xref: /linux/mm/vmalloc.c (revision 00c010e130e58301db2ea0cec1eadc931e1cb8cf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 #include <linux/page_owner.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/vmalloc.h>
49 
50 #include "internal.h"
51 #include "pgalloc-track.h"
52 
53 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
54 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
55 
set_nohugeiomap(char * str)56 static int __init set_nohugeiomap(char *str)
57 {
58 	ioremap_max_page_shift = PAGE_SHIFT;
59 	return 0;
60 }
61 early_param("nohugeiomap", set_nohugeiomap);
62 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
63 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
64 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
65 
66 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
67 static bool __ro_after_init vmap_allow_huge = true;
68 
set_nohugevmalloc(char * str)69 static int __init set_nohugevmalloc(char *str)
70 {
71 	vmap_allow_huge = false;
72 	return 0;
73 }
74 early_param("nohugevmalloc", set_nohugevmalloc);
75 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
76 static const bool vmap_allow_huge = false;
77 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
78 
is_vmalloc_addr(const void * x)79 bool is_vmalloc_addr(const void *x)
80 {
81 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
82 
83 	return addr >= VMALLOC_START && addr < VMALLOC_END;
84 }
85 EXPORT_SYMBOL(is_vmalloc_addr);
86 
87 struct vfree_deferred {
88 	struct llist_head list;
89 	struct work_struct wq;
90 };
91 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
92 
93 /*** Page table manipulation functions ***/
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)94 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
95 			phys_addr_t phys_addr, pgprot_t prot,
96 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
97 {
98 	pte_t *pte;
99 	u64 pfn;
100 	struct page *page;
101 	unsigned long size = PAGE_SIZE;
102 
103 	pfn = phys_addr >> PAGE_SHIFT;
104 	pte = pte_alloc_kernel_track(pmd, addr, mask);
105 	if (!pte)
106 		return -ENOMEM;
107 
108 	arch_enter_lazy_mmu_mode();
109 
110 	do {
111 		if (unlikely(!pte_none(ptep_get(pte)))) {
112 			if (pfn_valid(pfn)) {
113 				page = pfn_to_page(pfn);
114 				dump_page(page, "remapping already mapped page");
115 			}
116 			BUG();
117 		}
118 
119 #ifdef CONFIG_HUGETLB_PAGE
120 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
121 		if (size != PAGE_SIZE) {
122 			pte_t entry = pfn_pte(pfn, prot);
123 
124 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
125 			set_huge_pte_at(&init_mm, addr, pte, entry, size);
126 			pfn += PFN_DOWN(size);
127 			continue;
128 		}
129 #endif
130 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
131 		pfn++;
132 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
133 
134 	arch_leave_lazy_mmu_mode();
135 	*mask |= PGTBL_PTE_MODIFIED;
136 	return 0;
137 }
138 
vmap_try_huge_pmd(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)139 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
140 			phys_addr_t phys_addr, pgprot_t prot,
141 			unsigned int max_page_shift)
142 {
143 	if (max_page_shift < PMD_SHIFT)
144 		return 0;
145 
146 	if (!arch_vmap_pmd_supported(prot))
147 		return 0;
148 
149 	if ((end - addr) != PMD_SIZE)
150 		return 0;
151 
152 	if (!IS_ALIGNED(addr, PMD_SIZE))
153 		return 0;
154 
155 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
156 		return 0;
157 
158 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
159 		return 0;
160 
161 	return pmd_set_huge(pmd, phys_addr, prot);
162 }
163 
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)164 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
165 			phys_addr_t phys_addr, pgprot_t prot,
166 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
167 {
168 	pmd_t *pmd;
169 	unsigned long next;
170 
171 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
172 	if (!pmd)
173 		return -ENOMEM;
174 	do {
175 		next = pmd_addr_end(addr, end);
176 
177 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
178 					max_page_shift)) {
