMA.
1589 *
1590 * Partially mapped folios can be split on reclaim and part outside
1591 * of mlocked VMA can be evicted or freed.
1592 */
1593 if (folio_nr_pages(folio) == nr_pages)
1594 mlock_vma_folio(folio, vma);
1595 }
1596
1597 /**
1598 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1599 * @folio: The folio to add the mappings to
1600 * @page: The first page to add
1601 * @nr_pages: The number of pages that will be mapped using PTEs
1602 * @vma: The vm area in which the mappings are added
1603 *
1604 * The page range of the folio is defined by [page, page + nr_pages)
1605 *
1606 * The caller needs to hold the page table lock.
1607 */
folio_add_file_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma)1608 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1609 int nr_pages, struct vm_area_struct *vma)
1610 {
1611 __folio_add_file_rmap(folio, page, nr_pages, vma, PGTABLE_LEVEL_PTE);
1612 }
1613
1614 /**
1615 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1616 * @folio: The folio to add the mapping to
1617 * @page: The first page to add
1618 * @vma: The vm area in which the mapping is added
1619 *
1620 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1621 *
1622 * The caller needs to hold the page table lock.
1623 */
folio_add_file_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma)1624 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1625 struct vm_area_struct *vma)
1626 {
1627 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1628 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, PGTABLE_LEVEL_PMD);
1629 #else
1630 WARN_ON_ONCE(true);
1631 #endif
1632 }
1633
1634 /**
1635 * folio_add_file_rmap_pud - add a PUD mapping to a page range of a folio
1636 * @folio: The folio to add the mapping to
1637 * @page: The first page to add
1638 * @vma: The vm area in which the mapping is added
1639 *
1640 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR)
1641 *
1642 * The caller needs to hold the page table lock.
1643 */
folio_add_file_rmap_pud(struct folio * folio,struct page * page,struct vm_area_struct * vma)1644 void folio_add_file_rmap_pud(struct folio *folio, struct page *page,
1645 struct vm_area_struct *vma)
1646 {
1647 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1648 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1649 __folio_add_file_rmap(folio, page, HPAGE_PUD_NR, vma, PGTABLE_LEVEL_PUD);
1650 #else
1651 WARN_ON_ONCE(true);
1652 #endif
1653 }
1654
__folio_remove_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum pgtable_level level)1655 static __always_inline void __folio_remove_rmap(struct folio *folio,
1656 struct page *page, int nr_pages, struct vm_area_struct *vma,
1657 enum pgtable_level level)
1658 {
1659 atomic_t *mapped = &folio->_nr_pages_mapped;
1660 int last = 0, nr = 0, nr_pmdmapped = 0;
1661 bool partially_mapped = false;
1662
1663 __folio_rmap_sanity_checks(folio, page, nr_pages, level);
1664
1665 switch (level) {
1666 case PGTABLE_LEVEL_PTE:
1667 if (!folio_test_large(folio)) {
1668 nr = atomic_add_negative(-1, &folio->_mapcount);
1669 break;
1670 }
1671
1672 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1673 nr = folio_sub_return_large_mapcount(folio, nr_pages, vma);
1674 if (!nr) {
1675 /* Now completely unmapped. */
1676 nr = folio_large_nr_pages(folio);
1677 } else {
1678 partially_mapped = nr < folio_large_nr_pages(folio) &&
1679 !folio_entire_mapcount(folio);
1680 nr = 0;
1681 }
1682 break;
1683 }
1684
1685 folio_sub_large_mapcount(folio, nr_pages, vma);
1686 do {
1687 last += atomic_add_negative(-1, &page->_mapcount);
1688 } while (page++, --nr_pages > 0);
1689
1690 if (last &&
1691 atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED)
1692 nr = last;
1693
1694 partially_mapped = nr && atomic_read(mapped);
1695 break;
1696 case PGTABLE_LEVEL_PMD:
1697 case PGTABLE_LEVEL_PUD:
1698 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1699 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1700 if (level == PGTABLE_LEVEL_PMD && last)
1701 nr_pmdmapped = folio_large_nr_pages(folio);
1702 nr = folio_dec_return_large_mapcount(folio, vma);
1703 if (!nr) {
1704 /* Now completely unmapped. */
1705 nr = folio_large_nr_pages(folio);
1706 } else {
1707 partially_mapped = last &&
1708 nr < folio_large_nr_pages(folio);
1709 nr = 0;
1710 }
1711 break;
1712 }
1713
1714 folio_dec_large_mapcount(folio, vma);
1715 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1716 if (last) {
1717 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1718 if (likely(nr < ENTIRELY_MAPPED)) {
1719 nr_pages = folio_large_nr_pages(folio);
1720 if (level == PGTABLE_LEVEL_PMD)
1721 nr_pmdmapped = nr_pages;
1722 nr = nr_pages - nr;
1723 /* Raced ahead of another remove and an add? */
1724 if (unlikely(nr < 0))
1725 nr = 0;
1726 } else {
1727 /* An add of ENTIRELY_MAPPED raced ahead */
1728 nr = 0;
1729 }
1730 }
1731
1732 partially_mapped = nr && nr < nr_pmdmapped;
1733 break;
1734 default:
1735 BUILD_BUG();
1736 }
1737
1738 /*
1739 * Queue anon large folio for deferred split if at least one page of
1740 * the folio is unmapped and at least one page is still mapped.
1741 *
1742 * Check partially_mapped first to ensure it is a large folio.
1743 *
1744 * Device private folios do not support deferred splitting and
1745 * shrinker based scanning of the folios to free.
1746 */
1747 if (partially_mapped && folio_test_anon(folio) &&
1748 !folio_test_partially_mapped(folio) &&
1749 !folio_is_device_private(folio))
1750 deferred_split_folio(folio, true);
1751
1752 __folio_mod_stat(folio, -nr, -nr_pmdmapped);
1753
1754 /*
1755 * It would be tidy to reset folio_test_anon mapping when fully
1756 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1757 * which increments mapcount after us but sets mapping before us:
1758 * so leave the reset to free_pages_prepare, and remember that
1759 * it's only reliable while mapped.
1760 */
1761
1762 munlock_vma_folio(folio, vma);
1763 }
1764
1765 /**
1766 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1767 * @folio: The folio to remove the mappings from
1768 * @page: The first page to remove
1769 * @nr_pages: The number of pages that will be removed from the mapping
1770 * @vma: The vm area from which the mappings are removed
1771 *
1772 * The page range of the folio is defined by [page, page + nr_pages)
1773 *
1774 * The caller needs to hold the page table lock.
