1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SuperH FLCTL nand controller
4 *
5 * Copyright (c) 2008 Renesas Solutions Corp.
6 * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
7 *
8 * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
9 */
10
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/completion.h>
14 #include <linux/delay.h>
15 #include <linux/dmaengine.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sh_dma.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/rawnand.h>
28 #include <linux/mtd/partitions.h>
29 #include <linux/mtd/sh_flctl.h>
30
flctl_4secc_ooblayout_sp_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)31 static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section,
32 struct mtd_oob_region *oobregion)
33 {
34 struct nand_chip *chip = mtd_to_nand(mtd);
35
36 if (section)
37 return -ERANGE;
38
39 oobregion->offset = 0;
40 oobregion->length = chip->ecc.bytes;
41
42 return 0;
43 }
44
flctl_4secc_ooblayout_sp_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)45 static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section,
46 struct mtd_oob_region *oobregion)
47 {
48 if (section)
49 return -ERANGE;
50
51 oobregion->offset = 12;
52 oobregion->length = 4;
53
54 return 0;
55 }
56
57 static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = {
58 .ecc = flctl_4secc_ooblayout_sp_ecc,
59 .free = flctl_4secc_ooblayout_sp_free,
60 };
61
flctl_4secc_ooblayout_lp_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)62 static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section,
63 struct mtd_oob_region *oobregion)
64 {
65 struct nand_chip *chip = mtd_to_nand(mtd);
66
67 if (section >= chip->ecc.steps)
68 return -ERANGE;
69
70 oobregion->offset = (section * 16) + 6;
71 oobregion->length = chip->ecc.bytes;
72
73 return 0;
74 }
75
flctl_4secc_ooblayout_lp_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)76 static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section,
77 struct mtd_oob_region *oobregion)
78 {
79 struct nand_chip *chip = mtd_to_nand(mtd);
80
81 if (section >= chip->ecc.steps)
82 return -ERANGE;
83
84 oobregion->offset = section * 16;
85 oobregion->length = 6;
86
87 if (!section) {
88 oobregion->offset += 2;
89 oobregion->length -= 2;
90 }
91
92 return 0;
93 }
94
95 static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = {
96 .ecc = flctl_4secc_ooblayout_lp_ecc,
97 .free = flctl_4secc_ooblayout_lp_free,
98 };
99
100 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
101
102 static struct nand_bbt_descr flctl_4secc_smallpage = {
103 .offs = 11,
104 .len = 1,
105 .pattern = scan_ff_pattern,
106 };
107
108 static struct nand_bbt_descr flctl_4secc_largepage = {
109 .offs = 0,
110 .len = 2,
111 .pattern = scan_ff_pattern,
112 };
113
empty_fifo(struct sh_flctl * flctl)114 static void empty_fifo(struct sh_flctl *flctl)
115 {
116 writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
117 writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
118 }
119
start_translation(struct sh_flctl * flctl)120 static void start_translation(struct sh_flctl *flctl)
121 {
122 writeb(TRSTRT, FLTRCR(flctl));
123 }
124
timeout_error(struct sh_flctl * flctl,const char * str)125 static void timeout_error(struct sh_flctl *flctl, const char *str)
126 {
127 dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
128 }
129
wait_completion(struct sh_flctl * flctl)130 static void wait_completion(struct sh_flctl *flctl)
131 {
132 uint32_t timeout = LOOP_TIMEOUT_MAX;
133
134 while (timeout--) {
135 if (readb(FLTRCR(flctl)) & TREND) {
136 writeb(0x0, FLTRCR(flctl));
137 return;
138 }
139 udelay(1);
140 }
141
142 timeout_error(flctl, __func__);
143 writeb(0x0, FLTRCR(flctl));
144 }
145
flctl_dma_complete(void * param)146 static void flctl_dma_complete(void *param)
147 {
148 struct sh_flctl *flctl = param;
149
150 complete(&flctl->dma_complete);
151 }
152
flctl_release_dma(struct sh_flctl * flctl)153 static void flctl_release_dma(struct sh_flctl *flctl)
154 {
155 if (flctl->chan_fifo0_rx) {
