1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 #include <linux/pidfs.h>
27
28 #include <linux/uaccess.h>
29
30 #include "internal.h"
31
simple_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33 struct kstat *stat, u32 request_mask,
34 unsigned int query_flags)
35 {
36 struct inode *inode = d_inode(path->dentry);
37 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
39 return 0;
40 }
41 EXPORT_SYMBOL(simple_getattr);
42
simple_statfs(struct dentry * dentry,struct kstatfs * buf)43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44 {
45 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46
47 buf->f_fsid = u64_to_fsid(id);
48 buf->f_type = dentry->d_sb->s_magic;
49 buf->f_bsize = PAGE_SIZE;
50 buf->f_namelen = NAME_MAX;
51 return 0;
52 }
53 EXPORT_SYMBOL(simple_statfs);
54
55 /*
56 * Retaining negative dentries for an in-memory filesystem just wastes
57 * memory and lookup time: arrange for them to be deleted immediately.
58 */
always_delete_dentry(const struct dentry * dentry)59 int always_delete_dentry(const struct dentry *dentry)
60 {
61 return 1;
62 }
63 EXPORT_SYMBOL(always_delete_dentry);
64
65 const struct dentry_operations simple_dentry_operations = {
66 .d_delete = always_delete_dentry,
67 };
68 EXPORT_SYMBOL(simple_dentry_operations);
69
70 /*
71 * Lookup the data. This is trivial - if the dentry didn't already
72 * exist, we know it is negative. Set d_op to delete negative dentries.
73 */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)74 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
75 {
76 if (dentry->d_name.len > NAME_MAX)
77 return ERR_PTR(-ENAMETOOLONG);
78 if (!dentry->d_sb->s_d_op)
79 d_set_d_op(dentry, &simple_dentry_operations);
80
81 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
82 return NULL;
83
84 d_add(dentry, NULL);
85 return NULL;
86 }
87 EXPORT_SYMBOL(simple_lookup);
88
dcache_dir_open(struct inode * inode,struct file * file)89 int dcache_dir_open(struct inode *inode, struct file *file)
90 {
91 file->private_data = d_alloc_cursor(file->f_path.dentry);
92
93 return file->private_data ? 0 : -ENOMEM;
94 }
95 EXPORT_SYMBOL(dcache_dir_open);
96
dcache_dir_close(struct inode * inode,struct file * file)97 int dcache_dir_close(struct inode *inode, struct file *file)
98 {
99 dput(file->private_data);
100 return 0;
101 }
102 EXPORT_SYMBOL(dcache_dir_close);
103
104 /* parent is locked at least shared */
105 /*
106 * Returns an element of siblings' list.
107 * We are looking for <count>th positive after <p>; if
108 * found, dentry is grabbed and returned to caller.
109 * If no such element exists, NULL is returned.
110 */
scan_positives(struct dentry * cursor,struct hlist_node ** p,loff_t count,struct dentry * last)111 static struct dentry *scan_positives(struct dentry *cursor,
112 struct hlist_node **p,
113 loff_t count,
114 struct dentry *last)
115 {
116 struct dentry *dentry = cursor->d_parent, *found = NULL;
117
118 spin_lock(&dentry->d_lock);
119 while (*p) {
120 struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
121 p = &d->d_sib.next;
122 // we must at least skip cursors, to avoid livelocks
123 if (d->d_flags & DCACHE_DENTRY_CURSOR)
124 continue;
125 if (simple_positive(d) && !--count) {
126 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
127 if (simple_positive(d))
128 found = dget_dlock(d);
129 spin_unlock(&d->d_lock);
130 if (likely(found))
131 break;
132 count = 1;
133 }
134 if (need_resched()) {
135 if (!hlist_unhashed(&cursor->d_sib))
136 __hlist_del(&cursor->d_sib);
137 hlist_add_behind(&cursor->d_sib, &d->d_sib);
138 p = &cursor->d_sib.next;
139 spin_unlock(&dentry->d_lock);
140 cond_resched();
141 spin_lock(&dentry->d_lock);
142 }
143 }
144 spin_unlock(&dentry->d_lock);
145 dput(last);
146 return found;
147 }
148
dcache_dir_lseek(struct file * file,loff_t offset,int whence)149 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
150 {
151 struct dentry *dentry = file->f_path.dentry;
152 switch (whence) {
153 case 1:
154 offset += file->f_pos;
155 fallthrough;
156 case 0:
157 if (offset >= 0)
158 break;
159 fallthrough;
160 default:
161 return -EINVAL;
162 }
163 if (offset != file->f_pos) {
164 struct dentry *cursor = file->private_data;
165 struct dentry *to = NULL;
166
167 inode_lock_shared(dentry->d_inode);
168
169 if (offset > 2)
170 to = scan_positives(cursor, &dentry->d_children.first,
171 offset - 2, NULL);
172 spin_lock(&dentry->d_lock);
173 hlist_del_init(&cursor->d_sib);
174 if (to)
175 hlist_add_behind(&cursor->d_sib, &to->d_sib);
176 spin_unlock(&dentry->d_lock);
177 dput(to);
178
179 file->f_pos = offset;
180
181 inode_unlock_shared(dentry->d_inode);
182 }
183 return offset;
184 }
185 EXPORT_SYMBOL(dcache_dir_lseek);
186
187 /*
188 * Directory is locked and all positive dentries in it are safe, since
189 * for ramfs-type trees they can't go away without unlink() or rmdir(),
190 * both impossible due to the lock on directory.
191 */
192
dcache_readdir(struct file * file,struct dir_context * ctx)193 int dcache_readdir(struct file *file, struct dir_context *ctx)
194 {
195 struct dentry *dentry = file->f_path.dentry;
196 struct dentry *cursor = file->private_data;
197 struct dentry *next = NULL;
198 struct hlist_node **p;
199
200 if (!dir_emit_dots(file, ctx))
201 return 0;
202
203 if (ctx->pos == 2)
204 p = &dentry->d_children.first;
205 else
206 p = &cursor->d_sib.next;
207
208 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
209 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
210 d_inode(next)->i_ino,
211 fs_umode_to_dtype(d_inode(next)->i_mode)))
212 break;
213 ctx->pos++;
214 p = &next->d_sib.next;
215 }
216 spin_lock(&dentry->d_lock);
217 hlist_del_init(&cursor->d_sib);
218 if (next)
219 hlist_add_before(&cursor->d_sib, &next->d_sib);
220 spin_unlock(&dentry->d_lock);
221 dput(next);
222
223 return 0;
224 }
225 EXPORT_SYMBOL(dcache_readdir);
226
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)227 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
228 {
229 return -EISDIR;
230 }
231 EXPORT_SYMBOL(generic_read_dir);
232
233 const struct file_operations simple_dir_operations = {
234 .open = dcache_dir_open,
235 .release = dcache_dir_close,
236 .llseek = dcache_dir_lseek,
237 .read = generic_read_dir,
238 .iterate_shared = dcache_readdir,
239 .fsync = noop_fsync,
240 };
241 EXPORT_SYMBOL(simple_dir_operations);
242
243 const struct inode_operations simple_dir_inode_operations = {
244 .lookup = simple_lookup,
245 };
246 EXPORT_SYMBOL(simple_dir_inode_operations);
247
248 /* simple_offset_add() never assigns these to a dentry */
249 enum {
250 DIR_OFFSET_FIRST = 2, /* Find first real entry */
251 DIR_OFFSET_EOD = S32_MAX,
252 };
253
254 /* simple_offset_add() allocation range */
255 enum {
256 DIR_OFFSET_MIN = DIR_OFFSET_FIRST + 1,
257 DIR_OFFSET_MAX = DIR_OFFSET_EOD - 1,
258 };
259
offset_set(struct dentry * dentry,long offset)260 static void offset_set(struct dentry *dentry, long offset)
261 {
262 dentry->d_fsdata = (void *)offset;
263 }
264
dentry2offset(struct dentry * dentry)265 static long dentry2offset(struct dentry *dentry)
266 {
267 return (long)dentry->d_fsdata;
268 }
269
270 static struct lock_class_key simple_offset_lock_class;
271
272 /**
273 * simple_offset_init - initialize an offset_ctx
274 * @octx: directory offset map to be initialized
275 *
276 */
simple_offset_init(struct offset_ctx * octx)277 void simple_offset_init(struct offset_ctx *octx)
278 {
279 mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
280 lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
281 octx->next_offset = DIR_OFFSET_MIN;
282 }
283
284 /**
285 * simple_offset_add - Add an entry to a directory's offset map
286 * @octx: directory offset ctx to be updated
287 * @dentry: new dentry being added
288 *
289 * Returns zero on success. @octx and the dentry's offset are updated.
290 * Otherwise, a negative errno value is returned.