1775 */
folio_remove_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma)1776 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1777 int nr_pages, struct vm_area_struct *vma)
1778 {
1779 __folio_remove_rmap(folio, page, nr_pages, vma, PGTABLE_LEVEL_PTE);
1780 }
1781
1782 /**
1783 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1784 * @folio: The folio to remove the mapping from
1785 * @page: The first page to remove
1786 * @vma: The vm area from which the mapping is removed
1787 *
1788 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1789 *
1790 * The caller needs to hold the page table lock.
1791 */
folio_remove_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma)1792 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1793 struct vm_area_struct *vma)
1794 {
1795 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1796 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, PGTABLE_LEVEL_PMD);
1797 #else
1798 WARN_ON_ONCE(true);
1799 #endif
1800 }
1801
1802 /**
1803 * folio_remove_rmap_pud - remove a PUD mapping from a page range of a folio
1804 * @folio: The folio to remove the mapping from
1805 * @page: The first page to remove
1806 * @vma: The vm area from which the mapping is removed
1807 *
1808 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR)
1809 *
1810 * The caller needs to hold the page table lock.
1811 */
folio_remove_rmap_pud(struct folio * folio,struct page * page,struct vm_area_struct * vma)1812 void folio_remove_rmap_pud(struct folio *folio, struct page *page,
1813 struct vm_area_struct *vma)
1814 {
1815 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1816 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1817 __folio_remove_rmap(folio, page, HPAGE_PUD_NR, vma, PGTABLE_LEVEL_PUD);
1818 #else
1819 WARN_ON_ONCE(true);
1820 #endif
1821 }
1822
folio_unmap_pte_batch(struct folio * folio,struct page_vma_mapped_walk * pvmw,enum ttu_flags flags,pte_t pte)1823 static inline unsigned int folio_unmap_pte_batch(struct folio *folio,
1824 struct page_vma_mapped_walk *pvmw,
1825 enum ttu_flags flags, pte_t pte)
1826 {
1827 unsigned long end_addr, addr = pvmw->address;
1828 struct vm_area_struct *vma = pvmw->vma;
1829 unsigned int max_nr;
1830
1831 if (flags & TTU_HWPOISON)
1832 return 1;
1833 if (!folio_test_large(folio))
1834 return 1;
1835
1836 /* We may only batch within a single VMA and a single page table. */
1837 end_addr = pmd_addr_end(addr, vma->vm_end);
1838 max_nr = (end_addr - addr) >> PAGE_SHIFT;
1839
1840 /* We only support lazyfree batching for now ... */
1841 if (!folio_test_anon(folio) || folio_test_swapbacked(folio))
1842 return 1;
1843 if (pte_unused(pte))
1844 return 1;
1845
1846 return folio_pte_batch(folio, pvmw->pte, pte, max_nr);
1847 }
1848
1849 /*
1850 * @arg: enum ttu_flags will be passed to this argument
1851 */
try_to_unmap_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1852 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1853 unsigned long address, void *arg)
1854 {
1855 struct mm_struct *mm = vma->vm_mm;
1856 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1857 bool anon_exclusive, ret = true;
1858 pte_t pteval;
1859 struct page *subpage;
1860 struct mmu_notifier_range range;
1861 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1862 unsigned long nr_pages = 1, end_addr;
1863 unsigned long pfn;
1864 unsigned long hsz = 0;
1865 int ptes = 0;
1866
1867 /*
1868 * When racing against e.g. zap_pte_range() on another cpu,
1869 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1870 * try_to_unmap() may return before page_mapped() has become false,
1871 * if page table locking is skipped: use TTU_SYNC to wait for that.
1872 */
1873 if (flags & TTU_SYNC)
1874 pvmw.flags = PVMW_SYNC;
1875
1876 /*
1877 * For THP, we have to assume the worse case ie pmd for invalidation.
1878 * For hugetlb, it could be much worse if we need to do pud
1879 * invalidation in the case of pmd sharing.
1880 *
1881 * Note that the folio can not be freed in this function as call of
1882 * try_to_unmap() must hold a reference on the folio.
1883 */
1884 range.end = vma_address_end(&pvmw);
1885 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1886 address, range.end);
1887 if (folio_test_hugetlb(folio)) {
1888 /*
1889 * If sharing is possible, start and end will be adjusted
1890 * accordingly.
1891 */
1892 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1893 &range.end);
1894
1895 /* We need the huge page size for set_huge_pte_at() */
1896 hsz = huge_page_size(hstate_vma(vma));
1897 }
1898 mmu_notifier_invalidate_range_start(&range);
1899
1900 while (page_vma_mapped_walk(&pvmw)) {
1901 /*
1902 * If the folio is in an mlock()d vma, we must not swap it out.
1903 */
1904 if (!(flags & TTU_IGNORE_MLOCK) &&
1905 (vma->vm_flags & VM_LOCKED)) {
1906 ptes++;
1907
1908 /*
1909 * Set 'ret' to indicate the page cannot be unmapped.
1910 *
1911 * Do not jump to walk_abort immediately as additional
1912 * iteration might be required to detect fully mapped
1913 * folio an mlock it.
1914 */
1915 ret = false;
1916
1917 /* Only mlock fully mapped pages */
1918 if (pvmw.pte && ptes != pvmw.nr_pages)
1919 continue;
1920
1921 /*
1922 * All PTEs must be protected by page table lock in
1923 * order to mlock the page.
1924 *
1925 * If page table boundary has been cross, current ptl
1926 * only protect part of ptes.
1927 */
1928 if (pvmw.flags & PVMW_PGTABLE_CROSSED)
1929 goto walk_done;
1930
1931 /* Restore the mlock which got missed */
1932 mlock_vma_folio(folio, vma);
1933 goto walk_done;
1934 }
1935
1936 if (!pvmw.pte) {
1937 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1938 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, folio))
1939 goto walk_done;
1940 /*
1941 * unmap_huge_pmd_locked has either already marked
1942 * the folio as swap-backed or decided to retain it
1943 * due to GUP or speculative references.
1944 */
1945 goto walk_abort;
1946 }
1947
1948 if (flags & TTU_SPLIT_HUGE_PMD) {
1949 /*
1950 * We temporarily have to drop the PTL and
1951 * restart so we can process the PTE-mapped THP.
1952 */
1953 split_huge_pmd_locked(vma, pvmw.address,
1954 pvmw.pmd, false);
1955 flags &= ~TTU_SPLIT_HUGE_PMD;
1956 page_vma_mapped_walk_restart(&pvmw);
1957 continue;
1958 }
1959 }
1960
1961 /* Unexpected PMD-mapped THP? */
1962 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1963
1964 /*
1965 * Handle PFN swap PTEs, such as device-exclusive ones, that
1966 * actually map pages.
