xref: /linux/mm/rmap.c (revision 7203ca412fc8e8a0588e9adc0f777d3163f8dff3)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       folio_lock
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           vma_start_write
29  *             mapping->i_mmap_rwsem
30  *               anon_vma->rwsem
31  *                 mm->page_table_lock or pte_lock
32  *                   swap_lock (in swap_duplicate, swap_info_get)
33  *                     mmlist_lock (in mmput, drain_mmlist and others)
34  *                     mapping->private_lock (in block_dirty_folio)
35  *                         i_pages lock (widely used)
36  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
37  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
40  *                       i_pages lock (widely used, in set_page_dirty,
41  *                                 in arch-dependent flush_dcache_mmap_lock,
42  *                                 within bdi.wb->list_lock in __sync_single_inode)
43  *
44  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
45  *   ->tasklist_lock
46  *     pte map lock
47  *
48  * hugetlbfs PageHuge() take locks in this order:
49  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50  *     vma_lock (hugetlb specific lock for pmd_sharing)
51  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52  *         folio_lock
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/leafops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77 #include <linux/oom.h>
78 
79 #include <asm/tlbflush.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/migrate.h>
83 
84 #include "internal.h"
85 
86 static struct kmem_cache *anon_vma_cachep;
87 static struct kmem_cache *anon_vma_chain_cachep;
88 
anon_vma_alloc(void)89 static inline struct anon_vma *anon_vma_alloc(void)
90 {
91 	struct anon_vma *anon_vma;
92 
93 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 	if (anon_vma) {
95 		atomic_set(&anon_vma->refcount, 1);
96 		anon_vma->num_children = 0;
97 		anon_vma->num_active_vmas = 0;
98 		anon_vma->parent = anon_vma;
99 		/*
100 		 * Initialise the anon_vma root to point to itself. If called
101 		 * from fork, the root will be reset to the parents anon_vma.
102 		 */
103 		anon_vma->root = anon_vma;
104 	}
105 
106 	return anon_vma;
107 }
108 
anon_vma_free(struct anon_vma * anon_vma)109 static inline void anon_vma_free(struct anon_vma *anon_vma)
110 {
111 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
112 
113 	/*
114 	 * Synchronize against folio_lock_anon_vma_read() such that
115 	 * we can safely hold the lock without the anon_vma getting
116 	 * freed.
117 	 *
118 	 * Relies on the full mb implied by the atomic_dec_and_test() from
119 	 * put_anon_vma() against the acquire barrier implied by
120 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
121 	 *
122 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
123 	 *   down_read_trylock()		  atomic_dec_and_test()
124 	 *   LOCK				  MB
125 	 *   atomic_read()			  rwsem_is_locked()
126 	 *
127 	 * LOCK should suffice since the actual taking of the lock must
128 	 * happen _before_ what follows.
129 	 */
130 	might_sleep();
131 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
132 		anon_vma_lock_write(anon_vma);
133 		anon_vma_unlock_write(anon_vma);
134 	}
135 
136 	kmem_cache_free(anon_vma_cachep, anon_vma);
137 }
138 
anon_vma_chain_alloc(gfp_t gfp)139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
140 {
141 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
142 }
143 
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
145 {
146 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
147 }
148 
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)149 static void anon_vma_chain_link(struct vm_area_struct *vma,
150 				struct anon_vma_chain *avc,
151 				struct anon_vma *anon_vma)
152 {
153 	avc->vma = vma;
154 	avc->anon_vma = anon_vma;
155 	list_add(&avc->same_vma, &vma->anon_vma_chain);
156 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
157 }
158 
159 /**
160  * __anon_vma_prepare - attach an anon_vma to a memory region
161  * @vma: the memory region in question
162  *
163  * This makes sure the memory mapping described by 'vma' has
164  * an 'anon_vma' attached to it, so that we can associate the
165  * anonymous pages mapped into it with that anon_vma.
166  *
167  * The common case will be that we already have one, which
168  * is handled inline by anon_vma_prepare(). But if
169  * not we either need to find an adjacent mapping that we
170  * can re-use the anon_vma from (very common when the only
171  * reason for splitting a vma has been mprotect()), or we
172  * allocate a new one.
173  *
174  * Anon-vma allocations are very subtle, because we may have
175  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
176  * and that may actually touch the rwsem even in the newly
177  * allocated vma (it depends on RCU to make sure that the
178  * anon_vma isn't actually destroyed).
179  *
180  * As a result, we need to do proper anon_vma locking even
181  * for the new allocation. At the same time, we do not want
182  * to do any locking for the common case of already having
183  * an anon_vma.
184  */
__anon_vma_prepare(struct vm_area_struct * vma)185 int __anon_vma_prepare(struct vm_area_struct *vma)
186 {
187 	struct mm_struct *mm = vma->vm_mm;
188 	struct anon_vma *anon_vma, *allocated;
189 	struct anon_vma_chain *avc;
190 
191 	mmap_assert_locked(mm);
192 	might_sleep();
193 
194 	avc = anon_vma_chain_alloc(GFP_KERNEL);
195 	if (!avc)
196 		goto out_enomem;
197 
198 	anon_vma = find_mergeable_anon_vma(vma);
199 	allocated = NULL;
200 	if (!anon_vma) {
201 		anon_vma = anon_vma_alloc();
202 		if (unlikely(!anon_vma))
203 			goto out_enomem_free_avc;
204 		anon_vma->num_children++; /* self-parent link for new root */
205 		allocated = anon_vma;
206 	}
207 
208 	anon_vma_lock_write(anon_vma);
209 	/* page_table_lock to protect against threads */
210 	spin_lock(&mm->page_table_lock);
211 	if (likely(!vma->anon_vma)) {
212 		vma->anon_vma = anon_vma;
213 		anon_vma_chain_link(vma, avc, anon_vma);
214 		anon_vma->num_active_vmas++;
215 		allocated = NULL;
216 		avc = NULL;
217 	}
218 	spin_unlock(&mm->page_table_lock);
219 	anon_vma_unlock_write(anon_vma);
220 
221 	if (unlikely(allocated))
222 		put_anon_vma(allocated);
223 	if (unlikely(avc))
224 		anon_vma_chain_free(avc);
225 
226 	return 0;
227 
228  out_enomem_free_avc:
229 	anon_vma_chain_free(avc);
230  out_enomem:
231 	return -ENOMEM;
232 }
233 
234 /*
235  * This is a useful helper function for locking the anon_vma root as
236  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
237  * have the same vma.
238  *
239  * Such anon_vma's should have the same root, so you'd expect to see
240  * just a single mutex_lock for the whole traversal.
241  */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)242 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
243 {
244 	struct anon_vma *new_root = anon_vma->root;
245 	if (new_root != root) {
246 		if (WARN_ON_ONCE(root))
247 			up_write(&root->rwsem);
248 		root = new_root;
249 		down_write(&root->rwsem);
250 	}
251 	return root;
252 }
253 
unlock_anon_vma_root(struct anon_vma * root)254 static inline void unlock_anon_vma_root(struct anon_vma *root)
255 {
256 	if (root)
257 		up_write(&root->rwsem);
258 }
259 
260 /*
261  * Attach the anon_vmas from src to dst.
262  * Returns 0 on success, -ENOMEM on failure.
263  *
264  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
265  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
266  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
267  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
268  * call, we can identify this case by checking (!dst->anon_vma &&
269  * src->anon_vma).
270  *
271  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
272  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
273  * This prevents degradation of anon_vma hierarchy to endless linear chain in
274  * case of constantly forking task. On the other hand, an anon_vma with more
275  * than one child isn't reused even if there was no alive vma, thus rmap
276  * walker has a good chance of avoiding scanning the whole hierarchy when it
277  * searches where page is mapped.
278  */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)279 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
280 {
281 	struct anon_vma_chain *avc, *pavc;
282 	struct anon_vma *root = NULL;
283 
284 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
285 		struct anon_vma *anon_vma;
286 
287 		avc = anon_vma_chain_alloc(GFP_NOWAIT);
288 		if (unlikely(!avc)) {
289 			unlock_anon_vma_root(root);
290 			root = NULL;
291 			avc = anon_vma_chain_alloc(GFP_KERNEL);
292 			if (!avc)
293 				goto enomem_failure;
294 		}
295 		anon_vma = pavc->anon_vma;
296 		root = lock_anon_vma_root(root, anon_vma);
297 		anon_vma_chain_link(dst, avc, anon_vma);
298 
299 		/*
300 		 * Reuse existing anon_vma if it has no vma and only one
301 		 * anon_vma child.
302 		 *
303 		 * Root anon_vma is never reused:
304 		 * it has self-parent reference and at least one child.
305 		 */
306 		if (!dst->anon_vma && src->anon_vma &&
307 		    anon_vma->num_children < 2 &&
308 		    anon_vma->num_active_vmas == 0)
309 			dst->anon_vma = anon_vma;
310 	}
311 	if (dst->anon_vma)
312 		dst->anon_vma->num_active_vmas++;
313 	unlock_anon_vma_root(root);
314 	return 0;
315 
316  enomem_failure:
317 	/*
318 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
319 	 * be incorrectly decremented in unlink_anon_vmas().
320 	 * We can safely do this because callers of anon_vma_clone() don't care
321 	 * about dst->anon_vma if anon_vma_clone() failed.
322 	 */
323 	dst->anon_vma = NULL;
324 	unlink_anon_vmas(dst);
325 	return -ENOMEM;
326 }
327 
328 /*
329  * Attach vma to its own anon_vma, as well as to the anon_vmas that
330  * the corresponding VMA in the parent process is attached to.
331  * Returns 0 on success, non-zero on failure.
332  */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)333 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
334 {
335 	struct anon_vma_chain *avc;
336 	struct anon_vma *anon_vma;
337 	int error;
338 
339 	/* Don't bother if the parent process has no anon_vma here. */
340 	if (!pvma->anon_vma)
341 		return 0;
342 
343 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
344 	vma->anon_vma = NULL;
345 
346 	/*
347 	 * First, attach the new VMA to the parent VMA's anon_vmas,
348 	 * so rmap can find non-COWed pages in child processes.
349 	 */
350 	error = anon_vma_clone(vma, pvma);
351 	if (error)
352 		return error;
353 
354 	/* An existing anon_vma has been reused, all done then. */
355 	if (vma->anon_vma)
356 		return 0;
357 
358 	/* Then add our own anon_vma. */
359 	anon_vma = anon_vma_alloc();
360 	if (!anon_vma)
361 		goto out_error;
362 	anon_vma->num_active_vmas++;
363 	avc = anon_vma_chain_alloc(GFP_KERNEL);
364 	if (!avc)
365 		goto out_error_free_anon_vma;
366 
367 	/*
368 	 * The root anon_vma's rwsem is the lock actually used when we
369 	 * lock any of the anon_vmas in this anon_vma tree.
370 	 */
371 	anon_vma->root = pvma->anon_vma->root;
372 	anon_vma->parent = pvma->anon_vma;
373 	/*
374 	 * With refcounts, an anon_vma can stay around longer than the
375 	 * process it belongs to. The root anon_vma needs to be pinned until
376 	 * this anon_vma is freed, because the lock lives in the root.
377 	 */
378 	get_anon_vma(anon_vma->root);
379 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
380 	vma->anon_vma = anon_vma;
381 	anon_vma_lock_write(anon_vma);
382 	anon_vma_chain_link(vma, avc, anon_vma);
383 	anon_vma->parent->num_children++;
384 	anon_vma_unlock_write(anon_vma);
385 
386 	return 0;
387 
388  out_error_free_anon_vma:
389 	put_anon_vma(anon_vma);
390  out_error:
391 	unlink_anon_vmas(vma);
392 	return -ENOMEM;
393 }
394 
unlink_anon_vmas(struct vm_area_struct * vma)395 void unlink_anon_vmas(struct vm_area_struct *vma)
396 {
397 	struct anon_vma_chain *avc, *next;
398 	struct anon_vma *root = NULL;
399 
400 	/*
401 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
402 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
403 	 */
404 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
405 		struct anon_vma *anon_vma = avc->anon_vma;
406 
407 		root = lock_anon_vma_root(root, anon_vma);
408 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
409 
410 		/*
411 		 * Leave empty anon_vmas on the list - we'll need
412 		 * to free them outside the lock.
413 		 */
414 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
415 			anon_vma->parent->num_children--;
416 			continue;
417 		}
418 
419 		list_del(&avc->same_vma);
420 		anon_vma_chain_free(avc);
421 	}
422 	if (vma->anon_vma) {
423 		vma->anon_vma->num_active_vmas--;
424 
425 		/*
426 		 * vma would still be needed after unlink, and anon_vma will be prepared
427 		 * when handle fault.
428 		 */
429 		vma->anon_vma = NULL;
430 	}
431 	unlock_anon_vma_root(root);
432 
433 	/*
434 	 * Iterate the list once more, it now only contains empty and unlinked
435 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
436 	 * needing to write-acquire the anon_vma->root->rwsem.