156 dma_release_channel(flctl->chan_fifo0_rx);
157 flctl->chan_fifo0_rx = NULL;
158 }
159 if (flctl->chan_fifo0_tx) {
160 dma_release_channel(flctl->chan_fifo0_tx);
161 flctl->chan_fifo0_tx = NULL;
162 }
163 }
164
flctl_setup_dma(struct sh_flctl * flctl)165 static void flctl_setup_dma(struct sh_flctl *flctl)
166 {
167 dma_cap_mask_t mask;
168 struct dma_slave_config cfg;
169 struct platform_device *pdev = flctl->pdev;
170 struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
171 int ret;
172
173 if (!pdata)
174 return;
175
176 if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
177 return;
178
179 /* We can only either use DMA for both Tx and Rx or not use it at all */
180 dma_cap_zero(mask);
181 dma_cap_set(DMA_SLAVE, mask);
182
183 flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
184 (void *)(uintptr_t)pdata->slave_id_fifo0_tx);
185 dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
186 flctl->chan_fifo0_tx);
187
188 if (!flctl->chan_fifo0_tx)
189 return;
190
191 memset(&cfg, 0, sizeof(cfg));
192 cfg.direction = DMA_MEM_TO_DEV;
193 cfg.dst_addr = flctl->fifo;
194 cfg.src_addr = 0;
195 ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
196 if (ret < 0)
197 goto err;
198
199 flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
200 (void *)(uintptr_t)pdata->slave_id_fifo0_rx);
201 dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
202 flctl->chan_fifo0_rx);
203
204 if (!flctl->chan_fifo0_rx)
205 goto err;
206
207 cfg.direction = DMA_DEV_TO_MEM;
208 cfg.dst_addr = 0;
209 cfg.src_addr = flctl->fifo;
210 ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
211 if (ret < 0)
212 goto err;
213
214 init_completion(&flctl->dma_complete);
215
216 return;
217
218 err:
219 flctl_release_dma(flctl);
220 }
221
set_addr(struct mtd_info * mtd,int column,int page_addr)222 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
223 {
224 struct sh_flctl *flctl = mtd_to_flctl(mtd);
225 uint32_t addr = 0;
226
227 if (column == -1) {
228 addr = page_addr; /* ERASE1 */
229 } else if (page_addr != -1) {
230 /* SEQIN, READ0, etc.. */
231 if (flctl->chip.options & NAND_BUSWIDTH_16)
232 column >>= 1;
233 if (flctl->page_size) {
234 addr = column & 0x0FFF;
235 addr |= (page_addr & 0xff) << 16;
236 addr |= ((page_addr >> 8) & 0xff) << 24;
237 /* big than 128MB */
238 if (flctl->rw_ADRCNT == ADRCNT2_E) {
239 uint32_t addr2;
240 addr2 = (page_addr >> 16) & 0xff;
241 writel(addr2, FLADR2(flctl));
242 }
243 } else {
244 addr = column;
245 addr |= (page_addr & 0xff) << 8;
246 addr |= ((page_addr >> 8) & 0xff) << 16;
247 addr |= ((page_addr >> 16) & 0xff) << 24;
248 }
249 }
250 writel(addr, FLADR(flctl));
251 }
252
wait_rfifo_ready(struct sh_flctl * flctl)253 static void wait_rfifo_ready(struct sh_flctl *flctl)
254 {
255 uint32_t timeout = LOOP_TIMEOUT_MAX;
256
257 while (timeout--) {
258 uint32_t val;
259 /* check FIFO */
260 val = readl(FLDTCNTR(flctl)) >> 16;
261 if (val & 0xFF)
262 return;
263 udelay(1);
264 }
265 timeout_error(flctl, __func__);
266 }
267
wait_wfifo_ready(struct sh_flctl * flctl)268 static void wait_wfifo_ready(struct sh_flctl *flctl)
269 {
270 uint32_t len, timeout = LOOP_TIMEOUT_MAX;
271
272 while (timeout--) {
273 /* check FIFO */
274 len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
275 if (len >= 4)
276 return;
277 udelay(1);
278 }
279 timeout_error(flctl, __func__);
280 }
281
wait_recfifo_ready(struct sh_flctl * flctl,int sector_number)282 static enum flctl_ecc_res_t wait_recfifo_ready
283 (struct sh_flctl *flctl, int sector_number)
284 {
285 uint32_t timeout = LOOP_TIMEOUT_MAX;
286 void __iomem *ecc_reg[4];
287 int i;
288 int state = FL_SUCCESS;
289 uint32_t data, size;
290
291 /*
292 * First this loops checks in FLDTCNTR if we are ready to read out the
293 * oob data. This is the case if either all went fine without errors or
294 * if the bottom part of the loop corrected the errors or marked them as
295 * uncorrectable and the controller is given time to push the data into
296 * the FIFO.