179 			*mask |= PGTBL_PMD_MODIFIED;
180 			continue;
181 		}
182 
183 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
184 			return -ENOMEM;
185 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
186 	return 0;
187 }
188 
vmap_try_huge_pud(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)189 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
190 			phys_addr_t phys_addr, pgprot_t prot,
191 			unsigned int max_page_shift)
192 {
193 	if (max_page_shift < PUD_SHIFT)
194 		return 0;
195 
196 	if (!arch_vmap_pud_supported(prot))
197 		return 0;
198 
199 	if ((end - addr) != PUD_SIZE)
200 		return 0;
201 
202 	if (!IS_ALIGNED(addr, PUD_SIZE))
203 		return 0;
204 
205 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
206 		return 0;
207 
208 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
209 		return 0;
210 
211 	return pud_set_huge(pud, phys_addr, prot);
212 }
213 
vmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)214 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
215 			phys_addr_t phys_addr, pgprot_t prot,
216 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
217 {
218 	pud_t *pud;
219 	unsigned long next;
220 
221 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
222 	if (!pud)
223 		return -ENOMEM;
224 	do {
225 		next = pud_addr_end(addr, end);
226 
227 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
228 					max_page_shift)) {
229 			*mask |= PGTBL_PUD_MODIFIED;
230 			continue;
231 		}
232 
233 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
234 					max_page_shift, mask))
235 			return -ENOMEM;
236 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
237 	return 0;
238 }
239 
vmap_try_huge_p4d(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)240 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
241 			phys_addr_t phys_addr, pgprot_t prot,
242 			unsigned int max_page_shift)
243 {
244 	if (max_page_shift < P4D_SHIFT)
245 		return 0;
246 
247 	if (!arch_vmap_p4d_supported(prot))
248 		return 0;
249 
250 	if ((end - addr) != P4D_SIZE)
251 		return 0;
252 
253 	if (!IS_ALIGNED(addr, P4D_SIZE))
254 		return 0;
255 
256 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
257 		return 0;
258 
259 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
260 		return 0;
261 
262 	return p4d_set_huge(p4d, phys_addr, prot);
263 }
264 
vmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)265 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
266 			phys_addr_t phys_addr, pgprot_t prot,
267 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
268 {
269 	p4d_t *p4d;
270 	unsigned long next;
271 
272 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
273 	if (!p4d)
274 		return -ENOMEM;
275 	do {
276 		next = p4d_addr_end(addr, end);
277 
278 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
279 					max_page_shift)) {
280 			*mask |= PGTBL_P4D_MODIFIED;
281 			continue;
282 		}
283 
284 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
285 					max_page_shift, mask))
286 			return -ENOMEM;
287 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
288 	return 0;
289 }
290 
vmap_range_noflush(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)291 static int vmap_range_noflush(unsigned long addr, unsigned long end,
292 			phys_addr_t phys_addr, pgprot_t prot,
293 			unsigned int max_page_shift)
294 {
295 	pgd_t *pgd;
296 	unsigned long start;
297 	unsigned long next;
298 	int err;
299 	pgtbl_mod_mask mask = 0;
300 
301 	might_sleep();
302 	BUG_ON(addr >= end);
303 
304 	start = addr;
305 	pgd = pgd_offset_k(addr);
306 	do {
307 		next = pgd_addr_end(addr, end);
308 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
309 					max_page_shift, &mask);
310 		if (err)
311 			break;
312 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
313 
314 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
315 		arch_sync_kernel_mappings(start, end);
316 
317 	return err;
318 }
319 
vmap_page_range(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot)320 int vmap_page_range(unsigned long addr, unsigned long end,
321 		    phys_addr_t phys_addr, pgprot_t prot)