1967 */
1968 pteval = ptep_get(pvmw.pte);
1969 if (likely(pte_present(pteval))) {
1970 pfn = pte_pfn(pteval);
1971 } else {
1972 const softleaf_t entry = softleaf_from_pte(pteval);
1973
1974 pfn = softleaf_to_pfn(entry);
1975 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1976 }
1977
1978 subpage = folio_page(folio, pfn - folio_pfn(folio));
1979 address = pvmw.address;
1980 anon_exclusive = folio_test_anon(folio) &&
1981 PageAnonExclusive(subpage);
1982
1983 if (folio_test_hugetlb(folio)) {
1984 bool anon = folio_test_anon(folio);
1985
1986 /*
1987 * The try_to_unmap() is only passed a hugetlb page
1988 * in the case where the hugetlb page is poisoned.
1989 */
1990 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1991 /*
1992 * huge_pmd_unshare may unmap an entire PMD page.
1993 * There is no way of knowing exactly which PMDs may
1994 * be cached for this mm, so we must flush them all.
1995 * start/end were already adjusted above to cover this
1996 * range.
1997 */
1998 flush_cache_range(vma, range.start, range.end);
1999
2000 /*
2001 * To call huge_pmd_unshare, i_mmap_rwsem must be
2002 * held in write mode. Caller needs to explicitly
2003 * do this outside rmap routines.
2004 *
2005 * We also must hold hugetlb vma_lock in write mode.
2006 * Lock order dictates acquiring vma_lock BEFORE
2007 * i_mmap_rwsem. We can only try lock here and fail
2008 * if unsuccessful.
2009 */
2010 if (!anon) {
2011 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2012 if (!hugetlb_vma_trylock_write(vma))
2013 goto walk_abort;
2014 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2015 hugetlb_vma_unlock_write(vma);
2016 flush_tlb_range(vma,
2017 range.start, range.end);
2018 /*
2019 * The ref count of the PMD page was
2020 * dropped which is part of the way map
2021 * counting is done for shared PMDs.
2022 * Return 'true' here. When there is
2023 * no other sharing, huge_pmd_unshare
2024 * returns false and we will unmap the
2025 * actual page and drop map count
2026 * to zero.
2027 */
2028 goto walk_done;
2029 }
2030 hugetlb_vma_unlock_write(vma);
2031 }
2032 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2033 if (pte_dirty(pteval))
2034 folio_mark_dirty(folio);
2035 } else if (likely(pte_present(pteval))) {
2036 nr_pages = folio_unmap_pte_batch(folio, &pvmw, flags, pteval);
2037 end_addr = address + nr_pages * PAGE_SIZE;
2038 flush_cache_range(vma, address, end_addr);
2039
2040 /* Nuke the page table entry. */
2041 pteval = get_and_clear_ptes(mm, address, pvmw.pte, nr_pages);
2042 /*
2043 * We clear the PTE but do not flush so potentially
2044 * a remote CPU could still be writing to the folio.
2045 * If the entry was previously clean then the
2046 * architecture must guarantee that a clear->dirty
2047 * transition on a cached TLB entry is written through
2048 * and traps if the PTE is unmapped.
2049 */
2050 if (should_defer_flush(mm, flags))
2051 set_tlb_ubc_flush_pending(mm, pteval, address, end_addr);
2052 else
2053 flush_tlb_range(vma, address, end_addr);
2054 if (pte_dirty(pteval))
2055 folio_mark_dirty(folio);
2056 } else {
2057 pte_clear(mm, address, pvmw.pte);
2058 }
2059
2060 /*
2061 * Now the pte is cleared. If this pte was uffd-wp armed,
2062 * we may want to replace a none pte with a marker pte if
2063 * it's file-backed, so we don't lose the tracking info.
2064 */
2065 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
2066
2067 /* Update high watermark before we lower rss */
2068 update_hiwater_rss(mm);
2069
2070 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
2071 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2072 if (folio_test_hugetlb(folio)) {
2073 hugetlb_count_sub(folio_nr_pages(folio), mm);
2074 set_huge_pte_at(mm, address, pvmw.pte, pteval,
2075 hsz);
2076 } else {
2077 dec_mm_counter(mm, mm_counter(folio));
2078 set_pte_at(mm, address, pvmw.pte, pteval);
2079 }
2080 } else if (likely(pte_present(pteval)) && pte_unused(pteval) &&
2081 !userfaultfd_armed(vma)) {
2082 /*
2083 * The guest indicated that the page content is of no
2084 * interest anymore. Simply discard the pte, vmscan
2085 * will take care of the rest.
2086 * A future reference will then fault in a new zero
2087 * page. When userfaultfd is active, we must not drop
2088 * this page though, as its main user (postcopy
2089 * migration) will not expect userfaults on already
2090 * copied pages.
2091 */
2092 dec_mm_counter(mm, mm_counter(folio));
2093 } else if (folio_test_anon(folio)) {
2094 swp_entry_t entry = page_swap_entry(subpage);
2095 pte_t swp_pte;
2096 /*
2097 * Store the swap location in the pte.
2098 * See handle_pte_fault() ...
2099 */
2100 if (unlikely(folio_test_swapbacked(folio) !=
2101 folio_test_swapcache(folio))) {
2102 WARN_ON_ONCE(1);
2103 goto walk_abort;
2104 }
2105
2106 /* MADV_FREE page check */
2107 if (!folio_test_swapbacked(folio)) {
2108 int ref_count, map_count;
2109
2110 /*
2111 * Synchronize with gup_pte_range():
2112 * - clear PTE; barrier; read refcount
2113 * - inc refcount; barrier; read PTE
2114 */
2115 smp_mb();
2116
2117 ref_count = folio_ref_count(folio);
2118 map_count = folio_mapcount(folio);
2119
2120 /*
2121 * Order reads for page refcount and dirty flag
2122 * (see comments in __remove_mapping()).
2123 */
2124 smp_rmb();
2125
2126 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
2127 /*
2128 * redirtied either using the page table or a previously
2129 * obtained GUP reference.
2130 */
2131 set_ptes(mm, address, pvmw.pte, pteval, nr_pages);
2132 folio_set_swapbacked(folio);
2133 goto walk_abort;
2134 } else if (ref_count != 1 + map_count) {
2135 /*
2136 * Additional reference. Could be a GUP reference or any
2137 * speculative reference. GUP users must mark the folio
2138 * dirty if there was a modification. This folio cannot be
2139 * reclaimed right now either way, so act just like nothing
2140 * happened.