437 	 */
438 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
439 		struct anon_vma *anon_vma = avc->anon_vma;
440 
441 		VM_WARN_ON(anon_vma->num_children);
442 		VM_WARN_ON(anon_vma->num_active_vmas);
443 		put_anon_vma(anon_vma);
444 
445 		list_del(&avc->same_vma);
446 		anon_vma_chain_free(avc);
447 	}
448 }
449 
anon_vma_ctor(void * data)450 static void anon_vma_ctor(void *data)
451 {
452 	struct anon_vma *anon_vma = data;
453 
454 	init_rwsem(&anon_vma->rwsem);
455 	atomic_set(&anon_vma->refcount, 0);
456 	anon_vma->rb_root = RB_ROOT_CACHED;
457 }
458 
anon_vma_init(void)459 void __init anon_vma_init(void)
460 {
461 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
462 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
463 			anon_vma_ctor);
464 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
465 			SLAB_PANIC|SLAB_ACCOUNT);
466 }
467 
468 /*
469  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
470  *
471  * Since there is no serialization what so ever against folio_remove_rmap_*()
472  * the best this function can do is return a refcount increased anon_vma
473  * that might have been relevant to this page.
474  *
475  * The page might have been remapped to a different anon_vma or the anon_vma
476  * returned may already be freed (and even reused).
477  *
478  * In case it was remapped to a different anon_vma, the new anon_vma will be a
479  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
480  * ensure that any anon_vma obtained from the page will still be valid for as
481  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
482  *
483  * All users of this function must be very careful when walking the anon_vma
484  * chain and verify that the page in question is indeed mapped in it
485  * [ something equivalent to page_mapped_in_vma() ].
486  *
487  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
488  * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
489  * if there is a mapcount, we can dereference the anon_vma after observing
490  * those.
491  *
492  * NOTE: the caller should hold folio lock when calling this.
493  */
folio_get_anon_vma(const struct folio * folio)494 struct anon_vma *folio_get_anon_vma(const struct folio *folio)
495 {
496 	struct anon_vma *anon_vma = NULL;
497 	unsigned long anon_mapping;
498 
499 	VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
500 
501 	rcu_read_lock();
502 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
503 	if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON)
504 		goto out;
505 	if (!folio_mapped(folio))
506 		goto out;
507 
508 	anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON);
509 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
510 		anon_vma = NULL;
511 		goto out;
512 	}
513 
514 	/*
515 	 * If this folio is still mapped, then its anon_vma cannot have been
516 	 * freed.  But if it has been unmapped, we have no security against the
517 	 * anon_vma structure being freed and reused (for another anon_vma:
518 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
519 	 * above cannot corrupt).
520 	 */
521 	if (!folio_mapped(folio)) {
522 		rcu_read_unlock();
523 		put_anon_vma(anon_vma);
524 		return NULL;
525 	}
526 out:
527 	rcu_read_unlock();
528 
529 	return anon_vma;
530 }
531 
532 /*
533  * Similar to folio_get_anon_vma() except it locks the anon_vma.
534  *
535  * Its a little more complex as it tries to keep the fast path to a single
536  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
537  * reference like with folio_get_anon_vma() and then block on the mutex
538  * on !rwc->try_lock case.
539  */
folio_lock_anon_vma_read(const struct folio * folio,struct rmap_walk_control * rwc)540 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio,
541 					  struct rmap_walk_control *rwc)
542 {
543 	struct anon_vma *anon_vma = NULL;
544 	struct anon_vma *root_anon_vma;
545 	unsigned long anon_mapping;
546 
547 	VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
548 
549 	rcu_read_lock();
550 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
551 	if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON)
552 		goto out;
553 	if (!folio_mapped(folio))
554 		goto out;
555 
556 	anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON);
557 	root_anon_vma = READ_ONCE(anon_vma->root);
558 	if (down_read_trylock(&root_anon_vma->rwsem)) {
559 		/*
560 		 * If the folio is still mapped, then this anon_vma is still
561 		 * its anon_vma, and holding the mutex ensures that it will
562 		 * not go away, see anon_vma_free().
563 		 */
564 		if (!folio_mapped(folio)) {
565 			up_read(&root_anon_vma->rwsem);
566 			anon_vma = NULL;
567 		}
568 		goto out;
569 	}
570 
571 	if (rwc && rwc->try_lock) {
572 		anon_vma = NULL;
573 		rwc->contended = true;
574 		goto out;
575 	}
576 
577 	/* trylock failed, we got to sleep */
578 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
579 		anon_vma = NULL;
580 		goto out;
581 	}
582 
583 	if (!folio_mapped(folio)) {
584 		rcu_read_unlock();
585 		put_anon_vma(anon_vma);
586 		return NULL;
587 	}
588 
589 	/* we pinned the anon_vma, its safe to sleep */
590 	rcu_read_unlock();
591 	anon_vma_lock_read(anon_vma);
592 
593 	if (atomic_dec_and_test(&anon_vma->refcount)) {
594 		/*
595 		 * Oops, we held the last refcount, release the lock
596 		 * and bail -- can't simply use put_anon_vma() because
597 		 * we'll deadlock on the anon_vma_lock_write() recursion.
598 		 */
599 		anon_vma_unlock_read(anon_vma);
600 		__put_anon_vma(anon_vma);
601 		anon_vma = NULL;
602 	}
603 
604 	return anon_vma;
605 
606 out:
607 	rcu_read_unlock();
608 	return anon_vma;
609 }
610 
611 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
612 /*
613  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
614  * important if a PTE was dirty when it was unmapped that it's flushed
615  * before any IO is initiated on the page to prevent lost writes. Similarly,
616  * it must be flushed before freeing to prevent data leakage.
617  */
try_to_unmap_flush(void)618 void try_to_unmap_flush(void)
619 {
620 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
621 
622 	if (!tlb_ubc->flush_required)
623 		return;
624 
625 	arch_tlbbatch_flush(&tlb_ubc->arch);
626 	tlb_ubc->flush_required = false;
627 	tlb_ubc->writable = false;
628 }
629 
630 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)631 void try_to_unmap_flush_dirty(void)
632 {
633 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
634 
635 	if (tlb_ubc->writable)
636 		try_to_unmap_flush();
637 }
638 
639 /*
640  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
641  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
642  */
643 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
644 #define TLB_FLUSH_BATCH_PENDING_MASK			\
645 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
646 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
647 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
648 
set_tlb_ubc_flush_pending(struct mm_struct * mm,pte_t pteval,unsigned long start,unsigned long end)649 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
650 		unsigned long start, unsigned long end)
651 {
652 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
653 	int batch;
654 	bool writable = pte_dirty(pteval);
655 
656 	if (!pte_accessible(mm, pteval))
657 		return;
658 
659 	arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, start, end);
660 	tlb_ubc->flush_required = true;
661 
662 	/*
663 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
664 	 * before the PTE is cleared.
665 	 */
666 	barrier();
667 	batch = atomic_read(&mm->tlb_flush_batched);
668 retry:
669 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
670 		/*
671 		 * Prevent `pending' from catching up with `flushed' because of
672 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
673 		 * `pending' becomes large.
674 		 */
675 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
676 			goto retry;
677 	} else {
678 		atomic_inc(&mm->tlb_flush_batched);
679 	}
680 
681 	/*
682 	 * If the PTE was dirty then it's best to assume it's writable. The
683 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
684 	 * before the page is queued for IO.
685 	 */
686 	if (writable)
687 		tlb_ubc->writable = true;
688 }
689 
690 /*
691  * Returns true if the TLB flush should be deferred to the end of a batch of
692  * unmap operations to reduce IPIs.
693  */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)694 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
695 {
696 	if (!(flags & TTU_BATCH_FLUSH))
697 		return false;
698 
699 	return arch_tlbbatch_should_defer(mm);
700 }
701 
702 /*
703  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
704  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
705  * operation such as mprotect or munmap to race between reclaim unmapping
706  * the page and flushing the page. If this race occurs, it potentially allows
707  * access to data via a stale TLB entry. Tracking all mm's that have TLB
708  * batching in flight would be expensive during reclaim so instead track
709  * whether TLB batching occurred in the past and if so then do a flush here
710  * if required. This will cost one additional flush per reclaim cycle paid
711  * by the first operation at risk such as mprotect and mumap.
712  *
713  * This must be called under the PTL so that an access to tlb_flush_batched
714  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
715  * via the PTL.
716  */
flush_tlb_batched_pending(struct mm_struct * mm)717 void flush_tlb_batched_pending(struct mm_struct *mm)
718 {
719 	int batch = atomic_read(&mm->tlb_flush_batched);
720 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
721 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
722 
723 	if (pending != flushed) {
724 		flush_tlb_mm(mm);
725 		/*
726 		 * If the new TLB flushing is pending during flushing, leave
727 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
728 		 */
729 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
730 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
731 	}
732 }
733 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,pte_t pteval,unsigned long start,unsigned long end)734 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
735 		unsigned long start, unsigned long end)
736 {
737 }
738 
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)739 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
740 {
741 	return false;
742 }
743 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
744 
745 /**
746  * page_address_in_vma - The virtual address of a page in this VMA.
747  * @folio: The folio containing the page.
748  * @page: The page within the folio.
749  * @vma: The VMA we need to know the address in.
750  *
751  * Calculates the user virtual address of this page in the specified VMA.
752  * It is the caller's responsibility to check the page is actually
753  * within the VMA.  There may not currently be a PTE pointing at this
754  * page, but if a page fault occurs at this address, this is the page
755  * which will be accessed.
756  *
757  * Context: Caller should hold a reference to the folio.  Caller should
758  * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the
759  * VMA from being altered.
760  *
761  * Return: The virtual address corresponding to this page in the VMA.
762  */
page_address_in_vma(const struct folio * folio,const struct page * page,const struct vm_area_struct * vma)763 unsigned long page_address_in_vma(const struct folio *folio,
764 		const struct page *page, const struct vm_area_struct *vma)
765 {
766 	if (folio_test_anon(folio)) {
767 		struct anon_vma *anon_vma = folio_anon_vma(folio);
768 		/*
769 		 * Note: swapoff's unuse_vma() is more efficient with this
770 		 * check, and needs it to match anon_vma when KSM is active.
771 		 */
772 		if (!vma->anon_vma || !anon_vma ||
773 		    vma->anon_vma->root != anon_vma->root)
774 			return -EFAULT;
775 	} else if (!vma->vm_file) {
776 		return -EFAULT;
777 	} else if (vma->vm_file->f_mapping != folio->mapping) {
778 		return -EFAULT;
779 	}
780 
781 	/* KSM folios don't reach here because of the !anon_vma check */
782 	return vma_address(vma, page_pgoff(folio, page), 1);
783 }
784 
785 /*
786  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
787  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
788  * represents.
789  */
mm_find_pmd(struct mm_struct * mm,unsigned long address)790 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
791 {
792 	pgd_t *pgd;
793 	p4d_t *p4d;
794 	pud_t *pud;
795 	pmd_t *pmd = NULL;
796 
797 	pgd = pgd_offset(mm, address);
798 	if (!pgd_present(*pgd))
799 		goto out;
800 
801 	p4d = p4d_offset(pgd, address);
802 	if (!p4d_present(*p4d))
803 		goto out;
804 
805 	pud = pud_offset(p4d, address);
806 	if (!pud_present(*pud))
807 		goto out;
808 
809 	pmd = pmd_offset(pud, address);
810 out:
811 	return pmd;
812 }
813 
814 struct folio_referenced_arg {
815 	int mapcount;
816 	int referenced;
817 	vm_flags_t vm_flags;
818 	struct mem_cgroup *memcg;
819 };
820 
821 /*
822  * arg: folio_referenced_arg will be passed
823  */
folio_referenced_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)824 static bool folio_referenced_one(struct folio *folio,
825 		struct vm_area_struct *vma, unsigned long address, void *arg)
826 {
827 	struct folio_referenced_arg *pra = arg;
828 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
829 	int ptes = 0, referenced = 0;
830 
831 	while (page_vma_mapped_walk(&pvmw)) {
832 		address = pvmw.address;
833 
834 		if (vma->vm_flags & VM_LOCKED) {
835 			ptes++;
836 			pra->mapcount--;
837 
838 			/* Only mlock fully mapped pages */
839 			if (pvmw.pte && ptes != pvmw.nr_pages)
840 				continue;
841 
842 			/*
843 			 * All PTEs must be protected by page table lock in
844 			 * order to mlock the page.
845 			 *
846 			 * If page table boundary has been cross, current ptl
847 			 * only protect part of ptes.
848 			 */
849 			if (pvmw.flags & PVMW_PGTABLE_CROSSED)
850 				continue;
851 
852 			/* Restore the mlock which got missed */
853 			mlock_vma_folio(folio, vma);
854 			page_vma_mapped_walk_done(&pvmw);
855 			pra->vm_flags |= VM_LOCKED;
856 			return false; /* To break the loop */
857 		}
858 
859 		/*
860 		 * Skip the non-shared swapbacked folio mapped solely by
861 		 * the exiting or OOM-reaped process. This avoids redundant
862 		 * swap-out followed by an immediate unmap.