291 */
simple_offset_add(struct offset_ctx * octx,struct dentry * dentry)292 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
293 {
294 unsigned long offset;
295 int ret;
296
297 if (dentry2offset(dentry) != 0)
298 return -EBUSY;
299
300 ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
301 DIR_OFFSET_MAX, &octx->next_offset,
302 GFP_KERNEL);
303 if (unlikely(ret < 0))
304 return ret == -EBUSY ? -ENOSPC : ret;
305
306 offset_set(dentry, offset);
307 return 0;
308 }
309
simple_offset_replace(struct offset_ctx * octx,struct dentry * dentry,long offset)310 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
311 long offset)
312 {
313 int ret;
314
315 ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
316 if (ret)
317 return ret;
318 offset_set(dentry, offset);
319 return 0;
320 }
321
322 /**
323 * simple_offset_remove - Remove an entry to a directory's offset map
324 * @octx: directory offset ctx to be updated
325 * @dentry: dentry being removed
326 *
327 */
simple_offset_remove(struct offset_ctx * octx,struct dentry * dentry)328 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
329 {
330 long offset;
331
332 offset = dentry2offset(dentry);
333 if (offset == 0)
334 return;
335
336 mtree_erase(&octx->mt, offset);
337 offset_set(dentry, 0);
338 }
339
340 /**
341 * simple_offset_rename - handle directory offsets for rename
342 * @old_dir: parent directory of source entry
343 * @old_dentry: dentry of source entry
344 * @new_dir: parent_directory of destination entry
345 * @new_dentry: dentry of destination
346 *
347 * Caller provides appropriate serialization.
348 *
349 * User space expects the directory offset value of the replaced
350 * (new) directory entry to be unchanged after a rename.
351 *
352 * Returns zero on success, a negative errno value on failure.
353 */
simple_offset_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)354 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
355 struct inode *new_dir, struct dentry *new_dentry)
356 {
357 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
358 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
359 long new_offset = dentry2offset(new_dentry);
360
361 simple_offset_remove(old_ctx, old_dentry);
362
363 if (new_offset) {
364 offset_set(new_dentry, 0);
365 return simple_offset_replace(new_ctx, old_dentry, new_offset);
366 }
367 return simple_offset_add(new_ctx, old_dentry);
368 }
369
370 /**
371 * simple_offset_rename_exchange - exchange rename with directory offsets
372 * @old_dir: parent of dentry being moved
373 * @old_dentry: dentry being moved
374 * @new_dir: destination parent
375 * @new_dentry: destination dentry
376 *
377 * This API preserves the directory offset values. Caller provides
378 * appropriate serialization.
379 *
380 * Returns zero on success. Otherwise a negative errno is returned and the
381 * rename is rolled back.
382 */
simple_offset_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)383 int simple_offset_rename_exchange(struct inode *old_dir,
384 struct dentry *old_dentry,
385 struct inode *new_dir,
386 struct dentry *new_dentry)
387 {
388 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
389 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
390 long old_index = dentry2offset(old_dentry);
391 long new_index = dentry2offset(new_dentry);
392 int ret;
393
394 simple_offset_remove(old_ctx, old_dentry);
395 simple_offset_remove(new_ctx, new_dentry);
396
397 ret = simple_offset_replace(new_ctx, old_dentry, new_index);
398 if (ret)
399 goto out_restore;
400
401 ret = simple_offset_replace(old_ctx, new_dentry, old_index);
402 if (ret) {
403 simple_offset_remove(new_ctx, old_dentry);
404 goto out_restore;
405 }
406
407 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
408 if (ret) {
409 simple_offset_remove(new_ctx, old_dentry);
410 simple_offset_remove(old_ctx, new_dentry);
411 goto out_restore;
412 }
413 return 0;
414
415 out_restore:
416 (void)simple_offset_replace(old_ctx, old_dentry, old_index);
417 (void)simple_offset_replace(new_ctx, new_dentry, new_index);
418 return ret;
419 }
420
421 /**
422 * simple_offset_destroy - Release offset map
423 * @octx: directory offset ctx that is about to be destroyed
424 *
425 * During fs teardown (eg. umount), a directory's offset map might still
426 * contain entries. xa_destroy() cleans out anything that remains.
427 */
simple_offset_destroy(struct offset_ctx * octx)428 void simple_offset_destroy(struct offset_ctx *octx)
429 {
430 mtree_destroy(&octx->mt);
431 }
432
433 /**
434 * offset_dir_llseek - Advance the read position of a directory descriptor
435 * @file: an open directory whose position is to be updated
436 * @offset: a byte offset
437 * @whence: enumerator describing the starting position for this update
438 *
439 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
440 *
441 * Returns the updated read position if successful; otherwise a
442 * negative errno is returned and the read position remains unchanged.
443 */
offset_dir_llseek(struct file * file,loff_t offset,int whence)444 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
445 {
446 switch (whence) {
447 case SEEK_CUR:
448 offset += file->f_pos;
449 fallthrough;
450 case SEEK_SET:
451 if (offset >= 0)
452 break;
453 fallthrough;
454 default:
455 return -EINVAL;
456 }
457
458 return vfs_setpos(file, offset, LONG_MAX);
459 }
460
find_positive_dentry(struct dentry * parent,struct dentry * dentry,bool next)461 static struct dentry *find_positive_dentry(struct dentry *parent,
462 struct dentry *dentry,
463 bool next)
464 {
465 struct dentry *found = NULL;
466
467 spin_lock(&parent->d_lock);
468 if (next)
469 dentry = d_next_sibling(dentry);
470 else if (!dentry)
471 dentry = d_first_child(parent);
472 hlist_for_each_entry_from(dentry, d_sib) {
473 if (!simple_positive(dentry))
474 continue;
475 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
476 if (simple_positive(dentry))
477 found = dget_dlock(dentry);
478 spin_unlock(&dentry->d_lock);
479 if (likely(found))
480 break;
481 }
482 spin_unlock(&parent->d_lock);
483 return found;
484 }
485
486 static noinline_for_stack struct dentry *
offset_dir_lookup(struct dentry * parent,loff_t offset)487 offset_dir_lookup(struct dentry *parent, loff_t offset)
488 {
489 struct inode *inode = d_inode(parent);
490 struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
491 struct dentry *child, *found = NULL;
492
493 MA_STATE(mas, &octx->mt, offset, offset);
494
495 if (offset == DIR_OFFSET_FIRST)
496 found = find_positive_dentry(parent, NULL, false);
497 else {
498 rcu_read_lock();
499 child = mas_find_rev(&mas, DIR_OFFSET_MIN);
500 found = find_positive_dentry(parent, child, false);
501 rcu_read_unlock();
502 }
503 return found;
504 }
505
offset_dir_emit(struct dir_context * ctx,struct dentry * dentry)506 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
507 {
508 struct inode *inode = d_inode(dentry);
509
510 return dir_emit(ctx, dentry->d_name.name, dentry->d_name.len,
511 inode->i_ino, fs_umode_to_dtype(inode->i_mode));
512 }
513
offset_iterate_dir(struct file * file,struct dir_context * ctx)514 static void offset_iterate_dir(struct file *file, struct dir_context *ctx)
515 {
516 struct dentry *dir = file->f_path.dentry;
517 struct dentry *dentry;
518
519 dentry = offset_dir_lookup(dir, ctx->pos);
520 if (!dentry)
521 goto out_eod;
522 while (true) {
523 struct dentry *next;
524
525 ctx->pos = dentry2offset(dentry);
526 if (!offset_dir_emit(ctx, dentry))
527 break;
528
529 next = find_positive_dentry(dir, dentry, true);
530 dput(dentry);
531
532 if (!next)
533 goto out_eod;
534 dentry = next;
535 }
536 dput(dentry);
537 return;
538
539 out_eod:
540 ctx->pos = DIR_OFFSET_EOD;
541 }
542
543 /**
544 * offset_readdir - Emit entries starting at offset @ctx->pos
545 * @file: an open directory to iterate over
546 * @ctx: directory iteration context
547 *
548 * Caller must hold @file's i_rwsem to prevent insertion or removal of
549 * entries during this call.
550 *
551 * On entry, @ctx->pos contains an offset that represents the first entry
552 * to be read from the directory.
553 *
554 * The operation continues until there are no more entries to read, or
555 * until the ctx->actor indicates there is no more space in the caller's
556 * output buffer.
557 *
558 * On return, @ctx->pos contains an offset that will read the next entry
559 * in this directory when offset_readdir() is called again with @ctx.
560 * Caller places this value in the d_off field of the last entry in the
561 * user's buffer.
