xref: /linux/kernel/cgroup/cpuset.c (revision a1b3421a023e920b006d9a55eac334b14d115687)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  kernel/cpuset.c
4  *
5  *  Processor and Memory placement constraints for sets of tasks.
6  *
7  *  Copyright (C) 2003 BULL SA.
8  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
9  *  Copyright (C) 2006 Google, Inc
10  *
11  *  Portions derived from Patrick Mochel's sysfs code.
12  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
13  *
14  *  2003-10-10 Written by Simon Derr.
15  *  2003-10-22 Updates by Stephen Hemminger.
16  *  2004 May-July Rework by Paul Jackson.
17  *  2006 Rework by Paul Menage to use generic cgroups
18  *  2008 Rework of the scheduler domains and CPU hotplug handling
19  *       by Max Krasnyansky
20  */
21 #include "cpuset-internal.h"
22 
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/kernel.h>
26 #include <linux/mempolicy.h>
27 #include <linux/mm.h>
28 #include <linux/memory.h>
29 #include <linux/export.h>
30 #include <linux/rcupdate.h>
31 #include <linux/sched.h>
32 #include <linux/sched/deadline.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/task.h>
35 #include <linux/security.h>
36 #include <linux/oom.h>
37 #include <linux/sched/isolation.h>
38 #include <linux/wait.h>
39 #include <linux/workqueue.h>
40 #include <linux/task_work.h>
41 
42 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
43 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
44 
45 /*
46  * There could be abnormal cpuset configurations for cpu or memory
47  * node binding, add this key to provide a quick low-cost judgment
48  * of the situation.
49  */
50 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
51 
52 static const char * const perr_strings[] = {
53 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus.exclusive",
54 	[PERR_INVPARENT] = "Parent is an invalid partition root",
55 	[PERR_NOTPART]   = "Parent is not a partition root",
56 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
57 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
58 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
59 	[PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty",
60 	[PERR_HKEEPING]  = "partition config conflicts with housekeeping setup",
61 	[PERR_ACCESS]    = "Enable partition not permitted",
62 	[PERR_REMOTE]    = "Have remote partition underneath",
63 };
64 
65 /*
66  * For local partitions, update to subpartitions_cpus & isolated_cpus is done
67  * in update_parent_effective_cpumask(). For remote partitions, it is done in
68  * the remote_partition_*() and remote_cpus_update() helpers.
69  */
70 /*
71  * Exclusive CPUs distributed out to local or remote sub-partitions of
72  * top_cpuset
73  */
74 static cpumask_var_t	subpartitions_cpus;
75 
76 /*
77  * Exclusive CPUs in isolated partitions
78  */
79 static cpumask_var_t	isolated_cpus;
80 
81 /*
82  * isolated_cpus updating flag (protected by cpuset_mutex)
83  * Set if isolated_cpus is going to be updated in the current
84  * cpuset_mutex crtical section.
85  */
86 static bool isolated_cpus_updating;
87 
88 /*
89  * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot
90  */
91 static cpumask_var_t	boot_hk_cpus;
92 static bool		have_boot_isolcpus;
93 
94 /*
95  * A flag to force sched domain rebuild at the end of an operation.
96  * It can be set in
97  *  - update_partition_sd_lb()
98  *  - update_cpumasks_hier()
99  *  - cpuset_update_flag()
100  *  - cpuset_hotplug_update_tasks()
101  *  - cpuset_handle_hotplug()
102  *
103  * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock.
104  *
105  * Note that update_relax_domain_level() in cpuset-v1.c can still call
106  * rebuild_sched_domains_locked() directly without using this flag.
107  */
108 static bool force_sd_rebuild;
109 
110 /*
111  * Partition root states:
112  *
113  *   0 - member (not a partition root)
114  *   1 - partition root
115  *   2 - partition root without load balancing (isolated)
116  *  -1 - invalid partition root
117  *  -2 - invalid isolated partition root
118  *
119  *  There are 2 types of partitions - local or remote. Local partitions are
120  *  those whose parents are partition root themselves. Setting of
121  *  cpuset.cpus.exclusive are optional in setting up local partitions.
122  *  Remote partitions are those whose parents are not partition roots. Passing
123  *  down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor
124  *  nodes are mandatory in creating a remote partition.
125  *
126  *  For simplicity, a local partition can be created under a local or remote
127  *  partition but a remote partition cannot have any partition root in its
128  *  ancestor chain except the cgroup root.
129  */
130 #define PRS_MEMBER		0
131 #define PRS_ROOT		1
132 #define PRS_ISOLATED		2
133 #define PRS_INVALID_ROOT	-1
134 #define PRS_INVALID_ISOLATED	-2
135 
136 /*
137  * Temporary cpumasks for working with partitions that are passed among
138  * functions to avoid memory allocation in inner functions.
139  */
140 struct tmpmasks {
141 	cpumask_var_t addmask, delmask;	/* For partition root */
142 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
143 };
144 
145 void inc_dl_tasks_cs(struct task_struct *p)
146 {
147 	struct cpuset *cs = task_cs(p);
148 
149 	cs->nr_deadline_tasks++;
150 }
151 
152 void dec_dl_tasks_cs(struct task_struct *p)
153 {
154 	struct cpuset *cs = task_cs(p);
155 
156 	cs->nr_deadline_tasks--;
157 }
158 
159 static inline bool is_partition_valid(const struct cpuset *cs)
160 {
161 	return cs->partition_root_state > 0;
162 }
163 
164 static inline bool is_partition_invalid(const struct cpuset *cs)
165 {
166 	return cs->partition_root_state < 0;
167 }
168 
169 static inline bool cs_is_member(const struct cpuset *cs)
170 {
171 	return cs->partition_root_state == PRS_MEMBER;
172 }
173 
174 /*
175  * Callers should hold callback_lock to modify partition_root_state.
176  */
177 static inline void make_partition_invalid(struct cpuset *cs)
178 {
179 	if (cs->partition_root_state > 0)
180 		cs->partition_root_state = -cs->partition_root_state;
181 }
182 
183 /*
184  * Send notification event of whenever partition_root_state changes.
185  */
186 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
187 {
188 	if (old_prs == cs->partition_root_state)
189 		return;
190 	cgroup_file_notify(&cs->partition_file);
191 
192 	/* Reset prs_err if not invalid */
193 	if (is_partition_valid(cs))
194 		WRITE_ONCE(cs->prs_err, PERR_NONE);
195 }
196 
197 /*
198  * The top_cpuset is always synchronized to cpu_active_mask and we should avoid
199  * using cpu_online_mask as much as possible. An active CPU is always an online
200  * CPU, but not vice versa. cpu_active_mask and cpu_online_mask can differ
201  * during hotplug operations. A CPU is marked active at the last stage of CPU
202  * bringup (CPUHP_AP_ACTIVE). It is also the stage where cpuset hotplug code
203  * will be called to update the sched domains so that the scheduler can move
204  * a normal task to a newly active CPU or remove tasks away from a newly
205  * inactivated CPU. The online bit is set much earlier in the CPU bringup
206  * process and cleared much later in CPU teardown.
207  *
208  * If cpu_online_mask is used while a hotunplug operation is happening in
209  * parallel, we may leave an offline CPU in cpu_allowed or some other masks.
210  */
211 static struct cpuset top_cpuset = {
212 	.flags = BIT(CS_CPU_EXCLUSIVE) |
213 		 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE),
214 	.partition_root_state = PRS_ROOT,
215 	.relax_domain_level = -1,
216 	.remote_partition = false,
217 };
218 
219 /*
220  * There are two global locks guarding cpuset structures - cpuset_mutex and
221  * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel
222  * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
223  * structures. Note that cpuset_mutex needs to be a mutex as it is used in
224  * paths that rely on priority inheritance (e.g. scheduler - on RT) for
225  * correctness.
226  *
227  * A task must hold both locks to modify cpusets.  If a task holds
228  * cpuset_mutex, it blocks others, ensuring that it is the only task able to
229  * also acquire callback_lock and be able to modify cpusets.  It can perform
230  * various checks on the cpuset structure first, knowing nothing will change.
231  * It can also allocate memory while just holding cpuset_mutex.  While it is
232  * performing these checks, various callback routines can briefly acquire
233  * callback_lock to query cpusets.  Once it is ready to make the changes, it
234  * takes callback_lock, blocking everyone else.
235  *
236  * Calls to the kernel memory allocator can not be made while holding
237  * callback_lock, as that would risk double tripping on callback_lock
238  * from one of the callbacks into the cpuset code from within
239  * __alloc_pages().
240  *
241  * If a task is only holding callback_lock, then it has read-only
242  * access to cpusets.
243  *
244  * Now, the task_struct fields mems_allowed and mempolicy may be changed
245  * by other task, we use alloc_lock in the task_struct fields to protect
246  * them.
247  *
248  * The cpuset_common_seq_show() handlers only hold callback_lock across
249  * small pieces of code, such as when reading out possibly multi-word
250  * cpumasks and nodemasks.
251  */
252 
253 static DEFINE_MUTEX(cpuset_mutex);
254 
255 /**
256  * cpuset_lock - Acquire the global cpuset mutex
257  *
258  * This locks the global cpuset mutex to prevent modifications to cpuset
259  * hierarchy and configurations. This helper is not enough to make modification.
260  */
261 void cpuset_lock(void)
262 {
263 	mutex_lock(&cpuset_mutex);
264 }
265 
266 void cpuset_unlock(void)
267 {
268 	mutex_unlock(&cpuset_mutex);
269 }
270 
271 /**
272  * cpuset_full_lock - Acquire full protection for cpuset modification
273  *
274  * Takes both CPU hotplug read lock (cpus_read_lock()) and cpuset mutex
275  * to safely modify cpuset data.
276  */
277 void cpuset_full_lock(void)
278 {
279 	cpus_read_lock();
280 	mutex_lock(&cpuset_mutex);
281 }
282 
283 void cpuset_full_unlock(void)
284 {
285 	mutex_unlock(&cpuset_mutex);
286 	cpus_read_unlock();
287 }
288 
289 static DEFINE_SPINLOCK(callback_lock);
290 
291 void cpuset_callback_lock_irq(void)
292 {
293 	spin_lock_irq(&callback_lock);
294 }
295 
296 void cpuset_callback_unlock_irq(void)
297 {
298 	spin_unlock_irq(&callback_lock);
299 }
300 
301 static struct workqueue_struct *cpuset_migrate_mm_wq;
302 
303 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
304 
305 static inline void check_insane_mems_config(nodemask_t *nodes)
306 {
307 	if (!cpusets_insane_config() &&
308 		movable_only_nodes(nodes)) {
309 		static_branch_enable_cpuslocked(&cpusets_insane_config_key);
310 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
311 			"Cpuset allocations might fail even with a lot of memory available.\n",
312 			nodemask_pr_args(nodes));
313 	}
314 }
315 
316 /*
317  * decrease cs->attach_in_progress.
318  * wake_up cpuset_attach_wq if cs->attach_in_progress==0.
319  */
320 static inline void dec_attach_in_progress_locked(struct cpuset *cs)
321 {
322 	lockdep_assert_held(&cpuset_mutex);
323 
324 	cs->attach_in_progress--;
325 	if (!cs->attach_in_progress)
326 		wake_up(&cpuset_attach_wq);
327 }
328 
329 static inline void dec_attach_in_progress(struct cpuset *cs)
330 {
331 	mutex_lock(&cpuset_mutex);
332 	dec_attach_in_progress_locked(cs);
333 	mutex_unlock(&cpuset_mutex);
334 }
335 
336 static inline bool cpuset_v2(void)
337 {
338 	return !IS_ENABLED(CONFIG_CPUSETS_V1) ||
339 		cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
340 }
341 
342 /*
343  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
344  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
345  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
346  * With v2 behavior, "cpus" and "mems" are always what the users have
347  * requested and won't be changed by hotplug events. Only the effective
348  * cpus or mems will be affected.
349  */
350 static inline bool is_in_v2_mode(void)
351 {
352 	return cpuset_v2() ||
353 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
354 }
355 
356 static inline bool cpuset_is_populated(struct cpuset *cs)
357 {
358 	lockdep_assert_held(&cpuset_mutex);
359 
360 	/* Cpusets in the process of attaching should be considered as populated */
361 	return cgroup_is_populated(cs->css.cgroup) ||
362 		cs->attach_in_progress;
363 }
364 
365 /**
366  * partition_is_populated - check if partition has tasks
367  * @cs: partition root to be checked
368  * @excluded_child: a child cpuset to be excluded in task checking
369  * Return: true if there are tasks, false otherwise
370  *
371  * @cs should be a valid partition root or going to become a partition root.
372  * @excluded_child should be non-NULL when this cpuset is going to become a
373  * partition itself.
374  *
375  * Note that a remote partition is not allowed underneath a valid local
376  * or remote partition. So if a non-partition root child is populated,
377  * the whole partition is considered populated.
378  */
379 static inline bool partition_is_populated(struct cpuset *cs,
380 					  struct cpuset *excluded_child)
381 {
382 	struct cpuset *cp;
383 	struct cgroup_subsys_state *pos_css;
384 
385 	/*
386 	 * We cannot call cs_is_populated(cs) directly, as
387 	 * nr_populated_domain_children may include populated
388 	 * csets from descendants that are partitions.
389 	 */
390 	if (cs->css.cgroup->nr_populated_csets ||
391 	    cs->attach_in_progress)
392 		return true;
393 
394 	rcu_read_lock();
395 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
396 		if (cp == cs || cp == excluded_child)
397 			continue;
398 
399 		if (is_partition_valid(cp)) {
400 			pos_css = css_rightmost_descendant(pos_css);
401 			continue;
402 		}
403 
404 		if (cpuset_is_populated(cp)) {
405 			rcu_read_unlock();
406 			return true;
407 		}
408 	}
409 	rcu_read_unlock();
410 	return false;
411 }
412 
413 /*
414  * Return in pmask the portion of a task's cpusets's cpus_allowed that
415  * are online and are capable of running the task.  If none are found,
416  * walk up the cpuset hierarchy until we find one that does have some
417  * appropriate cpus.
418  *
419  * One way or another, we guarantee to return some non-empty subset
420  * of cpu_active_mask.
421  *
422  * Call with callback_lock or cpuset_mutex held.
423  */
424 static void guarantee_active_cpus(struct task_struct *tsk,
425 				  struct cpumask *pmask)
426 {
427 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
428 	struct cpuset *cs;
429 
430 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask)))
431 		cpumask_copy(pmask, cpu_active_mask);
432 
433 	rcu_read_lock();
434 	cs = task_cs(tsk);
435 
436 	while (!cpumask_intersects(cs->effective_cpus, pmask))
437 		cs = parent_cs(cs);
438 
439 	cpumask_and(pmask, pmask, cs->effective_cpus);
440 	rcu_read_unlock();
441 }
442 
443 /*
444  * Return in *pmask the portion of a cpusets's mems_allowed that
445  * are online, with memory.  If none are online with memory, walk
446  * up the cpuset hierarchy until we find one that does have some
447  * online mems.  The top cpuset always has some mems online.
448  *
449  * One way or another, we guarantee to return some non-empty subset
450  * of node_states[N_MEMORY].
451  *
452  * Call with callback_lock or cpuset_mutex held.
453  */
454 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
455 {
456 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
457 		cs = parent_cs(cs);
458 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
459 }
460 
461 /**
462  * alloc_cpumasks - Allocate an array of cpumask variables
463  * @pmasks: Pointer to array of cpumask_var_t pointers
464  * @size: Number of cpumasks to allocate
465  * Return: 0 if successful, -ENOMEM otherwise.
466  *
467  * Allocates @size cpumasks and initializes them to empty. Returns 0 on
468  * success, -ENOMEM on allocation failure. On failure, any previously
469  * allocated cpumasks are freed.
470  */
471 static inline int alloc_cpumasks(cpumask_var_t *pmasks[], u32 size)
472 {
473 	int i;
474 
475 	for (i = 0; i < size; i++) {
476 		if (!zalloc_cpumask_var(pmasks[i], GFP_KERNEL)) {
477 			while (--i >= 0)
478 				free_cpumask_var(*pmasks[i]);
479 			return -ENOMEM;
480 		}
481 	}
482 	return 0;
483 }
484 
485 /**
486  * alloc_tmpmasks - Allocate temporary cpumasks for cpuset operations.
487  * @tmp: Pointer to tmpmasks structure to populate
488  * Return: 0 on success, -ENOMEM on allocation failure
489  */
490 static inline int alloc_tmpmasks(struct tmpmasks *tmp)
491 {
492 	/*
493 	 * Array of pointers to the three cpumask_var_t fields in tmpmasks.
494 	 * Note: Array size must match actual number of masks (3)
495 	 */
496 	cpumask_var_t *pmask[3] = {
497 		&tmp->new_cpus,
498 		&tmp->addmask,
499 		&tmp->delmask
500 	};
501 
502 	return alloc_cpumasks(pmask, ARRAY_SIZE(pmask));
503 }
504 
505 /**
506  * free_tmpmasks - free cpumasks in a tmpmasks structure
507  * @tmp: the tmpmasks structure pointer
508  */
509 static inline void free_tmpmasks(struct tmpmasks *tmp)
510 {
511 	if (!tmp)
512 		return;
513 
514 	free_cpumask_var(tmp->new_cpus);
515 	free_cpumask_var(tmp->addmask);
516 	free_cpumask_var(tmp->delmask);
517 }
518 
519 /**
520  * dup_or_alloc_cpuset - Duplicate or allocate a new cpuset
521  * @cs: Source cpuset to duplicate (NULL for a fresh allocation)
522  *
523  * Creates a new cpuset by either:
524  * 1. Duplicating an existing cpuset (if @cs is non-NULL), or
525  * 2. Allocating a fresh cpuset with zero-initialized masks (if @cs is NULL)
526  *
527  * Return: Pointer to newly allocated cpuset on success, NULL on failure
528  */
529 static struct cpuset *dup_or_alloc_cpuset(struct cpuset *cs)
530 {
531 	struct cpuset *trial;
532 
533 	/* Allocate base structure */
534 	trial = cs ? kmemdup(cs, sizeof(*cs), GFP_KERNEL) :
535 		     kzalloc(sizeof(*cs), GFP_KERNEL);
536 	if (!trial)
537 		return NULL;
538 
539 	/* Setup cpumask pointer array */
540 	cpumask_var_t *pmask[4] = {
541 		&trial->cpus_allowed,
542 		&trial->effective_cpus,
543 		&trial->effective_xcpus,
544 		&trial->exclusive_cpus
545 	};
546 
547 	if (alloc_cpumasks(pmask, ARRAY_SIZE(pmask))) {
548 		kfree(trial);
549 		return NULL;
550 	}
551 
552 	/* Copy masks if duplicating */
553 	if (cs) {
554 		cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
555 		cpumask_copy(trial->effective_cpus, cs->effective_cpus);
556 		cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
557 		cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
558 	}
559 
560 	return trial;
561 }
562 
563 /**
564  * free_cpuset - free the cpuset
565  * @cs: the cpuset to be freed
566  */
567 static inline void free_cpuset(struct cpuset *cs)
568 {
569 	free_cpumask_var(cs->cpus_allowed);
570 	free_cpumask_var(cs->effective_cpus);
571 	free_cpumask_var(cs->effective_xcpus);
572 	free_cpumask_var(cs->exclusive_cpus);
573 	kfree(cs);
574 }
575 
576 /* Return user specified exclusive CPUs */
577 static inline struct cpumask *user_xcpus(struct cpuset *cs)
578 {
579 	return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed
580 						 : cs->exclusive_cpus;
581 }
582 
583 static inline bool xcpus_empty(struct cpuset *cs)
584 {
585 	return cpumask_empty(cs->cpus_allowed) &&
586 	       cpumask_empty(cs->exclusive_cpus);
587 }
588 
589 /*
590  * cpusets_are_exclusive() - check if two cpusets are exclusive
591  *
592  * Return true if exclusive, false if not
593  */
594 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
595 {
596 	struct cpumask *xcpus1 = user_xcpus(cs1);
597 	struct cpumask *xcpus2 = user_xcpus(cs2);
598 
599 	if (cpumask_intersects(xcpus1, xcpus2))
600 		return false;
601 	return true;
602 }
603 
604 /**
605  * cpus_excl_conflict - Check if two cpusets have exclusive CPU conflicts
606  * @cs1: first cpuset to check
607  * @cs2: second cpuset to check
608  *
609  * Returns: true if CPU exclusivity conflict exists, false otherwise
610  *
611  * Conflict detection rules:
612  * 1. If either cpuset is CPU exclusive, they must be mutually exclusive
613  * 2. exclusive_cpus masks cannot intersect between cpusets
614  * 3. The allowed CPUs of one cpuset cannot be a subset of another's exclusive CPUs
615  */
616 static inline bool cpus_excl_conflict(struct cpuset *cs1, struct cpuset *cs2)
617 {
618 	/* If either cpuset is exclusive, check if they are mutually exclusive */
619 	if (is_cpu_exclusive(cs1) || is_cpu_exclusive(cs2))
620 		return !cpusets_are_exclusive(cs1, cs2);
621 
622 	/* Exclusive_cpus cannot intersect */
623 	if (cpumask_intersects(cs1->exclusive_cpus, cs2->exclusive_cpus))
624 		return true;
625 
626 	/* The cpus_allowed of one cpuset cannot be a subset of another cpuset's exclusive_cpus */
627 	if (!cpumask_empty(cs1->cpus_allowed) &&
628 	    cpumask_subset(cs1->cpus_allowed, cs2->exclusive_cpus))
629 		return true;
630 
631 	if (!cpumask_empty(cs2->cpus_allowed) &&
632 	    cpumask_subset(cs2->cpus_allowed, cs1->exclusive_cpus))
633 		return true;
634 
635 	return false;
636 }
637 
638 static inline bool mems_excl_conflict(struct cpuset *cs1, struct cpuset *cs2)
639 {
640 	if ((is_mem_exclusive(cs1) || is_mem_exclusive(cs2)))
641 		return nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
642 	return false;
643 }
644 
645 /*
646  * validate_change() - Used to validate that any proposed cpuset change
647  *		       follows the structural rules for cpusets.