2141 * We'll come back here later and detect if the folio was
2142 * dirtied when the additional reference is gone.
2143 */
2144 set_ptes(mm, address, pvmw.pte, pteval, nr_pages);
2145 goto walk_abort;
2146 }
2147 add_mm_counter(mm, MM_ANONPAGES, -nr_pages);
2148 goto discard;
2149 }
2150
2151 if (swap_duplicate(entry) < 0) {
2152 set_pte_at(mm, address, pvmw.pte, pteval);
2153 goto walk_abort;
2154 }
2155
2156 /*
2157 * arch_unmap_one() is expected to be a NOP on
2158 * architectures where we could have PFN swap PTEs,
2159 * so we'll not check/care.
2160 */
2161 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2162 swap_free(entry);
2163 set_pte_at(mm, address, pvmw.pte, pteval);
2164 goto walk_abort;
2165 }
2166
2167 /* See folio_try_share_anon_rmap(): clear PTE first. */
2168 if (anon_exclusive &&
2169 folio_try_share_anon_rmap_pte(folio, subpage)) {
2170 swap_free(entry);
2171 set_pte_at(mm, address, pvmw.pte, pteval);
2172 goto walk_abort;
2173 }
2174 if (list_empty(&mm->mmlist)) {
2175 spin_lock(&mmlist_lock);
2176 if (list_empty(&mm->mmlist))
2177 list_add(&mm->mmlist, &init_mm.mmlist);
2178 spin_unlock(&mmlist_lock);
2179 }
2180 dec_mm_counter(mm, MM_ANONPAGES);
2181 inc_mm_counter(mm, MM_SWAPENTS);
2182 swp_pte = swp_entry_to_pte(entry);
2183 if (anon_exclusive)
2184 swp_pte = pte_swp_mkexclusive(swp_pte);
2185 if (likely(pte_present(pteval))) {
2186 if (pte_soft_dirty(pteval))
2187 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2188 if (pte_uffd_wp(pteval))
2189 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2190 } else {
2191 if (pte_swp_soft_dirty(pteval))
2192 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2193 if (pte_swp_uffd_wp(pteval))
2194 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2195 }
2196 set_pte_at(mm, address, pvmw.pte, swp_pte);
2197 } else {
2198 /*
2199 * This is a locked file-backed folio,
2200 * so it cannot be removed from the page
2201 * cache and replaced by a new folio before
2202 * mmu_notifier_invalidate_range_end, so no
2203 * concurrent thread might update its page table
2204 * to point at a new folio while a device is
2205 * still using this folio.
2206 *
2207 * See Documentation/mm/mmu_notifier.rst
2208 */
2209 dec_mm_counter(mm, mm_counter_file(folio));
2210 }
2211 discard:
2212 if (unlikely(folio_test_hugetlb(folio))) {
2213 hugetlb_remove_rmap(folio);
2214 } else {
2215 folio_remove_rmap_ptes(folio, subpage, nr_pages, vma);
2216 }
2217 if (vma->vm_flags & VM_LOCKED)
2218 mlock_drain_local();
2219 folio_put_refs(folio, nr_pages);
2220
2221 /*
2222 * If we are sure that we batched the entire folio and cleared
2223 * all PTEs, we can just optimize and stop right here.
2224 */
2225 if (nr_pages == folio_nr_pages(folio))
2226 goto walk_done;
2227 continue;
2228 walk_abort:
2229 ret = false;
2230 walk_done:
2231 page_vma_mapped_walk_done(&pvmw);
2232 break;
2233 }
2234
2235 mmu_notifier_invalidate_range_end(&range);
2236
2237 return ret;
2238 }
2239
invalid_migration_vma(struct vm_area_struct * vma,void * arg)2240 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
2241 {
2242 return vma_is_temporary_stack(vma);
2243 }
2244
folio_not_mapped(struct folio * folio)2245 static int folio_not_mapped(struct folio *folio)
2246 {
2247 return !folio_mapped(folio);
2248 }
2249
2250 /**
2251 * try_to_unmap - Try to remove all page table mappings to a folio.
2252 * @folio: The folio to unmap.
2253 * @flags: action and flags
2254 *
2255 * Tries to remove all the page table entries which are mapping this
2256 * folio. It is the caller's responsibility to check if the folio is
2257 * still mapped if needed (use TTU_SYNC to prevent accounting races).
2258 *
2259 * Context: Caller must hold the folio lock.
2260 */
try_to_unmap(struct folio * folio,enum ttu_flags flags)2261 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
2262 {
2263 struct rmap_walk_control rwc = {
2264 .rmap_one = try_to_unmap_one,
2265 .arg = (void *)flags,
2266 .done = folio_not_mapped,
2267 .anon_lock = folio_lock_anon_vma_read,
2268 };
2269
2270 if (flags & TTU_RMAP_LOCKED)
2271 rmap_walk_locked(folio, &rwc);
2272 else
2273 rmap_walk(folio, &rwc);
2274 }
2275
2276 /*
2277 * @arg: enum ttu_flags will be passed to this argument.
2278 *
2279 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
2280 * containing migration entries.
2281 */
try_to_migrate_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)2282 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
2283 unsigned long address, void *arg)
2284 {
2285 struct mm_struct *mm = vma->vm_mm;
2286 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2287 bool anon_exclusive, writable, ret = true;
2288 pte_t pteval;
2289 struct page *subpage;
2290 struct mmu_notifier_range range;
2291 enum ttu_flags flags = (enum ttu_flags)(long)arg;
2292 unsigned long pfn;
2293 unsigned long hsz = 0;
2294
2295 /*
2296 * When racing against e.g. zap_pte_range() on another cpu,
2297 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2298 * try_to_migrate() may return before page_mapped() has become false,
2299 * if page table locking is skipped: use TTU_SYNC to wait for that.
2300 */
2301 if (flags & TTU_SYNC)
2302 pvmw.flags = PVMW_SYNC;
2303
2304 /*
2305 * For THP, we have to assume the worse case ie pmd for invalidation.
2306 * For hugetlb, it could be much worse if we need to do pud
2307 * invalidation in the case of pmd sharing.
2308 *
2309 * Note that the page can not be free in this function as call of
2310 * try_to_unmap() must hold a reference on the page.
2311 */
2312 range.end = vma_address_end(&pvmw);
2313 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2314 address, range.end);
2315 if (folio_test_hugetlb(folio)) {
2316 /*
2317 * If sharing is possible, start and end will be adjusted
2318 * accordingly.
