xref: /linux/fs/libfs.c (revision 2eb7f03acf4ac5db937974e99e75dac4c2c5a83d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 #include <linux/pidfs.h>
27 
28 #include <linux/uaccess.h>
29 
30 #include "internal.h"
31 
simple_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33 		   struct kstat *stat, u32 request_mask,
34 		   unsigned int query_flags)
35 {
36 	struct inode *inode = d_inode(path->dentry);
37 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
39 	return 0;
40 }
41 EXPORT_SYMBOL(simple_getattr);
42 
simple_statfs(struct dentry * dentry,struct kstatfs * buf)43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44 {
45 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46 
47 	buf->f_fsid = u64_to_fsid(id);
48 	buf->f_type = dentry->d_sb->s_magic;
49 	buf->f_bsize = PAGE_SIZE;
50 	buf->f_namelen = NAME_MAX;
51 	return 0;
52 }
53 EXPORT_SYMBOL(simple_statfs);
54 
55 /*
56  * Retaining negative dentries for an in-memory filesystem just wastes
57  * memory and lookup time: arrange for them to be deleted immediately.
58  */
always_delete_dentry(const struct dentry * dentry)59 int always_delete_dentry(const struct dentry *dentry)
60 {
61 	return 1;
62 }
63 EXPORT_SYMBOL(always_delete_dentry);
64 
65 const struct dentry_operations simple_dentry_operations = {
66 	.d_delete = always_delete_dentry,
67 };
68 EXPORT_SYMBOL(simple_dentry_operations);
69 
70 /*
71  * Lookup the data. This is trivial - if the dentry didn't already
72  * exist, we know it is negative.  Set d_op to delete negative dentries.
73  */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)74 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
75 {
76 	if (dentry->d_name.len > NAME_MAX)
77 		return ERR_PTR(-ENAMETOOLONG);
78 	if (!dentry->d_sb->s_d_op)
79 		d_set_d_op(dentry, &simple_dentry_operations);
80 
81 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
82 		return NULL;
83 
84 	d_add(dentry, NULL);
85 	return NULL;
86 }
87 EXPORT_SYMBOL(simple_lookup);
88 
dcache_dir_open(struct inode * inode,struct file * file)89 int dcache_dir_open(struct inode *inode, struct file *file)
90 {
91 	file->private_data = d_alloc_cursor(file->f_path.dentry);
92 
93 	return file->private_data ? 0 : -ENOMEM;
94 }
95 EXPORT_SYMBOL(dcache_dir_open);
96 
dcache_dir_close(struct inode * inode,struct file * file)97 int dcache_dir_close(struct inode *inode, struct file *file)
98 {
99 	dput(file->private_data);
100 	return 0;
101 }
102 EXPORT_SYMBOL(dcache_dir_close);
103 
104 /* parent is locked at least shared */
105 /*
106  * Returns an element of siblings' list.
107  * We are looking for <count>th positive after <p>; if
108  * found, dentry is grabbed and returned to caller.
109  * If no such element exists, NULL is returned.
110  */
scan_positives(struct dentry * cursor,struct hlist_node ** p,loff_t count,struct dentry * last)111 static struct dentry *scan_positives(struct dentry *cursor,
112 					struct hlist_node **p,
113 					loff_t count,
114 					struct dentry *last)
115 {
116 	struct dentry *dentry = cursor->d_parent, *found = NULL;
117 
118 	spin_lock(&dentry->d_lock);
119 	while (*p) {
120 		struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
121 		p = &d->d_sib.next;
122 		// we must at least skip cursors, to avoid livelocks
123 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
124 			continue;
125 		if (simple_positive(d) && !--count) {
126 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
127 			if (simple_positive(d))
128 				found = dget_dlock(d);
129 			spin_unlock(&d->d_lock);
130 			if (likely(found))
131 				break;
132 			count = 1;
133 		}
134 		if (need_resched()) {
135 			if (!hlist_unhashed(&cursor->d_sib))
136 				__hlist_del(&cursor->d_sib);
137 			hlist_add_behind(&cursor->d_sib, &d->d_sib);
138 			p = &cursor->d_sib.next;
139 			spin_unlock(&dentry->d_lock);
140 			cond_resched();
141 			spin_lock(&dentry->d_lock);
142 		}
143 	}
144 	spin_unlock(&dentry->d_lock);
145 	dput(last);
146 	return found;
147 }
148 
dcache_dir_lseek(struct file * file,loff_t offset,int whence)149 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
150 {
151 	struct dentry *dentry = file->f_path.dentry;
152 	switch (whence) {
153 		case 1:
154 			offset += file->f_pos;
155 			fallthrough;
156 		case 0:
157 			if (offset >= 0)
158 				break;
159 			fallthrough;
160 		default:
161 			return -EINVAL;
162 	}
163 	if (offset != file->f_pos) {
164 		struct dentry *cursor = file->private_data;
165 		struct dentry *to = NULL;
166 
167 		inode_lock_shared(dentry->d_inode);
168 
169 		if (offset > 2)
170 			to = scan_positives(cursor, &dentry->d_children.first,
171 					    offset - 2, NULL);
172 		spin_lock(&dentry->d_lock);
173 		hlist_del_init(&cursor->d_sib);
174 		if (to)
175 			hlist_add_behind(&cursor->d_sib, &to->d_sib);
176 		spin_unlock(&dentry->d_lock);
177 		dput(to);
178 
179 		file->f_pos = offset;
180 
181 		inode_unlock_shared(dentry->d_inode);
182 	}
183 	return offset;
184 }
185 EXPORT_SYMBOL(dcache_dir_lseek);
186 
187 /*
188  * Directory is locked and all positive dentries in it are safe, since
189  * for ramfs-type trees they can't go away without unlink() or rmdir(),
190  * both impossible due to the lock on directory.
191  */
192 
dcache_readdir(struct file * file,struct dir_context * ctx)193 int dcache_readdir(struct file *file, struct dir_context *ctx)
194 {
195 	struct dentry *dentry = file->f_path.dentry;
196 	struct dentry *cursor = file->private_data;
197 	struct dentry *next = NULL;
198 	struct hlist_node **p;
199 
200 	if (!dir_emit_dots(file, ctx))
201 		return 0;
202 
203 	if (ctx->pos == 2)
204 		p = &dentry->d_children.first;
205 	else
206 		p = &cursor->d_sib.next;
207 
208 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
209 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
210 			      d_inode(next)->i_ino,
211 			      fs_umode_to_dtype(d_inode(next)->i_mode)))
212 			break;
213 		ctx->pos++;
214 		p = &next->d_sib.next;
215 	}
216 	spin_lock(&dentry->d_lock);
217 	hlist_del_init(&cursor->d_sib);
218 	if (next)
219 		hlist_add_before(&cursor->d_sib, &next->d_sib);
220 	spin_unlock(&dentry->d_lock);
221 	dput(next);
222 
223 	return 0;
224 }
225 EXPORT_SYMBOL(dcache_readdir);
226 
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)227 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
228 {
229 	return -EISDIR;
230 }
231 EXPORT_SYMBOL(generic_read_dir);
232 
233 const struct file_operations simple_dir_operations = {
234 	.open		= dcache_dir_open,
235 	.release	= dcache_dir_close,
236 	.llseek		= dcache_dir_lseek,
237 	.read		= generic_read_dir,
238 	.iterate_shared	= dcache_readdir,
239 	.fsync		= noop_fsync,
240 };
241 EXPORT_SYMBOL(simple_dir_operations);
242 
243 const struct inode_operations simple_dir_inode_operations = {
244 	.lookup		= simple_lookup,
245 };
246 EXPORT_SYMBOL(simple_dir_inode_operations);
247 
248 /* simple_offset_add() never assigns these to a dentry */
249 enum {
250 	DIR_OFFSET_FIRST	= 2,		/* Find first real entry */
251 	DIR_OFFSET_EOD		= S32_MAX,
252 };
253 
254 /* simple_offset_add() allocation range */
255 enum {
256 	DIR_OFFSET_MIN		= DIR_OFFSET_FIRST + 1,
257 	DIR_OFFSET_MAX		= DIR_OFFSET_EOD - 1,
258 };
259 
offset_set(struct dentry * dentry,long offset)260 static void offset_set(struct dentry *dentry, long offset)
261 {
262 	dentry->d_fsdata = (void *)offset;
263 }
264 
dentry2offset(struct dentry * dentry)265 static long dentry2offset(struct dentry *dentry)
266 {
267 	return (long)dentry->d_fsdata;
268 }
269 
270 static struct lock_class_key simple_offset_lock_class;
271 
272 /**
273  * simple_offset_init - initialize an offset_ctx
274  * @octx: directory offset map to be initialized
275  *
276  */
simple_offset_init(struct offset_ctx * octx)277 void simple_offset_init(struct offset_ctx *octx)
278 {
279 	mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
280 	lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
281 	octx->next_offset = DIR_OFFSET_MIN;
282 }
283 
284 /**
285  * simple_offset_add - Add an entry to a directory's offset map
286  * @octx: directory offset ctx to be updated
287  * @dentry: new dentry being added
288  *
289  * Returns zero on success. @octx and the dentry's offset are updated.
290  * Otherwise, a negative errno value is returned.