648  *
649  * If we replaced the flag and mask values of the current cpuset
650  * (cur) with those values in the trial cpuset (trial), would
651  * our various subset and exclusive rules still be valid?  Presumes
652  * cpuset_mutex held.
653  *
654  * 'cur' is the address of an actual, in-use cpuset.  Operations
655  * such as list traversal that depend on the actual address of the
656  * cpuset in the list must use cur below, not trial.
657  *
658  * 'trial' is the address of bulk structure copy of cur, with
659  * perhaps one or more of the fields cpus_allowed, mems_allowed,
660  * or flags changed to new, trial values.
661  *
662  * Return 0 if valid, -errno if not.
663  */
664 
665 static int validate_change(struct cpuset *cur, struct cpuset *trial)
666 {
667 	struct cgroup_subsys_state *css;
668 	struct cpuset *c, *par;
669 	int ret = 0;
670 
671 	rcu_read_lock();
672 
673 	if (!is_in_v2_mode())
674 		ret = cpuset1_validate_change(cur, trial);
675 	if (ret)
676 		goto out;
677 
678 	/* Remaining checks don't apply to root cpuset */
679 	if (cur == &top_cpuset)
680 		goto out;
681 
682 	par = parent_cs(cur);
683 
684 	/*
685 	 * Cpusets with tasks - existing or newly being attached - can't
686 	 * be changed to have empty cpus_allowed or mems_allowed.
687 	 */
688 	ret = -ENOSPC;
689 	if (cpuset_is_populated(cur)) {
690 		if (!cpumask_empty(cur->cpus_allowed) &&
691 		    cpumask_empty(trial->cpus_allowed))
692 			goto out;
693 		if (!nodes_empty(cur->mems_allowed) &&
694 		    nodes_empty(trial->mems_allowed))
695 			goto out;
696 	}
697 
698 	/*
699 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
700 	 * tasks. This check is not done when scheduling is disabled as the
701 	 * users should know what they are doing.
702 	 *
703 	 * For v1, effective_cpus == cpus_allowed & user_xcpus() returns
704 	 * cpus_allowed.
705 	 *
706 	 * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only
707 	 * for non-isolated partition root. At this point, the target
708 	 * effective_cpus isn't computed yet. user_xcpus() is the best
709 	 * approximation.
710 	 *
711 	 * TBD: May need to precompute the real effective_cpus here in case
712 	 * incorrect scheduling of SCHED_DEADLINE tasks in a partition
713 	 * becomes an issue.
714 	 */
715 	ret = -EBUSY;
716 	if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) &&
717 	    !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial)))
718 		goto out;
719 
720 	/*
721 	 * If either I or some sibling (!= me) is exclusive, we can't
722 	 * overlap. exclusive_cpus cannot overlap with each other if set.
723 	 */
724 	ret = -EINVAL;
725 	cpuset_for_each_child(c, css, par) {
726 		if (c == cur)
727 			continue;
728 		if (cpus_excl_conflict(trial, c))
729 			goto out;
730 		if (mems_excl_conflict(trial, c))
731 			goto out;
732 	}
733 
734 	ret = 0;
735 out:
736 	rcu_read_unlock();
737 	return ret;
738 }
739 
740 #ifdef CONFIG_SMP
741 /*
742  * Helper routine for generate_sched_domains().
743  * Do cpusets a, b have overlapping effective cpus_allowed masks?
744  */
745 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
746 {
747 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
748 }
749 
750 static void
751 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
752 {
753 	if (dattr->relax_domain_level < c->relax_domain_level)
754 		dattr->relax_domain_level = c->relax_domain_level;
755 	return;
756 }
757 
758 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
759 				    struct cpuset *root_cs)
760 {
761 	struct cpuset *cp;
762 	struct cgroup_subsys_state *pos_css;
763 
764 	rcu_read_lock();
765 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
766 		/* skip the whole subtree if @cp doesn't have any CPU */
767 		if (cpumask_empty(cp->cpus_allowed)) {
768 			pos_css = css_rightmost_descendant(pos_css);
769 			continue;
770 		}
771 
772 		if (is_sched_load_balance(cp))
773 			update_domain_attr(dattr, cp);
774 	}
775 	rcu_read_unlock();
776 }
777 
778 /* Must be called with cpuset_mutex held.  */
779 static inline int nr_cpusets(void)
780 {
781 	/* jump label reference count + the top-level cpuset */
782 	return static_key_count(&cpusets_enabled_key.key) + 1;
783 }
784 
785 /*
786  * generate_sched_domains()
787  *
788  * This function builds a partial partition of the systems CPUs
789  * A 'partial partition' is a set of non-overlapping subsets whose
790  * union is a subset of that set.
791  * The output of this function needs to be passed to kernel/sched/core.c
792  * partition_sched_domains() routine, which will rebuild the scheduler's
793  * load balancing domains (sched domains) as specified by that partial
794  * partition.
795  *
796  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
797  * for a background explanation of this.
798  *
799  * Does not return errors, on the theory that the callers of this
800  * routine would rather not worry about failures to rebuild sched
801  * domains when operating in the severe memory shortage situations
802  * that could cause allocation failures below.
803  *
804  * Must be called with cpuset_mutex held.
805  *
806  * The three key local variables below are:
807  *    cp - cpuset pointer, used (together with pos_css) to perform a
808  *	   top-down scan of all cpusets. For our purposes, rebuilding
809  *	   the schedulers sched domains, we can ignore !is_sched_load_
810  *	   balance cpusets.
811  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
812  *	   that need to be load balanced, for convenient iterative
813  *	   access by the subsequent code that finds the best partition,
814  *	   i.e the set of domains (subsets) of CPUs such that the
815  *	   cpus_allowed of every cpuset marked is_sched_load_balance
816  *	   is a subset of one of these domains, while there are as
817  *	   many such domains as possible, each as small as possible.
818  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
819  *	   the kernel/sched/core.c routine partition_sched_domains() in a
820  *	   convenient format, that can be easily compared to the prior
821  *	   value to determine what partition elements (sched domains)
822  *	   were changed (added or removed.)
823  *
824  * Finding the best partition (set of domains):
825  *	The double nested loops below over i, j scan over the load
826  *	balanced cpusets (using the array of cpuset pointers in csa[])
827  *	looking for pairs of cpusets that have overlapping cpus_allowed
828  *	and merging them using a union-find algorithm.
829  *
830  *	The union of the cpus_allowed masks from the set of all cpusets
831  *	having the same root then form the one element of the partition
832  *	(one sched domain) to be passed to partition_sched_domains().
833  *
834  */
835 static int generate_sched_domains(cpumask_var_t **domains,
836 			struct sched_domain_attr **attributes)
837 {
838 	struct cpuset *cp;	/* top-down scan of cpusets */
839 	struct cpuset **csa;	/* array of all cpuset ptrs */
840 	int csn;		/* how many cpuset ptrs in csa so far */
841 	int i, j;		/* indices for partition finding loops */
842 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
843 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
844 	int ndoms = 0;		/* number of sched domains in result */
845 	int nslot;		/* next empty doms[] struct cpumask slot */
846 	struct cgroup_subsys_state *pos_css;
847 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
848 	bool cgrpv2 = cpuset_v2();
849 	int nslot_update;
850 
851 	doms = NULL;
852 	dattr = NULL;
853 	csa = NULL;
854 
855 	/* Special case for the 99% of systems with one, full, sched domain */
856 	if (root_load_balance && cpumask_empty(subpartitions_cpus)) {
857 single_root_domain:
858 		ndoms = 1;
859 		doms = alloc_sched_domains(ndoms);
860 		if (!doms)
861 			goto done;
862 
863 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
864 		if (dattr) {
865 			*dattr = SD_ATTR_INIT;
866 			update_domain_attr_tree(dattr, &top_cpuset);
867 		}
868 		cpumask_and(doms[0], top_cpuset.effective_cpus,
869 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
870 
871 		goto done;
872 	}
873 
874 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
875 	if (!csa)
876 		goto done;
877 	csn = 0;
878 
879 	rcu_read_lock();
880 	if (root_load_balance)
881 		csa[csn++] = &top_cpuset;
882 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
883 		if (cp == &top_cpuset)
884 			continue;
885 
886 		if (cgrpv2)
887 			goto v2;
888 
889 		/*
890 		 * v1:
891 		 * Continue traversing beyond @cp iff @cp has some CPUs and
892 		 * isn't load balancing.  The former is obvious.  The
893 		 * latter: All child cpusets contain a subset of the
894 		 * parent's cpus, so just skip them, and then we call
895 		 * update_domain_attr_tree() to calc relax_domain_level of
896 		 * the corresponding sched domain.
897 		 */
898 		if (!cpumask_empty(cp->cpus_allowed) &&
899 		    !(is_sched_load_balance(cp) &&
900 		      cpumask_intersects(cp->cpus_allowed,
901 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
902 			continue;
903 
904 		if (is_sched_load_balance(cp) &&
905 		    !cpumask_empty(cp->effective_cpus))
906 			csa[csn++] = cp;
907 
908 		/* skip @cp's subtree */
909 		pos_css = css_rightmost_descendant(pos_css);
910 		continue;
911 
912 v2:
913 		/*
914 		 * Only valid partition roots that are not isolated and with
915 		 * non-empty effective_cpus will be saved into csn[].
916 		 */
917 		if ((cp->partition_root_state == PRS_ROOT) &&
918 		    !cpumask_empty(cp->effective_cpus))
919 			csa[csn++] = cp;
920 
921 		/*
922 		 * Skip @cp's subtree if not a partition root and has no
923 		 * exclusive CPUs to be granted to child cpusets.
924 		 */
925 		if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus))
926 			pos_css = css_rightmost_descendant(pos_css);
927 	}
928 	rcu_read_unlock();
929 
930 	/*
931 	 * If there are only isolated partitions underneath the cgroup root,
932 	 * we can optimize out unneeded sched domains scanning.
933 	 */
934 	if (root_load_balance && (csn == 1))
935 		goto single_root_domain;
936 
937 	for (i = 0; i < csn; i++)
938 		uf_node_init(&csa[i]->node);
939 
940 	/* Merge overlapping cpusets */
941 	for (i = 0; i < csn; i++) {
942 		for (j = i + 1; j < csn; j++) {
943 			if (cpusets_overlap(csa[i], csa[j])) {
944 				/*
945 				 * Cgroup v2 shouldn't pass down overlapping
946 				 * partition root cpusets.
947 				 */
948 				WARN_ON_ONCE(cgrpv2);
949 				uf_union(&csa[i]->node, &csa[j]->node);
950 			}
951 		}
952 	}
953 
954 	/* Count the total number of domains */
955 	for (i = 0; i < csn; i++) {
956 		if (uf_find(&csa[i]->node) == &csa[i]->node)
957 			ndoms++;
958 	}
959 
960 	/*
961 	 * Now we know how many domains to create.
962 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
963 	 */
964 	doms = alloc_sched_domains(ndoms);
965 	if (!doms)
966 		goto done;
967 
968 	/*
969 	 * The rest of the code, including the scheduler, can deal with
970 	 * dattr==NULL case. No need to abort if alloc fails.
971 	 */
972 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
973 			      GFP_KERNEL);
974 
975 	/*
976 	 * Cgroup v2 doesn't support domain attributes, just set all of them
977 	 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a
978 	 * subset of HK_TYPE_DOMAIN housekeeping CPUs.
979 	 */
980 	if (cgrpv2) {
981 		for (i = 0; i < ndoms; i++) {
982 			/*
983 			 * The top cpuset may contain some boot time isolated
984 			 * CPUs that need to be excluded from the sched domain.
985 			 */
986 			if (csa[i] == &top_cpuset)
987 				cpumask_and(doms[i], csa[i]->effective_cpus,
988 					    housekeeping_cpumask(HK_TYPE_DOMAIN));
989 			else
990 				cpumask_copy(doms[i], csa[i]->effective_cpus);
991 			if (dattr)
992 				dattr[i] = SD_ATTR_INIT;
993 		}
994 		goto done;
995 	}
996 
997 	for (nslot = 0, i = 0; i < csn; i++) {
998 		nslot_update = 0;
999 		for (j = i; j < csn; j++) {
1000 			if (uf_find(&csa[j]->node) == &csa[i]->node) {
1001 				struct cpumask *dp = doms[nslot];
1002 
1003 				if (i == j) {
1004 					nslot_update = 1;
1005 					cpumask_clear(dp);
1006 					if (dattr)
1007 						*(dattr + nslot) = SD_ATTR_INIT;
1008 				}
1009 				cpumask_or(dp, dp, csa[j]->effective_cpus);
1010 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1011 				if (dattr)
1012 					update_domain_attr_tree(dattr + nslot, csa[j]);
1013 			}
1014 		}
1015 		if (nslot_update)
1016 			nslot++;
1017 	}
1018 	BUG_ON(nslot != ndoms);
1019 
1020 done:
1021 	kfree(csa);
1022 
1023 	/*
1024 	 * Fallback to the default domain if kmalloc() failed.
1025 	 * See comments in partition_sched_domains().
1026 	 */
1027 	if (doms == NULL)
1028 		ndoms = 1;
1029 
1030 	*domains    = doms;
1031 	*attributes = dattr;
1032 	return ndoms;
1033 }
1034 
1035 static void dl_update_tasks_root_domain(struct cpuset *cs)
1036 {
1037 	struct css_task_iter it;
1038 	struct task_struct *task;
1039 
1040 	if (cs->nr_deadline_tasks == 0)
1041 		return;
1042 
1043 	css_task_iter_start(&cs->css, 0, &it);
1044 
1045 	while ((task = css_task_iter_next(&it)))
1046 		dl_add_task_root_domain(task);
1047 
1048 	css_task_iter_end(&it);
1049 }
1050 
1051 void dl_rebuild_rd_accounting(void)
1052 {
1053 	struct cpuset *cs = NULL;
1054 	struct cgroup_subsys_state *pos_css;
1055 	int cpu;
1056 	u64 cookie = ++dl_cookie;
1057 
1058 	lockdep_assert_held(&cpuset_mutex);
1059 	lockdep_assert_cpus_held();
1060 	lockdep_assert_held(&sched_domains_mutex);
1061 
1062 	rcu_read_lock();
1063 
1064 	for_each_possible_cpu(cpu) {
1065 		if (dl_bw_visited(cpu, cookie))
1066 			continue;
1067 
1068 		dl_clear_root_domain_cpu(cpu);
1069 	}
1070 
1071 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1072 
1073 		if (cpumask_empty(cs->effective_cpus)) {
1074 			pos_css = css_rightmost_descendant(pos_css);
1075 			continue;
1076 		}
1077 
1078 		css_get(&cs->css);
1079 
1080 		rcu_read_unlock();
1081 
1082 		dl_update_tasks_root_domain(cs);
1083 
1084 		rcu_read_lock();
1085 		css_put(&cs->css);
1086 	}
1087 	rcu_read_unlock();
1088 }
1089 
1090 /*
1091  * Rebuild scheduler domains.
1092  *
1093  * If the flag 'sched_load_balance' of any cpuset with non-empty
1094  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1095  * which has that flag enabled, or if any cpuset with a non-empty
1096  * 'cpus' is removed, then call this routine to rebuild the
1097  * scheduler's dynamic sched domains.
1098  *
1099  * Call with cpuset_mutex held.  Takes cpus_read_lock().
1100  */
1101 void rebuild_sched_domains_locked(void)
1102 {
1103 	struct cgroup_subsys_state *pos_css;
1104 	struct sched_domain_attr *attr;
1105 	cpumask_var_t *doms;
1106 	struct cpuset *cs;
1107 	int ndoms;
1108 
1109 	lockdep_assert_cpus_held();
1110 	lockdep_assert_held(&cpuset_mutex);
1111 	force_sd_rebuild = false;
1112 
1113 	/*
1114 	 * If we have raced with CPU hotplug, return early to avoid
1115 	 * passing doms with offlined cpu to partition_sched_domains().
1116 	 * Anyways, cpuset_handle_hotplug() will rebuild sched domains.
1117 	 *
1118 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1119 	 * should be the same as the active CPUs, so checking only top_cpuset
1120 	 * is enough to detect racing CPU offlines.
1121 	 */
1122 	if (cpumask_empty(subpartitions_cpus) &&
1123 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1124 		return;
1125 
1126 	/*
1127 	 * With subpartition CPUs, however, the effective CPUs of a partition
1128 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1129 	 * partition root could be offlined, all must be checked.
1130 	 */
1131 	if (!cpumask_empty(subpartitions_cpus)) {
1132 		rcu_read_lock();
1133 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1134 			if (!is_partition_valid(cs)) {
1135 				pos_css = css_rightmost_descendant(pos_css);
1136 				continue;
1137 			}
1138 			if (!cpumask_subset(cs->effective_cpus,
1139 					    cpu_active_mask)) {
1140 				rcu_read_unlock();
1141 				return;
1142 			}
1143 		}
1144 		rcu_read_unlock();
1145 	}
1146 
1147 	/* Generate domain masks and attrs */
1148 	ndoms = generate_sched_domains(&doms, &attr);
1149 
1150 	/* Have scheduler rebuild the domains */
1151 	partition_sched_domains(ndoms, doms, attr);
1152 }
1153 #else /* !CONFIG_SMP */
1154 void rebuild_sched_domains_locked(void)
1155 {
1156 }
1157 #endif /* CONFIG_SMP */
1158 
1159 static void rebuild_sched_domains_cpuslocked(void)
1160 {
1161 	mutex_lock(&cpuset_mutex);
1162 	rebuild_sched_domains_locked();
1163 	mutex_unlock(&cpuset_mutex);
1164 }
1165 
1166 void rebuild_sched_domains(void)
1167 {
1168 	cpus_read_lock();
1169 	rebuild_sched_domains_cpuslocked();
1170 	cpus_read_unlock();
1171 }
1172 
1173 void cpuset_reset_sched_domains(void)
1174 {
1175 	mutex_lock(&cpuset_mutex);
1176 	partition_sched_domains(1, NULL, NULL);
1177 	mutex_unlock(&cpuset_mutex);
1178 }
1179 
1180 /**
1181  * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1182  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1183  * @new_cpus: the temp variable for the new effective_cpus mask
1184  *
1185  * Iterate through each task of @cs updating its cpus_allowed to the
1186  * effective cpuset's.  As this function is called with cpuset_mutex held,
1187  * cpuset membership stays stable.