2319 */
2320 adjust_range_if_pmd_sharing_possible(vma, &range.start,
2321 &range.end);
2322
2323 /* We need the huge page size for set_huge_pte_at() */
2324 hsz = huge_page_size(hstate_vma(vma));
2325 }
2326 mmu_notifier_invalidate_range_start(&range);
2327
2328 while (page_vma_mapped_walk(&pvmw)) {
2329 /* PMD-mapped THP migration entry */
2330 if (!pvmw.pte) {
2331 __maybe_unused unsigned long pfn;
2332 __maybe_unused pmd_t pmdval;
2333
2334 if (flags & TTU_SPLIT_HUGE_PMD) {
2335 split_huge_pmd_locked(vma, pvmw.address,
2336 pvmw.pmd, true);
2337 ret = false;
2338 page_vma_mapped_walk_done(&pvmw);
2339 break;
2340 }
2341 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2342 pmdval = pmdp_get(pvmw.pmd);
2343 if (likely(pmd_present(pmdval)))
2344 pfn = pmd_pfn(pmdval);
2345 else
2346 pfn = softleaf_to_pfn(softleaf_from_pmd(pmdval));
2347
2348 subpage = folio_page(folio, pfn - folio_pfn(folio));
2349
2350 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2351 !folio_test_pmd_mappable(folio), folio);
2352
2353 if (set_pmd_migration_entry(&pvmw, subpage)) {
2354 ret = false;
2355 page_vma_mapped_walk_done(&pvmw);
2356 break;
2357 }
2358 continue;
2359 #endif
2360 }
2361
2362 /* Unexpected PMD-mapped THP? */
2363 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2364
2365 /*
2366 * Handle PFN swap PTEs, such as device-exclusive ones, that
2367 * actually map pages.
2368 */
2369 pteval = ptep_get(pvmw.pte);
2370 if (likely(pte_present(pteval))) {
2371 pfn = pte_pfn(pteval);
2372 } else {
2373 const softleaf_t entry = softleaf_from_pte(pteval);
2374
2375 pfn = softleaf_to_pfn(entry);
2376 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
2377 }
2378
2379 subpage = folio_page(folio, pfn - folio_pfn(folio));
2380 address = pvmw.address;
2381 anon_exclusive = folio_test_anon(folio) &&
2382 PageAnonExclusive(subpage);
2383
2384 if (folio_test_hugetlb(folio)) {
2385 bool anon = folio_test_anon(folio);
2386
2387 /*
2388 * huge_pmd_unshare may unmap an entire PMD page.
2389 * There is no way of knowing exactly which PMDs may
2390 * be cached for this mm, so we must flush them all.
2391 * start/end were already adjusted above to cover this
2392 * range.
2393 */
2394 flush_cache_range(vma, range.start, range.end);
2395
2396 /*
2397 * To call huge_pmd_unshare, i_mmap_rwsem must be
2398 * held in write mode. Caller needs to explicitly
2399 * do this outside rmap routines.
2400 *
2401 * We also must hold hugetlb vma_lock in write mode.
2402 * Lock order dictates acquiring vma_lock BEFORE
2403 * i_mmap_rwsem. We can only try lock here and
2404 * fail if unsuccessful.
2405 */
2406 if (!anon) {
2407 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2408 if (!hugetlb_vma_trylock_write(vma)) {
2409 page_vma_mapped_walk_done(&pvmw);
2410 ret = false;
2411 break;
2412 }
2413 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2414 hugetlb_vma_unlock_write(vma);
2415 flush_tlb_range(vma,
2416 range.start, range.end);
2417
2418 /*
2419 * The ref count of the PMD page was
2420 * dropped which is part of the way map
2421 * counting is done for shared PMDs.
2422 * Return 'true' here. When there is
2423 * no other sharing, huge_pmd_unshare
2424 * returns false and we will unmap the
2425 * actual page and drop map count
2426 * to zero.
2427 */
2428 page_vma_mapped_walk_done(&pvmw);
2429 break;
2430 }
2431 hugetlb_vma_unlock_write(vma);
2432 }
2433 /* Nuke the hugetlb page table entry */
2434 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2435 if (pte_dirty(pteval))
2436 folio_mark_dirty(folio);
2437 writable = pte_write(pteval);
2438 } else if (likely(pte_present(pteval))) {
2439 flush_cache_page(vma, address, pfn);
2440 /* Nuke the page table entry. */
2441 if (should_defer_flush(mm, flags)) {
2442 /*
2443 * We clear the PTE but do not flush so potentially
2444 * a remote CPU could still be writing to the folio.
2445 * If the entry was previously clean then the
2446 * architecture must guarantee that a clear->dirty
2447 * transition on a cached TLB entry is written through
2448 * and traps if the PTE is unmapped.
2449 */
2450 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2451
2452 set_tlb_ubc_flush_pending(mm, pteval, address, address + PAGE_SIZE);
2453 } else {
2454 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2455 }
2456 if (pte_dirty(pteval))
2457 folio_mark_dirty(folio);
2458 writable = pte_write(pteval);
2459 } else {
2460 const softleaf_t entry = softleaf_from_pte(pteval);
2461
2462 pte_clear(mm, address, pvmw.pte);
2463
2464 writable = softleaf_is_device_private_write(entry);
2465 }
2466
2467 VM_WARN_ON_FOLIO(writable && folio_test_anon(folio) &&
2468 !anon_exclusive, folio);
2469
2470 /* Update high watermark before we lower rss */
2471 update_hiwater_rss(mm);
2472
2473 if (PageHWPoison(subpage)) {
2474 VM_WARN_ON_FOLIO(folio_is_device_private(folio), folio);
2475
2476 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2477 if (folio_test_hugetlb(folio)) {
2478 hugetlb_count_sub(folio_nr_pages(folio), mm);
2479 set_huge_pte_at(mm, address, pvmw.pte, pteval,
2480 hsz);
2481 } else {
2482 dec_mm_counter(mm, mm_counter(folio));
2483 set_pte_at(mm, address, pvmw.pte, pteval);
2484 }
2485 } else if (likely(pte_present(pteval)) && pte_unused(pteval) &&
2486 !userfaultfd_armed(vma)) {
2487 /*
2488 * The guest indicated that the page content is of no
2489 * interest anymore. Simply discard the pte, vmscan
2490 * will take care of the rest.
2491 * A future reference will then fault in a new zero
2492 * page. When userfaultfd is active, we must not drop
2493 * this page though, as its main user (postcopy
2494 * migration) will not expect userfaults on already
2495 * copied pages.