322 {
323 	int err;
324 
325 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
326 				 ioremap_max_page_shift);
327 	flush_cache_vmap(addr, end);
328 	if (!err)
329 		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
330 					       ioremap_max_page_shift);
331 	return err;
332 }
333 
ioremap_page_range(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot)334 int ioremap_page_range(unsigned long addr, unsigned long end,
335 		phys_addr_t phys_addr, pgprot_t prot)
336 {
337 	struct vm_struct *area;
338 
339 	area = find_vm_area((void *)addr);
340 	if (!area || !(area->flags & VM_IOREMAP)) {
341 		WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
342 		return -EINVAL;
343 	}
344 	if (addr != (unsigned long)area->addr ||
345 	    (void *)end != area->addr + get_vm_area_size(area)) {
346 		WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
347 			  addr, end, (long)area->addr,
348 			  (long)area->addr + get_vm_area_size(area));
349 		return -ERANGE;
350 	}
351 	return vmap_page_range(addr, end, phys_addr, prot);
352 }
353 
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)354 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
355 			     pgtbl_mod_mask *mask)
356 {
357 	pte_t *pte;
358 	pte_t ptent;
359 	unsigned long size = PAGE_SIZE;
360 
361 	pte = pte_offset_kernel(pmd, addr);
362 	arch_enter_lazy_mmu_mode();
363 
364 	do {
365 #ifdef CONFIG_HUGETLB_PAGE
366 		size = arch_vmap_pte_range_unmap_size(addr, pte);
367 		if (size != PAGE_SIZE) {
368 			if (WARN_ON(!IS_ALIGNED(addr, size))) {
369 				addr = ALIGN_DOWN(addr, size);
370 				pte = PTR_ALIGN_DOWN(pte, sizeof(*pte) * (size >> PAGE_SHIFT));
371 			}
372 			ptent = huge_ptep_get_and_clear(&init_mm, addr, pte, size);
373 			if (WARN_ON(end - addr < size))
374 				size = end - addr;
375 		} else
376 #endif
377 			ptent = ptep_get_and_clear(&init_mm, addr, pte);
378 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
379 	} while (pte += (size >> PAGE_SHIFT), addr += size, addr != end);
380 
381 	arch_leave_lazy_mmu_mode();
382 	*mask |= PGTBL_PTE_MODIFIED;
383 }
384 
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)385 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
386 			     pgtbl_mod_mask *mask)
387 {
388 	pmd_t *pmd;
389 	unsigned long next;
390 	int cleared;
391 
392 	pmd = pmd_offset(pud, addr);
393 	do {
394 		next = pmd_addr_end(addr, end);
395 
396 		cleared = pmd_clear_huge(pmd);
397 		if (cleared || pmd_bad(*pmd))
398 			*mask |= PGTBL_PMD_MODIFIED;
399 
400 		if (cleared) {
401 			WARN_ON(next - addr < PMD_SIZE);
402 			continue;
403 		}
404 		if (pmd_none_or_clear_bad(pmd))
405 			continue;
406 		vunmap_pte_range(pmd, addr, next, mask);
407 
408 		cond_resched();
409 	} while (pmd++, addr = next, addr != end);
410 }
411 
vunmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)412 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
413 			     pgtbl_mod_mask *mask)
414 {
415 	pud_t *pud;
416 	unsigned long next;
417 	int cleared;
418 
419 	pud = pud_offset(p4d, addr);
420 	do {
421 		next = pud_addr_end(addr, end);
422 
423 		cleared = pud_clear_huge(pud);
424 		if (cleared || pud_bad(*pud))
425 			*mask |= PGTBL_PUD_MODIFIED;
426 
427 		if (cleared) {
428 			WARN_ON(next - addr < PUD_SIZE);
429 			continue;
430 		}
431 		if (pud_none_or_clear_bad(pud))
432 			continue;
433 		vunmap_pmd_range(pud, addr, next, mask);
434 	} while (pud++, addr = next, addr != end);
435 }
436 
vunmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)437 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
438 			     pgtbl_mod_mask *mask)
439 {
440 	p4d_t *p4d;
441 	unsigned long next;
442 
443 	p4d = p4d_offset(pgd, addr);
444 	do {
445 		next = p4d_addr_end(addr, end);
446 
447 		p4d_clear_huge(p4d);
448 		if (p4d_bad(*p4d))
449 			*mask |= PGTBL_P4D_MODIFIED;
450 
451 		if (p4d_none_or_clear_bad(p4d))
452 			continue;
453 		vunmap_pud_range(p4d, addr, next, mask);
454 	} while (p4d++, addr = next, addr != end);
455 }
456 
457 /*
458  * vunmap_range_noflush is similar to vunmap_range, but does not
459  * flush caches or TLBs.
