1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * kernel/cpuset.c 4 * 5 * Processor and Memory placement constraints for sets of tasks. 6 * 7 * Copyright (C) 2003 BULL SA. 8 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 9 * Copyright (C) 2006 Google, Inc 10 * 11 * Portions derived from Patrick Mochel's sysfs code. 12 * sysfs is Copyright (c) 2001-3 Patrick Mochel 13 * 14 * 2003-10-10 Written by Simon Derr. 15 * 2003-10-22 Updates by Stephen Hemminger. 16 * 2004 May-July Rework by Paul Jackson. 17 * 2006 Rework by Paul Menage to use generic cgroups 18 * 2008 Rework of the scheduler domains and CPU hotplug handling 19 * by Max Krasnyansky 20 */ 21 #include "cpuset-internal.h" 22 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/kernel.h> 26 #include <linux/mempolicy.h> 27 #include <linux/mm.h> 28 #include <linux/memory.h> 29 #include <linux/export.h> 30 #include <linux/rcupdate.h> 31 #include <linux/sched.h> 32 #include <linux/sched/deadline.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/task.h> 35 #include <linux/security.h> 36 #include <linux/oom.h> 37 #include <linux/sched/isolation.h> 38 #include <linux/wait.h> 39 #include <linux/workqueue.h> 40 #include <linux/task_work.h> 41 42 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 43 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 44 45 /* 46 * There could be abnormal cpuset configurations for cpu or memory 47 * node binding, add this key to provide a quick low-cost judgment 48 * of the situation. 49 */ 50 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); 51 52 static const char * const perr_strings[] = { 53 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive", 54 [PERR_INVPARENT] = "Parent is an invalid partition root", 55 [PERR_NOTPART] = "Parent is not a partition root", 56 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", 57 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", 58 [PERR_HOTPLUG] = "No cpu available due to hotplug", 59 [PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty", 60 [PERR_HKEEPING] = "partition config conflicts with housekeeping setup", 61 [PERR_ACCESS] = "Enable partition not permitted", 62 [PERR_REMOTE] = "Have remote partition underneath", 63 }; 64 65 /* 66 * For local partitions, update to subpartitions_cpus & isolated_cpus is done 67 * in update_parent_effective_cpumask(). For remote partitions, it is done in 68 * the remote_partition_*() and remote_cpus_update() helpers. 69 */ 70 /* 71 * Exclusive CPUs distributed out to local or remote sub-partitions of 72 * top_cpuset 73 */ 74 static cpumask_var_t subpartitions_cpus; 75 76 /* 77 * Exclusive CPUs in isolated partitions 78 */ 79 static cpumask_var_t isolated_cpus; 80 81 /* 82 * isolated_cpus updating flag (protected by cpuset_mutex) 83 * Set if isolated_cpus is going to be updated in the current 84 * cpuset_mutex crtical section. 85 */ 86 static bool isolated_cpus_updating; 87 88 /* 89 * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot 90 */ 91 static cpumask_var_t boot_hk_cpus; 92 static bool have_boot_isolcpus; 93 94 /* 95 * A flag to force sched domain rebuild at the end of an operation. 96 * It can be set in 97 * - update_partition_sd_lb() 98 * - update_cpumasks_hier() 99 * - cpuset_update_flag() 100 * - cpuset_hotplug_update_tasks() 101 * - cpuset_handle_hotplug() 102 * 103 * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock. 104 * 105 * Note that update_relax_domain_level() in cpuset-v1.c can still call 106 * rebuild_sched_domains_locked() directly without using this flag. 107 */ 108 static bool force_sd_rebuild; 109 110 /* 111 * Partition root states: 112 * 113 * 0 - member (not a partition root) 114 * 1 - partition root 115 * 2 - partition root without load balancing (isolated) 116 * -1 - invalid partition root 117 * -2 - invalid isolated partition root 118 * 119 * There are 2 types of partitions - local or remote. Local partitions are 120 * those whose parents are partition root themselves. Setting of 121 * cpuset.cpus.exclusive are optional in setting up local partitions. 122 * Remote partitions are those whose parents are not partition roots. Passing 123 * down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor 124 * nodes are mandatory in creating a remote partition. 125 * 126 * For simplicity, a local partition can be created under a local or remote 127 * partition but a remote partition cannot have any partition root in its 128 * ancestor chain except the cgroup root. 129 */ 130 #define PRS_MEMBER 0 131 #define PRS_ROOT 1 132 #define PRS_ISOLATED 2 133 #define PRS_INVALID_ROOT -1 134 #define PRS_INVALID_ISOLATED -2 135 136 /* 137 * Temporary cpumasks for working with partitions that are passed among 138 * functions to avoid memory allocation in inner functions. 139 */ 140 struct tmpmasks { 141 cpumask_var_t addmask, delmask; /* For partition root */ 142 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 143 }; 144 145 void inc_dl_tasks_cs(struct task_struct *p) 146 { 147 struct cpuset *cs = task_cs(p); 148 149 cs->nr_deadline_tasks++; 150 } 151 152 void dec_dl_tasks_cs(struct task_struct *p) 153 { 154 struct cpuset *cs = task_cs(p); 155 156 cs->nr_deadline_tasks--; 157 } 158 159 static inline bool is_partition_valid(const struct cpuset *cs) 160 { 161 return cs->partition_root_state > 0; 162 } 163 164 static inline bool is_partition_invalid(const struct cpuset *cs) 165 { 166 return cs->partition_root_state < 0; 167 } 168 169 static inline bool cs_is_member(const struct cpuset *cs) 170 { 171 return cs->partition_root_state == PRS_MEMBER; 172 } 173 174 /* 175 * Callers should hold callback_lock to modify partition_root_state. 176 */ 177 static inline void make_partition_invalid(struct cpuset *cs) 178 { 179 if (cs->partition_root_state > 0) 180 cs->partition_root_state = -cs->partition_root_state; 181 } 182 183 /* 184 * Send notification event of whenever partition_root_state changes. 185 */ 186 static inline void notify_partition_change(struct cpuset *cs, int old_prs) 187 { 188 if (old_prs == cs->partition_root_state) 189 return; 190 cgroup_file_notify(&cs->partition_file); 191 192 /* Reset prs_err if not invalid */ 193 if (is_partition_valid(cs)) 194 WRITE_ONCE(cs->prs_err, PERR_NONE); 195 } 196 197 /* 198 * The top_cpuset is always synchronized to cpu_active_mask and we should avoid 199 * using cpu_online_mask as much as possible. An active CPU is always an online 200 * CPU, but not vice versa. cpu_active_mask and cpu_online_mask can differ 201 * during hotplug operations. A CPU is marked active at the last stage of CPU 202 * bringup (CPUHP_AP_ACTIVE). It is also the stage where cpuset hotplug code 203 * will be called to update the sched domains so that the scheduler can move 204 * a normal task to a newly active CPU or remove tasks away from a newly 205 * inactivated CPU. The online bit is set much earlier in the CPU bringup 206 * process and cleared much later in CPU teardown. 207 * 208 * If cpu_online_mask is used while a hotunplug operation is happening in 209 * parallel, we may leave an offline CPU in cpu_allowed or some other masks. 210 */ 211 static struct cpuset top_cpuset = { 212 .flags = BIT(CS_CPU_EXCLUSIVE) | 213 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE), 214 .partition_root_state = PRS_ROOT, 215 .relax_domain_level = -1, 216 .remote_partition = false, 217 }; 218 219 /* 220 * There are two global locks guarding cpuset structures - cpuset_mutex and 221 * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel 222 * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset 223 * structures. Note that cpuset_mutex needs to be a mutex as it is used in 224 * paths that rely on priority inheritance (e.g. scheduler - on RT) for 225 * correctness. 226 * 227 * A task must hold both locks to modify cpusets. If a task holds 228 * cpuset_mutex, it blocks others, ensuring that it is the only task able to 229 * also acquire callback_lock and be able to modify cpusets. It can perform 230 * various checks on the cpuset structure first, knowing nothing will change. 231 * It can also allocate memory while just holding cpuset_mutex. While it is 232 * performing these checks, various callback routines can briefly acquire 233 * callback_lock to query cpusets. Once it is ready to make the changes, it 234 * takes callback_lock, blocking everyone else. 235 * 236 * Calls to the kernel memory allocator can not be made while holding 237 * callback_lock, as that would risk double tripping on callback_lock 238 * from one of the callbacks into the cpuset code from within 239 * __alloc_pages(). 240 * 241 * If a task is only holding callback_lock, then it has read-only 242 * access to cpusets. 243 * 244 * Now, the task_struct fields mems_allowed and mempolicy may be changed 245 * by other task, we use alloc_lock in the task_struct fields to protect 246 * them. 247 * 248 * The cpuset_common_seq_show() handlers only hold callback_lock across 249 * small pieces of code, such as when reading out possibly multi-word 250 * cpumasks and nodemasks. 251 */ 252 253 static DEFINE_MUTEX(cpuset_mutex); 254 255 /** 256 * cpuset_lock - Acquire the global cpuset mutex 257 * 258 * This locks the global cpuset mutex to prevent modifications to cpuset 259 * hierarchy and configurations. This helper is not enough to make modification. 260 */ 261 void cpuset_lock(void) 262 { 263 mutex_lock(&cpuset_mutex); 264 } 265 266 void cpuset_unlock(void) 267 { 268 mutex_unlock(&cpuset_mutex); 269 } 270 271 /** 272 * cpuset_full_lock - Acquire full protection for cpuset modification 273 * 274 * Takes both CPU hotplug read lock (cpus_read_lock()) and cpuset mutex 275 * to safely modify cpuset data. 276 */ 277 void cpuset_full_lock(void) 278 { 279 cpus_read_lock(); 280 mutex_lock(&cpuset_mutex); 281 } 282 283 void cpuset_full_unlock(void) 284 { 285 mutex_unlock(&cpuset_mutex); 286 cpus_read_unlock(); 287 } 288 289 static DEFINE_SPINLOCK(callback_lock); 290 291 void cpuset_callback_lock_irq(void) 292 { 293 spin_lock_irq(&callback_lock); 294 } 295 296 void cpuset_callback_unlock_irq(void) 297 { 298 spin_unlock_irq(&callback_lock); 299 } 300 301 static struct workqueue_struct *cpuset_migrate_mm_wq; 302 303 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 304 305 static inline void check_insane_mems_config(nodemask_t *nodes) 306 { 307 if (!cpusets_insane_config() && 308 movable_only_nodes(nodes)) { 309 static_branch_enable_cpuslocked(&cpusets_insane_config_key); 310 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" 311 "Cpuset allocations might fail even with a lot of memory available.\n", 312 nodemask_pr_args(nodes)); 313 } 314 } 315 316 /* 317 * decrease cs->attach_in_progress. 318 * wake_up cpuset_attach_wq if cs->attach_in_progress==0. 319 */ 320 static inline void dec_attach_in_progress_locked(struct cpuset *cs) 321 { 322 lockdep_assert_held(&cpuset_mutex); 323 324 cs->attach_in_progress--; 325 if (!cs->attach_in_progress) 326 wake_up(&cpuset_attach_wq); 327 } 328 329 static inline void dec_attach_in_progress(struct cpuset *cs) 330 { 331 mutex_lock(&cpuset_mutex); 332 dec_attach_in_progress_locked(cs); 333 mutex_unlock(&cpuset_mutex); 334 } 335 336 static inline bool cpuset_v2(void) 337 { 338 return !IS_ENABLED(CONFIG_CPUSETS_V1) || 339 cgroup_subsys_on_dfl(cpuset_cgrp_subsys); 340 } 341 342 /* 343 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 344 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 345 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 346 * With v2 behavior, "cpus" and "mems" are always what the users have 347 * requested and won't be changed by hotplug events. Only the effective 348 * cpus or mems will be affected. 349 */ 350 static inline bool is_in_v2_mode(void) 351 { 352 return cpuset_v2() || 353 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 354 } 355 356 static inline bool cpuset_is_populated(struct cpuset *cs) 357 { 358 lockdep_assert_held(&cpuset_mutex); 359 360 /* Cpusets in the process of attaching should be considered as populated */ 361 return cgroup_is_populated(cs->css.cgroup) || 362 cs->attach_in_progress; 363 } 364 365 /** 366 * partition_is_populated - check if partition has tasks 367 * @cs: partition root to be checked 368 * @excluded_child: a child cpuset to be excluded in task checking 369 * Return: true if there are tasks, false otherwise 370 * 371 * @cs should be a valid partition root or going to become a partition root. 372 * @excluded_child should be non-NULL when this cpuset is going to become a 373 * partition itself. 374 * 375 * Note that a remote partition is not allowed underneath a valid local 376 * or remote partition. So if a non-partition root child is populated, 377 * the whole partition is considered populated. 378 */ 379 static inline bool partition_is_populated(struct cpuset *cs, 380 struct cpuset *excluded_child) 381 { 382 struct cpuset *cp; 383 struct cgroup_subsys_state *pos_css; 384 385 /* 386 * We cannot call cs_is_populated(cs) directly, as 387 * nr_populated_domain_children may include populated 388 * csets from descendants that are partitions. 389 */ 390 if (cs->css.cgroup->nr_populated_csets || 391 cs->attach_in_progress) 392 return true; 393 394 rcu_read_lock(); 395 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 396 if (cp == cs || cp == excluded_child) 397 continue; 398 399 if (is_partition_valid(cp)) { 400 pos_css = css_rightmost_descendant(pos_css); 401 continue; 402 } 403 404 if (cpuset_is_populated(cp)) { 405 rcu_read_unlock(); 406 return true; 407 } 408 } 409 rcu_read_unlock(); 410 return false; 411 } 412 413 /* 414 * Return in pmask the portion of a task's cpusets's cpus_allowed that 415 * are online and are capable of running the task. If none are found, 416 * walk up the cpuset hierarchy until we find one that does have some 417 * appropriate cpus. 418 * 419 * One way or another, we guarantee to return some non-empty subset 420 * of cpu_active_mask. 421 * 422 * Call with callback_lock or cpuset_mutex held. 423 */ 424 static void guarantee_active_cpus(struct task_struct *tsk, 425 struct cpumask *pmask) 426 { 427 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 428 struct cpuset *cs; 429 430 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask))) 431 cpumask_copy(pmask, cpu_active_mask); 432 433 rcu_read_lock(); 434 cs = task_cs(tsk); 435 436 while (!cpumask_intersects(cs->effective_cpus, pmask)) 437 cs = parent_cs(cs); 438 439 cpumask_and(pmask, pmask, cs->effective_cpus); 440 rcu_read_unlock(); 441 } 442 443 /* 444 * Return in *pmask the portion of a cpusets's mems_allowed that 445 * are online, with memory. If none are online with memory, walk 446 * up the cpuset hierarchy until we find one that does have some 447 * online mems. The top cpuset always has some mems online. 448 * 449 * One way or another, we guarantee to return some non-empty subset 450 * of node_states[N_MEMORY]. 451 * 452 * Call with callback_lock or cpuset_mutex held. 453 */ 454 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 455 { 456 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 457 cs = parent_cs(cs); 458 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 459 } 460 461 /** 462 * alloc_cpumasks - Allocate an array of cpumask variables 463 * @pmasks: Pointer to array of cpumask_var_t pointers 464 * @size: Number of cpumasks to allocate 465 * Return: 0 if successful, -ENOMEM otherwise. 466 * 467 * Allocates @size cpumasks and initializes them to empty. Returns 0 on 468 * success, -ENOMEM on allocation failure. On failure, any previously 469 * allocated cpumasks are freed. 470 */ 471 static inline int alloc_cpumasks(cpumask_var_t *pmasks[], u32 size) 472 { 473 int i; 474 475 for (i = 0; i < size; i++) { 476 if (!zalloc_cpumask_var(pmasks[i], GFP_KERNEL)) { 477 while (--i >= 0) 478 free_cpumask_var(*pmasks[i]); 479 return -ENOMEM; 480 } 481 } 482 return 0; 483 } 484 485 /** 486 * alloc_tmpmasks - Allocate temporary cpumasks for cpuset operations. 487 * @tmp: Pointer to tmpmasks structure to populate 488 * Return: 0 on success, -ENOMEM on allocation failure 489 */ 490 static inline int alloc_tmpmasks(struct tmpmasks *tmp) 491 { 492 /* 493 * Array of pointers to the three cpumask_var_t fields in tmpmasks. 