297 */
298 while (timeout--) {
299 /* check if all is ok and we can read out the OOB */
300 size = readl(FLDTCNTR(flctl)) >> 24;
301 if ((size & 0xFF) == 4)
302 return state;
303
304 /* check if a correction code has been calculated */
305 if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
306 /*
307 * either we wait for the fifo to be filled or a
308 * correction pattern is being generated
309 */
310 udelay(1);
311 continue;
312 }
313
314 /* check for an uncorrectable error */
315 if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
316 /* check if we face a non-empty page */
317 for (i = 0; i < 512; i++) {
318 if (flctl->done_buff[i] != 0xff) {
319 state = FL_ERROR; /* can't correct */
320 break;
321 }
322 }
323
324 if (state == FL_SUCCESS)
325 dev_dbg(&flctl->pdev->dev,
326 "reading empty sector %d, ecc error ignored\n",
327 sector_number);
328
329 writel(0, FL4ECCCR(flctl));
330 continue;
331 }
332
333 /* start error correction */
334 ecc_reg[0] = FL4ECCRESULT0(flctl);
335 ecc_reg[1] = FL4ECCRESULT1(flctl);
336 ecc_reg[2] = FL4ECCRESULT2(flctl);
337 ecc_reg[3] = FL4ECCRESULT3(flctl);
338
339 for (i = 0; i < 3; i++) {
340 uint8_t org;
341 unsigned int index;
342
343 data = readl(ecc_reg[i]);
344
345 if (flctl->page_size)
346 index = (512 * sector_number) +
347 (data >> 16);
348 else
349 index = data >> 16;
350
351 org = flctl->done_buff[index];
352 flctl->done_buff[index] = org ^ (data & 0xFF);
353 }
354 state = FL_REPAIRABLE;
355 writel(0, FL4ECCCR(flctl));
356 }
357
358 timeout_error(flctl, __func__);
359 return FL_TIMEOUT; /* timeout */
360 }
361
wait_wecfifo_ready(struct sh_flctl * flctl)362 static void wait_wecfifo_ready(struct sh_flctl *flctl)
363 {
364 uint32_t timeout = LOOP_TIMEOUT_MAX;
365 uint32_t len;
366
367 while (timeout--) {
368 /* check FLECFIFO */
369 len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
370 if (len >= 4)
371 return;
372 udelay(1);
373 }
374 timeout_error(flctl, __func__);
375 }
376
flctl_dma_fifo0_transfer(struct sh_flctl * flctl,unsigned long * buf,int len,enum dma_data_direction dir)377 static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
378 int len, enum dma_data_direction dir)
379 {
380 struct dma_async_tx_descriptor *desc = NULL;
381 struct dma_chan *chan;
382 enum dma_transfer_direction tr_dir;
383 dma_addr_t dma_addr;
384 dma_cookie_t cookie;
385 uint32_t reg;
386 int ret = 0;
387 unsigned long time_left;
388
389 if (dir == DMA_FROM_DEVICE) {
390 chan = flctl->chan_fifo0_rx;
391 tr_dir = DMA_DEV_TO_MEM;
392 } else {
393 chan = flctl->chan_fifo0_tx;
394 tr_dir = DMA_MEM_TO_DEV;
395 }
396
397 dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
398
399 if (!dma_mapping_error(chan->device->dev, dma_addr))
400 desc = dmaengine_prep_slave_single(chan, dma_addr, len,
401 tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
402
403 if (desc) {
404 reg = readl(FLINTDMACR(flctl));
405 reg |= DREQ0EN;
406 writel(reg, FLINTDMACR(flctl));
407
408 desc->callback = flctl_dma_complete;
409 desc->callback_param = flctl;
410 cookie = dmaengine_submit(desc);
411 if (dma_submit_error(cookie)) {
412 ret = dma_submit_error(cookie);
413 dev_warn(&flctl->pdev->dev,
414 "DMA submit failed, falling back to PIO\n");
415 goto out;
416 }
417
418 dma_async_issue_pending(chan);
419 } else {
420 /* DMA failed, fall back to PIO */
421 flctl_release_dma(flctl);
422 dev_warn(&flctl->pdev->dev,
423 "DMA failed, falling back to PIO\n");
424 ret = -EIO;
425 goto out;
426 }
427
428 time_left =
429 wait_for_completion_timeout(&flctl->dma_complete,
430 msecs_to_jiffies(3000));
431
432 if (time_left == 0) {
433 dmaengine_terminate_all(chan);
434 dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
435 ret = -ETIMEDOUT;
436 }
437
438 out:
439 reg = readl(FLINTDMACR(flctl));
440 reg &= ~DREQ0EN;
441 writel(reg, FLINTDMACR(flctl));
442
443 dma_unmap_single(chan->device->dev, dma_addr, len, dir);
444
445 /* ret == 0 is success */
446 return ret;
447 }
448
read_datareg(struct sh_flctl * flctl,int offset)449 static void read_datareg(struct sh_flctl *flctl, int offset)
450 {
451 unsigned long data;
452 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
453
454 wait_completion(flctl);
455
456 data = readl(FLDATAR(flctl));
457 *buf = le32_to_cpu(data);
458 }
459
read_fiforeg(struct sh_flctl * flctl,int rlen,int offset)460 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
461 {
462 int i, len_4align;
463 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