1188  *
1189  * For top_cpuset, task_cpu_possible_mask() is used instead of effective_cpus
1190  * to make sure all offline CPUs are also included as hotplug code won't
1191  * update cpumasks for tasks in top_cpuset.
1192  *
1193  * As task_cpu_possible_mask() can be task dependent in arm64, we have to
1194  * do cpu masking per task instead of doing it once for all.
1195  */
1196 void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1197 {
1198 	struct css_task_iter it;
1199 	struct task_struct *task;
1200 	bool top_cs = cs == &top_cpuset;
1201 
1202 	css_task_iter_start(&cs->css, 0, &it);
1203 	while ((task = css_task_iter_next(&it))) {
1204 		const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1205 
1206 		if (top_cs) {
1207 			/*
1208 			 * PF_NO_SETAFFINITY tasks are ignored.
1209 			 * All per cpu kthreads should have PF_NO_SETAFFINITY
1210 			 * flag set, see kthread_set_per_cpu().
1211 			 */
1212 			if (task->flags & PF_NO_SETAFFINITY)
1213 				continue;
1214 			cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
1215 		} else {
1216 			cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1217 		}
1218 		set_cpus_allowed_ptr(task, new_cpus);
1219 	}
1220 	css_task_iter_end(&it);
1221 }
1222 
1223 /**
1224  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1225  * @new_cpus: the temp variable for the new effective_cpus mask
1226  * @cs: the cpuset the need to recompute the new effective_cpus mask
1227  * @parent: the parent cpuset
1228  *
1229  * The result is valid only if the given cpuset isn't a partition root.
1230  */
1231 static void compute_effective_cpumask(struct cpumask *new_cpus,
1232 				      struct cpuset *cs, struct cpuset *parent)
1233 {
1234 	cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1235 }
1236 
1237 /*
1238  * Commands for update_parent_effective_cpumask
1239  */
1240 enum partition_cmd {
1241 	partcmd_enable,		/* Enable partition root	  */
1242 	partcmd_enablei,	/* Enable isolated partition root */
1243 	partcmd_disable,	/* Disable partition root	  */
1244 	partcmd_update,		/* Update parent's effective_cpus */
1245 	partcmd_invalidate,	/* Make partition invalid	  */
1246 };
1247 
1248 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1249 				    struct tmpmasks *tmp);
1250 
1251 /*
1252  * Update partition exclusive flag
1253  *
1254  * Return: 0 if successful, an error code otherwise
1255  */
1256 static int update_partition_exclusive_flag(struct cpuset *cs, int new_prs)
1257 {
1258 	bool exclusive = (new_prs > PRS_MEMBER);
1259 
1260 	if (exclusive && !is_cpu_exclusive(cs)) {
1261 		if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1262 			return PERR_NOTEXCL;
1263 	} else if (!exclusive && is_cpu_exclusive(cs)) {
1264 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1265 		cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1266 	}
1267 	return 0;
1268 }
1269 
1270 /*
1271  * Update partition load balance flag and/or rebuild sched domain
1272  *
1273  * Changing load balance flag will automatically call
1274  * rebuild_sched_domains_locked().
1275  * This function is for cgroup v2 only.
1276  */
1277 static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1278 {
1279 	int new_prs = cs->partition_root_state;
1280 	bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1281 	bool new_lb;
1282 
1283 	/*
1284 	 * If cs is not a valid partition root, the load balance state
1285 	 * will follow its parent.
1286 	 */
1287 	if (new_prs > 0) {
1288 		new_lb = (new_prs != PRS_ISOLATED);
1289 	} else {
1290 		new_lb = is_sched_load_balance(parent_cs(cs));
1291 	}
1292 	if (new_lb != !!is_sched_load_balance(cs)) {
1293 		rebuild_domains = true;
1294 		if (new_lb)
1295 			set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1296 		else
1297 			clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1298 	}
1299 
1300 	if (rebuild_domains)
1301 		cpuset_force_rebuild();
1302 }
1303 
1304 /*
1305  * tasks_nocpu_error - Return true if tasks will have no effective_cpus
1306  */
1307 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
1308 			      struct cpumask *xcpus)
1309 {
1310 	/*
1311 	 * A populated partition (cs or parent) can't have empty effective_cpus
1312 	 */
1313 	return (cpumask_subset(parent->effective_cpus, xcpus) &&
1314 		partition_is_populated(parent, cs)) ||
1315 	       (!cpumask_intersects(xcpus, cpu_active_mask) &&
1316 		partition_is_populated(cs, NULL));
1317 }
1318 
1319 static void reset_partition_data(struct cpuset *cs)
1320 {
1321 	struct cpuset *parent = parent_cs(cs);
1322 
1323 	if (!cpuset_v2())
1324 		return;
1325 
1326 	lockdep_assert_held(&callback_lock);
1327 
1328 	if (cpumask_empty(cs->exclusive_cpus)) {
1329 		cpumask_clear(cs->effective_xcpus);
1330 		if (is_cpu_exclusive(cs))
1331 			clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1332 	}
1333 	if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed))
1334 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1335 }
1336 
1337 /*
1338  * isolated_cpus_update - Update the isolated_cpus mask
1339  * @old_prs: old partition_root_state
1340  * @new_prs: new partition_root_state
1341  * @xcpus: exclusive CPUs with state change
1342  */
1343 static void isolated_cpus_update(int old_prs, int new_prs, struct cpumask *xcpus)
1344 {
1345 	WARN_ON_ONCE(old_prs == new_prs);
1346 	if (new_prs == PRS_ISOLATED)
1347 		cpumask_or(isolated_cpus, isolated_cpus, xcpus);
1348 	else
1349 		cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
1350 
1351 	isolated_cpus_updating = true;
1352 }
1353 
1354 /*
1355  * partition_xcpus_add - Add new exclusive CPUs to partition
1356  * @new_prs: new partition_root_state
1357  * @parent: parent cpuset
1358  * @xcpus: exclusive CPUs to be added
1359  *
1360  * Remote partition if parent == NULL
1361  */
1362 static void partition_xcpus_add(int new_prs, struct cpuset *parent,
1363 				struct cpumask *xcpus)
1364 {
1365 	WARN_ON_ONCE(new_prs < 0);
1366 	lockdep_assert_held(&callback_lock);
1367 	if (!parent)
1368 		parent = &top_cpuset;
1369 
1370 
1371 	if (parent == &top_cpuset)
1372 		cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
1373 
1374 	if (new_prs != parent->partition_root_state)
1375 		isolated_cpus_update(parent->partition_root_state, new_prs,
1376 				     xcpus);
1377 
1378 	cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
1379 }
1380 
1381 /*
1382  * partition_xcpus_del - Remove exclusive CPUs from partition
1383  * @old_prs: old partition_root_state
1384  * @parent: parent cpuset
1385  * @xcpus: exclusive CPUs to be removed
1386  *
1387  * Remote partition if parent == NULL
1388  */
1389 static void partition_xcpus_del(int old_prs, struct cpuset *parent,
1390 				struct cpumask *xcpus)
1391 {
1392 	WARN_ON_ONCE(old_prs < 0);
1393 	lockdep_assert_held(&callback_lock);
1394 	if (!parent)
1395 		parent = &top_cpuset;
1396 
1397 	if (parent == &top_cpuset)
1398 		cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
1399 
1400 	if (old_prs != parent->partition_root_state)
1401 		isolated_cpus_update(old_prs, parent->partition_root_state,
1402 				     xcpus);
1403 
1404 	cpumask_and(xcpus, xcpus, cpu_active_mask);
1405 	cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
1406 }
1407 
1408 /*
1409  * isolated_cpus_can_update - check for isolated & nohz_full conflicts
1410  * @add_cpus: cpu mask for cpus that are going to be isolated
1411  * @del_cpus: cpu mask for cpus that are no longer isolated, can be NULL
1412  * Return: false if there is conflict, true otherwise
1413  *
1414  * If nohz_full is enabled and we have isolated CPUs, their combination must
1415  * still leave housekeeping CPUs.
1416  *
1417  * TBD: Should consider merging this function into
1418  *      prstate_housekeeping_conflict().
1419  */
1420 static bool isolated_cpus_can_update(struct cpumask *add_cpus,
1421 				     struct cpumask *del_cpus)
1422 {
1423 	cpumask_var_t full_hk_cpus;
1424 	int res = true;
1425 
1426 	if (!housekeeping_enabled(HK_TYPE_KERNEL_NOISE))
1427 		return true;
1428 
1429 	if (del_cpus && cpumask_weight_and(del_cpus,
1430 			housekeeping_cpumask(HK_TYPE_KERNEL_NOISE)))
1431 		return true;
1432 
1433 	if (!alloc_cpumask_var(&full_hk_cpus, GFP_KERNEL))
1434 		return false;
1435 
1436 	cpumask_and(full_hk_cpus, housekeeping_cpumask(HK_TYPE_KERNEL_NOISE),
1437 		    housekeeping_cpumask(HK_TYPE_DOMAIN));
1438 	cpumask_andnot(full_hk_cpus, full_hk_cpus, isolated_cpus);
1439 	cpumask_and(full_hk_cpus, full_hk_cpus, cpu_active_mask);
1440 	if (!cpumask_weight_andnot(full_hk_cpus, add_cpus))
1441 		res = false;
1442 
1443 	free_cpumask_var(full_hk_cpus);
1444 	return res;
1445 }
1446 
1447 /*
1448  * prstate_housekeeping_conflict - check for partition & housekeeping conflicts
1449  * @prstate: partition root state to be checked
1450  * @new_cpus: cpu mask
1451  * Return: true if there is conflict, false otherwise
1452  *
1453  * CPUs outside of boot_hk_cpus, if defined, can only be used in an
1454  * isolated partition.
1455  */
1456 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
1457 {
1458 	if (!have_boot_isolcpus)
1459 		return false;
1460 
1461 	if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus))
1462 		return true;
1463 
1464 	return false;
1465 }
1466 
1467 /*
1468  * update_isolation_cpumasks - Update external isolation related CPU masks
1469  *
1470  * The following external CPU masks will be updated if necessary:
1471  * - workqueue unbound cpumask
1472  */
1473 static void update_isolation_cpumasks(void)
1474 {
1475 	int ret;
1476 
1477 	if (!isolated_cpus_updating)
1478 		return;
1479 
1480 	lockdep_assert_cpus_held();
1481 
1482 	ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
1483 	WARN_ON_ONCE(ret < 0);
1484 
1485 	ret = tmigr_isolated_exclude_cpumask(isolated_cpus);
1486 	WARN_ON_ONCE(ret < 0);
1487 
1488 	isolated_cpus_updating = false;
1489 }
1490 
1491 /**
1492  * cpuset_cpu_is_isolated - Check if the given CPU is isolated
1493  * @cpu: the CPU number to be checked
1494  * Return: true if CPU is used in an isolated partition, false otherwise
1495  */
1496 bool cpuset_cpu_is_isolated(int cpu)
1497 {
1498 	return cpumask_test_cpu(cpu, isolated_cpus);
1499 }
1500 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
1501 
1502 /**
1503  * rm_siblings_excl_cpus - Remove exclusive CPUs that are used by sibling cpusets
1504  * @parent: Parent cpuset containing all siblings
1505  * @cs: Current cpuset (will be skipped)
1506  * @excpus:  exclusive effective CPU mask to modify
1507  *
1508  * This function ensures the given @excpus mask doesn't include any CPUs that
1509  * are exclusively allocated to sibling cpusets. It walks through all siblings
1510  * of @cs under @parent and removes their exclusive CPUs from @excpus.
1511  */
1512 static int rm_siblings_excl_cpus(struct cpuset *parent, struct cpuset *cs,
1513 					struct cpumask *excpus)
1514 {
1515 	struct cgroup_subsys_state *css;
1516 	struct cpuset *sibling;
1517 	int retval = 0;
1518 
1519 	if (cpumask_empty(excpus))
1520 		return retval;
1521 
1522 	/*
1523 	 * Exclude exclusive CPUs from siblings
1524 	 */
1525 	rcu_read_lock();
1526 	cpuset_for_each_child(sibling, css, parent) {
1527 		if (sibling == cs)
1528 			continue;
1529 
1530 		if (cpumask_intersects(excpus, sibling->exclusive_cpus)) {
1531 			cpumask_andnot(excpus, excpus, sibling->exclusive_cpus);
1532 			retval++;
1533 			continue;
1534 		}
1535 		if (cpumask_intersects(excpus, sibling->effective_xcpus)) {
1536 			cpumask_andnot(excpus, excpus, sibling->effective_xcpus);
1537 			retval++;
1538 		}
1539 	}
1540 	rcu_read_unlock();
1541 
1542 	return retval;
1543 }
1544 
1545 /*
1546  * compute_excpus - compute effective exclusive CPUs
1547  * @cs: cpuset
1548  * @xcpus: effective exclusive CPUs value to be set
1549  * Return: 0 if there is no sibling conflict, > 0 otherwise
1550  *
1551  * If exclusive_cpus isn't explicitly set , we have to scan the sibling cpusets
1552  * and exclude their exclusive_cpus or effective_xcpus as well.
1553  */
1554 static int compute_excpus(struct cpuset *cs, struct cpumask *excpus)
1555 {
1556 	struct cpuset *parent = parent_cs(cs);
1557 
1558 	cpumask_and(excpus, user_xcpus(cs), parent->effective_xcpus);
1559 
1560 	if (!cpumask_empty(cs->exclusive_cpus))
1561 		return 0;
1562 
1563 	return rm_siblings_excl_cpus(parent, cs, excpus);
1564 }
1565 
1566 /*
1567  * compute_trialcs_excpus - Compute effective exclusive CPUs for a trial cpuset
1568  * @trialcs: The trial cpuset containing the proposed new configuration
1569  * @cs: The original cpuset that the trial configuration is based on
1570  * Return: 0 if successful with no sibling conflict, >0 if a conflict is found
1571  *
1572  * Computes the effective_xcpus for a trial configuration. @cs is provided to represent
1573  * the real cs.
1574  */
1575 static int compute_trialcs_excpus(struct cpuset *trialcs, struct cpuset *cs)
1576 {
1577 	struct cpuset *parent = parent_cs(trialcs);
1578 	struct cpumask *excpus = trialcs->effective_xcpus;
1579 
1580 	/* trialcs is member, cpuset.cpus has no impact to excpus */
1581 	if (cs_is_member(cs))
1582 		cpumask_and(excpus, trialcs->exclusive_cpus,
1583 				parent->effective_xcpus);
1584 	else
1585 		cpumask_and(excpus, user_xcpus(trialcs), parent->effective_xcpus);
1586 
1587 	return rm_siblings_excl_cpus(parent, cs, excpus);
1588 }
1589 
1590 static inline bool is_remote_partition(struct cpuset *cs)
1591 {
1592 	return cs->remote_partition;
1593 }
1594 
1595 static inline bool is_local_partition(struct cpuset *cs)
1596 {
1597 	return is_partition_valid(cs) && !is_remote_partition(cs);
1598 }
1599 
1600 /*
1601  * remote_partition_enable - Enable current cpuset as a remote partition root
1602  * @cs: the cpuset to update
1603  * @new_prs: new partition_root_state
1604  * @tmp: temporary masks
1605  * Return: 0 if successful, errcode if error
1606  *
1607  * Enable the current cpuset to become a remote partition root taking CPUs
1608  * directly from the top cpuset. cpuset_mutex must be held by the caller.
1609  */
1610 static int remote_partition_enable(struct cpuset *cs, int new_prs,
1611 				   struct tmpmasks *tmp)
1612 {
1613 	/*
1614 	 * The user must have sysadmin privilege.
1615 	 */
1616 	if (!capable(CAP_SYS_ADMIN))
1617 		return PERR_ACCESS;
1618 
1619 	/*
1620 	 * The requested exclusive_cpus must not be allocated to other
1621 	 * partitions and it can't use up all the root's effective_cpus.
1622 	 *
1623 	 * The effective_xcpus mask can contain offline CPUs, but there must
1624 	 * be at least one or more online CPUs present before it can be enabled.
1625 	 *
1626 	 * Note that creating a remote partition with any local partition root
1627 	 * above it or remote partition root underneath it is not allowed.
1628 	 */
1629 	compute_excpus(cs, tmp->new_cpus);
1630 	WARN_ON_ONCE(cpumask_intersects(tmp->new_cpus, subpartitions_cpus));
1631 	if (!cpumask_intersects(tmp->new_cpus, cpu_active_mask) ||
1632 	    cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
1633 		return PERR_INVCPUS;
1634 	if (((new_prs == PRS_ISOLATED) &&
1635 	     !isolated_cpus_can_update(tmp->new_cpus, NULL)) ||
1636 	    prstate_housekeeping_conflict(new_prs, tmp->new_cpus))
1637 		return PERR_HKEEPING;
1638 
1639 	spin_lock_irq(&callback_lock);
1640 	partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
1641 	cs->remote_partition = true;
1642 	cpumask_copy(cs->effective_xcpus, tmp->new_cpus);
1643 	spin_unlock_irq(&callback_lock);
1644 	update_isolation_cpumasks();
1645 	cpuset_force_rebuild();
1646 	cs->prs_err = 0;
1647 
1648 	/*
1649 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1650 	 */
1651 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1652 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1653 	return 0;
1654 }
1655 
1656 /*
1657  * remote_partition_disable - Remove current cpuset from remote partition list
1658  * @cs: the cpuset to update
1659  * @tmp: temporary masks
1660  *
1661  * The effective_cpus is also updated.
1662  *
1663  * cpuset_mutex must be held by the caller.
1664  */
1665 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
1666 {
1667 	WARN_ON_ONCE(!is_remote_partition(cs));
1668 	/*
1669 	 * When a CPU is offlined, top_cpuset may end up with no available CPUs,
1670 	 * which should clear subpartitions_cpus. We should not emit a warning for this
1671 	 * scenario: the hierarchy is updated from top to bottom, so subpartitions_cpus
1672 	 * may already be cleared when disabling the partition.
1673 	 */
1674 	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus) &&
1675 		     !cpumask_empty(subpartitions_cpus));
1676 
1677 	spin_lock_irq(&callback_lock);
1678 	cs->remote_partition = false;
1679 	partition_xcpus_del(cs->partition_root_state, NULL, cs->effective_xcpus);
1680 	if (cs->prs_err)
1681 		cs->partition_root_state = -cs->partition_root_state;
1682 	else
1683 		cs->partition_root_state = PRS_MEMBER;
1684 
1685 	/* effective_xcpus may need to be changed */
1686 	compute_excpus(cs, cs->effective_xcpus);
1687 	reset_partition_data(cs);
1688 	spin_unlock_irq(&callback_lock);
1689 	update_isolation_cpumasks();
1690 	cpuset_force_rebuild();
1691 
1692 	/*
1693 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1694 	 */
1695 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1696 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1697 }
1698 
1699 /*
1700  * remote_cpus_update - cpus_exclusive change of remote partition
1701  * @cs: the cpuset to be updated
1702  * @xcpus: the new exclusive_cpus mask, if non-NULL
1703  * @excpus: the new effective_xcpus mask
1704  * @tmp: temporary masks
1705  *
1706  * top_cpuset and subpartitions_cpus will be updated or partition can be
1707  * invalidated.