291  */
simple_offset_add(struct offset_ctx * octx,struct dentry * dentry)292 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
293 {
294 	unsigned long offset;
295 	int ret;
296 
297 	if (dentry2offset(dentry) != 0)
298 		return -EBUSY;
299 
300 	ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
301 				 DIR_OFFSET_MAX, &octx->next_offset,
302 				 GFP_KERNEL);
303 	if (unlikely(ret < 0))
304 		return ret == -EBUSY ? -ENOSPC : ret;
305 
306 	offset_set(dentry, offset);
307 	return 0;
308 }
309 
simple_offset_replace(struct offset_ctx * octx,struct dentry * dentry,long offset)310 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
311 				 long offset)
312 {
313 	int ret;
314 
315 	ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
316 	if (ret)
317 		return ret;
318 	offset_set(dentry, offset);
319 	return 0;
320 }
321 
322 /**
323  * simple_offset_remove - Remove an entry to a directory's offset map
324  * @octx: directory offset ctx to be updated
325  * @dentry: dentry being removed
326  *
327  */
simple_offset_remove(struct offset_ctx * octx,struct dentry * dentry)328 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
329 {
330 	long offset;
331 
332 	offset = dentry2offset(dentry);
333 	if (offset == 0)
334 		return;
335 
336 	mtree_erase(&octx->mt, offset);
337 	offset_set(dentry, 0);
338 }
339 
340 /**
341  * simple_offset_rename - handle directory offsets for rename
342  * @old_dir: parent directory of source entry
343  * @old_dentry: dentry of source entry
344  * @new_dir: parent_directory of destination entry
345  * @new_dentry: dentry of destination
346  *
347  * Caller provides appropriate serialization.
348  *
349  * User space expects the directory offset value of the replaced
350  * (new) directory entry to be unchanged after a rename.
351  *
352  * Returns zero on success, a negative errno value on failure.
353  */
simple_offset_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)354 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
355 			 struct inode *new_dir, struct dentry *new_dentry)
356 {
357 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
358 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
359 	long new_offset = dentry2offset(new_dentry);
360 
361 	simple_offset_remove(old_ctx, old_dentry);
362 
363 	if (new_offset) {
364 		offset_set(new_dentry, 0);
365 		return simple_offset_replace(new_ctx, old_dentry, new_offset);
366 	}
367 	return simple_offset_add(new_ctx, old_dentry);
368 }
369 
370 /**
371  * simple_offset_rename_exchange - exchange rename with directory offsets
372  * @old_dir: parent of dentry being moved
373  * @old_dentry: dentry being moved
374  * @new_dir: destination parent
375  * @new_dentry: destination dentry
376  *
377  * This API preserves the directory offset values. Caller provides
378  * appropriate serialization.
379  *
380  * Returns zero on success. Otherwise a negative errno is returned and the
381  * rename is rolled back.
382  */
simple_offset_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)383 int simple_offset_rename_exchange(struct inode *old_dir,
384 				  struct dentry *old_dentry,
385 				  struct inode *new_dir,
386 				  struct dentry *new_dentry)
387 {
388 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
389 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
390 	long old_index = dentry2offset(old_dentry);
391 	long new_index = dentry2offset(new_dentry);
392 	int ret;
393 
394 	simple_offset_remove(old_ctx, old_dentry);
395 	simple_offset_remove(new_ctx, new_dentry);
396 
397 	ret = simple_offset_replace(new_ctx, old_dentry, new_index);
398 	if (ret)
399 		goto out_restore;
400 
401 	ret = simple_offset_replace(old_ctx, new_dentry, old_index);
402 	if (ret) {
403 		simple_offset_remove(new_ctx, old_dentry);
404 		goto out_restore;
405 	}
406 
407 	ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
408 	if (ret) {
409 		simple_offset_remove(new_ctx, old_dentry);
410 		simple_offset_remove(old_ctx, new_dentry);
411 		goto out_restore;
412 	}
413 	return 0;
414 
415 out_restore:
416 	(void)simple_offset_replace(old_ctx, old_dentry, old_index);
417 	(void)simple_offset_replace(new_ctx, new_dentry, new_index);
418 	return ret;
419 }
420 
421 /**
422  * simple_offset_destroy - Release offset map
423  * @octx: directory offset ctx that is about to be destroyed
424  *
425  * During fs teardown (eg. umount), a directory's offset map might still
426  * contain entries. xa_destroy() cleans out anything that remains.
427  */
simple_offset_destroy(struct offset_ctx * octx)428 void simple_offset_destroy(struct offset_ctx *octx)
429 {
430 	mtree_destroy(&octx->mt);
431 }
432 
433 /**
434  * offset_dir_llseek - Advance the read position of a directory descriptor
435  * @file: an open directory whose position is to be updated
436  * @offset: a byte offset
437  * @whence: enumerator describing the starting position for this update
438  *
439  * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
440  *
441  * Returns the updated read position if successful; otherwise a
442  * negative errno is returned and the read position remains unchanged.
443  */
offset_dir_llseek(struct file * file,loff_t offset,int whence)444 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
445 {
446 	switch (whence) {
447 	case SEEK_CUR:
448 		offset += file->f_pos;
449 		fallthrough;
450 	case SEEK_SET:
451 		if (offset >= 0)
452 			break;
453 		fallthrough;
454 	default:
455 		return -EINVAL;
456 	}
457 
458 	return vfs_setpos(file, offset, LONG_MAX);
459 }
460 
find_positive_dentry(struct dentry * parent,struct dentry * dentry,bool next)461 static struct dentry *find_positive_dentry(struct dentry *parent,
462 					   struct dentry *dentry,
463 					   bool next)
464 {
465 	struct dentry *found = NULL;
466 
467 	spin_lock(&parent->d_lock);
468 	if (next)
469 		dentry = d_next_sibling(dentry);
470 	else if (!dentry)
471 		dentry = d_first_child(parent);
472 	hlist_for_each_entry_from(dentry, d_sib) {
473 		if (!simple_positive(dentry))
474 			continue;
475 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
476 		if (simple_positive(dentry))
477 			found = dget_dlock(dentry);
478 		spin_unlock(&dentry->d_lock);
479 		if (likely(found))
480 			break;
481 	}
482 	spin_unlock(&parent->d_lock);
483 	return found;
484 }
485 
486 static noinline_for_stack struct dentry *
offset_dir_lookup(struct dentry * parent,loff_t offset)487 offset_dir_lookup(struct dentry *parent, loff_t offset)
488 {
489 	struct inode *inode = d_inode(parent);
490 	struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
491 	struct dentry *child, *found = NULL;
492 
493 	MA_STATE(mas, &octx->mt, offset, offset);
494 
495 	if (offset == DIR_OFFSET_FIRST)
496 		found = find_positive_dentry(parent, NULL, false);
497 	else {
498 		rcu_read_lock();
499 		child = mas_find_rev(&mas, DIR_OFFSET_MIN);
500 		found = find_positive_dentry(parent, child, false);
501 		rcu_read_unlock();
502 	}
503 	return found;
504 }
505 
offset_dir_emit(struct dir_context * ctx,struct dentry * dentry)506 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
507 {
508 	struct inode *inode = d_inode(dentry);
509 
510 	return dir_emit(ctx, dentry->d_name.name, dentry->d_name.len,
511 			inode->i_ino, fs_umode_to_dtype(inode->i_mode));
512 }
513 
offset_iterate_dir(struct file * file,struct dir_context * ctx)514 static void offset_iterate_dir(struct file *file, struct dir_context *ctx)
515 {
516 	struct dentry *dir = file->f_path.dentry;
517 	struct dentry *dentry;
518 
519 	dentry = offset_dir_lookup(dir, ctx->pos);
520 	if (!dentry)
521 		goto out_eod;
522 	while (true) {
523 		struct dentry *next;
524 
525 		ctx->pos = dentry2offset(dentry);
526 		if (!offset_dir_emit(ctx, dentry))
527 			break;
528 
529 		next = find_positive_dentry(dir, dentry, true);
530 		dput(dentry);
531 
532 		if (!next)
533 			goto out_eod;
534 		dentry = next;
535 	}
536 	dput(dentry);
537 	return;
538 
539 out_eod:
540 	ctx->pos = DIR_OFFSET_EOD;
541 }
542 
543 /**
544  * offset_readdir - Emit entries starting at offset @ctx->pos
545  * @file: an open directory to iterate over
546  * @ctx: directory iteration context
547  *
548  * Caller must hold @file's i_rwsem to prevent insertion or removal of
549  * entries during this call.
550  *
551  * On entry, @ctx->pos contains an offset that represents the first entry
552  * to be read from the directory.
553  *
554  * The operation continues until there are no more entries to read, or
555  * until the ctx->actor indicates there is no more space in the caller's
556  * output buffer.
557  *
558  * On return, @ctx->pos contains an offset that will read the next entry
559  * in this directory when offset_readdir() is called again with @ctx.
560  * Caller places this value in the d_off field of the last entry in the
561  * user's buffer.
