1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "linux/spinlock.h"
4 #include <linux/minmax.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "space-info.h"
8 #include "sysfs.h"
9 #include "volumes.h"
10 #include "free-space-cache.h"
11 #include "ordered-data.h"
12 #include "transaction.h"
13 #include "block-group.h"
14 #include "fs.h"
15 #include "accessors.h"
16 #include "extent-tree.h"
17 #include "zoned.h"
18
19 /*
20 * HOW DOES SPACE RESERVATION WORK
21 *
22 * If you want to know about delalloc specifically, there is a separate comment
23 * for that with the delalloc code. This comment is about how the whole system
24 * works generally.
25 *
26 * BASIC CONCEPTS
27 *
28 * 1) space_info. This is the ultimate arbiter of how much space we can use.
29 * There's a description of the bytes_ fields with the struct declaration,
30 * refer to that for specifics on each field. Suffice it to say that for
31 * reservations we care about total_bytes - SUM(space_info->bytes_) when
32 * determining if there is space to make an allocation. There is a space_info
33 * for METADATA, SYSTEM, and DATA areas.
34 *
35 * 2) block_rsv's. These are basically buckets for every different type of
36 * metadata reservation we have. You can see the comment in the block_rsv
37 * code on the rules for each type, but generally block_rsv->reserved is how
38 * much space is accounted for in space_info->bytes_may_use.
39 *
40 * 3) btrfs_calc*_size. These are the worst case calculations we used based
41 * on the number of items we will want to modify. We have one for changing
42 * items, and one for inserting new items. Generally we use these helpers to
43 * determine the size of the block reserves, and then use the actual bytes
44 * values to adjust the space_info counters.
45 *
46 * MAKING RESERVATIONS, THE NORMAL CASE
47 *
48 * We call into either btrfs_reserve_data_bytes() or
49 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
50 * num_bytes we want to reserve.
51 *
52 * ->reserve
53 * space_info->bytes_may_reserve += num_bytes
54 *
55 * ->extent allocation
56 * Call btrfs_add_reserved_bytes() which does
57 * space_info->bytes_may_reserve -= num_bytes
58 * space_info->bytes_reserved += extent_bytes
59 *
60 * ->insert reference
61 * Call btrfs_update_block_group() which does
62 * space_info->bytes_reserved -= extent_bytes
63 * space_info->bytes_used += extent_bytes
64 *
65 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
66 *
67 * Assume we are unable to simply make the reservation because we do not have
68 * enough space
69 *
70 * -> __reserve_bytes
71 * create a reserve_ticket with ->bytes set to our reservation, add it to
72 * the tail of space_info->tickets, kick async flush thread
73 *
74 * ->handle_reserve_ticket
75 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
76 * on the ticket.
77 *
78 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
79 * Flushes various things attempting to free up space.
80 *
81 * -> btrfs_try_granting_tickets()
82 * This is called by anything that either subtracts space from
83 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
84 * space_info->total_bytes. This loops through the ->priority_tickets and
85 * then the ->tickets list checking to see if the reservation can be
86 * completed. If it can the space is added to space_info->bytes_may_use and
87 * the ticket is woken up.
88 *
89 * -> ticket wakeup
90 * Check if ->bytes == 0, if it does we got our reservation and we can carry
91 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we
92 * were interrupted.)
93 *
94 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
95 *
96 * Same as the above, except we add ourselves to the
97 * space_info->priority_tickets, and we do not use ticket->wait, we simply
98 * call flush_space() ourselves for the states that are safe for us to call
99 * without deadlocking and hope for the best.
100 *
101 * THE FLUSHING STATES
102 *
103 * Generally speaking we will have two cases for each state, a "nice" state
104 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to
105 * reduce the locking over head on the various trees, and even to keep from
106 * doing any work at all in the case of delayed refs. Each of these delayed
107 * things however hold reservations, and so letting them run allows us to
108 * reclaim space so we can make new reservations.
109 *
110 * FLUSH_DELAYED_ITEMS
111 * Every inode has a delayed item to update the inode. Take a simple write
112 * for example, we would update the inode item at write time to update the
113 * mtime, and then again at finish_ordered_io() time in order to update the
114 * isize or bytes. We keep these delayed items to coalesce these operations
115 * into a single operation done on demand. These are an easy way to reclaim
116 * metadata space.
117 *
118 * FLUSH_DELALLOC
119 * Look at the delalloc comment to get an idea of how much space is reserved
120 * for delayed allocation. We can reclaim some of this space simply by
121 * running delalloc, but usually we need to wait for ordered extents to
122 * reclaim the bulk of this space.
123 *
124 * FLUSH_DELAYED_REFS
125 * We have a block reserve for the outstanding delayed refs space, and every
126 * delayed ref operation holds a reservation. Running these is a quick way
127 * to reclaim space, but we want to hold this until the end because COW can
128 * churn a lot and we can avoid making some extent tree modifications if we
129 * are able to delay for as long as possible.
130 *
131 * RESET_ZONES
132 * This state works only for the zoned mode. On the zoned mode, we cannot
133 * reuse once allocated then freed region until we reset the zone, due to
134 * the sequential write zone requirement. The RESET_ZONES state resets the
135 * zones of an unused block group and let us reuse the space. The reusing
136 * is faster than removing the block group and allocating another block
137 * group on the zones.
138 *
139 * ALLOC_CHUNK
140 * We will skip this the first time through space reservation, because of
141 * overcommit and we don't want to have a lot of useless metadata space when
142 * our worst case reservations will likely never come true.
143 *
144 * RUN_DELAYED_IPUTS
145 * If we're freeing inodes we're likely freeing checksums, file extent
146 * items, and extent tree items. Loads of space could be freed up by these
147 * operations, however they won't be usable until the transaction commits.
148 *
149 * COMMIT_TRANS
150 * This will commit the transaction. Historically we had a lot of logic
151 * surrounding whether or not we'd commit the transaction, but this waits born
152 * out of a pre-tickets era where we could end up committing the transaction
153 * thousands of times in a row without making progress. Now thanks to our
154 * ticketing system we know if we're not making progress and can error
155 * everybody out after a few commits rather than burning the disk hoping for
156 * a different answer.
157 *
158 * OVERCOMMIT
159 *
160 * Because we hold so many reservations for metadata we will allow you to
161 * reserve more space than is currently free in the currently allocate
162 * metadata space. This only happens with metadata, data does not allow
163 * overcommitting.
164 *
165 * You can see the current logic for when we allow overcommit in
166 * btrfs_can_overcommit(), but it only applies to unallocated space. If there
167 * is no unallocated space to be had, all reservations are kept within the
168 * free space in the allocated metadata chunks.
169 *
170 * Because of overcommitting, you generally want to use the
171 * btrfs_can_overcommit() logic for metadata allocations, as it does the right
172 * thing with or without extra unallocated space.
173 */
174
btrfs_space_info_used(const struct btrfs_space_info * s_info,bool may_use_included)175 u64 __pure btrfs_space_info_used(const struct btrfs_space_info *s_info,
176 bool may_use_included)
177 {
178 ASSERT(s_info);
179 return s_info->bytes_used + s_info->bytes_reserved +
180 s_info->bytes_pinned + s_info->bytes_readonly +
181 s_info->bytes_zone_unusable +
182 (may_use_included ? s_info->bytes_may_use : 0);
183 }
184
185 /*
186 * after adding space to the filesystem, we need to clear the full flags
187 * on all the space infos.
188 */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)189 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
190 {
191 struct list_head *head = &info->space_info;
192 struct btrfs_space_info *found;
193
194 list_for_each_entry(found, head, list)
195 found->full = 0;
196 }
197
198 /*
199 * Block groups with more than this value (percents) of unusable space will be
200 * scheduled for background reclaim.
201 */
202 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75)
203
204 #define BTRFS_UNALLOC_BLOCK_GROUP_TARGET (10ULL)
205
206 /*
207 * Calculate chunk size depending on volume type (regular or zoned).
208 */
calc_chunk_size(const struct btrfs_fs_info * fs_info,u64 flags)209 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
210 {
211 if (btrfs_is_zoned(fs_info))
212 return fs_info->zone_size;
213
214 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
215
216 if (flags & BTRFS_BLOCK_GROUP_DATA)
217 return BTRFS_MAX_DATA_CHUNK_SIZE;
218 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
219 return SZ_32M;
220
221 /* Handle BTRFS_BLOCK_GROUP_METADATA */
222 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
223 return SZ_1G;
224
225 return SZ_256M;
226 }
227
228 /*
229 * Update default chunk size.