562 *
563 * Return values:
564 * %0 - Complete
565 */
offset_readdir(struct file * file,struct dir_context * ctx)566 static int offset_readdir(struct file *file, struct dir_context *ctx)
567 {
568 struct dentry *dir = file->f_path.dentry;
569
570 lockdep_assert_held(&d_inode(dir)->i_rwsem);
571
572 if (!dir_emit_dots(file, ctx))
573 return 0;
574 if (ctx->pos != DIR_OFFSET_EOD)
575 offset_iterate_dir(file, ctx);
576 return 0;
577 }
578
579 const struct file_operations simple_offset_dir_operations = {
580 .llseek = offset_dir_llseek,
581 .iterate_shared = offset_readdir,
582 .read = generic_read_dir,
583 .fsync = noop_fsync,
584 };
585
find_next_child(struct dentry * parent,struct dentry * prev)586 struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
587 {
588 struct dentry *child = NULL, *d;
589
590 spin_lock(&parent->d_lock);
591 d = prev ? d_next_sibling(prev) : d_first_child(parent);
592 hlist_for_each_entry_from(d, d_sib) {
593 if (simple_positive(d)) {
594 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
595 if (simple_positive(d))
596 child = dget_dlock(d);
597 spin_unlock(&d->d_lock);
598 if (likely(child))
599 break;
600 }
601 }
602 spin_unlock(&parent->d_lock);
603 dput(prev);
604 return child;
605 }
606 EXPORT_SYMBOL(find_next_child);
607
simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))608 void simple_recursive_removal(struct dentry *dentry,
609 void (*callback)(struct dentry *))
610 {
611 struct dentry *this = dget(dentry);
612 while (true) {
613 struct dentry *victim = NULL, *child;
614 struct inode *inode = this->d_inode;
615
616 inode_lock(inode);
617 if (d_is_dir(this))
618 inode->i_flags |= S_DEAD;
619 while ((child = find_next_child(this, victim)) == NULL) {
620 // kill and ascend
621 // update metadata while it's still locked
622 inode_set_ctime_current(inode);
623 clear_nlink(inode);
624 inode_unlock(inode);
625 victim = this;
626 this = this->d_parent;
627 inode = this->d_inode;
628 inode_lock(inode);
629 if (simple_positive(victim)) {
630 d_invalidate(victim); // avoid lost mounts
631 if (d_is_dir(victim))
632 fsnotify_rmdir(inode, victim);
633 else
634 fsnotify_unlink(inode, victim);
635 if (callback)
636 callback(victim);
637 dput(victim); // unpin it
638 }
639 if (victim == dentry) {
640 inode_set_mtime_to_ts(inode,
641 inode_set_ctime_current(inode));
642 if (d_is_dir(dentry))
643 drop_nlink(inode);
644 inode_unlock(inode);
645 dput(dentry);
646 return;
647 }
648 }
649 inode_unlock(inode);
650 this = child;
651 }
652 }
653 EXPORT_SYMBOL(simple_recursive_removal);
654
655 static const struct super_operations simple_super_operations = {
656 .statfs = simple_statfs,
657 };
658
pseudo_fs_fill_super(struct super_block * s,struct fs_context * fc)659 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
660 {
661 struct pseudo_fs_context *ctx = fc->fs_private;
662 struct inode *root;
663
664 s->s_maxbytes = MAX_LFS_FILESIZE;
665 s->s_blocksize = PAGE_SIZE;
666 s->s_blocksize_bits = PAGE_SHIFT;
667 s->s_magic = ctx->magic;
668 s->s_op = ctx->ops ?: &simple_super_operations;
669 s->s_export_op = ctx->eops;
670 s->s_xattr = ctx->xattr;
671 s->s_time_gran = 1;
672 root = new_inode(s);
673 if (!root)
674 return -ENOMEM;
675
676 /*
677 * since this is the first inode, make it number 1. New inodes created
678 * after this must take care not to collide with it (by passing
679 * max_reserved of 1 to iunique).
680 */
681 root->i_ino = 1;
682 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
683 simple_inode_init_ts(root);
684 s->s_root = d_make_root(root);
685 if (!s->s_root)
686 return -ENOMEM;
687 s->s_d_op = ctx->dops;
688 return 0;
689 }
690
pseudo_fs_get_tree(struct fs_context * fc)691 static int pseudo_fs_get_tree(struct fs_context *fc)
692 {
693 return get_tree_nodev(fc, pseudo_fs_fill_super);
694 }
695
pseudo_fs_free(struct fs_context * fc)696 static void pseudo_fs_free(struct fs_context *fc)
697 {
698 kfree(fc->fs_private);
699 }
700
701 static const struct fs_context_operations pseudo_fs_context_ops = {
702 .free = pseudo_fs_free,
703 .get_tree = pseudo_fs_get_tree,
704 };
705
706 /*
707 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
708 * will never be mountable)
709 */
init_pseudo(struct fs_context * fc,unsigned long magic)710 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
711 unsigned long magic)
712 {
713 struct pseudo_fs_context *ctx;
714
715 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
716 if (likely(ctx)) {
717 ctx->magic = magic;
718 fc->fs_private = ctx;
719 fc->ops = &pseudo_fs_context_ops;
720 fc->sb_flags |= SB_NOUSER;
721 fc->global = true;
722 }
723 return ctx;
724 }
725 EXPORT_SYMBOL(init_pseudo);
726
simple_open(struct inode * inode,struct file * file)727 int simple_open(struct inode *inode, struct file *file)
728 {
729 if (inode->i_private)
730 file->private_data = inode->i_private;
731 return 0;
732 }
733 EXPORT_SYMBOL(simple_open);
734
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)735 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
736 {
737 struct inode *inode = d_inode(old_dentry);
738
739 inode_set_mtime_to_ts(dir,
740 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
741 inc_nlink(inode);
742 ihold(inode);
743 dget(dentry);
744 d_instantiate(dentry, inode);
745 return 0;
746 }
747 EXPORT_SYMBOL(simple_link);
748
simple_empty(struct dentry * dentry)749 int simple_empty(struct dentry *dentry)
750 {
751 struct dentry *child;
752 int ret = 0;
753
754 spin_lock(&dentry->d_lock);
755 hlist_for_each_entry(child, &dentry->d_children, d_sib) {
756 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
757 if (simple_positive(child)) {
758 spin_unlock(&child->d_lock);
759 goto out;
760 }
761 spin_unlock(&child->d_lock);
762 }
763 ret = 1;
764 out:
765 spin_unlock(&dentry->d_lock);
766 return ret;
767 }
768 EXPORT_SYMBOL(simple_empty);
769
simple_unlink(struct inode * dir,struct dentry * dentry)770 int simple_unlink(struct inode *dir, struct dentry *dentry)
771 {
772 struct inode *inode = d_inode(dentry);
773
774 inode_set_mtime_to_ts(dir,
775 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
776 drop_nlink(inode);
777 dput(dentry);
778 return 0;
779 }
780 EXPORT_SYMBOL(simple_unlink);
781
simple_rmdir(struct inode * dir,struct dentry * dentry)782 int simple_rmdir(struct inode *dir, struct dentry *dentry)
783 {
784 if (!simple_empty(dentry))
785 return -ENOTEMPTY;
786
787 drop_nlink(d_inode(dentry));
788 simple_unlink(dir, dentry);
789 drop_nlink(dir);
790 return 0;
791 }
792 EXPORT_SYMBOL(simple_rmdir);
793
794 /**
795 * simple_rename_timestamp - update the various inode timestamps for rename
796 * @old_dir: old parent directory
797 * @old_dentry: dentry that is being renamed
798 * @new_dir: new parent directory
799 * @new_dentry: target for rename
800 *
801 * POSIX mandates that the old and new parent directories have their ctime and
802 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
803 * their ctime updated.
804 */
simple_rename_timestamp(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)805 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
806 struct inode *new_dir, struct dentry *new_dentry)
807 {
808 struct inode *newino = d_inode(new_dentry);
809
810 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
811 if (new_dir != old_dir)
812 inode_set_mtime_to_ts(new_dir,
813 inode_set_ctime_current(new_dir));
814 inode_set_ctime_current(d_inode(old_dentry));
815 if (newino)
816 inode_set_ctime_current(newino);
817 }
818 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
819
simple_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)820 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
821 struct inode *new_dir, struct dentry *new_dentry)
822 {
823 bool old_is_dir = d_is_dir(old_dentry);
824 bool new_is_dir = d_is_dir(new_dentry);
825
826 if (old_dir != new_dir && old_is_dir != new_is_dir) {
827 if (old_is_dir) {
828 drop_nlink(old_dir);
829 inc_nlink(new_dir);
830 } else {
831 drop_nlink(new_dir);
832 inc_nlink(old_dir);
833 }
834 }
835 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
836 return 0;
837 }
838 EXPORT_SYMBOL_GPL(simple_rename_exchange);
839
simple_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)840 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
841 struct dentry *old_dentry, struct inode *new_dir,
842 struct dentry *new_dentry, unsigned int flags)
843 {
844 int they_are_dirs = d_is_dir(old_dentry);
845
846 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
847 return -EINVAL;
848
849 if (flags & RENAME_EXCHANGE)
850 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
851
852 if (!simple_empty(new_dentry))
853 return -ENOTEMPTY;
854
855 if (d_really_is_positive(new_dentry)) {
856 simple_unlink(new_dir, new_dentry);
857 if (they_are_dirs) {
858 drop_nlink(d_inode(new_dentry));
859 drop_nlink(old_dir);
860 }
861 } else if (they_are_dirs) {
862 drop_nlink(old_dir);
863 inc_nlink(new_dir);
864 }
865
866 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
867 return 0;
868 }
869 EXPORT_SYMBOL(simple_rename);
870
871 /**
872 * simple_setattr - setattr for simple filesystem
873 * @idmap: idmap of the target mount
874 * @dentry: dentry
875 * @iattr: iattr structure
876 *
877 * Returns 0 on success, -error on failure.
878 *
879 * simple_setattr is a simple ->setattr implementation without a proper
880 * implementation of size changes.
881 *
882 * It can either be used for in-memory filesystems or special files
883 * on simple regular filesystems. Anything that needs to change on-disk
884 * or wire state on size changes needs its own setattr method.