464
465 len_4align = (rlen + 3) / 4;
466
467 /* initiate DMA transfer */
468 if (flctl->chan_fifo0_rx && rlen >= 32 &&
469 !flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_FROM_DEVICE))
470 goto convert; /* DMA success */
471
472 /* do polling transfer */
473 for (i = 0; i < len_4align; i++) {
474 wait_rfifo_ready(flctl);
475 buf[i] = readl(FLDTFIFO(flctl));
476 }
477
478 convert:
479 for (i = 0; i < len_4align; i++)
480 buf[i] = be32_to_cpu(buf[i]);
481 }
482
read_ecfiforeg(struct sh_flctl * flctl,uint8_t * buff,int sector)483 static enum flctl_ecc_res_t read_ecfiforeg
484 (struct sh_flctl *flctl, uint8_t *buff, int sector)
485 {
486 int i;
487 enum flctl_ecc_res_t res;
488 unsigned long *ecc_buf = (unsigned long *)buff;
489
490 res = wait_recfifo_ready(flctl , sector);
491
492 if (res != FL_ERROR) {
493 for (i = 0; i < 4; i++) {
494 ecc_buf[i] = readl(FLECFIFO(flctl));
495 ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
496 }
497 }
498
499 return res;
500 }
501
write_fiforeg(struct sh_flctl * flctl,int rlen,unsigned int offset)502 static void write_fiforeg(struct sh_flctl *flctl, int rlen,
503 unsigned int offset)
504 {
505 int i, len_4align;
506 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
507
508 len_4align = (rlen + 3) / 4;
509 for (i = 0; i < len_4align; i++) {
510 wait_wfifo_ready(flctl);
511 writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
512 }
513 }
514
write_ec_fiforeg(struct sh_flctl * flctl,int rlen,unsigned int offset)515 static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
516 unsigned int offset)
517 {
518 int i, len_4align;
519 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
520
521 len_4align = (rlen + 3) / 4;
522
523 for (i = 0; i < len_4align; i++)
524 buf[i] = cpu_to_be32(buf[i]);
525
526 /* initiate DMA transfer */
527 if (flctl->chan_fifo0_tx && rlen >= 32 &&
528 !flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_TO_DEVICE))
529 return; /* DMA success */
530
531 /* do polling transfer */
532 for (i = 0; i < len_4align; i++) {
533 wait_wecfifo_ready(flctl);
534 writel(buf[i], FLECFIFO(flctl));
535 }
536 }
537
set_cmd_regs(struct mtd_info * mtd,uint32_t cmd,uint32_t flcmcdr_val)538 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
539 {
540 struct sh_flctl *flctl = mtd_to_flctl(mtd);
541 uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
542 uint32_t flcmdcr_val, addr_len_bytes = 0;
543
544 /* Set SNAND bit if page size is 2048byte */
545 if (flctl->page_size)
546 flcmncr_val |= SNAND_E;
547 else
548 flcmncr_val &= ~SNAND_E;
549
550 /* default FLCMDCR val */
551 flcmdcr_val = DOCMD1_E | DOADR_E;
552
553 /* Set for FLCMDCR */
554 switch (cmd) {
555 case NAND_CMD_ERASE1:
556 addr_len_bytes = flctl->erase_ADRCNT;
557 flcmdcr_val |= DOCMD2_E;
558 break;
559 case NAND_CMD_READ0:
560 case NAND_CMD_READOOB:
561 case NAND_CMD_RNDOUT:
562 addr_len_bytes = flctl->rw_ADRCNT;
563 flcmdcr_val |= CDSRC_E;
564 if (flctl->chip.options & NAND_BUSWIDTH_16)
565 flcmncr_val |= SEL_16BIT;
566 break;
567 case NAND_CMD_SEQIN:
568 /* This case is that cmd is READ0 or READ1 or READ00 */
569 flcmdcr_val &= ~DOADR_E; /* ONLY execute 1st cmd */
570 break;
571 case NAND_CMD_PAGEPROG:
572 addr_len_bytes = flctl->rw_ADRCNT;
573 flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
574 if (flctl->chip.options & NAND_BUSWIDTH_16)
575 flcmncr_val |= SEL_16BIT;
576 break;
577 case NAND_CMD_READID:
578 flcmncr_val &= ~SNAND_E;
579 flcmdcr_val |= CDSRC_E;
580 addr_len_bytes = ADRCNT_1;
581 break;
582 case NAND_CMD_STATUS:
583 case NAND_CMD_RESET:
584 flcmncr_val &= ~SNAND_E;
585 flcmdcr_val &= ~(DOADR_E | DOSR_E);
586 break;
587 default:
588 break;
589 }
590
591 /* Set address bytes parameter */
592 flcmdcr_val |= addr_len_bytes;
593
594 /* Now actually write */
595 writel(flcmncr_val, FLCMNCR(flctl));
596 writel(flcmdcr_val, FLCMDCR(flctl));
597 writel(flcmcdr_val, FLCMCDR(flctl));
598 }
599
flctl_read_page_hwecc(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)600 static int flctl_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
601 int oob_required, int page)
602 {
603 struct mtd_info *mtd = nand_to_mtd(chip);
604
605 nand_read_page_op(chip, page, 0, buf, mtd->writesize);
606 if (oob_required)
607 chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
608 return 0;
609 }
610
flctl_write_page_hwecc(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)611 static int flctl_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