230 */
btrfs_update_space_info_chunk_size(struct btrfs_space_info * space_info,u64 chunk_size)231 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
232 u64 chunk_size)
233 {
234 WRITE_ONCE(space_info->chunk_size, chunk_size);
235 }
236
create_space_info(struct btrfs_fs_info * info,u64 flags)237 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
238 {
239
240 struct btrfs_space_info *space_info;
241 int i;
242 int ret;
243
244 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
245 if (!space_info)
246 return -ENOMEM;
247
248 space_info->fs_info = info;
249 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
250 INIT_LIST_HEAD(&space_info->block_groups[i]);
251 init_rwsem(&space_info->groups_sem);
252 spin_lock_init(&space_info->lock);
253 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
254 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
255 INIT_LIST_HEAD(&space_info->ro_bgs);
256 INIT_LIST_HEAD(&space_info->tickets);
257 INIT_LIST_HEAD(&space_info->priority_tickets);
258 space_info->clamp = 1;
259 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
260
261 if (btrfs_is_zoned(info))
262 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
263
264 ret = btrfs_sysfs_add_space_info_type(info, space_info);
265 if (ret)
266 return ret;
267
268 list_add(&space_info->list, &info->space_info);
269 if (flags & BTRFS_BLOCK_GROUP_DATA)
270 info->data_sinfo = space_info;
271
272 return ret;
273 }
274
btrfs_init_space_info(struct btrfs_fs_info * fs_info)275 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
276 {
277 struct btrfs_super_block *disk_super;
278 u64 features;
279 u64 flags;
280 int mixed = 0;
281 int ret;
282
283 disk_super = fs_info->super_copy;
284 if (!btrfs_super_root(disk_super))
285 return -EINVAL;
286
287 features = btrfs_super_incompat_flags(disk_super);
288 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
289 mixed = 1;
290
291 flags = BTRFS_BLOCK_GROUP_SYSTEM;
292 ret = create_space_info(fs_info, flags);
293 if (ret)
294 goto out;
295
296 if (mixed) {
297 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
298 ret = create_space_info(fs_info, flags);
299 } else {
300 flags = BTRFS_BLOCK_GROUP_METADATA;
301 ret = create_space_info(fs_info, flags);
302 if (ret)
303 goto out;
304
305 flags = BTRFS_BLOCK_GROUP_DATA;
306 ret = create_space_info(fs_info, flags);
307 }
308 out:
309 return ret;
310 }
311
btrfs_add_bg_to_space_info(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)312 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
313 struct btrfs_block_group *block_group)
314 {
315 struct btrfs_space_info *found;
316 int factor, index;
317
318 factor = btrfs_bg_type_to_factor(block_group->flags);
319
320 found = btrfs_find_space_info(info, block_group->flags);
321 ASSERT(found);
322 spin_lock(&found->lock);
323 found->total_bytes += block_group->length;
324 found->disk_total += block_group->length * factor;
325 found->bytes_used += block_group->used;
326 found->disk_used += block_group->used * factor;
327 found->bytes_readonly += block_group->bytes_super;
328 btrfs_space_info_update_bytes_zone_unusable(found, block_group->zone_unusable);
329 if (block_group->length > 0)
330 found->full = 0;
331 btrfs_try_granting_tickets(info, found);
332 spin_unlock(&found->lock);
333
334 block_group->space_info = found;
335
336 index = btrfs_bg_flags_to_raid_index(block_group->flags);
337 down_write(&found->groups_sem);
338 list_add_tail(&block_group->list, &found->block_groups[index]);
339 up_write(&found->groups_sem);
340 }
341
btrfs_find_space_info(struct btrfs_fs_info * info,u64 flags)342 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
343 u64 flags)
344 {
345 struct list_head *head = &info->space_info;
346 struct btrfs_space_info *found;
347
348 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
349
350 list_for_each_entry(found, head, list) {
351 if (found->flags & flags)
352 return found;
353 }
354 return NULL;
355 }
356
calc_effective_data_chunk_size(struct btrfs_fs_info * fs_info)357 static u64 calc_effective_data_chunk_size(struct btrfs_fs_info *fs_info)
358 {
359 struct btrfs_space_info *data_sinfo;
360 u64 data_chunk_size;
361
362 /*
363 * Calculate the data_chunk_size, space_info->chunk_size is the
364 * "optimal" chunk size based on the fs size. However when we actually
365 * allocate the chunk we will strip this down further, making it no
366 * more than 10% of the disk or 1G, whichever is smaller.
367 *
368 * On the zoned mode, we need to use zone_size (= data_sinfo->chunk_size)
369 * as it is.
370 */
371 data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
372 if (btrfs_is_zoned(fs_info))
373 return data_sinfo->chunk_size;
374 data_chunk_size = min(data_sinfo->chunk_size,
375 mult_perc(fs_info->fs_devices->total_rw_bytes, 10));
376 return min_t(u64, data_chunk_size, SZ_1G);
377 }
378
calc_available_free_space(struct btrfs_fs_info * fs_info,const struct btrfs_space_info * space_info,enum btrfs_reserve_flush_enum flush)379 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
380 const struct btrfs_space_info *space_info,
381 enum btrfs_reserve_flush_enum flush)
382 {
383 u64 profile;
384 u64 avail;
385 u64 data_chunk_size;
386 int factor;
387
388 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
389 profile = btrfs_system_alloc_profile(fs_info);
390 else
391 profile = btrfs_metadata_alloc_profile(fs_info);
392
393 avail = atomic64_read(&fs_info->free_chunk_space);
394
395 /*
396 * If we have dup, raid1 or raid10 then only half of the free
397 * space is actually usable. For raid56, the space info used
398 * doesn't include the parity drive, so we don't have to
399 * change the math
400 */
401 factor = btrfs_bg_type_to_factor(profile);
402 avail = div_u64(avail, factor);
403 if (avail == 0)
404 return 0;
405
406 data_chunk_size = calc_effective_data_chunk_size(fs_info);
407
408 /*
409 * Since data allocations immediately use block groups as part of the
410 * reservation, because we assume that data reservations will == actual
411 * usage, we could potentially overcommit and then immediately have that
412 * available space used by a data allocation, which could put us in a
413 * bind when we get close to filling the file system.
414 *
415 * To handle this simply remove the data_chunk_size from the available
416 * space. If we are relatively empty this won't affect our ability to
417 * overcommit much, and if we're very close to full it'll keep us from
418 * getting into a position where we've given ourselves very little
419 * metadata wiggle room.
420 */
421 if (avail <= data_chunk_size)
422 return 0;
423 avail -= data_chunk_size;
424
425 /*
426 * If we aren't flushing all things, let us overcommit up to
427 * 1/2th of the space. If we can flush, don't let us overcommit
428 * too much, let it overcommit up to 1/8 of the space.
429 */
430 if (flush == BTRFS_RESERVE_FLUSH_ALL)
431 avail >>= 3;
432 else
433 avail >>= 1;
434
435 /*
436 * On the zoned mode, we always allocate one zone as one chunk.
437 * Returning non-zone size alingned bytes here will result in
438 * less pressure for the async metadata reclaim process, and it
439 * will over-commit too much leading to ENOSPC. Align down to the
440 * zone size to avoid that.
441 */
442 if (btrfs_is_zoned(fs_info))
443 avail = ALIGN_DOWN(avail, fs_info->zone_size);
444
445 return avail;
446 }
447
btrfs_can_overcommit(struct btrfs_fs_info * fs_info,const struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush)448 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
449 const struct btrfs_space_info *space_info, u64 bytes,
450 enum btrfs_reserve_flush_enum flush)
451 {
452 u64 avail;
453 u64 used;
454
455 /* Don't overcommit when in mixed mode */
456 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
457 return 0;
458
459 used = btrfs_space_info_used(space_info, true);
460 avail = calc_available_free_space(fs_info, space_info, flush);
461
462 if (used + bytes < space_info->total_bytes + avail)
463 return 1;
464 return 0;
465 }
466
remove_ticket(struct btrfs_space_info * space_info,struct reserve_ticket * ticket)467 static void remove_ticket(struct btrfs_space_info *space_info,
468 struct reserve_ticket *ticket)
469 {
470 if (!list_empty(&ticket->list)) {
471 list_del_init(&ticket->list);
472 ASSERT(space_info->reclaim_size >= ticket->bytes);
473 space_info->reclaim_size -= ticket->bytes;
474 }
475 }
476
477 /*
478 * This is for space we already have accounted in space_info->bytes_may_use, so
479 * basically when we're returning space from block_rsv's.