885 */
simple_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)886 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
887 struct iattr *iattr)
888 {
889 struct inode *inode = d_inode(dentry);
890 int error;
891
892 error = setattr_prepare(idmap, dentry, iattr);
893 if (error)
894 return error;
895
896 if (iattr->ia_valid & ATTR_SIZE)
897 truncate_setsize(inode, iattr->ia_size);
898 setattr_copy(idmap, inode, iattr);
899 mark_inode_dirty(inode);
900 return 0;
901 }
902 EXPORT_SYMBOL(simple_setattr);
903
simple_read_folio(struct file * file,struct folio * folio)904 static int simple_read_folio(struct file *file, struct folio *folio)
905 {
906 folio_zero_range(folio, 0, folio_size(folio));
907 flush_dcache_folio(folio);
908 folio_mark_uptodate(folio);
909 folio_unlock(folio);
910 return 0;
911 }
912
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)913 int simple_write_begin(struct file *file, struct address_space *mapping,
914 loff_t pos, unsigned len,
915 struct folio **foliop, void **fsdata)
916 {
917 struct folio *folio;
918
919 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
920 mapping_gfp_mask(mapping));
921 if (IS_ERR(folio))
922 return PTR_ERR(folio);
923
924 *foliop = folio;
925
926 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
927 size_t from = offset_in_folio(folio, pos);
928
929 folio_zero_segments(folio, 0, from,
930 from + len, folio_size(folio));
931 }
932 return 0;
933 }
934 EXPORT_SYMBOL(simple_write_begin);
935
936 /**
937 * simple_write_end - .write_end helper for non-block-device FSes
938 * @file: See .write_end of address_space_operations
939 * @mapping: "
940 * @pos: "
941 * @len: "
942 * @copied: "
943 * @folio: "
944 * @fsdata: "
945 *
946 * simple_write_end does the minimum needed for updating a folio after
947 * writing is done. It has the same API signature as the .write_end of
948 * address_space_operations vector. So it can just be set onto .write_end for
949 * FSes that don't need any other processing. i_mutex is assumed to be held.
950 * Block based filesystems should use generic_write_end().
951 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
952 * is not called, so a filesystem that actually does store data in .write_inode
953 * should extend on what's done here with a call to mark_inode_dirty() in the
954 * case that i_size has changed.
955 *
956 * Use *ONLY* with simple_read_folio()
957 */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)958 static int simple_write_end(struct file *file, struct address_space *mapping,
959 loff_t pos, unsigned len, unsigned copied,
960 struct folio *folio, void *fsdata)
961 {
962 struct inode *inode = folio->mapping->host;
963 loff_t last_pos = pos + copied;
964
965 /* zero the stale part of the folio if we did a short copy */
966 if (!folio_test_uptodate(folio)) {
967 if (copied < len) {
968 size_t from = offset_in_folio(folio, pos);
969
970 folio_zero_range(folio, from + copied, len - copied);
971 }
972 folio_mark_uptodate(folio);
973 }
974 /*
975 * No need to use i_size_read() here, the i_size
976 * cannot change under us because we hold the i_mutex.
977 */
978 if (last_pos > inode->i_size)
979 i_size_write(inode, last_pos);
980
981 folio_mark_dirty(folio);
982 folio_unlock(folio);
983 folio_put(folio);
984
985 return copied;
986 }
987
988 /*
989 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
990 */
991 const struct address_space_operations ram_aops = {
992 .read_folio = simple_read_folio,
993 .write_begin = simple_write_begin,
994 .write_end = simple_write_end,
995 .dirty_folio = noop_dirty_folio,
996 };
997 EXPORT_SYMBOL(ram_aops);
998
999 /*
1000 * the inodes created here are not hashed. If you use iunique to generate
1001 * unique inode values later for this filesystem, then you must take care
1002 * to pass it an appropriate max_reserved value to avoid collisions.
1003 */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)1004 int simple_fill_super(struct super_block *s, unsigned long magic,
1005 const struct tree_descr *files)
1006 {
1007 struct inode *inode;
1008 struct dentry *dentry;
1009 int i;
1010
1011 s->s_blocksize = PAGE_SIZE;
1012 s->s_blocksize_bits = PAGE_SHIFT;
1013 s->s_magic = magic;
1014 s->s_op = &simple_super_operations;
1015 s->s_time_gran = 1;
1016
1017 inode = new_inode(s);
1018 if (!inode)
1019 return -ENOMEM;
1020 /*
1021 * because the root inode is 1, the files array must not contain an
1022 * entry at index 1
1023 */
1024 inode->i_ino = 1;
1025 inode->i_mode = S_IFDIR | 0755;
1026 simple_inode_init_ts(inode);
1027 inode->i_op = &simple_dir_inode_operations;
1028 inode->i_fop = &simple_dir_operations;
1029 set_nlink(inode, 2);
1030 s->s_root = d_make_root(inode);
1031 if (!s->s_root)
1032 return -ENOMEM;
1033 for (i = 0; !files->name || files->name[0]; i++, files++) {
1034 if (!files->name)
1035 continue;
1036
1037 /* warn if it tries to conflict with the root inode */
1038 if (unlikely(i == 1))
1039 printk(KERN_WARNING "%s: %s passed in a files array"
1040 "with an index of 1!\n", __func__,
1041 s->s_type->name);
1042
1043 dentry = d_alloc_name(s->s_root, files->name);
1044 if (!dentry)
1045 return -ENOMEM;
1046 inode = new_inode(s);
1047 if (!inode) {
1048 dput(dentry);
1049 return -ENOMEM;
1050 }
1051 inode->i_mode = S_IFREG | files->mode;
1052 simple_inode_init_ts(inode);
1053 inode->i_fop = files->ops;
1054 inode->i_ino = i;
1055 d_add(dentry, inode);
1056 }
1057 return 0;
1058 }
1059 EXPORT_SYMBOL(simple_fill_super);
1060
1061 static DEFINE_SPINLOCK(pin_fs_lock);
1062
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)1063 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1064 {
1065 struct vfsmount *mnt = NULL;
1066 spin_lock(&pin_fs_lock);
1067 if (unlikely(!*mount)) {
1068 spin_unlock(&pin_fs_lock);
1069 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1070 if (IS_ERR(mnt))
1071 return PTR_ERR(mnt);
1072 spin_lock(&pin_fs_lock);
1073 if (!*mount)
1074 *mount = mnt;
1075 }
1076 mntget(*mount);
1077 ++*count;
1078 spin_unlock(&pin_fs_lock);
1079 mntput(mnt);
1080 return 0;
1081 }
1082 EXPORT_SYMBOL(simple_pin_fs);
1083
simple_release_fs(struct vfsmount ** mount,int * count)1084 void simple_release_fs(struct vfsmount **mount, int *count)
1085 {
1086 struct vfsmount *mnt;
1087 spin_lock(&pin_fs_lock);
1088 mnt = *mount;
1089 if (!--*count)
1090 *mount = NULL;
1091 spin_unlock(&pin_fs_lock);
1092 mntput(mnt);
1093 }
1094 EXPORT_SYMBOL(simple_release_fs);
1095
1096 /**
1097 * simple_read_from_buffer - copy data from the buffer to user space
1098 * @to: the user space buffer to read to
1099 * @count: the maximum number of bytes to read
1100 * @ppos: the current position in the buffer
1101 * @from: the buffer to read from
1102 * @available: the size of the buffer
1103 *
1104 * The simple_read_from_buffer() function reads up to @count bytes from the
1105 * buffer @from at offset @ppos into the user space address starting at @to.
1106 *
1107 * On success, the number of bytes read is returned and the offset @ppos is
1108 * advanced by this number, or negative value is returned on error.
1109 **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)1110 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1111 const void *from, size_t available)
1112 {
1113 loff_t pos = *ppos;
1114 size_t ret;
1115
1116 if (pos < 0)
1117 return -EINVAL;
1118 if (pos >= available || !count)
1119 return 0;
1120 if (count > available - pos)
1121 count = available - pos;
1122 ret = copy_to_user(to, from + pos, count);
1123 if (ret == count)
1124 return -EFAULT;
1125 count -= ret;
1126 *ppos = pos + count;
1127 return count;
1128 }
1129 EXPORT_SYMBOL(simple_read_from_buffer);
1130
1131 /**
1132 * simple_write_to_buffer - copy data from user space to the buffer
1133 * @to: the buffer to write to
1134 * @available: the size of the buffer
1135 * @ppos: the current position in the buffer
1136 * @from: the user space buffer to read from
1137 * @count: the maximum number of bytes to read
1138 *
1139 * The simple_write_to_buffer() function reads up to @count bytes from the user
1140 * space address starting at @from into the buffer @to at offset @ppos.
1141 *
1142 * On success, the number of bytes written is returned and the offset @ppos is
1143 * advanced by this number, or negative value is returned on error.
1144 **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)1145 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1146 const void __user *from, size_t count)
1147 {
1148 loff_t pos = *ppos;
1149 size_t res;
1150
1151 if (pos < 0)
1152 return -EINVAL;
1153 if (pos >= available || !count)
1154 return 0;
1155 if (count > available - pos)
1156 count = available - pos;
1157 res = copy_from_user(to + pos, from, count);
1158 if (res == count)
1159 return -EFAULT;
1160 count -= res;
1161 *ppos = pos + count;
1162 return count;
1163 }
1164 EXPORT_SYMBOL(simple_write_to_buffer);
1165
1166 /**
1167 * memory_read_from_buffer - copy data from the buffer
1168 * @to: the kernel space buffer to read to
1169 * @count: the maximum number of bytes to read
1170 * @ppos: the current position in the buffer
1171 * @from: the buffer to read from
1172 * @available: the size of the buffer
1173 *
1174 * The memory_read_from_buffer() function reads up to @count bytes from the
1175 * buffer @from at offset @ppos into the kernel space address starting at @to.