494 * Note: Array size must match actual number of masks (3) 495 */ 496 cpumask_var_t *pmask[3] = { 497 &tmp->new_cpus, 498 &tmp->addmask, 499 &tmp->delmask 500 }; 501 502 return alloc_cpumasks(pmask, ARRAY_SIZE(pmask)); 503 } 504 505 /** 506 * free_tmpmasks - free cpumasks in a tmpmasks structure 507 * @tmp: the tmpmasks structure pointer 508 */ 509 static inline void free_tmpmasks(struct tmpmasks *tmp) 510 { 511 if (!tmp) 512 return; 513 514 free_cpumask_var(tmp->new_cpus); 515 free_cpumask_var(tmp->addmask); 516 free_cpumask_var(tmp->delmask); 517 } 518 519 /** 520 * dup_or_alloc_cpuset - Duplicate or allocate a new cpuset 521 * @cs: Source cpuset to duplicate (NULL for a fresh allocation) 522 * 523 * Creates a new cpuset by either: 524 * 1. Duplicating an existing cpuset (if @cs is non-NULL), or 525 * 2. Allocating a fresh cpuset with zero-initialized masks (if @cs is NULL) 526 * 527 * Return: Pointer to newly allocated cpuset on success, NULL on failure 528 */ 529 static struct cpuset *dup_or_alloc_cpuset(struct cpuset *cs) 530 { 531 struct cpuset *trial; 532 533 /* Allocate base structure */ 534 trial = cs ? kmemdup(cs, sizeof(*cs), GFP_KERNEL) : 535 kzalloc(sizeof(*cs), GFP_KERNEL); 536 if (!trial) 537 return NULL; 538 539 /* Setup cpumask pointer array */ 540 cpumask_var_t *pmask[4] = { 541 &trial->cpus_allowed, 542 &trial->effective_cpus, 543 &trial->effective_xcpus, 544 &trial->exclusive_cpus 545 }; 546 547 if (alloc_cpumasks(pmask, ARRAY_SIZE(pmask))) { 548 kfree(trial); 549 return NULL; 550 } 551 552 /* Copy masks if duplicating */ 553 if (cs) { 554 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 555 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 556 cpumask_copy(trial->effective_xcpus, cs->effective_xcpus); 557 cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus); 558 } 559 560 return trial; 561 } 562 563 /** 564 * free_cpuset - free the cpuset 565 * @cs: the cpuset to be freed 566 */ 567 static inline void free_cpuset(struct cpuset *cs) 568 { 569 free_cpumask_var(cs->cpus_allowed); 570 free_cpumask_var(cs->effective_cpus); 571 free_cpumask_var(cs->effective_xcpus); 572 free_cpumask_var(cs->exclusive_cpus); 573 kfree(cs); 574 } 575 576 /* Return user specified exclusive CPUs */ 577 static inline struct cpumask *user_xcpus(struct cpuset *cs) 578 { 579 return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed 580 : cs->exclusive_cpus; 581 } 582 583 static inline bool xcpus_empty(struct cpuset *cs) 584 { 585 return cpumask_empty(cs->cpus_allowed) && 586 cpumask_empty(cs->exclusive_cpus); 587 } 588 589 /* 590 * cpusets_are_exclusive() - check if two cpusets are exclusive 591 * 592 * Return true if exclusive, false if not 593 */ 594 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2) 595 { 596 struct cpumask *xcpus1 = user_xcpus(cs1); 597 struct cpumask *xcpus2 = user_xcpus(cs2); 598 599 if (cpumask_intersects(xcpus1, xcpus2)) 600 return false; 601 return true; 602 } 603 604 /** 605 * cpus_excl_conflict - Check if two cpusets have exclusive CPU conflicts 606 * @cs1: first cpuset to check 607 * @cs2: second cpuset to check 608 * 609 * Returns: true if CPU exclusivity conflict exists, false otherwise 610 * 611 * Conflict detection rules: 612 * 1. If either cpuset is CPU exclusive, they must be mutually exclusive 613 * 2. exclusive_cpus masks cannot intersect between cpusets 614 * 3. The allowed CPUs of one cpuset cannot be a subset of another's exclusive CPUs 615 */ 616 static inline bool cpus_excl_conflict(struct cpuset *cs1, struct cpuset *cs2) 617 { 618 /* If either cpuset is exclusive, check if they are mutually exclusive */ 619 if (is_cpu_exclusive(cs1) || is_cpu_exclusive(cs2)) 620 return !cpusets_are_exclusive(cs1, cs2); 621 622 /* Exclusive_cpus cannot intersect */ 623 if (cpumask_intersects(cs1->exclusive_cpus, cs2->exclusive_cpus)) 624 return true; 625 626 /* The cpus_allowed of one cpuset cannot be a subset of another cpuset's exclusive_cpus */ 627 if (!cpumask_empty(cs1->cpus_allowed) && 628 cpumask_subset(cs1->cpus_allowed, cs2->exclusive_cpus)) 629 return true; 630 631 if (!cpumask_empty(cs2->cpus_allowed) && 632 cpumask_subset(cs2->cpus_allowed, cs1->exclusive_cpus)) 633 return true; 634 635 return false; 636 } 637 638 static inline bool mems_excl_conflict(struct cpuset *cs1, struct cpuset *cs2) 639 { 640 if ((is_mem_exclusive(cs1) || is_mem_exclusive(cs2))) 641 return nodes_intersects(cs1->mems_allowed, cs2->mems_allowed); 642 return false; 643 } 644 645 /* 646 * validate_change() - Used to validate that any proposed cpuset change 647 * follows the structural rules for cpusets. 648 * 649 * If we replaced the flag and mask values of the current cpuset 650 * (cur) with those values in the trial cpuset (trial), would 651 * our various subset and exclusive rules still be valid? Presumes 652 * cpuset_mutex held. 653 * 654 * 'cur' is the address of an actual, in-use cpuset. Operations 655 * such as list traversal that depend on the actual address of the 656 * cpuset in the list must use cur below, not trial. 657 * 658 * 'trial' is the address of bulk structure copy of cur, with 659 * perhaps one or more of the fields cpus_allowed, mems_allowed, 660 * or flags changed to new, trial values. 661 * 662 * Return 0 if valid, -errno if not. 663 */ 664 665 static int validate_change(struct cpuset *cur, struct cpuset *trial) 666 { 667 struct cgroup_subsys_state *css; 668 struct cpuset *c, *par; 669 int ret = 0; 670 671 rcu_read_lock(); 672 673 if (!is_in_v2_mode()) 674 ret = cpuset1_validate_change(cur, trial); 675 if (ret) 676 goto out; 677 678 /* Remaining checks don't apply to root cpuset */ 679 if (cur == &top_cpuset) 680 goto out; 681 682 par = parent_cs(cur); 683 684 /* 685 * Cpusets with tasks - existing or newly being attached - can't 686 * be changed to have empty cpus_allowed or mems_allowed. 687 */ 688 ret = -ENOSPC; 689 if (cpuset_is_populated(cur)) { 690 if (!cpumask_empty(cur->cpus_allowed) && 691 cpumask_empty(trial->cpus_allowed)) 692 goto out; 693 if (!nodes_empty(cur->mems_allowed) && 694 nodes_empty(trial->mems_allowed)) 695 goto out; 696 } 697 698 /* 699 * We can't shrink if we won't have enough room for SCHED_DEADLINE 700 * tasks. This check is not done when scheduling is disabled as the 701 * users should know what they are doing. 702 * 703 * For v1, effective_cpus == cpus_allowed & user_xcpus() returns 704 * cpus_allowed. 705 * 706 * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only 707 * for non-isolated partition root. At this point, the target 708 * effective_cpus isn't computed yet. user_xcpus() is the best 709 * approximation. 710 * 711 * TBD: May need to precompute the real effective_cpus here in case 712 * incorrect scheduling of SCHED_DEADLINE tasks in a partition 713 * becomes an issue. 714 */ 715 ret = -EBUSY; 716 if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) && 717 !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial))) 718 goto out; 719 720 /* 721 * If either I or some sibling (!= me) is exclusive, we can't 722 * overlap. exclusive_cpus cannot overlap with each other if set. 723 */ 724 ret = -EINVAL; 725 cpuset_for_each_child(c, css, par) { 726 if (c == cur) 727 continue; 728 if (cpus_excl_conflict(trial, c)) 729 goto out; 730 if (mems_excl_conflict(trial, c)) 731 goto out; 732 } 733 734 ret = 0; 735 out: 736 rcu_read_unlock(); 737 return ret; 738 } 739 740 #ifdef CONFIG_SMP 741 /* 742 * Helper routine for generate_sched_domains(). 743 * Do cpusets a, b have overlapping effective cpus_allowed masks? 744 */ 745 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 746 { 747 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 748 } 749 750 static void 751 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 752 { 753 if (dattr->relax_domain_level < c->relax_domain_level) 754 dattr->relax_domain_level = c->relax_domain_level; 755 return; 756 } 757 758 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 759 struct cpuset *root_cs) 760 { 761 struct cpuset *cp; 762 struct cgroup_subsys_state *pos_css; 763 764 rcu_read_lock(); 765 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 766 /* skip the whole subtree if @cp doesn't have any CPU */ 767 if (cpumask_empty(cp->cpus_allowed)) { 768 pos_css = css_rightmost_descendant(pos_css); 769 continue; 770 } 771 772 if (is_sched_load_balance(cp)) 773 update_domain_attr(dattr, cp); 774 } 775 rcu_read_unlock(); 776 } 777 778 /* Must be called with cpuset_mutex held. */ 779 static inline int nr_cpusets(void) 780 { 781 /* jump label reference count + the top-level cpuset */ 782 return static_key_count(&cpusets_enabled_key.key) + 1; 783 } 784 785 /* 786 * generate_sched_domains() 787 * 788 * This function builds a partial partition of the systems CPUs 789 * A 'partial partition' is a set of non-overlapping subsets whose 790 * union is a subset of that set. 791 * The output of this function needs to be passed to kernel/sched/core.c 792 * partition_sched_domains() routine, which will rebuild the scheduler's 793 * load balancing domains (sched domains) as specified by that partial 794 * partition. 795 * 796 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 797 * for a background explanation of this. 798 * 799 * Does not return errors, on the theory that the callers of this 800 * routine would rather not worry about failures to rebuild sched 801 * domains when operating in the severe memory shortage situations 802 * that could cause allocation failures below. 803 * 804 * Must be called with cpuset_mutex held. 805 * 806 * The three key local variables below are: 807 * cp - cpuset pointer, used (together with pos_css) to perform a 808 * top-down scan of all cpusets. For our purposes, rebuilding 809 * the schedulers sched domains, we can ignore !is_sched_load_ 810 * balance cpusets. 811 * csa - (for CpuSet Array) Array of pointers to all the cpusets 812 * that need to be load balanced, for convenient iterative 813 * access by the subsequent code that finds the best partition, 814 * i.e the set of domains (subsets) of CPUs such that the 815 * cpus_allowed of every cpuset marked is_sched_load_balance 816 * is a subset of one of these domains, while there are as 817 * many such domains as possible, each as small as possible. 818 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 819 * the kernel/sched/core.c routine partition_sched_domains() in a 820 * convenient format, that can be easily compared to the prior 821 * value to determine what partition elements (sched domains) 822 * were changed (added or removed.) 823 * 824 * Finding the best partition (set of domains): 825 * The double nested loops below over i, j scan over the load 826 * balanced cpusets (using the array of cpuset pointers in csa[]) 827 * looking for pairs of cpusets that have overlapping cpus_allowed 828 * and merging them using a union-find algorithm. 829 * 830 * The union of the cpus_allowed masks from the set of all cpusets 831 * having the same root then form the one element of the partition 832 * (one sched domain) to be passed to partition_sched_domains(). 833 * 834 */ 835 static int generate_sched_domains(cpumask_var_t **domains, 836 struct sched_domain_attr **attributes) 837 { 838 struct cpuset *cp; /* top-down scan of cpusets */ 839 struct cpuset **csa; /* array of all cpuset ptrs */ 840 int csn; /* how many cpuset ptrs in csa so far */ 841 int i, j; /* indices for partition finding loops */ 842 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 843 struct sched_domain_attr *dattr; /* attributes for custom domains */ 844 int ndoms = 0; /* number of sched domains in result */ 845 int nslot; /* next empty doms[] struct cpumask slot */ 846 struct cgroup_subsys_state *pos_css; 847 bool root_load_balance = is_sched_load_balance(&top_cpuset); 848 bool cgrpv2 = cpuset_v2(); 849 int nslot_update; 850 851 doms = NULL; 852 dattr = NULL; 853 csa = NULL; 854 855 /* Special case for the 99% of systems with one, full, sched domain */ 856 if (root_load_balance && cpumask_empty(subpartitions_cpus)) { 857 single_root_domain: 858 ndoms = 1; 859 doms = alloc_sched_domains(ndoms); 860 if (!doms) 861 goto done; 862 863 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 864 if (dattr) { 865 *dattr = SD_ATTR_INIT; 866 update_domain_attr_tree(dattr, &top_cpuset); 867 } 868 cpumask_and(doms[0], top_cpuset.effective_cpus, 869 housekeeping_cpumask(HK_TYPE_DOMAIN)); 870 871 goto done; 872 } 873 874 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 875 if (!csa) 876 goto done; 877 csn = 0; 878 879 rcu_read_lock(); 880 if (root_load_balance) 881 csa[csn++] = &top_cpuset; 882 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 883 if (cp == &top_cpuset) 884 continue; 885 886 if (cgrpv2) 887 goto v2; 888 889 /* 890 * v1: 891 * Continue traversing beyond @cp iff @cp has some CPUs and 892 * isn't load balancing. The former is obvious. The 893 * latter: All child cpusets contain a subset of the 894 * parent's cpus, so just skip them, and then we call 895 * update_domain_attr_tree() to calc relax_domain_level of 896 * the corresponding sched domain. 897 */ 898 if (!cpumask_empty(cp->cpus_allowed) && 899 !(is_sched_load_balance(cp) && 900 cpumask_intersects(cp->cpus_allowed, 901 housekeeping_cpumask(HK_TYPE_DOMAIN)))) 902 continue; 903 904 if (is_sched_load_balance(cp) && 905 !cpumask_empty(cp->effective_cpus)) 906 csa[csn++] = cp; 907 908 /* skip @cp's subtree */ 909 pos_css = css_rightmost_descendant(pos_css); 910 continue; 911 912 v2: 913 /* 914 * Only valid partition roots that are not isolated and with 915 * non-empty effective_cpus will be saved into csn[]. 916 */ 917 if ((cp->partition_root_state == PRS_ROOT) && 918 !cpumask_empty(cp->effective_cpus)) 919 csa[csn++] = cp; 920 921 /* 922 * Skip @cp's subtree if not a partition root and has no 923 * exclusive CPUs to be granted to child cpusets. 924 */ 925 if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus)) 926 pos_css = css_rightmost_descendant(pos_css); 927 } 928 rcu_read_unlock(); 929 930 /* 931 * If there are only isolated partitions underneath the cgroup root, 932 * we can optimize out unneeded sched domains scanning. 933 */ 934 if (root_load_balance && (csn == 1)) 935 goto single_root_domain; 936 937 for (i = 0; i < csn; i++) 938 uf_node_init(&csa[i]->node); 939 940 /* Merge overlapping cpusets */ 941 for (i = 0; i < csn; i++) { 942 for (j = i + 1; j < csn; j++) { 943 if (cpusets_overlap(csa[i], csa[j])) { 944 /* 945 * Cgroup v2 shouldn't pass down overlapping 946 * partition root cpusets. 947 */ 948 WARN_ON_ONCE(cgrpv2); 949 uf_union(&csa[i]->node, &csa[j]->node); 950 } 951 } 952 } 953 954 /* Count the total number of domains */ 955 for (i = 0; i < csn; i++) { 956 if (uf_find(&csa[i]->node) == &csa[i]->node) 957 ndoms++; 958 } 959 960 /* 961 * Now we know how many domains to create. 962 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 963 */ 964 doms = alloc_sched_domains(ndoms); 965 if (!doms) 966 goto done; 967 968 /* 969 * The rest of the code, including the scheduler, can deal with 970 * dattr==NULL case. No need to abort if alloc fails. 971 */ 972 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 973 GFP_KERNEL); 974 975 /* 976 * Cgroup v2 doesn't support domain attributes, just set all of them 977 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a 978 * subset of HK_TYPE_DOMAIN housekeeping CPUs. 979 */ 980 if (cgrpv2) { 981 for (i = 0; i < ndoms; i++) { 982 /* 983 * The top cpuset may contain some boot time isolated 984 * CPUs that need to be excluded from the sched domain. 985 */ 986 if (csa[i] == &top_cpuset) 987 cpumask_and(doms[i], csa[i]->effective_cpus, 988 housekeeping_cpumask(HK_TYPE_DOMAIN)); 989 else 990 cpumask_copy(doms[i], csa[i]->effective_cpus); 991 if (dattr) 992 dattr[i] = SD_ATTR_INIT; 993 } 994 goto done; 995 } 996 997 for (nslot = 0, i = 0; i < csn; i++) { 998 nslot_update = 0; 999 for (j = i; j < csn; j++) { 1000 if (uf_find(&csa[j]->node) == &csa[i]->node) { 1001 struct cpumask *dp = doms[nslot]; 1002 1003 if (i == j) { 1004 nslot_update = 1; 1005 cpumask_clear(dp); 1006 if (dattr) 1007 *(dattr + nslot) = SD_ATTR_INIT; 1008 } 1009 cpumask_or(dp, dp, csa[j]->effective_cpus); 1010 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); 1011 if (dattr) 1012 update_domain_attr_tree(dattr + nslot, csa[j]); 1013 } 1014 } 1015 if (nslot_update) 1016 nslot++; 1017 } 1018 BUG_ON(nslot != ndoms); 1019 1020 done: 1021 kfree(csa); 1022 1023 /* 1024 * Fallback to the default domain if kmalloc() failed. 1025 * See comments in partition_sched_domains(). 1026 */ 1027 if (doms == NULL) 1028 ndoms = 1; 1029 1030 *domains = doms; 1031 *attributes = dattr; 1032 return ndoms; 1033 } 1034 1035 static void dl_update_tasks_root_domain(struct cpuset *cs) 1036 { 1037 struct css_task_iter it; 1038 struct task_struct *task; 1039 1040 if (cs->nr_deadline_tasks == 0) 1041 return; 1042 1043 css_task_iter_start(&cs->css, 0, &it); 1044 1045 while ((task = css_task_iter_next(&it))) 1046 dl_add_task_root_domain(task); 1047 1048 css_task_iter_end(&it); 1049 } 1050 1051 void dl_rebuild_rd_accounting(void) 1052 { 1053 struct cpuset *cs = NULL; 1054 struct cgroup_subsys_state *pos_css; 1055 int cpu; 1056 u64 cookie = ++dl_cookie; 1057 1058 lockdep_assert_held(&cpuset_mutex); 1059 lockdep_assert_cpus_held(); 1060 lockdep_assert_held(&sched_domains_mutex); 1061 1062 rcu_read_lock(); 1063 1064 for_each_possible_cpu(cpu) { 1065 if (dl_bw_visited(cpu, cookie)) 1066 continue; 1067 1068 dl_clear_root_domain_cpu(cpu); 1069 } 1070 1071 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1072 1073 if (cpumask_empty(cs->effective_cpus)) { 1074 pos_css = css_rightmost_descendant(pos_css); 1075 continue; 1076 } 1077 1078 css_get(&cs->css); 1079 1080 rcu_read_unlock(); 1081 1082 dl_update_tasks_root_domain(cs); 1083 1084 rcu_read_lock(); 1085 css_put(&cs->css); 1086 } 1087 rcu_read_unlock(); 1088 } 1089 1090 /* 1091 * Rebuild scheduler domains. 1092 * 1093 * If the flag 'sched_load_balance' of any cpuset with non-empty 1094 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 1095 * which has that flag enabled, or if any cpuset with a non-empty 1096 * 'cpus' is removed, then call this routine to rebuild the 1097 * scheduler's dynamic sched domains. 1098 * 1099 * Call with cpuset_mutex held. Takes cpus_read_lock(). 1100 */ 1101 void rebuild_sched_domains_locked(void) 1102 { 1103 struct cgroup_subsys_state *pos_css; 1104 struct sched_domain_attr *attr; 1105 cpumask_var_t *doms; 1106 struct cpuset *cs; 1107 int ndoms; 1108 1109 lockdep_assert_cpus_held(); 1110 lockdep_assert_held(&cpuset_mutex); 1111 force_sd_rebuild = false; 1112 1113 /* 1114 * If we have raced with CPU hotplug, return early to avoid 1115 * passing doms with offlined cpu to partition_sched_domains(). 1116 * Anyways, cpuset_handle_hotplug() will rebuild sched domains. 1117 * 1118 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1119 * should be the same as the active CPUs, so checking only top_cpuset 1120 * is enough to detect racing CPU offlines. 1121 */ 1122 if (cpumask_empty(subpartitions_cpus) && 1123 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1124 return; 1125 1126 /* 1127 * With subpartition CPUs, however, the effective CPUs of a partition 1128 * root should be only a subset of the active CPUs. Since a CPU in any 1129 * partition root could be offlined, all must be checked. 