863 		 */
864 		if ((!atomic_read(&vma->vm_mm->mm_users) ||
865 		    check_stable_address_space(vma->vm_mm)) &&
866 		    folio_test_anon(folio) && folio_test_swapbacked(folio) &&
867 		    !folio_maybe_mapped_shared(folio)) {
868 			pra->referenced = -1;
869 			page_vma_mapped_walk_done(&pvmw);
870 			return false;
871 		}
872 
873 		if (lru_gen_enabled() && pvmw.pte) {
874 			if (lru_gen_look_around(&pvmw))
875 				referenced++;
876 		} else if (pvmw.pte) {
877 			if (ptep_clear_flush_young_notify(vma, address,
878 						pvmw.pte))
879 				referenced++;
880 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
881 			if (pmdp_clear_flush_young_notify(vma, address,
882 						pvmw.pmd))
883 				referenced++;
884 		} else {
885 			/* unexpected pmd-mapped folio? */
886 			WARN_ON_ONCE(1);
887 		}
888 
889 		pra->mapcount--;
890 	}
891 
892 	if (referenced)
893 		folio_clear_idle(folio);
894 	if (folio_test_clear_young(folio))
895 		referenced++;
896 
897 	if (referenced) {
898 		pra->referenced++;
899 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
900 	}
901 
902 	if (!pra->mapcount)
903 		return false; /* To break the loop */
904 
905 	return true;
906 }
907 
invalid_folio_referenced_vma(struct vm_area_struct * vma,void * arg)908 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
909 {
910 	struct folio_referenced_arg *pra = arg;
911 	struct mem_cgroup *memcg = pra->memcg;
912 
913 	/*
914 	 * Ignore references from this mapping if it has no recency. If the
915 	 * folio has been used in another mapping, we will catch it; if this
916 	 * other mapping is already gone, the unmap path will have set the
917 	 * referenced flag or activated the folio in zap_pte_range().
918 	 */
919 	if (!vma_has_recency(vma))
920 		return true;
921 
922 	/*
923 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
924 	 * of references from different cgroups.
925 	 */
926 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
927 		return true;
928 
929 	return false;
930 }
931 
932 /**
933  * folio_referenced() - Test if the folio was referenced.
934  * @folio: The folio to test.
935  * @is_locked: Caller holds lock on the folio.
936  * @memcg: target memory cgroup
937  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
938  *
939  * Quick test_and_clear_referenced for all mappings of a folio,
940  *
941  * Return: The number of mappings which referenced the folio. Return -1 if
942  * the function bailed out due to rmap lock contention.
943  */
folio_referenced(struct folio * folio,int is_locked,struct mem_cgroup * memcg,vm_flags_t * vm_flags)944 int folio_referenced(struct folio *folio, int is_locked,
945 		     struct mem_cgroup *memcg, vm_flags_t *vm_flags)
946 {
947 	bool we_locked = false;
948 	struct folio_referenced_arg pra = {
949 		.mapcount = folio_mapcount(folio),
950 		.memcg = memcg,
951 	};
952 	struct rmap_walk_control rwc = {
953 		.rmap_one = folio_referenced_one,
954 		.arg = (void *)&pra,
955 		.anon_lock = folio_lock_anon_vma_read,
956 		.try_lock = true,
957 		.invalid_vma = invalid_folio_referenced_vma,
958 	};
959 
960 	*vm_flags = 0;
961 	if (!pra.mapcount)
962 		return 0;
963 
964 	if (!folio_raw_mapping(folio))
965 		return 0;
966 
967 	if (!is_locked) {
968 		we_locked = folio_trylock(folio);
969 		if (!we_locked)
970 			return 1;
971 	}
972 
973 	rmap_walk(folio, &rwc);
974 	*vm_flags = pra.vm_flags;
975 
976 	if (we_locked)
977 		folio_unlock(folio);
978 
979 	return rwc.contended ? -1 : pra.referenced;
980 }
981 
page_vma_mkclean_one(struct page_vma_mapped_walk * pvmw)982 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
983 {
984 	int cleaned = 0;
985 	struct vm_area_struct *vma = pvmw->vma;
986 	struct mmu_notifier_range range;
987 	unsigned long address = pvmw->address;
988 
989 	/*
990 	 * We have to assume the worse case ie pmd for invalidation. Note that
991 	 * the folio can not be freed from this function.
992 	 */
993 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
994 				vma->vm_mm, address, vma_address_end(pvmw));
995 	mmu_notifier_invalidate_range_start(&range);
996 
997 	while (page_vma_mapped_walk(pvmw)) {
998 		int ret = 0;
999 
1000 		address = pvmw->address;
1001 		if (pvmw->pte) {
1002 			pte_t *pte = pvmw->pte;
1003 			pte_t entry = ptep_get(pte);
1004 
1005 			/*
1006 			 * PFN swap PTEs, such as device-exclusive ones, that
1007 			 * actually map pages are clean and not writable from a
1008 			 * CPU perspective. The MMU notifier takes care of any
1009 			 * device aspects.
1010 			 */
1011 			if (!pte_present(entry))
1012 				continue;
1013 			if (!pte_dirty(entry) && !pte_write(entry))
1014 				continue;
1015 
1016 			flush_cache_page(vma, address, pte_pfn(entry));
1017 			entry = ptep_clear_flush(vma, address, pte);
1018 			entry = pte_wrprotect(entry);
1019 			entry = pte_mkclean(entry);
1020 			set_pte_at(vma->vm_mm, address, pte, entry);
1021 			ret = 1;
1022 		} else {
1023 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1024 			pmd_t *pmd = pvmw->pmd;
1025 			pmd_t entry = pmdp_get(pmd);
1026 
1027 			/*
1028 			 * Please see the comment above (!pte_present).
1029 			 * A non present PMD is not writable from a CPU
1030 			 * perspective.
1031 			 */
1032 			if (!pmd_present(entry))
1033 				continue;
1034 			if (!pmd_dirty(entry) && !pmd_write(entry))
1035 				continue;
1036 
1037 			flush_cache_range(vma, address,
1038 					  address + HPAGE_PMD_SIZE);
1039 			entry = pmdp_invalidate(vma, address, pmd);
1040 			entry = pmd_wrprotect(entry);
1041 			entry = pmd_mkclean(entry);
1042 			set_pmd_at(vma->vm_mm, address, pmd, entry);
1043 			ret = 1;
1044 #else
1045 			/* unexpected pmd-mapped folio? */
1046 			WARN_ON_ONCE(1);
1047 #endif
1048 		}
1049 
1050 		if (ret)
1051 			cleaned++;
1052 	}
1053 
1054 	mmu_notifier_invalidate_range_end(&range);
1055 
1056 	return cleaned;
1057 }
1058 
page_mkclean_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1059 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1060 			     unsigned long address, void *arg)
1061 {
1062 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1063 	int *cleaned = arg;
1064 
1065 	*cleaned += page_vma_mkclean_one(&pvmw);
1066 
1067 	return true;
1068 }
1069 
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)1070 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1071 {
1072 	if (vma->vm_flags & VM_SHARED)
1073 		return false;
1074 
1075 	return true;
1076 }
1077 
folio_mkclean(struct folio * folio)1078 int folio_mkclean(struct folio *folio)
1079 {
1080 	int cleaned = 0;
1081 	struct address_space *mapping;
1082 	struct rmap_walk_control rwc = {
1083 		.arg = (void *)&cleaned,
1084 		.rmap_one = page_mkclean_one,
1085 		.invalid_vma = invalid_mkclean_vma,
1086 	};
1087 
1088 	BUG_ON(!folio_test_locked(folio));
1089 
1090 	if (!folio_mapped(folio))
1091 		return 0;
1092 
1093 	mapping = folio_mapping(folio);
1094 	if (!mapping)
1095 		return 0;
1096 
1097 	rmap_walk(folio, &rwc);
1098 
1099 	return cleaned;
1100 }
1101 EXPORT_SYMBOL_GPL(folio_mkclean);
1102 
1103 struct wrprotect_file_state {
1104 	int cleaned;
1105 	pgoff_t pgoff;
1106 	unsigned long pfn;
1107 	unsigned long nr_pages;
1108 };
1109 
mapping_wrprotect_range_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1110 static bool mapping_wrprotect_range_one(struct folio *folio,
1111 		struct vm_area_struct *vma, unsigned long address, void *arg)
1112 {
1113 	struct wrprotect_file_state *state = (struct wrprotect_file_state *)arg;
1114 	struct page_vma_mapped_walk pvmw = {
1115 		.pfn		= state->pfn,
1116 		.nr_pages	= state->nr_pages,
1117 		.pgoff		= state->pgoff,
1118 		.vma		= vma,
1119 		.address	= address,
1120 		.flags		= PVMW_SYNC,
1121 	};
1122 
1123 	state->cleaned += page_vma_mkclean_one(&pvmw);
1124 
1125 	return true;
1126 }
1127 
1128 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping,
1129 			     pgoff_t pgoff_start, unsigned long nr_pages,
1130 			     struct rmap_walk_control *rwc, bool locked);
1131 
1132 /**
1133  * mapping_wrprotect_range() - Write-protect all mappings in a specified range.
1134  *
1135  * @mapping:	The mapping whose reverse mapping should be traversed.
1136  * @pgoff:	The page offset at which @pfn is mapped within @mapping.
1137  * @pfn:	The PFN of the page mapped in @mapping at @pgoff.
1138  * @nr_pages:	The number of physically contiguous base pages spanned.
1139  *
1140  * Traverses the reverse mapping, finding all VMAs which contain a shared
1141  * mapping of the pages in the specified range in @mapping, and write-protects
1142  * them (that is, updates the page tables to mark the mappings read-only such
1143  * that a write protection fault arises when the mappings are written to).
1144  *
1145  * The @pfn value need not refer to a folio, but rather can reference a kernel
1146  * allocation which is mapped into userland. We therefore do not require that
1147  * the page maps to a folio with a valid mapping or index field, rather the
1148  * caller specifies these in @mapping and @pgoff.
1149  *
1150  * Return: the number of write-protected PTEs, or an error.
1151  */
mapping_wrprotect_range(struct address_space * mapping,pgoff_t pgoff,unsigned long pfn,unsigned long nr_pages)1152 int mapping_wrprotect_range(struct address_space *mapping, pgoff_t pgoff,
1153 		unsigned long pfn, unsigned long nr_pages)
1154 {
1155 	struct wrprotect_file_state state = {
1156 		.cleaned = 0,
1157 		.pgoff = pgoff,
1158 		.pfn = pfn,
1159 		.nr_pages = nr_pages,
1160 	};
1161 	struct rmap_walk_control rwc = {
1162 		.arg = (void *)&state,
1163 		.rmap_one = mapping_wrprotect_range_one,
1164 		.invalid_vma = invalid_mkclean_vma,
1165 	};
1166 
1167 	if (!mapping)
1168 		return 0;
1169 
1170 	__rmap_walk_file(/* folio = */NULL, mapping, pgoff, nr_pages, &rwc,
1171 			 /* locked = */false);
1172 
1173 	return state.cleaned;
1174 }
1175 EXPORT_SYMBOL_GPL(mapping_wrprotect_range);
1176 
1177 /**
1178  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1179  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1180  *                     within the @vma of shared mappings. And since clean PTEs
1181  *                     should also be readonly, write protects them too.
1182  * @pfn: start pfn.
1183  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1184  * @pgoff: page offset that the @pfn mapped with.
1185  * @vma: vma that @pfn mapped within.
1186  *
1187  * Returns the number of cleaned PTEs (including PMDs).
1188  */
pfn_mkclean_range(unsigned long pfn,unsigned long nr_pages,pgoff_t pgoff,struct vm_area_struct * vma)1189 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1190 		      struct vm_area_struct *vma)
1191 {
1192 	struct page_vma_mapped_walk pvmw = {
1193 		.pfn		= pfn,
1194 		.nr_pages	= nr_pages,
1195 		.pgoff		= pgoff,
1196 		.vma		= vma,
1197 		.flags		= PVMW_SYNC,
1198 	};
1199 
1200 	if (invalid_mkclean_vma(vma, NULL))
1201 		return 0;
1202 
1203 	pvmw.address = vma_address(vma, pgoff, nr_pages);
1204 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1205 
1206 	return page_vma_mkclean_one(&pvmw);
1207 }
1208 
__folio_mod_stat(struct folio * folio,int nr,int nr_pmdmapped)1209 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
1210 {
1211 	int idx;
1212 
1213 	if (nr) {
1214 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1215 		lruvec_stat_mod_folio(folio, idx, nr);
1216 	}
1217 	if (nr_pmdmapped) {
1218 		if (folio_test_anon(folio)) {
1219 			idx = NR_ANON_THPS;
1220 			lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1221 		} else {
1222 			/* NR_*_PMDMAPPED are not maintained per-memcg */
1223 			idx = folio_test_swapbacked(folio) ?