1176 *
1177 * On success, the number of bytes read is returned and the offset @ppos is
1178 * advanced by this number, or negative value is returned on error.
1179 **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)1180 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1181 const void *from, size_t available)
1182 {
1183 loff_t pos = *ppos;
1184
1185 if (pos < 0)
1186 return -EINVAL;
1187 if (pos >= available)
1188 return 0;
1189 if (count > available - pos)
1190 count = available - pos;
1191 memcpy(to, from + pos, count);
1192 *ppos = pos + count;
1193
1194 return count;
1195 }
1196 EXPORT_SYMBOL(memory_read_from_buffer);
1197
1198 /*
1199 * Transaction based IO.
1200 * The file expects a single write which triggers the transaction, and then
1201 * possibly a read which collects the result - which is stored in a
1202 * file-local buffer.
1203 */
1204
simple_transaction_set(struct file * file,size_t n)1205 void simple_transaction_set(struct file *file, size_t n)
1206 {
1207 struct simple_transaction_argresp *ar = file->private_data;
1208
1209 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1210
1211 /*
1212 * The barrier ensures that ar->size will really remain zero until
1213 * ar->data is ready for reading.
1214 */
1215 smp_mb();
1216 ar->size = n;
1217 }
1218 EXPORT_SYMBOL(simple_transaction_set);
1219
simple_transaction_get(struct file * file,const char __user * buf,size_t size)1220 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1221 {
1222 struct simple_transaction_argresp *ar;
1223 static DEFINE_SPINLOCK(simple_transaction_lock);
1224
1225 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1226 return ERR_PTR(-EFBIG);
1227
1228 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1229 if (!ar)
1230 return ERR_PTR(-ENOMEM);
1231
1232 spin_lock(&simple_transaction_lock);
1233
1234 /* only one write allowed per open */
1235 if (file->private_data) {
1236 spin_unlock(&simple_transaction_lock);
1237 free_page((unsigned long)ar);
1238 return ERR_PTR(-EBUSY);
1239 }
1240
1241 file->private_data = ar;
1242
1243 spin_unlock(&simple_transaction_lock);
1244
1245 if (copy_from_user(ar->data, buf, size))
1246 return ERR_PTR(-EFAULT);
1247
1248 return ar->data;
1249 }
1250 EXPORT_SYMBOL(simple_transaction_get);
1251
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)1252 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1253 {
1254 struct simple_transaction_argresp *ar = file->private_data;
1255
1256 if (!ar)
1257 return 0;
1258 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1259 }
1260 EXPORT_SYMBOL(simple_transaction_read);
1261
simple_transaction_release(struct inode * inode,struct file * file)1262 int simple_transaction_release(struct inode *inode, struct file *file)
1263 {
1264 free_page((unsigned long)file->private_data);
1265 return 0;
1266 }
1267 EXPORT_SYMBOL(simple_transaction_release);
1268
1269 /* Simple attribute files */
1270
1271 struct simple_attr {
1272 int (*get)(void *, u64 *);
1273 int (*set)(void *, u64);
1274 char get_buf[24]; /* enough to store a u64 and "\n\0" */
1275 char set_buf[24];
1276 void *data;
1277 const char *fmt; /* format for read operation */
1278 struct mutex mutex; /* protects access to these buffers */
1279 };
1280
1281 /* simple_attr_open is called by an actual attribute open file operation
1282 * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)1283 int simple_attr_open(struct inode *inode, struct file *file,
1284 int (*get)(void *, u64 *), int (*set)(void *, u64),
1285 const char *fmt)
1286 {
1287 struct simple_attr *attr;
1288
1289 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1290 if (!attr)
1291 return -ENOMEM;
1292
1293 attr->get = get;
1294 attr->set = set;
1295 attr->data = inode->i_private;
1296 attr->fmt = fmt;
1297 mutex_init(&attr->mutex);
1298
1299 file->private_data = attr;
1300
1301 return nonseekable_open(inode, file);
1302 }
1303 EXPORT_SYMBOL_GPL(simple_attr_open);
1304
simple_attr_release(struct inode * inode,struct file * file)1305 int simple_attr_release(struct inode *inode, struct file *file)
1306 {
1307 kfree(file->private_data);
1308 return 0;
1309 }
1310 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
1311
1312 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)1313 ssize_t simple_attr_read(struct file *file, char __user *buf,
1314 size_t len, loff_t *ppos)
1315 {
1316 struct simple_attr *attr;
1317 size_t size;
1318 ssize_t ret;
1319
1320 attr = file->private_data;
1321
1322 if (!attr->get)
1323 return -EACCES;
1324
1325 ret = mutex_lock_interruptible(&attr->mutex);
1326 if (ret)
1327 return ret;
1328
1329 if (*ppos && attr->get_buf[0]) {
1330 /* continued read */
1331 size = strlen(attr->get_buf);
1332 } else {
1333 /* first read */
1334 u64 val;
1335 ret = attr->get(attr->data, &val);
1336 if (ret)
1337 goto out;
1338
1339 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1340 attr->fmt, (unsigned long long)val);
1341 }
1342
1343 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1344 out:
1345 mutex_unlock(&attr->mutex);
1346 return ret;
1347 }
1348 EXPORT_SYMBOL_GPL(simple_attr_read);
1349
1350 /* interpret the buffer as a number to call the set function with */
simple_attr_write_xsigned(struct file * file,const char __user * buf,size_t len,loff_t * ppos,bool is_signed)1351 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1352 size_t len, loff_t *ppos, bool is_signed)
1353 {
1354 struct simple_attr *attr;
1355 unsigned long long val;
1356 size_t size;
1357 ssize_t ret;
1358
1359 attr = file->private_data;
1360 if (!attr->set)
1361 return -EACCES;
1362
1363 ret = mutex_lock_interruptible(&attr->mutex);
1364 if (ret)
1365 return ret;
1366
1367 ret = -EFAULT;
1368 size = min(sizeof(attr->set_buf) - 1, len);
1369 if (copy_from_user(attr->set_buf, buf, size))
1370 goto out;
1371
1372 attr->set_buf[size] = '\0';
1373 if (is_signed)
1374 ret = kstrtoll(attr->set_buf, 0, &val);
1375 else
1376 ret = kstrtoull(attr->set_buf, 0, &val);
1377 if (ret)
1378 goto out;
1379 ret = attr->set(attr->data, val);
1380 if (ret == 0)
1381 ret = len; /* on success, claim we got the whole input */
1382 out:
1383 mutex_unlock(&attr->mutex);
1384 return ret;
1385 }
1386
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1387 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1388 size_t len, loff_t *ppos)
1389 {
1390 return simple_attr_write_xsigned(file, buf, len, ppos, false);
1391 }
1392 EXPORT_SYMBOL_GPL(simple_attr_write);
1393
simple_attr_write_signed(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1394 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1395 size_t len, loff_t *ppos)
1396 {
1397 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1398 }
1399 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1400
1401 /**
1402 * generic_encode_ino32_fh - generic export_operations->encode_fh function
1403 * @inode: the object to encode
1404 * @fh: where to store the file handle fragment
1405 * @max_len: maximum length to store there (in 4 byte units)
1406 * @parent: parent directory inode, if wanted
1407 *
1408 * This generic encode_fh function assumes that the 32 inode number
1409 * is suitable for locating an inode, and that the generation number
1410 * can be used to check that it is still valid. It places them in the
1411 * filehandle fragment where export_decode_fh expects to find them.
1412 */
generic_encode_ino32_fh(struct inode * inode,__u32 * fh,int * max_len,struct inode * parent)1413 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1414 struct inode *parent)
1415 {
1416 struct fid *fid = (void *)fh;
1417 int len = *max_len;
1418 int type = FILEID_INO32_GEN;
1419
1420 if (parent && (len < 4)) {
1421 *max_len = 4;
1422 return FILEID_INVALID;
1423 } else if (len < 2) {
1424 *max_len = 2;
1425 return FILEID_INVALID;
1426 }
1427
1428 len = 2;
1429 fid->i32.ino = inode->i_ino;
1430 fid->i32.gen = inode->i_generation;
1431 if (parent) {
1432 fid->i32.parent_ino = parent->i_ino;
1433 fid->i32.parent_gen = parent->i_generation;
1434 len = 4;
1435 type = FILEID_INO32_GEN_PARENT;
1436 }
1437 *max_len = len;
1438 return type;
1439 }
1440 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1441
1442 /**
1443 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1444 * @sb: filesystem to do the file handle conversion on
1445 * @fid: file handle to convert
1446 * @fh_len: length of the file handle in bytes
1447 * @fh_type: type of file handle
1448 * @get_inode: filesystem callback to retrieve inode
1449 *
1450 * This function decodes @fid as long as it has one of the well-known
1451 * Linux filehandle types and calls @get_inode on it to retrieve the
1452 * inode for the object specified in the file handle.