480 */
btrfs_try_granting_tickets(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)481 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
482 struct btrfs_space_info *space_info)
483 {
484 struct list_head *head;
485 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
486
487 lockdep_assert_held(&space_info->lock);
488
489 head = &space_info->priority_tickets;
490 again:
491 while (!list_empty(head)) {
492 struct reserve_ticket *ticket;
493 u64 used = btrfs_space_info_used(space_info, true);
494
495 ticket = list_first_entry(head, struct reserve_ticket, list);
496
497 /* Check and see if our ticket can be satisfied now. */
498 if ((used + ticket->bytes <= space_info->total_bytes) ||
499 btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
500 flush)) {
501 btrfs_space_info_update_bytes_may_use(space_info, ticket->bytes);
502 remove_ticket(space_info, ticket);
503 ticket->bytes = 0;
504 space_info->tickets_id++;
505 wake_up(&ticket->wait);
506 } else {
507 break;
508 }
509 }
510
511 if (head == &space_info->priority_tickets) {
512 head = &space_info->tickets;
513 flush = BTRFS_RESERVE_FLUSH_ALL;
514 goto again;
515 }
516 }
517
518 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \
519 do { \
520 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
521 spin_lock(&__rsv->lock); \
522 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
523 __rsv->size, __rsv->reserved); \
524 spin_unlock(&__rsv->lock); \
525 } while (0)
526
space_info_flag_to_str(const struct btrfs_space_info * space_info)527 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
528 {
529 switch (space_info->flags) {
530 case BTRFS_BLOCK_GROUP_SYSTEM:
531 return "SYSTEM";
532 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
533 return "DATA+METADATA";
534 case BTRFS_BLOCK_GROUP_DATA:
535 return "DATA";
536 case BTRFS_BLOCK_GROUP_METADATA:
537 return "METADATA";
538 default:
539 return "UNKNOWN";
540 }
541 }
542
dump_global_block_rsv(struct btrfs_fs_info * fs_info)543 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
544 {
545 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
546 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
547 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
548 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
549 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
550 }
551
__btrfs_dump_space_info(const struct btrfs_fs_info * fs_info,const struct btrfs_space_info * info)552 static void __btrfs_dump_space_info(const struct btrfs_fs_info *fs_info,
553 const struct btrfs_space_info *info)
554 {
555 const char *flag_str = space_info_flag_to_str(info);
556 lockdep_assert_held(&info->lock);
557
558 /* The free space could be negative in case of overcommit */
559 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
560 flag_str,
561 (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
562 info->full ? "" : "not ");
563 btrfs_info(fs_info,
564 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
565 info->total_bytes, info->bytes_used, info->bytes_pinned,
566 info->bytes_reserved, info->bytes_may_use,
567 info->bytes_readonly, info->bytes_zone_unusable);
568 }
569
btrfs_dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info,u64 bytes,int dump_block_groups)570 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
571 struct btrfs_space_info *info, u64 bytes,
572 int dump_block_groups)
573 {
574 struct btrfs_block_group *cache;
575 u64 total_avail = 0;
576 int index = 0;
577
578 spin_lock(&info->lock);
579 __btrfs_dump_space_info(fs_info, info);
580 dump_global_block_rsv(fs_info);
581 spin_unlock(&info->lock);
582
583 if (!dump_block_groups)
584 return;
585
586 down_read(&info->groups_sem);
587 again:
588 list_for_each_entry(cache, &info->block_groups[index], list) {
589 u64 avail;
590
591 spin_lock(&cache->lock);
592 avail = cache->length - cache->used - cache->pinned -
593 cache->reserved - cache->bytes_super - cache->zone_unusable;
594 btrfs_info(fs_info,
595 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
596 cache->start, cache->length, cache->used, cache->pinned,
597 cache->reserved, cache->delalloc_bytes,
598 cache->bytes_super, cache->zone_unusable,
599 avail, cache->ro ? "[readonly]" : "");
600 spin_unlock(&cache->lock);
601 btrfs_dump_free_space(cache, bytes);
602 total_avail += avail;
603 }
604 if (++index < BTRFS_NR_RAID_TYPES)
605 goto again;
606 up_read(&info->groups_sem);
607
608 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
609 }
610
calc_reclaim_items_nr(const struct btrfs_fs_info * fs_info,u64 to_reclaim)611 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
612 u64 to_reclaim)
613 {
614 u64 bytes;
615 u64 nr;
616
617 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
618 nr = div64_u64(to_reclaim, bytes);
619 if (!nr)
620 nr = 1;
621 return nr;
622 }
623
624 /*
625 * shrink metadata reservation for delalloc
626 */
shrink_delalloc(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 to_reclaim,bool wait_ordered,bool for_preempt)627 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
628 struct btrfs_space_info *space_info,
629 u64 to_reclaim, bool wait_ordered,
630 bool for_preempt)
631 {
632 struct btrfs_trans_handle *trans;
633 u64 delalloc_bytes;
634 u64 ordered_bytes;
635 u64 items;
636 long time_left;
637 int loops;
638
639 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
640 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
641 if (delalloc_bytes == 0 && ordered_bytes == 0)
642 return;
643
644 /* Calc the number of the pages we need flush for space reservation */
645 if (to_reclaim == U64_MAX) {
646 items = U64_MAX;
647 } else {
648 /*
649 * to_reclaim is set to however much metadata we need to
650 * reclaim, but reclaiming that much data doesn't really track
651 * exactly. What we really want to do is reclaim full inode's
652 * worth of reservations, however that's not available to us
653 * here. We will take a fraction of the delalloc bytes for our
654 * flushing loops and hope for the best. Delalloc will expand
655 * the amount we write to cover an entire dirty extent, which
656 * will reclaim the metadata reservation for that range. If
657 * it's not enough subsequent flush stages will be more
658 * aggressive.
659 */
660 to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
661 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
662 }
663
664 trans = current->journal_info;
665
666 /*
667 * If we are doing more ordered than delalloc we need to just wait on
668 * ordered extents, otherwise we'll waste time trying to flush delalloc
669 * that likely won't give us the space back we need.
670 */
671 if (ordered_bytes > delalloc_bytes && !for_preempt)
672 wait_ordered = true;
673
674 loops = 0;
675 while ((delalloc_bytes || ordered_bytes) && loops < 3) {
676 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
677 long nr_pages = min_t(u64, temp, LONG_MAX);
678 int async_pages;
679
680 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
681
682 /*
683 * We need to make sure any outstanding async pages are now
684 * processed before we continue. This is because things like
685 * sync_inode() try to be smart and skip writing if the inode is
686 * marked clean. We don't use filemap_fwrite for flushing
687 * because we want to control how many pages we write out at a
688 * time, thus this is the only safe way to make sure we've
689 * waited for outstanding compressed workers to have started
690 * their jobs and thus have ordered extents set up properly.
691 *
692 * This exists because we do not want to wait for each
693 * individual inode to finish its async work, we simply want to
694 * start the IO on everybody, and then come back here and wait
695 * for all of the async work to catch up. Once we're done with
696 * that we know we'll have ordered extents for everything and we
697 * can decide if we wait for that or not.
698 *
699 * If we choose to replace this in the future, make absolutely
700 * sure that the proper waiting is being done in the async case,
701 * as there have been bugs in that area before.
702 */
703 async_pages = atomic_read(&fs_info->async_delalloc_pages);
704 if (!async_pages)
705 goto skip_async;
706
707 /*
708 * We don't want to wait forever, if we wrote less pages in this
709 * loop than we have outstanding, only wait for that number of
710 * pages, otherwise we can wait for all async pages to finish
711 * before continuing.
712 */
713 if (async_pages > nr_pages)
714 async_pages -= nr_pages;
715 else
716 async_pages = 0;
717 wait_event(fs_info->async_submit_wait,
718 atomic_read(&fs_info->async_delalloc_pages) <=
719 async_pages);
720 skip_async:
721 loops++;
722 if (wait_ordered && !trans) {
723 btrfs_wait_ordered_roots(fs_info, items, NULL);
724 } else {
725 time_left = schedule_timeout_killable(1);
726 if (time_left)
727 break;
728 }
729
730 /*
731 * If we are for preemption we just want a one-shot of delalloc
732 * flushing so we can stop flushing if we decide we don't need
733 * to anymore.
734 */
735 if (for_preempt)
736 break;
737
738 spin_lock(&space_info->lock);
739 if (list_empty(&space_info->tickets) &&
740 list_empty(&space_info->priority_tickets)) {
741 spin_unlock(&space_info->lock);
742 break;
743 }
744 spin_unlock(&space_info->lock);
745
746 delalloc_bytes = percpu_counter_sum_positive(
747 &fs_info->delalloc_bytes);
748 ordered_bytes = percpu_counter_sum_positive(
749 &fs_info->ordered_bytes);
750 }
751 }
752
753 /*
754 * Try to flush some data based on policy set by @state. This is only advisory
755 * and may fail for various reasons. The caller is supposed to examine the
756 * state of @space_info to detect the outcome.
757 */
flush_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes,enum btrfs_flush_state state,bool for_preempt)758 static void flush_space(struct btrfs_fs_info *fs_info,
759 struct btrfs_space_info *space_info, u64 num_bytes,
760 enum btrfs_flush_state state, bool for_preempt)
761 {
762 struct btrfs_root *root = fs_info->tree_root;
763 struct btrfs_trans_handle *trans;
764 int nr;
765 int ret = 0;
766
767 switch (state) {
768 case FLUSH_DELAYED_ITEMS_NR:
769 case FLUSH_DELAYED_ITEMS:
770 if (state == FLUSH_DELAYED_ITEMS_NR)
771 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
772 else
773 nr = -1;
774
775 trans = btrfs_join_transaction_nostart(root);
776 if (IS_ERR(trans)) {
777 ret = PTR_ERR(trans);
778 if (ret == -ENOENT)
779 ret = 0;
780 break;
781 }
782 ret = btrfs_run_delayed_items_nr(trans, nr);
783 btrfs_end_transaction(trans);
784 break;
785 case FLUSH_DELALLOC:
786 case FLUSH_DELALLOC_WAIT:
787 case FLUSH_DELALLOC_FULL:
788 if (state == FLUSH_DELALLOC_FULL)
789 num_bytes = U64_MAX;
790 shrink_delalloc(fs_info, space_info, num_bytes,
791 state != FLUSH_DELALLOC, for_preempt);
792 break;
793 case FLUSH_DELAYED_REFS_NR:
794 case FLUSH_DELAYED_REFS:
795 trans = btrfs_join_transaction_nostart(root);
796 if (IS_ERR(trans)) {
797 ret = PTR_ERR(trans);
798 if (ret == -ENOENT)
799 ret = 0;
800 break;
801 }
802 if (state == FLUSH_DELAYED_REFS_NR)
803 btrfs_run_delayed_refs(trans, num_bytes);
804 else
805 btrfs_run_delayed_refs(trans, 0);
806 btrfs_end_transaction(trans);
807 break;
808 case ALLOC_CHUNK:
809 case ALLOC_CHUNK_FORCE:
810 trans = btrfs_join_transaction(root);
811 if (IS_ERR(trans)) {
812 ret = PTR_ERR(trans);
813 break;
814 }
815 ret = btrfs_chunk_alloc(trans,
816 btrfs_get_alloc_profile(fs_info, space_info->flags),
817 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
818 CHUNK_ALLOC_FORCE);
819 btrfs_end_transaction(trans);
820
821 if (ret > 0 || ret == -ENOSPC)
822 ret = 0;
823 break;
824 case RUN_DELAYED_IPUTS:
825 /*
826 * If we have pending delayed iputs then we could free up a
827 * bunch of pinned space, so make sure we run the iputs before
828 * we do our pinned bytes check below.