562  *
563  * Return values:
564  *   %0 - Complete
565  */
offset_readdir(struct file * file,struct dir_context * ctx)566 static int offset_readdir(struct file *file, struct dir_context *ctx)
567 {
568 	struct dentry *dir = file->f_path.dentry;
569 
570 	lockdep_assert_held(&d_inode(dir)->i_rwsem);
571 
572 	if (!dir_emit_dots(file, ctx))
573 		return 0;
574 	if (ctx->pos != DIR_OFFSET_EOD)
575 		offset_iterate_dir(file, ctx);
576 	return 0;
577 }
578 
579 const struct file_operations simple_offset_dir_operations = {
580 	.llseek		= offset_dir_llseek,
581 	.iterate_shared	= offset_readdir,
582 	.read		= generic_read_dir,
583 	.fsync		= noop_fsync,
584 };
585 
find_next_child(struct dentry * parent,struct dentry * prev)586 struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
587 {
588 	struct dentry *child = NULL, *d;
589 
590 	spin_lock(&parent->d_lock);
591 	d = prev ? d_next_sibling(prev) : d_first_child(parent);
592 	hlist_for_each_entry_from(d, d_sib) {
593 		if (simple_positive(d)) {
594 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
595 			if (simple_positive(d))
596 				child = dget_dlock(d);
597 			spin_unlock(&d->d_lock);
598 			if (likely(child))
599 				break;
600 		}
601 	}
602 	spin_unlock(&parent->d_lock);
603 	dput(prev);
604 	return child;
605 }
606 EXPORT_SYMBOL(find_next_child);
607 
simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))608 void simple_recursive_removal(struct dentry *dentry,
609                               void (*callback)(struct dentry *))
610 {
611 	struct dentry *this = dget(dentry);
612 	while (true) {
613 		struct dentry *victim = NULL, *child;
614 		struct inode *inode = this->d_inode;
615 
616 		inode_lock(inode);
617 		if (d_is_dir(this))
618 			inode->i_flags |= S_DEAD;
619 		while ((child = find_next_child(this, victim)) == NULL) {
620 			// kill and ascend
621 			// update metadata while it's still locked
622 			inode_set_ctime_current(inode);
623 			clear_nlink(inode);
624 			inode_unlock(inode);
625 			victim = this;
626 			this = this->d_parent;
627 			inode = this->d_inode;
628 			inode_lock(inode);
629 			if (simple_positive(victim)) {
630 				d_invalidate(victim);	// avoid lost mounts
631 				if (d_is_dir(victim))
632 					fsnotify_rmdir(inode, victim);
633 				else
634 					fsnotify_unlink(inode, victim);
635 				if (callback)
636 					callback(victim);
637 				dput(victim);		// unpin it
638 			}
639 			if (victim == dentry) {
640 				inode_set_mtime_to_ts(inode,
641 						      inode_set_ctime_current(inode));
642 				if (d_is_dir(dentry))
643 					drop_nlink(inode);
644 				inode_unlock(inode);
645 				dput(dentry);
646 				return;
647 			}
648 		}
649 		inode_unlock(inode);
650 		this = child;
651 	}
652 }
653 EXPORT_SYMBOL(simple_recursive_removal);
654 
655 static const struct super_operations simple_super_operations = {
656 	.statfs		= simple_statfs,
657 };
658 
pseudo_fs_fill_super(struct super_block * s,struct fs_context * fc)659 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
660 {
661 	struct pseudo_fs_context *ctx = fc->fs_private;
662 	struct inode *root;
663 
664 	s->s_maxbytes = MAX_LFS_FILESIZE;
665 	s->s_blocksize = PAGE_SIZE;
666 	s->s_blocksize_bits = PAGE_SHIFT;
667 	s->s_magic = ctx->magic;
668 	s->s_op = ctx->ops ?: &simple_super_operations;
669 	s->s_export_op = ctx->eops;
670 	s->s_xattr = ctx->xattr;
671 	s->s_time_gran = 1;
672 	root = new_inode(s);
673 	if (!root)
674 		return -ENOMEM;
675 
676 	/*
677 	 * since this is the first inode, make it number 1. New inodes created
678 	 * after this must take care not to collide with it (by passing
679 	 * max_reserved of 1 to iunique).
680 	 */
681 	root->i_ino = 1;
682 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
683 	simple_inode_init_ts(root);
684 	s->s_root = d_make_root(root);
685 	if (!s->s_root)
686 		return -ENOMEM;
687 	s->s_d_op = ctx->dops;
688 	return 0;
689 }
690 
pseudo_fs_get_tree(struct fs_context * fc)691 static int pseudo_fs_get_tree(struct fs_context *fc)
692 {
693 	return get_tree_nodev(fc, pseudo_fs_fill_super);
694 }
695 
pseudo_fs_free(struct fs_context * fc)696 static void pseudo_fs_free(struct fs_context *fc)
697 {
698 	kfree(fc->fs_private);
699 }
700 
701 static const struct fs_context_operations pseudo_fs_context_ops = {
702 	.free		= pseudo_fs_free,
703 	.get_tree	= pseudo_fs_get_tree,
704 };
705 
706 /*
707  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
708  * will never be mountable)
709  */
init_pseudo(struct fs_context * fc,unsigned long magic)710 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
711 					unsigned long magic)
712 {
713 	struct pseudo_fs_context *ctx;
714 
715 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
716 	if (likely(ctx)) {
717 		ctx->magic = magic;
718 		fc->fs_private = ctx;
719 		fc->ops = &pseudo_fs_context_ops;
720 		fc->sb_flags |= SB_NOUSER;
721 		fc->global = true;
722 	}
723 	return ctx;
724 }
725 EXPORT_SYMBOL(init_pseudo);
726 
simple_open(struct inode * inode,struct file * file)727 int simple_open(struct inode *inode, struct file *file)
728 {
729 	if (inode->i_private)
730 		file->private_data = inode->i_private;
731 	return 0;
732 }
733 EXPORT_SYMBOL(simple_open);
734 
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)735 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
736 {
737 	struct inode *inode = d_inode(old_dentry);
738 
739 	inode_set_mtime_to_ts(dir,
740 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
741 	inc_nlink(inode);
742 	ihold(inode);
743 	dget(dentry);
744 	d_instantiate(dentry, inode);
745 	return 0;
746 }
747 EXPORT_SYMBOL(simple_link);
748 
simple_empty(struct dentry * dentry)749 int simple_empty(struct dentry *dentry)
750 {
751 	struct dentry *child;
752 	int ret = 0;
753 
754 	spin_lock(&dentry->d_lock);
755 	hlist_for_each_entry(child, &dentry->d_children, d_sib) {
756 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
757 		if (simple_positive(child)) {
758 			spin_unlock(&child->d_lock);
759 			goto out;
760 		}
761 		spin_unlock(&child->d_lock);
762 	}
763 	ret = 1;
764 out:
765 	spin_unlock(&dentry->d_lock);
766 	return ret;
767 }
768 EXPORT_SYMBOL(simple_empty);
769 
simple_unlink(struct inode * dir,struct dentry * dentry)770 int simple_unlink(struct inode *dir, struct dentry *dentry)
771 {
772 	struct inode *inode = d_inode(dentry);
773 
774 	inode_set_mtime_to_ts(dir,
775 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
776 	drop_nlink(inode);
777 	dput(dentry);
778 	return 0;
779 }
780 EXPORT_SYMBOL(simple_unlink);
781 
simple_rmdir(struct inode * dir,struct dentry * dentry)782 int simple_rmdir(struct inode *dir, struct dentry *dentry)
783 {
784 	if (!simple_empty(dentry))
785 		return -ENOTEMPTY;
786 
787 	drop_nlink(d_inode(dentry));
788 	simple_unlink(dir, dentry);
789 	drop_nlink(dir);
790 	return 0;
791 }
792 EXPORT_SYMBOL(simple_rmdir);
793 
794 /**
795  * simple_rename_timestamp - update the various inode timestamps for rename
796  * @old_dir: old parent directory
797  * @old_dentry: dentry that is being renamed
798  * @new_dir: new parent directory
799  * @new_dentry: target for rename
800  *
801  * POSIX mandates that the old and new parent directories have their ctime and
802  * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
803  * their ctime updated.
804  */
simple_rename_timestamp(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)805 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
806 			     struct inode *new_dir, struct dentry *new_dentry)
807 {
808 	struct inode *newino = d_inode(new_dentry);
809 
810 	inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
811 	if (new_dir != old_dir)
812 		inode_set_mtime_to_ts(new_dir,
813 				      inode_set_ctime_current(new_dir));
814 	inode_set_ctime_current(d_inode(old_dentry));
815 	if (newino)
816 		inode_set_ctime_current(newino);
817 }
818 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
819 
simple_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)820 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
821 			   struct inode *new_dir, struct dentry *new_dentry)
822 {
823 	bool old_is_dir = d_is_dir(old_dentry);
824 	bool new_is_dir = d_is_dir(new_dentry);
825 
826 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
827 		if (old_is_dir) {
828 			drop_nlink(old_dir);
829 			inc_nlink(new_dir);
830 		} else {
831 			drop_nlink(new_dir);
832 			inc_nlink(old_dir);
833 		}
834 	}
835 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
836 	return 0;
837 }
838 EXPORT_SYMBOL_GPL(simple_rename_exchange);
839 
simple_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)840 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
841 		  struct dentry *old_dentry, struct inode *new_dir,
842 		  struct dentry *new_dentry, unsigned int flags)
843 {
844 	int they_are_dirs = d_is_dir(old_dentry);
845 
846 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
847 		return -EINVAL;
848 
849 	if (flags & RENAME_EXCHANGE)
850 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
851 
852 	if (!simple_empty(new_dentry))
853 		return -ENOTEMPTY;
854 
855 	if (d_really_is_positive(new_dentry)) {
856 		simple_unlink(new_dir, new_dentry);
857 		if (they_are_dirs) {
858 			drop_nlink(d_inode(new_dentry));
859 			drop_nlink(old_dir);
860 		}
861 	} else if (they_are_dirs) {
862 		drop_nlink(old_dir);
863 		inc_nlink(new_dir);
864 	}
865 
866 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
867 	return 0;
868 }
869 EXPORT_SYMBOL(simple_rename);
870 
871 /**
872  * simple_setattr - setattr for simple filesystem
873  * @idmap: idmap of the target mount
874  * @dentry: dentry
875  * @iattr: iattr structure
876  *
877  * Returns 0 on success, -error on failure.
878  *
879  * simple_setattr is a simple ->setattr implementation without a proper
880  * implementation of size changes.
881  *
882  * It can either be used for in-memory filesystems or special files
883  * on simple regular filesystems.  Anything that needs to change on-disk
884  * or wire state on size changes needs its own setattr method.