1130 */ 1131 if (!cpumask_empty(subpartitions_cpus)) { 1132 rcu_read_lock(); 1133 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1134 if (!is_partition_valid(cs)) { 1135 pos_css = css_rightmost_descendant(pos_css); 1136 continue; 1137 } 1138 if (!cpumask_subset(cs->effective_cpus, 1139 cpu_active_mask)) { 1140 rcu_read_unlock(); 1141 return; 1142 } 1143 } 1144 rcu_read_unlock(); 1145 } 1146 1147 /* Generate domain masks and attrs */ 1148 ndoms = generate_sched_domains(&doms, &attr); 1149 1150 /* Have scheduler rebuild the domains */ 1151 partition_sched_domains(ndoms, doms, attr); 1152 } 1153 #else /* !CONFIG_SMP */ 1154 void rebuild_sched_domains_locked(void) 1155 { 1156 } 1157 #endif /* CONFIG_SMP */ 1158 1159 static void rebuild_sched_domains_cpuslocked(void) 1160 { 1161 mutex_lock(&cpuset_mutex); 1162 rebuild_sched_domains_locked(); 1163 mutex_unlock(&cpuset_mutex); 1164 } 1165 1166 void rebuild_sched_domains(void) 1167 { 1168 cpus_read_lock(); 1169 rebuild_sched_domains_cpuslocked(); 1170 cpus_read_unlock(); 1171 } 1172 1173 void cpuset_reset_sched_domains(void) 1174 { 1175 mutex_lock(&cpuset_mutex); 1176 partition_sched_domains(1, NULL, NULL); 1177 mutex_unlock(&cpuset_mutex); 1178 } 1179 1180 /** 1181 * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1182 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1183 * @new_cpus: the temp variable for the new effective_cpus mask 1184 * 1185 * Iterate through each task of @cs updating its cpus_allowed to the 1186 * effective cpuset's. As this function is called with cpuset_mutex held, 1187 * cpuset membership stays stable. 1188 * 1189 * For top_cpuset, task_cpu_possible_mask() is used instead of effective_cpus 1190 * to make sure all offline CPUs are also included as hotplug code won't 1191 * update cpumasks for tasks in top_cpuset. 1192 * 1193 * As task_cpu_possible_mask() can be task dependent in arm64, we have to 1194 * do cpu masking per task instead of doing it once for all. 1195 */ 1196 void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) 1197 { 1198 struct css_task_iter it; 1199 struct task_struct *task; 1200 bool top_cs = cs == &top_cpuset; 1201 1202 css_task_iter_start(&cs->css, 0, &it); 1203 while ((task = css_task_iter_next(&it))) { 1204 const struct cpumask *possible_mask = task_cpu_possible_mask(task); 1205 1206 if (top_cs) { 1207 /* 1208 * PF_NO_SETAFFINITY tasks are ignored. 1209 * All per cpu kthreads should have PF_NO_SETAFFINITY 1210 * flag set, see kthread_set_per_cpu(). 1211 */ 1212 if (task->flags & PF_NO_SETAFFINITY) 1213 continue; 1214 cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus); 1215 } else { 1216 cpumask_and(new_cpus, possible_mask, cs->effective_cpus); 1217 } 1218 set_cpus_allowed_ptr(task, new_cpus); 1219 } 1220 css_task_iter_end(&it); 1221 } 1222 1223 /** 1224 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1225 * @new_cpus: the temp variable for the new effective_cpus mask 1226 * @cs: the cpuset the need to recompute the new effective_cpus mask 1227 * @parent: the parent cpuset 1228 * 1229 * The result is valid only if the given cpuset isn't a partition root. 1230 */ 1231 static void compute_effective_cpumask(struct cpumask *new_cpus, 1232 struct cpuset *cs, struct cpuset *parent) 1233 { 1234 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1235 } 1236 1237 /* 1238 * Commands for update_parent_effective_cpumask 1239 */ 1240 enum partition_cmd { 1241 partcmd_enable, /* Enable partition root */ 1242 partcmd_enablei, /* Enable isolated partition root */ 1243 partcmd_disable, /* Disable partition root */ 1244 partcmd_update, /* Update parent's effective_cpus */ 1245 partcmd_invalidate, /* Make partition invalid */ 1246 }; 1247 1248 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1249 struct tmpmasks *tmp); 1250 1251 /* 1252 * Update partition exclusive flag 1253 * 1254 * Return: 0 if successful, an error code otherwise 1255 */ 1256 static int update_partition_exclusive_flag(struct cpuset *cs, int new_prs) 1257 { 1258 bool exclusive = (new_prs > PRS_MEMBER); 1259 1260 if (exclusive && !is_cpu_exclusive(cs)) { 1261 if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1)) 1262 return PERR_NOTEXCL; 1263 } else if (!exclusive && is_cpu_exclusive(cs)) { 1264 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1265 cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1266 } 1267 return 0; 1268 } 1269 1270 /* 1271 * Update partition load balance flag and/or rebuild sched domain 1272 * 1273 * Changing load balance flag will automatically call 1274 * rebuild_sched_domains_locked(). 1275 * This function is for cgroup v2 only. 1276 */ 1277 static void update_partition_sd_lb(struct cpuset *cs, int old_prs) 1278 { 1279 int new_prs = cs->partition_root_state; 1280 bool rebuild_domains = (new_prs > 0) || (old_prs > 0); 1281 bool new_lb; 1282 1283 /* 1284 * If cs is not a valid partition root, the load balance state 1285 * will follow its parent. 1286 */ 1287 if (new_prs > 0) { 1288 new_lb = (new_prs != PRS_ISOLATED); 1289 } else { 1290 new_lb = is_sched_load_balance(parent_cs(cs)); 1291 } 1292 if (new_lb != !!is_sched_load_balance(cs)) { 1293 rebuild_domains = true; 1294 if (new_lb) 1295 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1296 else 1297 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1298 } 1299 1300 if (rebuild_domains) 1301 cpuset_force_rebuild(); 1302 } 1303 1304 /* 1305 * tasks_nocpu_error - Return true if tasks will have no effective_cpus 1306 */ 1307 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs, 1308 struct cpumask *xcpus) 1309 { 1310 /* 1311 * A populated partition (cs or parent) can't have empty effective_cpus 1312 */ 1313 return (cpumask_subset(parent->effective_cpus, xcpus) && 1314 partition_is_populated(parent, cs)) || 1315 (!cpumask_intersects(xcpus, cpu_active_mask) && 1316 partition_is_populated(cs, NULL)); 1317 } 1318 1319 static void reset_partition_data(struct cpuset *cs) 1320 { 1321 struct cpuset *parent = parent_cs(cs); 1322 1323 if (!cpuset_v2()) 1324 return; 1325 1326 lockdep_assert_held(&callback_lock); 1327 1328 if (cpumask_empty(cs->exclusive_cpus)) { 1329 cpumask_clear(cs->effective_xcpus); 1330 if (is_cpu_exclusive(cs)) 1331 clear_bit(CS_CPU_EXCLUSIVE, &cs->flags); 1332 } 1333 if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed)) 1334 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 1335 } 1336 1337 /* 1338 * isolated_cpus_update - Update the isolated_cpus mask 1339 * @old_prs: old partition_root_state 1340 * @new_prs: new partition_root_state 1341 * @xcpus: exclusive CPUs with state change 1342 */ 1343 static void isolated_cpus_update(int old_prs, int new_prs, struct cpumask *xcpus) 1344 { 1345 WARN_ON_ONCE(old_prs == new_prs); 1346 if (new_prs == PRS_ISOLATED) 1347 cpumask_or(isolated_cpus, isolated_cpus, xcpus); 1348 else 1349 cpumask_andnot(isolated_cpus, isolated_cpus, xcpus); 1350 1351 isolated_cpus_updating = true; 1352 } 1353 1354 /* 1355 * partition_xcpus_add - Add new exclusive CPUs to partition 1356 * @new_prs: new partition_root_state 1357 * @parent: parent cpuset 1358 * @xcpus: exclusive CPUs to be added 1359 * 1360 * Remote partition if parent == NULL 1361 */ 1362 static void partition_xcpus_add(int new_prs, struct cpuset *parent, 1363 struct cpumask *xcpus) 1364 { 1365 WARN_ON_ONCE(new_prs < 0); 1366 lockdep_assert_held(&callback_lock); 1367 if (!parent) 1368 parent = &top_cpuset; 1369 1370 1371 if (parent == &top_cpuset) 1372 cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus); 1373 1374 if (new_prs != parent->partition_root_state) 1375 isolated_cpus_update(parent->partition_root_state, new_prs, 1376 xcpus); 1377 1378 cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus); 1379 } 1380 1381 /* 1382 * partition_xcpus_del - Remove exclusive CPUs from partition 1383 * @old_prs: old partition_root_state 1384 * @parent: parent cpuset 1385 * @xcpus: exclusive CPUs to be removed 1386 * 1387 * Remote partition if parent == NULL 1388 */ 1389 static void partition_xcpus_del(int old_prs, struct cpuset *parent, 1390 struct cpumask *xcpus) 1391 { 1392 WARN_ON_ONCE(old_prs < 0); 1393 lockdep_assert_held(&callback_lock); 1394 if (!parent) 1395 parent = &top_cpuset; 1396 1397 if (parent == &top_cpuset) 1398 cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus); 1399 1400 if (old_prs != parent->partition_root_state) 1401 isolated_cpus_update(old_prs, parent->partition_root_state, 1402 xcpus); 1403 1404 cpumask_and(xcpus, xcpus, cpu_active_mask); 1405 cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus); 1406 } 1407 1408 /* 1409 * isolated_cpus_can_update - check for isolated & nohz_full conflicts 1410 * @add_cpus: cpu mask for cpus that are going to be isolated 1411 * @del_cpus: cpu mask for cpus that are no longer isolated, can be NULL 1412 * Return: false if there is conflict, true otherwise 1413 * 1414 * If nohz_full is enabled and we have isolated CPUs, their combination must 1415 * still leave housekeeping CPUs. 1416 * 1417 * TBD: Should consider merging this function into 1418 * prstate_housekeeping_conflict(). 1419 */ 1420 static bool isolated_cpus_can_update(struct cpumask *add_cpus, 1421 struct cpumask *del_cpus) 1422 { 1423 cpumask_var_t full_hk_cpus; 1424 int res = true; 1425 1426 if (!housekeeping_enabled(HK_TYPE_KERNEL_NOISE)) 1427 return true; 1428 1429 if (del_cpus && cpumask_weight_and(del_cpus, 1430 housekeeping_cpumask(HK_TYPE_KERNEL_NOISE))) 1431 return true; 1432 1433 if (!alloc_cpumask_var(&full_hk_cpus, GFP_KERNEL)) 1434 return false; 1435 1436 cpumask_and(full_hk_cpus, housekeeping_cpumask(HK_TYPE_KERNEL_NOISE), 1437 housekeeping_cpumask(HK_TYPE_DOMAIN)); 1438 cpumask_andnot(full_hk_cpus, full_hk_cpus, isolated_cpus); 1439 cpumask_and(full_hk_cpus, full_hk_cpus, cpu_active_mask); 1440 if (!cpumask_weight_andnot(full_hk_cpus, add_cpus)) 1441 res = false; 1442 1443 free_cpumask_var(full_hk_cpus); 1444 return res; 1445 } 1446 1447 /* 1448 * prstate_housekeeping_conflict - check for partition & housekeeping conflicts 1449 * @prstate: partition root state to be checked 1450 * @new_cpus: cpu mask 1451 * Return: true if there is conflict, false otherwise 1452 * 1453 * CPUs outside of boot_hk_cpus, if defined, can only be used in an 1454 * isolated partition. 1455 */ 1456 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus) 1457 { 1458 if (!have_boot_isolcpus) 1459 return false; 1460 1461 if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus)) 1462 return true; 1463 1464 return false; 1465 } 1466 1467 /* 1468 * update_isolation_cpumasks - Update external isolation related CPU masks 1469 * 1470 * The following external CPU masks will be updated if necessary: 1471 * - workqueue unbound cpumask 1472 */ 1473 static void update_isolation_cpumasks(void) 1474 { 1475 int ret; 1476 1477 if (!isolated_cpus_updating) 1478 return; 1479 1480 lockdep_assert_cpus_held(); 1481 1482 ret = workqueue_unbound_exclude_cpumask(isolated_cpus); 1483 WARN_ON_ONCE(ret < 0); 1484 1485 ret = tmigr_isolated_exclude_cpumask(isolated_cpus); 1486 WARN_ON_ONCE(ret < 0); 1487 1488 isolated_cpus_updating = false; 1489 } 1490 1491 /** 1492 * cpuset_cpu_is_isolated - Check if the given CPU is isolated 1493 * @cpu: the CPU number to be checked 1494 * Return: true if CPU is used in an isolated partition, false otherwise 1495 */ 1496 bool cpuset_cpu_is_isolated(int cpu) 1497 { 1498 return cpumask_test_cpu(cpu, isolated_cpus); 1499 } 1500 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated); 1501 1502 /** 1503 * rm_siblings_excl_cpus - Remove exclusive CPUs that are used by sibling cpusets 1504 * @parent: Parent cpuset containing all siblings 1505 * @cs: Current cpuset (will be skipped) 1506 * @excpus: exclusive effective CPU mask to modify 1507 * 1508 * This function ensures the given @excpus mask doesn't include any CPUs that 1509 * are exclusively allocated to sibling cpusets. It walks through all siblings 1510 * of @cs under @parent and removes their exclusive CPUs from @excpus. 1511 */ 1512 static int rm_siblings_excl_cpus(struct cpuset *parent, struct cpuset *cs, 1513 struct cpumask *excpus) 1514 { 1515 struct cgroup_subsys_state *css; 1516 struct cpuset *sibling; 1517 int retval = 0; 1518 1519 if (cpumask_empty(excpus)) 1520 return retval; 1521 1522 /* 1523 * Exclude exclusive CPUs from siblings 1524 */ 1525 rcu_read_lock(); 1526 cpuset_for_each_child(sibling, css, parent) { 1527 if (sibling == cs) 1528 continue; 1529 1530 if (cpumask_intersects(excpus, sibling->exclusive_cpus)) { 1531 cpumask_andnot(excpus, excpus, sibling->exclusive_cpus); 1532 retval++; 1533 continue; 1534 } 1535 if (cpumask_intersects(excpus, sibling->effective_xcpus)) { 1536 cpumask_andnot(excpus, excpus, sibling->effective_xcpus); 1537 retval++; 1538 } 1539 } 1540 rcu_read_unlock(); 1541 1542 return retval; 1543 } 1544 1545 /* 1546 * compute_excpus - compute effective exclusive CPUs 1547 * @cs: cpuset 1548 * @xcpus: effective exclusive CPUs value to be set 1549 * Return: 0 if there is no sibling conflict, > 0 otherwise 1550 * 1551 * If exclusive_cpus isn't explicitly set , we have to scan the sibling cpusets 1552 * and exclude their exclusive_cpus or effective_xcpus as well. 1553 */ 1554 static int compute_excpus(struct cpuset *cs, struct cpumask *excpus) 1555 { 1556 struct cpuset *parent = parent_cs(cs); 1557 1558 cpumask_and(excpus, user_xcpus(cs), parent->effective_xcpus); 1559 1560 if (!cpumask_empty(cs->exclusive_cpus)) 1561 return 0; 1562 1563 return rm_siblings_excl_cpus(parent, cs, excpus); 1564 } 1565 1566 /* 1567 * compute_trialcs_excpus - Compute effective exclusive CPUs for a trial cpuset 1568 * @trialcs: The trial cpuset containing the proposed new configuration 1569 * @cs: The original cpuset that the trial configuration is based on 1570 * Return: 0 if successful with no sibling conflict, >0 if a conflict is found 1571 * 1572 * Computes the effective_xcpus for a trial configuration. @cs is provided to represent 1573 * the real cs. 1574 */ 1575 static int compute_trialcs_excpus(struct cpuset *trialcs, struct cpuset *cs) 1576 { 1577 struct cpuset *parent = parent_cs(trialcs); 1578 struct cpumask *excpus = trialcs->effective_xcpus; 1579 1580 /* trialcs is member, cpuset.cpus has no impact to excpus */ 1581 if (cs_is_member(cs)) 1582 cpumask_and(excpus, trialcs->exclusive_cpus, 1583 parent->effective_xcpus); 1584 else 1585 cpumask_and(excpus, user_xcpus(trialcs), parent->effective_xcpus); 1586 1587 return rm_siblings_excl_cpus(parent, cs, excpus); 1588 } 1589 1590 static inline bool is_remote_partition(struct cpuset *cs) 1591 { 1592 return cs->remote_partition; 1593 } 1594 1595 static inline bool is_local_partition(struct cpuset *cs) 1596 { 1597 return is_partition_valid(cs) && !is_remote_partition(cs); 1598 } 1599 1600 /* 1601 * remote_partition_enable - Enable current cpuset as a remote partition root 1602 * @cs: the cpuset to update 1603 * @new_prs: new partition_root_state 1604 * @tmp: temporary masks 1605 * Return: 0 if successful, errcode if error 1606 * 1607 * Enable the current cpuset to become a remote partition root taking CPUs 1608 * directly from the top cpuset. cpuset_mutex must be held by the caller. 1609 */ 1610 static int remote_partition_enable(struct cpuset *cs, int new_prs, 1611 struct tmpmasks *tmp) 1612 { 1613 /* 1614 * The user must have sysadmin privilege. 1615 */ 1616 if (!capable(CAP_SYS_ADMIN)) 1617 return PERR_ACCESS; 1618 1619 /* 1620 * The requested exclusive_cpus must not be allocated to other 1621 * partitions and it can't use up all the root's effective_cpus. 1622 * 1623 * The effective_xcpus mask can contain offline CPUs, but there must 1624 * be at least one or more online CPUs present before it can be enabled. 1625 * 1626 * Note that creating a remote partition with any local partition root 1627 * above it or remote partition root underneath it is not allowed. 1628 */ 1629 compute_excpus(cs, tmp->new_cpus); 1630 WARN_ON_ONCE(cpumask_intersects(tmp->new_cpus, subpartitions_cpus)); 1631 if (!cpumask_intersects(tmp->new_cpus, cpu_active_mask) || 1632 cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus)) 1633 return PERR_INVCPUS; 1634 if (((new_prs == PRS_ISOLATED) && 1635 !isolated_cpus_can_update(tmp->new_cpus, NULL)) || 1636 prstate_housekeeping_conflict(new_prs, tmp->new_cpus)) 1637 return PERR_HKEEPING; 1638 1639 spin_lock_irq(&callback_lock); 1640 partition_xcpus_add(new_prs, NULL, tmp->new_cpus); 1641 cs->remote_partition = true; 1642 cpumask_copy(cs->effective_xcpus, tmp->new_cpus); 1643 spin_unlock_irq(&callback_lock); 1644 update_isolation_cpumasks(); 1645 cpuset_force_rebuild(); 1646 cs->prs_err = 0; 1647 1648 /* 1649 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1650 */ 1651 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1652 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1653 return 0; 1654 } 1655 1656 /* 1657 * remote_partition_disable - Remove current cpuset from remote partition list 1658 * @cs: the cpuset to update 1659 * @tmp: temporary masks 1660 * 1661 * The effective_cpus is also updated. 1662 * 1663 * cpuset_mutex must be held by the caller. 1664 */ 1665 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp) 1666 { 1667 WARN_ON_ONCE(!is_remote_partition(cs)); 1668 /* 1669 * When a CPU is offlined, top_cpuset may end up with no available CPUs, 1670 * which should clear subpartitions_cpus. We should not emit a warning for this 1671 * scenario: the hierarchy is updated from top to bottom, so subpartitions_cpus 1672 * may already be cleared when disabling the partition. 1673 */ 1674 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus) && 1675 !cpumask_empty(subpartitions_cpus)); 1676 1677 spin_lock_irq(&callback_lock); 1678 cs->remote_partition = false; 1679 partition_xcpus_del(cs->partition_root_state, NULL, cs->effective_xcpus); 1680 if (cs->prs_err) 1681 cs->partition_root_state = -cs->partition_root_state; 1682 else 1683 cs->partition_root_state = PRS_MEMBER; 1684 1685 /* effective_xcpus may need to be changed */ 1686 compute_excpus(cs, cs->effective_xcpus); 1687 reset_partition_data(cs); 1688 spin_unlock_irq(&callback_lock); 1689 update_isolation_cpumasks(); 1690 cpuset_force_rebuild(); 1691 1692 /* 1693 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1694 */ 1695 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1696 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1697 } 1698 1699 /* 1700 * remote_cpus_update - cpus_exclusive change of remote partition 1701 * @cs: the cpuset to be updated 1702 * @xcpus: the new exclusive_cpus mask, if non-NULL 1703 * @excpus: the new effective_xcpus mask 1704 * @tmp: temporary masks 1705 * 1706 * top_cpuset and subpartitions_cpus will be updated or partition can be 1707 * invalidated. 