460  *
461  * The caller is responsible for calling flush_cache_vmap() before calling
462  * this function, and flush_tlb_kernel_range after it has returned
463  * successfully (and before the addresses are expected to cause a page fault
464  * or be re-mapped for something else, if TLB flushes are being delayed or
465  * coalesced).
466  *
467  * This is an internal function only. Do not use outside mm/.
468  */
__vunmap_range_noflush(unsigned long start,unsigned long end)469 void __vunmap_range_noflush(unsigned long start, unsigned long end)
470 {
471 	unsigned long next;
472 	pgd_t *pgd;
473 	unsigned long addr = start;
474 	pgtbl_mod_mask mask = 0;
475 
476 	BUG_ON(addr >= end);
477 	pgd = pgd_offset_k(addr);
478 	do {
479 		next = pgd_addr_end(addr, end);
480 		if (pgd_bad(*pgd))
481 			mask |= PGTBL_PGD_MODIFIED;
482 		if (pgd_none_or_clear_bad(pgd))
483 			continue;
484 		vunmap_p4d_range(pgd, addr, next, &mask);
485 	} while (pgd++, addr = next, addr != end);
486 
487 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
488 		arch_sync_kernel_mappings(start, end);
489 }
490 
vunmap_range_noflush(unsigned long start,unsigned long end)491 void vunmap_range_noflush(unsigned long start, unsigned long end)
492 {
493 	kmsan_vunmap_range_noflush(start, end);
494 	__vunmap_range_noflush(start, end);
495 }
496 
497 /**
498  * vunmap_range - unmap kernel virtual addresses
499  * @addr: start of the VM area to unmap
500  * @end: end of the VM area to unmap (non-inclusive)
501  *
502  * Clears any present PTEs in the virtual address range, flushes TLBs and
503  * caches. Any subsequent access to the address before it has been re-mapped
504  * is a kernel bug.
505  */
vunmap_range(unsigned long addr,unsigned long end)506 void vunmap_range(unsigned long addr, unsigned long end)
507 {
508 	flush_cache_vunmap(addr, end);
509 	vunmap_range_noflush(addr, end);
510 	flush_tlb_kernel_range(addr, end);
511 }
512 
vmap_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)513 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
514 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
515 		pgtbl_mod_mask *mask)
516 {
517 	pte_t *pte;
518 
519 	/*
520 	 * nr is a running index into the array which helps higher level
521 	 * callers keep track of where we're up to.
522 	 */
523 
524 	pte = pte_alloc_kernel_track(pmd, addr, mask);
525 	if (!pte)
526 		return -ENOMEM;
527 
528 	arch_enter_lazy_mmu_mode();
529 
530 	do {
531 		struct page *page = pages[*nr];
532 
533 		if (WARN_ON(!pte_none(ptep_get(pte))))
534 			return -EBUSY;
535 		if (WARN_ON(!page))
536 			return -ENOMEM;
537 		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
538 			return -EINVAL;
539 
540 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
541 		(*nr)++;
542 	} while (pte++, addr += PAGE_SIZE, addr != end);
543 
544 	arch_leave_lazy_mmu_mode();
545 	*mask |= PGTBL_PTE_MODIFIED;
546 	return 0;
547 }
548 
vmap_pages_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)549 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
550 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
551 		pgtbl_mod_mask *mask)
552 {
553 	pmd_t *pmd;
554 	unsigned long next;
555 
556 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
557 	if (!pmd)
558 		return -ENOMEM;
559 	do {
560 		next = pmd_addr_end(addr, end);
561 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
562 			return -ENOMEM;
563 	} while (pmd++, addr = next, addr != end);
564 	return 0;
565 }
566 
vmap_pages_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)567 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
568 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
569 		pgtbl_mod_mask *mask)
570 {
571 	pud_t *pud;
572 	unsigned long next;
573 
574 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
575 	if (!pud)
576 		return -ENOMEM;
577 	do {
578 		next = pud_addr_end(addr, end);
579 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
580 			return -ENOMEM;
581 	} while (pud++, addr = next, addr != end);
582 	return 0;
583 }
584 
vmap_pages_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)585 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
586 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
587 		pgtbl_mod_mask *mask)
588 {
589 	p4d_t *p4d;
590 	unsigned long next;
591 
592 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
593 	if (!p4d)
594 		return -ENOMEM;
595 	do {
596 		next = p4d_addr_end(addr, end);
597 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
598 			return -ENOMEM;
599 	} while (p4d++, addr = next, addr != end);
600 	return 0;
601 }
602 
vmap_small_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages)603 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
604 		pgprot_t prot, struct page **pages)
605 {
606 	unsigned long start = addr;
607 	pgd_t *pgd;
608 	unsigned long next;
609 	int err = 0;
610 	int nr = 0;
611 	pgtbl_mod_mask mask = 0;
612 
613 	BUG_ON(addr >= end);
614 	pgd = pgd_offset_k(addr);
615 	do {
616 		next = pgd_addr_end(addr, end);
617 		if (pgd_bad(*pgd))
618 			mask |= PGTBL_PGD_MODIFIED;
619 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
620 		if (err)
621 			break;
622 	} while (pgd++, addr = next, addr != end);
623 
624 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
625 		arch_sync_kernel_mappings(start, end);
626 
627 	return err;
628 }
629 
630 /*
631  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
632  * flush caches.