1224 				NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1225 			__mod_node_page_state(folio_pgdat(folio), idx,
1226 					      nr_pmdmapped);
1227 		}
1228 	}
1229 }
1230 
__folio_add_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum pgtable_level level)1231 static __always_inline void __folio_add_rmap(struct folio *folio,
1232 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1233 		enum pgtable_level level)
1234 {
1235 	atomic_t *mapped = &folio->_nr_pages_mapped;
1236 	const int orig_nr_pages = nr_pages;
1237 	int first = 0, nr = 0, nr_pmdmapped = 0;
1238 
1239 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1240 
1241 	switch (level) {
1242 	case PGTABLE_LEVEL_PTE:
1243 		if (!folio_test_large(folio)) {
1244 			nr = atomic_inc_and_test(&folio->_mapcount);
1245 			break;
1246 		}
1247 
1248 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1249 			nr = folio_add_return_large_mapcount(folio, orig_nr_pages, vma);
1250 			if (nr == orig_nr_pages)
1251 				/* Was completely unmapped. */
1252 				nr = folio_large_nr_pages(folio);
1253 			else
1254 				nr = 0;
1255 			break;
1256 		}
1257 
1258 		do {
1259 			first += atomic_inc_and_test(&page->_mapcount);
1260 		} while (page++, --nr_pages > 0);
1261 
1262 		if (first &&
1263 		    atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED)
1264 			nr = first;
1265 
1266 		folio_add_large_mapcount(folio, orig_nr_pages, vma);
1267 		break;
1268 	case PGTABLE_LEVEL_PMD:
1269 	case PGTABLE_LEVEL_PUD:
1270 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1271 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1272 			if (level == PGTABLE_LEVEL_PMD && first)
1273 				nr_pmdmapped = folio_large_nr_pages(folio);
1274 			nr = folio_inc_return_large_mapcount(folio, vma);
1275 			if (nr == 1)
1276 				/* Was completely unmapped. */
1277 				nr = folio_large_nr_pages(folio);
1278 			else
1279 				nr = 0;
1280 			break;
1281 		}
1282 
1283 		if (first) {
1284 			nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1285 			if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1286 				nr_pages = folio_large_nr_pages(folio);
1287 				/*
1288 				 * We only track PMD mappings of PMD-sized
1289 				 * folios separately.
1290 				 */
1291 				if (level == PGTABLE_LEVEL_PMD)
1292 					nr_pmdmapped = nr_pages;
1293 				nr = nr_pages - (nr & FOLIO_PAGES_MAPPED);
1294 				/* Raced ahead of a remove and another add? */
1295 				if (unlikely(nr < 0))
1296 					nr = 0;
1297 			} else {
1298 				/* Raced ahead of a remove of ENTIRELY_MAPPED */
1299 				nr = 0;
1300 			}
1301 		}
1302 		folio_inc_large_mapcount(folio, vma);
1303 		break;
1304 	default:
1305 		BUILD_BUG();
1306 	}
1307 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1308 }
1309 
1310 /**
1311  * folio_move_anon_rmap - move a folio to our anon_vma
1312  * @folio:	The folio to move to our anon_vma
1313  * @vma:	The vma the folio belongs to
1314  *
1315  * When a folio belongs exclusively to one process after a COW event,
1316  * that folio can be moved into the anon_vma that belongs to just that
1317  * process, so the rmap code will not search the parent or sibling processes.
1318  */
folio_move_anon_rmap(struct folio * folio,struct vm_area_struct * vma)1319 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1320 {
1321 	void *anon_vma = vma->anon_vma;
1322 
1323 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1324 	VM_BUG_ON_VMA(!anon_vma, vma);
1325 
1326 	anon_vma += FOLIO_MAPPING_ANON;
1327 	/*
1328 	 * Ensure that anon_vma and the FOLIO_MAPPING_ANON bit are written
1329 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1330 	 * folio_test_anon()) will not see one without the other.
1331 	 */
1332 	WRITE_ONCE(folio->mapping, anon_vma);
1333 }
1334 
1335 /**
1336  * __folio_set_anon - set up a new anonymous rmap for a folio
1337  * @folio:	The folio to set up the new anonymous rmap for.
1338  * @vma:	VM area to add the folio to.
1339  * @address:	User virtual address of the mapping
1340  * @exclusive:	Whether the folio is exclusive to the process.
1341  */
__folio_set_anon(struct folio * folio,struct vm_area_struct * vma,unsigned long address,bool exclusive)1342 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1343 			     unsigned long address, bool exclusive)
1344 {
1345 	struct anon_vma *anon_vma = vma->anon_vma;
1346 
1347 	BUG_ON(!anon_vma);
1348 
1349 	/*
1350 	 * If the folio isn't exclusive to this vma, we must use the _oldest_
1351 	 * possible anon_vma for the folio mapping!
1352 	 */
1353 	if (!exclusive)
1354 		anon_vma = anon_vma->root;
1355 
1356 	/*
1357 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1358 	 * Make sure the compiler doesn't split the stores of anon_vma and
1359 	 * the FOLIO_MAPPING_ANON type identifier, otherwise the rmap code
1360 	 * could mistake the mapping for a struct address_space and crash.
1361 	 */
1362 	anon_vma = (void *) anon_vma + FOLIO_MAPPING_ANON;
1363 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1364 	folio->index = linear_page_index(vma, address);
1365 }
1366 
1367 /**
1368  * __page_check_anon_rmap - sanity check anonymous rmap addition
1369  * @folio:	The folio containing @page.
1370  * @page:	the page to check the mapping of
1371  * @vma:	the vm area in which the mapping is added
1372  * @address:	the user virtual address mapped
1373  */
__page_check_anon_rmap(const struct folio * folio,const struct page * page,struct vm_area_struct * vma,unsigned long address)1374 static void __page_check_anon_rmap(const struct folio *folio,
1375 		const struct page *page, struct vm_area_struct *vma,
1376 		unsigned long address)
1377 {
1378 	/*
1379 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1380 	 * be set up correctly at this point.
1381 	 *
1382 	 * We have exclusion against folio_add_anon_rmap_*() because the caller
1383 	 * always holds the page locked.
1384 	 *
1385 	 * We have exclusion against folio_add_new_anon_rmap because those pages
1386 	 * are initially only visible via the pagetables, and the pte is locked
1387 	 * over the call to folio_add_new_anon_rmap.
1388 	 */
1389 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1390 			folio);
1391 	VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address),
1392 		       page);
1393 }
1394 
__folio_add_anon_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,unsigned long address,rmap_t flags,enum pgtable_level level)1395 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1396 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1397 		unsigned long address, rmap_t flags, enum pgtable_level level)
1398 {
1399 	int i;
1400 
1401 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1402 
1403 	__folio_add_rmap(folio, page, nr_pages, vma, level);
1404 
1405 	if (likely(!folio_test_ksm(folio)))
1406 		__page_check_anon_rmap(folio, page, vma, address);
1407 
1408 	if (flags & RMAP_EXCLUSIVE) {
1409 		switch (level) {
1410 		case PGTABLE_LEVEL_PTE:
1411 			for (i = 0; i < nr_pages; i++)
1412 				SetPageAnonExclusive(page + i);
1413 			break;
1414 		case PGTABLE_LEVEL_PMD:
1415 			SetPageAnonExclusive(page);
1416 			break;
1417 		case PGTABLE_LEVEL_PUD:
1418 			/*
1419 			 * Keep the compiler happy, we don't support anonymous
1420 			 * PUD mappings.
1421 			 */
1422 			WARN_ON_ONCE(1);
1423 			break;
1424 		default:
1425 			BUILD_BUG();
1426 		}
1427 	}
1428 
1429 	VM_WARN_ON_FOLIO(!folio_test_large(folio) && PageAnonExclusive(page) &&
1430 			 atomic_read(&folio->_mapcount) > 0, folio);
1431 	for (i = 0; i < nr_pages; i++) {
1432 		struct page *cur_page = page + i;
1433 
1434 		VM_WARN_ON_FOLIO(folio_test_large(folio) &&
1435 				 folio_entire_mapcount(folio) > 1 &&
1436 				 PageAnonExclusive(cur_page), folio);
1437 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT))
1438 			continue;
1439 
1440 		/*
1441 		 * While PTE-mapping a THP we have a PMD and a PTE
1442 		 * mapping.
1443 		 */
1444 		VM_WARN_ON_FOLIO(atomic_read(&cur_page->_mapcount) > 0 &&
1445 				 PageAnonExclusive(cur_page), folio);
1446 	}
1447 
1448 	/*
1449 	 * Only mlock it if the folio is fully mapped to the VMA.
1450 	 *
1451 	 * Partially mapped folios can be split on reclaim and part outside
1452 	 * of mlocked VMA can be evicted or freed.
1453 	 */
1454 	if (folio_nr_pages(folio) == nr_pages)
1455 		mlock_vma_folio(folio, vma);
1456 }
1457 
1458 /**
1459  * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1460  * @folio:	The folio to add the mappings to
1461  * @page:	The first page to add
1462  * @nr_pages:	The number of pages which will be mapped
1463  * @vma:	The vm area in which the mappings are added
1464  * @address:	The user virtual address of the first page to map
1465  * @flags:	The rmap flags
1466  *
1467  * The page range of folio is defined by [first_page, first_page + nr_pages)
1468  *
1469  * The caller needs to hold the page table lock, and the page must be locked in
1470  * the anon_vma case: to serialize mapping,index checking after setting,
1471  * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1472  * (but KSM folios are never downgraded).
1473  */
folio_add_anon_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1474 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1475 		int nr_pages, struct vm_area_struct *vma, unsigned long address,
1476 		rmap_t flags)
1477 {
1478 	__folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1479 			      PGTABLE_LEVEL_PTE);
1480 }
1481 
1482 /**
1483  * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1484  * @folio:	The folio to add the mapping to
1485  * @page:	The first page to add
1486  * @vma:	The vm area in which the mapping is added
1487  * @address:	The user virtual address of the first page to map
1488  * @flags:	The rmap flags
1489  *
1490  * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1491  *
1492  * The caller needs to hold the page table lock, and the page must be locked in
1493  * the anon_vma case: to serialize mapping,index checking after setting.
1494  */
folio_add_anon_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1495 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1496 		struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1497 {
1498 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1499 	__folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1500 			      PGTABLE_LEVEL_PMD);
1501 #else
1502 	WARN_ON_ONCE(true);
1503 #endif
1504 }
1505 
1506 /**
1507  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1508  * @folio:	The folio to add the mapping to.
1509  * @vma:	the vm area in which the mapping is added
1510  * @address:	the user virtual address mapped
1511  * @flags:	The rmap flags
1512  *
1513  * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1514  * This means the inc-and-test can be bypassed.
1515  * The folio doesn't necessarily need to be locked while it's exclusive
1516  * unless two threads map it concurrently. However, the folio must be
1517  * locked if it's shared.
1518  *
1519  * If the folio is pmd-mappable, it is accounted as a THP.
1520  */
folio_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1521 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1522 		unsigned long address, rmap_t flags)
1523 {
1524 	const bool exclusive = flags & RMAP_EXCLUSIVE;
1525 	int nr = 1, nr_pmdmapped = 0;
1526 
1527 	VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1528 	VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1529 
1530 	/*
1531 	 * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1532 	 * under memory pressure.
1533 	 */
1534 	if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1535 		__folio_set_swapbacked(folio);
1536 	__folio_set_anon(folio, vma, address, exclusive);
1537 
1538 	if (likely(!folio_test_large(folio))) {
1539 		/* increment count (starts at -1) */
1540 		atomic_set(&folio->_mapcount, 0);
1541 		if (exclusive)
1542 			SetPageAnonExclusive(&folio->page);
1543 	} else if (!folio_test_pmd_mappable(folio)) {
1544 		int i;
1545 
1546 		nr = folio_large_nr_pages(folio);
1547 		for (i = 0; i < nr; i++) {
1548 			struct page *page = folio_page(folio, i);
1549 
1550 			if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1551 				/* increment count (starts at -1) */
1552 				atomic_set(&page->_mapcount, 0);
1553 			if (exclusive)
1554 				SetPageAnonExclusive(page);
1555 		}
1556 
1557 		folio_set_large_mapcount(folio, nr, vma);
1558 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1559 			atomic_set(&folio->_nr_pages_mapped, nr);
1560 	} else {
1561 		nr = folio_large_nr_pages(folio);
1562 		/* increment count (starts at -1) */
1563 		atomic_set(&folio->_entire_mapcount, 0);
1564 		folio_set_large_mapcount(folio, 1, vma);
1565 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1566 			atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1567 		if (exclusive)
1568 			SetPageAnonExclusive(&folio->page);
1569 		nr_pmdmapped = nr;
1570 	}
1571 
1572 	VM_WARN_ON_ONCE(address < vma->vm_start ||
1573 			address + (nr << PAGE_SHIFT) > vma->vm_end);
1574 
1575 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1576 	mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
1577 }
1578 
__folio_add_file_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum pgtable_level level)1579 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1580 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1581 		enum pgtable_level level)
1582 {
1583 	VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1584 
1585 	__folio_add_rmap(folio, page, nr_pages, vma, level);
1586 
1587 	/*
1588 	 * Only mlock it if the folio is fully mapped to the VMA.
1589 	 *
1590 	 * Partially mapped folios can be split on reclaim and part outside
1591 	 * of mlocked VMA can be evicted or freed.
1592 	 */
1593 	if (folio_nr_pages(folio) == nr_pages)
1594 		mlock_vma_folio(folio, vma);
1595 }
1596 
1597 /**
1598  * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1599  * @folio:	The folio to add the mappings to
1600  * @page:	The first page to add
1601  * @nr_pages:	The number of pages that will be mapped using PTEs
1602  * @vma:	The vm area in which the mappings are added
1603  *
1604  * The page range of the folio is defined by [page, page + nr_pages)
1605  *
1606  * The caller needs to hold the page table lock.
1607  */
folio_add_file_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma)1608 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1609 		int nr_pages, struct vm_area_struct *vma)
1610 {
1611 	__folio_add_file_rmap(folio, page, nr_pages, vma, PGTABLE_LEVEL_PTE);
1612 }
1613 
1614 /**
1615  * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1616  * @folio:	The folio to add the mapping to
1617  * @page:	The first page to add
1618  * @vma:	The vm area in which the mapping is added
1619  *
1620  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1621  *
1622  * The caller needs to hold the page table lock.