1453 */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1454 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1455 int fh_len, int fh_type, struct inode *(*get_inode)
1456 (struct super_block *sb, u64 ino, u32 gen))
1457 {
1458 struct inode *inode = NULL;
1459
1460 if (fh_len < 2)
1461 return NULL;
1462
1463 switch (fh_type) {
1464 case FILEID_INO32_GEN:
1465 case FILEID_INO32_GEN_PARENT:
1466 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1467 break;
1468 }
1469
1470 return d_obtain_alias(inode);
1471 }
1472 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1473
1474 /**
1475 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1476 * @sb: filesystem to do the file handle conversion on
1477 * @fid: file handle to convert
1478 * @fh_len: length of the file handle in bytes
1479 * @fh_type: type of file handle
1480 * @get_inode: filesystem callback to retrieve inode
1481 *
1482 * This function decodes @fid as long as it has one of the well-known
1483 * Linux filehandle types and calls @get_inode on it to retrieve the
1484 * inode for the _parent_ object specified in the file handle if it
1485 * is specified in the file handle, or NULL otherwise.
1486 */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1487 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1488 int fh_len, int fh_type, struct inode *(*get_inode)
1489 (struct super_block *sb, u64 ino, u32 gen))
1490 {
1491 struct inode *inode = NULL;
1492
1493 if (fh_len <= 2)
1494 return NULL;
1495
1496 switch (fh_type) {
1497 case FILEID_INO32_GEN_PARENT:
1498 inode = get_inode(sb, fid->i32.parent_ino,
1499 (fh_len > 3 ? fid->i32.parent_gen : 0));
1500 break;
1501 }
1502
1503 return d_obtain_alias(inode);
1504 }
1505 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1506
1507 /**
1508 * __generic_file_fsync - generic fsync implementation for simple filesystems
1509 *
1510 * @file: file to synchronize
1511 * @start: start offset in bytes
1512 * @end: end offset in bytes (inclusive)
1513 * @datasync: only synchronize essential metadata if true
1514 *
1515 * This is a generic implementation of the fsync method for simple
1516 * filesystems which track all non-inode metadata in the buffers list
1517 * hanging off the address_space structure.
1518 */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1519 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1520 int datasync)
1521 {
1522 struct inode *inode = file->f_mapping->host;
1523 int err;
1524 int ret;
1525
1526 err = file_write_and_wait_range(file, start, end);
1527 if (err)
1528 return err;
1529
1530 inode_lock(inode);
1531 ret = sync_mapping_buffers(inode->i_mapping);
1532 if (!(inode->i_state & I_DIRTY_ALL))
1533 goto out;
1534 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1535 goto out;
1536
1537 err = sync_inode_metadata(inode, 1);
1538 if (ret == 0)
1539 ret = err;
1540
1541 out:
1542 inode_unlock(inode);
1543 /* check and advance again to catch errors after syncing out buffers */
1544 err = file_check_and_advance_wb_err(file);
1545 if (ret == 0)
1546 ret = err;
1547 return ret;
1548 }
1549 EXPORT_SYMBOL(__generic_file_fsync);
1550
1551 /**
1552 * generic_file_fsync - generic fsync implementation for simple filesystems
1553 * with flush
1554 * @file: file to synchronize
1555 * @start: start offset in bytes
1556 * @end: end offset in bytes (inclusive)
1557 * @datasync: only synchronize essential metadata if true
1558 *
1559 */
1560
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1561 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1562 int datasync)
1563 {
1564 struct inode *inode = file->f_mapping->host;
1565 int err;
1566
1567 err = __generic_file_fsync(file, start, end, datasync);
1568 if (err)
1569 return err;
1570 return blkdev_issue_flush(inode->i_sb->s_bdev);
1571 }
1572 EXPORT_SYMBOL(generic_file_fsync);
1573
1574 /**
1575 * generic_check_addressable - Check addressability of file system
1576 * @blocksize_bits: log of file system block size
1577 * @num_blocks: number of blocks in file system
1578 *
1579 * Determine whether a file system with @num_blocks blocks (and a
1580 * block size of 2**@blocksize_bits) is addressable by the sector_t
1581 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1582 */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1583 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1584 {
1585 u64 last_fs_block = num_blocks - 1;
1586 u64 last_fs_page =
1587 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1588
1589 if (unlikely(num_blocks == 0))
1590 return 0;
1591
1592 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1593 return -EINVAL;
1594
1595 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1596 (last_fs_page > (pgoff_t)(~0ULL))) {
1597 return -EFBIG;
1598 }
1599 return 0;
1600 }
1601 EXPORT_SYMBOL(generic_check_addressable);
1602
1603 /*
1604 * No-op implementation of ->fsync for in-memory filesystems.
1605 */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1606 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1607 {
1608 return 0;
1609 }
1610 EXPORT_SYMBOL(noop_fsync);
1611
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1612 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1613 {
1614 /*
1615 * iomap based filesystems support direct I/O without need for
1616 * this callback. However, it still needs to be set in
1617 * inode->a_ops so that open/fcntl know that direct I/O is
1618 * generally supported.
1619 */
1620 return -EINVAL;
1621 }
1622 EXPORT_SYMBOL_GPL(noop_direct_IO);
1623
1624 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1625 void kfree_link(void *p)
1626 {
1627 kfree(p);
1628 }
1629 EXPORT_SYMBOL(kfree_link);
1630
alloc_anon_inode(struct super_block * s)1631 struct inode *alloc_anon_inode(struct super_block *s)
1632 {
1633 static const struct address_space_operations anon_aops = {
1634 .dirty_folio = noop_dirty_folio,
1635 };
1636 struct inode *inode = new_inode_pseudo(s);
1637
1638 if (!inode)
1639 return ERR_PTR(-ENOMEM);
1640
1641 inode->i_ino = get_next_ino();
1642 inode->i_mapping->a_ops = &anon_aops;
1643
1644 /*
1645 * Mark the inode dirty from the very beginning,
1646 * that way it will never be moved to the dirty
1647 * list because mark_inode_dirty() will think
1648 * that it already _is_ on the dirty list.
1649 */
1650 inode->i_state = I_DIRTY;
1651 /*
1652 * Historically anonymous inodes don't have a type at all and
1653 * userspace has come to rely on this.
1654 */
1655 inode->i_mode = S_IRUSR | S_IWUSR;
1656 inode->i_uid = current_fsuid();
1657 inode->i_gid = current_fsgid();
1658 inode->i_flags |= S_PRIVATE | S_ANON_INODE;
1659 simple_inode_init_ts(inode);
1660 return inode;
1661 }
1662 EXPORT_SYMBOL(alloc_anon_inode);
1663
1664 /**
1665 * simple_nosetlease - generic helper for prohibiting leases
1666 * @filp: file pointer
1667 * @arg: type of lease to obtain
1668 * @flp: new lease supplied for insertion
1669 * @priv: private data for lm_setup operation
1670 *
1671 * Generic helper for filesystems that do not wish to allow leases to be set.
1672 * All arguments are ignored and it just returns -EINVAL.
1673 */
1674 int
simple_nosetlease(struct file * filp,int arg,struct file_lease ** flp,void ** priv)1675 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1676 void **priv)
1677 {
1678 return -EINVAL;
1679 }
1680 EXPORT_SYMBOL(simple_nosetlease);
1681
1682 /**
1683 * simple_get_link - generic helper to get the target of "fast" symlinks
1684 * @dentry: not used here
1685 * @inode: the symlink inode
1686 * @done: not used here
1687 *
1688 * Generic helper for filesystems to use for symlink inodes where a pointer to
1689 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1690 * since as an optimization the path lookup code uses any non-NULL ->i_link
1691 * directly, without calling ->get_link(). But ->get_link() still must be set,
1692 * to mark the inode_operations as being for a symlink.
1693 *
1694 * Return: the symlink target
1695 */
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1696 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1697 struct delayed_call *done)
1698 {
1699 return inode->i_link;
1700 }
1701 EXPORT_SYMBOL(simple_get_link);
1702
1703 const struct inode_operations simple_symlink_inode_operations = {
1704 .get_link = simple_get_link,
1705 };
1706 EXPORT_SYMBOL(simple_symlink_inode_operations);
1707
1708 /*
1709 * Operations for a permanently empty directory.