633  *
634  * The caller is responsible for calling flush_cache_vmap() after this
635  * function returns successfully and before the addresses are accessed.
636  *
637  * This is an internal function only. Do not use outside mm/.
638  */
__vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)639 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
640 		pgprot_t prot, struct page **pages, unsigned int page_shift)
641 {
642 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
643 
644 	WARN_ON(page_shift < PAGE_SHIFT);
645 
646 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
647 			page_shift == PAGE_SHIFT)
648 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
649 
650 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
651 		int err;
652 
653 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
654 					page_to_phys(pages[i]), prot,
655 					page_shift);
656 		if (err)
657 			return err;
658 
659 		addr += 1UL << page_shift;
660 	}
661 
662 	return 0;
663 }
664 
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)665 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
666 		pgprot_t prot, struct page **pages, unsigned int page_shift)
667 {
668 	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
669 						 page_shift);
670 
671 	if (ret)
672 		return ret;
673 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
674 }
675 
676 /**
677  * vmap_pages_range - map pages to a kernel virtual address
678  * @addr: start of the VM area to map
679  * @end: end of the VM area to map (non-inclusive)
680  * @prot: page protection flags to use
681  * @pages: pages to map (always PAGE_SIZE pages)
682  * @page_shift: maximum shift that the pages may be mapped with, @pages must
683  * be aligned and contiguous up to at least this shift.
684  *
685  * RETURNS:
686  * 0 on success, -errno on failure.
687  */
vmap_pages_range(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)688 int vmap_pages_range(unsigned long addr, unsigned long end,
689 		pgprot_t prot, struct page **pages, unsigned int page_shift)
690 {
691 	int err;
692 
693 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
694 	flush_cache_vmap(addr, end);
695 	return err;
696 }
697 
check_sparse_vm_area(struct vm_struct * area,unsigned long start,unsigned long end)698 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
699 				unsigned long end)
700 {
701 	might_sleep();
702 	if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
703 		return -EINVAL;
704 	if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
705 		return -EINVAL;
706 	if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
707 		return -EINVAL;
708 	if ((end - start) >> PAGE_SHIFT > totalram_pages())
709 		return -E2BIG;
710 	if (start < (unsigned long)area->addr ||
711 	    (void *)end > area->addr + get_vm_area_size(area))
712 		return -ERANGE;
713 	return 0;
714 }
715 
716 /**
717  * vm_area_map_pages - map pages inside given sparse vm_area
718  * @area: vm_area
719  * @start: start address inside vm_area
720  * @end: end address inside vm_area
721  * @pages: pages to map (always PAGE_SIZE pages)
722  */
vm_area_map_pages(struct vm_struct * area,unsigned long start,unsigned long end,struct page ** pages)723 int vm_area_map_pages(struct vm_struct *area, unsigned long start,
724 		      unsigned long end, struct page **pages)
725 {
726 	int err;
727 
728 	err = check_sparse_vm_area(area, start, end);
729 	if (err)
730 		return err;
731 
732 	return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
733 }
734 
735 /**
736  * vm_area_unmap_pages - unmap pages inside given sparse vm_area
737  * @area: vm_area
738  * @start: start address inside vm_area
739  * @end: end address inside vm_area
740  */
vm_area_unmap_pages(struct vm_struct * area,unsigned long start,unsigned long end)741 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
742 			 unsigned long end)
743 {
744 	if (check_sparse_vm_area(area, start, end))
745 		return;
746 
747 	vunmap_range(start, end);
748 }
749 
is_vmalloc_or_module_addr(const void * x)750 int is_vmalloc_or_module_addr(const void *x)
751 {
752 	/*
753 	 * ARM, x86-64 and sparc64 put modules in a special place,
754 	 * and fall back on vmalloc() if that fails. Others
755 	 * just put it in the vmalloc space.