1708 */ 1709 static void remote_cpus_update(struct cpuset *cs, struct cpumask *xcpus, 1710 struct cpumask *excpus, struct tmpmasks *tmp) 1711 { 1712 bool adding, deleting; 1713 int prs = cs->partition_root_state; 1714 1715 if (WARN_ON_ONCE(!is_remote_partition(cs))) 1716 return; 1717 1718 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); 1719 1720 if (cpumask_empty(excpus)) { 1721 cs->prs_err = PERR_CPUSEMPTY; 1722 goto invalidate; 1723 } 1724 1725 adding = cpumask_andnot(tmp->addmask, excpus, cs->effective_xcpus); 1726 deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, excpus); 1727 1728 /* 1729 * Additions of remote CPUs is only allowed if those CPUs are 1730 * not allocated to other partitions and there are effective_cpus 1731 * left in the top cpuset. 1732 */ 1733 if (adding) { 1734 WARN_ON_ONCE(cpumask_intersects(tmp->addmask, subpartitions_cpus)); 1735 if (!capable(CAP_SYS_ADMIN)) 1736 cs->prs_err = PERR_ACCESS; 1737 else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) || 1738 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask)) 1739 cs->prs_err = PERR_NOCPUS; 1740 else if ((prs == PRS_ISOLATED) && 1741 !isolated_cpus_can_update(tmp->addmask, tmp->delmask)) 1742 cs->prs_err = PERR_HKEEPING; 1743 if (cs->prs_err) 1744 goto invalidate; 1745 } 1746 1747 spin_lock_irq(&callback_lock); 1748 if (adding) 1749 partition_xcpus_add(prs, NULL, tmp->addmask); 1750 if (deleting) 1751 partition_xcpus_del(prs, NULL, tmp->delmask); 1752 /* 1753 * Need to update effective_xcpus and exclusive_cpus now as 1754 * update_sibling_cpumasks() below may iterate back to the same cs. 1755 */ 1756 cpumask_copy(cs->effective_xcpus, excpus); 1757 if (xcpus) 1758 cpumask_copy(cs->exclusive_cpus, xcpus); 1759 spin_unlock_irq(&callback_lock); 1760 update_isolation_cpumasks(); 1761 if (adding || deleting) 1762 cpuset_force_rebuild(); 1763 1764 /* 1765 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1766 */ 1767 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1768 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1769 return; 1770 1771 invalidate: 1772 remote_partition_disable(cs, tmp); 1773 } 1774 1775 /** 1776 * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset 1777 * @cs: The cpuset that requests change in partition root state 1778 * @cmd: Partition root state change command 1779 * @newmask: Optional new cpumask for partcmd_update 1780 * @tmp: Temporary addmask and delmask 1781 * Return: 0 or a partition root state error code 1782 * 1783 * For partcmd_enable*, the cpuset is being transformed from a non-partition 1784 * root to a partition root. The effective_xcpus (cpus_allowed if 1785 * effective_xcpus not set) mask of the given cpuset will be taken away from 1786 * parent's effective_cpus. The function will return 0 if all the CPUs listed 1787 * in effective_xcpus can be granted or an error code will be returned. 1788 * 1789 * For partcmd_disable, the cpuset is being transformed from a partition 1790 * root back to a non-partition root. Any CPUs in effective_xcpus will be 1791 * given back to parent's effective_cpus. 0 will always be returned. 1792 * 1793 * For partcmd_update, if the optional newmask is specified, the cpu list is 1794 * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is 1795 * assumed to remain the same. The cpuset should either be a valid or invalid 1796 * partition root. The partition root state may change from valid to invalid 1797 * or vice versa. An error code will be returned if transitioning from 1798 * invalid to valid violates the exclusivity rule. 1799 * 1800 * For partcmd_invalidate, the current partition will be made invalid. 1801 * 1802 * The partcmd_enable* and partcmd_disable commands are used by 1803 * update_prstate(). An error code may be returned and the caller will check 1804 * for error. 1805 * 1806 * The partcmd_update command is used by update_cpumasks_hier() with newmask 1807 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used 1808 * by update_cpumask() with NULL newmask. In both cases, the callers won't 1809 * check for error and so partition_root_state and prs_err will be updated 1810 * directly. 1811 */ 1812 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd, 1813 struct cpumask *newmask, 1814 struct tmpmasks *tmp) 1815 { 1816 struct cpuset *parent = parent_cs(cs); 1817 int adding; /* Adding cpus to parent's effective_cpus */ 1818 int deleting; /* Deleting cpus from parent's effective_cpus */ 1819 int old_prs, new_prs; 1820 int part_error = PERR_NONE; /* Partition error? */ 1821 struct cpumask *xcpus = user_xcpus(cs); 1822 int parent_prs = parent->partition_root_state; 1823 bool nocpu; 1824 1825 lockdep_assert_held(&cpuset_mutex); 1826 WARN_ON_ONCE(is_remote_partition(cs)); /* For local partition only */ 1827 1828 /* 1829 * new_prs will only be changed for the partcmd_update and 1830 * partcmd_invalidate commands. 1831 */ 1832 adding = deleting = false; 1833 old_prs = new_prs = cs->partition_root_state; 1834 1835 if (cmd == partcmd_invalidate) { 1836 if (is_partition_invalid(cs)) 1837 return 0; 1838 1839 /* 1840 * Make the current partition invalid. 1841 */ 1842 if (is_partition_valid(parent)) 1843 adding = cpumask_and(tmp->addmask, 1844 xcpus, parent->effective_xcpus); 1845 if (old_prs > 0) 1846 new_prs = -old_prs; 1847 1848 goto write_error; 1849 } 1850 1851 /* 1852 * The parent must be a partition root. 1853 * The new cpumask, if present, or the current cpus_allowed must 1854 * not be empty. 1855 */ 1856 if (!is_partition_valid(parent)) { 1857 return is_partition_invalid(parent) 1858 ? PERR_INVPARENT : PERR_NOTPART; 1859 } 1860 if (!newmask && xcpus_empty(cs)) 1861 return PERR_CPUSEMPTY; 1862 1863 nocpu = tasks_nocpu_error(parent, cs, xcpus); 1864 1865 if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) { 1866 /* 1867 * Need to call compute_excpus() in case 1868 * exclusive_cpus not set. Sibling conflict should only happen 1869 * if exclusive_cpus isn't set. 1870 */ 1871 xcpus = tmp->delmask; 1872 if (compute_excpus(cs, xcpus)) 1873 WARN_ON_ONCE(!cpumask_empty(cs->exclusive_cpus)); 1874 new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED; 1875 1876 /* 1877 * Enabling partition root is not allowed if its 1878 * effective_xcpus is empty. 1879 */ 1880 if (cpumask_empty(xcpus)) 1881 return PERR_INVCPUS; 1882 1883 if (prstate_housekeeping_conflict(new_prs, xcpus)) 1884 return PERR_HKEEPING; 1885 1886 if ((new_prs == PRS_ISOLATED) && (new_prs != parent_prs) && 1887 !isolated_cpus_can_update(xcpus, NULL)) 1888 return PERR_HKEEPING; 1889 1890 if (tasks_nocpu_error(parent, cs, xcpus)) 1891 return PERR_NOCPUS; 1892 1893 /* 1894 * This function will only be called when all the preliminary 1895 * checks have passed. At this point, the following condition 1896 * should hold. 1897 * 1898 * (cs->effective_xcpus & cpu_active_mask) ⊆ parent->effective_cpus 1899 * 1900 * Warn if it is not the case. 1901 */ 1902 cpumask_and(tmp->new_cpus, xcpus, cpu_active_mask); 1903 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus)); 1904 1905 deleting = true; 1906 } else if (cmd == partcmd_disable) { 1907 /* 1908 * May need to add cpus back to parent's effective_cpus 1909 * (and maybe removed from subpartitions_cpus/isolated_cpus) 1910 * for valid partition root. xcpus may contain CPUs that 1911 * shouldn't be removed from the two global cpumasks. 1912 */ 1913 if (is_partition_valid(cs)) { 1914 cpumask_copy(tmp->addmask, cs->effective_xcpus); 1915 adding = true; 1916 } 1917 new_prs = PRS_MEMBER; 1918 } else if (newmask) { 1919 /* 1920 * Empty cpumask is not allowed 1921 */ 1922 if (cpumask_empty(newmask)) { 1923 part_error = PERR_CPUSEMPTY; 1924 goto write_error; 1925 } 1926 1927 /* Check newmask again, whether cpus are available for parent/cs */ 1928 nocpu |= tasks_nocpu_error(parent, cs, newmask); 1929 1930 /* 1931 * partcmd_update with newmask: 1932 * 1933 * Compute add/delete mask to/from effective_cpus 1934 * 1935 * For valid partition: 1936 * addmask = exclusive_cpus & ~newmask 1937 * & parent->effective_xcpus 1938 * delmask = newmask & ~exclusive_cpus 1939 * & parent->effective_xcpus 1940 * 1941 * For invalid partition: 1942 * delmask = newmask & parent->effective_xcpus 1943 * The partition may become valid soon. 1944 */ 1945 if (is_partition_invalid(cs)) { 1946 adding = false; 1947 deleting = cpumask_and(tmp->delmask, 1948 newmask, parent->effective_xcpus); 1949 } else { 1950 cpumask_andnot(tmp->addmask, xcpus, newmask); 1951 adding = cpumask_and(tmp->addmask, tmp->addmask, 1952 parent->effective_xcpus); 1953 1954 cpumask_andnot(tmp->delmask, newmask, xcpus); 1955 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1956 parent->effective_xcpus); 1957 } 1958 1959 /* 1960 * TBD: Invalidate a currently valid child root partition may 1961 * still break isolated_cpus_can_update() rule if parent is an 1962 * isolated partition. 1963 */ 1964 if (is_partition_valid(cs) && (old_prs != parent_prs)) { 1965 if ((parent_prs == PRS_ROOT) && 1966 /* Adding to parent means removing isolated CPUs */ 1967 !isolated_cpus_can_update(tmp->delmask, tmp->addmask)) 1968 part_error = PERR_HKEEPING; 1969 if ((parent_prs == PRS_ISOLATED) && 1970 /* Adding to parent means adding isolated CPUs */ 1971 !isolated_cpus_can_update(tmp->addmask, tmp->delmask)) 1972 part_error = PERR_HKEEPING; 1973 } 1974 1975 /* 1976 * The new CPUs to be removed from parent's effective CPUs 1977 * must be present. 1978 */ 1979 if (deleting) { 1980 cpumask_and(tmp->new_cpus, tmp->delmask, cpu_active_mask); 1981 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus)); 1982 } 1983 1984 /* 1985 * Make partition invalid if parent's effective_cpus could 1986 * become empty and there are tasks in the parent. 1987 */ 1988 if (nocpu && (!adding || 1989 !cpumask_intersects(tmp->addmask, cpu_active_mask))) { 1990 part_error = PERR_NOCPUS; 1991 deleting = false; 1992 adding = cpumask_and(tmp->addmask, 1993 xcpus, parent->effective_xcpus); 1994 } 1995 } else { 1996 /* 1997 * partcmd_update w/o newmask 1998 * 1999 * delmask = effective_xcpus & parent->effective_cpus 2000 * 2001 * This can be called from: 2002 * 1) update_cpumasks_hier() 2003 * 2) cpuset_hotplug_update_tasks() 2004 * 2005 * Check to see if it can be transitioned from valid to 2006 * invalid partition or vice versa. 2007 * 2008 * A partition error happens when parent has tasks and all 2009 * its effective CPUs will have to be distributed out. 2010 */ 2011 if (nocpu) { 2012 part_error = PERR_NOCPUS; 2013 if (is_partition_valid(cs)) 2014 adding = cpumask_and(tmp->addmask, 2015 xcpus, parent->effective_xcpus); 2016 } else if (is_partition_invalid(cs) && !cpumask_empty(xcpus) && 2017 cpumask_subset(xcpus, parent->effective_xcpus)) { 2018 struct cgroup_subsys_state *css; 2019 struct cpuset *child; 2020 bool exclusive = true; 2021 2022 /* 2023 * Convert invalid partition to valid has to 2024 * pass the cpu exclusivity test. 2025 */ 2026 rcu_read_lock(); 2027 cpuset_for_each_child(child, css, parent) { 2028 if (child == cs) 2029 continue; 2030 if (!cpusets_are_exclusive(cs, child)) { 2031 exclusive = false; 2032 break; 2033 } 2034 } 2035 rcu_read_unlock(); 2036 if (exclusive) 2037 deleting = cpumask_and(tmp->delmask, 2038 xcpus, parent->effective_cpus); 2039 else 2040 part_error = PERR_NOTEXCL; 2041 } 2042 } 2043 2044 write_error: 2045 if (part_error) 2046 WRITE_ONCE(cs->prs_err, part_error); 2047 2048 if (cmd == partcmd_update) { 2049 /* 2050 * Check for possible transition between valid and invalid 2051 * partition root. 2052 */ 2053 switch (cs->partition_root_state) { 2054 case PRS_ROOT: 2055 case PRS_ISOLATED: 2056 if (part_error) 2057 new_prs = -old_prs; 2058 break; 2059 case PRS_INVALID_ROOT: 2060 case PRS_INVALID_ISOLATED: 2061 if (!part_error) 2062 new_prs = -old_prs; 2063 break; 2064 } 2065 } 2066 2067 if (!adding && !deleting && (new_prs == old_prs)) 2068 return 0; 2069 2070 /* 2071 * Transitioning between invalid to valid or vice versa may require 2072 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update, 2073 * validate_change() has already been successfully called and 2074 * CPU lists in cs haven't been updated yet. So defer it to later. 2075 */ 2076 if ((old_prs != new_prs) && (cmd != partcmd_update)) { 2077 int err = update_partition_exclusive_flag(cs, new_prs); 2078 2079 if (err) 2080 return err; 2081 } 2082 2083 /* 2084 * Change the parent's effective_cpus & effective_xcpus (top cpuset 2085 * only). 2086 * 2087 * Newly added CPUs will be removed from effective_cpus and 2088 * newly deleted ones will be added back to effective_cpus. 2089 */ 2090 spin_lock_irq(&callback_lock); 2091 if (old_prs != new_prs) 2092 cs->partition_root_state = new_prs; 2093 2094 /* 2095 * Adding to parent's effective_cpus means deletion CPUs from cs 2096 * and vice versa. 2097 */ 2098 if (adding) 2099 partition_xcpus_del(old_prs, parent, tmp->addmask); 2100 if (deleting) 2101 partition_xcpus_add(new_prs, parent, tmp->delmask); 2102 2103 spin_unlock_irq(&callback_lock); 2104 update_isolation_cpumasks(); 2105 2106 if ((old_prs != new_prs) && (cmd == partcmd_update)) 2107 update_partition_exclusive_flag(cs, new_prs); 2108 2109 if (adding || deleting) { 2110 cpuset_update_tasks_cpumask(parent, tmp->addmask); 2111 update_sibling_cpumasks(parent, cs, tmp); 2112 } 2113 2114 /* 2115 * For partcmd_update without newmask, it is being called from 2116 * cpuset_handle_hotplug(). Update the load balance flag and 2117 * scheduling domain accordingly. 2118 */ 2119 if ((cmd == partcmd_update) && !newmask) 2120 update_partition_sd_lb(cs, old_prs); 2121 2122 notify_partition_change(cs, old_prs); 2123 return 0; 2124 } 2125 2126 /** 2127 * compute_partition_effective_cpumask - compute effective_cpus for partition 2128 * @cs: partition root cpuset 2129 * @new_ecpus: previously computed effective_cpus to be updated 2130 * 2131 * Compute the effective_cpus of a partition root by scanning effective_xcpus 2132 * of child partition roots and excluding their effective_xcpus. 2133 * 2134 * This has the side effect of invalidating valid child partition roots, 2135 * if necessary. Since it is called from either cpuset_hotplug_update_tasks() 2136 * or update_cpumasks_hier() where parent and children are modified 2137 * successively, we don't need to call update_parent_effective_cpumask() 2138 * and the child's effective_cpus will be updated in later iterations. 2139 * 2140 * Note that rcu_read_lock() is assumed to be held. 2141 */ 2142 static void compute_partition_effective_cpumask(struct cpuset *cs, 2143 struct cpumask *new_ecpus) 2144 { 2145 struct cgroup_subsys_state *css; 2146 struct cpuset *child; 2147 bool populated = partition_is_populated(cs, NULL); 2148 2149 /* 2150 * Check child partition roots to see if they should be 2151 * invalidated when 2152 * 1) child effective_xcpus not a subset of new 2153 * excluisve_cpus 2154 * 2) All the effective_cpus will be used up and cp 2155 * has tasks 2156 */ 2157 compute_excpus(cs, new_ecpus); 2158 cpumask_and(new_ecpus, new_ecpus, cpu_active_mask); 2159 2160 rcu_read_lock(); 2161 cpuset_for_each_child(child, css, cs) { 2162 if (!is_partition_valid(child)) 2163 continue; 2164 2165 /* 2166 * There shouldn't be a remote partition underneath another 2167 * partition root. 2168 */ 2169 WARN_ON_ONCE(is_remote_partition(child)); 2170 child->prs_err = 0; 2171 if (!cpumask_subset(child->effective_xcpus, 2172 cs->effective_xcpus)) 2173 child->prs_err = PERR_INVCPUS; 2174 else if (populated && 2175 cpumask_subset(new_ecpus, child->effective_xcpus)) 2176 child->prs_err = PERR_NOCPUS; 2177 2178 if (child->prs_err) { 2179 int old_prs = child->partition_root_state; 2180 2181 /* 2182 * Invalidate child partition 2183 */ 2184 spin_lock_irq(&callback_lock); 2185 make_partition_invalid(child); 2186 spin_unlock_irq(&callback_lock); 2187 notify_partition_change(child, old_prs); 2188 continue; 2189 } 2190 cpumask_andnot(new_ecpus, new_ecpus, 2191 child->effective_xcpus); 2192 } 2193 rcu_read_unlock(); 2194 } 2195 2196 /* 2197 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 2198 * @cs: the cpuset to consider 2199 * @tmp: temp variables for calculating effective_cpus & partition setup 2200 * @force: don't skip any descendant cpusets if set 2201 * 2202 * When configured cpumask is changed, the effective cpumasks of this cpuset 2203 * and all its descendants need to be updated. 2204 * 2205 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 2206 * 2207 * Called with cpuset_mutex held 2208 */ 2209 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, 2210 bool force) 2211 { 2212 struct cpuset *cp; 2213 struct cgroup_subsys_state *pos_css; 2214 int old_prs, new_prs; 2215 2216 rcu_read_lock(); 2217 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2218 struct cpuset *parent = parent_cs(cp); 2219 bool remote = is_remote_partition(cp); 2220 bool update_parent = false; 2221 2222 old_prs = new_prs = cp->partition_root_state; 2223 2224 /* 2225 * For child remote partition root (!= cs), we need to call 2226 * remote_cpus_update() if effective_xcpus will be changed. 2227 * Otherwise, we can skip the whole subtree. 2228 * 2229 * remote_cpus_update() will reuse tmp->new_cpus only after 2230 * its value is being processed. 