612 int oob_required, int page)
613 {
614 struct mtd_info *mtd = nand_to_mtd(chip);
615
616 nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
617 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
618 return nand_prog_page_end_op(chip);
619 }
620
execmd_read_page_sector(struct mtd_info * mtd,int page_addr)621 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
622 {
623 struct sh_flctl *flctl = mtd_to_flctl(mtd);
624 int sector, page_sectors;
625 enum flctl_ecc_res_t ecc_result;
626
627 page_sectors = flctl->page_size ? 4 : 1;
628
629 set_cmd_regs(mtd, NAND_CMD_READ0,
630 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
631
632 writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
633 FLCMNCR(flctl));
634 writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
635 writel(page_addr << 2, FLADR(flctl));
636
637 empty_fifo(flctl);
638 start_translation(flctl);
639
640 for (sector = 0; sector < page_sectors; sector++) {
641 read_fiforeg(flctl, 512, 512 * sector);
642
643 ecc_result = read_ecfiforeg(flctl,
644 &flctl->done_buff[mtd->writesize + 16 * sector],
645 sector);
646
647 switch (ecc_result) {
648 case FL_REPAIRABLE:
649 dev_info(&flctl->pdev->dev,
650 "applied ecc on page 0x%x", page_addr);
651 mtd->ecc_stats.corrected++;
652 break;
653 case FL_ERROR:
654 dev_warn(&flctl->pdev->dev,
655 "page 0x%x contains corrupted data\n",
656 page_addr);
657 mtd->ecc_stats.failed++;
658 break;
659 default:
660 ;
661 }
662 }
663
664 wait_completion(flctl);
665
666 writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
667 FLCMNCR(flctl));
668 }
669
execmd_read_oob(struct mtd_info * mtd,int page_addr)670 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
671 {
672 struct sh_flctl *flctl = mtd_to_flctl(mtd);
673 int page_sectors = flctl->page_size ? 4 : 1;
674 int i;
675
676 set_cmd_regs(mtd, NAND_CMD_READ0,
677 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
678
679 empty_fifo(flctl);
680
681 for (i = 0; i < page_sectors; i++) {
682 set_addr(mtd, (512 + 16) * i + 512 , page_addr);
683 writel(16, FLDTCNTR(flctl));
684
685 start_translation(flctl);
686 read_fiforeg(flctl, 16, 16 * i);
687 wait_completion(flctl);
688 }
689 }
690
execmd_write_page_sector(struct mtd_info * mtd)691 static void execmd_write_page_sector(struct mtd_info *mtd)
692 {
693 struct sh_flctl *flctl = mtd_to_flctl(mtd);
694 int page_addr = flctl->seqin_page_addr;
695 int sector, page_sectors;
696
697 page_sectors = flctl->page_size ? 4 : 1;
698
699 set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
700 (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
701
702 empty_fifo(flctl);
703 writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
704 writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
705 writel(page_addr << 2, FLADR(flctl));
706 start_translation(flctl);
707
708 for (sector = 0; sector < page_sectors; sector++) {
709 write_fiforeg(flctl, 512, 512 * sector);
710 write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
711 }
712
713 wait_completion(flctl);
714 writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
715 }
716
execmd_write_oob(struct mtd_info * mtd)717 static void execmd_write_oob(struct mtd_info *mtd)
718 {
719 struct sh_flctl *flctl = mtd_to_flctl(mtd);
720 int page_addr = flctl->seqin_page_addr;
721 int sector, page_sectors;
722
723 page_sectors = flctl->page_size ? 4 : 1;
724
725 set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
726 (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
727
728 for (sector = 0; sector < page_sectors; sector++) {
729 empty_fifo(flctl);
730 set_addr(mtd, sector * 528 + 512, page_addr);
731 writel(16, FLDTCNTR(flctl)); /* set read size */
732
733 start_translation(flctl);
734 write_fiforeg(flctl, 16, 16 * sector);
735 wait_completion(flctl);
736 }
737 }
738
flctl_cmdfunc(struct nand_chip * chip,unsigned int command,int column,int page_addr)739 static void flctl_cmdfunc(struct nand_chip *chip, unsigned int command,
740 int column, int page_addr)
741 {
742 struct mtd_info *mtd = nand_to_mtd(chip);
743 struct sh_flctl *flctl = mtd_to_flctl(mtd);
744 uint32_t read_cmd = 0;
745
746 pm_runtime_get_sync(&flctl->pdev->dev);
747
748 flctl->read_bytes = 0;
749 if (command != NAND_CMD_PAGEPROG)
750 flctl->index = 0;
751
752 switch (command) {
753 case NAND_CMD_READ1:
754 case NAND_CMD_READ0:
755 if (flctl->hwecc) {
756 /* read page with hwecc */
757 execmd_read_page_sector(mtd, page_addr);