1708  */
1709 static void remote_cpus_update(struct cpuset *cs, struct cpumask *xcpus,
1710 			       struct cpumask *excpus, struct tmpmasks *tmp)
1711 {
1712 	bool adding, deleting;
1713 	int prs = cs->partition_root_state;
1714 
1715 	if (WARN_ON_ONCE(!is_remote_partition(cs)))
1716 		return;
1717 
1718 	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1719 
1720 	if (cpumask_empty(excpus)) {
1721 		cs->prs_err = PERR_CPUSEMPTY;
1722 		goto invalidate;
1723 	}
1724 
1725 	adding   = cpumask_andnot(tmp->addmask, excpus, cs->effective_xcpus);
1726 	deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, excpus);
1727 
1728 	/*
1729 	 * Additions of remote CPUs is only allowed if those CPUs are
1730 	 * not allocated to other partitions and there are effective_cpus
1731 	 * left in the top cpuset.
1732 	 */
1733 	if (adding) {
1734 		WARN_ON_ONCE(cpumask_intersects(tmp->addmask, subpartitions_cpus));
1735 		if (!capable(CAP_SYS_ADMIN))
1736 			cs->prs_err = PERR_ACCESS;
1737 		else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
1738 			 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask))
1739 			cs->prs_err = PERR_NOCPUS;
1740 		else if ((prs == PRS_ISOLATED) &&
1741 			 !isolated_cpus_can_update(tmp->addmask, tmp->delmask))
1742 			cs->prs_err = PERR_HKEEPING;
1743 		if (cs->prs_err)
1744 			goto invalidate;
1745 	}
1746 
1747 	spin_lock_irq(&callback_lock);
1748 	if (adding)
1749 		partition_xcpus_add(prs, NULL, tmp->addmask);
1750 	if (deleting)
1751 		partition_xcpus_del(prs, NULL, tmp->delmask);
1752 	/*
1753 	 * Need to update effective_xcpus and exclusive_cpus now as
1754 	 * update_sibling_cpumasks() below may iterate back to the same cs.
1755 	 */
1756 	cpumask_copy(cs->effective_xcpus, excpus);
1757 	if (xcpus)
1758 		cpumask_copy(cs->exclusive_cpus, xcpus);
1759 	spin_unlock_irq(&callback_lock);
1760 	update_isolation_cpumasks();
1761 	if (adding || deleting)
1762 		cpuset_force_rebuild();
1763 
1764 	/*
1765 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1766 	 */
1767 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1768 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1769 	return;
1770 
1771 invalidate:
1772 	remote_partition_disable(cs, tmp);
1773 }
1774 
1775 /**
1776  * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
1777  * @cs:      The cpuset that requests change in partition root state
1778  * @cmd:     Partition root state change command
1779  * @newmask: Optional new cpumask for partcmd_update
1780  * @tmp:     Temporary addmask and delmask
1781  * Return:   0 or a partition root state error code
1782  *
1783  * For partcmd_enable*, the cpuset is being transformed from a non-partition
1784  * root to a partition root. The effective_xcpus (cpus_allowed if
1785  * effective_xcpus not set) mask of the given cpuset will be taken away from
1786  * parent's effective_cpus. The function will return 0 if all the CPUs listed
1787  * in effective_xcpus can be granted or an error code will be returned.
1788  *
1789  * For partcmd_disable, the cpuset is being transformed from a partition
1790  * root back to a non-partition root. Any CPUs in effective_xcpus will be
1791  * given back to parent's effective_cpus. 0 will always be returned.
1792  *
1793  * For partcmd_update, if the optional newmask is specified, the cpu list is
1794  * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
1795  * assumed to remain the same. The cpuset should either be a valid or invalid
1796  * partition root. The partition root state may change from valid to invalid
1797  * or vice versa. An error code will be returned if transitioning from
1798  * invalid to valid violates the exclusivity rule.
1799  *
1800  * For partcmd_invalidate, the current partition will be made invalid.
1801  *
1802  * The partcmd_enable* and partcmd_disable commands are used by
1803  * update_prstate(). An error code may be returned and the caller will check
1804  * for error.
1805  *
1806  * The partcmd_update command is used by update_cpumasks_hier() with newmask
1807  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1808  * by update_cpumask() with NULL newmask. In both cases, the callers won't
1809  * check for error and so partition_root_state and prs_err will be updated
1810  * directly.
1811  */
1812 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
1813 					   struct cpumask *newmask,
1814 					   struct tmpmasks *tmp)
1815 {
1816 	struct cpuset *parent = parent_cs(cs);
1817 	int adding;	/* Adding cpus to parent's effective_cpus	*/
1818 	int deleting;	/* Deleting cpus from parent's effective_cpus	*/
1819 	int old_prs, new_prs;
1820 	int part_error = PERR_NONE;	/* Partition error? */
1821 	struct cpumask *xcpus = user_xcpus(cs);
1822 	int parent_prs = parent->partition_root_state;
1823 	bool nocpu;
1824 
1825 	lockdep_assert_held(&cpuset_mutex);
1826 	WARN_ON_ONCE(is_remote_partition(cs));	/* For local partition only */
1827 
1828 	/*
1829 	 * new_prs will only be changed for the partcmd_update and
1830 	 * partcmd_invalidate commands.
1831 	 */
1832 	adding = deleting = false;
1833 	old_prs = new_prs = cs->partition_root_state;
1834 
1835 	if (cmd == partcmd_invalidate) {
1836 		if (is_partition_invalid(cs))
1837 			return 0;
1838 
1839 		/*
1840 		 * Make the current partition invalid.
1841 		 */
1842 		if (is_partition_valid(parent))
1843 			adding = cpumask_and(tmp->addmask,
1844 					     xcpus, parent->effective_xcpus);
1845 		if (old_prs > 0)
1846 			new_prs = -old_prs;
1847 
1848 		goto write_error;
1849 	}
1850 
1851 	/*
1852 	 * The parent must be a partition root.
1853 	 * The new cpumask, if present, or the current cpus_allowed must
1854 	 * not be empty.
1855 	 */
1856 	if (!is_partition_valid(parent)) {
1857 		return is_partition_invalid(parent)
1858 		       ? PERR_INVPARENT : PERR_NOTPART;
1859 	}
1860 	if (!newmask && xcpus_empty(cs))
1861 		return PERR_CPUSEMPTY;
1862 
1863 	nocpu = tasks_nocpu_error(parent, cs, xcpus);
1864 
1865 	if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
1866 		/*
1867 		 * Need to call compute_excpus() in case
1868 		 * exclusive_cpus not set. Sibling conflict should only happen
1869 		 * if exclusive_cpus isn't set.
1870 		 */
1871 		xcpus = tmp->delmask;
1872 		if (compute_excpus(cs, xcpus))
1873 			WARN_ON_ONCE(!cpumask_empty(cs->exclusive_cpus));
1874 		new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
1875 
1876 		/*
1877 		 * Enabling partition root is not allowed if its
1878 		 * effective_xcpus is empty.
1879 		 */
1880 		if (cpumask_empty(xcpus))
1881 			return PERR_INVCPUS;
1882 
1883 		if (prstate_housekeeping_conflict(new_prs, xcpus))
1884 			return PERR_HKEEPING;
1885 
1886 		if ((new_prs == PRS_ISOLATED) && (new_prs != parent_prs) &&
1887 		    !isolated_cpus_can_update(xcpus, NULL))
1888 			return PERR_HKEEPING;
1889 
1890 		if (tasks_nocpu_error(parent, cs, xcpus))
1891 			return PERR_NOCPUS;
1892 
1893 		/*
1894 		 * This function will only be called when all the preliminary
1895 		 * checks have passed. At this point, the following condition
1896 		 * should hold.
1897 		 *
1898 		 * (cs->effective_xcpus & cpu_active_mask) ⊆ parent->effective_cpus
1899 		 *
1900 		 * Warn if it is not the case.
1901 		 */
1902 		cpumask_and(tmp->new_cpus, xcpus, cpu_active_mask);
1903 		WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
1904 
1905 		deleting = true;
1906 	} else if (cmd == partcmd_disable) {
1907 		/*
1908 		 * May need to add cpus back to parent's effective_cpus
1909 		 * (and maybe removed from subpartitions_cpus/isolated_cpus)
1910 		 * for valid partition root. xcpus may contain CPUs that
1911 		 * shouldn't be removed from the two global cpumasks.
1912 		 */
1913 		if (is_partition_valid(cs)) {
1914 			cpumask_copy(tmp->addmask, cs->effective_xcpus);
1915 			adding = true;
1916 		}
1917 		new_prs = PRS_MEMBER;
1918 	} else if (newmask) {
1919 		/*
1920 		 * Empty cpumask is not allowed
1921 		 */
1922 		if (cpumask_empty(newmask)) {
1923 			part_error = PERR_CPUSEMPTY;
1924 			goto write_error;
1925 		}
1926 
1927 		/* Check newmask again, whether cpus are available for parent/cs */
1928 		nocpu |= tasks_nocpu_error(parent, cs, newmask);
1929 
1930 		/*
1931 		 * partcmd_update with newmask:
1932 		 *
1933 		 * Compute add/delete mask to/from effective_cpus
1934 		 *
1935 		 * For valid partition:
1936 		 *   addmask = exclusive_cpus & ~newmask
1937 		 *			      & parent->effective_xcpus
1938 		 *   delmask = newmask & ~exclusive_cpus
1939 		 *		       & parent->effective_xcpus
1940 		 *
1941 		 * For invalid partition:
1942 		 *   delmask = newmask & parent->effective_xcpus
1943 		 *   The partition may become valid soon.
1944 		 */
1945 		if (is_partition_invalid(cs)) {
1946 			adding = false;
1947 			deleting = cpumask_and(tmp->delmask,
1948 					newmask, parent->effective_xcpus);
1949 		} else {
1950 			cpumask_andnot(tmp->addmask, xcpus, newmask);
1951 			adding = cpumask_and(tmp->addmask, tmp->addmask,
1952 					     parent->effective_xcpus);
1953 
1954 			cpumask_andnot(tmp->delmask, newmask, xcpus);
1955 			deleting = cpumask_and(tmp->delmask, tmp->delmask,
1956 					       parent->effective_xcpus);
1957 		}
1958 
1959 		/*
1960 		 * TBD: Invalidate a currently valid child root partition may
1961 		 * still break isolated_cpus_can_update() rule if parent is an
1962 		 * isolated partition.
1963 		 */
1964 		if (is_partition_valid(cs) && (old_prs != parent_prs)) {
1965 			if ((parent_prs == PRS_ROOT) &&
1966 			    /* Adding to parent means removing isolated CPUs */
1967 			    !isolated_cpus_can_update(tmp->delmask, tmp->addmask))
1968 				part_error = PERR_HKEEPING;
1969 			if ((parent_prs == PRS_ISOLATED) &&
1970 			    /* Adding to parent means adding isolated CPUs */
1971 			    !isolated_cpus_can_update(tmp->addmask, tmp->delmask))
1972 				part_error = PERR_HKEEPING;
1973 		}
1974 
1975 		/*
1976 		 * The new CPUs to be removed from parent's effective CPUs
1977 		 * must be present.
1978 		 */
1979 		if (deleting) {
1980 			cpumask_and(tmp->new_cpus, tmp->delmask, cpu_active_mask);
1981 			WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
1982 		}
1983 
1984 		/*
1985 		 * Make partition invalid if parent's effective_cpus could
1986 		 * become empty and there are tasks in the parent.
1987 		 */
1988 		if (nocpu && (!adding ||
1989 		    !cpumask_intersects(tmp->addmask, cpu_active_mask))) {
1990 			part_error = PERR_NOCPUS;
1991 			deleting = false;
1992 			adding = cpumask_and(tmp->addmask,
1993 					     xcpus, parent->effective_xcpus);
1994 		}
1995 	} else {
1996 		/*
1997 		 * partcmd_update w/o newmask
1998 		 *
1999 		 * delmask = effective_xcpus & parent->effective_cpus
2000 		 *
2001 		 * This can be called from:
2002 		 * 1) update_cpumasks_hier()
2003 		 * 2) cpuset_hotplug_update_tasks()
2004 		 *
2005 		 * Check to see if it can be transitioned from valid to
2006 		 * invalid partition or vice versa.
2007 		 *
2008 		 * A partition error happens when parent has tasks and all
2009 		 * its effective CPUs will have to be distributed out.
2010 		 */
2011 		if (nocpu) {
2012 			part_error = PERR_NOCPUS;
2013 			if (is_partition_valid(cs))
2014 				adding = cpumask_and(tmp->addmask,
2015 						xcpus, parent->effective_xcpus);
2016 		} else if (is_partition_invalid(cs) && !cpumask_empty(xcpus) &&
2017 			   cpumask_subset(xcpus, parent->effective_xcpus)) {
2018 			struct cgroup_subsys_state *css;
2019 			struct cpuset *child;
2020 			bool exclusive = true;
2021 
2022 			/*
2023 			 * Convert invalid partition to valid has to
2024 			 * pass the cpu exclusivity test.
2025 			 */
2026 			rcu_read_lock();
2027 			cpuset_for_each_child(child, css, parent) {
2028 				if (child == cs)
2029 					continue;
2030 				if (!cpusets_are_exclusive(cs, child)) {
2031 					exclusive = false;
2032 					break;
2033 				}
2034 			}
2035 			rcu_read_unlock();
2036 			if (exclusive)
2037 				deleting = cpumask_and(tmp->delmask,
2038 						xcpus, parent->effective_cpus);
2039 			else
2040 				part_error = PERR_NOTEXCL;
2041 		}
2042 	}
2043 
2044 write_error:
2045 	if (part_error)
2046 		WRITE_ONCE(cs->prs_err, part_error);
2047 
2048 	if (cmd == partcmd_update) {
2049 		/*
2050 		 * Check for possible transition between valid and invalid
2051 		 * partition root.
2052 		 */
2053 		switch (cs->partition_root_state) {
2054 		case PRS_ROOT:
2055 		case PRS_ISOLATED:
2056 			if (part_error)
2057 				new_prs = -old_prs;
2058 			break;
2059 		case PRS_INVALID_ROOT:
2060 		case PRS_INVALID_ISOLATED:
2061 			if (!part_error)
2062 				new_prs = -old_prs;
2063 			break;
2064 		}
2065 	}
2066 
2067 	if (!adding && !deleting && (new_prs == old_prs))
2068 		return 0;
2069 
2070 	/*
2071 	 * Transitioning between invalid to valid or vice versa may require
2072 	 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
2073 	 * validate_change() has already been successfully called and
2074 	 * CPU lists in cs haven't been updated yet. So defer it to later.
2075 	 */
2076 	if ((old_prs != new_prs) && (cmd != partcmd_update))  {
2077 		int err = update_partition_exclusive_flag(cs, new_prs);
2078 
2079 		if (err)
2080 			return err;
2081 	}
2082 
2083 	/*
2084 	 * Change the parent's effective_cpus & effective_xcpus (top cpuset
2085 	 * only).
2086 	 *
2087 	 * Newly added CPUs will be removed from effective_cpus and
2088 	 * newly deleted ones will be added back to effective_cpus.
2089 	 */
2090 	spin_lock_irq(&callback_lock);
2091 	if (old_prs != new_prs)
2092 		cs->partition_root_state = new_prs;
2093 
2094 	/*
2095 	 * Adding to parent's effective_cpus means deletion CPUs from cs
2096 	 * and vice versa.
2097 	 */
2098 	if (adding)
2099 		partition_xcpus_del(old_prs, parent, tmp->addmask);
2100 	if (deleting)
2101 		partition_xcpus_add(new_prs, parent, tmp->delmask);
2102 
2103 	spin_unlock_irq(&callback_lock);
2104 	update_isolation_cpumasks();
2105 
2106 	if ((old_prs != new_prs) && (cmd == partcmd_update))
2107 		update_partition_exclusive_flag(cs, new_prs);
2108 
2109 	if (adding || deleting) {
2110 		cpuset_update_tasks_cpumask(parent, tmp->addmask);
2111 		update_sibling_cpumasks(parent, cs, tmp);
2112 	}
2113 
2114 	/*
2115 	 * For partcmd_update without newmask, it is being called from
2116 	 * cpuset_handle_hotplug(). Update the load balance flag and
2117 	 * scheduling domain accordingly.
2118 	 */
2119 	if ((cmd == partcmd_update) && !newmask)
2120 		update_partition_sd_lb(cs, old_prs);
2121 
2122 	notify_partition_change(cs, old_prs);
2123 	return 0;
2124 }
2125 
2126 /**
2127  * compute_partition_effective_cpumask - compute effective_cpus for partition
2128  * @cs: partition root cpuset
2129  * @new_ecpus: previously computed effective_cpus to be updated
2130  *
2131  * Compute the effective_cpus of a partition root by scanning effective_xcpus
2132  * of child partition roots and excluding their effective_xcpus.
2133  *
2134  * This has the side effect of invalidating valid child partition roots,
2135  * if necessary. Since it is called from either cpuset_hotplug_update_tasks()
2136  * or update_cpumasks_hier() where parent and children are modified
2137  * successively, we don't need to call update_parent_effective_cpumask()
2138  * and the child's effective_cpus will be updated in later iterations.
2139  *
2140  * Note that rcu_read_lock() is assumed to be held.
2141  */
2142 static void compute_partition_effective_cpumask(struct cpuset *cs,
2143 						struct cpumask *new_ecpus)
2144 {
2145 	struct cgroup_subsys_state *css;
2146 	struct cpuset *child;
2147 	bool populated = partition_is_populated(cs, NULL);
2148 
2149 	/*
2150 	 * Check child partition roots to see if they should be
2151 	 * invalidated when
2152 	 *  1) child effective_xcpus not a subset of new
2153 	 *     excluisve_cpus
2154 	 *  2) All the effective_cpus will be used up and cp
2155 	 *     has tasks
2156 	 */
2157 	compute_excpus(cs, new_ecpus);
2158 	cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
2159 
2160 	rcu_read_lock();
2161 	cpuset_for_each_child(child, css, cs) {
2162 		if (!is_partition_valid(child))
2163 			continue;
2164 
2165 		/*
2166 		 * There shouldn't be a remote partition underneath another
2167 		 * partition root.
2168 		 */
2169 		WARN_ON_ONCE(is_remote_partition(child));
2170 		child->prs_err = 0;
2171 		if (!cpumask_subset(child->effective_xcpus,
2172 				    cs->effective_xcpus))
2173 			child->prs_err = PERR_INVCPUS;
2174 		else if (populated &&
2175 			 cpumask_subset(new_ecpus, child->effective_xcpus))
2176 			child->prs_err = PERR_NOCPUS;
2177 
2178 		if (child->prs_err) {
2179 			int old_prs = child->partition_root_state;
2180 
2181 			/*
2182 			 * Invalidate child partition
2183 			 */
2184 			spin_lock_irq(&callback_lock);
2185 			make_partition_invalid(child);
2186 			spin_unlock_irq(&callback_lock);
2187 			notify_partition_change(child, old_prs);
2188 			continue;
2189 		}
2190 		cpumask_andnot(new_ecpus, new_ecpus,
2191 			       child->effective_xcpus);
2192 	}
2193 	rcu_read_unlock();
2194 }
2195 
2196 /*
2197  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
2198  * @cs:  the cpuset to consider
2199  * @tmp: temp variables for calculating effective_cpus & partition setup
2200  * @force: don't skip any descendant cpusets if set
2201  *
2202  * When configured cpumask is changed, the effective cpumasks of this cpuset
2203  * and all its descendants need to be updated.