1710 */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1711 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1712 {
1713 return ERR_PTR(-ENOENT);
1714 }
1715
empty_dir_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1716 static int empty_dir_setattr(struct mnt_idmap *idmap,
1717 struct dentry *dentry, struct iattr *attr)
1718 {
1719 return -EPERM;
1720 }
1721
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1722 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1723 {
1724 return -EOPNOTSUPP;
1725 }
1726
1727 static const struct inode_operations empty_dir_inode_operations = {
1728 .lookup = empty_dir_lookup,
1729 .setattr = empty_dir_setattr,
1730 .listxattr = empty_dir_listxattr,
1731 };
1732
empty_dir_llseek(struct file * file,loff_t offset,int whence)1733 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1734 {
1735 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1736 return generic_file_llseek_size(file, offset, whence, 2, 2);
1737 }
1738
empty_dir_readdir(struct file * file,struct dir_context * ctx)1739 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1740 {
1741 dir_emit_dots(file, ctx);
1742 return 0;
1743 }
1744
1745 static const struct file_operations empty_dir_operations = {
1746 .llseek = empty_dir_llseek,
1747 .read = generic_read_dir,
1748 .iterate_shared = empty_dir_readdir,
1749 .fsync = noop_fsync,
1750 };
1751
1752
make_empty_dir_inode(struct inode * inode)1753 void make_empty_dir_inode(struct inode *inode)
1754 {
1755 set_nlink(inode, 2);
1756 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1757 inode->i_uid = GLOBAL_ROOT_UID;
1758 inode->i_gid = GLOBAL_ROOT_GID;
1759 inode->i_rdev = 0;
1760 inode->i_size = 0;
1761 inode->i_blkbits = PAGE_SHIFT;
1762 inode->i_blocks = 0;
1763
1764 inode->i_op = &empty_dir_inode_operations;
1765 inode->i_opflags &= ~IOP_XATTR;
1766 inode->i_fop = &empty_dir_operations;
1767 }
1768
is_empty_dir_inode(struct inode * inode)1769 bool is_empty_dir_inode(struct inode *inode)
1770 {
1771 return (inode->i_fop == &empty_dir_operations) &&
1772 (inode->i_op == &empty_dir_inode_operations);
1773 }
1774
1775 #if IS_ENABLED(CONFIG_UNICODE)
1776 /**
1777 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1778 * @dentry: dentry whose name we are checking against
1779 * @len: len of name of dentry
1780 * @str: str pointer to name of dentry
1781 * @name: Name to compare against
1782 *
1783 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1784 */
generic_ci_d_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)1785 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1786 const char *str, const struct qstr *name)
1787 {
1788 const struct dentry *parent;
1789 const struct inode *dir;
1790 union shortname_store strbuf;
1791 struct qstr qstr;
1792
1793 /*
1794 * Attempt a case-sensitive match first. It is cheaper and
1795 * should cover most lookups, including all the sane
1796 * applications that expect a case-sensitive filesystem.
1797 *
1798 * This comparison is safe under RCU because the caller
1799 * guarantees the consistency between str and len. See
1800 * __d_lookup_rcu_op_compare() for details.
1801 */
1802 if (len == name->len && !memcmp(str, name->name, len))
1803 return 0;
1804
1805 parent = READ_ONCE(dentry->d_parent);
1806 dir = READ_ONCE(parent->d_inode);
1807 if (!dir || !IS_CASEFOLDED(dir))
1808 return 1;
1809
1810 qstr.len = len;
1811 qstr.name = str;
1812 /*
1813 * If the dentry name is stored in-line, then it may be concurrently
1814 * modified by a rename. If this happens, the VFS will eventually retry
1815 * the lookup, so it doesn't matter what ->d_compare() returns.
1816 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1817 * string. Therefore, we have to copy the name into a temporary buffer.
1818 * As above, len is guaranteed to match str, so the shortname case
1819 * is exactly when str points to ->d_shortname.
1820 */
1821 if (qstr.name == dentry->d_shortname.string) {
1822 strbuf = dentry->d_shortname; // NUL is guaranteed to be in there
1823 qstr.name = strbuf.string;
1824 /* prevent compiler from optimizing out the temporary buffer */
1825 barrier();
1826 }
1827
1828 return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1829 }
1830 EXPORT_SYMBOL(generic_ci_d_compare);
1831
1832 /**
1833 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1834 * @dentry: dentry of the parent directory
1835 * @str: qstr of name whose hash we should fill in
1836 *
1837 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1838 */
generic_ci_d_hash(const struct dentry * dentry,struct qstr * str)1839 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1840 {
1841 const struct inode *dir = READ_ONCE(dentry->d_inode);
1842 struct super_block *sb = dentry->d_sb;
1843 const struct unicode_map *um = sb->s_encoding;
1844 int ret;
1845
1846 if (!dir || !IS_CASEFOLDED(dir))
1847 return 0;
1848
1849 ret = utf8_casefold_hash(um, dentry, str);
1850 if (ret < 0 && sb_has_strict_encoding(sb))
1851 return -EINVAL;
1852 return 0;
1853 }
1854 EXPORT_SYMBOL(generic_ci_d_hash);
1855
1856 static const struct dentry_operations generic_ci_dentry_ops = {
1857 .d_hash = generic_ci_d_hash,
1858 .d_compare = generic_ci_d_compare,
1859 #ifdef CONFIG_FS_ENCRYPTION
1860 .d_revalidate = fscrypt_d_revalidate,
1861 #endif
1862 };
1863
1864 /**
1865 * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1866 * This is a filesystem helper for comparison with directory entries.
1867 * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1868 *
1869 * @parent: Inode of the parent of the dirent under comparison
1870 * @name: name under lookup.
1871 * @folded_name: Optional pre-folded name under lookup
1872 * @de_name: Dirent name.
1873 * @de_name_len: dirent name length.
1874 *
1875 * Test whether a case-insensitive directory entry matches the filename
1876 * being searched. If @folded_name is provided, it is used instead of
1877 * recalculating the casefold of @name.
1878 *
1879 * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1880 * < 0 on error.
1881 */
generic_ci_match(const struct inode * parent,const struct qstr * name,const struct qstr * folded_name,const u8 * de_name,u32 de_name_len)1882 int generic_ci_match(const struct inode *parent,
1883 const struct qstr *name,
1884 const struct qstr *folded_name,
1885 const u8 *de_name, u32 de_name_len)
1886 {
1887 const struct super_block *sb = parent->i_sb;
1888 const struct unicode_map *um = sb->s_encoding;
1889 struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1890 struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1891 int res = 0;
1892
1893 if (IS_ENCRYPTED(parent)) {
1894 const struct fscrypt_str encrypted_name =
1895 FSTR_INIT((u8 *) de_name, de_name_len);
1896
1897 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1898 return -EINVAL;
1899
1900 decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1901 if (!decrypted_name.name)
1902 return -ENOMEM;
1903 res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1904 &decrypted_name);
1905 if (res < 0) {
1906 kfree(decrypted_name.name);
1907 return res;
1908 }
1909 dirent.name = decrypted_name.name;
1910 dirent.len = decrypted_name.len;
1911 }
1912
1913 /*
1914 * Attempt a case-sensitive match first. It is cheaper and
1915 * should cover most lookups, including all the sane
1916 * applications that expect a case-sensitive filesystem.
1917 */
1918
1919 if (dirent.len == name->len &&
1920 !memcmp(name->name, dirent.name, dirent.len))
1921 goto out;
1922
1923 if (folded_name->name)
1924 res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1925 else
1926 res = utf8_strncasecmp(um, name, &dirent);
1927
1928 out:
1929 kfree(decrypted_name.name);
1930 if (res < 0 && sb_has_strict_encoding(sb)) {
1931 pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1932 return 0;
1933 }
1934 return !res;
1935 }
1936 EXPORT_SYMBOL(generic_ci_match);
1937 #endif
1938
1939 #ifdef CONFIG_FS_ENCRYPTION
1940 static const struct dentry_operations generic_encrypted_dentry_ops = {
1941 .d_revalidate = fscrypt_d_revalidate,
1942 };
1943 #endif
1944
1945 /**
1946 * generic_set_sb_d_ops - helper for choosing the set of
1947 * filesystem-wide dentry operations for the enabled features
1948 * @sb: superblock to be configured
1949 *
1950 * Filesystems supporting casefolding and/or fscrypt can call this
1951 * helper at mount-time to configure sb->s_d_op to best set of dentry
1952 * operations required for the enabled features. The helper must be
1953 * called after these have been configured, but before the root dentry
1954 * is created.
1955 */
generic_set_sb_d_ops(struct super_block * sb)1956 void generic_set_sb_d_ops(struct super_block *sb)
1957 {
1958 #if IS_ENABLED(CONFIG_UNICODE)
1959 if (sb->s_encoding) {
1960 sb->s_d_op = &generic_ci_dentry_ops;
1961 return;
1962 }
1963 #endif
1964 #ifdef CONFIG_FS_ENCRYPTION
1965 if (sb->s_cop) {
1966 sb->s_d_op = &generic_encrypted_dentry_ops;
1967 return;
1968 }
1969 #endif
1970 }
1971 EXPORT_SYMBOL(generic_set_sb_d_ops);
1972
1973 /**
1974 * inode_maybe_inc_iversion - increments i_version
1975 * @inode: inode with the i_version that should be updated
1976 * @force: increment the counter even if it's not necessary?
1977 *
1978 * Every time the inode is modified, the i_version field must be seen to have
1979 * changed by any observer.
1980 *
1981 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1982 * the value, and clear the queried flag.
1983 *
1984 * In the common case where neither is set, then we can return "false" without
1985 * updating i_version.
1986 *
1987 * If this function returns false, and no other metadata has changed, then we
1988 * can avoid logging the metadata.
1989 */
inode_maybe_inc_iversion(struct inode * inode,bool force)1990 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1991 {
1992 u64 cur, new;
1993
1994 /*
1995 * The i_version field is not strictly ordered with any other inode
1996 * information, but the legacy inode_inc_iversion code used a spinlock
1997 * to serialize increments.