829 */
830 btrfs_run_delayed_iputs(fs_info);
831 btrfs_wait_on_delayed_iputs(fs_info);
832 break;
833 case COMMIT_TRANS:
834 ASSERT(current->journal_info == NULL);
835 /*
836 * We don't want to start a new transaction, just attach to the
837 * current one or wait it fully commits in case its commit is
838 * happening at the moment. Note: we don't use a nostart join
839 * because that does not wait for a transaction to fully commit
840 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
841 */
842 ret = btrfs_commit_current_transaction(root);
843 break;
844 case RESET_ZONES:
845 ret = btrfs_reset_unused_block_groups(space_info, num_bytes);
846 break;
847 default:
848 ret = -ENOSPC;
849 break;
850 }
851
852 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
853 ret, for_preempt);
854 return;
855 }
856
btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info * fs_info,const struct btrfs_space_info * space_info)857 static u64 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
858 const struct btrfs_space_info *space_info)
859 {
860 u64 used;
861 u64 avail;
862 u64 to_reclaim = space_info->reclaim_size;
863
864 lockdep_assert_held(&space_info->lock);
865
866 avail = calc_available_free_space(fs_info, space_info,
867 BTRFS_RESERVE_FLUSH_ALL);
868 used = btrfs_space_info_used(space_info, true);
869
870 /*
871 * We may be flushing because suddenly we have less space than we had
872 * before, and now we're well over-committed based on our current free
873 * space. If that's the case add in our overage so we make sure to put
874 * appropriate pressure on the flushing state machine.
875 */
876 if (space_info->total_bytes + avail < used)
877 to_reclaim += used - (space_info->total_bytes + avail);
878
879 return to_reclaim;
880 }
881
need_preemptive_reclaim(struct btrfs_fs_info * fs_info,const struct btrfs_space_info * space_info)882 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
883 const struct btrfs_space_info *space_info)
884 {
885 const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv);
886 u64 ordered, delalloc;
887 u64 thresh;
888 u64 used;
889
890 thresh = mult_perc(space_info->total_bytes, 90);
891
892 lockdep_assert_held(&space_info->lock);
893
894 /* If we're just plain full then async reclaim just slows us down. */
895 if ((space_info->bytes_used + space_info->bytes_reserved +
896 global_rsv_size) >= thresh)
897 return false;
898
899 used = space_info->bytes_may_use + space_info->bytes_pinned;
900
901 /* The total flushable belongs to the global rsv, don't flush. */
902 if (global_rsv_size >= used)
903 return false;
904
905 /*
906 * 128MiB is 1/4 of the maximum global rsv size. If we have less than
907 * that devoted to other reservations then there's no sense in flushing,
908 * we don't have a lot of things that need flushing.
909 */
910 if (used - global_rsv_size <= SZ_128M)
911 return false;
912
913 /*
914 * We have tickets queued, bail so we don't compete with the async
915 * flushers.
916 */
917 if (space_info->reclaim_size)
918 return false;
919
920 /*
921 * If we have over half of the free space occupied by reservations or
922 * pinned then we want to start flushing.
923 *
924 * We do not do the traditional thing here, which is to say
925 *
926 * if (used >= ((total_bytes + avail) / 2))
927 * return 1;
928 *
929 * because this doesn't quite work how we want. If we had more than 50%
930 * of the space_info used by bytes_used and we had 0 available we'd just
931 * constantly run the background flusher. Instead we want it to kick in
932 * if our reclaimable space exceeds our clamped free space.
933 *
934 * Our clamping range is 2^1 -> 2^8. Practically speaking that means
935 * the following:
936 *
937 * Amount of RAM Minimum threshold Maximum threshold
938 *
939 * 256GiB 1GiB 128GiB
940 * 128GiB 512MiB 64GiB
941 * 64GiB 256MiB 32GiB
942 * 32GiB 128MiB 16GiB
943 * 16GiB 64MiB 8GiB
944 *
945 * These are the range our thresholds will fall in, corresponding to how
946 * much delalloc we need for the background flusher to kick in.
947 */
948
949 thresh = calc_available_free_space(fs_info, space_info,
950 BTRFS_RESERVE_FLUSH_ALL);
951 used = space_info->bytes_used + space_info->bytes_reserved +
952 space_info->bytes_readonly + global_rsv_size;
953 if (used < space_info->total_bytes)
954 thresh += space_info->total_bytes - used;
955 thresh >>= space_info->clamp;
956
957 used = space_info->bytes_pinned;
958
959 /*
960 * If we have more ordered bytes than delalloc bytes then we're either
961 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
962 * around. Preemptive flushing is only useful in that it can free up
963 * space before tickets need to wait for things to finish. In the case
964 * of ordered extents, preemptively waiting on ordered extents gets us
965 * nothing, if our reservations are tied up in ordered extents we'll
966 * simply have to slow down writers by forcing them to wait on ordered
967 * extents.
968 *
969 * In the case that ordered is larger than delalloc, only include the
970 * block reserves that we would actually be able to directly reclaim
971 * from. In this case if we're heavy on metadata operations this will
972 * clearly be heavy enough to warrant preemptive flushing. In the case
973 * of heavy DIO or ordered reservations, preemptive flushing will just
974 * waste time and cause us to slow down.
975 *
976 * We want to make sure we truly are maxed out on ordered however, so
977 * cut ordered in half, and if it's still higher than delalloc then we
978 * can keep flushing. This is to avoid the case where we start
979 * flushing, and now delalloc == ordered and we stop preemptively
980 * flushing when we could still have several gigs of delalloc to flush.
981 */
982 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
983 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
984 if (ordered >= delalloc)
985 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) +
986 btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv);
987 else
988 used += space_info->bytes_may_use - global_rsv_size;
989
990 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
991 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
992 }
993
steal_from_global_rsv(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)994 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
995 struct btrfs_space_info *space_info,
996 struct reserve_ticket *ticket)
997 {
998 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
999 u64 min_bytes;
1000
1001 if (!ticket->steal)
1002 return false;
1003
1004 if (global_rsv->space_info != space_info)
1005 return false;
1006
1007 spin_lock(&global_rsv->lock);
1008 min_bytes = mult_perc(global_rsv->size, 10);
1009 if (global_rsv->reserved < min_bytes + ticket->bytes) {
1010 spin_unlock(&global_rsv->lock);
1011 return false;
1012 }
1013 global_rsv->reserved -= ticket->bytes;
1014 remove_ticket(space_info, ticket);
1015 ticket->bytes = 0;
1016 wake_up(&ticket->wait);
1017 space_info->tickets_id++;
1018 if (global_rsv->reserved < global_rsv->size)
1019 global_rsv->full = 0;
1020 spin_unlock(&global_rsv->lock);
1021
1022 return true;
1023 }
1024
1025 /*
1026 * We've exhausted our flushing, start failing tickets.
1027 *
1028 * @fs_info - fs_info for this fs
1029 * @space_info - the space info we were flushing
1030 *
1031 * We call this when we've exhausted our flushing ability and haven't made
1032 * progress in satisfying tickets. The reservation code handles tickets in
1033 * order, so if there is a large ticket first and then smaller ones we could
1034 * very well satisfy the smaller tickets. This will attempt to wake up any
1035 * tickets in the list to catch this case.
1036 *
1037 * This function returns true if it was able to make progress by clearing out
1038 * other tickets, or if it stumbles across a ticket that was smaller than the
1039 * first ticket.
1040 */
maybe_fail_all_tickets(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)1041 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1042 struct btrfs_space_info *space_info)
1043 {
1044 struct reserve_ticket *ticket;
1045 u64 tickets_id = space_info->tickets_id;
1046 const bool aborted = BTRFS_FS_ERROR(fs_info);
1047
1048 trace_btrfs_fail_all_tickets(fs_info, space_info);
1049
1050 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1051 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1052 __btrfs_dump_space_info(fs_info, space_info);
1053 }
1054
1055 while (!list_empty(&space_info->tickets) &&
1056 tickets_id == space_info->tickets_id) {
1057 ticket = list_first_entry(&space_info->tickets,
1058 struct reserve_ticket, list);
1059
1060 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1061 return true;
1062
1063 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1064 btrfs_info(fs_info, "failing ticket with %llu bytes",
1065 ticket->bytes);
1066
1067 remove_ticket(space_info, ticket);
1068 if (aborted)
1069 ticket->error = -EIO;
1070 else
1071 ticket->error = -ENOSPC;
1072 wake_up(&ticket->wait);
1073
1074 /*
1075 * We're just throwing tickets away, so more flushing may not
1076 * trip over btrfs_try_granting_tickets, so we need to call it
1077 * here to see if we can make progress with the next ticket in
1078 * the list.
1079 */
1080 if (!aborted)
1081 btrfs_try_granting_tickets(fs_info, space_info);
1082 }
1083 return (tickets_id != space_info->tickets_id);
1084 }
1085
1086 /*
1087 * This is for normal flushers, we can wait all goddamned day if we want to. We
1088 * will loop and continuously try to flush as long as we are making progress.
1089 * We count progress as clearing off tickets each time we have to loop.