1623  */
folio_add_file_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma)1624 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1625 		struct vm_area_struct *vma)
1626 {
1627 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1628 	__folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, PGTABLE_LEVEL_PMD);
1629 #else
1630 	WARN_ON_ONCE(true);
1631 #endif
1632 }
1633 
1634 /**
1635  * folio_add_file_rmap_pud - add a PUD mapping to a page range of a folio
1636  * @folio:	The folio to add the mapping to
1637  * @page:	The first page to add
1638  * @vma:	The vm area in which the mapping is added
1639  *
1640  * The page range of the folio is defined by [page, page + HPAGE_PUD_NR)
1641  *
1642  * The caller needs to hold the page table lock.
1643  */
folio_add_file_rmap_pud(struct folio * folio,struct page * page,struct vm_area_struct * vma)1644 void folio_add_file_rmap_pud(struct folio *folio, struct page *page,
1645 		struct vm_area_struct *vma)
1646 {
1647 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1648 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1649 	__folio_add_file_rmap(folio, page, HPAGE_PUD_NR, vma, PGTABLE_LEVEL_PUD);
1650 #else
1651 	WARN_ON_ONCE(true);
1652 #endif
1653 }
1654 
__folio_remove_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum pgtable_level level)1655 static __always_inline void __folio_remove_rmap(struct folio *folio,
1656 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1657 		enum pgtable_level level)
1658 {
1659 	atomic_t *mapped = &folio->_nr_pages_mapped;
1660 	int last = 0, nr = 0, nr_pmdmapped = 0;
1661 	bool partially_mapped = false;
1662 
1663 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1664 
1665 	switch (level) {
1666 	case PGTABLE_LEVEL_PTE:
1667 		if (!folio_test_large(folio)) {
1668 			nr = atomic_add_negative(-1, &folio->_mapcount);
1669 			break;
1670 		}
1671 
1672 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1673 			nr = folio_sub_return_large_mapcount(folio, nr_pages, vma);
1674 			if (!nr) {
1675 				/* Now completely unmapped. */
1676 				nr = folio_large_nr_pages(folio);
1677 			} else {
1678 				partially_mapped = nr < folio_large_nr_pages(folio) &&
1679 						   !folio_entire_mapcount(folio);
1680 				nr = 0;
1681 			}
1682 			break;
1683 		}
1684 
1685 		folio_sub_large_mapcount(folio, nr_pages, vma);
1686 		do {
1687 			last += atomic_add_negative(-1, &page->_mapcount);
1688 		} while (page++, --nr_pages > 0);
1689 
1690 		if (last &&
1691 		    atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED)
1692 			nr = last;
1693 
1694 		partially_mapped = nr && atomic_read(mapped);
1695 		break;
1696 	case PGTABLE_LEVEL_PMD:
1697 	case PGTABLE_LEVEL_PUD:
1698 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1699 			last = atomic_add_negative(-1, &folio->_entire_mapcount);
1700 			if (level == PGTABLE_LEVEL_PMD && last)
1701 				nr_pmdmapped = folio_large_nr_pages(folio);
1702 			nr = folio_dec_return_large_mapcount(folio, vma);
1703 			if (!nr) {
1704 				/* Now completely unmapped. */
1705 				nr = folio_large_nr_pages(folio);
1706 			} else {
1707 				partially_mapped = last &&
1708 						   nr < folio_large_nr_pages(folio);
1709 				nr = 0;
1710 			}
1711 			break;
1712 		}
1713 
1714 		folio_dec_large_mapcount(folio, vma);
1715 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1716 		if (last) {
1717 			nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1718 			if (likely(nr < ENTIRELY_MAPPED)) {
1719 				nr_pages = folio_large_nr_pages(folio);
1720 				if (level == PGTABLE_LEVEL_PMD)
1721 					nr_pmdmapped = nr_pages;
1722 				nr = nr_pages - nr;
1723 				/* Raced ahead of another remove and an add? */
1724 				if (unlikely(nr < 0))
1725 					nr = 0;
1726 			} else {
1727 				/* An add of ENTIRELY_MAPPED raced ahead */
1728 				nr = 0;
1729 			}
1730 		}
1731 
1732 		partially_mapped = nr && nr < nr_pmdmapped;
1733 		break;
1734 	default:
1735 		BUILD_BUG();
1736 	}
1737 
1738 	/*
1739 	 * Queue anon large folio for deferred split if at least one page of
1740 	 * the folio is unmapped and at least one page is still mapped.
1741 	 *
1742 	 * Check partially_mapped first to ensure it is a large folio.
1743 	 *
1744 	 * Device private folios do not support deferred splitting and
1745 	 * shrinker based scanning of the folios to free.
1746 	 */
1747 	if (partially_mapped && folio_test_anon(folio) &&
1748 	    !folio_test_partially_mapped(folio) &&
1749 	    !folio_is_device_private(folio))
1750 		deferred_split_folio(folio, true);
1751 
1752 	__folio_mod_stat(folio, -nr, -nr_pmdmapped);
1753 
1754 	/*
1755 	 * It would be tidy to reset folio_test_anon mapping when fully
1756 	 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1757 	 * which increments mapcount after us but sets mapping before us:
1758 	 * so leave the reset to free_pages_prepare, and remember that
1759 	 * it's only reliable while mapped.
1760 	 */
1761 
1762 	munlock_vma_folio(folio, vma);
1763 }
1764 
1765 /**
1766  * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1767  * @folio:	The folio to remove the mappings from
1768  * @page:	The first page to remove
1769  * @nr_pages:	The number of pages that will be removed from the mapping
1770  * @vma:	The vm area from which the mappings are removed
1771  *
1772  * The page range of the folio is defined by [page, page + nr_pages)
1773  *
1774  * The caller needs to hold the page table lock.
1775  */
folio_remove_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma)1776 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1777 		int nr_pages, struct vm_area_struct *vma)
1778 {
1779 	__folio_remove_rmap(folio, page, nr_pages, vma, PGTABLE_LEVEL_PTE);
1780 }
1781 
1782 /**
1783  * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1784  * @folio:	The folio to remove the mapping from
1785  * @page:	The first page to remove
1786  * @vma:	The vm area from which the mapping is removed
1787  *
1788  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1789  *
1790  * The caller needs to hold the page table lock.
1791  */
folio_remove_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma)1792 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1793 		struct vm_area_struct *vma)
1794 {
1795 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1796 	__folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, PGTABLE_LEVEL_PMD);
1797 #else
1798 	WARN_ON_ONCE(true);
1799 #endif
1800 }
1801 
1802 /**
1803  * folio_remove_rmap_pud - remove a PUD mapping from a page range of a folio
1804  * @folio:	The folio to remove the mapping from
1805  * @page:	The first page to remove
1806  * @vma:	The vm area from which the mapping is removed
1807  *
1808  * The page range of the folio is defined by [page, page + HPAGE_PUD_NR)
1809  *
1810  * The caller needs to hold the page table lock.
1811  */
folio_remove_rmap_pud(struct folio * folio,struct page * page,struct vm_area_struct * vma)1812 void folio_remove_rmap_pud(struct folio *folio, struct page *page,
1813 		struct vm_area_struct *vma)
1814 {
1815 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1816 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1817 	__folio_remove_rmap(folio, page, HPAGE_PUD_NR, vma, PGTABLE_LEVEL_PUD);
1818 #else
1819 	WARN_ON_ONCE(true);
1820 #endif
1821 }
1822 
folio_unmap_pte_batch(struct folio * folio,struct page_vma_mapped_walk * pvmw,enum ttu_flags flags,pte_t pte)1823 static inline unsigned int folio_unmap_pte_batch(struct folio *folio,
1824 			struct page_vma_mapped_walk *pvmw,
1825 			enum ttu_flags flags, pte_t pte)
1826 {
1827 	unsigned long end_addr, addr = pvmw->address;
1828 	struct vm_area_struct *vma = pvmw->vma;
1829 	unsigned int max_nr;
1830 
1831 	if (flags & TTU_HWPOISON)
1832 		return 1;
1833 	if (!folio_test_large(folio))
1834 		return 1;
1835 
1836 	/* We may only batch within a single VMA and a single page table. */
1837 	end_addr = pmd_addr_end(addr, vma->vm_end);
1838 	max_nr = (end_addr - addr) >> PAGE_SHIFT;
1839 
1840 	/* We only support lazyfree batching for now ... */
1841 	if (!folio_test_anon(folio) || folio_test_swapbacked(folio))
1842 		return 1;
1843 	if (pte_unused(pte))
1844 		return 1;
1845 
1846 	return folio_pte_batch(folio, pvmw->pte, pte, max_nr);
1847 }
1848 
1849 /*
1850  * @arg: enum ttu_flags will be passed to this argument
1851  */
try_to_unmap_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1852 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1853 		     unsigned long address, void *arg)
1854 {
1855 	struct mm_struct *mm = vma->vm_mm;
1856 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1857 	bool anon_exclusive, ret = true;
1858 	pte_t pteval;
1859 	struct page *subpage;
1860 	struct mmu_notifier_range range;
1861 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1862 	unsigned long nr_pages = 1, end_addr;
1863 	unsigned long pfn;
1864 	unsigned long hsz = 0;
1865 	int ptes = 0;
1866 
1867 	/*
1868 	 * When racing against e.g. zap_pte_range() on another cpu,
1869 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1870 	 * try_to_unmap() may return before page_mapped() has become false,
1871 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1872 	 */
1873 	if (flags & TTU_SYNC)
1874 		pvmw.flags = PVMW_SYNC;
1875 
1876 	/*
1877 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1878 	 * For hugetlb, it could be much worse if we need to do pud
1879 	 * invalidation in the case of pmd sharing.
1880 	 *
1881 	 * Note that the folio can not be freed in this function as call of
1882 	 * try_to_unmap() must hold a reference on the folio.
1883 	 */
1884 	range.end = vma_address_end(&pvmw);
1885 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1886 				address, range.end);
1887 	if (folio_test_hugetlb(folio)) {
1888 		/*
1889 		 * If sharing is possible, start and end will be adjusted
1890 		 * accordingly.
1891 		 */
1892 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1893 						     &range.end);
1894 
1895 		/* We need the huge page size for set_huge_pte_at() */
1896 		hsz = huge_page_size(hstate_vma(vma));
1897 	}
1898 	mmu_notifier_invalidate_range_start(&range);
1899 
1900 	while (page_vma_mapped_walk(&pvmw)) {
1901 		/*
1902 		 * If the folio is in an mlock()d vma, we must not swap it out.
1903 		 */
1904 		if (!(flags & TTU_IGNORE_MLOCK) &&
1905 		    (vma->vm_flags & VM_LOCKED)) {
1906 			ptes++;
1907 
1908 			/*
1909 			 * Set 'ret' to indicate the page cannot be unmapped.
1910 			 *
1911 			 * Do not jump to walk_abort immediately as additional
1912 			 * iteration might be required to detect fully mapped
1913 			 * folio an mlock it.
1914 			 */
1915 			ret = false;
1916 
1917 			/* Only mlock fully mapped pages */
1918 			if (pvmw.pte && ptes != pvmw.nr_pages)
1919 				continue;
1920 
1921 			/*
1922 			 * All PTEs must be protected by page table lock in
1923 			 * order to mlock the page.
1924 			 *
1925 			 * If page table boundary has been cross, current ptl
1926 			 * only protect part of ptes.
1927 			 */
1928 			if (pvmw.flags & PVMW_PGTABLE_CROSSED)
1929 				goto walk_done;
1930 
1931 			/* Restore the mlock which got missed */
1932 			mlock_vma_folio(folio, vma);
1933 			goto walk_done;
1934 		}
1935 
1936 		if (!pvmw.pte) {
1937 			if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1938 				if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, folio))
1939 					goto walk_done;
1940 				/*
1941 				 * unmap_huge_pmd_locked has either already marked
1942 				 * the folio as swap-backed or decided to retain it
1943 				 * due to GUP or speculative references.
1944 				 */
1945 				goto walk_abort;
1946 			}
1947 
1948 			if (flags & TTU_SPLIT_HUGE_PMD) {
1949 				/*
1950 				 * We temporarily have to drop the PTL and
1951 				 * restart so we can process the PTE-mapped THP.
1952 				 */
1953 				split_huge_pmd_locked(vma, pvmw.address,
1954 						      pvmw.pmd, false);
1955 				flags &= ~TTU_SPLIT_HUGE_PMD;
1956 				page_vma_mapped_walk_restart(&pvmw);
1957 				continue;
1958 			}
1959 		}
1960 
1961 		/* Unexpected PMD-mapped THP? */
1962 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1963 
1964 		/*
1965 		 * Handle PFN swap PTEs, such as device-exclusive ones, that
1966 		 * actually map pages.