2204  *
2205  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
2206  *
2207  * Called with cpuset_mutex held
2208  */
2209 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
2210 				 bool force)
2211 {
2212 	struct cpuset *cp;
2213 	struct cgroup_subsys_state *pos_css;
2214 	int old_prs, new_prs;
2215 
2216 	rcu_read_lock();
2217 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2218 		struct cpuset *parent = parent_cs(cp);
2219 		bool remote = is_remote_partition(cp);
2220 		bool update_parent = false;
2221 
2222 		old_prs = new_prs = cp->partition_root_state;
2223 
2224 		/*
2225 		 * For child remote partition root (!= cs), we need to call
2226 		 * remote_cpus_update() if effective_xcpus will be changed.
2227 		 * Otherwise, we can skip the whole subtree.
2228 		 *
2229 		 * remote_cpus_update() will reuse tmp->new_cpus only after
2230 		 * its value is being processed.
2231 		 */
2232 		if (remote && (cp != cs)) {
2233 			compute_excpus(cp, tmp->new_cpus);
2234 			if (cpumask_equal(cp->effective_xcpus, tmp->new_cpus)) {
2235 				pos_css = css_rightmost_descendant(pos_css);
2236 				continue;
2237 			}
2238 			rcu_read_unlock();
2239 			remote_cpus_update(cp, NULL, tmp->new_cpus, tmp);
2240 			rcu_read_lock();
2241 
2242 			/* Remote partition may be invalidated */
2243 			new_prs = cp->partition_root_state;
2244 			remote = (new_prs == old_prs);
2245 		}
2246 
2247 		if (remote || (is_partition_valid(parent) && is_partition_valid(cp)))
2248 			compute_partition_effective_cpumask(cp, tmp->new_cpus);
2249 		else
2250 			compute_effective_cpumask(tmp->new_cpus, cp, parent);
2251 
2252 		if (remote)
2253 			goto get_css;	/* Ready to update cpuset data */
2254 
2255 		/*
2256 		 * A partition with no effective_cpus is allowed as long as
2257 		 * there is no task associated with it. Call
2258 		 * update_parent_effective_cpumask() to check it.
2259 		 */
2260 		if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
2261 			update_parent = true;
2262 			goto update_parent_effective;
2263 		}
2264 
2265 		/*
2266 		 * If it becomes empty, inherit the effective mask of the
2267 		 * parent, which is guaranteed to have some CPUs unless
2268 		 * it is a partition root that has explicitly distributed
2269 		 * out all its CPUs.
2270 		 */
2271 		if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus))
2272 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
2273 
2274 		/*
2275 		 * Skip the whole subtree if
2276 		 * 1) the cpumask remains the same,
2277 		 * 2) has no partition root state,
2278 		 * 3) force flag not set, and
2279 		 * 4) for v2 load balance state same as its parent.
2280 		 */
2281 		if (!cp->partition_root_state && !force &&
2282 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
2283 		    (!cpuset_v2() ||
2284 		    (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
2285 			pos_css = css_rightmost_descendant(pos_css);
2286 			continue;
2287 		}
2288 
2289 update_parent_effective:
2290 		/*
2291 		 * update_parent_effective_cpumask() should have been called
2292 		 * for cs already in update_cpumask(). We should also call
2293 		 * cpuset_update_tasks_cpumask() again for tasks in the parent
2294 		 * cpuset if the parent's effective_cpus changes.
2295 		 */
2296 		if ((cp != cs) && old_prs) {
2297 			switch (parent->partition_root_state) {
2298 			case PRS_ROOT:
2299 			case PRS_ISOLATED:
2300 				update_parent = true;
2301 				break;
2302 
2303 			default:
2304 				/*
2305 				 * When parent is not a partition root or is
2306 				 * invalid, child partition roots become
2307 				 * invalid too.
2308 				 */
2309 				if (is_partition_valid(cp))
2310 					new_prs = -cp->partition_root_state;
2311 				WRITE_ONCE(cp->prs_err,
2312 					   is_partition_invalid(parent)
2313 					   ? PERR_INVPARENT : PERR_NOTPART);
2314 				break;
2315 			}
2316 		}
2317 get_css:
2318 		if (!css_tryget_online(&cp->css))
2319 			continue;
2320 		rcu_read_unlock();
2321 
2322 		if (update_parent) {
2323 			update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
2324 			/*
2325 			 * The cpuset partition_root_state may become
2326 			 * invalid. Capture it.
2327 			 */
2328 			new_prs = cp->partition_root_state;
2329 		}
2330 
2331 		spin_lock_irq(&callback_lock);
2332 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
2333 		cp->partition_root_state = new_prs;
2334 		if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs))
2335 			compute_excpus(cp, cp->effective_xcpus);
2336 
2337 		/*
2338 		 * Make sure effective_xcpus is properly set for a valid
2339 		 * partition root.
2340 		 */
2341 		if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
2342 			cpumask_and(cp->effective_xcpus,
2343 				    cp->cpus_allowed, parent->effective_xcpus);
2344 		else if (new_prs < 0)
2345 			reset_partition_data(cp);
2346 		spin_unlock_irq(&callback_lock);
2347 
2348 		notify_partition_change(cp, old_prs);
2349 
2350 		WARN_ON(!is_in_v2_mode() &&
2351 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
2352 
2353 		cpuset_update_tasks_cpumask(cp, cp->effective_cpus);
2354 
2355 		/*
2356 		 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
2357 		 * from parent if current cpuset isn't a valid partition root
2358 		 * and their load balance states differ.
2359 		 */
2360 		if (cpuset_v2() && !is_partition_valid(cp) &&
2361 		    (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
2362 			if (is_sched_load_balance(parent))
2363 				set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2364 			else
2365 				clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2366 		}
2367 
2368 		/*
2369 		 * On legacy hierarchy, if the effective cpumask of any non-
2370 		 * empty cpuset is changed, we need to rebuild sched domains.
2371 		 * On default hierarchy, the cpuset needs to be a partition
2372 		 * root as well.
2373 		 */
2374 		if (!cpumask_empty(cp->cpus_allowed) &&
2375 		    is_sched_load_balance(cp) &&
2376 		   (!cpuset_v2() || is_partition_valid(cp)))
2377 			cpuset_force_rebuild();
2378 
2379 		rcu_read_lock();
2380 		css_put(&cp->css);
2381 	}
2382 	rcu_read_unlock();
2383 }
2384 
2385 /**
2386  * update_sibling_cpumasks - Update siblings cpumasks
2387  * @parent:  Parent cpuset
2388  * @cs:      Current cpuset
2389  * @tmp:     Temp variables
2390  */
2391 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
2392 				    struct tmpmasks *tmp)
2393 {
2394 	struct cpuset *sibling;
2395 	struct cgroup_subsys_state *pos_css;
2396 
2397 	lockdep_assert_held(&cpuset_mutex);
2398 
2399 	/*
2400 	 * Check all its siblings and call update_cpumasks_hier()
2401 	 * if their effective_cpus will need to be changed.
2402 	 *
2403 	 * It is possible a change in parent's effective_cpus
2404 	 * due to a change in a child partition's effective_xcpus will impact
2405 	 * its siblings even if they do not inherit parent's effective_cpus
2406 	 * directly.
2407 	 *
2408 	 * The update_cpumasks_hier() function may sleep. So we have to
2409 	 * release the RCU read lock before calling it.
2410 	 */
2411 	rcu_read_lock();
2412 	cpuset_for_each_child(sibling, pos_css, parent) {
2413 		if (sibling == cs)
2414 			continue;
2415 		if (!is_partition_valid(sibling)) {
2416 			compute_effective_cpumask(tmp->new_cpus, sibling,
2417 						  parent);
2418 			if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
2419 				continue;
2420 		} else if (is_remote_partition(sibling)) {
2421 			/*
2422 			 * Change in a sibling cpuset won't affect a remote
2423 			 * partition root.
2424 			 */
2425 			continue;
2426 		}
2427 
2428 		if (!css_tryget_online(&sibling->css))
2429 			continue;
2430 
2431 		rcu_read_unlock();
2432 		update_cpumasks_hier(sibling, tmp, false);
2433 		rcu_read_lock();
2434 		css_put(&sibling->css);
2435 	}
2436 	rcu_read_unlock();
2437 }
2438 
2439 static int parse_cpuset_cpulist(const char *buf, struct cpumask *out_mask)
2440 {
2441 	int retval;
2442 
2443 	retval = cpulist_parse(buf, out_mask);
2444 	if (retval < 0)
2445 		return retval;
2446 	if (!cpumask_subset(out_mask, top_cpuset.cpus_allowed))
2447 		return -EINVAL;
2448 
2449 	return 0;
2450 }
2451 
2452 /**
2453  * validate_partition - Validate a cpuset partition configuration
2454  * @cs: The cpuset to validate
2455  * @trialcs: The trial cpuset containing proposed configuration changes
2456  *
2457  * If any validation check fails, the appropriate error code is set in the
2458  * cpuset's prs_err field.
2459  *
2460  * Return: PRS error code (0 if valid, non-zero error code if invalid)
2461  */
2462 static enum prs_errcode validate_partition(struct cpuset *cs, struct cpuset *trialcs)
2463 {
2464 	struct cpuset *parent = parent_cs(cs);
2465 
2466 	if (cs_is_member(trialcs))
2467 		return PERR_NONE;
2468 
2469 	if (cpumask_empty(trialcs->effective_xcpus))
2470 		return PERR_INVCPUS;
2471 
2472 	if (prstate_housekeeping_conflict(trialcs->partition_root_state,
2473 					  trialcs->effective_xcpus))
2474 		return PERR_HKEEPING;
2475 
2476 	if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus))
2477 		return PERR_NOCPUS;
2478 
2479 	return PERR_NONE;
2480 }
2481 
2482 static int cpus_allowed_validate_change(struct cpuset *cs, struct cpuset *trialcs,
2483 					struct tmpmasks *tmp)
2484 {
2485 	int retval;
2486 	struct cpuset *parent = parent_cs(cs);
2487 
2488 	retval = validate_change(cs, trialcs);
2489 
2490 	if ((retval == -EINVAL) && cpuset_v2()) {
2491 		struct cgroup_subsys_state *css;
2492 		struct cpuset *cp;
2493 
2494 		/*
2495 		 * The -EINVAL error code indicates that partition sibling
2496 		 * CPU exclusivity rule has been violated. We still allow
2497 		 * the cpumask change to proceed while invalidating the
2498 		 * partition. However, any conflicting sibling partitions
2499 		 * have to be marked as invalid too.
2500 		 */
2501 		trialcs->prs_err = PERR_NOTEXCL;
2502 		rcu_read_lock();
2503 		cpuset_for_each_child(cp, css, parent) {
2504 			struct cpumask *xcpus = user_xcpus(trialcs);
2505 
2506 			if (is_partition_valid(cp) &&
2507 			    cpumask_intersects(xcpus, cp->effective_xcpus)) {
2508 				rcu_read_unlock();
2509 				update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, tmp);
2510 				rcu_read_lock();
2511 			}
2512 		}
2513 		rcu_read_unlock();
2514 		retval = 0;
2515 	}
2516 	return retval;
2517 }
2518 
2519 /**
2520  * partition_cpus_change - Handle partition state changes due to CPU mask updates
2521  * @cs: The target cpuset being modified
2522  * @trialcs: The trial cpuset containing proposed configuration changes
2523  * @tmp: Temporary masks for intermediate calculations
2524  *
2525  * This function handles partition state transitions triggered by CPU mask changes.
2526  * CPU modifications may cause a partition to be disabled or require state updates.
2527  */
2528 static void partition_cpus_change(struct cpuset *cs, struct cpuset *trialcs,
2529 					struct tmpmasks *tmp)
2530 {
2531 	enum prs_errcode prs_err;
2532 
2533 	if (cs_is_member(cs))
2534 		return;
2535 
2536 	prs_err = validate_partition(cs, trialcs);
2537 	if (prs_err)
2538 		trialcs->prs_err = cs->prs_err = prs_err;
2539 
2540 	if (is_remote_partition(cs)) {
2541 		if (trialcs->prs_err)
2542 			remote_partition_disable(cs, tmp);
2543 		else
2544 			remote_cpus_update(cs, trialcs->exclusive_cpus,
2545 					   trialcs->effective_xcpus, tmp);
2546 	} else {
2547 		if (trialcs->prs_err)
2548 			update_parent_effective_cpumask(cs, partcmd_invalidate,
2549 							NULL, tmp);
2550 		else
2551 			update_parent_effective_cpumask(cs, partcmd_update,
2552 							trialcs->effective_xcpus, tmp);
2553 	}
2554 }
2555 
2556 /**
2557  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
2558  * @cs: the cpuset to consider
2559  * @trialcs: trial cpuset
2560  * @buf: buffer of cpu numbers written to this cpuset
2561  */
2562 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2563 			  const char *buf)
2564 {
2565 	int retval;
2566 	struct tmpmasks tmp;
2567 	bool force = false;
2568 	int old_prs = cs->partition_root_state;
2569 
2570 	retval = parse_cpuset_cpulist(buf, trialcs->cpus_allowed);
2571 	if (retval < 0)
2572 		return retval;
2573 
2574 	/* Nothing to do if the cpus didn't change */
2575 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
2576 		return 0;
2577 
2578 	if (alloc_tmpmasks(&tmp))
2579 		return -ENOMEM;
2580 
2581 	compute_trialcs_excpus(trialcs, cs);
2582 	trialcs->prs_err = PERR_NONE;
2583 
2584 	retval = cpus_allowed_validate_change(cs, trialcs, &tmp);
2585 	if (retval < 0)
2586 		goto out_free;
2587 
2588 	/*
2589 	 * Check all the descendants in update_cpumasks_hier() if
2590 	 * effective_xcpus is to be changed.
2591 	 */
2592 	force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2593 
2594 	partition_cpus_change(cs, trialcs, &tmp);
2595 
2596 	spin_lock_irq(&callback_lock);
2597 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
2598 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2599 	if ((old_prs > 0) && !is_partition_valid(cs))
2600 		reset_partition_data(cs);
2601 	spin_unlock_irq(&callback_lock);
2602 
2603 	/* effective_cpus/effective_xcpus will be updated here */
2604 	update_cpumasks_hier(cs, &tmp, force);
2605 
2606 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2607 	if (cs->partition_root_state)
2608 		update_partition_sd_lb(cs, old_prs);
2609 out_free:
2610 	free_tmpmasks(&tmp);
2611 	return retval;
2612 }
2613 
2614 /**
2615  * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
2616  * @cs: the cpuset to consider
2617  * @trialcs: trial cpuset
2618  * @buf: buffer of cpu numbers written to this cpuset
2619  *
2620  * The tasks' cpumask will be updated if cs is a valid partition root.
2621  */
2622 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2623 				    const char *buf)
2624 {
2625 	int retval;
2626 	struct tmpmasks tmp;
2627 	bool force = false;
2628 	int old_prs = cs->partition_root_state;
2629 
2630 	retval = parse_cpuset_cpulist(buf, trialcs->exclusive_cpus);
2631 	if (retval < 0)
2632 		return retval;
2633 
2634 	/* Nothing to do if the CPUs didn't change */
2635 	if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
2636 		return 0;
2637 
2638 	/*
2639 	 * Reject the change if there is exclusive CPUs conflict with
2640 	 * the siblings.
2641 	 */
2642 	if (compute_trialcs_excpus(trialcs, cs))
2643 		return -EINVAL;
2644 
2645 	/*
2646 	 * Check all the descendants in update_cpumasks_hier() if
2647 	 * effective_xcpus is to be changed.
2648 	 */
2649 	force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2650 
2651 	retval = validate_change(cs, trialcs);
2652 	if (retval)
2653 		return retval;
2654 
2655 	if (alloc_tmpmasks(&tmp))
2656 		return -ENOMEM;
2657 
2658 	trialcs->prs_err = PERR_NONE;
2659 	partition_cpus_change(cs, trialcs, &tmp);
2660 
2661 	spin_lock_irq(&callback_lock);
2662 	cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
2663 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2664 	if ((old_prs > 0) && !is_partition_valid(cs))
2665 		reset_partition_data(cs);
2666 	spin_unlock_irq(&callback_lock);
2667 
2668 	/*
2669 	 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
2670 	 * of the subtree when it is a valid partition root or effective_xcpus
2671 	 * is updated.
2672 	 */
2673 	if (is_partition_valid(cs) || force)
2674 		update_cpumasks_hier(cs, &tmp, force);
2675 
2676 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2677 	if (cs->partition_root_state)
2678 		update_partition_sd_lb(cs, old_prs);
2679 
2680 	free_tmpmasks(&tmp);
2681 	return 0;
2682 }
2683 
2684 /*
2685  * Migrate memory region from one set of nodes to another.  This is
2686  * performed asynchronously as it can be called from process migration path
2687  * holding locks involved in process management.  All mm migrations are
2688  * performed in the queued order and can be waited for by flushing
2689  * cpuset_migrate_mm_wq.
2690  */
2691 
2692 struct cpuset_migrate_mm_work {
2693 	struct work_struct	work;
2694 	struct mm_struct	*mm;
2695 	nodemask_t		from;
2696 	nodemask_t		to;
2697 };
2698 
2699 static void cpuset_migrate_mm_workfn(struct work_struct *work)
2700 {
2701 	struct cpuset_migrate_mm_work *mwork =
2702 		container_of(work, struct cpuset_migrate_mm_work, work);
2703 
2704 	/* on a wq worker, no need to worry about %current's mems_allowed */
2705 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
2706 	mmput(mwork->mm);
2707 	kfree(mwork);
2708 }
2709 
2710 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
2711 							const nodemask_t *to)
2712 {
2713 	struct cpuset_migrate_mm_work *mwork;
2714 
2715 	if (nodes_equal(*from, *to)) {
2716 		mmput(mm);
2717 		return;
2718 	}
2719 
2720 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
2721 	if (mwork) {
2722 		mwork->mm = mm;
2723 		mwork->from = *from;
2724 		mwork->to = *to;
2725 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
2726 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
2727 	} else {
2728 		mmput(mm);
2729 	}
2730 }
2731 
2732 static void flush_migrate_mm_task_workfn(struct callback_head *head)
2733 {
2734 	flush_workqueue(cpuset_migrate_mm_wq);
2735 	kfree(head);
2736 }
2737 
2738 static void schedule_flush_migrate_mm(void)
2739 {
2740 	struct callback_head *flush_cb;
2741 
2742 	flush_cb = kzalloc(sizeof(struct callback_head), GFP_KERNEL);
2743 	if (!flush_cb)
2744 		return;
2745 
2746 	init_task_work(flush_cb, flush_migrate_mm_task_workfn);
2747 
2748 	if (task_work_add(current, flush_cb, TWA_RESUME))
2749 		kfree(flush_cb);
2750 }
2751 
2752 /*
2753  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2754  * @tsk: the task to change
2755  * @newmems: new nodes that the task will be set
2756  *
2757  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2758  * and rebind an eventual tasks' mempolicy. If the task is allocating in
2759  * parallel, it might temporarily see an empty intersection, which results in
2760  * a seqlock check and retry before OOM or allocation failure.
2761  */
2762 static void cpuset_change_task_nodemask(struct task_struct *tsk,
2763 					nodemask_t *newmems)
2764 {
2765 	task_lock(tsk);
2766 
2767 	local_irq_disable();
2768 	write_seqcount_begin(&tsk->mems_allowed_seq);
2769 
2770 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2771 	mpol_rebind_task(tsk, newmems);
2772 	tsk->mems_allowed = *newmems;
2773 
2774 	write_seqcount_end(&tsk->mems_allowed_seq);
2775 	local_irq_enable();
2776 
2777 	task_unlock(tsk);
2778 }
2779 
2780 static void *cpuset_being_rebound;
2781 
2782 /**
2783  * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2784  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2785  *
2786  * Iterate through each task of @cs updating its mems_allowed to the
2787  * effective cpuset's.  As this function is called with cpuset_mutex held,
2788  * cpuset membership stays stable.