1090 */
btrfs_async_reclaim_metadata_space(struct work_struct * work)1091 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1092 {
1093 struct btrfs_fs_info *fs_info;
1094 struct btrfs_space_info *space_info;
1095 u64 to_reclaim;
1096 enum btrfs_flush_state flush_state;
1097 int commit_cycles = 0;
1098 u64 last_tickets_id;
1099 enum btrfs_flush_state final_state;
1100
1101 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1102 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1103 if (btrfs_is_zoned(fs_info))
1104 final_state = RESET_ZONES;
1105 else
1106 final_state = COMMIT_TRANS;
1107
1108 spin_lock(&space_info->lock);
1109 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1110 if (!to_reclaim) {
1111 space_info->flush = 0;
1112 spin_unlock(&space_info->lock);
1113 return;
1114 }
1115 last_tickets_id = space_info->tickets_id;
1116 spin_unlock(&space_info->lock);
1117
1118 flush_state = FLUSH_DELAYED_ITEMS_NR;
1119 do {
1120 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1121 spin_lock(&space_info->lock);
1122 if (list_empty(&space_info->tickets)) {
1123 space_info->flush = 0;
1124 spin_unlock(&space_info->lock);
1125 return;
1126 }
1127 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1128 space_info);
1129 if (last_tickets_id == space_info->tickets_id) {
1130 flush_state++;
1131 } else {
1132 last_tickets_id = space_info->tickets_id;
1133 flush_state = FLUSH_DELAYED_ITEMS_NR;
1134 if (commit_cycles)
1135 commit_cycles--;
1136 }
1137
1138 /*
1139 * We do not want to empty the system of delalloc unless we're
1140 * under heavy pressure, so allow one trip through the flushing
1141 * logic before we start doing a FLUSH_DELALLOC_FULL.
1142 */
1143 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1144 flush_state++;
1145
1146 /*
1147 * We don't want to force a chunk allocation until we've tried
1148 * pretty hard to reclaim space. Think of the case where we
1149 * freed up a bunch of space and so have a lot of pinned space
1150 * to reclaim. We would rather use that than possibly create a
1151 * underutilized metadata chunk. So if this is our first run
1152 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1153 * commit the transaction. If nothing has changed the next go
1154 * around then we can force a chunk allocation.
1155 */
1156 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1157 flush_state++;
1158
1159 if (flush_state > final_state) {
1160 commit_cycles++;
1161 if (commit_cycles > 2) {
1162 if (maybe_fail_all_tickets(fs_info, space_info)) {
1163 flush_state = FLUSH_DELAYED_ITEMS_NR;
1164 commit_cycles--;
1165 } else {
1166 space_info->flush = 0;
1167 }
1168 } else {
1169 flush_state = FLUSH_DELAYED_ITEMS_NR;
1170 }
1171 }
1172 spin_unlock(&space_info->lock);
1173 } while (flush_state <= final_state);
1174 }
1175
1176 /*
1177 * This handles pre-flushing of metadata space before we get to the point that
1178 * we need to start blocking threads on tickets. The logic here is different
1179 * from the other flush paths because it doesn't rely on tickets to tell us how
1180 * much we need to flush, instead it attempts to keep us below the 80% full
1181 * watermark of space by flushing whichever reservation pool is currently the
1182 * largest.
1183 */
btrfs_preempt_reclaim_metadata_space(struct work_struct * work)1184 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1185 {
1186 struct btrfs_fs_info *fs_info;
1187 struct btrfs_space_info *space_info;
1188 struct btrfs_block_rsv *delayed_block_rsv;
1189 struct btrfs_block_rsv *delayed_refs_rsv;
1190 struct btrfs_block_rsv *global_rsv;
1191 struct btrfs_block_rsv *trans_rsv;
1192 int loops = 0;
1193
1194 fs_info = container_of(work, struct btrfs_fs_info,
1195 preempt_reclaim_work);
1196 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1197 delayed_block_rsv = &fs_info->delayed_block_rsv;
1198 delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1199 global_rsv = &fs_info->global_block_rsv;
1200 trans_rsv = &fs_info->trans_block_rsv;
1201
1202 spin_lock(&space_info->lock);
1203 while (need_preemptive_reclaim(fs_info, space_info)) {
1204 enum btrfs_flush_state flush;
1205 u64 delalloc_size = 0;
1206 u64 to_reclaim, block_rsv_size;
1207 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv);
1208
1209 loops++;
1210
1211 /*
1212 * We don't have a precise counter for the metadata being
1213 * reserved for delalloc, so we'll approximate it by subtracting
1214 * out the block rsv's space from the bytes_may_use. If that
1215 * amount is higher than the individual reserves, then we can
1216 * assume it's tied up in delalloc reservations.
1217 */
1218 block_rsv_size = global_rsv_size +
1219 btrfs_block_rsv_reserved(delayed_block_rsv) +
1220 btrfs_block_rsv_reserved(delayed_refs_rsv) +
1221 btrfs_block_rsv_reserved(trans_rsv);
1222 if (block_rsv_size < space_info->bytes_may_use)
1223 delalloc_size = space_info->bytes_may_use - block_rsv_size;
1224
1225 /*
1226 * We don't want to include the global_rsv in our calculation,
1227 * because that's space we can't touch. Subtract it from the
1228 * block_rsv_size for the next checks.
1229 */
1230 block_rsv_size -= global_rsv_size;
1231
1232 /*
1233 * We really want to avoid flushing delalloc too much, as it
1234 * could result in poor allocation patterns, so only flush it if
1235 * it's larger than the rest of the pools combined.
1236 */
1237 if (delalloc_size > block_rsv_size) {
1238 to_reclaim = delalloc_size;
1239 flush = FLUSH_DELALLOC;
1240 } else if (space_info->bytes_pinned >
1241 (btrfs_block_rsv_reserved(delayed_block_rsv) +
1242 btrfs_block_rsv_reserved(delayed_refs_rsv))) {
1243 to_reclaim = space_info->bytes_pinned;
1244 flush = COMMIT_TRANS;
1245 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) >
1246 btrfs_block_rsv_reserved(delayed_refs_rsv)) {
1247 to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv);
1248 flush = FLUSH_DELAYED_ITEMS_NR;
1249 } else {
1250 to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv);
1251 flush = FLUSH_DELAYED_REFS_NR;
1252 }
1253
1254 spin_unlock(&space_info->lock);
1255
1256 /*
1257 * We don't want to reclaim everything, just a portion, so scale
1258 * down the to_reclaim by 1/4. If it takes us down to 0,
1259 * reclaim 1 items worth.
1260 */
1261 to_reclaim >>= 2;
1262 if (!to_reclaim)
1263 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1264 flush_space(fs_info, space_info, to_reclaim, flush, true);
1265 cond_resched();
1266 spin_lock(&space_info->lock);
1267 }
1268
1269 /* We only went through once, back off our clamping. */
1270 if (loops == 1 && !space_info->reclaim_size)
1271 space_info->clamp = max(1, space_info->clamp - 1);
1272 trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1273 spin_unlock(&space_info->lock);
1274 }
1275
1276 /*
1277 * FLUSH_DELALLOC_WAIT:
1278 * Space is freed from flushing delalloc in one of two ways.
1279 *
1280 * 1) compression is on and we allocate less space than we reserved
1281 * 2) we are overwriting existing space
1282 *
1283 * For #1 that extra space is reclaimed as soon as the delalloc pages are
1284 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1285 * length to ->bytes_reserved, and subtracts the reserved space from
1286 * ->bytes_may_use.
1287 *
1288 * For #2 this is trickier. Once the ordered extent runs we will drop the
1289 * extent in the range we are overwriting, which creates a delayed ref for
1290 * that freed extent. This however is not reclaimed until the transaction
1291 * commits, thus the next stages.
1292 *
1293 * RUN_DELAYED_IPUTS
1294 * If we are freeing inodes, we want to make sure all delayed iputs have
1295 * completed, because they could have been on an inode with i_nlink == 0, and
1296 * thus have been truncated and freed up space. But again this space is not
1297 * immediately reusable, it comes in the form of a delayed ref, which must be
1298 * run and then the transaction must be committed.
1299 *
1300 * COMMIT_TRANS
1301 * This is where we reclaim all of the pinned space generated by running the
1302 * iputs
1303 *
1304 * RESET_ZONES
1305 * This state works only for the zoned mode. We scan the unused block group
1306 * list and reset the zones and reuse the block group.
1307 *
1308 * ALLOC_CHUNK_FORCE
1309 * For data we start with alloc chunk force, however we could have been full
1310 * before, and then the transaction commit could have freed new block groups,
1311 * so if we now have space to allocate do the force chunk allocation.