1967 		 */
1968 		pteval = ptep_get(pvmw.pte);
1969 		if (likely(pte_present(pteval))) {
1970 			pfn = pte_pfn(pteval);
1971 		} else {
1972 			const softleaf_t entry = softleaf_from_pte(pteval);
1973 
1974 			pfn = softleaf_to_pfn(entry);
1975 			VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1976 		}
1977 
1978 		subpage = folio_page(folio, pfn - folio_pfn(folio));
1979 		address = pvmw.address;
1980 		anon_exclusive = folio_test_anon(folio) &&
1981 				 PageAnonExclusive(subpage);
1982 
1983 		if (folio_test_hugetlb(folio)) {
1984 			bool anon = folio_test_anon(folio);
1985 
1986 			/*
1987 			 * The try_to_unmap() is only passed a hugetlb page
1988 			 * in the case where the hugetlb page is poisoned.
1989 			 */
1990 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1991 			/*
1992 			 * huge_pmd_unshare may unmap an entire PMD page.
1993 			 * There is no way of knowing exactly which PMDs may
1994 			 * be cached for this mm, so we must flush them all.
1995 			 * start/end were already adjusted above to cover this
1996 			 * range.
1997 			 */
1998 			flush_cache_range(vma, range.start, range.end);
1999 
2000 			/*
2001 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
2002 			 * held in write mode.  Caller needs to explicitly
2003 			 * do this outside rmap routines.
2004 			 *
2005 			 * We also must hold hugetlb vma_lock in write mode.
2006 			 * Lock order dictates acquiring vma_lock BEFORE
2007 			 * i_mmap_rwsem.  We can only try lock here and fail
2008 			 * if unsuccessful.
2009 			 */
2010 			if (!anon) {
2011 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2012 				if (!hugetlb_vma_trylock_write(vma))
2013 					goto walk_abort;
2014 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2015 					hugetlb_vma_unlock_write(vma);
2016 					flush_tlb_range(vma,
2017 						range.start, range.end);
2018 					/*
2019 					 * The ref count of the PMD page was
2020 					 * dropped which is part of the way map
2021 					 * counting is done for shared PMDs.
2022 					 * Return 'true' here.  When there is
2023 					 * no other sharing, huge_pmd_unshare
2024 					 * returns false and we will unmap the
2025 					 * actual page and drop map count
2026 					 * to zero.
2027 					 */
2028 					goto walk_done;
2029 				}
2030 				hugetlb_vma_unlock_write(vma);
2031 			}
2032 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2033 			if (pte_dirty(pteval))
2034 				folio_mark_dirty(folio);
2035 		} else if (likely(pte_present(pteval))) {
2036 			nr_pages = folio_unmap_pte_batch(folio, &pvmw, flags, pteval);
2037 			end_addr = address + nr_pages * PAGE_SIZE;
2038 			flush_cache_range(vma, address, end_addr);
2039 
2040 			/* Nuke the page table entry. */
2041 			pteval = get_and_clear_ptes(mm, address, pvmw.pte, nr_pages);
2042 			/*
2043 			 * We clear the PTE but do not flush so potentially
2044 			 * a remote CPU could still be writing to the folio.
2045 			 * If the entry was previously clean then the
2046 			 * architecture must guarantee that a clear->dirty
2047 			 * transition on a cached TLB entry is written through
2048 			 * and traps if the PTE is unmapped.
2049 			 */
2050 			if (should_defer_flush(mm, flags))
2051 				set_tlb_ubc_flush_pending(mm, pteval, address, end_addr);
2052 			else
2053 				flush_tlb_range(vma, address, end_addr);
2054 			if (pte_dirty(pteval))
2055 				folio_mark_dirty(folio);
2056 		} else {
2057 			pte_clear(mm, address, pvmw.pte);
2058 		}
2059 
2060 		/*
2061 		 * Now the pte is cleared. If this pte was uffd-wp armed,
2062 		 * we may want to replace a none pte with a marker pte if
2063 		 * it's file-backed, so we don't lose the tracking info.
2064 		 */
2065 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
2066 
2067 		/* Update high watermark before we lower rss */
2068 		update_hiwater_rss(mm);
2069 
2070 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
2071 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2072 			if (folio_test_hugetlb(folio)) {
2073 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2074 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
2075 						hsz);
2076 			} else {
2077 				dec_mm_counter(mm, mm_counter(folio));
2078 				set_pte_at(mm, address, pvmw.pte, pteval);
2079 			}
2080 		} else if (likely(pte_present(pteval)) && pte_unused(pteval) &&
2081 			   !userfaultfd_armed(vma)) {
2082 			/*
2083 			 * The guest indicated that the page content is of no
2084 			 * interest anymore. Simply discard the pte, vmscan
2085 			 * will take care of the rest.
2086 			 * A future reference will then fault in a new zero
2087 			 * page. When userfaultfd is active, we must not drop
2088 			 * this page though, as its main user (postcopy
2089 			 * migration) will not expect userfaults on already
2090 			 * copied pages.
2091 			 */
2092 			dec_mm_counter(mm, mm_counter(folio));
2093 		} else if (folio_test_anon(folio)) {
2094 			swp_entry_t entry = page_swap_entry(subpage);
2095 			pte_t swp_pte;
2096 			/*
2097 			 * Store the swap location in the pte.
2098 			 * See handle_pte_fault() ...
2099 			 */
2100 			if (unlikely(folio_test_swapbacked(folio) !=
2101 					folio_test_swapcache(folio))) {
2102 				WARN_ON_ONCE(1);
2103 				goto walk_abort;
2104 			}
2105 
2106 			/* MADV_FREE page check */
2107 			if (!folio_test_swapbacked(folio)) {
2108 				int ref_count, map_count;
2109 
2110 				/*
2111 				 * Synchronize with gup_pte_range():
2112 				 * - clear PTE; barrier; read refcount
2113 				 * - inc refcount; barrier; read PTE
2114 				 */
2115 				smp_mb();
2116 
2117 				ref_count = folio_ref_count(folio);
2118 				map_count = folio_mapcount(folio);
2119 
2120 				/*
2121 				 * Order reads for page refcount and dirty flag
2122 				 * (see comments in __remove_mapping()).
2123 				 */
2124 				smp_rmb();
2125 
2126 				if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
2127 					/*
2128 					 * redirtied either using the page table or a previously
2129 					 * obtained GUP reference.
2130 					 */
2131 					set_ptes(mm, address, pvmw.pte, pteval, nr_pages);
2132 					folio_set_swapbacked(folio);
2133 					goto walk_abort;
2134 				} else if (ref_count != 1 + map_count) {
2135 					/*
2136 					 * Additional reference. Could be a GUP reference or any
2137 					 * speculative reference. GUP users must mark the folio
2138 					 * dirty if there was a modification. This folio cannot be
2139 					 * reclaimed right now either way, so act just like nothing
2140 					 * happened.
2141 					 * We'll come back here later and detect if the folio was
2142 					 * dirtied when the additional reference is gone.
2143 					 */
2144 					set_ptes(mm, address, pvmw.pte, pteval, nr_pages);
2145 					goto walk_abort;
2146 				}
2147 				add_mm_counter(mm, MM_ANONPAGES, -nr_pages);
2148 				goto discard;
2149 			}
2150 
2151 			if (swap_duplicate(entry) < 0) {
2152 				set_pte_at(mm, address, pvmw.pte, pteval);
2153 				goto walk_abort;
2154 			}
2155 
2156 			/*
2157 			 * arch_unmap_one() is expected to be a NOP on
2158 			 * architectures where we could have PFN swap PTEs,
2159 			 * so we'll not check/care.
2160 			 */
2161 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2162 				swap_free(entry);
2163 				set_pte_at(mm, address, pvmw.pte, pteval);
2164 				goto walk_abort;
2165 			}
2166 
2167 			/* See folio_try_share_anon_rmap(): clear PTE first. */
2168 			if (anon_exclusive &&
2169 			    folio_try_share_anon_rmap_pte(folio, subpage)) {
2170 				swap_free(entry);
2171 				set_pte_at(mm, address, pvmw.pte, pteval);
2172 				goto walk_abort;
2173 			}
2174 			if (list_empty(&mm->mmlist)) {
2175 				spin_lock(&mmlist_lock);
2176 				if (list_empty(&mm->mmlist))
2177 					list_add(&mm->mmlist, &init_mm.mmlist);
2178 				spin_unlock(&mmlist_lock);
2179 			}
2180 			dec_mm_counter(mm, MM_ANONPAGES);
2181 			inc_mm_counter(mm, MM_SWAPENTS);
2182 			swp_pte = swp_entry_to_pte(entry);
2183 			if (anon_exclusive)
2184 				swp_pte = pte_swp_mkexclusive(swp_pte);
2185 			if (likely(pte_present(pteval))) {
2186 				if (pte_soft_dirty(pteval))
2187 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2188 				if (pte_uffd_wp(pteval))
2189 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2190 			} else {
2191 				if (pte_swp_soft_dirty(pteval))
2192 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2193 				if (pte_swp_uffd_wp(pteval))
2194 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2195 			}
2196 			set_pte_at(mm, address, pvmw.pte, swp_pte);
2197 		} else {
2198 			/*
2199 			 * This is a locked file-backed folio,
2200 			 * so it cannot be removed from the page
2201 			 * cache and replaced by a new folio before
2202 			 * mmu_notifier_invalidate_range_end, so no
2203 			 * concurrent thread might update its page table
2204 			 * to point at a new folio while a device is
2205 			 * still using this folio.
2206 			 *
2207 			 * See Documentation/mm/mmu_notifier.rst
2208 			 */
2209 			dec_mm_counter(mm, mm_counter_file(folio));
2210 		}
2211 discard:
2212 		if (unlikely(folio_test_hugetlb(folio))) {
2213 			hugetlb_remove_rmap(folio);
2214 		} else {
2215 			folio_remove_rmap_ptes(folio, subpage, nr_pages, vma);
2216 		}
2217 		if (vma->vm_flags & VM_LOCKED)
2218 			mlock_drain_local();
2219 		folio_put_refs(folio, nr_pages);
2220 
2221 		/*
2222 		 * If we are sure that we batched the entire folio and cleared
2223 		 * all PTEs, we can just optimize and stop right here.
2224 		 */
2225 		if (nr_pages == folio_nr_pages(folio))
2226 			goto walk_done;
2227 		continue;
2228 walk_abort:
2229 		ret = false;
2230 walk_done:
2231 		page_vma_mapped_walk_done(&pvmw);
2232 		break;
2233 	}
2234 
2235 	mmu_notifier_invalidate_range_end(&range);
2236 
2237 	return ret;
2238 }
2239 
invalid_migration_vma(struct vm_area_struct * vma,void * arg)2240 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
2241 {
2242 	return vma_is_temporary_stack(vma);
2243 }
2244 
folio_not_mapped(struct folio * folio)2245 static int folio_not_mapped(struct folio *folio)
2246 {
2247 	return !folio_mapped(folio);
2248 }
2249 
2250 /**
2251  * try_to_unmap - Try to remove all page table mappings to a folio.
2252  * @folio: The folio to unmap.
2253  * @flags: action and flags
2254  *
2255  * Tries to remove all the page table entries which are mapping this
2256  * folio.  It is the caller's responsibility to check if the folio is
2257  * still mapped if needed (use TTU_SYNC to prevent accounting races).
2258  *
2259  * Context: Caller must hold the folio lock.
2260  */
try_to_unmap(struct folio * folio,enum ttu_flags flags)2261 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
2262 {
2263 	struct rmap_walk_control rwc = {
2264 		.rmap_one = try_to_unmap_one,
2265 		.arg = (void *)flags,
2266 		.done = folio_not_mapped,
2267 		.anon_lock = folio_lock_anon_vma_read,
2268 	};
2269 
2270 	if (flags & TTU_RMAP_LOCKED)
2271 		rmap_walk_locked(folio, &rwc);
2272 	else
2273 		rmap_walk(folio, &rwc);
2274 }
2275 
2276 /*
2277  * @arg: enum ttu_flags will be passed to this argument.
2278  *
2279  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
2280  * containing migration entries.
2281  */
try_to_migrate_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)2282 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
2283 		     unsigned long address, void *arg)
2284 {
2285 	struct mm_struct *mm = vma->vm_mm;
2286 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2287 	bool anon_exclusive, writable, ret = true;
2288 	pte_t pteval;
2289 	struct page *subpage;
2290 	struct mmu_notifier_range range;
2291 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
2292 	unsigned long pfn;
2293 	unsigned long hsz = 0;
2294 
2295 	/*
2296 	 * When racing against e.g. zap_pte_range() on another cpu,
2297 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2298 	 * try_to_migrate() may return before page_mapped() has become false,
2299 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
2300 	 */
2301 	if (flags & TTU_SYNC)
2302 		pvmw.flags = PVMW_SYNC;
2303 
2304 	/*
2305 	 * For THP, we have to assume the worse case ie pmd for invalidation.
2306 	 * For hugetlb, it could be much worse if we need to do pud
2307 	 * invalidation in the case of pmd sharing.
2308 	 *
2309 	 * Note that the page can not be free in this function as call of
2310 	 * try_to_unmap() must hold a reference on the page.
2311 	 */
2312 	range.end = vma_address_end(&pvmw);
2313 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2314 				address, range.end);
2315 	if (folio_test_hugetlb(folio)) {
2316 		/*
2317 		 * If sharing is possible, start and end will be adjusted
2318 		 * accordingly.