2496 */
2497 dec_mm_counter(mm, mm_counter(folio));
2498 } else {
2499 swp_entry_t entry;
2500 pte_t swp_pte;
2501
2502 /*
2503 * arch_unmap_one() is expected to be a NOP on
2504 * architectures where we could have PFN swap PTEs,
2505 * so we'll not check/care.
2506 */
2507 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2508 if (folio_test_hugetlb(folio))
2509 set_huge_pte_at(mm, address, pvmw.pte,
2510 pteval, hsz);
2511 else
2512 set_pte_at(mm, address, pvmw.pte, pteval);
2513 ret = false;
2514 page_vma_mapped_walk_done(&pvmw);
2515 break;
2516 }
2517
2518 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2519 if (folio_test_hugetlb(folio)) {
2520 if (anon_exclusive &&
2521 hugetlb_try_share_anon_rmap(folio)) {
2522 set_huge_pte_at(mm, address, pvmw.pte,
2523 pteval, hsz);
2524 ret = false;
2525 page_vma_mapped_walk_done(&pvmw);
2526 break;
2527 }
2528 } else if (anon_exclusive &&
2529 folio_try_share_anon_rmap_pte(folio, subpage)) {
2530 set_pte_at(mm, address, pvmw.pte, pteval);
2531 ret = false;
2532 page_vma_mapped_walk_done(&pvmw);
2533 break;
2534 }
2535
2536 /*
2537 * Store the pfn of the page in a special migration
2538 * pte. do_swap_page() will wait until the migration
2539 * pte is removed and then restart fault handling.
2540 */
2541 if (writable)
2542 entry = make_writable_migration_entry(
2543 page_to_pfn(subpage));
2544 else if (anon_exclusive)
2545 entry = make_readable_exclusive_migration_entry(
2546 page_to_pfn(subpage));
2547 else
2548 entry = make_readable_migration_entry(
2549 page_to_pfn(subpage));
2550 if (likely(pte_present(pteval))) {
2551 if (pte_young(pteval))
2552 entry = make_migration_entry_young(entry);
2553 if (pte_dirty(pteval))
2554 entry = make_migration_entry_dirty(entry);
2555 swp_pte = swp_entry_to_pte(entry);
2556 if (pte_soft_dirty(pteval))
2557 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2558 if (pte_uffd_wp(pteval))
2559 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2560 } else {
2561 swp_pte = swp_entry_to_pte(entry);
2562 if (pte_swp_soft_dirty(pteval))
2563 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2564 if (pte_swp_uffd_wp(pteval))
2565 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2566 }
2567 if (folio_test_hugetlb(folio))
2568 set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2569 hsz);
2570 else
2571 set_pte_at(mm, address, pvmw.pte, swp_pte);
2572 trace_set_migration_pte(address, pte_val(swp_pte),
2573 folio_order(folio));
2574 /*
2575 * No need to invalidate here it will synchronize on
2576 * against the special swap migration pte.
2577 */
2578 }
2579
2580 if (unlikely(folio_test_hugetlb(folio)))
2581 hugetlb_remove_rmap(folio);
2582 else
2583 folio_remove_rmap_pte(folio, subpage, vma);
2584 if (vma->vm_flags & VM_LOCKED)
2585 mlock_drain_local();
2586 folio_put(folio);
2587 }
2588
2589 mmu_notifier_invalidate_range_end(&range);
2590
2591 return ret;
2592 }
2593
2594 /**
2595 * try_to_migrate - try to replace all page table mappings with swap entries
2596 * @folio: the folio to replace page table entries for
2597 * @flags: action and flags
2598 *
2599 * Tries to remove all the page table entries which are mapping this folio and
2600 * replace them with special swap entries. Caller must hold the folio lock.
2601 */
try_to_migrate(struct folio * folio,enum ttu_flags flags)2602 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2603 {
2604 struct rmap_walk_control rwc = {
2605 .rmap_one = try_to_migrate_one,
2606 .arg = (void *)flags,
2607 .done = folio_not_mapped,
2608 .anon_lock = folio_lock_anon_vma_read,
2609 };
2610
2611 /*
2612 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2613 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2614 */
2615 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2616 TTU_SYNC | TTU_BATCH_FLUSH)))
2617 return;
2618
2619 if (folio_is_zone_device(folio) &&
2620 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2621 return;
2622
2623 /*
2624 * During exec, a temporary VMA is setup and later moved.
2625 * The VMA is moved under the anon_vma lock but not the
2626 * page tables leading to a race where migration cannot
2627 * find the migration ptes. Rather than increasing the
2628 * locking requirements of exec(), migration skips
2629 * temporary VMAs until after exec() completes.
2630 */
2631 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2632 rwc.invalid_vma = invalid_migration_vma;
2633
2634 if (flags & TTU_RMAP_LOCKED)
2635 rmap_walk_locked(folio, &rwc);
2636 else
2637 rmap_walk(folio, &rwc);
2638 }
2639
2640 #ifdef CONFIG_DEVICE_PRIVATE
2641 /**
2642 * make_device_exclusive() - Mark a page for exclusive use by a device
2643 * @mm: mm_struct of associated target process
2644 * @addr: the virtual address to mark for exclusive device access
2645 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2646 * @foliop: folio pointer will be stored here on success.
2647 *
2648 * This function looks up the page mapped at the given address, grabs a
2649 * folio reference, locks the folio and replaces the PTE with special
2650 * device-exclusive PFN swap entry, preventing access through the process
2651 * page tables. The function will return with the folio locked and referenced.
2652 *
2653 * On fault, the device-exclusive entries are replaced with the original PTE
2654 * under folio lock, after calling MMU notifiers.
2655 *
2656 * Only anonymous non-hugetlb folios are supported and the VMA must have
2657 * write permissions such that we can fault in the anonymous page writable
2658 * in order to mark it exclusive. The caller must hold the mmap_lock in read
2659 * mode.
2660 *
2661 * A driver using this to program access from a device must use a mmu notifier
2662 * critical section to hold a device specific lock during programming. Once
2663 * programming is complete it should drop the folio lock and reference after
2664 * which point CPU access to the page will revoke the exclusive access.
2665 *
2666 * Notes:
2667 * #. This function always operates on individual PTEs mapping individual
2668 * pages. PMD-sized THPs are first remapped to be mapped by PTEs before
2669 * the conversion happens on a single PTE corresponding to @addr.
2670 * #. While concurrent access through the process page tables is prevented,
2671 * concurrent access through other page references (e.g., earlier GUP
2672 * invocation) is not handled and not supported.