885  */
simple_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)886 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
887 		   struct iattr *iattr)
888 {
889 	struct inode *inode = d_inode(dentry);
890 	int error;
891 
892 	error = setattr_prepare(idmap, dentry, iattr);
893 	if (error)
894 		return error;
895 
896 	if (iattr->ia_valid & ATTR_SIZE)
897 		truncate_setsize(inode, iattr->ia_size);
898 	setattr_copy(idmap, inode, iattr);
899 	mark_inode_dirty(inode);
900 	return 0;
901 }
902 EXPORT_SYMBOL(simple_setattr);
903 
simple_read_folio(struct file * file,struct folio * folio)904 static int simple_read_folio(struct file *file, struct folio *folio)
905 {
906 	folio_zero_range(folio, 0, folio_size(folio));
907 	flush_dcache_folio(folio);
908 	folio_mark_uptodate(folio);
909 	folio_unlock(folio);
910 	return 0;
911 }
912 
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)913 int simple_write_begin(struct file *file, struct address_space *mapping,
914 			loff_t pos, unsigned len,
915 			struct folio **foliop, void **fsdata)
916 {
917 	struct folio *folio;
918 
919 	folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
920 			mapping_gfp_mask(mapping));
921 	if (IS_ERR(folio))
922 		return PTR_ERR(folio);
923 
924 	*foliop = folio;
925 
926 	if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
927 		size_t from = offset_in_folio(folio, pos);
928 
929 		folio_zero_segments(folio, 0, from,
930 				from + len, folio_size(folio));
931 	}
932 	return 0;
933 }
934 EXPORT_SYMBOL(simple_write_begin);
935 
936 /**
937  * simple_write_end - .write_end helper for non-block-device FSes
938  * @file: See .write_end of address_space_operations
939  * @mapping: 		"
940  * @pos: 		"
941  * @len: 		"
942  * @copied: 		"
943  * @folio: 		"
944  * @fsdata: 		"
945  *
946  * simple_write_end does the minimum needed for updating a folio after
947  * writing is done. It has the same API signature as the .write_end of
948  * address_space_operations vector. So it can just be set onto .write_end for
949  * FSes that don't need any other processing. i_mutex is assumed to be held.
950  * Block based filesystems should use generic_write_end().
951  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
952  * is not called, so a filesystem that actually does store data in .write_inode
953  * should extend on what's done here with a call to mark_inode_dirty() in the
954  * case that i_size has changed.
955  *
956  * Use *ONLY* with simple_read_folio()
957  */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)958 static int simple_write_end(struct file *file, struct address_space *mapping,
959 			loff_t pos, unsigned len, unsigned copied,
960 			struct folio *folio, void *fsdata)
961 {
962 	struct inode *inode = folio->mapping->host;
963 	loff_t last_pos = pos + copied;
964 
965 	/* zero the stale part of the folio if we did a short copy */
966 	if (!folio_test_uptodate(folio)) {
967 		if (copied < len) {
968 			size_t from = offset_in_folio(folio, pos);
969 
970 			folio_zero_range(folio, from + copied, len - copied);
971 		}
972 		folio_mark_uptodate(folio);
973 	}
974 	/*
975 	 * No need to use i_size_read() here, the i_size
976 	 * cannot change under us because we hold the i_mutex.
977 	 */
978 	if (last_pos > inode->i_size)
979 		i_size_write(inode, last_pos);
980 
981 	folio_mark_dirty(folio);
982 	folio_unlock(folio);
983 	folio_put(folio);
984 
985 	return copied;
986 }
987 
988 /*
989  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
990  */
991 const struct address_space_operations ram_aops = {
992 	.read_folio	= simple_read_folio,
993 	.write_begin	= simple_write_begin,
994 	.write_end	= simple_write_end,
995 	.dirty_folio	= noop_dirty_folio,
996 };
997 EXPORT_SYMBOL(ram_aops);
998 
999 /*
1000  * the inodes created here are not hashed. If you use iunique to generate
1001  * unique inode values later for this filesystem, then you must take care
1002  * to pass it an appropriate max_reserved value to avoid collisions.
1003  */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)1004 int simple_fill_super(struct super_block *s, unsigned long magic,
1005 		      const struct tree_descr *files)
1006 {
1007 	struct inode *inode;
1008 	struct dentry *dentry;
1009 	int i;
1010 
1011 	s->s_blocksize = PAGE_SIZE;
1012 	s->s_blocksize_bits = PAGE_SHIFT;
1013 	s->s_magic = magic;
1014 	s->s_op = &simple_super_operations;
1015 	s->s_time_gran = 1;
1016 
1017 	inode = new_inode(s);
1018 	if (!inode)
1019 		return -ENOMEM;
1020 	/*
1021 	 * because the root inode is 1, the files array must not contain an
1022 	 * entry at index 1
1023 	 */
1024 	inode->i_ino = 1;
1025 	inode->i_mode = S_IFDIR | 0755;
1026 	simple_inode_init_ts(inode);
1027 	inode->i_op = &simple_dir_inode_operations;
1028 	inode->i_fop = &simple_dir_operations;
1029 	set_nlink(inode, 2);
1030 	s->s_root = d_make_root(inode);
1031 	if (!s->s_root)
1032 		return -ENOMEM;
1033 	for (i = 0; !files->name || files->name[0]; i++, files++) {
1034 		if (!files->name)
1035 			continue;
1036 
1037 		/* warn if it tries to conflict with the root inode */
1038 		if (unlikely(i == 1))
1039 			printk(KERN_WARNING "%s: %s passed in a files array"
1040 				"with an index of 1!\n", __func__,
1041 				s->s_type->name);
1042 
1043 		dentry = d_alloc_name(s->s_root, files->name);
1044 		if (!dentry)
1045 			return -ENOMEM;
1046 		inode = new_inode(s);
1047 		if (!inode) {
1048 			dput(dentry);
1049 			return -ENOMEM;
1050 		}
1051 		inode->i_mode = S_IFREG | files->mode;
1052 		simple_inode_init_ts(inode);
1053 		inode->i_fop = files->ops;
1054 		inode->i_ino = i;
1055 		d_add(dentry, inode);
1056 	}
1057 	return 0;
1058 }
1059 EXPORT_SYMBOL(simple_fill_super);
1060 
1061 static DEFINE_SPINLOCK(pin_fs_lock);
1062 
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)1063 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1064 {
1065 	struct vfsmount *mnt = NULL;
1066 	spin_lock(&pin_fs_lock);
1067 	if (unlikely(!*mount)) {
1068 		spin_unlock(&pin_fs_lock);
1069 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1070 		if (IS_ERR(mnt))
1071 			return PTR_ERR(mnt);
1072 		spin_lock(&pin_fs_lock);
1073 		if (!*mount)
1074 			*mount = mnt;
1075 	}
1076 	mntget(*mount);
1077 	++*count;
1078 	spin_unlock(&pin_fs_lock);
1079 	mntput(mnt);
1080 	return 0;
1081 }
1082 EXPORT_SYMBOL(simple_pin_fs);
1083 
simple_release_fs(struct vfsmount ** mount,int * count)1084 void simple_release_fs(struct vfsmount **mount, int *count)
1085 {
1086 	struct vfsmount *mnt;
1087 	spin_lock(&pin_fs_lock);
1088 	mnt = *mount;
1089 	if (!--*count)
1090 		*mount = NULL;
1091 	spin_unlock(&pin_fs_lock);
1092 	mntput(mnt);
1093 }
1094 EXPORT_SYMBOL(simple_release_fs);
1095 
1096 /**
1097  * simple_read_from_buffer - copy data from the buffer to user space
1098  * @to: the user space buffer to read to
1099  * @count: the maximum number of bytes to read
1100  * @ppos: the current position in the buffer
1101  * @from: the buffer to read from
1102  * @available: the size of the buffer
1103  *
1104  * The simple_read_from_buffer() function reads up to @count bytes from the
1105  * buffer @from at offset @ppos into the user space address starting at @to.
1106  *
1107  * On success, the number of bytes read is returned and the offset @ppos is
1108  * advanced by this number, or negative value is returned on error.
1109  **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)1110 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1111 				const void *from, size_t available)
1112 {
1113 	loff_t pos = *ppos;
1114 	size_t ret;
1115 
1116 	if (pos < 0)
1117 		return -EINVAL;
1118 	if (pos >= available || !count)
1119 		return 0;
1120 	if (count > available - pos)
1121 		count = available - pos;
1122 	ret = copy_to_user(to, from + pos, count);
1123 	if (ret == count)
1124 		return -EFAULT;
1125 	count -= ret;
1126 	*ppos = pos + count;
1127 	return count;
1128 }
1129 EXPORT_SYMBOL(simple_read_from_buffer);
1130 
1131 /**
1132  * simple_write_to_buffer - copy data from user space to the buffer
1133  * @to: the buffer to write to
1134  * @available: the size of the buffer
1135  * @ppos: the current position in the buffer
1136  * @from: the user space buffer to read from
1137  * @count: the maximum number of bytes to read
1138  *
1139  * The simple_write_to_buffer() function reads up to @count bytes from the user
1140  * space address starting at @from into the buffer @to at offset @ppos.
1141  *
1142  * On success, the number of bytes written is returned and the offset @ppos is
1143  * advanced by this number, or negative value is returned on error.