2319 		 */
2320 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
2321 						     &range.end);
2322 
2323 		/* We need the huge page size for set_huge_pte_at() */
2324 		hsz = huge_page_size(hstate_vma(vma));
2325 	}
2326 	mmu_notifier_invalidate_range_start(&range);
2327 
2328 	while (page_vma_mapped_walk(&pvmw)) {
2329 		/* PMD-mapped THP migration entry */
2330 		if (!pvmw.pte) {
2331 			__maybe_unused unsigned long pfn;
2332 			__maybe_unused pmd_t pmdval;
2333 
2334 			if (flags & TTU_SPLIT_HUGE_PMD) {
2335 				split_huge_pmd_locked(vma, pvmw.address,
2336 						      pvmw.pmd, true);
2337 				ret = false;
2338 				page_vma_mapped_walk_done(&pvmw);
2339 				break;
2340 			}
2341 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2342 			pmdval = pmdp_get(pvmw.pmd);
2343 			if (likely(pmd_present(pmdval)))
2344 				pfn = pmd_pfn(pmdval);
2345 			else
2346 				pfn = softleaf_to_pfn(softleaf_from_pmd(pmdval));
2347 
2348 			subpage = folio_page(folio, pfn - folio_pfn(folio));
2349 
2350 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2351 					!folio_test_pmd_mappable(folio), folio);
2352 
2353 			if (set_pmd_migration_entry(&pvmw, subpage)) {
2354 				ret = false;
2355 				page_vma_mapped_walk_done(&pvmw);
2356 				break;
2357 			}
2358 			continue;
2359 #endif
2360 		}
2361 
2362 		/* Unexpected PMD-mapped THP? */
2363 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2364 
2365 		/*
2366 		 * Handle PFN swap PTEs, such as device-exclusive ones, that
2367 		 * actually map pages.
2368 		 */
2369 		pteval = ptep_get(pvmw.pte);
2370 		if (likely(pte_present(pteval))) {
2371 			pfn = pte_pfn(pteval);
2372 		} else {
2373 			const softleaf_t entry = softleaf_from_pte(pteval);
2374 
2375 			pfn = softleaf_to_pfn(entry);
2376 			VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
2377 		}
2378 
2379 		subpage = folio_page(folio, pfn - folio_pfn(folio));
2380 		address = pvmw.address;
2381 		anon_exclusive = folio_test_anon(folio) &&
2382 				 PageAnonExclusive(subpage);
2383 
2384 		if (folio_test_hugetlb(folio)) {
2385 			bool anon = folio_test_anon(folio);
2386 
2387 			/*
2388 			 * huge_pmd_unshare may unmap an entire PMD page.
2389 			 * There is no way of knowing exactly which PMDs may
2390 			 * be cached for this mm, so we must flush them all.
2391 			 * start/end were already adjusted above to cover this
2392 			 * range.
2393 			 */
2394 			flush_cache_range(vma, range.start, range.end);
2395 
2396 			/*
2397 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
2398 			 * held in write mode.  Caller needs to explicitly
2399 			 * do this outside rmap routines.
2400 			 *
2401 			 * We also must hold hugetlb vma_lock in write mode.
2402 			 * Lock order dictates acquiring vma_lock BEFORE
2403 			 * i_mmap_rwsem.  We can only try lock here and
2404 			 * fail if unsuccessful.
2405 			 */
2406 			if (!anon) {
2407 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2408 				if (!hugetlb_vma_trylock_write(vma)) {
2409 					page_vma_mapped_walk_done(&pvmw);
2410 					ret = false;
2411 					break;
2412 				}
2413 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2414 					hugetlb_vma_unlock_write(vma);
2415 					flush_tlb_range(vma,
2416 						range.start, range.end);
2417 
2418 					/*
2419 					 * The ref count of the PMD page was
2420 					 * dropped which is part of the way map
2421 					 * counting is done for shared PMDs.
2422 					 * Return 'true' here.  When there is
2423 					 * no other sharing, huge_pmd_unshare
2424 					 * returns false and we will unmap the
2425 					 * actual page and drop map count
2426 					 * to zero.
2427 					 */
2428 					page_vma_mapped_walk_done(&pvmw);
2429 					break;
2430 				}
2431 				hugetlb_vma_unlock_write(vma);
2432 			}
2433 			/* Nuke the hugetlb page table entry */
2434 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2435 			if (pte_dirty(pteval))
2436 				folio_mark_dirty(folio);
2437 			writable = pte_write(pteval);
2438 		} else if (likely(pte_present(pteval))) {
2439 			flush_cache_page(vma, address, pfn);
2440 			/* Nuke the page table entry. */
2441 			if (should_defer_flush(mm, flags)) {
2442 				/*
2443 				 * We clear the PTE but do not flush so potentially
2444 				 * a remote CPU could still be writing to the folio.
2445 				 * If the entry was previously clean then the
2446 				 * architecture must guarantee that a clear->dirty
2447 				 * transition on a cached TLB entry is written through
2448 				 * and traps if the PTE is unmapped.
2449 				 */
2450 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2451 
2452 				set_tlb_ubc_flush_pending(mm, pteval, address, address + PAGE_SIZE);
2453 			} else {
2454 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
2455 			}
2456 			if (pte_dirty(pteval))
2457 				folio_mark_dirty(folio);
2458 			writable = pte_write(pteval);
2459 		} else {
2460 			const softleaf_t entry = softleaf_from_pte(pteval);
2461 
2462 			pte_clear(mm, address, pvmw.pte);
2463 
2464 			writable = softleaf_is_device_private_write(entry);
2465 		}
2466 
2467 		VM_WARN_ON_FOLIO(writable && folio_test_anon(folio) &&
2468 				!anon_exclusive, folio);
2469 
2470 		/* Update high watermark before we lower rss */
2471 		update_hiwater_rss(mm);
2472 
2473 		if (PageHWPoison(subpage)) {
2474 			VM_WARN_ON_FOLIO(folio_is_device_private(folio), folio);
2475 
2476 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2477 			if (folio_test_hugetlb(folio)) {
2478 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2479 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
2480 						hsz);
2481 			} else {
2482 				dec_mm_counter(mm, mm_counter(folio));
2483 				set_pte_at(mm, address, pvmw.pte, pteval);
2484 			}
2485 		} else if (likely(pte_present(pteval)) && pte_unused(pteval) &&
2486 			   !userfaultfd_armed(vma)) {
2487 			/*
2488 			 * The guest indicated that the page content is of no
2489 			 * interest anymore. Simply discard the pte, vmscan
2490 			 * will take care of the rest.
2491 			 * A future reference will then fault in a new zero
2492 			 * page. When userfaultfd is active, we must not drop
2493 			 * this page though, as its main user (postcopy
2494 			 * migration) will not expect userfaults on already
2495 			 * copied pages.
2496 			 */
2497 			dec_mm_counter(mm, mm_counter(folio));
2498 		} else {
2499 			swp_entry_t entry;
2500 			pte_t swp_pte;
2501 
2502 			/*
2503 			 * arch_unmap_one() is expected to be a NOP on
2504 			 * architectures where we could have PFN swap PTEs,
2505 			 * so we'll not check/care.
2506 			 */
2507 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2508 				if (folio_test_hugetlb(folio))
2509 					set_huge_pte_at(mm, address, pvmw.pte,
2510 							pteval, hsz);
2511 				else
2512 					set_pte_at(mm, address, pvmw.pte, pteval);
2513 				ret = false;
2514 				page_vma_mapped_walk_done(&pvmw);
2515 				break;
2516 			}
2517 
2518 			/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2519 			if (folio_test_hugetlb(folio)) {
2520 				if (anon_exclusive &&
2521 				    hugetlb_try_share_anon_rmap(folio)) {
2522 					set_huge_pte_at(mm, address, pvmw.pte,
2523 							pteval, hsz);
2524 					ret = false;
2525 					page_vma_mapped_walk_done(&pvmw);
2526 					break;
2527 				}
2528 			} else if (anon_exclusive &&
2529 				   folio_try_share_anon_rmap_pte(folio, subpage)) {
2530 				set_pte_at(mm, address, pvmw.pte, pteval);
2531 				ret = false;
2532 				page_vma_mapped_walk_done(&pvmw);
2533 				break;
2534 			}
2535 
2536 			/*
2537 			 * Store the pfn of the page in a special migration
2538 			 * pte. do_swap_page() will wait until the migration
2539 			 * pte is removed and then restart fault handling.
2540 			 */
2541 			if (writable)
2542 				entry = make_writable_migration_entry(
2543 							page_to_pfn(subpage));
2544 			else if (anon_exclusive)
2545 				entry = make_readable_exclusive_migration_entry(
2546 							page_to_pfn(subpage));
2547 			else
2548 				entry = make_readable_migration_entry(
2549 							page_to_pfn(subpage));
2550 			if (likely(pte_present(pteval))) {
2551 				if (pte_young(pteval))
2552 					entry = make_migration_entry_young(entry);
2553 				if (pte_dirty(pteval))
2554 					entry = make_migration_entry_dirty(entry);
2555 				swp_pte = swp_entry_to_pte(entry);
2556 				if (pte_soft_dirty(pteval))
2557 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2558 				if (pte_uffd_wp(pteval))
2559 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2560 			} else {
2561 				swp_pte = swp_entry_to_pte(entry);
2562 				if (pte_swp_soft_dirty(pteval))
2563 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2564 				if (pte_swp_uffd_wp(pteval))
2565 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2566 			}
2567 			if (folio_test_hugetlb(folio))
2568 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2569 						hsz);
2570 			else
2571 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2572 			trace_set_migration_pte(address, pte_val(swp_pte),
2573 						folio_order(folio));
2574 			/*
2575 			 * No need to invalidate here it will synchronize on
2576 			 * against the special swap migration pte.
2577 			 */
2578 		}
2579 
2580 		if (unlikely(folio_test_hugetlb(folio)))
2581 			hugetlb_remove_rmap(folio);
2582 		else
2583 			folio_remove_rmap_pte(folio, subpage, vma);
2584 		if (vma->vm_flags & VM_LOCKED)
2585 			mlock_drain_local();
2586 		folio_put(folio);
2587 	}
2588 
2589 	mmu_notifier_invalidate_range_end(&range);
2590 
2591 	return ret;
2592 }
2593 
2594 /**
2595  * try_to_migrate - try to replace all page table mappings with swap entries
2596  * @folio: the folio to replace page table entries for
2597  * @flags: action and flags
2598  *
2599  * Tries to remove all the page table entries which are mapping this folio and
2600  * replace them with special swap entries. Caller must hold the folio lock.
2601  */
try_to_migrate(struct folio * folio,enum ttu_flags flags)2602 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2603 {
2604 	struct rmap_walk_control rwc = {
2605 		.rmap_one = try_to_migrate_one,
2606 		.arg = (void *)flags,
2607 		.done = folio_not_mapped,
2608 		.anon_lock = folio_lock_anon_vma_read,
2609 	};
2610 
2611 	/*
2612 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2613 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2614 	 */
2615 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2616 					TTU_SYNC | TTU_BATCH_FLUSH)))
2617 		return;
2618 
2619 	if (folio_is_zone_device(folio) &&
2620 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2621 		return;
2622 
2623 	/*
2624 	 * During exec, a temporary VMA is setup and later moved.
2625 	 * The VMA is moved under the anon_vma lock but not the
2626 	 * page tables leading to a race where migration cannot
2627 	 * find the migration ptes. Rather than increasing the
2628 	 * locking requirements of exec(), migration skips
2629 	 * temporary VMAs until after exec() completes.
2630 	 */
2631 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2632 		rwc.invalid_vma = invalid_migration_vma;
2633 
2634 	if (flags & TTU_RMAP_LOCKED)
2635 		rmap_walk_locked(folio, &rwc);
2636 	else
2637 		rmap_walk(folio, &rwc);
2638 }
2639 
2640 #ifdef CONFIG_DEVICE_PRIVATE
2641 /**
2642  * make_device_exclusive() - Mark a page for exclusive use by a device
2643  * @mm: mm_struct of associated target process
2644  * @addr: the virtual address to mark for exclusive device access
2645  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2646  * @foliop: folio pointer will be stored here on success.
2647  *
2648  * This function looks up the page mapped at the given address, grabs a
2649  * folio reference, locks the folio and replaces the PTE with special
2650  * device-exclusive PFN swap entry, preventing access through the process
2651  * page tables. The function will return with the folio locked and referenced.
2652  *
2653  * On fault, the device-exclusive entries are replaced with the original PTE
2654  * under folio lock, after calling MMU notifiers.
2655  *
2656  * Only anonymous non-hugetlb folios are supported and the VMA must have
2657  * write permissions such that we can fault in the anonymous page writable
2658  * in order to mark it exclusive. The caller must hold the mmap_lock in read
2659  * mode.
2660  *
2661  * A driver using this to program access from a device must use a mmu notifier
2662  * critical section to hold a device specific lock during programming. Once
2663  * programming is complete it should drop the folio lock and reference after
2664  * which point CPU access to the page will revoke the exclusive access.
2665  *
2666  * Notes:
2667  *   #. This function always operates on individual PTEs mapping individual
2668  *      pages. PMD-sized THPs are first remapped to be mapped by PTEs before
2669  *      the conversion happens on a single PTE corresponding to @addr.
2670  *   #. While concurrent access through the process page tables is prevented,
2671  *      concurrent access through other page references (e.g., earlier GUP
2672  *      invocation) is not handled and not supported.
2673  *   #. device-exclusive entries are considered "clean" and "old" by core-mm.