2673 * #. device-exclusive entries are considered "clean" and "old" by core-mm.
2674 * Device drivers must update the folio state when informed by MMU
2675 * notifiers.
2676 *
2677 * Returns: pointer to mapped page on success, otherwise a negative error.
2678 */
make_device_exclusive(struct mm_struct * mm,unsigned long addr,void * owner,struct folio ** foliop)2679 struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr,
2680 void *owner, struct folio **foliop)
2681 {
2682 struct mmu_notifier_range range;
2683 struct folio *folio, *fw_folio;
2684 struct vm_area_struct *vma;
2685 struct folio_walk fw;
2686 struct page *page;
2687 swp_entry_t entry;
2688 pte_t swp_pte;
2689 int ret;
2690
2691 mmap_assert_locked(mm);
2692 addr = PAGE_ALIGN_DOWN(addr);
2693
2694 /*
2695 * Fault in the page writable and try to lock it; note that if the
2696 * address would already be marked for exclusive use by a device,
2697 * the GUP call would undo that first by triggering a fault.
2698 *
2699 * If any other device would already map this page exclusively, the
2700 * fault will trigger a conversion to an ordinary
2701 * (non-device-exclusive) PTE and issue a MMU_NOTIFY_EXCLUSIVE.
2702 */
2703 retry:
2704 page = get_user_page_vma_remote(mm, addr,
2705 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2706 &vma);
2707 if (IS_ERR(page))
2708 return page;
2709 folio = page_folio(page);
2710
2711 if (!folio_test_anon(folio) || folio_test_hugetlb(folio)) {
2712 folio_put(folio);
2713 return ERR_PTR(-EOPNOTSUPP);
2714 }
2715
2716 ret = folio_lock_killable(folio);
2717 if (ret) {
2718 folio_put(folio);
2719 return ERR_PTR(ret);
2720 }
2721
2722 /*
2723 * Inform secondary MMUs that we are going to convert this PTE to
2724 * device-exclusive, such that they unmap it now. Note that the
2725 * caller must filter this event out to prevent livelocks.
2726 */
2727 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2728 mm, addr, addr + PAGE_SIZE, owner);
2729 mmu_notifier_invalidate_range_start(&range);
2730
2731 /*
2732 * Let's do a second walk and make sure we still find the same page
2733 * mapped writable. Note that any page of an anonymous folio can
2734 * only be mapped writable using exactly one PTE ("exclusive"), so
2735 * there cannot be other mappings.
2736 */
2737 fw_folio = folio_walk_start(&fw, vma, addr, 0);
2738 if (fw_folio != folio || fw.page != page ||
2739 fw.level != FW_LEVEL_PTE || !pte_write(fw.pte)) {
2740 if (fw_folio)
2741 folio_walk_end(&fw, vma);
2742 mmu_notifier_invalidate_range_end(&range);
2743 folio_unlock(folio);
2744 folio_put(folio);
2745 goto retry;
2746 }
2747
2748 /* Nuke the page table entry so we get the uptodate dirty bit. */
2749 flush_cache_page(vma, addr, page_to_pfn(page));
2750 fw.pte = ptep_clear_flush(vma, addr, fw.ptep);
2751
2752 /* Set the dirty flag on the folio now the PTE is gone. */
2753 if (pte_dirty(fw.pte))
2754 folio_mark_dirty(folio);
2755
2756 /*
2757 * Store the pfn of the page in a special device-exclusive PFN swap PTE.
2758 * do_swap_page() will trigger the conversion back while holding the
2759 * folio lock.
2760 */
2761 entry = make_device_exclusive_entry(page_to_pfn(page));
2762 swp_pte = swp_entry_to_pte(entry);
2763 if (pte_soft_dirty(fw.pte))
2764 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2765 /* The pte is writable, uffd-wp does not apply. */
2766 set_pte_at(mm, addr, fw.ptep, swp_pte);
2767
2768 folio_walk_end(&fw, vma);
2769 mmu_notifier_invalidate_range_end(&range);
2770 *foliop = folio;
2771 return page;
2772 }
2773 EXPORT_SYMBOL_GPL(make_device_exclusive);
2774 #endif
2775
__put_anon_vma(struct anon_vma * anon_vma)2776 void __put_anon_vma(struct anon_vma *anon_vma)
2777 {
2778 struct anon_vma *root = anon_vma->root;
2779
2780 anon_vma_free(anon_vma);
2781 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2782 anon_vma_free(root);
2783 }
2784
rmap_walk_anon_lock(const struct folio * folio,struct rmap_walk_control * rwc)2785 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio,
2786 struct rmap_walk_control *rwc)
2787 {
2788 struct anon_vma *anon_vma;
2789
2790 if (rwc->anon_lock)
2791 return rwc->anon_lock(folio, rwc);
2792
2793 /*
2794 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2795 * because that depends on page_mapped(); but not all its usages
2796 * are holding mmap_lock. Users without mmap_lock are required to
2797 * take a reference count to prevent the anon_vma disappearing
2798 */
2799 anon_vma = folio_anon_vma(folio);
2800 if (!anon_vma)
2801 return NULL;
2802
2803 if (anon_vma_trylock_read(anon_vma))
2804 goto out;
2805
2806 if (rwc->try_lock) {
2807 anon_vma = NULL;
2808 rwc->contended = true;
2809 goto out;
2810 }
2811
2812 anon_vma_lock_read(anon_vma);
2813 out:
2814 return anon_vma;
2815 }
2816
2817 /*
2818 * rmap_walk_anon - do something to anonymous page using the object-based
2819 * rmap method
2820 * @folio: the folio to be handled
2821 * @rwc: control variable according to each walk type
2822 * @locked: caller holds relevant rmap lock
2823 *
2824 * Find all the mappings of a folio using the mapping pointer and the vma
2825 * chains contained in the anon_vma struct it points to.
2826 */
rmap_walk_anon(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2827 static void rmap_walk_anon(struct folio *folio,
2828 struct rmap_walk_control *rwc, bool locked)
2829 {
2830 struct anon_vma *anon_vma;
2831 pgoff_t pgoff_start, pgoff_end;
2832 struct anon_vma_chain *avc;
2833
2834 /*
2835 * The folio lock ensures that folio->mapping can't be changed under us
2836 * to an anon_vma with different root.