2231 */ 2232 if (remote && (cp != cs)) { 2233 compute_excpus(cp, tmp->new_cpus); 2234 if (cpumask_equal(cp->effective_xcpus, tmp->new_cpus)) { 2235 pos_css = css_rightmost_descendant(pos_css); 2236 continue; 2237 } 2238 rcu_read_unlock(); 2239 remote_cpus_update(cp, NULL, tmp->new_cpus, tmp); 2240 rcu_read_lock(); 2241 2242 /* Remote partition may be invalidated */ 2243 new_prs = cp->partition_root_state; 2244 remote = (new_prs == old_prs); 2245 } 2246 2247 if (remote || (is_partition_valid(parent) && is_partition_valid(cp))) 2248 compute_partition_effective_cpumask(cp, tmp->new_cpus); 2249 else 2250 compute_effective_cpumask(tmp->new_cpus, cp, parent); 2251 2252 if (remote) 2253 goto get_css; /* Ready to update cpuset data */ 2254 2255 /* 2256 * A partition with no effective_cpus is allowed as long as 2257 * there is no task associated with it. Call 2258 * update_parent_effective_cpumask() to check it. 2259 */ 2260 if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) { 2261 update_parent = true; 2262 goto update_parent_effective; 2263 } 2264 2265 /* 2266 * If it becomes empty, inherit the effective mask of the 2267 * parent, which is guaranteed to have some CPUs unless 2268 * it is a partition root that has explicitly distributed 2269 * out all its CPUs. 2270 */ 2271 if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) 2272 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 2273 2274 /* 2275 * Skip the whole subtree if 2276 * 1) the cpumask remains the same, 2277 * 2) has no partition root state, 2278 * 3) force flag not set, and 2279 * 4) for v2 load balance state same as its parent. 2280 */ 2281 if (!cp->partition_root_state && !force && 2282 cpumask_equal(tmp->new_cpus, cp->effective_cpus) && 2283 (!cpuset_v2() || 2284 (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) { 2285 pos_css = css_rightmost_descendant(pos_css); 2286 continue; 2287 } 2288 2289 update_parent_effective: 2290 /* 2291 * update_parent_effective_cpumask() should have been called 2292 * for cs already in update_cpumask(). We should also call 2293 * cpuset_update_tasks_cpumask() again for tasks in the parent 2294 * cpuset if the parent's effective_cpus changes. 2295 */ 2296 if ((cp != cs) && old_prs) { 2297 switch (parent->partition_root_state) { 2298 case PRS_ROOT: 2299 case PRS_ISOLATED: 2300 update_parent = true; 2301 break; 2302 2303 default: 2304 /* 2305 * When parent is not a partition root or is 2306 * invalid, child partition roots become 2307 * invalid too. 2308 */ 2309 if (is_partition_valid(cp)) 2310 new_prs = -cp->partition_root_state; 2311 WRITE_ONCE(cp->prs_err, 2312 is_partition_invalid(parent) 2313 ? PERR_INVPARENT : PERR_NOTPART); 2314 break; 2315 } 2316 } 2317 get_css: 2318 if (!css_tryget_online(&cp->css)) 2319 continue; 2320 rcu_read_unlock(); 2321 2322 if (update_parent) { 2323 update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp); 2324 /* 2325 * The cpuset partition_root_state may become 2326 * invalid. Capture it. 2327 */ 2328 new_prs = cp->partition_root_state; 2329 } 2330 2331 spin_lock_irq(&callback_lock); 2332 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 2333 cp->partition_root_state = new_prs; 2334 if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) 2335 compute_excpus(cp, cp->effective_xcpus); 2336 2337 /* 2338 * Make sure effective_xcpus is properly set for a valid 2339 * partition root. 2340 */ 2341 if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus)) 2342 cpumask_and(cp->effective_xcpus, 2343 cp->cpus_allowed, parent->effective_xcpus); 2344 else if (new_prs < 0) 2345 reset_partition_data(cp); 2346 spin_unlock_irq(&callback_lock); 2347 2348 notify_partition_change(cp, old_prs); 2349 2350 WARN_ON(!is_in_v2_mode() && 2351 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 2352 2353 cpuset_update_tasks_cpumask(cp, cp->effective_cpus); 2354 2355 /* 2356 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE 2357 * from parent if current cpuset isn't a valid partition root 2358 * and their load balance states differ. 2359 */ 2360 if (cpuset_v2() && !is_partition_valid(cp) && 2361 (is_sched_load_balance(parent) != is_sched_load_balance(cp))) { 2362 if (is_sched_load_balance(parent)) 2363 set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2364 else 2365 clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2366 } 2367 2368 /* 2369 * On legacy hierarchy, if the effective cpumask of any non- 2370 * empty cpuset is changed, we need to rebuild sched domains. 2371 * On default hierarchy, the cpuset needs to be a partition 2372 * root as well. 2373 */ 2374 if (!cpumask_empty(cp->cpus_allowed) && 2375 is_sched_load_balance(cp) && 2376 (!cpuset_v2() || is_partition_valid(cp))) 2377 cpuset_force_rebuild(); 2378 2379 rcu_read_lock(); 2380 css_put(&cp->css); 2381 } 2382 rcu_read_unlock(); 2383 } 2384 2385 /** 2386 * update_sibling_cpumasks - Update siblings cpumasks 2387 * @parent: Parent cpuset 2388 * @cs: Current cpuset 2389 * @tmp: Temp variables 2390 */ 2391 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 2392 struct tmpmasks *tmp) 2393 { 2394 struct cpuset *sibling; 2395 struct cgroup_subsys_state *pos_css; 2396 2397 lockdep_assert_held(&cpuset_mutex); 2398 2399 /* 2400 * Check all its siblings and call update_cpumasks_hier() 2401 * if their effective_cpus will need to be changed. 2402 * 2403 * It is possible a change in parent's effective_cpus 2404 * due to a change in a child partition's effective_xcpus will impact 2405 * its siblings even if they do not inherit parent's effective_cpus 2406 * directly. 2407 * 2408 * The update_cpumasks_hier() function may sleep. So we have to 2409 * release the RCU read lock before calling it. 2410 */ 2411 rcu_read_lock(); 2412 cpuset_for_each_child(sibling, pos_css, parent) { 2413 if (sibling == cs) 2414 continue; 2415 if (!is_partition_valid(sibling)) { 2416 compute_effective_cpumask(tmp->new_cpus, sibling, 2417 parent); 2418 if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus)) 2419 continue; 2420 } else if (is_remote_partition(sibling)) { 2421 /* 2422 * Change in a sibling cpuset won't affect a remote 2423 * partition root. 2424 */ 2425 continue; 2426 } 2427 2428 if (!css_tryget_online(&sibling->css)) 2429 continue; 2430 2431 rcu_read_unlock(); 2432 update_cpumasks_hier(sibling, tmp, false); 2433 rcu_read_lock(); 2434 css_put(&sibling->css); 2435 } 2436 rcu_read_unlock(); 2437 } 2438 2439 static int parse_cpuset_cpulist(const char *buf, struct cpumask *out_mask) 2440 { 2441 int retval; 2442 2443 retval = cpulist_parse(buf, out_mask); 2444 if (retval < 0) 2445 return retval; 2446 if (!cpumask_subset(out_mask, top_cpuset.cpus_allowed)) 2447 return -EINVAL; 2448 2449 return 0; 2450 } 2451 2452 /** 2453 * validate_partition - Validate a cpuset partition configuration 2454 * @cs: The cpuset to validate 2455 * @trialcs: The trial cpuset containing proposed configuration changes 2456 * 2457 * If any validation check fails, the appropriate error code is set in the 2458 * cpuset's prs_err field. 2459 * 2460 * Return: PRS error code (0 if valid, non-zero error code if invalid) 2461 */ 2462 static enum prs_errcode validate_partition(struct cpuset *cs, struct cpuset *trialcs) 2463 { 2464 struct cpuset *parent = parent_cs(cs); 2465 2466 if (cs_is_member(trialcs)) 2467 return PERR_NONE; 2468 2469 if (cpumask_empty(trialcs->effective_xcpus)) 2470 return PERR_INVCPUS; 2471 2472 if (prstate_housekeeping_conflict(trialcs->partition_root_state, 2473 trialcs->effective_xcpus)) 2474 return PERR_HKEEPING; 2475 2476 if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) 2477 return PERR_NOCPUS; 2478 2479 return PERR_NONE; 2480 } 2481 2482 static int cpus_allowed_validate_change(struct cpuset *cs, struct cpuset *trialcs, 2483 struct tmpmasks *tmp) 2484 { 2485 int retval; 2486 struct cpuset *parent = parent_cs(cs); 2487 2488 retval = validate_change(cs, trialcs); 2489 2490 if ((retval == -EINVAL) && cpuset_v2()) { 2491 struct cgroup_subsys_state *css; 2492 struct cpuset *cp; 2493 2494 /* 2495 * The -EINVAL error code indicates that partition sibling 2496 * CPU exclusivity rule has been violated. We still allow 2497 * the cpumask change to proceed while invalidating the 2498 * partition. However, any conflicting sibling partitions 2499 * have to be marked as invalid too. 2500 */ 2501 trialcs->prs_err = PERR_NOTEXCL; 2502 rcu_read_lock(); 2503 cpuset_for_each_child(cp, css, parent) { 2504 struct cpumask *xcpus = user_xcpus(trialcs); 2505 2506 if (is_partition_valid(cp) && 2507 cpumask_intersects(xcpus, cp->effective_xcpus)) { 2508 rcu_read_unlock(); 2509 update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, tmp); 2510 rcu_read_lock(); 2511 } 2512 } 2513 rcu_read_unlock(); 2514 retval = 0; 2515 } 2516 return retval; 2517 } 2518 2519 /** 2520 * partition_cpus_change - Handle partition state changes due to CPU mask updates 2521 * @cs: The target cpuset being modified 2522 * @trialcs: The trial cpuset containing proposed configuration changes 2523 * @tmp: Temporary masks for intermediate calculations 2524 * 2525 * This function handles partition state transitions triggered by CPU mask changes. 2526 * CPU modifications may cause a partition to be disabled or require state updates. 2527 */ 2528 static void partition_cpus_change(struct cpuset *cs, struct cpuset *trialcs, 2529 struct tmpmasks *tmp) 2530 { 2531 enum prs_errcode prs_err; 2532 2533 if (cs_is_member(cs)) 2534 return; 2535 2536 prs_err = validate_partition(cs, trialcs); 2537 if (prs_err) 2538 trialcs->prs_err = cs->prs_err = prs_err; 2539 2540 if (is_remote_partition(cs)) { 2541 if (trialcs->prs_err) 2542 remote_partition_disable(cs, tmp); 2543 else 2544 remote_cpus_update(cs, trialcs->exclusive_cpus, 2545 trialcs->effective_xcpus, tmp); 2546 } else { 2547 if (trialcs->prs_err) 2548 update_parent_effective_cpumask(cs, partcmd_invalidate, 2549 NULL, tmp); 2550 else 2551 update_parent_effective_cpumask(cs, partcmd_update, 2552 trialcs->effective_xcpus, tmp); 2553 } 2554 } 2555 2556 /** 2557 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 2558 * @cs: the cpuset to consider 2559 * @trialcs: trial cpuset 2560 * @buf: buffer of cpu numbers written to this cpuset 2561 */ 2562 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2563 const char *buf) 2564 { 2565 int retval; 2566 struct tmpmasks tmp; 2567 bool force = false; 2568 int old_prs = cs->partition_root_state; 2569 2570 retval = parse_cpuset_cpulist(buf, trialcs->cpus_allowed); 2571 if (retval < 0) 2572 return retval; 2573 2574 /* Nothing to do if the cpus didn't change */ 2575 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 2576 return 0; 2577 2578 if (alloc_tmpmasks(&tmp)) 2579 return -ENOMEM; 2580 2581 compute_trialcs_excpus(trialcs, cs); 2582 trialcs->prs_err = PERR_NONE; 2583 2584 retval = cpus_allowed_validate_change(cs, trialcs, &tmp); 2585 if (retval < 0) 2586 goto out_free; 2587 2588 /* 2589 * Check all the descendants in update_cpumasks_hier() if 2590 * effective_xcpus is to be changed. 2591 */ 2592 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus); 2593 2594 partition_cpus_change(cs, trialcs, &tmp); 2595 2596 spin_lock_irq(&callback_lock); 2597 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 2598 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2599 if ((old_prs > 0) && !is_partition_valid(cs)) 2600 reset_partition_data(cs); 2601 spin_unlock_irq(&callback_lock); 2602 2603 /* effective_cpus/effective_xcpus will be updated here */ 2604 update_cpumasks_hier(cs, &tmp, force); 2605 2606 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2607 if (cs->partition_root_state) 2608 update_partition_sd_lb(cs, old_prs); 2609 out_free: 2610 free_tmpmasks(&tmp); 2611 return retval; 2612 } 2613 2614 /** 2615 * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset 2616 * @cs: the cpuset to consider 2617 * @trialcs: trial cpuset 2618 * @buf: buffer of cpu numbers written to this cpuset 2619 * 2620 * The tasks' cpumask will be updated if cs is a valid partition root. 2621 */ 2622 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2623 const char *buf) 2624 { 2625 int retval; 2626 struct tmpmasks tmp; 2627 bool force = false; 2628 int old_prs = cs->partition_root_state; 2629 2630 retval = parse_cpuset_cpulist(buf, trialcs->exclusive_cpus); 2631 if (retval < 0) 2632 return retval; 2633 2634 /* Nothing to do if the CPUs didn't change */ 2635 if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus)) 2636 return 0; 2637 2638 /* 2639 * Reject the change if there is exclusive CPUs conflict with 2640 * the siblings. 2641 */ 2642 if (compute_trialcs_excpus(trialcs, cs)) 2643 return -EINVAL; 2644 2645 /* 2646 * Check all the descendants in update_cpumasks_hier() if 2647 * effective_xcpus is to be changed. 2648 */ 2649 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus); 2650 2651 retval = validate_change(cs, trialcs); 2652 if (retval) 2653 return retval; 2654 2655 if (alloc_tmpmasks(&tmp)) 2656 return -ENOMEM; 2657 2658 trialcs->prs_err = PERR_NONE; 2659 partition_cpus_change(cs, trialcs, &tmp); 2660 2661 spin_lock_irq(&callback_lock); 2662 cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus); 2663 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2664 if ((old_prs > 0) && !is_partition_valid(cs)) 2665 reset_partition_data(cs); 2666 spin_unlock_irq(&callback_lock); 2667 2668 /* 2669 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus 2670 * of the subtree when it is a valid partition root or effective_xcpus 2671 * is updated. 2672 */ 2673 if (is_partition_valid(cs) || force) 2674 update_cpumasks_hier(cs, &tmp, force); 2675 2676 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2677 if (cs->partition_root_state) 2678 update_partition_sd_lb(cs, old_prs); 2679 2680 free_tmpmasks(&tmp); 2681 return 0; 2682 } 2683 2684 /* 2685 * Migrate memory region from one set of nodes to another. This is 2686 * performed asynchronously as it can be called from process migration path 2687 * holding locks involved in process management. All mm migrations are 2688 * performed in the queued order and can be waited for by flushing 2689 * cpuset_migrate_mm_wq. 2690 */ 2691 2692 struct cpuset_migrate_mm_work { 2693 struct work_struct work; 2694 struct mm_struct *mm; 2695 nodemask_t from; 2696 nodemask_t to; 2697 }; 2698 2699 static void cpuset_migrate_mm_workfn(struct work_struct *work) 2700 { 2701 struct cpuset_migrate_mm_work *mwork = 2702 container_of(work, struct cpuset_migrate_mm_work, work); 2703 2704 /* on a wq worker, no need to worry about %current's mems_allowed */ 2705 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 2706 mmput(mwork->mm); 2707 kfree(mwork); 2708 } 2709 2710 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 2711 const nodemask_t *to) 2712 { 2713 struct cpuset_migrate_mm_work *mwork; 2714 2715 if (nodes_equal(*from, *to)) { 2716 mmput(mm); 2717 return; 2718 } 2719 2720 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 2721 if (mwork) { 2722 mwork->mm = mm; 2723 mwork->from = *from; 2724 mwork->to = *to; 2725 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 2726 queue_work(cpuset_migrate_mm_wq, &mwork->work); 2727 } else { 2728 mmput(mm); 2729 } 2730 } 2731 2732 static void flush_migrate_mm_task_workfn(struct callback_head *head) 2733 { 2734 flush_workqueue(cpuset_migrate_mm_wq); 2735 kfree(head); 2736 } 2737 2738 static void schedule_flush_migrate_mm(void) 2739 { 2740 struct callback_head *flush_cb; 2741 2742 flush_cb = kzalloc(sizeof(struct callback_head), GFP_KERNEL); 2743 if (!flush_cb) 2744 return; 2745 2746 init_task_work(flush_cb, flush_migrate_mm_task_workfn); 2747 2748 if (task_work_add(current, flush_cb, TWA_RESUME)) 2749 kfree(flush_cb); 2750 } 2751 2752 /* 2753 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 2754 * @tsk: the task to change 2755 * @newmems: new nodes that the task will be set 2756 * 2757 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 2758 * and rebind an eventual tasks' mempolicy. If the task is allocating in 2759 * parallel, it might temporarily see an empty intersection, which results in 2760 * a seqlock check and retry before OOM or allocation failure. 2761 */ 2762 static void cpuset_change_task_nodemask(struct task_struct *tsk, 2763 nodemask_t *newmems) 2764 { 2765 task_lock(tsk); 2766 2767 local_irq_disable(); 2768 write_seqcount_begin(&tsk->mems_allowed_seq); 2769 2770 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 2771 mpol_rebind_task(tsk, newmems); 2772 tsk->mems_allowed = *newmems; 2773 2774 write_seqcount_end(&tsk->mems_allowed_seq); 2775 local_irq_enable(); 2776 2777 task_unlock(tsk); 2778 } 2779 2780 static void *cpuset_being_rebound; 2781 2782 /** 2783 * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 2784 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 2785 * 2786 * Iterate through each task of @cs updating its mems_allowed to the 2787 * effective cpuset's. As this function is called with cpuset_mutex held, 2788 * cpuset membership stays stable. 2789 */ 2790 void cpuset_update_tasks_nodemask(struct cpuset *cs) 2791 { 2792 static nodemask_t newmems; /* protected by cpuset_mutex */ 2793 struct css_task_iter it; 2794 struct task_struct *task; 2795 2796 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 2797 2798 guarantee_online_mems(cs, &newmems); 2799 2800 /* 2801 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 2802 * take while holding tasklist_lock. Forks can happen - the 2803 * mpol_dup() cpuset_being_rebound check will catch such forks, 2804 * and rebind their vma mempolicies too. Because we still hold 2805 * the global cpuset_mutex, we know that no other rebind effort 2806 * will be contending for the global variable cpuset_being_rebound. 2807 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 2808 * is idempotent. Also migrate pages in each mm to new nodes. 2809 */ 2810 css_task_iter_start(&cs->css, 0, &it); 2811 while ((task = css_task_iter_next(&it))) { 2812 struct mm_struct *mm; 2813 bool migrate; 2814 2815 cpuset_change_task_nodemask(task, &newmems); 2816 2817 mm = get_task_mm(task); 2818 if (!mm) 2819 continue; 2820 2821 migrate = is_memory_migrate(cs); 2822 2823 mpol_rebind_mm(mm, &cs->mems_allowed); 2824 if (migrate) 2825 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 2826 else 2827 mmput(mm); 2828 } 2829 css_task_iter_end(&it); 2830 2831 /* 2832 * All the tasks' nodemasks have been updated, update 2833 * cs->old_mems_allowed. 