756 	 */
757 #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR)
758 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
759 	if (addr >= MODULES_VADDR && addr < MODULES_END)
760 		return 1;
761 #endif
762 	return is_vmalloc_addr(x);
763 }
764 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
765 
766 /*
767  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
768  * return the tail page that corresponds to the base page address, which
769  * matches small vmap mappings.
770  */
vmalloc_to_page(const void * vmalloc_addr)771 struct page *vmalloc_to_page(const void *vmalloc_addr)
772 {
773 	unsigned long addr = (unsigned long) vmalloc_addr;
774 	struct page *page = NULL;
775 	pgd_t *pgd = pgd_offset_k(addr);
776 	p4d_t *p4d;
777 	pud_t *pud;
778 	pmd_t *pmd;
779 	pte_t *ptep, pte;
780 
781 	/*
782 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
783 	 * architectures that do not vmalloc module space
784 	 */
785 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
786 
787 	if (pgd_none(*pgd))
788 		return NULL;
789 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
790 		return NULL; /* XXX: no allowance for huge pgd */
791 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
792 		return NULL;
793 
794 	p4d = p4d_offset(pgd, addr);
795 	if (p4d_none(*p4d))
796 		return NULL;
797 	if (p4d_leaf(*p4d))
798 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
799 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
800 		return NULL;
801 
802 	pud = pud_offset(p4d, addr);
803 	if (pud_none(*pud))
804 		return NULL;
805 	if (pud_leaf(*pud))
806 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
807 	if (WARN_ON_ONCE(pud_bad(*pud)))
808 		return NULL;
809 
810 	pmd = pmd_offset(pud, addr);
811 	if (pmd_none(*pmd))
812 		return NULL;
813 	if (pmd_leaf(*pmd))
814 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
815 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
816 		return NULL;
817 
818 	ptep = pte_offset_kernel(pmd, addr);
819 	pte = ptep_get(ptep);
820 	if (pte_present(pte))
821 		page = pte_page(pte);
822 
823 	return page;
824 }
825 EXPORT_SYMBOL(vmalloc_to_page);
826 
827 /*
828  * Map a vmalloc()-space virtual address to the physical page frame number.
829  */
vmalloc_to_pfn(const void * vmalloc_addr)830 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
831 {
832 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
833 }
834 EXPORT_SYMBOL(vmalloc_to_pfn);
835 
836 
837 /*** Global kva allocator ***/
838 
839 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
840 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
841 
842 
843 static DEFINE_SPINLOCK(free_vmap_area_lock);
844 static bool vmap_initialized __read_mostly;
845 
846 /*
847  * This kmem_cache is used for vmap_area objects. Instead of
848  * allocating from slab we reuse an object from this cache to
849  * make things faster. Especially in "no edge" splitting of
850  * free block.
851  */
852 static struct kmem_cache *vmap_area_cachep;
853 
854 /*
855  * This linked list is used in pair with free_vmap_area_root.
856  * It gives O(1) access to prev/next to perform fast coalescing.
857  */
858 static LIST_HEAD(free_vmap_area_list);
859 
860 /*
861  * This augment red-black tree represents the free vmap space.
862  * All vmap_area objects in this tree are sorted by va->va_start
863  * address. It is used for allocation and merging when a vmap
864  * object is released.