2789  */
2790 void cpuset_update_tasks_nodemask(struct cpuset *cs)
2791 {
2792 	static nodemask_t newmems;	/* protected by cpuset_mutex */
2793 	struct css_task_iter it;
2794 	struct task_struct *task;
2795 
2796 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
2797 
2798 	guarantee_online_mems(cs, &newmems);
2799 
2800 	/*
2801 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2802 	 * take while holding tasklist_lock.  Forks can happen - the
2803 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
2804 	 * and rebind their vma mempolicies too.  Because we still hold
2805 	 * the global cpuset_mutex, we know that no other rebind effort
2806 	 * will be contending for the global variable cpuset_being_rebound.
2807 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2808 	 * is idempotent.  Also migrate pages in each mm to new nodes.
2809 	 */
2810 	css_task_iter_start(&cs->css, 0, &it);
2811 	while ((task = css_task_iter_next(&it))) {
2812 		struct mm_struct *mm;
2813 		bool migrate;
2814 
2815 		cpuset_change_task_nodemask(task, &newmems);
2816 
2817 		mm = get_task_mm(task);
2818 		if (!mm)
2819 			continue;
2820 
2821 		migrate = is_memory_migrate(cs);
2822 
2823 		mpol_rebind_mm(mm, &cs->mems_allowed);
2824 		if (migrate)
2825 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2826 		else
2827 			mmput(mm);
2828 	}
2829 	css_task_iter_end(&it);
2830 
2831 	/*
2832 	 * All the tasks' nodemasks have been updated, update
2833 	 * cs->old_mems_allowed.
2834 	 */
2835 	cs->old_mems_allowed = newmems;
2836 
2837 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
2838 	cpuset_being_rebound = NULL;
2839 }
2840 
2841 /*
2842  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2843  * @cs: the cpuset to consider
2844  * @new_mems: a temp variable for calculating new effective_mems
2845  *
2846  * When configured nodemask is changed, the effective nodemasks of this cpuset
2847  * and all its descendants need to be updated.
2848  *
2849  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2850  *
2851  * Called with cpuset_mutex held
2852  */
2853 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2854 {
2855 	struct cpuset *cp;
2856 	struct cgroup_subsys_state *pos_css;
2857 
2858 	rcu_read_lock();
2859 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2860 		struct cpuset *parent = parent_cs(cp);
2861 
2862 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2863 
2864 		/*
2865 		 * If it becomes empty, inherit the effective mask of the
2866 		 * parent, which is guaranteed to have some MEMs.
2867 		 */
2868 		if (is_in_v2_mode() && nodes_empty(*new_mems))
2869 			*new_mems = parent->effective_mems;
2870 
2871 		/* Skip the whole subtree if the nodemask remains the same. */
2872 		if (nodes_equal(*new_mems, cp->effective_mems)) {
2873 			pos_css = css_rightmost_descendant(pos_css);
2874 			continue;
2875 		}
2876 
2877 		if (!css_tryget_online(&cp->css))
2878 			continue;
2879 		rcu_read_unlock();
2880 
2881 		spin_lock_irq(&callback_lock);
2882 		cp->effective_mems = *new_mems;
2883 		spin_unlock_irq(&callback_lock);
2884 
2885 		WARN_ON(!is_in_v2_mode() &&
2886 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2887 
2888 		cpuset_update_tasks_nodemask(cp);
2889 
2890 		rcu_read_lock();
2891 		css_put(&cp->css);
2892 	}
2893 	rcu_read_unlock();
2894 }
2895 
2896 /*
2897  * Handle user request to change the 'mems' memory placement
2898  * of a cpuset.  Needs to validate the request, update the
2899  * cpusets mems_allowed, and for each task in the cpuset,
2900  * update mems_allowed and rebind task's mempolicy and any vma
2901  * mempolicies and if the cpuset is marked 'memory_migrate',
2902  * migrate the tasks pages to the new memory.
2903  *
2904  * Call with cpuset_mutex held. May take callback_lock during call.
2905  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2906  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2907  * their mempolicies to the cpusets new mems_allowed.
2908  */
2909 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2910 			   const char *buf)
2911 {
2912 	int retval;
2913 
2914 	/*
2915 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2916 	 * The validate_change() call ensures that cpusets with tasks have memory.
2917 	 */
2918 	retval = nodelist_parse(buf, trialcs->mems_allowed);
2919 	if (retval < 0)
2920 		return retval;
2921 
2922 	if (!nodes_subset(trialcs->mems_allowed,
2923 			  top_cpuset.mems_allowed))
2924 		return -EINVAL;
2925 
2926 	/* No change? nothing to do */
2927 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed))
2928 		return 0;
2929 
2930 	retval = validate_change(cs, trialcs);
2931 	if (retval < 0)
2932 		return retval;
2933 
2934 	check_insane_mems_config(&trialcs->mems_allowed);
2935 
2936 	spin_lock_irq(&callback_lock);
2937 	cs->mems_allowed = trialcs->mems_allowed;
2938 	spin_unlock_irq(&callback_lock);
2939 
2940 	/* use trialcs->mems_allowed as a temp variable */
2941 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2942 	return 0;
2943 }
2944 
2945 bool current_cpuset_is_being_rebound(void)
2946 {
2947 	bool ret;
2948 
2949 	rcu_read_lock();
2950 	ret = task_cs(current) == cpuset_being_rebound;
2951 	rcu_read_unlock();
2952 
2953 	return ret;
2954 }
2955 
2956 /*
2957  * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag
2958  * bit:		the bit to update (see cpuset_flagbits_t)
2959  * cs:		the cpuset to update
2960  * turning_on: 	whether the flag is being set or cleared
2961  *
2962  * Call with cpuset_mutex held.
2963  */
2964 
2965 int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2966 		       int turning_on)
2967 {
2968 	struct cpuset *trialcs;
2969 	int balance_flag_changed;
2970 	int spread_flag_changed;
2971 	int err;
2972 
2973 	trialcs = dup_or_alloc_cpuset(cs);
2974 	if (!trialcs)
2975 		return -ENOMEM;
2976 
2977 	if (turning_on)
2978 		set_bit(bit, &trialcs->flags);
2979 	else
2980 		clear_bit(bit, &trialcs->flags);
2981 
2982 	err = validate_change(cs, trialcs);
2983 	if (err < 0)
2984 		goto out;
2985 
2986 	balance_flag_changed = (is_sched_load_balance(cs) !=
2987 				is_sched_load_balance(trialcs));
2988 
2989 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2990 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
2991 
2992 	spin_lock_irq(&callback_lock);
2993 	cs->flags = trialcs->flags;
2994 	spin_unlock_irq(&callback_lock);
2995 
2996 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) {
2997 		if (cpuset_v2())
2998 			cpuset_force_rebuild();
2999 		else
3000 			rebuild_sched_domains_locked();
3001 	}
3002 
3003 	if (spread_flag_changed)
3004 		cpuset1_update_tasks_flags(cs);
3005 out:
3006 	free_cpuset(trialcs);
3007 	return err;
3008 }
3009 
3010 /**
3011  * update_prstate - update partition_root_state
3012  * @cs: the cpuset to update
3013  * @new_prs: new partition root state
3014  * Return: 0 if successful, != 0 if error
3015  *
3016  * Call with cpuset_mutex held.
3017  */
3018 static int update_prstate(struct cpuset *cs, int new_prs)
3019 {
3020 	int err = PERR_NONE, old_prs = cs->partition_root_state;
3021 	struct cpuset *parent = parent_cs(cs);
3022 	struct tmpmasks tmpmask;
3023 	bool isolcpus_updated = false;
3024 
3025 	if (old_prs == new_prs)
3026 		return 0;
3027 
3028 	/*
3029 	 * Treat a previously invalid partition root as if it is a "member".
3030 	 */
3031 	if (new_prs && is_partition_invalid(cs))
3032 		old_prs = PRS_MEMBER;
3033 
3034 	if (alloc_tmpmasks(&tmpmask))
3035 		return -ENOMEM;
3036 
3037 	err = update_partition_exclusive_flag(cs, new_prs);
3038 	if (err)
3039 		goto out;
3040 
3041 	if (!old_prs) {
3042 		/*
3043 		 * cpus_allowed and exclusive_cpus cannot be both empty.
3044 		 */
3045 		if (xcpus_empty(cs)) {
3046 			err = PERR_CPUSEMPTY;
3047 			goto out;
3048 		}
3049 
3050 		/*
3051 		 * We don't support the creation of a new local partition with
3052 		 * a remote partition underneath it. This unsupported
3053 		 * setting can happen only if parent is the top_cpuset because
3054 		 * a remote partition cannot be created underneath an existing
3055 		 * local or remote partition.
3056 		 */
3057 		if ((parent == &top_cpuset) &&
3058 		    cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) {
3059 			err = PERR_REMOTE;
3060 			goto out;
3061 		}
3062 
3063 		/*
3064 		 * If parent is valid partition, enable local partiion.
3065 		 * Otherwise, enable a remote partition.
3066 		 */
3067 		if (is_partition_valid(parent)) {
3068 			enum partition_cmd cmd = (new_prs == PRS_ROOT)
3069 					       ? partcmd_enable : partcmd_enablei;
3070 
3071 			err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
3072 		} else {
3073 			err = remote_partition_enable(cs, new_prs, &tmpmask);
3074 		}
3075 	} else if (old_prs && new_prs) {
3076 		/*
3077 		 * A change in load balance state only, no change in cpumasks.
3078 		 * Need to update isolated_cpus.
3079 		 */
3080 		if (((new_prs == PRS_ISOLATED) &&
3081 		     !isolated_cpus_can_update(cs->effective_xcpus, NULL)) ||
3082 		    prstate_housekeeping_conflict(new_prs, cs->effective_xcpus))
3083 			err = PERR_HKEEPING;
3084 		else
3085 			isolcpus_updated = true;
3086 	} else {
3087 		/*
3088 		 * Switching back to member is always allowed even if it
3089 		 * disables child partitions.
3090 		 */
3091 		if (is_remote_partition(cs))
3092 			remote_partition_disable(cs, &tmpmask);
3093 		else
3094 			update_parent_effective_cpumask(cs, partcmd_disable,
3095 							NULL, &tmpmask);
3096 
3097 		/*
3098 		 * Invalidation of child partitions will be done in
3099 		 * update_cpumasks_hier().
3100 		 */
3101 	}
3102 out:
3103 	/*
3104 	 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
3105 	 * happens.
3106 	 */
3107 	if (err) {
3108 		new_prs = -new_prs;
3109 		update_partition_exclusive_flag(cs, new_prs);
3110 	}
3111 
3112 	spin_lock_irq(&callback_lock);
3113 	cs->partition_root_state = new_prs;
3114 	WRITE_ONCE(cs->prs_err, err);
3115 	if (!is_partition_valid(cs))
3116 		reset_partition_data(cs);
3117 	else if (isolcpus_updated)
3118 		isolated_cpus_update(old_prs, new_prs, cs->effective_xcpus);
3119 	spin_unlock_irq(&callback_lock);
3120 	update_isolation_cpumasks();
3121 
3122 	/* Force update if switching back to member & update effective_xcpus */
3123 	update_cpumasks_hier(cs, &tmpmask, !new_prs);
3124 
3125 	/* A newly created partition must have effective_xcpus set */
3126 	WARN_ON_ONCE(!old_prs && (new_prs > 0)
3127 			      && cpumask_empty(cs->effective_xcpus));
3128 
3129 	/* Update sched domains and load balance flag */
3130 	update_partition_sd_lb(cs, old_prs);
3131 
3132 	notify_partition_change(cs, old_prs);
3133 	if (force_sd_rebuild)
3134 		rebuild_sched_domains_locked();
3135 	free_tmpmasks(&tmpmask);
3136 	return 0;
3137 }
3138 
3139 static struct cpuset *cpuset_attach_old_cs;
3140 
3141 /*
3142  * Check to see if a cpuset can accept a new task
3143  * For v1, cpus_allowed and mems_allowed can't be empty.
3144  * For v2, effective_cpus can't be empty.
3145  * Note that in v1, effective_cpus = cpus_allowed.
3146  */
3147 static int cpuset_can_attach_check(struct cpuset *cs)
3148 {
3149 	if (cpumask_empty(cs->effective_cpus) ||
3150 	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
3151 		return -ENOSPC;
3152 	return 0;
3153 }
3154 
3155 static void reset_migrate_dl_data(struct cpuset *cs)
3156 {
3157 	cs->nr_migrate_dl_tasks = 0;
3158 	cs->sum_migrate_dl_bw = 0;
3159 }
3160 
3161 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
3162 static int cpuset_can_attach(struct cgroup_taskset *tset)
3163 {
3164 	struct cgroup_subsys_state *css;
3165 	struct cpuset *cs, *oldcs;
3166 	struct task_struct *task;
3167 	bool cpus_updated, mems_updated;
3168 	int ret;
3169 
3170 	/* used later by cpuset_attach() */
3171 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
3172 	oldcs = cpuset_attach_old_cs;
3173 	cs = css_cs(css);
3174 
3175 	mutex_lock(&cpuset_mutex);
3176 
3177 	/* Check to see if task is allowed in the cpuset */
3178 	ret = cpuset_can_attach_check(cs);
3179 	if (ret)
3180 		goto out_unlock;
3181 
3182 	cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
3183 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3184 
3185 	cgroup_taskset_for_each(task, css, tset) {
3186 		ret = task_can_attach(task);
3187 		if (ret)
3188 			goto out_unlock;
3189 
3190 		/*
3191 		 * Skip rights over task check in v2 when nothing changes,
3192 		 * migration permission derives from hierarchy ownership in
3193 		 * cgroup_procs_write_permission()).
3194 		 */
3195 		if (!cpuset_v2() || (cpus_updated || mems_updated)) {
3196 			ret = security_task_setscheduler(task);
3197 			if (ret)
3198 				goto out_unlock;
3199 		}
3200 
3201 		if (dl_task(task)) {
3202 			cs->nr_migrate_dl_tasks++;
3203 			cs->sum_migrate_dl_bw += task->dl.dl_bw;
3204 		}
3205 	}
3206 
3207 	if (!cs->nr_migrate_dl_tasks)
3208 		goto out_success;
3209 
3210 	if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
3211 		int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
3212 
3213 		if (unlikely(cpu >= nr_cpu_ids)) {
3214 			reset_migrate_dl_data(cs);
3215 			ret = -EINVAL;
3216 			goto out_unlock;
3217 		}
3218 
3219 		ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
3220 		if (ret) {
3221 			reset_migrate_dl_data(cs);
3222 			goto out_unlock;
3223 		}
3224 	}
3225 
3226 out_success:
3227 	/*
3228 	 * Mark attach is in progress.  This makes validate_change() fail
3229 	 * changes which zero cpus/mems_allowed.
3230 	 */
3231 	cs->attach_in_progress++;
3232 out_unlock:
3233 	mutex_unlock(&cpuset_mutex);
3234 	return ret;
3235 }
3236 
3237 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
3238 {
3239 	struct cgroup_subsys_state *css;
3240 	struct cpuset *cs;
3241 
3242 	cgroup_taskset_first(tset, &css);
3243 	cs = css_cs(css);
3244 
3245 	mutex_lock(&cpuset_mutex);
3246 	dec_attach_in_progress_locked(cs);
3247 
3248 	if (cs->nr_migrate_dl_tasks) {
3249 		int cpu = cpumask_any(cs->effective_cpus);
3250 
3251 		dl_bw_free(cpu, cs->sum_migrate_dl_bw);
3252 		reset_migrate_dl_data(cs);
3253 	}
3254 
3255 	mutex_unlock(&cpuset_mutex);
3256 }
3257 
3258 /*
3259  * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
3260  * but we can't allocate it dynamically there.  Define it global and
3261  * allocate from cpuset_init().
3262  */
3263 static cpumask_var_t cpus_attach;
3264 static nodemask_t cpuset_attach_nodemask_to;
3265 
3266 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
3267 {
3268 	lockdep_assert_held(&cpuset_mutex);
3269 
3270 	if (cs != &top_cpuset)
3271 		guarantee_active_cpus(task, cpus_attach);
3272 	else
3273 		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
3274 			       subpartitions_cpus);
3275 	/*
3276 	 * can_attach beforehand should guarantee that this doesn't
3277 	 * fail.  TODO: have a better way to handle failure here
3278 	 */
3279 	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
3280 
3281 	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
3282 	cpuset1_update_task_spread_flags(cs, task);
3283 }
3284 
3285 static void cpuset_attach(struct cgroup_taskset *tset)
3286 {
3287 	struct task_struct *task;
3288 	struct task_struct *leader;
3289 	struct cgroup_subsys_state *css;
3290 	struct cpuset *cs;
3291 	struct cpuset *oldcs = cpuset_attach_old_cs;
3292 	bool cpus_updated, mems_updated;
3293 	bool queue_task_work = false;
3294 
3295 	cgroup_taskset_first(tset, &css);
3296 	cs = css_cs(css);
3297 
3298 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
3299 	mutex_lock(&cpuset_mutex);
3300 	cpus_updated = !cpumask_equal(cs->effective_cpus,
3301 				      oldcs->effective_cpus);
3302 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3303 
3304 	/*
3305 	 * In the default hierarchy, enabling cpuset in the child cgroups
3306 	 * will trigger a number of cpuset_attach() calls with no change
3307 	 * in effective cpus and mems. In that case, we can optimize out
3308 	 * by skipping the task iteration and update.
3309 	 */
3310 	if (cpuset_v2() && !cpus_updated && !mems_updated) {
3311 		cpuset_attach_nodemask_to = cs->effective_mems;
3312 		goto out;
3313 	}
3314 
3315 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3316 
3317 	cgroup_taskset_for_each(task, css, tset)
3318 		cpuset_attach_task(cs, task);
3319 
3320 	/*
3321 	 * Change mm for all threadgroup leaders. This is expensive and may
3322 	 * sleep and should be moved outside migration path proper. Skip it
3323 	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
3324 	 * not set.
3325 	 */
3326 	cpuset_attach_nodemask_to = cs->effective_mems;
3327 	if (!is_memory_migrate(cs) && !mems_updated)
3328 		goto out;
3329 
3330 	cgroup_taskset_for_each_leader(leader, css, tset) {
3331 		struct mm_struct *mm = get_task_mm(leader);
3332 
3333 		if (mm) {
3334 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
3335 
3336 			/*
3337 			 * old_mems_allowed is the same with mems_allowed
3338 			 * here, except if this task is being moved
3339 			 * automatically due to hotplug.  In that case
3340 			 * @mems_allowed has been updated and is empty, so
3341 			 * @old_mems_allowed is the right nodesets that we
3342 			 * migrate mm from.
3343 			 */
3344 			if (is_memory_migrate(cs)) {
3345 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
3346 						  &cpuset_attach_nodemask_to);
3347 				queue_task_work = true;
3348 			} else
3349 				mmput(mm);
3350 		}
3351 	}
3352 
3353 out:
3354 	if (queue_task_work)
3355 		schedule_flush_migrate_mm();
3356 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
3357 
3358 	if (cs->nr_migrate_dl_tasks) {
3359 		cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
3360 		oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
3361 		reset_migrate_dl_data(cs);
3362 	}
3363 
3364 	dec_attach_in_progress_locked(cs);
3365 
3366 	mutex_unlock(&cpuset_mutex);
3367 }
3368 
3369 /*
3370  * Common handling for a write to a "cpus" or "mems" file.