2834 */ 2835 cs->old_mems_allowed = newmems; 2836 2837 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 2838 cpuset_being_rebound = NULL; 2839 } 2840 2841 /* 2842 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 2843 * @cs: the cpuset to consider 2844 * @new_mems: a temp variable for calculating new effective_mems 2845 * 2846 * When configured nodemask is changed, the effective nodemasks of this cpuset 2847 * and all its descendants need to be updated. 2848 * 2849 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 2850 * 2851 * Called with cpuset_mutex held 2852 */ 2853 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 2854 { 2855 struct cpuset *cp; 2856 struct cgroup_subsys_state *pos_css; 2857 2858 rcu_read_lock(); 2859 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2860 struct cpuset *parent = parent_cs(cp); 2861 2862 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 2863 2864 /* 2865 * If it becomes empty, inherit the effective mask of the 2866 * parent, which is guaranteed to have some MEMs. 2867 */ 2868 if (is_in_v2_mode() && nodes_empty(*new_mems)) 2869 *new_mems = parent->effective_mems; 2870 2871 /* Skip the whole subtree if the nodemask remains the same. */ 2872 if (nodes_equal(*new_mems, cp->effective_mems)) { 2873 pos_css = css_rightmost_descendant(pos_css); 2874 continue; 2875 } 2876 2877 if (!css_tryget_online(&cp->css)) 2878 continue; 2879 rcu_read_unlock(); 2880 2881 spin_lock_irq(&callback_lock); 2882 cp->effective_mems = *new_mems; 2883 spin_unlock_irq(&callback_lock); 2884 2885 WARN_ON(!is_in_v2_mode() && 2886 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 2887 2888 cpuset_update_tasks_nodemask(cp); 2889 2890 rcu_read_lock(); 2891 css_put(&cp->css); 2892 } 2893 rcu_read_unlock(); 2894 } 2895 2896 /* 2897 * Handle user request to change the 'mems' memory placement 2898 * of a cpuset. Needs to validate the request, update the 2899 * cpusets mems_allowed, and for each task in the cpuset, 2900 * update mems_allowed and rebind task's mempolicy and any vma 2901 * mempolicies and if the cpuset is marked 'memory_migrate', 2902 * migrate the tasks pages to the new memory. 2903 * 2904 * Call with cpuset_mutex held. May take callback_lock during call. 2905 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 2906 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 2907 * their mempolicies to the cpusets new mems_allowed. 2908 */ 2909 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 2910 const char *buf) 2911 { 2912 int retval; 2913 2914 /* 2915 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 2916 * The validate_change() call ensures that cpusets with tasks have memory. 2917 */ 2918 retval = nodelist_parse(buf, trialcs->mems_allowed); 2919 if (retval < 0) 2920 return retval; 2921 2922 if (!nodes_subset(trialcs->mems_allowed, 2923 top_cpuset.mems_allowed)) 2924 return -EINVAL; 2925 2926 /* No change? nothing to do */ 2927 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) 2928 return 0; 2929 2930 retval = validate_change(cs, trialcs); 2931 if (retval < 0) 2932 return retval; 2933 2934 check_insane_mems_config(&trialcs->mems_allowed); 2935 2936 spin_lock_irq(&callback_lock); 2937 cs->mems_allowed = trialcs->mems_allowed; 2938 spin_unlock_irq(&callback_lock); 2939 2940 /* use trialcs->mems_allowed as a temp variable */ 2941 update_nodemasks_hier(cs, &trialcs->mems_allowed); 2942 return 0; 2943 } 2944 2945 bool current_cpuset_is_being_rebound(void) 2946 { 2947 bool ret; 2948 2949 rcu_read_lock(); 2950 ret = task_cs(current) == cpuset_being_rebound; 2951 rcu_read_unlock(); 2952 2953 return ret; 2954 } 2955 2956 /* 2957 * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag 2958 * bit: the bit to update (see cpuset_flagbits_t) 2959 * cs: the cpuset to update 2960 * turning_on: whether the flag is being set or cleared 2961 * 2962 * Call with cpuset_mutex held. 2963 */ 2964 2965 int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 2966 int turning_on) 2967 { 2968 struct cpuset *trialcs; 2969 int balance_flag_changed; 2970 int spread_flag_changed; 2971 int err; 2972 2973 trialcs = dup_or_alloc_cpuset(cs); 2974 if (!trialcs) 2975 return -ENOMEM; 2976 2977 if (turning_on) 2978 set_bit(bit, &trialcs->flags); 2979 else 2980 clear_bit(bit, &trialcs->flags); 2981 2982 err = validate_change(cs, trialcs); 2983 if (err < 0) 2984 goto out; 2985 2986 balance_flag_changed = (is_sched_load_balance(cs) != 2987 is_sched_load_balance(trialcs)); 2988 2989 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 2990 || (is_spread_page(cs) != is_spread_page(trialcs))); 2991 2992 spin_lock_irq(&callback_lock); 2993 cs->flags = trialcs->flags; 2994 spin_unlock_irq(&callback_lock); 2995 2996 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) { 2997 if (cpuset_v2()) 2998 cpuset_force_rebuild(); 2999 else 3000 rebuild_sched_domains_locked(); 3001 } 3002 3003 if (spread_flag_changed) 3004 cpuset1_update_tasks_flags(cs); 3005 out: 3006 free_cpuset(trialcs); 3007 return err; 3008 } 3009 3010 /** 3011 * update_prstate - update partition_root_state 3012 * @cs: the cpuset to update 3013 * @new_prs: new partition root state 3014 * Return: 0 if successful, != 0 if error 3015 * 3016 * Call with cpuset_mutex held. 3017 */ 3018 static int update_prstate(struct cpuset *cs, int new_prs) 3019 { 3020 int err = PERR_NONE, old_prs = cs->partition_root_state; 3021 struct cpuset *parent = parent_cs(cs); 3022 struct tmpmasks tmpmask; 3023 bool isolcpus_updated = false; 3024 3025 if (old_prs == new_prs) 3026 return 0; 3027 3028 /* 3029 * Treat a previously invalid partition root as if it is a "member". 3030 */ 3031 if (new_prs && is_partition_invalid(cs)) 3032 old_prs = PRS_MEMBER; 3033 3034 if (alloc_tmpmasks(&tmpmask)) 3035 return -ENOMEM; 3036 3037 err = update_partition_exclusive_flag(cs, new_prs); 3038 if (err) 3039 goto out; 3040 3041 if (!old_prs) { 3042 /* 3043 * cpus_allowed and exclusive_cpus cannot be both empty. 3044 */ 3045 if (xcpus_empty(cs)) { 3046 err = PERR_CPUSEMPTY; 3047 goto out; 3048 } 3049 3050 /* 3051 * We don't support the creation of a new local partition with 3052 * a remote partition underneath it. This unsupported 3053 * setting can happen only if parent is the top_cpuset because 3054 * a remote partition cannot be created underneath an existing 3055 * local or remote partition. 3056 */ 3057 if ((parent == &top_cpuset) && 3058 cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) { 3059 err = PERR_REMOTE; 3060 goto out; 3061 } 3062 3063 /* 3064 * If parent is valid partition, enable local partiion. 3065 * Otherwise, enable a remote partition. 3066 */ 3067 if (is_partition_valid(parent)) { 3068 enum partition_cmd cmd = (new_prs == PRS_ROOT) 3069 ? partcmd_enable : partcmd_enablei; 3070 3071 err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask); 3072 } else { 3073 err = remote_partition_enable(cs, new_prs, &tmpmask); 3074 } 3075 } else if (old_prs && new_prs) { 3076 /* 3077 * A change in load balance state only, no change in cpumasks. 3078 * Need to update isolated_cpus. 3079 */ 3080 if (((new_prs == PRS_ISOLATED) && 3081 !isolated_cpus_can_update(cs->effective_xcpus, NULL)) || 3082 prstate_housekeeping_conflict(new_prs, cs->effective_xcpus)) 3083 err = PERR_HKEEPING; 3084 else 3085 isolcpus_updated = true; 3086 } else { 3087 /* 3088 * Switching back to member is always allowed even if it 3089 * disables child partitions. 3090 */ 3091 if (is_remote_partition(cs)) 3092 remote_partition_disable(cs, &tmpmask); 3093 else 3094 update_parent_effective_cpumask(cs, partcmd_disable, 3095 NULL, &tmpmask); 3096 3097 /* 3098 * Invalidation of child partitions will be done in 3099 * update_cpumasks_hier(). 3100 */ 3101 } 3102 out: 3103 /* 3104 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error 3105 * happens. 3106 */ 3107 if (err) { 3108 new_prs = -new_prs; 3109 update_partition_exclusive_flag(cs, new_prs); 3110 } 3111 3112 spin_lock_irq(&callback_lock); 3113 cs->partition_root_state = new_prs; 3114 WRITE_ONCE(cs->prs_err, err); 3115 if (!is_partition_valid(cs)) 3116 reset_partition_data(cs); 3117 else if (isolcpus_updated) 3118 isolated_cpus_update(old_prs, new_prs, cs->effective_xcpus); 3119 spin_unlock_irq(&callback_lock); 3120 update_isolation_cpumasks(); 3121 3122 /* Force update if switching back to member & update effective_xcpus */ 3123 update_cpumasks_hier(cs, &tmpmask, !new_prs); 3124 3125 /* A newly created partition must have effective_xcpus set */ 3126 WARN_ON_ONCE(!old_prs && (new_prs > 0) 3127 && cpumask_empty(cs->effective_xcpus)); 3128 3129 /* Update sched domains and load balance flag */ 3130 update_partition_sd_lb(cs, old_prs); 3131 3132 notify_partition_change(cs, old_prs); 3133 if (force_sd_rebuild) 3134 rebuild_sched_domains_locked(); 3135 free_tmpmasks(&tmpmask); 3136 return 0; 3137 } 3138 3139 static struct cpuset *cpuset_attach_old_cs; 3140 3141 /* 3142 * Check to see if a cpuset can accept a new task 3143 * For v1, cpus_allowed and mems_allowed can't be empty. 3144 * For v2, effective_cpus can't be empty. 3145 * Note that in v1, effective_cpus = cpus_allowed. 3146 */ 3147 static int cpuset_can_attach_check(struct cpuset *cs) 3148 { 3149 if (cpumask_empty(cs->effective_cpus) || 3150 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) 3151 return -ENOSPC; 3152 return 0; 3153 } 3154 3155 static void reset_migrate_dl_data(struct cpuset *cs) 3156 { 3157 cs->nr_migrate_dl_tasks = 0; 3158 cs->sum_migrate_dl_bw = 0; 3159 } 3160 3161 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 3162 static int cpuset_can_attach(struct cgroup_taskset *tset) 3163 { 3164 struct cgroup_subsys_state *css; 3165 struct cpuset *cs, *oldcs; 3166 struct task_struct *task; 3167 bool cpus_updated, mems_updated; 3168 int ret; 3169 3170 /* used later by cpuset_attach() */ 3171 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 3172 oldcs = cpuset_attach_old_cs; 3173 cs = css_cs(css); 3174 3175 mutex_lock(&cpuset_mutex); 3176 3177 /* Check to see if task is allowed in the cpuset */ 3178 ret = cpuset_can_attach_check(cs); 3179 if (ret) 3180 goto out_unlock; 3181 3182 cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); 3183 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 3184 3185 cgroup_taskset_for_each(task, css, tset) { 3186 ret = task_can_attach(task); 3187 if (ret) 3188 goto out_unlock; 3189 3190 /* 3191 * Skip rights over task check in v2 when nothing changes, 3192 * migration permission derives from hierarchy ownership in 3193 * cgroup_procs_write_permission()). 3194 */ 3195 if (!cpuset_v2() || (cpus_updated || mems_updated)) { 3196 ret = security_task_setscheduler(task); 3197 if (ret) 3198 goto out_unlock; 3199 } 3200 3201 if (dl_task(task)) { 3202 cs->nr_migrate_dl_tasks++; 3203 cs->sum_migrate_dl_bw += task->dl.dl_bw; 3204 } 3205 } 3206 3207 if (!cs->nr_migrate_dl_tasks) 3208 goto out_success; 3209 3210 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) { 3211 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus); 3212 3213 if (unlikely(cpu >= nr_cpu_ids)) { 3214 reset_migrate_dl_data(cs); 3215 ret = -EINVAL; 3216 goto out_unlock; 3217 } 3218 3219 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw); 3220 if (ret) { 3221 reset_migrate_dl_data(cs); 3222 goto out_unlock; 3223 } 3224 } 3225 3226 out_success: 3227 /* 3228 * Mark attach is in progress. This makes validate_change() fail 3229 * changes which zero cpus/mems_allowed. 3230 */ 3231 cs->attach_in_progress++; 3232 out_unlock: 3233 mutex_unlock(&cpuset_mutex); 3234 return ret; 3235 } 3236 3237 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 3238 { 3239 struct cgroup_subsys_state *css; 3240 struct cpuset *cs; 3241 3242 cgroup_taskset_first(tset, &css); 3243 cs = css_cs(css); 3244 3245 mutex_lock(&cpuset_mutex); 3246 dec_attach_in_progress_locked(cs); 3247 3248 if (cs->nr_migrate_dl_tasks) { 3249 int cpu = cpumask_any(cs->effective_cpus); 3250 3251 dl_bw_free(cpu, cs->sum_migrate_dl_bw); 3252 reset_migrate_dl_data(cs); 3253 } 3254 3255 mutex_unlock(&cpuset_mutex); 3256 } 3257 3258 /* 3259 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task() 3260 * but we can't allocate it dynamically there. Define it global and 3261 * allocate from cpuset_init(). 3262 */ 3263 static cpumask_var_t cpus_attach; 3264 static nodemask_t cpuset_attach_nodemask_to; 3265 3266 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) 3267 { 3268 lockdep_assert_held(&cpuset_mutex); 3269 3270 if (cs != &top_cpuset) 3271 guarantee_active_cpus(task, cpus_attach); 3272 else 3273 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), 3274 subpartitions_cpus); 3275 /* 3276 * can_attach beforehand should guarantee that this doesn't 3277 * fail. TODO: have a better way to handle failure here 3278 */ 3279 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 3280 3281 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 3282 cpuset1_update_task_spread_flags(cs, task); 3283 } 3284 3285 static void cpuset_attach(struct cgroup_taskset *tset) 3286 { 3287 struct task_struct *task; 3288 struct task_struct *leader; 3289 struct cgroup_subsys_state *css; 3290 struct cpuset *cs; 3291 struct cpuset *oldcs = cpuset_attach_old_cs; 3292 bool cpus_updated, mems_updated; 3293 bool queue_task_work = false; 3294 3295 cgroup_taskset_first(tset, &css); 3296 cs = css_cs(css); 3297 3298 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ 3299 mutex_lock(&cpuset_mutex); 3300 cpus_updated = !cpumask_equal(cs->effective_cpus, 3301 oldcs->effective_cpus); 3302 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 3303 3304 /* 3305 * In the default hierarchy, enabling cpuset in the child cgroups 3306 * will trigger a number of cpuset_attach() calls with no change 3307 * in effective cpus and mems. In that case, we can optimize out 3308 * by skipping the task iteration and update. 3309 */ 3310 if (cpuset_v2() && !cpus_updated && !mems_updated) { 3311 cpuset_attach_nodemask_to = cs->effective_mems; 3312 goto out; 3313 } 3314 3315 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3316 3317 cgroup_taskset_for_each(task, css, tset) 3318 cpuset_attach_task(cs, task); 3319 3320 /* 3321 * Change mm for all threadgroup leaders. This is expensive and may 3322 * sleep and should be moved outside migration path proper. Skip it 3323 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is 3324 * not set. 3325 */ 3326 cpuset_attach_nodemask_to = cs->effective_mems; 3327 if (!is_memory_migrate(cs) && !mems_updated) 3328 goto out; 3329 3330 cgroup_taskset_for_each_leader(leader, css, tset) { 3331 struct mm_struct *mm = get_task_mm(leader); 3332 3333 if (mm) { 3334 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 3335 3336 /* 3337 * old_mems_allowed is the same with mems_allowed 3338 * here, except if this task is being moved 3339 * automatically due to hotplug. In that case 3340 * @mems_allowed has been updated and is empty, so 3341 * @old_mems_allowed is the right nodesets that we 3342 * migrate mm from. 3343 */ 3344 if (is_memory_migrate(cs)) { 3345 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 3346 &cpuset_attach_nodemask_to); 3347 queue_task_work = true; 3348 } else 3349 mmput(mm); 3350 } 3351 } 3352 3353 out: 3354 if (queue_task_work) 3355 schedule_flush_migrate_mm(); 3356 cs->old_mems_allowed = cpuset_attach_nodemask_to; 3357 3358 if (cs->nr_migrate_dl_tasks) { 3359 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks; 3360 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks; 3361 reset_migrate_dl_data(cs); 3362 } 3363 3364 dec_attach_in_progress_locked(cs); 3365 3366 mutex_unlock(&cpuset_mutex); 3367 } 3368 3369 /* 3370 * Common handling for a write to a "cpus" or "mems" file. 3371 */ 3372 ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 3373 char *buf, size_t nbytes, loff_t off) 3374 { 3375 struct cpuset *cs = css_cs(of_css(of)); 3376 struct cpuset *trialcs; 3377 int retval = -ENODEV; 3378 3379 /* root is read-only */ 3380 if (cs == &top_cpuset) 3381 return -EACCES; 3382 3383 buf = strstrip(buf); 3384 cpuset_full_lock(); 3385 if (!is_cpuset_online(cs)) 3386 goto out_unlock; 3387 3388 trialcs = dup_or_alloc_cpuset(cs); 3389 if (!trialcs) { 3390 retval = -ENOMEM; 3391 goto out_unlock; 3392 } 3393 3394 switch (of_cft(of)->private) { 3395 case FILE_CPULIST: 3396 retval = update_cpumask(cs, trialcs, buf); 3397 break; 3398 case FILE_EXCLUSIVE_CPULIST: 3399 retval = update_exclusive_cpumask(cs, trialcs, buf); 3400 break; 3401 case FILE_MEMLIST: 3402 retval = update_nodemask(cs, trialcs, buf); 3403 break; 3404 default: 3405 retval = -EINVAL; 3406 break; 3407 } 3408 3409 free_cpuset(trialcs); 3410 if (force_sd_rebuild) 3411 rebuild_sched_domains_locked(); 3412 out_unlock: 3413 cpuset_full_unlock(); 3414 if (of_cft(of)->private == FILE_MEMLIST) 3415 schedule_flush_migrate_mm(); 3416 return retval ?: nbytes; 3417 } 3418 3419 /* 3420 * These ascii lists should be read in a single call, by using a user 3421 * buffer large enough to hold the entire map. If read in smaller 3422 * chunks, there is no guarantee of atomicity. Since the display format 3423 * used, list of ranges of sequential numbers, is variable length, 3424 * and since these maps can change value dynamically, one could read 3425 * gibberish by doing partial reads while a list was changing. 