865  *
866  * Each vmap_area node contains a maximum available free block
867  * of its sub-tree, right or left. Therefore it is possible to
868  * find a lowest match of free area.
869  */
870 static struct rb_root free_vmap_area_root = RB_ROOT;
871 
872 /*
873  * Preload a CPU with one object for "no edge" split case. The
874  * aim is to get rid of allocations from the atomic context, thus
875  * to use more permissive allocation masks.
876  */
877 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
878 
879 /*
880  * This structure defines a single, solid model where a list and
881  * rb-tree are part of one entity protected by the lock. Nodes are
882  * sorted in ascending order, thus for O(1) access to left/right
883  * neighbors a list is used as well as for sequential traversal.
884  */
885 struct rb_list {
886 	struct rb_root root;
887 	struct list_head head;
888 	spinlock_t lock;
889 };
890 
891 /*
892  * A fast size storage contains VAs up to 1M size. A pool consists
893  * of linked between each other ready to go VAs of certain sizes.
894  * An index in the pool-array corresponds to number of pages + 1.
895  */
896 #define MAX_VA_SIZE_PAGES 256
897 
898 struct vmap_pool {
899 	struct list_head head;
900 	unsigned long len;
901 };
902 
903 /*
904  * An effective vmap-node logic. Users make use of nodes instead
905  * of a global heap. It allows to balance an access and mitigate
906  * contention.
907  */
908 static struct vmap_node {
909 	/* Simple size segregated storage. */
910 	struct vmap_pool pool[MAX_VA_SIZE_PAGES];
911 	spinlock_t pool_lock;
912 	bool skip_populate;
913 
914 	/* Bookkeeping data of this node. */
915 	struct rb_list busy;
916 	struct rb_list lazy;
917 
918 	/*
919 	 * Ready-to-free areas.
920 	 */
921 	struct list_head purge_list;
922 	struct work_struct purge_work;
923 	unsigned long nr_purged;
924 } single;
925 
926 /*
927  * Initial setup consists of one single node, i.e. a balancing
928  * is fully disabled. Later on, after vmap is initialized these
929  * parameters are updated based on a system capacity.
930  */
931 static struct vmap_node *vmap_nodes = &single;
932 static __read_mostly unsigned int nr_vmap_nodes = 1;
933 static __read_mostly unsigned int vmap_zone_size = 1;
934 
935 /* A simple iterator over all vmap-nodes. */
936 #define for_each_vmap_node(vn)	\
937 	for ((vn) = &vmap_nodes[0];	\
938 		(vn) < &vmap_nodes[nr_vmap_nodes]; (vn)++)
939 
940 static inline unsigned int
addr_to_node_id(unsigned long addr)941 addr_to_node_id(unsigned long addr)
942 {
943 	return (addr / vmap_zone_size) % nr_vmap_nodes;
944 }
945 
946 static inline struct vmap_node *
addr_to_node(unsigned long addr)947 addr_to_node(unsigned long addr)
948 {
949 	return &vmap_nodes[addr_to_node_id(addr)];
950 }
951 
952 static inline struct vmap_node *
id_to_node(unsigned int id)953 id_to_node(unsigned int id)
954 {
955 	return &vmap_nodes[id % nr_vmap_nodes];
956 }
957 
958 static inline unsigned int
node_to_id(struct vmap_node * node)959 node_to_id(struct vmap_node *node)
960 {
961 	/* Pointer arithmetic. */
962 	unsigned int id = node - vmap_nodes;
963 
964 	if (likely(id < nr_vmap_nodes))
965 		return id;
966 
967 	WARN_ONCE(1, "An address 0x%p is out-of-bounds.\n", node);
968 	return 0;
969 }
970 
971 /*
972  * We use the value 0 to represent "no node", that is why
973  * an encoded value will be the node-id incremented by 1.
974  * It is always greater then 0. A valid node_id which can
975  * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
976  * is not valid 0 is returned.