3371  */
3372 ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
3373 				    char *buf, size_t nbytes, loff_t off)
3374 {
3375 	struct cpuset *cs = css_cs(of_css(of));
3376 	struct cpuset *trialcs;
3377 	int retval = -ENODEV;
3378 
3379 	/* root is read-only */
3380 	if (cs == &top_cpuset)
3381 		return -EACCES;
3382 
3383 	buf = strstrip(buf);
3384 	cpuset_full_lock();
3385 	if (!is_cpuset_online(cs))
3386 		goto out_unlock;
3387 
3388 	trialcs = dup_or_alloc_cpuset(cs);
3389 	if (!trialcs) {
3390 		retval = -ENOMEM;
3391 		goto out_unlock;
3392 	}
3393 
3394 	switch (of_cft(of)->private) {
3395 	case FILE_CPULIST:
3396 		retval = update_cpumask(cs, trialcs, buf);
3397 		break;
3398 	case FILE_EXCLUSIVE_CPULIST:
3399 		retval = update_exclusive_cpumask(cs, trialcs, buf);
3400 		break;
3401 	case FILE_MEMLIST:
3402 		retval = update_nodemask(cs, trialcs, buf);
3403 		break;
3404 	default:
3405 		retval = -EINVAL;
3406 		break;
3407 	}
3408 
3409 	free_cpuset(trialcs);
3410 	if (force_sd_rebuild)
3411 		rebuild_sched_domains_locked();
3412 out_unlock:
3413 	cpuset_full_unlock();
3414 	if (of_cft(of)->private == FILE_MEMLIST)
3415 		schedule_flush_migrate_mm();
3416 	return retval ?: nbytes;
3417 }
3418 
3419 /*
3420  * These ascii lists should be read in a single call, by using a user
3421  * buffer large enough to hold the entire map.  If read in smaller
3422  * chunks, there is no guarantee of atomicity.  Since the display format
3423  * used, list of ranges of sequential numbers, is variable length,
3424  * and since these maps can change value dynamically, one could read
3425  * gibberish by doing partial reads while a list was changing.
3426  */
3427 int cpuset_common_seq_show(struct seq_file *sf, void *v)
3428 {
3429 	struct cpuset *cs = css_cs(seq_css(sf));
3430 	cpuset_filetype_t type = seq_cft(sf)->private;
3431 	int ret = 0;
3432 
3433 	spin_lock_irq(&callback_lock);
3434 
3435 	switch (type) {
3436 	case FILE_CPULIST:
3437 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
3438 		break;
3439 	case FILE_MEMLIST:
3440 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
3441 		break;
3442 	case FILE_EFFECTIVE_CPULIST:
3443 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
3444 		break;
3445 	case FILE_EFFECTIVE_MEMLIST:
3446 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
3447 		break;
3448 	case FILE_EXCLUSIVE_CPULIST:
3449 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
3450 		break;
3451 	case FILE_EFFECTIVE_XCPULIST:
3452 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
3453 		break;
3454 	case FILE_SUBPARTS_CPULIST:
3455 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
3456 		break;
3457 	case FILE_ISOLATED_CPULIST:
3458 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
3459 		break;
3460 	default:
3461 		ret = -EINVAL;
3462 	}
3463 
3464 	spin_unlock_irq(&callback_lock);
3465 	return ret;
3466 }
3467 
3468 static int cpuset_partition_show(struct seq_file *seq, void *v)
3469 {
3470 	struct cpuset *cs = css_cs(seq_css(seq));
3471 	const char *err, *type = NULL;
3472 
3473 	switch (cs->partition_root_state) {
3474 	case PRS_ROOT:
3475 		seq_puts(seq, "root\n");
3476 		break;
3477 	case PRS_ISOLATED:
3478 		seq_puts(seq, "isolated\n");
3479 		break;
3480 	case PRS_MEMBER:
3481 		seq_puts(seq, "member\n");
3482 		break;
3483 	case PRS_INVALID_ROOT:
3484 		type = "root";
3485 		fallthrough;
3486 	case PRS_INVALID_ISOLATED:
3487 		if (!type)
3488 			type = "isolated";
3489 		err = perr_strings[READ_ONCE(cs->prs_err)];
3490 		if (err)
3491 			seq_printf(seq, "%s invalid (%s)\n", type, err);
3492 		else
3493 			seq_printf(seq, "%s invalid\n", type);
3494 		break;
3495 	}
3496 	return 0;
3497 }
3498 
3499 static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf,
3500 				     size_t nbytes, loff_t off)
3501 {
3502 	struct cpuset *cs = css_cs(of_css(of));
3503 	int val;
3504 	int retval = -ENODEV;
3505 
3506 	buf = strstrip(buf);
3507 
3508 	if (!strcmp(buf, "root"))
3509 		val = PRS_ROOT;
3510 	else if (!strcmp(buf, "member"))
3511 		val = PRS_MEMBER;
3512 	else if (!strcmp(buf, "isolated"))
3513 		val = PRS_ISOLATED;
3514 	else
3515 		return -EINVAL;
3516 
3517 	cpuset_full_lock();
3518 	if (is_cpuset_online(cs))
3519 		retval = update_prstate(cs, val);
3520 	cpuset_full_unlock();
3521 	return retval ?: nbytes;
3522 }
3523 
3524 /*
3525  * This is currently a minimal set for the default hierarchy. It can be
3526  * expanded later on by migrating more features and control files from v1.
3527  */
3528 static struct cftype dfl_files[] = {
3529 	{
3530 		.name = "cpus",
3531 		.seq_show = cpuset_common_seq_show,
3532 		.write = cpuset_write_resmask,
3533 		.max_write_len = (100U + 6 * NR_CPUS),
3534 		.private = FILE_CPULIST,
3535 		.flags = CFTYPE_NOT_ON_ROOT,
3536 	},
3537 
3538 	{
3539 		.name = "mems",
3540 		.seq_show = cpuset_common_seq_show,
3541 		.write = cpuset_write_resmask,
3542 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3543 		.private = FILE_MEMLIST,
3544 		.flags = CFTYPE_NOT_ON_ROOT,
3545 	},
3546 
3547 	{
3548 		.name = "cpus.effective",
3549 		.seq_show = cpuset_common_seq_show,
3550 		.private = FILE_EFFECTIVE_CPULIST,
3551 	},
3552 
3553 	{
3554 		.name = "mems.effective",
3555 		.seq_show = cpuset_common_seq_show,
3556 		.private = FILE_EFFECTIVE_MEMLIST,
3557 	},
3558 
3559 	{
3560 		.name = "cpus.partition",
3561 		.seq_show = cpuset_partition_show,
3562 		.write = cpuset_partition_write,
3563 		.private = FILE_PARTITION_ROOT,
3564 		.flags = CFTYPE_NOT_ON_ROOT,
3565 		.file_offset = offsetof(struct cpuset, partition_file),
3566 	},
3567 
3568 	{
3569 		.name = "cpus.exclusive",
3570 		.seq_show = cpuset_common_seq_show,
3571 		.write = cpuset_write_resmask,
3572 		.max_write_len = (100U + 6 * NR_CPUS),
3573 		.private = FILE_EXCLUSIVE_CPULIST,
3574 		.flags = CFTYPE_NOT_ON_ROOT,
3575 	},
3576 
3577 	{
3578 		.name = "cpus.exclusive.effective",
3579 		.seq_show = cpuset_common_seq_show,
3580 		.private = FILE_EFFECTIVE_XCPULIST,
3581 		.flags = CFTYPE_NOT_ON_ROOT,
3582 	},
3583 
3584 	{
3585 		.name = "cpus.subpartitions",
3586 		.seq_show = cpuset_common_seq_show,
3587 		.private = FILE_SUBPARTS_CPULIST,
3588 		.flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
3589 	},
3590 
3591 	{
3592 		.name = "cpus.isolated",
3593 		.seq_show = cpuset_common_seq_show,
3594 		.private = FILE_ISOLATED_CPULIST,
3595 		.flags = CFTYPE_ONLY_ON_ROOT,
3596 	},
3597 
3598 	{ }	/* terminate */
3599 };
3600 
3601 
3602 /**
3603  * cpuset_css_alloc - Allocate a cpuset css
3604  * @parent_css: Parent css of the control group that the new cpuset will be
3605  *              part of
3606  * Return: cpuset css on success, -ENOMEM on failure.
3607  *
3608  * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3609  * top cpuset css otherwise.
3610  */
3611 static struct cgroup_subsys_state *
3612 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3613 {
3614 	struct cpuset *cs;
3615 
3616 	if (!parent_css)
3617 		return &top_cpuset.css;
3618 
3619 	cs = dup_or_alloc_cpuset(NULL);
3620 	if (!cs)
3621 		return ERR_PTR(-ENOMEM);
3622 
3623 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3624 	fmeter_init(&cs->fmeter);
3625 	cs->relax_domain_level = -1;
3626 
3627 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
3628 	if (cpuset_v2())
3629 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3630 
3631 	return &cs->css;
3632 }
3633 
3634 static int cpuset_css_online(struct cgroup_subsys_state *css)
3635 {
3636 	struct cpuset *cs = css_cs(css);
3637 	struct cpuset *parent = parent_cs(cs);
3638 	struct cpuset *tmp_cs;
3639 	struct cgroup_subsys_state *pos_css;
3640 
3641 	if (!parent)
3642 		return 0;
3643 
3644 	cpuset_full_lock();
3645 	if (is_spread_page(parent))
3646 		set_bit(CS_SPREAD_PAGE, &cs->flags);
3647 	if (is_spread_slab(parent))
3648 		set_bit(CS_SPREAD_SLAB, &cs->flags);
3649 	/*
3650 	 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
3651 	 */
3652 	if (cpuset_v2() && !is_sched_load_balance(parent))
3653 		clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3654 
3655 	cpuset_inc();
3656 
3657 	spin_lock_irq(&callback_lock);
3658 	if (is_in_v2_mode()) {
3659 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3660 		cs->effective_mems = parent->effective_mems;
3661 	}
3662 	spin_unlock_irq(&callback_lock);
3663 
3664 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3665 		goto out_unlock;
3666 
3667 	/*
3668 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3669 	 * set.  This flag handling is implemented in cgroup core for
3670 	 * historical reasons - the flag may be specified during mount.
3671 	 *
3672 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3673 	 * refuse to clone the configuration - thereby refusing the task to
3674 	 * be entered, and as a result refusing the sys_unshare() or
3675 	 * clone() which initiated it.  If this becomes a problem for some
3676 	 * users who wish to allow that scenario, then this could be
3677 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3678 	 * (and likewise for mems) to the new cgroup.
3679 	 */
3680 	rcu_read_lock();
3681 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
3682 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3683 			rcu_read_unlock();
3684 			goto out_unlock;
3685 		}
3686 	}
3687 	rcu_read_unlock();
3688 
3689 	spin_lock_irq(&callback_lock);
3690 	cs->mems_allowed = parent->mems_allowed;
3691 	cs->effective_mems = parent->mems_allowed;
3692 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3693 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3694 	spin_unlock_irq(&callback_lock);
3695 out_unlock:
3696 	cpuset_full_unlock();
3697 	return 0;
3698 }
3699 
3700 /*
3701  * If the cpuset being removed has its flag 'sched_load_balance'
3702  * enabled, then simulate turning sched_load_balance off, which
3703  * will call rebuild_sched_domains_locked(). That is not needed
3704  * in the default hierarchy where only changes in partition
3705  * will cause repartitioning.
3706  */
3707 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3708 {
3709 	struct cpuset *cs = css_cs(css);
3710 
3711 	cpuset_full_lock();
3712 	if (!cpuset_v2() && is_sched_load_balance(cs))
3713 		cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3714 
3715 	cpuset_dec();
3716 	cpuset_full_unlock();
3717 }
3718 
3719 /*
3720  * If a dying cpuset has the 'cpus.partition' enabled, turn it off by
3721  * changing it back to member to free its exclusive CPUs back to the pool to
3722  * be used by other online cpusets.
3723  */
3724 static void cpuset_css_killed(struct cgroup_subsys_state *css)
3725 {
3726 	struct cpuset *cs = css_cs(css);
3727 
3728 	cpuset_full_lock();
3729 	/* Reset valid partition back to member */
3730 	if (is_partition_valid(cs))
3731 		update_prstate(cs, PRS_MEMBER);
3732 	cpuset_full_unlock();
3733 }
3734 
3735 static void cpuset_css_free(struct cgroup_subsys_state *css)
3736 {
3737 	struct cpuset *cs = css_cs(css);
3738 
3739 	free_cpuset(cs);
3740 }
3741 
3742 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3743 {
3744 	mutex_lock(&cpuset_mutex);
3745 	spin_lock_irq(&callback_lock);
3746 
3747 	if (is_in_v2_mode()) {
3748 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3749 		cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
3750 		top_cpuset.mems_allowed = node_possible_map;
3751 	} else {
3752 		cpumask_copy(top_cpuset.cpus_allowed,
3753 			     top_cpuset.effective_cpus);
3754 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
3755 	}
3756 
3757 	spin_unlock_irq(&callback_lock);
3758 	mutex_unlock(&cpuset_mutex);
3759 }
3760 
3761 /*
3762  * In case the child is cloned into a cpuset different from its parent,
3763  * additional checks are done to see if the move is allowed.
3764  */
3765 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
3766 {
3767 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3768 	bool same_cs;
3769 	int ret;
3770 
3771 	rcu_read_lock();
3772 	same_cs = (cs == task_cs(current));
3773 	rcu_read_unlock();
3774 
3775 	if (same_cs)
3776 		return 0;
3777 
3778 	lockdep_assert_held(&cgroup_mutex);
3779 	mutex_lock(&cpuset_mutex);
3780 
3781 	/* Check to see if task is allowed in the cpuset */
3782 	ret = cpuset_can_attach_check(cs);
3783 	if (ret)
3784 		goto out_unlock;
3785 
3786 	ret = task_can_attach(task);
3787 	if (ret)
3788 		goto out_unlock;
3789 
3790 	ret = security_task_setscheduler(task);
3791 	if (ret)
3792 		goto out_unlock;
3793 
3794 	/*
3795 	 * Mark attach is in progress.  This makes validate_change() fail
3796 	 * changes which zero cpus/mems_allowed.
3797 	 */
3798 	cs->attach_in_progress++;
3799 out_unlock:
3800 	mutex_unlock(&cpuset_mutex);
3801 	return ret;
3802 }
3803 
3804 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
3805 {
3806 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3807 	bool same_cs;
3808 
3809 	rcu_read_lock();
3810 	same_cs = (cs == task_cs(current));
3811 	rcu_read_unlock();
3812 
3813 	if (same_cs)
3814 		return;
3815 
3816 	dec_attach_in_progress(cs);
3817 }
3818 
3819 /*
3820  * Make sure the new task conform to the current state of its parent,
3821  * which could have been changed by cpuset just after it inherits the
3822  * state from the parent and before it sits on the cgroup's task list.
3823  */
3824 static void cpuset_fork(struct task_struct *task)
3825 {
3826 	struct cpuset *cs;
3827 	bool same_cs;
3828 
3829 	rcu_read_lock();
3830 	cs = task_cs(task);
3831 	same_cs = (cs == task_cs(current));
3832 	rcu_read_unlock();
3833 
3834 	if (same_cs) {
3835 		if (cs == &top_cpuset)
3836 			return;
3837 
3838 		set_cpus_allowed_ptr(task, current->cpus_ptr);
3839 		task->mems_allowed = current->mems_allowed;
3840 		return;
3841 	}
3842 
3843 	/* CLONE_INTO_CGROUP */
3844 	mutex_lock(&cpuset_mutex);
3845 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3846 	cpuset_attach_task(cs, task);
3847 
3848 	dec_attach_in_progress_locked(cs);
3849 	mutex_unlock(&cpuset_mutex);
3850 }
3851 
3852 struct cgroup_subsys cpuset_cgrp_subsys = {
3853 	.css_alloc	= cpuset_css_alloc,
3854 	.css_online	= cpuset_css_online,
3855 	.css_offline	= cpuset_css_offline,
3856 	.css_killed	= cpuset_css_killed,
3857 	.css_free	= cpuset_css_free,
3858 	.can_attach	= cpuset_can_attach,
3859 	.cancel_attach	= cpuset_cancel_attach,
3860 	.attach		= cpuset_attach,
3861 	.bind		= cpuset_bind,
3862 	.can_fork	= cpuset_can_fork,
3863 	.cancel_fork	= cpuset_cancel_fork,
3864 	.fork		= cpuset_fork,
3865 #ifdef CONFIG_CPUSETS_V1
3866 	.legacy_cftypes	= cpuset1_files,
3867 #endif
3868 	.dfl_cftypes	= dfl_files,
3869 	.early_init	= true,
3870 	.threaded	= true,
3871 };
3872 
3873 /**
3874  * cpuset_init - initialize cpusets at system boot
3875  *
3876  * Description: Initialize top_cpuset
3877  **/
3878 
3879 int __init cpuset_init(void)
3880 {
3881 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3882 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3883 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
3884 	BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
3885 	BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
3886 	BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
3887 
3888 	cpumask_setall(top_cpuset.cpus_allowed);
3889 	nodes_setall(top_cpuset.mems_allowed);
3890 	cpumask_setall(top_cpuset.effective_cpus);
3891 	cpumask_setall(top_cpuset.effective_xcpus);
3892 	cpumask_setall(top_cpuset.exclusive_cpus);
3893 	nodes_setall(top_cpuset.effective_mems);
3894 
3895 	fmeter_init(&top_cpuset.fmeter);
3896 
3897 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3898 
3899 	have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN);
3900 	if (have_boot_isolcpus) {
3901 		BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL));
3902 		cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN));
3903 		cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus);
3904 	}
3905 
3906 	return 0;
3907 }
3908 
3909 static void
3910 hotplug_update_tasks(struct cpuset *cs,
3911 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3912 		     bool cpus_updated, bool mems_updated)
3913 {
3914 	/* A partition root is allowed to have empty effective cpus */
3915 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3916 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3917 	if (nodes_empty(*new_mems))
3918 		*new_mems = parent_cs(cs)->effective_mems;
3919 
3920 	spin_lock_irq(&callback_lock);
3921 	cpumask_copy(cs->effective_cpus, new_cpus);
3922 	cs->effective_mems = *new_mems;
3923 	spin_unlock_irq(&callback_lock);
3924 
3925 	if (cpus_updated)
3926 		cpuset_update_tasks_cpumask(cs, new_cpus);
3927 	if (mems_updated)
3928 		cpuset_update_tasks_nodemask(cs);
3929 }
3930 
3931 void cpuset_force_rebuild(void)
3932 {
3933 	force_sd_rebuild = true;
3934 }
3935 
3936 /**
3937  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3938  * @cs: cpuset in interest
3939  * @tmp: the tmpmasks structure pointer
3940  *
3941  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3942  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3943  * all its tasks are moved to the nearest ancestor with both resources.
3944  */
3945 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3946 {
3947 	static cpumask_t new_cpus;
3948 	static nodemask_t new_mems;
3949 	bool cpus_updated;
3950 	bool mems_updated;
3951 	bool remote;
3952 	int partcmd = -1;
3953 	struct cpuset *parent;
3954 retry:
3955 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3956 
3957 	mutex_lock(&cpuset_mutex);
3958 
3959 	/*
3960 	 * We have raced with task attaching. We wait until attaching
3961 	 * is finished, so we won't attach a task to an empty cpuset.
3962 	 */
3963 	if (cs->attach_in_progress) {
3964 		mutex_unlock(&cpuset_mutex);
3965 		goto retry;
3966 	}
3967 
3968 	parent = parent_cs(cs);
3969 	compute_effective_cpumask(&new_cpus, cs, parent);
3970 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3971 
3972 	if (!tmp || !cs->partition_root_state)
3973 		goto update_tasks;
3974 
3975 	/*
3976 	 * Compute effective_cpus for valid partition root, may invalidate
3977 	 * child partition roots if necessary.