3426 */ 3427 int cpuset_common_seq_show(struct seq_file *sf, void *v) 3428 { 3429 struct cpuset *cs = css_cs(seq_css(sf)); 3430 cpuset_filetype_t type = seq_cft(sf)->private; 3431 int ret = 0; 3432 3433 spin_lock_irq(&callback_lock); 3434 3435 switch (type) { 3436 case FILE_CPULIST: 3437 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 3438 break; 3439 case FILE_MEMLIST: 3440 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 3441 break; 3442 case FILE_EFFECTIVE_CPULIST: 3443 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 3444 break; 3445 case FILE_EFFECTIVE_MEMLIST: 3446 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 3447 break; 3448 case FILE_EXCLUSIVE_CPULIST: 3449 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus)); 3450 break; 3451 case FILE_EFFECTIVE_XCPULIST: 3452 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus)); 3453 break; 3454 case FILE_SUBPARTS_CPULIST: 3455 seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus)); 3456 break; 3457 case FILE_ISOLATED_CPULIST: 3458 seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus)); 3459 break; 3460 default: 3461 ret = -EINVAL; 3462 } 3463 3464 spin_unlock_irq(&callback_lock); 3465 return ret; 3466 } 3467 3468 static int cpuset_partition_show(struct seq_file *seq, void *v) 3469 { 3470 struct cpuset *cs = css_cs(seq_css(seq)); 3471 const char *err, *type = NULL; 3472 3473 switch (cs->partition_root_state) { 3474 case PRS_ROOT: 3475 seq_puts(seq, "root\n"); 3476 break; 3477 case PRS_ISOLATED: 3478 seq_puts(seq, "isolated\n"); 3479 break; 3480 case PRS_MEMBER: 3481 seq_puts(seq, "member\n"); 3482 break; 3483 case PRS_INVALID_ROOT: 3484 type = "root"; 3485 fallthrough; 3486 case PRS_INVALID_ISOLATED: 3487 if (!type) 3488 type = "isolated"; 3489 err = perr_strings[READ_ONCE(cs->prs_err)]; 3490 if (err) 3491 seq_printf(seq, "%s invalid (%s)\n", type, err); 3492 else 3493 seq_printf(seq, "%s invalid\n", type); 3494 break; 3495 } 3496 return 0; 3497 } 3498 3499 static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf, 3500 size_t nbytes, loff_t off) 3501 { 3502 struct cpuset *cs = css_cs(of_css(of)); 3503 int val; 3504 int retval = -ENODEV; 3505 3506 buf = strstrip(buf); 3507 3508 if (!strcmp(buf, "root")) 3509 val = PRS_ROOT; 3510 else if (!strcmp(buf, "member")) 3511 val = PRS_MEMBER; 3512 else if (!strcmp(buf, "isolated")) 3513 val = PRS_ISOLATED; 3514 else 3515 return -EINVAL; 3516 3517 cpuset_full_lock(); 3518 if (is_cpuset_online(cs)) 3519 retval = update_prstate(cs, val); 3520 cpuset_full_unlock(); 3521 return retval ?: nbytes; 3522 } 3523 3524 /* 3525 * This is currently a minimal set for the default hierarchy. It can be 3526 * expanded later on by migrating more features and control files from v1. 3527 */ 3528 static struct cftype dfl_files[] = { 3529 { 3530 .name = "cpus", 3531 .seq_show = cpuset_common_seq_show, 3532 .write = cpuset_write_resmask, 3533 .max_write_len = (100U + 6 * NR_CPUS), 3534 .private = FILE_CPULIST, 3535 .flags = CFTYPE_NOT_ON_ROOT, 3536 }, 3537 3538 { 3539 .name = "mems", 3540 .seq_show = cpuset_common_seq_show, 3541 .write = cpuset_write_resmask, 3542 .max_write_len = (100U + 6 * MAX_NUMNODES), 3543 .private = FILE_MEMLIST, 3544 .flags = CFTYPE_NOT_ON_ROOT, 3545 }, 3546 3547 { 3548 .name = "cpus.effective", 3549 .seq_show = cpuset_common_seq_show, 3550 .private = FILE_EFFECTIVE_CPULIST, 3551 }, 3552 3553 { 3554 .name = "mems.effective", 3555 .seq_show = cpuset_common_seq_show, 3556 .private = FILE_EFFECTIVE_MEMLIST, 3557 }, 3558 3559 { 3560 .name = "cpus.partition", 3561 .seq_show = cpuset_partition_show, 3562 .write = cpuset_partition_write, 3563 .private = FILE_PARTITION_ROOT, 3564 .flags = CFTYPE_NOT_ON_ROOT, 3565 .file_offset = offsetof(struct cpuset, partition_file), 3566 }, 3567 3568 { 3569 .name = "cpus.exclusive", 3570 .seq_show = cpuset_common_seq_show, 3571 .write = cpuset_write_resmask, 3572 .max_write_len = (100U + 6 * NR_CPUS), 3573 .private = FILE_EXCLUSIVE_CPULIST, 3574 .flags = CFTYPE_NOT_ON_ROOT, 3575 }, 3576 3577 { 3578 .name = "cpus.exclusive.effective", 3579 .seq_show = cpuset_common_seq_show, 3580 .private = FILE_EFFECTIVE_XCPULIST, 3581 .flags = CFTYPE_NOT_ON_ROOT, 3582 }, 3583 3584 { 3585 .name = "cpus.subpartitions", 3586 .seq_show = cpuset_common_seq_show, 3587 .private = FILE_SUBPARTS_CPULIST, 3588 .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG, 3589 }, 3590 3591 { 3592 .name = "cpus.isolated", 3593 .seq_show = cpuset_common_seq_show, 3594 .private = FILE_ISOLATED_CPULIST, 3595 .flags = CFTYPE_ONLY_ON_ROOT, 3596 }, 3597 3598 { } /* terminate */ 3599 }; 3600 3601 3602 /** 3603 * cpuset_css_alloc - Allocate a cpuset css 3604 * @parent_css: Parent css of the control group that the new cpuset will be 3605 * part of 3606 * Return: cpuset css on success, -ENOMEM on failure. 3607 * 3608 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return 3609 * top cpuset css otherwise. 3610 */ 3611 static struct cgroup_subsys_state * 3612 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 3613 { 3614 struct cpuset *cs; 3615 3616 if (!parent_css) 3617 return &top_cpuset.css; 3618 3619 cs = dup_or_alloc_cpuset(NULL); 3620 if (!cs) 3621 return ERR_PTR(-ENOMEM); 3622 3623 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3624 fmeter_init(&cs->fmeter); 3625 cs->relax_domain_level = -1; 3626 3627 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 3628 if (cpuset_v2()) 3629 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 3630 3631 return &cs->css; 3632 } 3633 3634 static int cpuset_css_online(struct cgroup_subsys_state *css) 3635 { 3636 struct cpuset *cs = css_cs(css); 3637 struct cpuset *parent = parent_cs(cs); 3638 struct cpuset *tmp_cs; 3639 struct cgroup_subsys_state *pos_css; 3640 3641 if (!parent) 3642 return 0; 3643 3644 cpuset_full_lock(); 3645 if (is_spread_page(parent)) 3646 set_bit(CS_SPREAD_PAGE, &cs->flags); 3647 if (is_spread_slab(parent)) 3648 set_bit(CS_SPREAD_SLAB, &cs->flags); 3649 /* 3650 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated 3651 */ 3652 if (cpuset_v2() && !is_sched_load_balance(parent)) 3653 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3654 3655 cpuset_inc(); 3656 3657 spin_lock_irq(&callback_lock); 3658 if (is_in_v2_mode()) { 3659 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 3660 cs->effective_mems = parent->effective_mems; 3661 } 3662 spin_unlock_irq(&callback_lock); 3663 3664 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 3665 goto out_unlock; 3666 3667 /* 3668 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 3669 * set. This flag handling is implemented in cgroup core for 3670 * historical reasons - the flag may be specified during mount. 3671 * 3672 * Currently, if any sibling cpusets have exclusive cpus or mem, we 3673 * refuse to clone the configuration - thereby refusing the task to 3674 * be entered, and as a result refusing the sys_unshare() or 3675 * clone() which initiated it. If this becomes a problem for some 3676 * users who wish to allow that scenario, then this could be 3677 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 3678 * (and likewise for mems) to the new cgroup. 3679 */ 3680 rcu_read_lock(); 3681 cpuset_for_each_child(tmp_cs, pos_css, parent) { 3682 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 3683 rcu_read_unlock(); 3684 goto out_unlock; 3685 } 3686 } 3687 rcu_read_unlock(); 3688 3689 spin_lock_irq(&callback_lock); 3690 cs->mems_allowed = parent->mems_allowed; 3691 cs->effective_mems = parent->mems_allowed; 3692 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 3693 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 3694 spin_unlock_irq(&callback_lock); 3695 out_unlock: 3696 cpuset_full_unlock(); 3697 return 0; 3698 } 3699 3700 /* 3701 * If the cpuset being removed has its flag 'sched_load_balance' 3702 * enabled, then simulate turning sched_load_balance off, which 3703 * will call rebuild_sched_domains_locked(). That is not needed 3704 * in the default hierarchy where only changes in partition 3705 * will cause repartitioning. 3706 */ 3707 static void cpuset_css_offline(struct cgroup_subsys_state *css) 3708 { 3709 struct cpuset *cs = css_cs(css); 3710 3711 cpuset_full_lock(); 3712 if (!cpuset_v2() && is_sched_load_balance(cs)) 3713 cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 3714 3715 cpuset_dec(); 3716 cpuset_full_unlock(); 3717 } 3718 3719 /* 3720 * If a dying cpuset has the 'cpus.partition' enabled, turn it off by 3721 * changing it back to member to free its exclusive CPUs back to the pool to 3722 * be used by other online cpusets. 3723 */ 3724 static void cpuset_css_killed(struct cgroup_subsys_state *css) 3725 { 3726 struct cpuset *cs = css_cs(css); 3727 3728 cpuset_full_lock(); 3729 /* Reset valid partition back to member */ 3730 if (is_partition_valid(cs)) 3731 update_prstate(cs, PRS_MEMBER); 3732 cpuset_full_unlock(); 3733 } 3734 3735 static void cpuset_css_free(struct cgroup_subsys_state *css) 3736 { 3737 struct cpuset *cs = css_cs(css); 3738 3739 free_cpuset(cs); 3740 } 3741 3742 static void cpuset_bind(struct cgroup_subsys_state *root_css) 3743 { 3744 mutex_lock(&cpuset_mutex); 3745 spin_lock_irq(&callback_lock); 3746 3747 if (is_in_v2_mode()) { 3748 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 3749 cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask); 3750 top_cpuset.mems_allowed = node_possible_map; 3751 } else { 3752 cpumask_copy(top_cpuset.cpus_allowed, 3753 top_cpuset.effective_cpus); 3754 top_cpuset.mems_allowed = top_cpuset.effective_mems; 3755 } 3756 3757 spin_unlock_irq(&callback_lock); 3758 mutex_unlock(&cpuset_mutex); 3759 } 3760 3761 /* 3762 * In case the child is cloned into a cpuset different from its parent, 3763 * additional checks are done to see if the move is allowed. 3764 */ 3765 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) 3766 { 3767 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3768 bool same_cs; 3769 int ret; 3770 3771 rcu_read_lock(); 3772 same_cs = (cs == task_cs(current)); 3773 rcu_read_unlock(); 3774 3775 if (same_cs) 3776 return 0; 3777 3778 lockdep_assert_held(&cgroup_mutex); 3779 mutex_lock(&cpuset_mutex); 3780 3781 /* Check to see if task is allowed in the cpuset */ 3782 ret = cpuset_can_attach_check(cs); 3783 if (ret) 3784 goto out_unlock; 3785 3786 ret = task_can_attach(task); 3787 if (ret) 3788 goto out_unlock; 3789 3790 ret = security_task_setscheduler(task); 3791 if (ret) 3792 goto out_unlock; 3793 3794 /* 3795 * Mark attach is in progress. This makes validate_change() fail 3796 * changes which zero cpus/mems_allowed. 3797 */ 3798 cs->attach_in_progress++; 3799 out_unlock: 3800 mutex_unlock(&cpuset_mutex); 3801 return ret; 3802 } 3803 3804 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) 3805 { 3806 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3807 bool same_cs; 3808 3809 rcu_read_lock(); 3810 same_cs = (cs == task_cs(current)); 3811 rcu_read_unlock(); 3812 3813 if (same_cs) 3814 return; 3815 3816 dec_attach_in_progress(cs); 3817 } 3818 3819 /* 3820 * Make sure the new task conform to the current state of its parent, 3821 * which could have been changed by cpuset just after it inherits the 3822 * state from the parent and before it sits on the cgroup's task list. 3823 */ 3824 static void cpuset_fork(struct task_struct *task) 3825 { 3826 struct cpuset *cs; 3827 bool same_cs; 3828 3829 rcu_read_lock(); 3830 cs = task_cs(task); 3831 same_cs = (cs == task_cs(current)); 3832 rcu_read_unlock(); 3833 3834 if (same_cs) { 3835 if (cs == &top_cpuset) 3836 return; 3837 3838 set_cpus_allowed_ptr(task, current->cpus_ptr); 3839 task->mems_allowed = current->mems_allowed; 3840 return; 3841 } 3842 3843 /* CLONE_INTO_CGROUP */ 3844 mutex_lock(&cpuset_mutex); 3845 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3846 cpuset_attach_task(cs, task); 3847 3848 dec_attach_in_progress_locked(cs); 3849 mutex_unlock(&cpuset_mutex); 3850 } 3851 3852 struct cgroup_subsys cpuset_cgrp_subsys = { 3853 .css_alloc = cpuset_css_alloc, 3854 .css_online = cpuset_css_online, 3855 .css_offline = cpuset_css_offline, 3856 .css_killed = cpuset_css_killed, 3857 .css_free = cpuset_css_free, 3858 .can_attach = cpuset_can_attach, 3859 .cancel_attach = cpuset_cancel_attach, 3860 .attach = cpuset_attach, 3861 .bind = cpuset_bind, 3862 .can_fork = cpuset_can_fork, 3863 .cancel_fork = cpuset_cancel_fork, 3864 .fork = cpuset_fork, 3865 #ifdef CONFIG_CPUSETS_V1 3866 .legacy_cftypes = cpuset1_files, 3867 #endif 3868 .dfl_cftypes = dfl_files, 3869 .early_init = true, 3870 .threaded = true, 3871 }; 3872 3873 /** 3874 * cpuset_init - initialize cpusets at system boot 3875 * 3876 * Description: Initialize top_cpuset 3877 **/ 3878 3879 int __init cpuset_init(void) 3880 { 3881 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 3882 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 3883 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL)); 3884 BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL)); 3885 BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL)); 3886 BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL)); 3887 3888 cpumask_setall(top_cpuset.cpus_allowed); 3889 nodes_setall(top_cpuset.mems_allowed); 3890 cpumask_setall(top_cpuset.effective_cpus); 3891 cpumask_setall(top_cpuset.effective_xcpus); 3892 cpumask_setall(top_cpuset.exclusive_cpus); 3893 nodes_setall(top_cpuset.effective_mems); 3894 3895 fmeter_init(&top_cpuset.fmeter); 3896 3897 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 3898 3899 have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN); 3900 if (have_boot_isolcpus) { 3901 BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL)); 3902 cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN)); 3903 cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus); 3904 } 3905 3906 return 0; 3907 } 3908 3909 static void 3910 hotplug_update_tasks(struct cpuset *cs, 3911 struct cpumask *new_cpus, nodemask_t *new_mems, 3912 bool cpus_updated, bool mems_updated) 3913 { 3914 /* A partition root is allowed to have empty effective cpus */ 3915 if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) 3916 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3917 if (nodes_empty(*new_mems)) 3918 *new_mems = parent_cs(cs)->effective_mems; 3919 3920 spin_lock_irq(&callback_lock); 3921 cpumask_copy(cs->effective_cpus, new_cpus); 3922 cs->effective_mems = *new_mems; 3923 spin_unlock_irq(&callback_lock); 3924 3925 if (cpus_updated) 3926 cpuset_update_tasks_cpumask(cs, new_cpus); 3927 if (mems_updated) 3928 cpuset_update_tasks_nodemask(cs); 3929 } 3930 3931 void cpuset_force_rebuild(void) 3932 { 3933 force_sd_rebuild = true; 3934 } 3935 3936 /** 3937 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3938 * @cs: cpuset in interest 3939 * @tmp: the tmpmasks structure pointer 3940 * 3941 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3942 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3943 * all its tasks are moved to the nearest ancestor with both resources. 3944 */ 3945 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3946 { 3947 static cpumask_t new_cpus; 3948 static nodemask_t new_mems; 3949 bool cpus_updated; 3950 bool mems_updated; 3951 bool remote; 3952 int partcmd = -1; 3953 struct cpuset *parent; 3954 retry: 3955 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3956 3957 mutex_lock(&cpuset_mutex); 3958 3959 /* 3960 * We have raced with task attaching. We wait until attaching 3961 * is finished, so we won't attach a task to an empty cpuset. 3962 */ 3963 if (cs->attach_in_progress) { 3964 mutex_unlock(&cpuset_mutex); 3965 goto retry; 3966 } 3967 3968 parent = parent_cs(cs); 3969 compute_effective_cpumask(&new_cpus, cs, parent); 3970 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3971 3972 if (!tmp || !cs->partition_root_state) 3973 goto update_tasks; 3974 3975 /* 3976 * Compute effective_cpus for valid partition root, may invalidate 3977 * child partition roots if necessary. 3978 */ 3979 remote = is_remote_partition(cs); 3980 if (remote || (is_partition_valid(cs) && is_partition_valid(parent))) 3981 compute_partition_effective_cpumask(cs, &new_cpus); 3982 3983 if (remote && (cpumask_empty(subpartitions_cpus) || 3984 (cpumask_empty(&new_cpus) && 3985 partition_is_populated(cs, NULL)))) { 3986 cs->prs_err = PERR_HOTPLUG; 3987 remote_partition_disable(cs, tmp); 3988 compute_effective_cpumask(&new_cpus, cs, parent); 3989 remote = false; 3990 } 3991 3992 /* 3993 * Force the partition to become invalid if either one of 3994 * the following conditions hold: 3995 * 1) empty effective cpus but not valid empty partition. 3996 * 2) parent is invalid or doesn't grant any cpus to child 3997 * partitions. 3998 * 3) subpartitions_cpus is empty. 3999 */ 4000 if (is_local_partition(cs) && 4001 (!is_partition_valid(parent) || 4002 tasks_nocpu_error(parent, cs, &new_cpus) || 4003 cpumask_empty(subpartitions_cpus))) 4004 partcmd = partcmd_invalidate; 4005 /* 4006 * On the other hand, an invalid partition root may be transitioned 4007 * back to a regular one with a non-empty effective xcpus. 4008 */ 4009 else if (is_partition_valid(parent) && is_partition_invalid(cs) && 4010 !cpumask_empty(cs->effective_xcpus)) 4011 partcmd = partcmd_update; 4012 4013 if (partcmd >= 0) { 4014 update_parent_effective_cpumask(cs, partcmd, NULL, tmp); 4015 if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) { 4016 compute_partition_effective_cpumask(cs, &new_cpus); 4017 cpuset_force_rebuild(); 4018 } 4019 } 4020 4021 update_tasks: 4022 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 4023 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 4024 if (!cpus_updated && !mems_updated) 4025 goto unlock; /* Hotplug doesn't affect this cpuset */ 4026 4027 if (mems_updated) 4028 check_insane_mems_config(&new_mems); 4029 4030 if (is_in_v2_mode()) 4031 hotplug_update_tasks(cs, &new_cpus, &new_mems, 4032 cpus_updated, mems_updated); 4033 else 4034 cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems, 4035 cpus_updated, mems_updated); 4036 4037 unlock: 4038 mutex_unlock(&cpuset_mutex); 4039 } 4040 4041 /** 4042 * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset 4043 * 4044 * This function is called after either CPU or memory configuration has 4045 * changed and updates cpuset accordingly. The top_cpuset is always 4046 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 4047 * order to make cpusets transparent (of no affect) on systems that are 4048 * actively using CPU hotplug but making no active use of cpusets. 