1998 *
1999 * We add a full memory barrier to ensure that any de facto ordering
2000 * with other state is preserved (either implicitly coming from cmpxchg
2001 * or explicitly from smp_mb if we don't know upfront if we will execute
2002 * the former).
2003 *
2004 * These barriers pair with inode_query_iversion().
2005 */
2006 cur = inode_peek_iversion_raw(inode);
2007 if (!force && !(cur & I_VERSION_QUERIED)) {
2008 smp_mb();
2009 cur = inode_peek_iversion_raw(inode);
2010 }
2011
2012 do {
2013 /* If flag is clear then we needn't do anything */
2014 if (!force && !(cur & I_VERSION_QUERIED))
2015 return false;
2016
2017 /* Since lowest bit is flag, add 2 to avoid it */
2018 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2019 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2020 return true;
2021 }
2022 EXPORT_SYMBOL(inode_maybe_inc_iversion);
2023
2024 /**
2025 * inode_query_iversion - read i_version for later use
2026 * @inode: inode from which i_version should be read
2027 *
2028 * Read the inode i_version counter. This should be used by callers that wish
2029 * to store the returned i_version for later comparison. This will guarantee
2030 * that a later query of the i_version will result in a different value if
2031 * anything has changed.
2032 *
2033 * In this implementation, we fetch the current value, set the QUERIED flag and
2034 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2035 * that fails, we try again with the newly fetched value from the cmpxchg.
2036 */
inode_query_iversion(struct inode * inode)2037 u64 inode_query_iversion(struct inode *inode)
2038 {
2039 u64 cur, new;
2040 bool fenced = false;
2041
2042 /*
2043 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with
2044 * inode_maybe_inc_iversion(), see that routine for more details.
2045 */
2046 cur = inode_peek_iversion_raw(inode);
2047 do {
2048 /* If flag is already set, then no need to swap */
2049 if (cur & I_VERSION_QUERIED) {
2050 if (!fenced)
2051 smp_mb();
2052 break;
2053 }
2054
2055 fenced = true;
2056 new = cur | I_VERSION_QUERIED;
2057 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2058 return cur >> I_VERSION_QUERIED_SHIFT;
2059 }
2060 EXPORT_SYMBOL(inode_query_iversion);
2061
direct_write_fallback(struct kiocb * iocb,struct iov_iter * iter,ssize_t direct_written,ssize_t buffered_written)2062 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2063 ssize_t direct_written, ssize_t buffered_written)
2064 {
2065 struct address_space *mapping = iocb->ki_filp->f_mapping;
2066 loff_t pos = iocb->ki_pos - buffered_written;
2067 loff_t end = iocb->ki_pos - 1;
2068 int err;
2069
2070 /*
2071 * If the buffered write fallback returned an error, we want to return
2072 * the number of bytes which were written by direct I/O, or the error
2073 * code if that was zero.
2074 *
2075 * Note that this differs from normal direct-io semantics, which will
2076 * return -EFOO even if some bytes were written.
2077 */
2078 if (unlikely(buffered_written < 0)) {
2079 if (direct_written)
2080 return direct_written;
2081 return buffered_written;
2082 }
2083
2084 /*
2085 * We need to ensure that the page cache pages are written to disk and
2086 * invalidated to preserve the expected O_DIRECT semantics.
2087 */
2088 err = filemap_write_and_wait_range(mapping, pos, end);
2089 if (err < 0) {
2090 /*
2091 * We don't know how much we wrote, so just return the number of
2092 * bytes which were direct-written
2093 */
2094 iocb->ki_pos -= buffered_written;
2095 if (direct_written)
2096 return direct_written;
2097 return err;
2098 }
2099 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2100 return direct_written + buffered_written;
2101 }
2102 EXPORT_SYMBOL_GPL(direct_write_fallback);
2103
2104 /**
2105 * simple_inode_init_ts - initialize the timestamps for a new inode
2106 * @inode: inode to be initialized
2107 *
2108 * When a new inode is created, most filesystems set the timestamps to the
2109 * current time. Add a helper to do this.
2110 */
simple_inode_init_ts(struct inode * inode)2111 struct timespec64 simple_inode_init_ts(struct inode *inode)
2112 {
2113 struct timespec64 ts = inode_set_ctime_current(inode);
2114
2115 inode_set_atime_to_ts(inode, ts);
2116 inode_set_mtime_to_ts(inode, ts);
2117 return ts;
2118 }
2119 EXPORT_SYMBOL(simple_inode_init_ts);
2120
stashed_dentry_get(struct dentry ** stashed)2121 struct dentry *stashed_dentry_get(struct dentry **stashed)
2122 {
2123 struct dentry *dentry;
2124
2125 guard(rcu)();
2126 dentry = rcu_dereference(*stashed);
2127 if (!dentry)
2128 return NULL;
2129 if (!lockref_get_not_dead(&dentry->d_lockref))
2130 return NULL;
2131 return dentry;
2132 }
2133
prepare_anon_dentry(struct dentry ** stashed,struct super_block * sb,void * data)2134 static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2135 struct super_block *sb,
2136 void *data)
2137 {
2138 struct dentry *dentry;
2139 struct inode *inode;
2140 const struct stashed_operations *sops = sb->s_fs_info;
2141 int ret;
2142
2143 inode = new_inode_pseudo(sb);
2144 if (!inode) {
2145 sops->put_data(data);
2146 return ERR_PTR(-ENOMEM);
2147 }
2148
2149 inode->i_flags |= S_IMMUTABLE;
2150 inode->i_mode = S_IFREG;
2151 simple_inode_init_ts(inode);
2152
2153 ret = sops->init_inode(inode, data);
2154 if (ret < 0) {
2155 iput(inode);
2156 return ERR_PTR(ret);
2157 }
2158
2159 /* Notice when this is changed. */
2160 WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2161 WARN_ON_ONCE(!IS_IMMUTABLE(inode));
2162
2163 dentry = d_alloc_anon(sb);
2164 if (!dentry) {
2165 iput(inode);
2166 return ERR_PTR(-ENOMEM);
2167 }
2168
2169 /* Store address of location where dentry's supposed to be stashed. */
2170 dentry->d_fsdata = stashed;
2171
2172 /* @data is now owned by the fs */
2173 d_instantiate(dentry, inode);
2174 return dentry;
2175 }
2176
stash_dentry(struct dentry ** stashed,struct dentry * dentry)2177 static struct dentry *stash_dentry(struct dentry **stashed,
2178 struct dentry *dentry)
2179 {
2180 guard(rcu)();
2181 for (;;) {
2182 struct dentry *old;
2183
2184 /* Assume any old dentry was cleared out. */
2185 old = cmpxchg(stashed, NULL, dentry);
2186 if (likely(!old))
2187 return dentry;
2188
2189 /* Check if somebody else installed a reusable dentry. */
2190 if (lockref_get_not_dead(&old->d_lockref))
2191 return old;
2192
2193 /* There's an old dead dentry there, try to take it over. */
2194 if (likely(try_cmpxchg(stashed, &old, dentry)))
2195 return dentry;
2196 }
2197 }
2198
2199 /**
2200 * path_from_stashed - create path from stashed or new dentry
2201 * @stashed: where to retrieve or stash dentry
2202 * @mnt: mnt of the filesystems to use
2203 * @data: data to store in inode->i_private
2204 * @path: path to create
2205 *
2206 * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2207 * is still valid then it will be reused. If the dentry isn't able the function
2208 * will allocate a new dentry and inode. It will then check again whether it
2209 * can reuse an existing dentry in case one has been added in the meantime or
2210 * update @stashed with the newly added dentry.
2211 *
2212 * Special-purpose helper for nsfs and pidfs.
2213 *
2214 * Return: On success zero and on failure a negative error is returned.
2215 */
path_from_stashed(struct dentry ** stashed,struct vfsmount * mnt,void * data,struct path * path)2216 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2217 struct path *path)
2218 {
2219 struct dentry *dentry;
2220 const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2221
2222 /* See if dentry can be reused. */
2223 path->dentry = stashed_dentry_get(stashed);
2224 if (path->dentry) {
2225 sops->put_data(data);
2226 goto out_path;
2227 }
2228
2229 /* Allocate a new dentry. */
2230 dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2231 if (IS_ERR(dentry))
2232 return PTR_ERR(dentry);
2233
2234 /* Added a new dentry. @data is now owned by the filesystem. */
2235 path->dentry = stash_dentry(stashed, dentry);
2236 if (path->dentry != dentry)
2237 dput(dentry);
2238
2239 out_path:
2240 WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2241 WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2242 path->mnt = mntget(mnt);
2243 return 0;
2244 }
2245
stashed_dentry_prune(struct dentry * dentry)2246 void stashed_dentry_prune(struct dentry *dentry)
2247 {
2248 struct dentry **stashed = dentry->d_fsdata;
2249 struct inode *inode = d_inode(dentry);
2250
2251 if (WARN_ON_ONCE(!stashed))
2252 return;
2253
2254 if (!inode)
2255 return;
2256
2257 /*
2258 * Only replace our own @dentry as someone else might've
2259 * already cleared out @dentry and stashed their own
2260 * dentry in there.
2261 */
2262 cmpxchg(stashed, dentry, NULL);
2263 }
2264