3978 	 */
3979 	remote = is_remote_partition(cs);
3980 	if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
3981 		compute_partition_effective_cpumask(cs, &new_cpus);
3982 
3983 	if (remote && (cpumask_empty(subpartitions_cpus) ||
3984 			(cpumask_empty(&new_cpus) &&
3985 			 partition_is_populated(cs, NULL)))) {
3986 		cs->prs_err = PERR_HOTPLUG;
3987 		remote_partition_disable(cs, tmp);
3988 		compute_effective_cpumask(&new_cpus, cs, parent);
3989 		remote = false;
3990 	}
3991 
3992 	/*
3993 	 * Force the partition to become invalid if either one of
3994 	 * the following conditions hold:
3995 	 * 1) empty effective cpus but not valid empty partition.
3996 	 * 2) parent is invalid or doesn't grant any cpus to child
3997 	 *    partitions.
3998 	 * 3) subpartitions_cpus is empty.
3999 	 */
4000 	if (is_local_partition(cs) &&
4001 	    (!is_partition_valid(parent) ||
4002 	     tasks_nocpu_error(parent, cs, &new_cpus) ||
4003 	     cpumask_empty(subpartitions_cpus)))
4004 		partcmd = partcmd_invalidate;
4005 	/*
4006 	 * On the other hand, an invalid partition root may be transitioned
4007 	 * back to a regular one with a non-empty effective xcpus.
4008 	 */
4009 	else if (is_partition_valid(parent) && is_partition_invalid(cs) &&
4010 		 !cpumask_empty(cs->effective_xcpus))
4011 		partcmd = partcmd_update;
4012 
4013 	if (partcmd >= 0) {
4014 		update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
4015 		if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
4016 			compute_partition_effective_cpumask(cs, &new_cpus);
4017 			cpuset_force_rebuild();
4018 		}
4019 	}
4020 
4021 update_tasks:
4022 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
4023 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
4024 	if (!cpus_updated && !mems_updated)
4025 		goto unlock;	/* Hotplug doesn't affect this cpuset */
4026 
4027 	if (mems_updated)
4028 		check_insane_mems_config(&new_mems);
4029 
4030 	if (is_in_v2_mode())
4031 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
4032 				     cpus_updated, mems_updated);
4033 	else
4034 		cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems,
4035 					    cpus_updated, mems_updated);
4036 
4037 unlock:
4038 	mutex_unlock(&cpuset_mutex);
4039 }
4040 
4041 /**
4042  * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset
4043  *
4044  * This function is called after either CPU or memory configuration has
4045  * changed and updates cpuset accordingly.  The top_cpuset is always
4046  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
4047  * order to make cpusets transparent (of no affect) on systems that are
4048  * actively using CPU hotplug but making no active use of cpusets.
4049  *
4050  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
4051  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
4052  * all descendants.
4053  *
4054  * Note that CPU offlining during suspend is ignored.  We don't modify
4055  * cpusets across suspend/resume cycles at all.
4056  *
4057  * CPU / memory hotplug is handled synchronously.
4058  */
4059 static void cpuset_handle_hotplug(void)
4060 {
4061 	static cpumask_t new_cpus;
4062 	static nodemask_t new_mems;
4063 	bool cpus_updated, mems_updated;
4064 	bool on_dfl = is_in_v2_mode();
4065 	struct tmpmasks tmp, *ptmp = NULL;
4066 
4067 	if (on_dfl && !alloc_tmpmasks(&tmp))
4068 		ptmp = &tmp;
4069 
4070 	lockdep_assert_cpus_held();
4071 	mutex_lock(&cpuset_mutex);
4072 
4073 	/* fetch the available cpus/mems and find out which changed how */
4074 	cpumask_copy(&new_cpus, cpu_active_mask);
4075 	new_mems = node_states[N_MEMORY];
4076 
4077 	/*
4078 	 * If subpartitions_cpus is populated, it is likely that the check
4079 	 * below will produce a false positive on cpus_updated when the cpu
4080 	 * list isn't changed. It is extra work, but it is better to be safe.
4081 	 */
4082 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
4083 		       !cpumask_empty(subpartitions_cpus);
4084 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
4085 
4086 	/* For v1, synchronize cpus_allowed to cpu_active_mask */
4087 	if (cpus_updated) {
4088 		cpuset_force_rebuild();
4089 		spin_lock_irq(&callback_lock);
4090 		if (!on_dfl)
4091 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
4092 		/*
4093 		 * Make sure that CPUs allocated to child partitions
4094 		 * do not show up in effective_cpus. If no CPU is left,
4095 		 * we clear the subpartitions_cpus & let the child partitions
4096 		 * fight for the CPUs again.
4097 		 */
4098 		if (!cpumask_empty(subpartitions_cpus)) {
4099 			if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
4100 				cpumask_clear(subpartitions_cpus);
4101 			} else {
4102 				cpumask_andnot(&new_cpus, &new_cpus,
4103 					       subpartitions_cpus);
4104 			}
4105 		}
4106 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
4107 		spin_unlock_irq(&callback_lock);
4108 		/* we don't mess with cpumasks of tasks in top_cpuset */
4109 	}
4110 
4111 	/* synchronize mems_allowed to N_MEMORY */
4112 	if (mems_updated) {
4113 		spin_lock_irq(&callback_lock);
4114 		if (!on_dfl)
4115 			top_cpuset.mems_allowed = new_mems;
4116 		top_cpuset.effective_mems = new_mems;
4117 		spin_unlock_irq(&callback_lock);
4118 		cpuset_update_tasks_nodemask(&top_cpuset);
4119 	}
4120 
4121 	mutex_unlock(&cpuset_mutex);
4122 
4123 	/* if cpus or mems changed, we need to propagate to descendants */
4124 	if (cpus_updated || mems_updated) {
4125 		struct cpuset *cs;
4126 		struct cgroup_subsys_state *pos_css;
4127 
4128 		rcu_read_lock();
4129 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
4130 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
4131 				continue;
4132 			rcu_read_unlock();
4133 
4134 			cpuset_hotplug_update_tasks(cs, ptmp);
4135 
4136 			rcu_read_lock();
4137 			css_put(&cs->css);
4138 		}
4139 		rcu_read_unlock();
4140 	}
4141 
4142 	/* rebuild sched domains if necessary */
4143 	if (force_sd_rebuild)
4144 		rebuild_sched_domains_cpuslocked();
4145 
4146 	free_tmpmasks(ptmp);
4147 }
4148 
4149 void cpuset_update_active_cpus(void)
4150 {
4151 	/*
4152 	 * We're inside cpu hotplug critical region which usually nests
4153 	 * inside cgroup synchronization.  Bounce actual hotplug processing
4154 	 * to a work item to avoid reverse locking order.
4155 	 */
4156 	cpuset_handle_hotplug();
4157 }
4158 
4159 /*
4160  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
4161  * Call this routine anytime after node_states[N_MEMORY] changes.
4162  * See cpuset_update_active_cpus() for CPU hotplug handling.
4163  */
4164 static int cpuset_track_online_nodes(struct notifier_block *self,
4165 				unsigned long action, void *arg)
4166 {
4167 	cpuset_handle_hotplug();
4168 	return NOTIFY_OK;
4169 }
4170 
4171 /**
4172  * cpuset_init_smp - initialize cpus_allowed
4173  *
4174  * Description: Finish top cpuset after cpu, node maps are initialized
4175  */
4176 void __init cpuset_init_smp(void)
4177 {
4178 	/*
4179 	 * cpus_allowd/mems_allowed set to v2 values in the initial
4180 	 * cpuset_bind() call will be reset to v1 values in another
4181 	 * cpuset_bind() call when v1 cpuset is mounted.
4182 	 */
4183 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4184 
4185 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
4186 	top_cpuset.effective_mems = node_states[N_MEMORY];
4187 
4188 	hotplug_node_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
4189 
4190 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
4191 	BUG_ON(!cpuset_migrate_mm_wq);
4192 }
4193 
4194 /*
4195  * Return cpus_allowed mask from a task's cpuset.
4196  */
4197 static void __cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
4198 {
4199 	struct cpuset *cs;
4200 
4201 	cs = task_cs(tsk);
4202 	if (cs != &top_cpuset)
4203 		guarantee_active_cpus(tsk, pmask);
4204 	/*
4205 	 * Tasks in the top cpuset won't get update to their cpumasks
4206 	 * when a hotplug online/offline event happens. So we include all
4207 	 * offline cpus in the allowed cpu list.
4208 	 */
4209 	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
4210 		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4211 
4212 		/*
4213 		 * We first exclude cpus allocated to partitions. If there is no
4214 		 * allowable online cpu left, we fall back to all possible cpus.
4215 		 */
4216 		cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
4217 		if (!cpumask_intersects(pmask, cpu_active_mask))
4218 			cpumask_copy(pmask, possible_mask);
4219 	}
4220 }
4221 
4222 /**
4223  * cpuset_cpus_allowed_locked - return cpus_allowed mask from a task's cpuset.
4224  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4225  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4226  *
4227  * Similir to cpuset_cpus_allowed() except that the caller must have acquired
4228  * cpuset_mutex.
4229  */
4230 void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
4231 {
4232 	lockdep_assert_held(&cpuset_mutex);
4233 	__cpuset_cpus_allowed_locked(tsk, pmask);
4234 }
4235 
4236 /**
4237  * cpuset_cpus_allowed - return cpus_allowed mask from a task's cpuset.
4238  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4239  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4240  *
4241  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
4242  * attached to the specified @tsk.  Guaranteed to return some non-empty
4243  * subset of cpu_active_mask, even if this means going outside the
4244  * tasks cpuset, except when the task is in the top cpuset.
4245  **/
4246 
4247 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
4248 {
4249 	unsigned long flags;
4250 
4251 	spin_lock_irqsave(&callback_lock, flags);
4252 	__cpuset_cpus_allowed_locked(tsk, pmask);
4253 	spin_unlock_irqrestore(&callback_lock, flags);
4254 }
4255 
4256 /**
4257  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
4258  * @tsk: pointer to task_struct with which the scheduler is struggling
4259  *
4260  * Description: In the case that the scheduler cannot find an allowed cpu in
4261  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
4262  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
4263  * which will not contain a sane cpumask during cases such as cpu hotplugging.
4264  * This is the absolute last resort for the scheduler and it is only used if
4265  * _every_ other avenue has been traveled.
4266  *
4267  * Returns true if the affinity of @tsk was changed, false otherwise.
4268  **/
4269 
4270 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
4271 {
4272 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4273 	const struct cpumask *cs_mask;
4274 	bool changed = false;
4275 
4276 	rcu_read_lock();
4277 	cs_mask = task_cs(tsk)->cpus_allowed;
4278 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
4279 		set_cpus_allowed_force(tsk, cs_mask);
4280 		changed = true;
4281 	}
4282 	rcu_read_unlock();
4283 
4284 	/*
4285 	 * We own tsk->cpus_allowed, nobody can change it under us.
4286 	 *
4287 	 * But we used cs && cs->cpus_allowed lockless and thus can
4288 	 * race with cgroup_attach_task() or update_cpumask() and get
4289 	 * the wrong tsk->cpus_allowed. However, both cases imply the
4290 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4291 	 * which takes task_rq_lock().
4292 	 *
4293 	 * If we are called after it dropped the lock we must see all
4294 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4295 	 * set any mask even if it is not right from task_cs() pov,
4296 	 * the pending set_cpus_allowed_ptr() will fix things.
4297 	 *
4298 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4299 	 * if required.
4300 	 */
4301 	return changed;
4302 }
4303 
4304 void __init cpuset_init_current_mems_allowed(void)
4305 {
4306 	nodes_setall(current->mems_allowed);
4307 }
4308 
4309 /**
4310  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4311  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4312  *
4313  * Description: Returns the nodemask_t mems_allowed of the cpuset
4314  * attached to the specified @tsk.  Guaranteed to return some non-empty
4315  * subset of node_states[N_MEMORY], even if this means going outside the
4316  * tasks cpuset.
4317  **/
4318 
4319 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4320 {
4321 	nodemask_t mask;
4322 	unsigned long flags;
4323 
4324 	spin_lock_irqsave(&callback_lock, flags);
4325 	guarantee_online_mems(task_cs(tsk), &mask);
4326 	spin_unlock_irqrestore(&callback_lock, flags);
4327 
4328 	return mask;
4329 }
4330 
4331 /**
4332  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4333  * @nodemask: the nodemask to be checked
4334  *
4335  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4336  */
4337 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4338 {
4339 	return nodes_intersects(*nodemask, current->mems_allowed);
4340 }
4341 
4342 /*
4343  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4344  * mem_hardwall ancestor to the specified cpuset.  Call holding
4345  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
4346  * (an unusual configuration), then returns the root cpuset.
4347  */
4348 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4349 {
4350 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4351 		cs = parent_cs(cs);
4352 	return cs;
4353 }
4354 
4355 /*
4356  * cpuset_current_node_allowed - Can current task allocate on a memory node?
4357  * @node: is this an allowed node?
4358  * @gfp_mask: memory allocation flags
4359  *
4360  * If we're in interrupt, yes, we can always allocate.  If @node is set in
4361  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
4362  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4363  * yes.  If current has access to memory reserves as an oom victim, yes.
4364  * Otherwise, no.
4365  *
4366  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4367  * and do not allow allocations outside the current tasks cpuset
4368  * unless the task has been OOM killed.
4369  * GFP_KERNEL allocations are not so marked, so can escape to the
4370  * nearest enclosing hardwalled ancestor cpuset.
4371  *
4372  * Scanning up parent cpusets requires callback_lock.  The
4373  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4374  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4375  * current tasks mems_allowed came up empty on the first pass over
4376  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
4377  * cpuset are short of memory, might require taking the callback_lock.
4378  *
4379  * The first call here from mm/page_alloc:get_page_from_freelist()
4380  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4381  * so no allocation on a node outside the cpuset is allowed (unless
4382  * in interrupt, of course).
4383  *
4384  * The second pass through get_page_from_freelist() doesn't even call
4385  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
4386  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4387  * in alloc_flags.  That logic and the checks below have the combined
4388  * affect that:
4389  *	in_interrupt - any node ok (current task context irrelevant)
4390  *	GFP_ATOMIC   - any node ok
4391  *	tsk_is_oom_victim   - any node ok
4392  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
4393  *	GFP_USER     - only nodes in current tasks mems allowed ok.
4394  */
4395 bool cpuset_current_node_allowed(int node, gfp_t gfp_mask)
4396 {
4397 	struct cpuset *cs;		/* current cpuset ancestors */
4398 	bool allowed;			/* is allocation in zone z allowed? */
4399 	unsigned long flags;
4400 
4401 	if (in_interrupt())
4402 		return true;
4403 	if (node_isset(node, current->mems_allowed))
4404 		return true;
4405 	/*
4406 	 * Allow tasks that have access to memory reserves because they have
4407 	 * been OOM killed to get memory anywhere.
4408 	 */
4409 	if (unlikely(tsk_is_oom_victim(current)))
4410 		return true;
4411 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
4412 		return false;
4413 
4414 	if (current->flags & PF_EXITING) /* Let dying task have memory */
4415 		return true;
4416 
4417 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
4418 	spin_lock_irqsave(&callback_lock, flags);
4419 
4420 	cs = nearest_hardwall_ancestor(task_cs(current));
4421 	allowed = node_isset(node, cs->mems_allowed);
4422 
4423 	spin_unlock_irqrestore(&callback_lock, flags);
4424 	return allowed;
4425 }
4426 
4427 bool cpuset_node_allowed(struct cgroup *cgroup, int nid)
4428 {
4429 	struct cgroup_subsys_state *css;
4430 	struct cpuset *cs;
4431 	bool allowed;
4432 
4433 	/*
4434 	 * In v1, mem_cgroup and cpuset are unlikely in the same hierarchy
4435 	 * and mems_allowed is likely to be empty even if we could get to it,
4436 	 * so return true to avoid taking a global lock on the empty check.
4437 	 */
4438 	if (!cpuset_v2())
4439 		return true;
4440 
4441 	css = cgroup_get_e_css(cgroup, &cpuset_cgrp_subsys);
4442 	if (!css)
4443 		return true;
4444 
4445 	/*
4446 	 * Normally, accessing effective_mems would require the cpuset_mutex
4447 	 * or callback_lock - but node_isset is atomic and the reference
4448 	 * taken via cgroup_get_e_css is sufficient to protect css.
4449 	 *
4450 	 * Since this interface is intended for use by migration paths, we
4451 	 * relax locking here to avoid taking global locks - while accepting
4452 	 * there may be rare scenarios where the result may be innaccurate.
4453 	 *
4454 	 * Reclaim and migration are subject to these same race conditions, and
4455 	 * cannot make strong isolation guarantees, so this is acceptable.
4456 	 */
4457 	cs = container_of(css, struct cpuset, css);
4458 	allowed = node_isset(nid, cs->effective_mems);
4459 	css_put(css);
4460 	return allowed;
4461 }
4462 
4463 /**
4464  * cpuset_spread_node() - On which node to begin search for a page
4465  * @rotor: round robin rotor
4466  *
4467  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4468  * tasks in a cpuset with is_spread_page or is_spread_slab set),
4469  * and if the memory allocation used cpuset_mem_spread_node()
4470  * to determine on which node to start looking, as it will for
4471  * certain page cache or slab cache pages such as used for file
4472  * system buffers and inode caches, then instead of starting on the
4473  * local node to look for a free page, rather spread the starting
4474  * node around the tasks mems_allowed nodes.
4475  *
4476  * We don't have to worry about the returned node being offline
4477  * because "it can't happen", and even if it did, it would be ok.
4478  *
4479  * The routines calling guarantee_online_mems() are careful to
4480  * only set nodes in task->mems_allowed that are online.  So it
4481  * should not be possible for the following code to return an
4482  * offline node.  But if it did, that would be ok, as this routine
4483  * is not returning the node where the allocation must be, only
4484  * the node where the search should start.  The zonelist passed to
4485  * __alloc_pages() will include all nodes.  If the slab allocator
4486  * is passed an offline node, it will fall back to the local node.
4487  * See kmem_cache_alloc_node().
4488  */
4489 static int cpuset_spread_node(int *rotor)
4490 {
4491 	return *rotor = next_node_in(*rotor, current->mems_allowed);
4492 }
4493 
4494 /**
4495  * cpuset_mem_spread_node() - On which node to begin search for a file page
4496  */
4497 int cpuset_mem_spread_node(void)
4498 {
4499 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4500 		current->cpuset_mem_spread_rotor =
4501 			node_random(&current->mems_allowed);
4502 
4503 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
4504 }
4505 
4506 /**
4507  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4508  * @tsk1: pointer to task_struct of some task.
4509  * @tsk2: pointer to task_struct of some other task.
4510  *
4511  * Description: Return true if @tsk1's mems_allowed intersects the
4512  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
4513  * one of the task's memory usage might impact the memory available
4514  * to the other.
4515  **/
4516 
4517 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4518 				   const struct task_struct *tsk2)
4519 {
4520 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4521 }
4522 
4523 /**
4524  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4525  *
4526  * Description: Prints current's name, cpuset name, and cached copy of its
4527  * mems_allowed to the kernel log.
4528  */
4529 void cpuset_print_current_mems_allowed(void)
4530 {
4531 	struct cgroup *cgrp;
4532 
4533 	rcu_read_lock();
4534 
4535 	cgrp = task_cs(current)->css.cgroup;
4536 	pr_cont(",cpuset=");
4537 	pr_cont_cgroup_name(cgrp);
4538 	pr_cont(",mems_allowed=%*pbl",
4539 		nodemask_pr_args(&current->mems_allowed));
4540 
4541 	rcu_read_unlock();
4542 }
4543 
4544 /* Display task mems_allowed in /proc/<pid>/status file. */
4545 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4546 {
4547 	seq_printf(m, "Mems_allowed:\t%*pb\n",
4548 		   nodemask_pr_args(&task->mems_allowed));
4549 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4550 		   nodemask_pr_args(&task->mems_allowed));
4551 }
4552