1144  **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)1145 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1146 		const void __user *from, size_t count)
1147 {
1148 	loff_t pos = *ppos;
1149 	size_t res;
1150 
1151 	if (pos < 0)
1152 		return -EINVAL;
1153 	if (pos >= available || !count)
1154 		return 0;
1155 	if (count > available - pos)
1156 		count = available - pos;
1157 	res = copy_from_user(to + pos, from, count);
1158 	if (res == count)
1159 		return -EFAULT;
1160 	count -= res;
1161 	*ppos = pos + count;
1162 	return count;
1163 }
1164 EXPORT_SYMBOL(simple_write_to_buffer);
1165 
1166 /**
1167  * memory_read_from_buffer - copy data from the buffer
1168  * @to: the kernel space buffer to read to
1169  * @count: the maximum number of bytes to read
1170  * @ppos: the current position in the buffer
1171  * @from: the buffer to read from
1172  * @available: the size of the buffer
1173  *
1174  * The memory_read_from_buffer() function reads up to @count bytes from the
1175  * buffer @from at offset @ppos into the kernel space address starting at @to.
1176  *
1177  * On success, the number of bytes read is returned and the offset @ppos is
1178  * advanced by this number, or negative value is returned on error.
1179  **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)1180 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1181 				const void *from, size_t available)
1182 {
1183 	loff_t pos = *ppos;
1184 
1185 	if (pos < 0)
1186 		return -EINVAL;
1187 	if (pos >= available)
1188 		return 0;
1189 	if (count > available - pos)
1190 		count = available - pos;
1191 	memcpy(to, from + pos, count);
1192 	*ppos = pos + count;
1193 
1194 	return count;
1195 }
1196 EXPORT_SYMBOL(memory_read_from_buffer);
1197 
1198 /*
1199  * Transaction based IO.
1200  * The file expects a single write which triggers the transaction, and then
1201  * possibly a read which collects the result - which is stored in a
1202  * file-local buffer.
1203  */
1204 
simple_transaction_set(struct file * file,size_t n)1205 void simple_transaction_set(struct file *file, size_t n)
1206 {
1207 	struct simple_transaction_argresp *ar = file->private_data;
1208 
1209 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1210 
1211 	/*
1212 	 * The barrier ensures that ar->size will really remain zero until
1213 	 * ar->data is ready for reading.
1214 	 */
1215 	smp_mb();
1216 	ar->size = n;
1217 }
1218 EXPORT_SYMBOL(simple_transaction_set);
1219 
simple_transaction_get(struct file * file,const char __user * buf,size_t size)1220 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1221 {
1222 	struct simple_transaction_argresp *ar;
1223 	static DEFINE_SPINLOCK(simple_transaction_lock);
1224 
1225 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1226 		return ERR_PTR(-EFBIG);
1227 
1228 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1229 	if (!ar)
1230 		return ERR_PTR(-ENOMEM);
1231 
1232 	spin_lock(&simple_transaction_lock);
1233 
1234 	/* only one write allowed per open */
1235 	if (file->private_data) {
1236 		spin_unlock(&simple_transaction_lock);
1237 		free_page((unsigned long)ar);
1238 		return ERR_PTR(-EBUSY);
1239 	}
1240 
1241 	file->private_data = ar;
1242 
1243 	spin_unlock(&simple_transaction_lock);
1244 
1245 	if (copy_from_user(ar->data, buf, size))
1246 		return ERR_PTR(-EFAULT);
1247 
1248 	return ar->data;
1249 }
1250 EXPORT_SYMBOL(simple_transaction_get);
1251 
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)1252 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1253 {
1254 	struct simple_transaction_argresp *ar = file->private_data;
1255 
1256 	if (!ar)
1257 		return 0;
1258 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1259 }
1260 EXPORT_SYMBOL(simple_transaction_read);
1261 
simple_transaction_release(struct inode * inode,struct file * file)1262 int simple_transaction_release(struct inode *inode, struct file *file)
1263 {
1264 	free_page((unsigned long)file->private_data);
1265 	return 0;
1266 }
1267 EXPORT_SYMBOL(simple_transaction_release);
1268 
1269 /* Simple attribute files */
1270 
1271 struct simple_attr {
1272 	int (*get)(void *, u64 *);
1273 	int (*set)(void *, u64);
1274 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
1275 	char set_buf[24];
1276 	void *data;
1277 	const char *fmt;	/* format for read operation */
1278 	struct mutex mutex;	/* protects access to these buffers */
1279 };
1280 
1281 /* simple_attr_open is called by an actual attribute open file operation
1282  * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)1283 int simple_attr_open(struct inode *inode, struct file *file,
1284 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
1285 		     const char *fmt)
1286 {
1287 	struct simple_attr *attr;
1288 
1289 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1290 	if (!attr)
1291 		return -ENOMEM;
1292 
1293 	attr->get = get;
1294 	attr->set = set;
1295 	attr->data = inode->i_private;
1296 	attr->fmt = fmt;
1297 	mutex_init(&attr->mutex);
1298 
1299 	file->private_data = attr;
1300 
1301 	return nonseekable_open(inode, file);
1302 }
1303 EXPORT_SYMBOL_GPL(simple_attr_open);
1304 
simple_attr_release(struct inode * inode,struct file * file)1305 int simple_attr_release(struct inode *inode, struct file *file)
1306 {
1307 	kfree(file->private_data);
1308 	return 0;
1309 }
1310 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
1311 
1312 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)1313 ssize_t simple_attr_read(struct file *file, char __user *buf,
1314 			 size_t len, loff_t *ppos)
1315 {
1316 	struct simple_attr *attr;
1317 	size_t size;
1318 	ssize_t ret;
1319 
1320 	attr = file->private_data;
1321 
1322 	if (!attr->get)
1323 		return -EACCES;
1324 
1325 	ret = mutex_lock_interruptible(&attr->mutex);
1326 	if (ret)
1327 		return ret;
1328 
1329 	if (*ppos && attr->get_buf[0]) {
1330 		/* continued read */
1331 		size = strlen(attr->get_buf);
1332 	} else {
1333 		/* first read */
1334 		u64 val;
1335 		ret = attr->get(attr->data, &val);
1336 		if (ret)
1337 			goto out;
1338 
1339 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1340 				 attr->fmt, (unsigned long long)val);
1341 	}
1342 
1343 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1344 out:
1345 	mutex_unlock(&attr->mutex);
1346 	return ret;
1347 }
1348 EXPORT_SYMBOL_GPL(simple_attr_read);
1349 
1350 /* interpret the buffer as a number to call the set function with */
simple_attr_write_xsigned(struct file * file,const char __user * buf,size_t len,loff_t * ppos,bool is_signed)1351 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1352 			  size_t len, loff_t *ppos, bool is_signed)
1353 {
1354 	struct simple_attr *attr;
1355 	unsigned long long val;
1356 	size_t size;
1357 	ssize_t ret;
1358 
1359 	attr = file->private_data;
1360 	if (!attr->set)
1361 		return -EACCES;
1362 
1363 	ret = mutex_lock_interruptible(&attr->mutex);
1364 	if (ret)
1365 		return ret;
1366 
1367 	ret = -EFAULT;
1368 	size = min(sizeof(attr->set_buf) - 1, len);
1369 	if (copy_from_user(attr->set_buf, buf, size))
1370 		goto out;
1371 
1372 	attr->set_buf[size] = '\0';
1373 	if (is_signed)
1374 		ret = kstrtoll(attr->set_buf, 0, &val);
1375 	else
1376 		ret = kstrtoull(attr->set_buf, 0, &val);
1377 	if (ret)
1378 		goto out;
1379 	ret = attr->set(attr->data, val);
1380 	if (ret == 0)
1381 		ret = len; /* on success, claim we got the whole input */
1382 out:
1383 	mutex_unlock(&attr->mutex);
1384 	return ret;
1385 }
1386 
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1387 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1388 			  size_t len, loff_t *ppos)
1389 {
1390 	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1391 }
1392 EXPORT_SYMBOL_GPL(simple_attr_write);
1393 
simple_attr_write_signed(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1394 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1395 			  size_t len, loff_t *ppos)
1396 {
1397 	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1398 }
1399 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1400 
1401 /**
1402  * generic_encode_ino32_fh - generic export_operations->encode_fh function
1403  * @inode:   the object to encode
1404  * @fh:      where to store the file handle fragment
1405  * @max_len: maximum length to store there (in 4 byte units)
1406  * @parent:  parent directory inode, if wanted
1407  *
1408  * This generic encode_fh function assumes that the 32 inode number
1409  * is suitable for locating an inode, and that the generation number
1410  * can be used to check that it is still valid.  It places them in the
1411  * filehandle fragment where export_decode_fh expects to find them.
1412  */
generic_encode_ino32_fh(struct inode * inode,__u32 * fh,int * max_len,struct inode * parent)1413 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1414 			    struct inode *parent)
1415 {
1416 	struct fid *fid = (void *)fh;
1417 	int len = *max_len;
1418 	int type = FILEID_INO32_GEN;
1419 
1420 	if (parent && (len < 4)) {
1421 		*max_len = 4;
1422 		return FILEID_INVALID;
1423 	} else if (len < 2) {
1424 		*max_len = 2;
1425 		return FILEID_INVALID;
1426 	}
1427 
1428 	len = 2;
1429 	fid->i32.ino = inode->i_ino;
1430 	fid->i32.gen = inode->i_generation;
1431 	if (parent) {
1432 		fid->i32.parent_ino = parent->i_ino;
1433 		fid->i32.parent_gen = parent->i_generation;
1434 		len = 4;
1435 		type = FILEID_INO32_GEN_PARENT;
1436 	}
1437 	*max_len = len;
1438 	return type;
1439 }
1440 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1441 
1442 /**
1443  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1444  * @sb:		filesystem to do the file handle conversion on
1445  * @fid:	file handle to convert
1446  * @fh_len:	length of the file handle in bytes
1447  * @fh_type:	type of file handle
1448  * @get_inode:	filesystem callback to retrieve inode
1449  *
1450  * This function decodes @fid as long as it has one of the well-known
1451  * Linux filehandle types and calls @get_inode on it to retrieve the
1452  * inode for the object specified in the file handle.