758 break;
759 }
760 if (flctl->page_size)
761 set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
762 | command);
763 else
764 set_cmd_regs(mtd, command, command);
765
766 set_addr(mtd, 0, page_addr);
767
768 flctl->read_bytes = mtd->writesize + mtd->oobsize;
769 if (flctl->chip.options & NAND_BUSWIDTH_16)
770 column >>= 1;
771 flctl->index += column;
772 goto read_normal_exit;
773
774 case NAND_CMD_READOOB:
775 if (flctl->hwecc) {
776 /* read page with hwecc */
777 execmd_read_oob(mtd, page_addr);
778 break;
779 }
780
781 if (flctl->page_size) {
782 set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
783 | NAND_CMD_READ0);
784 set_addr(mtd, mtd->writesize, page_addr);
785 } else {
786 set_cmd_regs(mtd, command, command);
787 set_addr(mtd, 0, page_addr);
788 }
789 flctl->read_bytes = mtd->oobsize;
790 goto read_normal_exit;
791
792 case NAND_CMD_RNDOUT:
793 if (flctl->hwecc)
794 break;
795
796 if (flctl->page_size)
797 set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
798 | command);
799 else
800 set_cmd_regs(mtd, command, command);
801
802 set_addr(mtd, column, 0);
803
804 flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
805 goto read_normal_exit;
806
807 case NAND_CMD_READID:
808 set_cmd_regs(mtd, command, command);
809
810 /* READID is always performed using an 8-bit bus */
811 if (flctl->chip.options & NAND_BUSWIDTH_16)
812 column <<= 1;
813 set_addr(mtd, column, 0);
814
815 flctl->read_bytes = 8;
816 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
817 empty_fifo(flctl);
818 start_translation(flctl);
819 read_fiforeg(flctl, flctl->read_bytes, 0);
820 wait_completion(flctl);
821 break;
822
823 case NAND_CMD_ERASE1:
824 flctl->erase1_page_addr = page_addr;
825 break;
826
827 case NAND_CMD_ERASE2:
828 set_cmd_regs(mtd, NAND_CMD_ERASE1,
829 (command << 8) | NAND_CMD_ERASE1);
830 set_addr(mtd, -1, flctl->erase1_page_addr);
831 start_translation(flctl);
832 wait_completion(flctl);
833 break;
834
835 case NAND_CMD_SEQIN:
836 if (!flctl->page_size) {
837 /* output read command */
838 if (column >= mtd->writesize) {
839 column -= mtd->writesize;
840 read_cmd = NAND_CMD_READOOB;
841 } else if (column < 256) {
842 read_cmd = NAND_CMD_READ0;
843 } else {
844 column -= 256;
845 read_cmd = NAND_CMD_READ1;
846 }
847 }
848 flctl->seqin_column = column;
849 flctl->seqin_page_addr = page_addr;
850 flctl->seqin_read_cmd = read_cmd;
851 break;
852
853 case NAND_CMD_PAGEPROG:
854 empty_fifo(flctl);
855 if (!flctl->page_size) {
856 set_cmd_regs(mtd, NAND_CMD_SEQIN,
857 flctl->seqin_read_cmd);
858 set_addr(mtd, -1, -1);
859 writel(0, FLDTCNTR(flctl)); /* set 0 size */
860 start_translation(flctl);
861 wait_completion(flctl);
862 }
863 if (flctl->hwecc) {
864 /* write page with hwecc */
865 if (flctl->seqin_column == mtd->writesize)
866 execmd_write_oob(mtd);
867 else if (!flctl->seqin_column)
868 execmd_write_page_sector(mtd);
869 else
870 pr_err("Invalid address !?\n");
871 break;
872 }
873 set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
874 set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
875 writel(flctl->index, FLDTCNTR(flctl)); /* set write size */
876 start_translation(flctl);
877 write_fiforeg(flctl, flctl->index, 0);
878 wait_completion(flctl);
879 break;
880
881 case NAND_CMD_STATUS:
882 set_cmd_regs(mtd, command, command);
883 set_addr(mtd, -1, -1);
884
885 flctl->read_bytes = 1;
886 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
887 start_translation(flctl);
888 read_datareg(flctl, 0); /* read and end */
889 break;
890
891 case NAND_CMD_RESET:
892 set_cmd_regs(mtd, command, command);
893 set_addr(mtd, -1, -1);
894
895 writel(0, FLDTCNTR(flctl)); /* set 0 size */
896 start_translation(flctl);
897 wait_completion(flctl);
898 break;
899
900 default:
901 break;
902 }
903 goto runtime_exit;
904
905 read_normal_exit:
906 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
907 empty_fifo(flctl);
908 start_translation(flctl);
909 read_fiforeg(flctl, flctl->read_bytes, 0);
910 wait_completion(flctl);
911 runtime_exit:
912 pm_runtime_put_sync(&flctl->pdev->dev);
913 return;
914 }
915
flctl_select_chip(struct nand_chip * chip,int chipnr)916 static void flctl_select_chip(struct nand_chip *chip, int chipnr)
917 {
918 struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
919 int ret;
920
921 switch (chipnr) {
922 case -1:
923 flctl->flcmncr_base &= ~CE0_ENABLE;
924
925 pm_runtime_get_sync(&flctl->pdev->dev);
926 writel(flctl->flcmncr_base, FLCMNCR(flctl));