1312 */
1313 static const enum btrfs_flush_state data_flush_states[] = {
1314 FLUSH_DELALLOC_FULL,
1315 RUN_DELAYED_IPUTS,
1316 COMMIT_TRANS,
1317 RESET_ZONES,
1318 ALLOC_CHUNK_FORCE,
1319 };
1320
btrfs_async_reclaim_data_space(struct work_struct * work)1321 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1322 {
1323 struct btrfs_fs_info *fs_info;
1324 struct btrfs_space_info *space_info;
1325 u64 last_tickets_id;
1326 enum btrfs_flush_state flush_state = 0;
1327
1328 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1329 space_info = fs_info->data_sinfo;
1330
1331 spin_lock(&space_info->lock);
1332 if (list_empty(&space_info->tickets)) {
1333 space_info->flush = 0;
1334 spin_unlock(&space_info->lock);
1335 return;
1336 }
1337 last_tickets_id = space_info->tickets_id;
1338 spin_unlock(&space_info->lock);
1339
1340 while (!space_info->full) {
1341 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1342 spin_lock(&space_info->lock);
1343 if (list_empty(&space_info->tickets)) {
1344 space_info->flush = 0;
1345 spin_unlock(&space_info->lock);
1346 return;
1347 }
1348
1349 /* Something happened, fail everything and bail. */
1350 if (BTRFS_FS_ERROR(fs_info))
1351 goto aborted_fs;
1352 last_tickets_id = space_info->tickets_id;
1353 spin_unlock(&space_info->lock);
1354 }
1355
1356 while (flush_state < ARRAY_SIZE(data_flush_states)) {
1357 flush_space(fs_info, space_info, U64_MAX,
1358 data_flush_states[flush_state], false);
1359 spin_lock(&space_info->lock);
1360 if (list_empty(&space_info->tickets)) {
1361 space_info->flush = 0;
1362 spin_unlock(&space_info->lock);
1363 return;
1364 }
1365
1366 if (last_tickets_id == space_info->tickets_id) {
1367 flush_state++;
1368 } else {
1369 last_tickets_id = space_info->tickets_id;
1370 flush_state = 0;
1371 }
1372
1373 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1374 if (space_info->full) {
1375 if (maybe_fail_all_tickets(fs_info, space_info))
1376 flush_state = 0;
1377 else
1378 space_info->flush = 0;
1379 } else {
1380 flush_state = 0;
1381 }
1382
1383 /* Something happened, fail everything and bail. */
1384 if (BTRFS_FS_ERROR(fs_info))
1385 goto aborted_fs;
1386
1387 }
1388 spin_unlock(&space_info->lock);
1389 }
1390 return;
1391
1392 aborted_fs:
1393 maybe_fail_all_tickets(fs_info, space_info);
1394 space_info->flush = 0;
1395 spin_unlock(&space_info->lock);
1396 }
1397
btrfs_init_async_reclaim_work(struct btrfs_fs_info * fs_info)1398 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1399 {
1400 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1401 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1402 INIT_WORK(&fs_info->preempt_reclaim_work,
1403 btrfs_preempt_reclaim_metadata_space);
1404 }
1405
1406 static const enum btrfs_flush_state priority_flush_states[] = {
1407 FLUSH_DELAYED_ITEMS_NR,
1408 FLUSH_DELAYED_ITEMS,
1409 RESET_ZONES,
1410 ALLOC_CHUNK,
1411 };
1412
1413 static const enum btrfs_flush_state evict_flush_states[] = {
1414 FLUSH_DELAYED_ITEMS_NR,
1415 FLUSH_DELAYED_ITEMS,
1416 FLUSH_DELAYED_REFS_NR,
1417 FLUSH_DELAYED_REFS,
1418 FLUSH_DELALLOC,
1419 FLUSH_DELALLOC_WAIT,
1420 FLUSH_DELALLOC_FULL,
1421 ALLOC_CHUNK,
1422 COMMIT_TRANS,
1423 RESET_ZONES,
1424 };
1425
priority_reclaim_metadata_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,const enum btrfs_flush_state * states,int states_nr)1426 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1427 struct btrfs_space_info *space_info,
1428 struct reserve_ticket *ticket,
1429 const enum btrfs_flush_state *states,
1430 int states_nr)
1431 {
1432 u64 to_reclaim;
1433 int flush_state = 0;
1434
1435 spin_lock(&space_info->lock);
1436 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1437 /*
1438 * This is the priority reclaim path, so to_reclaim could be >0 still
1439 * because we may have only satisfied the priority tickets and still
1440 * left non priority tickets on the list. We would then have
1441 * to_reclaim but ->bytes == 0.
1442 */
1443 if (ticket->bytes == 0) {
1444 spin_unlock(&space_info->lock);
1445 return;
1446 }
1447
1448 while (flush_state < states_nr) {
1449 spin_unlock(&space_info->lock);
1450 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1451 false);
1452 flush_state++;
1453 spin_lock(&space_info->lock);
1454 if (ticket->bytes == 0) {
1455 spin_unlock(&space_info->lock);
1456 return;
1457 }
1458 }
1459
1460 /*
1461 * Attempt to steal from the global rsv if we can, except if the fs was
1462 * turned into error mode due to a transaction abort when flushing space
1463 * above, in that case fail with the abort error instead of returning
1464 * success to the caller if we can steal from the global rsv - this is
1465 * just to have caller fail immeditelly instead of later when trying to
1466 * modify the fs, making it easier to debug -ENOSPC problems.
1467 */
1468 if (BTRFS_FS_ERROR(fs_info)) {
1469 ticket->error = BTRFS_FS_ERROR(fs_info);
1470 remove_ticket(space_info, ticket);
1471 } else if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1472 ticket->error = -ENOSPC;
1473 remove_ticket(space_info, ticket);
1474 }
1475
1476 /*
1477 * We must run try_granting_tickets here because we could be a large
1478 * ticket in front of a smaller ticket that can now be satisfied with
1479 * the available space.
1480 */
1481 btrfs_try_granting_tickets(fs_info, space_info);
1482 spin_unlock(&space_info->lock);
1483 }
1484
priority_reclaim_data_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1485 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1486 struct btrfs_space_info *space_info,
1487 struct reserve_ticket *ticket)
1488 {
1489 spin_lock(&space_info->lock);
1490
1491 /* We could have been granted before we got here. */
1492 if (ticket->bytes == 0) {
1493 spin_unlock(&space_info->lock);
1494 return;
1495 }
1496
1497 while (!space_info->full) {
1498 spin_unlock(&space_info->lock);
1499 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1500 spin_lock(&space_info->lock);
1501 if (ticket->bytes == 0) {
1502 spin_unlock(&space_info->lock);
1503 return;
1504 }
1505 }
1506
1507 ticket->error = -ENOSPC;
1508 remove_ticket(space_info, ticket);
1509 btrfs_try_granting_tickets(fs_info, space_info);
1510 spin_unlock(&space_info->lock);
1511 }
1512
wait_reserve_ticket(struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1513 static void wait_reserve_ticket(struct btrfs_space_info *space_info,
1514 struct reserve_ticket *ticket)
1515
1516 {
1517 DEFINE_WAIT(wait);
1518 int ret = 0;
1519
1520 spin_lock(&space_info->lock);
1521 while (ticket->bytes > 0 && ticket->error == 0) {
1522 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1523 if (ret) {
1524 /*
1525 * Delete us from the list. After we unlock the space
1526 * info, we don't want the async reclaim job to reserve
1527 * space for this ticket. If that would happen, then the
1528 * ticket's task would not known that space was reserved
1529 * despite getting an error, resulting in a space leak
1530 * (bytes_may_use counter of our space_info).
1531 */
1532 remove_ticket(space_info, ticket);
1533 ticket->error = -EINTR;
1534 break;
1535 }
1536 spin_unlock(&space_info->lock);
1537
1538 schedule();
1539
1540 finish_wait(&ticket->wait, &wait);
1541 spin_lock(&space_info->lock);
1542 }
1543 spin_unlock(&space_info->lock);
1544 }
1545
1546 /*
1547 * Do the appropriate flushing and waiting for a ticket.
1548 *
1549 * @fs_info: the filesystem
1550 * @space_info: space info for the reservation
1551 * @ticket: ticket for the reservation
1552 * @start_ns: timestamp when the reservation started
1553 * @orig_bytes: amount of bytes originally reserved
1554 * @flush: how much we can flush
1555 *
1556 * This does the work of figuring out how to flush for the ticket, waiting for
1557 * the reservation, and returning the appropriate error if there is one.
1558 */
handle_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,u64 start_ns,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1559 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1560 struct btrfs_space_info *space_info,
1561 struct reserve_ticket *ticket,
1562 u64 start_ns, u64 orig_bytes,
1563 enum btrfs_reserve_flush_enum flush)
1564 {
1565 int ret;
1566
1567 switch (flush) {
1568 case BTRFS_RESERVE_FLUSH_DATA:
1569 case BTRFS_RESERVE_FLUSH_ALL:
1570 case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1571 wait_reserve_ticket(space_info, ticket);
1572 break;
1573 case BTRFS_RESERVE_FLUSH_LIMIT:
1574 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1575 priority_flush_states,
1576 ARRAY_SIZE(priority_flush_states));
1577 break;
1578 case BTRFS_RESERVE_FLUSH_EVICT:
1579 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1580 evict_flush_states,
1581 ARRAY_SIZE(evict_flush_states));
1582 break;
1583 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1584 priority_reclaim_data_space(fs_info, space_info, ticket);
1585 break;
1586 default:
1587 ASSERT(0);
1588 break;
1589 }
1590
1591 ret = ticket->error;
1592 ASSERT(list_empty(&ticket->list));
1593 /*
1594 * Check that we can't have an error set if the reservation succeeded,
1595 * as that would confuse tasks and lead them to error out without
1596 * releasing reserved space (if an error happens the expectation is that
1597 * space wasn't reserved at all).
1598 */
1599 ASSERT(!(ticket->bytes == 0 && ticket->error));
1600 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1601 start_ns, flush, ticket->error);
1602 return ret;
1603 }
1604
1605 /*
1606 * This returns true if this flush state will go through the ordinary flushing
1607 * code.
1608 */
is_normal_flushing(enum btrfs_reserve_flush_enum flush)1609 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1610 {
1611 return (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1612 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1613 }
1614
maybe_clamp_preempt(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)1615 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1616 struct btrfs_space_info *space_info)
1617 {
1618 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1619 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1620
1621 /*
1622 * If we're heavy on ordered operations then clamping won't help us. We
1623 * need to clamp specifically to keep up with dirty'ing buffered
1624 * writers, because there's not a 1:1 correlation of writing delalloc
1625 * and freeing space, like there is with flushing delayed refs or
1626 * delayed nodes. If we're already more ordered than delalloc then
1627 * we're keeping up, otherwise we aren't and should probably clamp.