1453  */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1454 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1455 		int fh_len, int fh_type, struct inode *(*get_inode)
1456 			(struct super_block *sb, u64 ino, u32 gen))
1457 {
1458 	struct inode *inode = NULL;
1459 
1460 	if (fh_len < 2)
1461 		return NULL;
1462 
1463 	switch (fh_type) {
1464 	case FILEID_INO32_GEN:
1465 	case FILEID_INO32_GEN_PARENT:
1466 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1467 		break;
1468 	}
1469 
1470 	return d_obtain_alias(inode);
1471 }
1472 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1473 
1474 /**
1475  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1476  * @sb:		filesystem to do the file handle conversion on
1477  * @fid:	file handle to convert
1478  * @fh_len:	length of the file handle in bytes
1479  * @fh_type:	type of file handle
1480  * @get_inode:	filesystem callback to retrieve inode
1481  *
1482  * This function decodes @fid as long as it has one of the well-known
1483  * Linux filehandle types and calls @get_inode on it to retrieve the
1484  * inode for the _parent_ object specified in the file handle if it
1485  * is specified in the file handle, or NULL otherwise.
1486  */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1487 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1488 		int fh_len, int fh_type, struct inode *(*get_inode)
1489 			(struct super_block *sb, u64 ino, u32 gen))
1490 {
1491 	struct inode *inode = NULL;
1492 
1493 	if (fh_len <= 2)
1494 		return NULL;
1495 
1496 	switch (fh_type) {
1497 	case FILEID_INO32_GEN_PARENT:
1498 		inode = get_inode(sb, fid->i32.parent_ino,
1499 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1500 		break;
1501 	}
1502 
1503 	return d_obtain_alias(inode);
1504 }
1505 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1506 
1507 /**
1508  * __generic_file_fsync - generic fsync implementation for simple filesystems
1509  *
1510  * @file:	file to synchronize
1511  * @start:	start offset in bytes
1512  * @end:	end offset in bytes (inclusive)
1513  * @datasync:	only synchronize essential metadata if true
1514  *
1515  * This is a generic implementation of the fsync method for simple
1516  * filesystems which track all non-inode metadata in the buffers list
1517  * hanging off the address_space structure.
1518  */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1519 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1520 				 int datasync)
1521 {
1522 	struct inode *inode = file->f_mapping->host;
1523 	int err;
1524 	int ret;
1525 
1526 	err = file_write_and_wait_range(file, start, end);
1527 	if (err)
1528 		return err;
1529 
1530 	inode_lock(inode);
1531 	ret = sync_mapping_buffers(inode->i_mapping);
1532 	if (!(inode->i_state & I_DIRTY_ALL))
1533 		goto out;
1534 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1535 		goto out;
1536 
1537 	err = sync_inode_metadata(inode, 1);
1538 	if (ret == 0)
1539 		ret = err;
1540 
1541 out:
1542 	inode_unlock(inode);
1543 	/* check and advance again to catch errors after syncing out buffers */
1544 	err = file_check_and_advance_wb_err(file);
1545 	if (ret == 0)
1546 		ret = err;
1547 	return ret;
1548 }
1549 EXPORT_SYMBOL(__generic_file_fsync);
1550 
1551 /**
1552  * generic_file_fsync - generic fsync implementation for simple filesystems
1553  *			with flush
1554  * @file:	file to synchronize
1555  * @start:	start offset in bytes
1556  * @end:	end offset in bytes (inclusive)
1557  * @datasync:	only synchronize essential metadata if true
1558  *
1559  */
1560 
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1561 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1562 		       int datasync)
1563 {
1564 	struct inode *inode = file->f_mapping->host;
1565 	int err;
1566 
1567 	err = __generic_file_fsync(file, start, end, datasync);
1568 	if (err)
1569 		return err;
1570 	return blkdev_issue_flush(inode->i_sb->s_bdev);
1571 }
1572 EXPORT_SYMBOL(generic_file_fsync);
1573 
1574 /**
1575  * generic_check_addressable - Check addressability of file system
1576  * @blocksize_bits:	log of file system block size
1577  * @num_blocks:		number of blocks in file system
1578  *
1579  * Determine whether a file system with @num_blocks blocks (and a
1580  * block size of 2**@blocksize_bits) is addressable by the sector_t
1581  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1582  */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1583 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1584 {
1585 	u64 last_fs_block = num_blocks - 1;
1586 	u64 last_fs_page =
1587 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1588 
1589 	if (unlikely(num_blocks == 0))
1590 		return 0;
1591 
1592 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1593 		return -EINVAL;
1594 
1595 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1596 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1597 		return -EFBIG;
1598 	}
1599 	return 0;
1600 }
1601 EXPORT_SYMBOL(generic_check_addressable);
1602 
1603 /*
1604  * No-op implementation of ->fsync for in-memory filesystems.
1605  */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1606 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1607 {
1608 	return 0;
1609 }
1610 EXPORT_SYMBOL(noop_fsync);
1611 
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1612 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1613 {
1614 	/*
1615 	 * iomap based filesystems support direct I/O without need for
1616 	 * this callback. However, it still needs to be set in
1617 	 * inode->a_ops so that open/fcntl know that direct I/O is
1618 	 * generally supported.
1619 	 */
1620 	return -EINVAL;
1621 }
1622 EXPORT_SYMBOL_GPL(noop_direct_IO);
1623 
1624 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1625 void kfree_link(void *p)
1626 {
1627 	kfree(p);
1628 }
1629 EXPORT_SYMBOL(kfree_link);
1630 
alloc_anon_inode(struct super_block * s)1631 struct inode *alloc_anon_inode(struct super_block *s)
1632 {
1633 	static const struct address_space_operations anon_aops = {
1634 		.dirty_folio	= noop_dirty_folio,
1635 	};
1636 	struct inode *inode = new_inode_pseudo(s);
1637 
1638 	if (!inode)
1639 		return ERR_PTR(-ENOMEM);
1640 
1641 	inode->i_ino = get_next_ino();
1642 	inode->i_mapping->a_ops = &anon_aops;
1643 
1644 	/*
1645 	 * Mark the inode dirty from the very beginning,
1646 	 * that way it will never be moved to the dirty
1647 	 * list because mark_inode_dirty() will think
1648 	 * that it already _is_ on the dirty list.
1649 	 */
1650 	inode->i_state = I_DIRTY;
1651 	/*
1652 	 * Historically anonymous inodes don't have a type at all and
1653 	 * userspace has come to rely on this.
1654 	 */
1655 	inode->i_mode = S_IRUSR | S_IWUSR;
1656 	inode->i_uid = current_fsuid();
1657 	inode->i_gid = current_fsgid();
1658 	inode->i_flags |= S_PRIVATE | S_ANON_INODE;
1659 	simple_inode_init_ts(inode);
1660 	return inode;
1661 }
1662 EXPORT_SYMBOL(alloc_anon_inode);
1663 
1664 /**
1665  * simple_nosetlease - generic helper for prohibiting leases
1666  * @filp: file pointer
1667  * @arg: type of lease to obtain
1668  * @flp: new lease supplied for insertion
1669  * @priv: private data for lm_setup operation
1670  *
1671  * Generic helper for filesystems that do not wish to allow leases to be set.
1672  * All arguments are ignored and it just returns -EINVAL.
1673  */
1674 int
simple_nosetlease(struct file * filp,int arg,struct file_lease ** flp,void ** priv)1675 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1676 		  void **priv)
1677 {
1678 	return -EINVAL;
1679 }
1680 EXPORT_SYMBOL(simple_nosetlease);
1681 
1682 /**
1683  * simple_get_link - generic helper to get the target of "fast" symlinks
1684  * @dentry: not used here
1685  * @inode: the symlink inode
1686  * @done: not used here
1687  *
1688  * Generic helper for filesystems to use for symlink inodes where a pointer to
1689  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1690  * since as an optimization the path lookup code uses any non-NULL ->i_link
1691  * directly, without calling ->get_link().  But ->get_link() still must be set,
1692  * to mark the inode_operations as being for a symlink.
1693  *
1694  * Return: the symlink target
1695  */
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1696 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1697 			    struct delayed_call *done)
1698 {
1699 	return inode->i_link;
1700 }
1701 EXPORT_SYMBOL(simple_get_link);
1702 
1703 const struct inode_operations simple_symlink_inode_operations = {
1704 	.get_link = simple_get_link,
1705 };
1706 EXPORT_SYMBOL(simple_symlink_inode_operations);
1707 
1708 /*
1709  * Operations for a permanently empty directory.