2837 */
2838 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2839
2840 if (locked) {
2841 anon_vma = folio_anon_vma(folio);
2842 /* anon_vma disappear under us? */
2843 VM_BUG_ON_FOLIO(!anon_vma, folio);
2844 } else {
2845 anon_vma = rmap_walk_anon_lock(folio, rwc);
2846 }
2847 if (!anon_vma)
2848 return;
2849
2850 pgoff_start = folio_pgoff(folio);
2851 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2852 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2853 pgoff_start, pgoff_end) {
2854 struct vm_area_struct *vma = avc->vma;
2855 unsigned long address = vma_address(vma, pgoff_start,
2856 folio_nr_pages(folio));
2857
2858 VM_BUG_ON_VMA(address == -EFAULT, vma);
2859 cond_resched();
2860
2861 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2862 continue;
2863
2864 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2865 break;
2866 if (rwc->done && rwc->done(folio))
2867 break;
2868 }
2869
2870 if (!locked)
2871 anon_vma_unlock_read(anon_vma);
2872 }
2873
2874 /**
2875 * __rmap_walk_file() - Traverse the reverse mapping for a file-backed mapping
2876 * of a page mapped within a specified page cache object at a specified offset.
2877 *
2878 * @folio: Either the folio whose mappings to traverse, or if NULL,
2879 * the callbacks specified in @rwc will be configured such
2880 * as to be able to look up mappings correctly.
2881 * @mapping: The page cache object whose mapping VMAs we intend to
2882 * traverse. If @folio is non-NULL, this should be equal to
2883 * folio_mapping(folio).
2884 * @pgoff_start: The offset within @mapping of the page which we are
2885 * looking up. If @folio is non-NULL, this should be equal
2886 * to folio_pgoff(folio).
2887 * @nr_pages: The number of pages mapped by the mapping. If @folio is
2888 * non-NULL, this should be equal to folio_nr_pages(folio).
2889 * @rwc: The reverse mapping walk control object describing how
2890 * the traversal should proceed.
2891 * @locked: Is the @mapping already locked? If not, we acquire the
2892 * lock.
2893 */
__rmap_walk_file(struct folio * folio,struct address_space * mapping,pgoff_t pgoff_start,unsigned long nr_pages,struct rmap_walk_control * rwc,bool locked)2894 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping,
2895 pgoff_t pgoff_start, unsigned long nr_pages,
2896 struct rmap_walk_control *rwc, bool locked)
2897 {
2898 pgoff_t pgoff_end = pgoff_start + nr_pages - 1;
2899 struct vm_area_struct *vma;
2900
2901 VM_WARN_ON_FOLIO(folio && mapping != folio_mapping(folio), folio);
2902 VM_WARN_ON_FOLIO(folio && pgoff_start != folio_pgoff(folio), folio);
2903 VM_WARN_ON_FOLIO(folio && nr_pages != folio_nr_pages(folio), folio);
2904
2905 if (!locked) {
2906 if (i_mmap_trylock_read(mapping))
2907 goto lookup;
2908
2909 if (rwc->try_lock) {
2910 rwc->contended = true;
2911 return;
2912 }
2913
2914 i_mmap_lock_read(mapping);
2915 }
2916 lookup:
2917 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2918 pgoff_start, pgoff_end) {
2919 unsigned long address = vma_address(vma, pgoff_start, nr_pages);
2920
2921 VM_BUG_ON_VMA(address == -EFAULT, vma);
2922 cond_resched();
2923
2924 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2925 continue;
2926
2927 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2928 goto done;
2929 if (rwc->done && rwc->done(folio))
2930 goto done;
2931 }
2932 done:
2933 if (!locked)
2934 i_mmap_unlock_read(mapping);
2935 }
2936
2937 /*
2938 * rmap_walk_file - do something to file page using the object-based rmap method
2939 * @folio: the folio to be handled
2940 * @rwc: control variable according to each walk type
2941 * @locked: caller holds relevant rmap lock
2942 *
2943 * Find all the mappings of a folio using the mapping pointer and the vma chains
2944 * contained in the address_space struct it points to.
2945 */
rmap_walk_file(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2946 static void rmap_walk_file(struct folio *folio,
2947 struct rmap_walk_control *rwc, bool locked)
2948 {
2949 /*
2950 * The folio lock not only makes sure that folio->mapping cannot
2951 * suddenly be NULLified by truncation, it makes sure that the structure
2952 * at mapping cannot be freed and reused yet, so we can safely take
2953 * mapping->i_mmap_rwsem.
2954 */
2955 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2956
2957 if (!folio->mapping)
2958 return;
2959
2960 __rmap_walk_file(folio, folio->mapping, folio->index,
2961 folio_nr_pages(folio), rwc, locked);
2962 }
2963
rmap_walk(struct folio * folio,struct rmap_walk_control * rwc)2964 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2965 {
2966 if (unlikely(folio_test_ksm(folio)))
2967 rmap_walk_ksm(folio, rwc);
2968 else if (folio_test_anon(folio))
2969 rmap_walk_anon(folio, rwc, false);
2970 else
2971 rmap_walk_file(folio, rwc, false);
2972 }
2973
2974 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct folio * folio,struct rmap_walk_control * rwc)2975 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2976 {
2977 /* no ksm support for now */
2978 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2979 if (folio_test_anon(folio))
2980 rmap_walk_anon(folio, rwc, true);
2981 else
2982 rmap_walk_file(folio, rwc, true);
2983 }
2984
2985 #ifdef CONFIG_HUGETLB_PAGE
2986 /*
2987 * The following two functions are for anonymous (private mapped) hugepages.
2988 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2989 * and no lru code, because we handle hugepages differently from common pages.
2990 */
hugetlb_add_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address,rmap_t flags)2991 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2992 unsigned long address, rmap_t flags)
2993 {
2994 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2995 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2996
2997 atomic_inc(&folio->_entire_mapcount);
2998 atomic_inc(&folio->_large_mapcount);
2999 if (flags & RMAP_EXCLUSIVE)
3000 SetPageAnonExclusive(&folio->page);
3001 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
3002 PageAnonExclusive(&folio->page), folio);
3003 }
3004
hugetlb_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address)3005 void hugetlb_add_new_anon_rmap(struct folio *folio,
3006 struct vm_area_struct *vma, unsigned long address)
3007 {
3008 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
3009
3010 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
3011 /* increment count (starts at -1) */
3012 atomic_set(&folio->_entire_mapcount, 0);
3013 atomic_set(&folio->_large_mapcount, 0);
3014 folio_clear_hugetlb_restore_reserve(folio);
3015 __folio_set_anon(folio, vma, address, true);
3016 SetPageAnonExclusive(&folio->page);
3017 }
3018 #endif /* CONFIG_HUGETLB_PAGE */
3019