927
928 if (flctl->qos_request) {
929 dev_pm_qos_remove_request(&flctl->pm_qos);
930 flctl->qos_request = 0;
931 }
932
933 pm_runtime_put_sync(&flctl->pdev->dev);
934 break;
935 case 0:
936 flctl->flcmncr_base |= CE0_ENABLE;
937
938 if (!flctl->qos_request) {
939 ret = dev_pm_qos_add_request(&flctl->pdev->dev,
940 &flctl->pm_qos,
941 DEV_PM_QOS_RESUME_LATENCY,
942 100);
943 if (ret < 0)
944 dev_err(&flctl->pdev->dev,
945 "PM QoS request failed: %d\n", ret);
946 flctl->qos_request = 1;
947 }
948
949 if (flctl->holden) {
950 pm_runtime_get_sync(&flctl->pdev->dev);
951 writel(HOLDEN, FLHOLDCR(flctl));
952 pm_runtime_put_sync(&flctl->pdev->dev);
953 }
954 break;
955 default:
956 BUG();
957 }
958 }
959
flctl_write_buf(struct nand_chip * chip,const uint8_t * buf,int len)960 static void flctl_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
961 {
962 struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
963
964 memcpy(&flctl->done_buff[flctl->index], buf, len);
965 flctl->index += len;
966 }
967
flctl_read_byte(struct nand_chip * chip)968 static uint8_t flctl_read_byte(struct nand_chip *chip)
969 {
970 struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
971 uint8_t data;
972
973 data = flctl->done_buff[flctl->index];
974 flctl->index++;
975 return data;
976 }
977
flctl_read_buf(struct nand_chip * chip,uint8_t * buf,int len)978 static void flctl_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
979 {
980 struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
981
982 memcpy(buf, &flctl->done_buff[flctl->index], len);
983 flctl->index += len;
984 }
985
flctl_chip_attach_chip(struct nand_chip * chip)986 static int flctl_chip_attach_chip(struct nand_chip *chip)
987 {
988 u64 targetsize = nanddev_target_size(&chip->base);
989 struct mtd_info *mtd = nand_to_mtd(chip);
990 struct sh_flctl *flctl = mtd_to_flctl(mtd);
991
992 /*
993 * NAND_BUSWIDTH_16 may have been set by nand_scan_ident().
994 * Add the SEL_16BIT flag in flctl->flcmncr_base.
995 */
996 if (chip->options & NAND_BUSWIDTH_16)
997 flctl->flcmncr_base |= SEL_16BIT;
998
999 if (mtd->writesize == 512) {
1000 flctl->page_size = 0;
1001 if (targetsize > (32 << 20)) {
1002 /* big than 32MB */
1003 flctl->rw_ADRCNT = ADRCNT_4;
1004 flctl->erase_ADRCNT = ADRCNT_3;
1005 } else if (targetsize > (2 << 16)) {
1006 /* big than 128KB */
1007 flctl->rw_ADRCNT = ADRCNT_3;
1008 flctl->erase_ADRCNT = ADRCNT_2;
1009 } else {
1010 flctl->rw_ADRCNT = ADRCNT_2;
1011 flctl->erase_ADRCNT = ADRCNT_1;
1012 }
1013 } else {
1014 flctl->page_size = 1;
1015 if (targetsize > (128 << 20)) {
1016 /* big than 128MB */
1017 flctl->rw_ADRCNT = ADRCNT2_E;
1018 flctl->erase_ADRCNT = ADRCNT_3;
1019 } else if (targetsize > (8 << 16)) {
1020 /* big than 512KB */
1021 flctl->rw_ADRCNT = ADRCNT_4;
1022 flctl->erase_ADRCNT = ADRCNT_2;
1023 } else {
1024 flctl->rw_ADRCNT = ADRCNT_3;
1025 flctl->erase_ADRCNT = ADRCNT_1;
1026 }
1027 }
1028
1029 if (flctl->hwecc) {
1030 if (mtd->writesize == 512) {
1031 mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops);
1032 chip->badblock_pattern = &flctl_4secc_smallpage;
1033 } else {
1034 mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops);
1035 chip->badblock_pattern = &flctl_4secc_largepage;
1036 }
1037
1038 chip->ecc.size = 512;
1039 chip->ecc.bytes = 10;
1040 chip->ecc.strength = 4;
1041 chip->ecc.read_page = flctl_read_page_hwecc;
1042 chip->ecc.write_page = flctl_write_page_hwecc;
1043 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1044
1045 /* 4 symbols ECC enabled */
1046 flctl->flcmncr_base |= _4ECCEN;
1047 } else {
1048 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
1049 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
1050 }
1051
1052 return 0;
1053 }
1054
1055 static const struct nand_controller_ops flctl_nand_controller_ops = {
1056 .attach_chip = flctl_chip_attach_chip,
1057 };
1058
flctl_handle_flste(int irq,void * dev_id)1059 static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1060 {
1061 struct sh_flctl *flctl = dev_id;
1062
1063 dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1064 writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1065
1066 return IRQ_HANDLED;
1067 }
1068
1069 struct flctl_soc_config {
1070 unsigned long flcmncr_val;
1071 unsigned has_hwecc:1;
1072 unsigned use_holden:1;
1073 };
1074
1075 static struct flctl_soc_config flctl_sh7372_config = {
1076 .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1077 .has_hwecc = 1,