1710  */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1711 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1712 {
1713 	return ERR_PTR(-ENOENT);
1714 }
1715 
empty_dir_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1716 static int empty_dir_setattr(struct mnt_idmap *idmap,
1717 			     struct dentry *dentry, struct iattr *attr)
1718 {
1719 	return -EPERM;
1720 }
1721 
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1722 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1723 {
1724 	return -EOPNOTSUPP;
1725 }
1726 
1727 static const struct inode_operations empty_dir_inode_operations = {
1728 	.lookup		= empty_dir_lookup,
1729 	.setattr	= empty_dir_setattr,
1730 	.listxattr	= empty_dir_listxattr,
1731 };
1732 
empty_dir_llseek(struct file * file,loff_t offset,int whence)1733 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1734 {
1735 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1736 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1737 }
1738 
empty_dir_readdir(struct file * file,struct dir_context * ctx)1739 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1740 {
1741 	dir_emit_dots(file, ctx);
1742 	return 0;
1743 }
1744 
1745 static const struct file_operations empty_dir_operations = {
1746 	.llseek		= empty_dir_llseek,
1747 	.read		= generic_read_dir,
1748 	.iterate_shared	= empty_dir_readdir,
1749 	.fsync		= noop_fsync,
1750 };
1751 
1752 
make_empty_dir_inode(struct inode * inode)1753 void make_empty_dir_inode(struct inode *inode)
1754 {
1755 	set_nlink(inode, 2);
1756 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1757 	inode->i_uid = GLOBAL_ROOT_UID;
1758 	inode->i_gid = GLOBAL_ROOT_GID;
1759 	inode->i_rdev = 0;
1760 	inode->i_size = 0;
1761 	inode->i_blkbits = PAGE_SHIFT;
1762 	inode->i_blocks = 0;
1763 
1764 	inode->i_op = &empty_dir_inode_operations;
1765 	inode->i_opflags &= ~IOP_XATTR;
1766 	inode->i_fop = &empty_dir_operations;
1767 }
1768 
is_empty_dir_inode(struct inode * inode)1769 bool is_empty_dir_inode(struct inode *inode)
1770 {
1771 	return (inode->i_fop == &empty_dir_operations) &&
1772 		(inode->i_op == &empty_dir_inode_operations);
1773 }
1774 
1775 #if IS_ENABLED(CONFIG_UNICODE)
1776 /**
1777  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1778  * @dentry:	dentry whose name we are checking against
1779  * @len:	len of name of dentry
1780  * @str:	str pointer to name of dentry
1781  * @name:	Name to compare against
1782  *
1783  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1784  */
generic_ci_d_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)1785 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1786 			 const char *str, const struct qstr *name)
1787 {
1788 	const struct dentry *parent;
1789 	const struct inode *dir;
1790 	union shortname_store strbuf;
1791 	struct qstr qstr;
1792 
1793 	/*
1794 	 * Attempt a case-sensitive match first. It is cheaper and
1795 	 * should cover most lookups, including all the sane
1796 	 * applications that expect a case-sensitive filesystem.
1797 	 *
1798 	 * This comparison is safe under RCU because the caller
1799 	 * guarantees the consistency between str and len. See
1800 	 * __d_lookup_rcu_op_compare() for details.
1801 	 */
1802 	if (len == name->len && !memcmp(str, name->name, len))
1803 		return 0;
1804 
1805 	parent = READ_ONCE(dentry->d_parent);
1806 	dir = READ_ONCE(parent->d_inode);
1807 	if (!dir || !IS_CASEFOLDED(dir))
1808 		return 1;
1809 
1810 	qstr.len = len;
1811 	qstr.name = str;
1812 	/*
1813 	 * If the dentry name is stored in-line, then it may be concurrently
1814 	 * modified by a rename.  If this happens, the VFS will eventually retry
1815 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1816 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1817 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1818 	 * As above, len is guaranteed to match str, so the shortname case
1819 	 * is exactly when str points to ->d_shortname.
1820 	 */
1821 	if (qstr.name == dentry->d_shortname.string) {
1822 		strbuf = dentry->d_shortname; // NUL is guaranteed to be in there
1823 		qstr.name = strbuf.string;
1824 		/* prevent compiler from optimizing out the temporary buffer */
1825 		barrier();
1826 	}
1827 
1828 	return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1829 }
1830 EXPORT_SYMBOL(generic_ci_d_compare);
1831 
1832 /**
1833  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1834  * @dentry:	dentry of the parent directory
1835  * @str:	qstr of name whose hash we should fill in
1836  *
1837  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1838  */
generic_ci_d_hash(const struct dentry * dentry,struct qstr * str)1839 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1840 {
1841 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1842 	struct super_block *sb = dentry->d_sb;
1843 	const struct unicode_map *um = sb->s_encoding;
1844 	int ret;
1845 
1846 	if (!dir || !IS_CASEFOLDED(dir))
1847 		return 0;
1848 
1849 	ret = utf8_casefold_hash(um, dentry, str);
1850 	if (ret < 0 && sb_has_strict_encoding(sb))
1851 		return -EINVAL;
1852 	return 0;
1853 }
1854 EXPORT_SYMBOL(generic_ci_d_hash);
1855 
1856 static const struct dentry_operations generic_ci_dentry_ops = {
1857 	.d_hash = generic_ci_d_hash,
1858 	.d_compare = generic_ci_d_compare,
1859 #ifdef CONFIG_FS_ENCRYPTION
1860 	.d_revalidate = fscrypt_d_revalidate,
1861 #endif
1862 };
1863 
1864 /**
1865  * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1866  * This is a filesystem helper for comparison with directory entries.
1867  * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1868  *
1869  * @parent: Inode of the parent of the dirent under comparison
1870  * @name: name under lookup.
1871  * @folded_name: Optional pre-folded name under lookup
1872  * @de_name: Dirent name.
1873  * @de_name_len: dirent name length.
1874  *
1875  * Test whether a case-insensitive directory entry matches the filename
1876  * being searched.  If @folded_name is provided, it is used instead of
1877  * recalculating the casefold of @name.
1878  *
1879  * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1880  * < 0 on error.
1881  */
generic_ci_match(const struct inode * parent,const struct qstr * name,const struct qstr * folded_name,const u8 * de_name,u32 de_name_len)1882 int generic_ci_match(const struct inode *parent,
1883 		     const struct qstr *name,
1884 		     const struct qstr *folded_name,
1885 		     const u8 *de_name, u32 de_name_len)
1886 {
1887 	const struct super_block *sb = parent->i_sb;
1888 	const struct unicode_map *um = sb->s_encoding;
1889 	struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1890 	struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1891 	int res = 0;
1892 
1893 	if (IS_ENCRYPTED(parent)) {
1894 		const struct fscrypt_str encrypted_name =
1895 			FSTR_INIT((u8 *) de_name, de_name_len);
1896 
1897 		if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1898 			return -EINVAL;
1899 
1900 		decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1901 		if (!decrypted_name.name)
1902 			return -ENOMEM;
1903 		res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1904 						&decrypted_name);
1905 		if (res < 0) {
1906 			kfree(decrypted_name.name);
1907 			return res;
1908 		}
1909 		dirent.name = decrypted_name.name;
1910 		dirent.len = decrypted_name.len;
1911 	}
1912 
1913 	/*
1914 	 * Attempt a case-sensitive match first. It is cheaper and
1915 	 * should cover most lookups, including all the sane
1916 	 * applications that expect a case-sensitive filesystem.
1917 	 */
1918 
1919 	if (dirent.len == name->len &&
1920 	    !memcmp(name->name, dirent.name, dirent.len))
1921 		goto out;
1922 
1923 	if (folded_name->name)
1924 		res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1925 	else
1926 		res = utf8_strncasecmp(um, name, &dirent);
1927 
1928 out:
1929 	kfree(decrypted_name.name);
1930 	if (res < 0 && sb_has_strict_encoding(sb)) {
1931 		pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1932 		return 0;
1933 	}
1934 	return !res;
1935 }
1936 EXPORT_SYMBOL(generic_ci_match);
1937 #endif
1938 
1939 #ifdef CONFIG_FS_ENCRYPTION
1940 static const struct dentry_operations generic_encrypted_dentry_ops = {
1941 	.d_revalidate = fscrypt_d_revalidate,
1942 };
1943 #endif
1944 
1945 /**
1946  * generic_set_sb_d_ops - helper for choosing the set of
1947  * filesystem-wide dentry operations for the enabled features
1948  * @sb: superblock to be configured
1949  *
1950  * Filesystems supporting casefolding and/or fscrypt can call this
1951  * helper at mount-time to configure sb->s_d_op to best set of dentry
1952  * operations required for the enabled features. The helper must be
1953  * called after these have been configured, but before the root dentry
1954  * is created.
1955  */
generic_set_sb_d_ops(struct super_block * sb)1956 void generic_set_sb_d_ops(struct super_block *sb)
1957 {
1958 #if IS_ENABLED(CONFIG_UNICODE)
1959 	if (sb->s_encoding) {
1960 		sb->s_d_op = &generic_ci_dentry_ops;
1961 		return;
1962 	}
1963 #endif
1964 #ifdef CONFIG_FS_ENCRYPTION
1965 	if (sb->s_cop) {
1966 		sb->s_d_op = &generic_encrypted_dentry_ops;
1967 		return;
1968 	}
1969 #endif
1970 }
1971 EXPORT_SYMBOL(generic_set_sb_d_ops);
1972 
1973 /**
1974  * inode_maybe_inc_iversion - increments i_version
1975  * @inode: inode with the i_version that should be updated
1976  * @force: increment the counter even if it's not necessary?
1977  *
1978  * Every time the inode is modified, the i_version field must be seen to have
1979  * changed by any observer.
1980  *
1981  * If "force" is set or the QUERIED flag is set, then ensure that we increment
1982  * the value, and clear the queried flag.
1983  *
1984  * In the common case where neither is set, then we can return "false" without
1985  * updating i_version.
1986  *
1987  * If this function returns false, and no other metadata has changed, then we
1988  * can avoid logging the metadata.
1989  */
inode_maybe_inc_iversion(struct inode * inode,bool force)1990 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1991 {
1992 	u64 cur, new;
1993 
1994 	/*
1995 	 * The i_version field is not strictly ordered with any other inode
1996 	 * information, but the legacy inode_inc_iversion code used a spinlock
1997 	 * to serialize increments.