2674  *      Device drivers must update the folio state when informed by MMU
2675  *      notifiers.
2676  *
2677  * Returns: pointer to mapped page on success, otherwise a negative error.
2678  */
make_device_exclusive(struct mm_struct * mm,unsigned long addr,void * owner,struct folio ** foliop)2679 struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr,
2680 		void *owner, struct folio **foliop)
2681 {
2682 	struct mmu_notifier_range range;
2683 	struct folio *folio, *fw_folio;
2684 	struct vm_area_struct *vma;
2685 	struct folio_walk fw;
2686 	struct page *page;
2687 	swp_entry_t entry;
2688 	pte_t swp_pte;
2689 	int ret;
2690 
2691 	mmap_assert_locked(mm);
2692 	addr = PAGE_ALIGN_DOWN(addr);
2693 
2694 	/*
2695 	 * Fault in the page writable and try to lock it; note that if the
2696 	 * address would already be marked for exclusive use by a device,
2697 	 * the GUP call would undo that first by triggering a fault.
2698 	 *
2699 	 * If any other device would already map this page exclusively, the
2700 	 * fault will trigger a conversion to an ordinary
2701 	 * (non-device-exclusive) PTE and issue a MMU_NOTIFY_EXCLUSIVE.
2702 	 */
2703 retry:
2704 	page = get_user_page_vma_remote(mm, addr,
2705 					FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2706 					&vma);
2707 	if (IS_ERR(page))
2708 		return page;
2709 	folio = page_folio(page);
2710 
2711 	if (!folio_test_anon(folio) || folio_test_hugetlb(folio)) {
2712 		folio_put(folio);
2713 		return ERR_PTR(-EOPNOTSUPP);
2714 	}
2715 
2716 	ret = folio_lock_killable(folio);
2717 	if (ret) {
2718 		folio_put(folio);
2719 		return ERR_PTR(ret);
2720 	}
2721 
2722 	/*
2723 	 * Inform secondary MMUs that we are going to convert this PTE to
2724 	 * device-exclusive, such that they unmap it now. Note that the
2725 	 * caller must filter this event out to prevent livelocks.
2726 	 */
2727 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2728 				      mm, addr, addr + PAGE_SIZE, owner);
2729 	mmu_notifier_invalidate_range_start(&range);
2730 
2731 	/*
2732 	 * Let's do a second walk and make sure we still find the same page
2733 	 * mapped writable. Note that any page of an anonymous folio can
2734 	 * only be mapped writable using exactly one PTE ("exclusive"), so
2735 	 * there cannot be other mappings.
2736 	 */
2737 	fw_folio = folio_walk_start(&fw, vma, addr, 0);
2738 	if (fw_folio != folio || fw.page != page ||
2739 	    fw.level != FW_LEVEL_PTE || !pte_write(fw.pte)) {
2740 		if (fw_folio)
2741 			folio_walk_end(&fw, vma);
2742 		mmu_notifier_invalidate_range_end(&range);
2743 		folio_unlock(folio);
2744 		folio_put(folio);
2745 		goto retry;
2746 	}
2747 
2748 	/* Nuke the page table entry so we get the uptodate dirty bit. */
2749 	flush_cache_page(vma, addr, page_to_pfn(page));
2750 	fw.pte = ptep_clear_flush(vma, addr, fw.ptep);
2751 
2752 	/* Set the dirty flag on the folio now the PTE is gone. */
2753 	if (pte_dirty(fw.pte))
2754 		folio_mark_dirty(folio);
2755 
2756 	/*
2757 	 * Store the pfn of the page in a special device-exclusive PFN swap PTE.
2758 	 * do_swap_page() will trigger the conversion back while holding the
2759 	 * folio lock.
2760 	 */
2761 	entry = make_device_exclusive_entry(page_to_pfn(page));
2762 	swp_pte = swp_entry_to_pte(entry);
2763 	if (pte_soft_dirty(fw.pte))
2764 		swp_pte = pte_swp_mksoft_dirty(swp_pte);
2765 	/* The pte is writable, uffd-wp does not apply. */
2766 	set_pte_at(mm, addr, fw.ptep, swp_pte);
2767 
2768 	folio_walk_end(&fw, vma);
2769 	mmu_notifier_invalidate_range_end(&range);
2770 	*foliop = folio;
2771 	return page;
2772 }
2773 EXPORT_SYMBOL_GPL(make_device_exclusive);
2774 #endif
2775 
__put_anon_vma(struct anon_vma * anon_vma)2776 void __put_anon_vma(struct anon_vma *anon_vma)
2777 {
2778 	struct anon_vma *root = anon_vma->root;
2779 
2780 	anon_vma_free(anon_vma);
2781 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2782 		anon_vma_free(root);
2783 }
2784 
rmap_walk_anon_lock(const struct folio * folio,struct rmap_walk_control * rwc)2785 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio,
2786 					    struct rmap_walk_control *rwc)
2787 {
2788 	struct anon_vma *anon_vma;
2789 
2790 	if (rwc->anon_lock)
2791 		return rwc->anon_lock(folio, rwc);
2792 
2793 	/*
2794 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2795 	 * because that depends on page_mapped(); but not all its usages
2796 	 * are holding mmap_lock. Users without mmap_lock are required to
2797 	 * take a reference count to prevent the anon_vma disappearing
2798 	 */
2799 	anon_vma = folio_anon_vma(folio);
2800 	if (!anon_vma)
2801 		return NULL;
2802 
2803 	if (anon_vma_trylock_read(anon_vma))
2804 		goto out;
2805 
2806 	if (rwc->try_lock) {
2807 		anon_vma = NULL;
2808 		rwc->contended = true;
2809 		goto out;
2810 	}
2811 
2812 	anon_vma_lock_read(anon_vma);
2813 out:
2814 	return anon_vma;
2815 }
2816 
2817 /*
2818  * rmap_walk_anon - do something to anonymous page using the object-based
2819  * rmap method
2820  * @folio: the folio to be handled
2821  * @rwc: control variable according to each walk type
2822  * @locked: caller holds relevant rmap lock
2823  *
2824  * Find all the mappings of a folio using the mapping pointer and the vma
2825  * chains contained in the anon_vma struct it points to.
2826  */
rmap_walk_anon(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2827 static void rmap_walk_anon(struct folio *folio,
2828 		struct rmap_walk_control *rwc, bool locked)
2829 {
2830 	struct anon_vma *anon_vma;
2831 	pgoff_t pgoff_start, pgoff_end;
2832 	struct anon_vma_chain *avc;
2833 
2834 	/*
2835 	 * The folio lock ensures that folio->mapping can't be changed under us
2836 	 * to an anon_vma with different root.
2837 	 */
2838 	VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2839 
2840 	if (locked) {
2841 		anon_vma = folio_anon_vma(folio);
2842 		/* anon_vma disappear under us? */
2843 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2844 	} else {
2845 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2846 	}
2847 	if (!anon_vma)
2848 		return;
2849 
2850 	pgoff_start = folio_pgoff(folio);
2851 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2852 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2853 			pgoff_start, pgoff_end) {
2854 		struct vm_area_struct *vma = avc->vma;
2855 		unsigned long address = vma_address(vma, pgoff_start,
2856 				folio_nr_pages(folio));
2857 
2858 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2859 		cond_resched();
2860 
2861 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2862 			continue;
2863 
2864 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2865 			break;
2866 		if (rwc->done && rwc->done(folio))
2867 			break;
2868 	}
2869 
2870 	if (!locked)
2871 		anon_vma_unlock_read(anon_vma);
2872 }
2873 
2874 /**
2875  * __rmap_walk_file() - Traverse the reverse mapping for a file-backed mapping
2876  * of a page mapped within a specified page cache object at a specified offset.
2877  *
2878  * @folio: 		Either the folio whose mappings to traverse, or if NULL,
2879  * 			the callbacks specified in @rwc will be configured such
2880  * 			as to be able to look up mappings correctly.
2881  * @mapping: 		The page cache object whose mapping VMAs we intend to
2882  * 			traverse. If @folio is non-NULL, this should be equal to
2883  *			folio_mapping(folio).
2884  * @pgoff_start:	The offset within @mapping of the page which we are
2885  * 			looking up. If @folio is non-NULL, this should be equal
2886  * 			to folio_pgoff(folio).
2887  * @nr_pages:		The number of pages mapped by the mapping. If @folio is
2888  *			non-NULL, this should be equal to folio_nr_pages(folio).
2889  * @rwc:		The reverse mapping walk control object describing how
2890  *			the traversal should proceed.
2891  * @locked:		Is the @mapping already locked? If not, we acquire the
2892  *			lock.
2893  */
__rmap_walk_file(struct folio * folio,struct address_space * mapping,pgoff_t pgoff_start,unsigned long nr_pages,struct rmap_walk_control * rwc,bool locked)2894 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping,
2895 			     pgoff_t pgoff_start, unsigned long nr_pages,
2896 			     struct rmap_walk_control *rwc, bool locked)
2897 {
2898 	pgoff_t pgoff_end = pgoff_start + nr_pages - 1;
2899 	struct vm_area_struct *vma;
2900 
2901 	VM_WARN_ON_FOLIO(folio && mapping != folio_mapping(folio), folio);
2902 	VM_WARN_ON_FOLIO(folio && pgoff_start != folio_pgoff(folio), folio);
2903 	VM_WARN_ON_FOLIO(folio && nr_pages != folio_nr_pages(folio), folio);
2904 
2905 	if (!locked) {
2906 		if (i_mmap_trylock_read(mapping))
2907 			goto lookup;
2908 
2909 		if (rwc->try_lock) {
2910 			rwc->contended = true;
2911 			return;
2912 		}
2913 
2914 		i_mmap_lock_read(mapping);
2915 	}
2916 lookup:
2917 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2918 			pgoff_start, pgoff_end) {
2919 		unsigned long address = vma_address(vma, pgoff_start, nr_pages);
2920 
2921 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2922 		cond_resched();
2923 
2924 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2925 			continue;
2926 
2927 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2928 			goto done;
2929 		if (rwc->done && rwc->done(folio))
2930 			goto done;
2931 	}
2932 done:
2933 	if (!locked)
2934 		i_mmap_unlock_read(mapping);
2935 }
2936 
2937 /*
2938  * rmap_walk_file - do something to file page using the object-based rmap method
2939  * @folio: the folio to be handled
2940  * @rwc: control variable according to each walk type
2941  * @locked: caller holds relevant rmap lock
2942  *
2943  * Find all the mappings of a folio using the mapping pointer and the vma chains
2944  * contained in the address_space struct it points to.
2945  */
rmap_walk_file(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2946 static void rmap_walk_file(struct folio *folio,
2947 		struct rmap_walk_control *rwc, bool locked)
2948 {
2949 	/*
2950 	 * The folio lock not only makes sure that folio->mapping cannot
2951 	 * suddenly be NULLified by truncation, it makes sure that the structure
2952 	 * at mapping cannot be freed and reused yet, so we can safely take
2953 	 * mapping->i_mmap_rwsem.
2954 	 */
2955 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2956 
2957 	if (!folio->mapping)
2958 		return;
2959 
2960 	__rmap_walk_file(folio, folio->mapping, folio->index,
2961 			 folio_nr_pages(folio), rwc, locked);
2962 }
2963 
rmap_walk(struct folio * folio,struct rmap_walk_control * rwc)2964 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2965 {
2966 	if (unlikely(folio_test_ksm(folio)))
2967 		rmap_walk_ksm(folio, rwc);
2968 	else if (folio_test_anon(folio))
2969 		rmap_walk_anon(folio, rwc, false);
2970 	else
2971 		rmap_walk_file(folio, rwc, false);
2972 }
2973 
2974 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct folio * folio,struct rmap_walk_control * rwc)2975 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2976 {
2977 	/* no ksm support for now */
2978 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2979 	if (folio_test_anon(folio))
2980 		rmap_walk_anon(folio, rwc, true);
2981 	else
2982 		rmap_walk_file(folio, rwc, true);
2983 }
2984 
2985 #ifdef CONFIG_HUGETLB_PAGE
2986 /*
2987  * The following two functions are for anonymous (private mapped) hugepages.
2988  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2989  * and no lru code, because we handle hugepages differently from common pages.
2990  */
hugetlb_add_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address,rmap_t flags)2991 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2992 		unsigned long address, rmap_t flags)
2993 {
2994 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2995 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2996 
2997 	atomic_inc(&folio->_entire_mapcount);
2998 	atomic_inc(&folio->_large_mapcount);
2999 	if (flags & RMAP_EXCLUSIVE)
3000 		SetPageAnonExclusive(&folio->page);
3001 	VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
3002 			 PageAnonExclusive(&folio->page), folio);
3003 }
3004 
hugetlb_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address)3005 void hugetlb_add_new_anon_rmap(struct folio *folio,
3006 		struct vm_area_struct *vma, unsigned long address)
3007 {
3008 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
3009 
3010 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
3011 	/* increment count (starts at -1) */
3012 	atomic_set(&folio->_entire_mapcount, 0);
3013 	atomic_set(&folio->_large_mapcount, 0);
3014 	folio_clear_hugetlb_restore_reserve(folio);
3015 	__folio_set_anon(folio, vma, address, true);
3016 	SetPageAnonExclusive(&folio->page);
3017 }
3018 #endif /* CONFIG_HUGETLB_PAGE */
3019