1628 */
1629 if (ordered < delalloc)
1630 space_info->clamp = min(space_info->clamp + 1, 8);
1631 }
1632
can_steal(enum btrfs_reserve_flush_enum flush)1633 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1634 {
1635 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1636 flush == BTRFS_RESERVE_FLUSH_EVICT);
1637 }
1638
1639 /*
1640 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1641 * fail as quickly as possible.
1642 */
can_ticket(enum btrfs_reserve_flush_enum flush)1643 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1644 {
1645 return (flush != BTRFS_RESERVE_NO_FLUSH &&
1646 flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1647 }
1648
1649 /*
1650 * Try to reserve bytes from the block_rsv's space.
1651 *
1652 * @fs_info: the filesystem
1653 * @space_info: space info we want to allocate from
1654 * @orig_bytes: number of bytes we want
1655 * @flush: whether or not we can flush to make our reservation
1656 *
1657 * This will reserve orig_bytes number of bytes from the space info associated
1658 * with the block_rsv. If there is not enough space it will make an attempt to
1659 * flush out space to make room. It will do this by flushing delalloc if
1660 * possible or committing the transaction. If flush is 0 then no attempts to
1661 * regain reservations will be made and this will fail if there is not enough
1662 * space already.
1663 */
__reserve_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1664 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1665 struct btrfs_space_info *space_info, u64 orig_bytes,
1666 enum btrfs_reserve_flush_enum flush)
1667 {
1668 struct work_struct *async_work;
1669 struct reserve_ticket ticket;
1670 u64 start_ns = 0;
1671 u64 used;
1672 int ret = -ENOSPC;
1673 bool pending_tickets;
1674
1675 ASSERT(orig_bytes);
1676 /*
1677 * If have a transaction handle (current->journal_info != NULL), then
1678 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1679 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1680 * flushing methods can trigger transaction commits.
1681 */
1682 if (current->journal_info) {
1683 /* One assert per line for easier debugging. */
1684 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1685 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1686 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1687 }
1688
1689 if (flush == BTRFS_RESERVE_FLUSH_DATA)
1690 async_work = &fs_info->async_data_reclaim_work;
1691 else
1692 async_work = &fs_info->async_reclaim_work;
1693
1694 spin_lock(&space_info->lock);
1695 used = btrfs_space_info_used(space_info, true);
1696
1697 /*
1698 * We don't want NO_FLUSH allocations to jump everybody, they can
1699 * generally handle ENOSPC in a different way, so treat them the same as
1700 * normal flushers when it comes to skipping pending tickets.
1701 */
1702 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1703 pending_tickets = !list_empty(&space_info->tickets) ||
1704 !list_empty(&space_info->priority_tickets);
1705 else
1706 pending_tickets = !list_empty(&space_info->priority_tickets);
1707
1708 /*
1709 * Carry on if we have enough space (short-circuit) OR call
1710 * can_overcommit() to ensure we can overcommit to continue.
1711 */
1712 if (!pending_tickets &&
1713 ((used + orig_bytes <= space_info->total_bytes) ||
1714 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1715 btrfs_space_info_update_bytes_may_use(space_info, orig_bytes);
1716 ret = 0;
1717 }
1718
1719 /*
1720 * Things are dire, we need to make a reservation so we don't abort. We
1721 * will let this reservation go through as long as we have actual space
1722 * left to allocate for the block.
1723 */
1724 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1725 used = btrfs_space_info_used(space_info, false);
1726 if (used + orig_bytes <= space_info->total_bytes) {
1727 btrfs_space_info_update_bytes_may_use(space_info, orig_bytes);
1728 ret = 0;
1729 }
1730 }
1731
1732 /*
1733 * If we couldn't make a reservation then setup our reservation ticket
1734 * and kick the async worker if it's not already running.
1735 *
1736 * If we are a priority flusher then we just need to add our ticket to
1737 * the list and we will do our own flushing further down.
1738 */
1739 if (ret && can_ticket(flush)) {
1740 ticket.bytes = orig_bytes;
1741 ticket.error = 0;
1742 space_info->reclaim_size += ticket.bytes;
1743 init_waitqueue_head(&ticket.wait);
1744 ticket.steal = can_steal(flush);
1745 if (trace_btrfs_reserve_ticket_enabled())
1746 start_ns = ktime_get_ns();
1747
1748 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1749 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1750 flush == BTRFS_RESERVE_FLUSH_DATA) {
1751 list_add_tail(&ticket.list, &space_info->tickets);
1752 if (!space_info->flush) {
1753 /*
1754 * We were forced to add a reserve ticket, so
1755 * our preemptive flushing is unable to keep
1756 * up. Clamp down on the threshold for the
1757 * preemptive flushing in order to keep up with
1758 * the workload.
1759 */
1760 maybe_clamp_preempt(fs_info, space_info);
1761
1762 space_info->flush = 1;
1763 trace_btrfs_trigger_flush(fs_info,
1764 space_info->flags,
1765 orig_bytes, flush,
1766 "enospc");
1767 queue_work(system_unbound_wq, async_work);
1768 }
1769 } else {
1770 list_add_tail(&ticket.list,
1771 &space_info->priority_tickets);
1772 }
1773 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1774 /*
1775 * We will do the space reservation dance during log replay,
1776 * which means we won't have fs_info->fs_root set, so don't do
1777 * the async reclaim as we will panic.
1778 */
1779 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1780 !work_busy(&fs_info->preempt_reclaim_work) &&
1781 need_preemptive_reclaim(fs_info, space_info)) {
1782 trace_btrfs_trigger_flush(fs_info, space_info->flags,
1783 orig_bytes, flush, "preempt");
1784 queue_work(system_unbound_wq,
1785 &fs_info->preempt_reclaim_work);
1786 }
1787 }
1788 spin_unlock(&space_info->lock);
1789 if (!ret || !can_ticket(flush))
1790 return ret;
1791
1792 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1793 orig_bytes, flush);
1794 }
1795
1796 /*
1797 * Try to reserve metadata bytes from the block_rsv's space.
1798 *
1799 * @fs_info: the filesystem
1800 * @space_info: the space_info we're allocating for
1801 * @orig_bytes: number of bytes we want
1802 * @flush: whether or not we can flush to make our reservation
1803 *
1804 * This will reserve orig_bytes number of bytes from the space info associated
1805 * with the block_rsv. If there is not enough space it will make an attempt to
1806 * flush out space to make room. It will do this by flushing delalloc if
1807 * possible or committing the transaction. If flush is 0 then no attempts to
1808 * regain reservations will be made and this will fail if there is not enough
1809 * space already.
1810 */
btrfs_reserve_metadata_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1811 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1812 struct btrfs_space_info *space_info,
1813 u64 orig_bytes,
1814 enum btrfs_reserve_flush_enum flush)
1815 {
1816 int ret;
1817
1818 ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush);
1819 if (ret == -ENOSPC) {
1820 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1821 space_info->flags, orig_bytes, 1);
1822
1823 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1824 btrfs_dump_space_info(fs_info, space_info, orig_bytes, 0);
1825 }
1826 return ret;
1827 }
1828
1829 /*
1830 * Try to reserve data bytes for an allocation.
1831 *
1832 * @fs_info: the filesystem
1833 * @bytes: number of bytes we need
1834 * @flush: how we are allowed to flush
1835 *
1836 * This will reserve bytes from the data space info. If there is not enough
1837 * space then we will attempt to flush space as specified by flush.
1838 */
btrfs_reserve_data_bytes(struct btrfs_fs_info * fs_info,u64 bytes,enum btrfs_reserve_flush_enum flush)1839 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1840 enum btrfs_reserve_flush_enum flush)
1841 {
1842 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1843 int ret;
1844
1845 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1846 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1847 flush == BTRFS_RESERVE_NO_FLUSH);
1848 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1849
1850 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1851 if (ret == -ENOSPC) {
1852 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1853 data_sinfo->flags, bytes, 1);
1854 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1855 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1856 }
1857 return ret;
1858 }
1859
1860 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info * fs_info)1861 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1862 {
1863 struct btrfs_space_info *space_info;
1864
1865 btrfs_info(fs_info, "dumping space info:");
1866 list_for_each_entry(space_info, &fs_info->space_info, list) {
1867 spin_lock(&space_info->lock);
1868 __btrfs_dump_space_info(fs_info, space_info);
1869 spin_unlock(&space_info->lock);
1870 }
1871 dump_global_block_rsv(fs_info);
1872 }
1873
1874 /*
1875 * Account the unused space of all the readonly block group in the space_info.
1876 * takes mirrors into account.
1877 */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)1878 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1879 {
1880 struct btrfs_block_group *block_group;
1881 u64 free_bytes = 0;
1882 int factor;
1883
1884 /* It's df, we don't care if it's racy */
1885 if (list_empty(&sinfo->ro_bgs))
1886 return 0;
1887
1888 spin_lock(&sinfo->lock);
1889 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1890 spin_lock(&block_group->lock);
1891
1892 if (!block_group->ro) {
1893 spin_unlock(&block_group->lock);
1894 continue;
1895 }
1896
1897 factor = btrfs_bg_type_to_factor(block_group->flags);
1898 free_bytes += (block_group->length -
1899 block_group->used) * factor;
1900
1901 spin_unlock(&block_group->lock);
1902 }
1903 spin_unlock(&sinfo->lock);
1904
1905 return free_bytes;
1906 }
1907
calc_pct_ratio(u64 x,u64 y)1908 static u64 calc_pct_ratio(u64 x, u64 y)
1909 {
1910 int err;
1911
1912 if (!y)
1913 return 0;
1914 again:
1915 err = check_mul_overflow(100, x, &x);
1916 if (err)
1917 goto lose_precision;
1918 return div64_u64(x, y);
1919 lose_precision:
1920 x >>= 10;
1921 y >>= 10;
1922 if (!y)
1923 y = 1;
1924 goto again;
1925 }
1926
1927 /*
1928 * A reasonable buffer for unallocated space is 10 data block_groups.