1998 	 *
1999 	 * We add a full memory barrier to ensure that any de facto ordering
2000 	 * with other state is preserved (either implicitly coming from cmpxchg
2001 	 * or explicitly from smp_mb if we don't know upfront if we will execute
2002 	 * the former).
2003 	 *
2004 	 * These barriers pair with inode_query_iversion().
2005 	 */
2006 	cur = inode_peek_iversion_raw(inode);
2007 	if (!force && !(cur & I_VERSION_QUERIED)) {
2008 		smp_mb();
2009 		cur = inode_peek_iversion_raw(inode);
2010 	}
2011 
2012 	do {
2013 		/* If flag is clear then we needn't do anything */
2014 		if (!force && !(cur & I_VERSION_QUERIED))
2015 			return false;
2016 
2017 		/* Since lowest bit is flag, add 2 to avoid it */
2018 		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2019 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2020 	return true;
2021 }
2022 EXPORT_SYMBOL(inode_maybe_inc_iversion);
2023 
2024 /**
2025  * inode_query_iversion - read i_version for later use
2026  * @inode: inode from which i_version should be read
2027  *
2028  * Read the inode i_version counter. This should be used by callers that wish
2029  * to store the returned i_version for later comparison. This will guarantee
2030  * that a later query of the i_version will result in a different value if
2031  * anything has changed.
2032  *
2033  * In this implementation, we fetch the current value, set the QUERIED flag and
2034  * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2035  * that fails, we try again with the newly fetched value from the cmpxchg.
2036  */
inode_query_iversion(struct inode * inode)2037 u64 inode_query_iversion(struct inode *inode)
2038 {
2039 	u64 cur, new;
2040 	bool fenced = false;
2041 
2042 	/*
2043 	 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with
2044 	 * inode_maybe_inc_iversion(), see that routine for more details.
2045 	 */
2046 	cur = inode_peek_iversion_raw(inode);
2047 	do {
2048 		/* If flag is already set, then no need to swap */
2049 		if (cur & I_VERSION_QUERIED) {
2050 			if (!fenced)
2051 				smp_mb();
2052 			break;
2053 		}
2054 
2055 		fenced = true;
2056 		new = cur | I_VERSION_QUERIED;
2057 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2058 	return cur >> I_VERSION_QUERIED_SHIFT;
2059 }
2060 EXPORT_SYMBOL(inode_query_iversion);
2061 
direct_write_fallback(struct kiocb * iocb,struct iov_iter * iter,ssize_t direct_written,ssize_t buffered_written)2062 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2063 		ssize_t direct_written, ssize_t buffered_written)
2064 {
2065 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2066 	loff_t pos = iocb->ki_pos - buffered_written;
2067 	loff_t end = iocb->ki_pos - 1;
2068 	int err;
2069 
2070 	/*
2071 	 * If the buffered write fallback returned an error, we want to return
2072 	 * the number of bytes which were written by direct I/O, or the error
2073 	 * code if that was zero.
2074 	 *
2075 	 * Note that this differs from normal direct-io semantics, which will
2076 	 * return -EFOO even if some bytes were written.
2077 	 */
2078 	if (unlikely(buffered_written < 0)) {
2079 		if (direct_written)
2080 			return direct_written;
2081 		return buffered_written;
2082 	}
2083 
2084 	/*
2085 	 * We need to ensure that the page cache pages are written to disk and
2086 	 * invalidated to preserve the expected O_DIRECT semantics.
2087 	 */
2088 	err = filemap_write_and_wait_range(mapping, pos, end);
2089 	if (err < 0) {
2090 		/*
2091 		 * We don't know how much we wrote, so just return the number of
2092 		 * bytes which were direct-written
2093 		 */
2094 		iocb->ki_pos -= buffered_written;
2095 		if (direct_written)
2096 			return direct_written;
2097 		return err;
2098 	}
2099 	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2100 	return direct_written + buffered_written;
2101 }
2102 EXPORT_SYMBOL_GPL(direct_write_fallback);
2103 
2104 /**
2105  * simple_inode_init_ts - initialize the timestamps for a new inode
2106  * @inode: inode to be initialized
2107  *
2108  * When a new inode is created, most filesystems set the timestamps to the
2109  * current time. Add a helper to do this.
2110  */
simple_inode_init_ts(struct inode * inode)2111 struct timespec64 simple_inode_init_ts(struct inode *inode)
2112 {
2113 	struct timespec64 ts = inode_set_ctime_current(inode);
2114 
2115 	inode_set_atime_to_ts(inode, ts);
2116 	inode_set_mtime_to_ts(inode, ts);
2117 	return ts;
2118 }
2119 EXPORT_SYMBOL(simple_inode_init_ts);
2120 
stashed_dentry_get(struct dentry ** stashed)2121 struct dentry *stashed_dentry_get(struct dentry **stashed)
2122 {
2123 	struct dentry *dentry;
2124 
2125 	guard(rcu)();
2126 	dentry = rcu_dereference(*stashed);
2127 	if (!dentry)
2128 		return NULL;
2129 	if (!lockref_get_not_dead(&dentry->d_lockref))
2130 		return NULL;
2131 	return dentry;
2132 }
2133 
prepare_anon_dentry(struct dentry ** stashed,struct super_block * sb,void * data)2134 static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2135 					  struct super_block *sb,
2136 					  void *data)
2137 {
2138 	struct dentry *dentry;
2139 	struct inode *inode;
2140 	const struct stashed_operations *sops = sb->s_fs_info;
2141 	int ret;
2142 
2143 	inode = new_inode_pseudo(sb);
2144 	if (!inode) {
2145 		sops->put_data(data);
2146 		return ERR_PTR(-ENOMEM);
2147 	}
2148 
2149 	inode->i_flags |= S_IMMUTABLE;
2150 	inode->i_mode = S_IFREG;
2151 	simple_inode_init_ts(inode);
2152 
2153 	ret = sops->init_inode(inode, data);
2154 	if (ret < 0) {
2155 		iput(inode);
2156 		return ERR_PTR(ret);
2157 	}
2158 
2159 	/* Notice when this is changed. */
2160 	WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2161 	WARN_ON_ONCE(!IS_IMMUTABLE(inode));
2162 
2163 	dentry = d_alloc_anon(sb);
2164 	if (!dentry) {
2165 		iput(inode);
2166 		return ERR_PTR(-ENOMEM);
2167 	}
2168 
2169 	/* Store address of location where dentry's supposed to be stashed. */
2170 	dentry->d_fsdata = stashed;
2171 
2172 	/* @data is now owned by the fs */
2173 	d_instantiate(dentry, inode);
2174 	return dentry;
2175 }
2176 
stash_dentry(struct dentry ** stashed,struct dentry * dentry)2177 static struct dentry *stash_dentry(struct dentry **stashed,
2178 				   struct dentry *dentry)
2179 {
2180 	guard(rcu)();
2181 	for (;;) {
2182 		struct dentry *old;
2183 
2184 		/* Assume any old dentry was cleared out. */
2185 		old = cmpxchg(stashed, NULL, dentry);
2186 		if (likely(!old))
2187 			return dentry;
2188 
2189 		/* Check if somebody else installed a reusable dentry. */
2190 		if (lockref_get_not_dead(&old->d_lockref))
2191 			return old;
2192 
2193 		/* There's an old dead dentry there, try to take it over. */
2194 		if (likely(try_cmpxchg(stashed, &old, dentry)))
2195 			return dentry;
2196 	}
2197 }
2198 
2199 /**
2200  * path_from_stashed - create path from stashed or new dentry
2201  * @stashed:    where to retrieve or stash dentry
2202  * @mnt:        mnt of the filesystems to use
2203  * @data:       data to store in inode->i_private
2204  * @path:       path to create
2205  *
2206  * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2207  * is still valid then it will be reused. If the dentry isn't able the function
2208  * will allocate a new dentry and inode. It will then check again whether it
2209  * can reuse an existing dentry in case one has been added in the meantime or
2210  * update @stashed with the newly added dentry.
2211  *
2212  * Special-purpose helper for nsfs and pidfs.
2213  *
2214  * Return: On success zero and on failure a negative error is returned.
2215  */
path_from_stashed(struct dentry ** stashed,struct vfsmount * mnt,void * data,struct path * path)2216 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2217 		      struct path *path)
2218 {
2219 	struct dentry *dentry;
2220 	const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2221 
2222 	/* See if dentry can be reused. */
2223 	path->dentry = stashed_dentry_get(stashed);
2224 	if (path->dentry) {
2225 		sops->put_data(data);
2226 		goto out_path;
2227 	}
2228 
2229 	/* Allocate a new dentry. */
2230 	dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2231 	if (IS_ERR(dentry))
2232 		return PTR_ERR(dentry);
2233 
2234 	/* Added a new dentry. @data is now owned by the filesystem. */
2235 	path->dentry = stash_dentry(stashed, dentry);
2236 	if (path->dentry != dentry)
2237 		dput(dentry);
2238 
2239 out_path:
2240 	WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2241 	WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2242 	path->mnt = mntget(mnt);
2243 	return 0;
2244 }
2245 
stashed_dentry_prune(struct dentry * dentry)2246 void stashed_dentry_prune(struct dentry *dentry)
2247 {
2248 	struct dentry **stashed = dentry->d_fsdata;
2249 	struct inode *inode = d_inode(dentry);
2250 
2251 	if (WARN_ON_ONCE(!stashed))
2252 		return;
2253 
2254 	if (!inode)
2255 		return;
2256 
2257 	/*
2258 	 * Only replace our own @dentry as someone else might've
2259 	 * already cleared out @dentry and stashed their own
2260 	 * dentry in there.
2261 	 */
2262 	cmpxchg(stashed, dentry, NULL);
2263 }
2264