1078 .use_holden = 1,
1079 };
1080
1081 static const struct of_device_id of_flctl_match[] = {
1082 { .compatible = "renesas,shmobile-flctl-sh7372",
1083 .data = &flctl_sh7372_config },
1084 {},
1085 };
1086 MODULE_DEVICE_TABLE(of, of_flctl_match);
1087
flctl_parse_dt(struct device * dev)1088 static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1089 {
1090 const struct flctl_soc_config *config;
1091 struct sh_flctl_platform_data *pdata;
1092
1093 config = of_device_get_match_data(dev);
1094 if (!config) {
1095 dev_err(dev, "%s: no OF configuration attached\n", __func__);
1096 return NULL;
1097 }
1098
1099 pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1100 GFP_KERNEL);
1101 if (!pdata)
1102 return NULL;
1103
1104 /* set SoC specific options */
1105 pdata->flcmncr_val = config->flcmncr_val;
1106 pdata->has_hwecc = config->has_hwecc;
1107 pdata->use_holden = config->use_holden;
1108
1109 return pdata;
1110 }
1111
flctl_probe(struct platform_device * pdev)1112 static int flctl_probe(struct platform_device *pdev)
1113 {
1114 struct resource *res;
1115 struct sh_flctl *flctl;
1116 struct mtd_info *flctl_mtd;
1117 struct nand_chip *nand;
1118 struct sh_flctl_platform_data *pdata;
1119 int ret;
1120 int irq;
1121
1122 flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
1123 if (!flctl)
1124 return -ENOMEM;
1125
1126 flctl->reg = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1127 if (IS_ERR(flctl->reg))
1128 return PTR_ERR(flctl->reg);
1129 flctl->fifo = res->start + 0x24; /* FLDTFIFO */
1130
1131 irq = platform_get_irq(pdev, 0);
1132 if (irq < 0)
1133 return irq;
1134
1135 ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
1136 "flste", flctl);
1137 if (ret) {
1138 dev_err(&pdev->dev, "request interrupt failed.\n");
1139 return ret;
1140 }
1141
1142 if (pdev->dev.of_node)
1143 pdata = flctl_parse_dt(&pdev->dev);
1144 else
1145 pdata = dev_get_platdata(&pdev->dev);
1146
1147 if (!pdata) {
1148 dev_err(&pdev->dev, "no setup data defined\n");
1149 return -EINVAL;
1150 }
1151
1152 platform_set_drvdata(pdev, flctl);
1153 nand = &flctl->chip;
1154 flctl_mtd = nand_to_mtd(nand);
1155 nand_set_flash_node(nand, pdev->dev.of_node);
1156 flctl_mtd->dev.parent = &pdev->dev;
1157 flctl->pdev = pdev;
1158 flctl->hwecc = pdata->has_hwecc;
1159 flctl->holden = pdata->use_holden;
1160 flctl->flcmncr_base = pdata->flcmncr_val;
1161 flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1162
1163 /* Set address of hardware control function */
1164 /* 20 us command delay time */
1165 nand->legacy.chip_delay = 20;
1166
1167 nand->legacy.read_byte = flctl_read_byte;
1168 nand->legacy.write_buf = flctl_write_buf;
1169 nand->legacy.read_buf = flctl_read_buf;
1170 nand->legacy.select_chip = flctl_select_chip;
1171 nand->legacy.cmdfunc = flctl_cmdfunc;
1172 nand->legacy.set_features = nand_get_set_features_notsupp;
1173 nand->legacy.get_features = nand_get_set_features_notsupp;
1174
1175 if (pdata->flcmncr_val & SEL_16BIT)
1176 nand->options |= NAND_BUSWIDTH_16;
1177
1178 nand->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
1179
1180 pm_runtime_enable(&pdev->dev);
1181 pm_runtime_resume(&pdev->dev);
1182
1183 flctl_setup_dma(flctl);
1184
1185 nand->legacy.dummy_controller.ops = &flctl_nand_controller_ops;
1186 ret = nand_scan(nand, 1);
1187 if (ret)
1188 goto err_chip;
1189
1190 ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
1191 if (ret)
1192 goto cleanup_nand;
1193
1194 return 0;
1195
1196 cleanup_nand:
1197 nand_cleanup(nand);
1198 err_chip:
1199 flctl_release_dma(flctl);
1200 pm_runtime_disable(&pdev->dev);
1201 return ret;
1202 }
1203
flctl_remove(struct platform_device * pdev)1204 static void flctl_remove(struct platform_device *pdev)
1205 {
1206 struct sh_flctl *flctl = platform_get_drvdata(pdev);
1207 struct nand_chip *chip = &flctl->chip;
1208 int ret;
1209
1210 flctl_release_dma(flctl);
1211 ret = mtd_device_unregister(nand_to_mtd(chip));
1212 WARN_ON(ret);
1213 nand_cleanup(chip);
1214 pm_runtime_disable(&pdev->dev);
1215 }
1216
1217 static struct platform_driver flctl_driver = {
1218 .probe = flctl_probe,
1219 .remove = flctl_remove,
1220 .driver = {
1221 .name = "sh_flctl",
1222 .of_match_table = of_flctl_match,
1223 },
1224 };
1225
1226 module_platform_driver(flctl_driver);
1227
1228 MODULE_LICENSE("GPL v2");
1229 MODULE_AUTHOR("Yoshihiro Shimoda");
1230 MODULE_DESCRIPTION("SuperH FLCTL driver");
1231 MODULE_ALIAS("platform:sh_flctl");
1232