1929 * If we claw this back repeatedly, we can still achieve efficient
1930 * utilization when near full, and not do too much reclaim while
1931 * always maintaining a solid buffer for workloads that quickly
1932 * allocate and pressure the unallocated space.
1933 */
calc_unalloc_target(struct btrfs_fs_info * fs_info)1934 static u64 calc_unalloc_target(struct btrfs_fs_info *fs_info)
1935 {
1936 u64 chunk_sz = calc_effective_data_chunk_size(fs_info);
1937
1938 return BTRFS_UNALLOC_BLOCK_GROUP_TARGET * chunk_sz;
1939 }
1940
1941 /*
1942 * The fundamental goal of automatic reclaim is to protect the filesystem's
1943 * unallocated space and thus minimize the probability of the filesystem going
1944 * read only when a metadata allocation failure causes a transaction abort.
1945 *
1946 * However, relocations happen into the space_info's unused space, therefore
1947 * automatic reclaim must also back off as that space runs low. There is no
1948 * value in doing trivial "relocations" of re-writing the same block group
1949 * into a fresh one.
1950 *
1951 * Furthermore, we want to avoid doing too much reclaim even if there are good
1952 * candidates. This is because the allocator is pretty good at filling up the
1953 * holes with writes. So we want to do just enough reclaim to try and stay
1954 * safe from running out of unallocated space but not be wasteful about it.
1955 *
1956 * Therefore, the dynamic reclaim threshold is calculated as follows:
1957 * - calculate a target unallocated amount of 5 block group sized chunks
1958 * - ratchet up the intensity of reclaim depending on how far we are from
1959 * that target by using a formula of unalloc / target to set the threshold.
1960 *
1961 * Typically with 10 block groups as the target, the discrete values this comes
1962 * out to are 0, 10, 20, ... , 80, 90, and 99.
1963 */
calc_dynamic_reclaim_threshold(const struct btrfs_space_info * space_info)1964 static int calc_dynamic_reclaim_threshold(const struct btrfs_space_info *space_info)
1965 {
1966 struct btrfs_fs_info *fs_info = space_info->fs_info;
1967 u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
1968 u64 target = calc_unalloc_target(fs_info);
1969 u64 alloc = space_info->total_bytes;
1970 u64 used = btrfs_space_info_used(space_info, false);
1971 u64 unused = alloc - used;
1972 u64 want = target > unalloc ? target - unalloc : 0;
1973 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
1974
1975 /* If we have no unused space, don't bother, it won't work anyway. */
1976 if (unused < data_chunk_size)
1977 return 0;
1978
1979 /* Cast to int is OK because want <= target. */
1980 return calc_pct_ratio(want, target);
1981 }
1982
btrfs_calc_reclaim_threshold(const struct btrfs_space_info * space_info)1983 int btrfs_calc_reclaim_threshold(const struct btrfs_space_info *space_info)
1984 {
1985 lockdep_assert_held(&space_info->lock);
1986
1987 if (READ_ONCE(space_info->dynamic_reclaim))
1988 return calc_dynamic_reclaim_threshold(space_info);
1989 return READ_ONCE(space_info->bg_reclaim_threshold);
1990 }
1991
1992 /*
1993 * Under "urgent" reclaim, we will reclaim even fresh block groups that have
1994 * recently seen successful allocations, as we are desperate to reclaim
1995 * whatever we can to avoid ENOSPC in a transaction leading to a readonly fs.
1996 */
is_reclaim_urgent(struct btrfs_space_info * space_info)1997 static bool is_reclaim_urgent(struct btrfs_space_info *space_info)
1998 {
1999 struct btrfs_fs_info *fs_info = space_info->fs_info;
2000 u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
2001 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
2002
2003 return unalloc < data_chunk_size;
2004 }
2005
do_reclaim_sweep(struct btrfs_space_info * space_info,int raid)2006 static void do_reclaim_sweep(struct btrfs_space_info *space_info, int raid)
2007 {
2008 struct btrfs_block_group *bg;
2009 int thresh_pct;
2010 bool try_again = true;
2011 bool urgent;
2012
2013 spin_lock(&space_info->lock);
2014 urgent = is_reclaim_urgent(space_info);
2015 thresh_pct = btrfs_calc_reclaim_threshold(space_info);
2016 spin_unlock(&space_info->lock);
2017
2018 down_read(&space_info->groups_sem);
2019 again:
2020 list_for_each_entry(bg, &space_info->block_groups[raid], list) {
2021 u64 thresh;
2022 bool reclaim = false;
2023
2024 btrfs_get_block_group(bg);
2025 spin_lock(&bg->lock);
2026 thresh = mult_perc(bg->length, thresh_pct);
2027 if (bg->used < thresh && bg->reclaim_mark) {
2028 try_again = false;
2029 reclaim = true;
2030 }
2031 bg->reclaim_mark++;
2032 spin_unlock(&bg->lock);
2033 if (reclaim)
2034 btrfs_mark_bg_to_reclaim(bg);
2035 btrfs_put_block_group(bg);
2036 }
2037
2038 /*
2039 * In situations where we are very motivated to reclaim (low unalloc)
2040 * use two passes to make the reclaim mark check best effort.
2041 *
2042 * If we have any staler groups, we don't touch the fresher ones, but if we
2043 * really need a block group, do take a fresh one.
2044 */
2045 if (try_again && urgent) {
2046 try_again = false;
2047 goto again;
2048 }
2049
2050 up_read(&space_info->groups_sem);
2051 }
2052
btrfs_space_info_update_reclaimable(struct btrfs_space_info * space_info,s64 bytes)2053 void btrfs_space_info_update_reclaimable(struct btrfs_space_info *space_info, s64 bytes)
2054 {
2055 u64 chunk_sz = calc_effective_data_chunk_size(space_info->fs_info);
2056
2057 lockdep_assert_held(&space_info->lock);
2058 space_info->reclaimable_bytes += bytes;
2059
2060 if (space_info->reclaimable_bytes >= chunk_sz)
2061 btrfs_set_periodic_reclaim_ready(space_info, true);
2062 }
2063
btrfs_set_periodic_reclaim_ready(struct btrfs_space_info * space_info,bool ready)2064 void btrfs_set_periodic_reclaim_ready(struct btrfs_space_info *space_info, bool ready)
2065 {
2066 lockdep_assert_held(&space_info->lock);
2067 if (!READ_ONCE(space_info->periodic_reclaim))
2068 return;
2069 if (ready != space_info->periodic_reclaim_ready) {
2070 space_info->periodic_reclaim_ready = ready;
2071 if (!ready)
2072 space_info->reclaimable_bytes = 0;
2073 }
2074 }
2075
btrfs_should_periodic_reclaim(struct btrfs_space_info * space_info)2076 bool btrfs_should_periodic_reclaim(struct btrfs_space_info *space_info)
2077 {
2078 bool ret;
2079
2080 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
2081 return false;
2082 if (!READ_ONCE(space_info->periodic_reclaim))
2083 return false;
2084
2085 spin_lock(&space_info->lock);
2086 ret = space_info->periodic_reclaim_ready;
2087 btrfs_set_periodic_reclaim_ready(space_info, false);
2088 spin_unlock(&space_info->lock);
2089
2090 return ret;
2091 }
2092
btrfs_reclaim_sweep(const struct btrfs_fs_info * fs_info)2093 void btrfs_reclaim_sweep(const struct btrfs_fs_info *fs_info)
2094 {
2095 int raid;
2096 struct btrfs_space_info *space_info;
2097
2098 list_for_each_entry(space_info, &fs_info->space_info, list) {
2099 if (!btrfs_should_periodic_reclaim(space_info))
2100 continue;
2101 for (raid = 0; raid < BTRFS_NR_RAID_TYPES; raid++)
2102 do_reclaim_sweep(space_info, raid);
2103 }
2104 }
2105
btrfs_return_free_space(struct btrfs_space_info * space_info,u64 len)2106 void btrfs_return_free_space(struct btrfs_space_info *space_info, u64 len)
2107 {
2108 struct btrfs_fs_info *fs_info = space_info->fs_info;
2109 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2110
2111 lockdep_assert_held(&space_info->lock);
2112
2113 /* Prioritize the global reservation to receive the freed space. */
2114 if (global_rsv->space_info != space_info)
2115 goto grant;
2116
2117 spin_lock(&global_rsv->lock);
2118 if (!global_rsv->full) {
2119 u64 to_add = min(len, global_rsv->size - global_rsv->reserved);
2120
2121 global_rsv->reserved += to_add;
2122 btrfs_space_info_update_bytes_may_use(space_info, to_add);
2123 if (global_rsv->reserved >= global_rsv->size)
2124 global_rsv->full = 1;
2125 len -= to_add;
2126 }
2127 spin_unlock(&global_rsv->lock);
2128
2129 grant:
2130 /* Add to any tickets we may have. */
2131 if (len)
2132 btrfs_try_granting_tickets(fs_info, space_info);
2133 }
2134