4049 * 4050 * Non-root cpusets are only affected by offlining. If any CPUs or memory 4051 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 4052 * all descendants. 4053 * 4054 * Note that CPU offlining during suspend is ignored. We don't modify 4055 * cpusets across suspend/resume cycles at all. 4056 * 4057 * CPU / memory hotplug is handled synchronously. 4058 */ 4059 static void cpuset_handle_hotplug(void) 4060 { 4061 static cpumask_t new_cpus; 4062 static nodemask_t new_mems; 4063 bool cpus_updated, mems_updated; 4064 bool on_dfl = is_in_v2_mode(); 4065 struct tmpmasks tmp, *ptmp = NULL; 4066 4067 if (on_dfl && !alloc_tmpmasks(&tmp)) 4068 ptmp = &tmp; 4069 4070 lockdep_assert_cpus_held(); 4071 mutex_lock(&cpuset_mutex); 4072 4073 /* fetch the available cpus/mems and find out which changed how */ 4074 cpumask_copy(&new_cpus, cpu_active_mask); 4075 new_mems = node_states[N_MEMORY]; 4076 4077 /* 4078 * If subpartitions_cpus is populated, it is likely that the check 4079 * below will produce a false positive on cpus_updated when the cpu 4080 * list isn't changed. It is extra work, but it is better to be safe. 4081 */ 4082 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) || 4083 !cpumask_empty(subpartitions_cpus); 4084 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 4085 4086 /* For v1, synchronize cpus_allowed to cpu_active_mask */ 4087 if (cpus_updated) { 4088 cpuset_force_rebuild(); 4089 spin_lock_irq(&callback_lock); 4090 if (!on_dfl) 4091 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 4092 /* 4093 * Make sure that CPUs allocated to child partitions 4094 * do not show up in effective_cpus. If no CPU is left, 4095 * we clear the subpartitions_cpus & let the child partitions 4096 * fight for the CPUs again. 4097 */ 4098 if (!cpumask_empty(subpartitions_cpus)) { 4099 if (cpumask_subset(&new_cpus, subpartitions_cpus)) { 4100 cpumask_clear(subpartitions_cpus); 4101 } else { 4102 cpumask_andnot(&new_cpus, &new_cpus, 4103 subpartitions_cpus); 4104 } 4105 } 4106 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 4107 spin_unlock_irq(&callback_lock); 4108 /* we don't mess with cpumasks of tasks in top_cpuset */ 4109 } 4110 4111 /* synchronize mems_allowed to N_MEMORY */ 4112 if (mems_updated) { 4113 spin_lock_irq(&callback_lock); 4114 if (!on_dfl) 4115 top_cpuset.mems_allowed = new_mems; 4116 top_cpuset.effective_mems = new_mems; 4117 spin_unlock_irq(&callback_lock); 4118 cpuset_update_tasks_nodemask(&top_cpuset); 4119 } 4120 4121 mutex_unlock(&cpuset_mutex); 4122 4123 /* if cpus or mems changed, we need to propagate to descendants */ 4124 if (cpus_updated || mems_updated) { 4125 struct cpuset *cs; 4126 struct cgroup_subsys_state *pos_css; 4127 4128 rcu_read_lock(); 4129 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 4130 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 4131 continue; 4132 rcu_read_unlock(); 4133 4134 cpuset_hotplug_update_tasks(cs, ptmp); 4135 4136 rcu_read_lock(); 4137 css_put(&cs->css); 4138 } 4139 rcu_read_unlock(); 4140 } 4141 4142 /* rebuild sched domains if necessary */ 4143 if (force_sd_rebuild) 4144 rebuild_sched_domains_cpuslocked(); 4145 4146 free_tmpmasks(ptmp); 4147 } 4148 4149 void cpuset_update_active_cpus(void) 4150 { 4151 /* 4152 * We're inside cpu hotplug critical region which usually nests 4153 * inside cgroup synchronization. Bounce actual hotplug processing 4154 * to a work item to avoid reverse locking order. 4155 */ 4156 cpuset_handle_hotplug(); 4157 } 4158 4159 /* 4160 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 4161 * Call this routine anytime after node_states[N_MEMORY] changes. 4162 * See cpuset_update_active_cpus() for CPU hotplug handling. 4163 */ 4164 static int cpuset_track_online_nodes(struct notifier_block *self, 4165 unsigned long action, void *arg) 4166 { 4167 cpuset_handle_hotplug(); 4168 return NOTIFY_OK; 4169 } 4170 4171 /** 4172 * cpuset_init_smp - initialize cpus_allowed 4173 * 4174 * Description: Finish top cpuset after cpu, node maps are initialized 4175 */ 4176 void __init cpuset_init_smp(void) 4177 { 4178 /* 4179 * cpus_allowd/mems_allowed set to v2 values in the initial 4180 * cpuset_bind() call will be reset to v1 values in another 4181 * cpuset_bind() call when v1 cpuset is mounted. 4182 */ 4183 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 4184 4185 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 4186 top_cpuset.effective_mems = node_states[N_MEMORY]; 4187 4188 hotplug_node_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); 4189 4190 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 4191 BUG_ON(!cpuset_migrate_mm_wq); 4192 } 4193 4194 /* 4195 * Return cpus_allowed mask from a task's cpuset. 4196 */ 4197 static void __cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask) 4198 { 4199 struct cpuset *cs; 4200 4201 cs = task_cs(tsk); 4202 if (cs != &top_cpuset) 4203 guarantee_active_cpus(tsk, pmask); 4204 /* 4205 * Tasks in the top cpuset won't get update to their cpumasks 4206 * when a hotplug online/offline event happens. So we include all 4207 * offline cpus in the allowed cpu list. 4208 */ 4209 if ((cs == &top_cpuset) || cpumask_empty(pmask)) { 4210 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 4211 4212 /* 4213 * We first exclude cpus allocated to partitions. If there is no 4214 * allowable online cpu left, we fall back to all possible cpus. 4215 */ 4216 cpumask_andnot(pmask, possible_mask, subpartitions_cpus); 4217 if (!cpumask_intersects(pmask, cpu_active_mask)) 4218 cpumask_copy(pmask, possible_mask); 4219 } 4220 } 4221 4222 /** 4223 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a task's cpuset. 4224 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 4225 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 4226 * 4227 * Similir to cpuset_cpus_allowed() except that the caller must have acquired 4228 * cpuset_mutex. 4229 */ 4230 void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask) 4231 { 4232 lockdep_assert_held(&cpuset_mutex); 4233 __cpuset_cpus_allowed_locked(tsk, pmask); 4234 } 4235 4236 /** 4237 * cpuset_cpus_allowed - return cpus_allowed mask from a task's cpuset. 4238 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 4239 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 4240 * 4241 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 4242 * attached to the specified @tsk. Guaranteed to return some non-empty 4243 * subset of cpu_active_mask, even if this means going outside the 4244 * tasks cpuset, except when the task is in the top cpuset. 4245 **/ 4246 4247 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 4248 { 4249 unsigned long flags; 4250 4251 spin_lock_irqsave(&callback_lock, flags); 4252 __cpuset_cpus_allowed_locked(tsk, pmask); 4253 spin_unlock_irqrestore(&callback_lock, flags); 4254 } 4255 4256 /** 4257 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 4258 * @tsk: pointer to task_struct with which the scheduler is struggling 4259 * 4260 * Description: In the case that the scheduler cannot find an allowed cpu in 4261 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 4262 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 4263 * which will not contain a sane cpumask during cases such as cpu hotplugging. 4264 * This is the absolute last resort for the scheduler and it is only used if 4265 * _every_ other avenue has been traveled. 4266 * 4267 * Returns true if the affinity of @tsk was changed, false otherwise. 4268 **/ 4269 4270 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 4271 { 4272 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 4273 const struct cpumask *cs_mask; 4274 bool changed = false; 4275 4276 rcu_read_lock(); 4277 cs_mask = task_cs(tsk)->cpus_allowed; 4278 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 4279 set_cpus_allowed_force(tsk, cs_mask); 4280 changed = true; 4281 } 4282 rcu_read_unlock(); 4283 4284 /* 4285 * We own tsk->cpus_allowed, nobody can change it under us. 4286 * 4287 * But we used cs && cs->cpus_allowed lockless and thus can 4288 * race with cgroup_attach_task() or update_cpumask() and get 4289 * the wrong tsk->cpus_allowed. However, both cases imply the 4290 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 4291 * which takes task_rq_lock(). 4292 * 4293 * If we are called after it dropped the lock we must see all 4294 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 4295 * set any mask even if it is not right from task_cs() pov, 4296 * the pending set_cpus_allowed_ptr() will fix things. 4297 * 4298 * select_fallback_rq() will fix things ups and set cpu_possible_mask 4299 * if required. 4300 */ 4301 return changed; 4302 } 4303 4304 void __init cpuset_init_current_mems_allowed(void) 4305 { 4306 nodes_setall(current->mems_allowed); 4307 } 4308 4309 /** 4310 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 4311 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 4312 * 4313 * Description: Returns the nodemask_t mems_allowed of the cpuset 4314 * attached to the specified @tsk. Guaranteed to return some non-empty 4315 * subset of node_states[N_MEMORY], even if this means going outside the 4316 * tasks cpuset. 4317 **/ 4318 4319 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 4320 { 4321 nodemask_t mask; 4322 unsigned long flags; 4323 4324 spin_lock_irqsave(&callback_lock, flags); 4325 guarantee_online_mems(task_cs(tsk), &mask); 4326 spin_unlock_irqrestore(&callback_lock, flags); 4327 4328 return mask; 4329 } 4330 4331 /** 4332 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 4333 * @nodemask: the nodemask to be checked 4334 * 4335 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 4336 */ 4337 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 4338 { 4339 return nodes_intersects(*nodemask, current->mems_allowed); 4340 } 4341 4342 /* 4343 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 4344 * mem_hardwall ancestor to the specified cpuset. Call holding 4345 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 4346 * (an unusual configuration), then returns the root cpuset. 4347 */ 4348 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 4349 { 4350 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 4351 cs = parent_cs(cs); 4352 return cs; 4353 } 4354 4355 /* 4356 * cpuset_current_node_allowed - Can current task allocate on a memory node? 4357 * @node: is this an allowed node? 4358 * @gfp_mask: memory allocation flags 4359 * 4360 * If we're in interrupt, yes, we can always allocate. If @node is set in 4361 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 4362 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 4363 * yes. If current has access to memory reserves as an oom victim, yes. 4364 * Otherwise, no. 4365 * 4366 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 4367 * and do not allow allocations outside the current tasks cpuset 4368 * unless the task has been OOM killed. 4369 * GFP_KERNEL allocations are not so marked, so can escape to the 4370 * nearest enclosing hardwalled ancestor cpuset. 4371 * 4372 * Scanning up parent cpusets requires callback_lock. The 4373 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 4374 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 4375 * current tasks mems_allowed came up empty on the first pass over 4376 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 4377 * cpuset are short of memory, might require taking the callback_lock. 4378 * 4379 * The first call here from mm/page_alloc:get_page_from_freelist() 4380 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 4381 * so no allocation on a node outside the cpuset is allowed (unless 4382 * in interrupt, of course). 4383 * 4384 * The second pass through get_page_from_freelist() doesn't even call 4385 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 4386 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 4387 * in alloc_flags. That logic and the checks below have the combined 4388 * affect that: 4389 * in_interrupt - any node ok (current task context irrelevant) 4390 * GFP_ATOMIC - any node ok 4391 * tsk_is_oom_victim - any node ok 4392 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 4393 * GFP_USER - only nodes in current tasks mems allowed ok. 4394 */ 4395 bool cpuset_current_node_allowed(int node, gfp_t gfp_mask) 4396 { 4397 struct cpuset *cs; /* current cpuset ancestors */ 4398 bool allowed; /* is allocation in zone z allowed? */ 4399 unsigned long flags; 4400 4401 if (in_interrupt()) 4402 return true; 4403 if (node_isset(node, current->mems_allowed)) 4404 return true; 4405 /* 4406 * Allow tasks that have access to memory reserves because they have 4407 * been OOM killed to get memory anywhere. 4408 */ 4409 if (unlikely(tsk_is_oom_victim(current))) 4410 return true; 4411 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 4412 return false; 4413 4414 if (current->flags & PF_EXITING) /* Let dying task have memory */ 4415 return true; 4416 4417 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 4418 spin_lock_irqsave(&callback_lock, flags); 4419 4420 cs = nearest_hardwall_ancestor(task_cs(current)); 4421 allowed = node_isset(node, cs->mems_allowed); 4422 4423 spin_unlock_irqrestore(&callback_lock, flags); 4424 return allowed; 4425 } 4426 4427 bool cpuset_node_allowed(struct cgroup *cgroup, int nid) 4428 { 4429 struct cgroup_subsys_state *css; 4430 struct cpuset *cs; 4431 bool allowed; 4432 4433 /* 4434 * In v1, mem_cgroup and cpuset are unlikely in the same hierarchy 4435 * and mems_allowed is likely to be empty even if we could get to it, 4436 * so return true to avoid taking a global lock on the empty check. 4437 */ 4438 if (!cpuset_v2()) 4439 return true; 4440 4441 css = cgroup_get_e_css(cgroup, &cpuset_cgrp_subsys); 4442 if (!css) 4443 return true; 4444 4445 /* 4446 * Normally, accessing effective_mems would require the cpuset_mutex 4447 * or callback_lock - but node_isset is atomic and the reference 4448 * taken via cgroup_get_e_css is sufficient to protect css. 4449 * 4450 * Since this interface is intended for use by migration paths, we 4451 * relax locking here to avoid taking global locks - while accepting 4452 * there may be rare scenarios where the result may be innaccurate. 4453 * 4454 * Reclaim and migration are subject to these same race conditions, and 4455 * cannot make strong isolation guarantees, so this is acceptable. 4456 */ 4457 cs = container_of(css, struct cpuset, css); 4458 allowed = node_isset(nid, cs->effective_mems); 4459 css_put(css); 4460 return allowed; 4461 } 4462 4463 /** 4464 * cpuset_spread_node() - On which node to begin search for a page 4465 * @rotor: round robin rotor 4466 * 4467 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 4468 * tasks in a cpuset with is_spread_page or is_spread_slab set), 4469 * and if the memory allocation used cpuset_mem_spread_node() 4470 * to determine on which node to start looking, as it will for 4471 * certain page cache or slab cache pages such as used for file 4472 * system buffers and inode caches, then instead of starting on the 4473 * local node to look for a free page, rather spread the starting 4474 * node around the tasks mems_allowed nodes. 4475 * 4476 * We don't have to worry about the returned node being offline 4477 * because "it can't happen", and even if it did, it would be ok. 4478 * 4479 * The routines calling guarantee_online_mems() are careful to 4480 * only set nodes in task->mems_allowed that are online. So it 4481 * should not be possible for the following code to return an 4482 * offline node. But if it did, that would be ok, as this routine 4483 * is not returning the node where the allocation must be, only 4484 * the node where the search should start. The zonelist passed to 4485 * __alloc_pages() will include all nodes. If the slab allocator 4486 * is passed an offline node, it will fall back to the local node. 4487 * See kmem_cache_alloc_node(). 4488 */ 4489 static int cpuset_spread_node(int *rotor) 4490 { 4491 return *rotor = next_node_in(*rotor, current->mems_allowed); 4492 } 4493 4494 /** 4495 * cpuset_mem_spread_node() - On which node to begin search for a file page 4496 */ 4497 int cpuset_mem_spread_node(void) 4498 { 4499 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 4500 current->cpuset_mem_spread_rotor = 4501 node_random(¤t->mems_allowed); 4502 4503 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 4504 } 4505 4506 /** 4507 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 4508 * @tsk1: pointer to task_struct of some task. 4509 * @tsk2: pointer to task_struct of some other task. 4510 * 4511 * Description: Return true if @tsk1's mems_allowed intersects the 4512 * mems_allowed of @tsk2. Used by the OOM killer to determine if 4513 * one of the task's memory usage might impact the memory available 4514 * to the other. 4515 **/ 4516 4517 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 4518 const struct task_struct *tsk2) 4519 { 4520 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 4521 } 4522 4523 /** 4524 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 4525 * 4526 * Description: Prints current's name, cpuset name, and cached copy of its 4527 * mems_allowed to the kernel log. 4528 */ 4529 void cpuset_print_current_mems_allowed(void) 4530 { 4531 struct cgroup *cgrp; 4532 4533 rcu_read_lock(); 4534 4535 cgrp = task_cs(current)->css.cgroup; 4536 pr_cont(",cpuset="); 4537 pr_cont_cgroup_name(cgrp); 4538 pr_cont(",mems_allowed=%*pbl", 4539 nodemask_pr_args(¤t->mems_allowed)); 4540 4541 rcu_read_unlock(); 4542 } 4543 4544 /* Display task mems_allowed in /proc/<pid>/status file. */ 4545 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 4546 { 4547 seq_printf(m, "Mems_allowed:\t%*pb\n", 4548 nodemask_pr_args(&task->mems_allowed)); 4549 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 4550 nodemask_pr_args(&task->mems_allowed)); 4551 } 4552