977  */
978 static unsigned int
encode_vn_id(unsigned int node_id)979 encode_vn_id(unsigned int node_id)
980 {
981 	/* Can store U8_MAX [0:254] nodes. */
982 	if (node_id < nr_vmap_nodes)
983 		return (node_id + 1) << BITS_PER_BYTE;
984 
985 	/* Warn and no node encoded. */
986 	WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id);
987 	return 0;
988 }
989 
990 /*
991  * Returns an encoded node-id, the valid range is within
992  * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
993  * returned if extracted data is wrong.
994  */
995 static unsigned int
decode_vn_id(unsigned int val)996 decode_vn_id(unsigned int val)
997 {
998 	unsigned int node_id = (val >> BITS_PER_BYTE) - 1;
999 
1000 	/* Can store U8_MAX [0:254] nodes. */
1001 	if (node_id < nr_vmap_nodes)
1002 		return node_id;
1003 
1004 	/* If it was _not_ zero, warn. */
1005 	WARN_ONCE(node_id != UINT_MAX,
1006 		"Decode wrong node id (%d)\n", node_id);
1007 
1008 	return nr_vmap_nodes;
1009 }
1010 
1011 static bool
is_vn_id_valid(unsigned int node_id)1012 is_vn_id_valid(unsigned int node_id)
1013 {
1014 	if (node_id < nr_vmap_nodes)
1015 		return true;
1016 
1017 	return false;
1018 }
1019 
1020 static __always_inline unsigned long
va_size(struct vmap_area * va)1021 va_size(struct vmap_area *va)
1022 {
1023 	return (va->va_end - va->va_start);
1024 }
1025 
1026 static __always_inline unsigned long
get_subtree_max_size(struct rb_node * node)1027 get_subtree_max_size(struct rb_node *node)
1028 {
1029 	struct vmap_area *va;
1030 
1031 	va = rb_entry_safe(node, struct vmap_area, rb_node);
1032 	return va ? va->subtree_max_size : 0;
1033 }
1034 
1035 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
1036 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
1037 
1038 static void reclaim_and_purge_vmap_areas(void);
1039 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
1040 static void drain_vmap_area_work(struct work_struct *work);
1041 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
1042 
1043 static __cacheline_aligned_in_smp atomic_long_t nr_vmalloc_pages;
1044 static __cacheline_aligned_in_smp atomic_long_t vmap_lazy_nr;
1045 
vmalloc_nr_pages(void)1046 unsigned long vmalloc_nr_pages(void)
1047 {
1048 	return atomic_long_read(&nr_vmalloc_pages);
1049 }
1050 
__find_vmap_area(unsigned long addr,struct rb_root * root)1051 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1052 {
1053 	struct rb_node *n = root->rb_node;
1054 
1055 	addr = (unsigned long)kasan_reset_tag((void *)addr);
1056 
1057 	while (n) {
1058 		struct vmap_area *va;
1059 
1060 		va = rb_entry(n, struct vmap_area, rb_node);
1061 		if (addr < va->va_start)
1062 			n = n->rb_left;
1063 		else if (addr >= va->va_end)
1064 			n = n->rb_right;
1065 		else
1066 			return va;
1067 	}
1068 
1069 	return NULL;
1070 }
1071 
1072 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
1073 static struct vmap_area *
__find_vmap_area_exceed_addr(unsigned long addr,struct rb_root * root)1074 __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root)
1075 {
1076 	struct vmap_area *va = NULL;
1077 	struct rb_node *n = root->rb_node;
1078 
1079 	addr = (unsigned long)kasan_reset_tag((void *)addr);
1080 
1081 	while (n) {
1082 		struct vmap_area *tmp;
1083 
1084 		tmp = rb_entry(n, struct vmap_area, rb_node);
1085 		if (tmp->va_end > addr) {
1086 			va = tmp;
1087 			if (tmp->va_start <= addr)
1088 				break;
1089 
1090 			n = n->rb_left;
1091 		} else
1092 			n = n->rb_right;
1093 	}
1094 
1095 	return va;
1096 }
1097 
1098 /*
1099  * Returns a node where a first VA, that satisfies addr < va_end, resides.
1100  * If success, a node is locked. A user is responsible to unlock it when a
1101  * VA is no longer needed to be accessed.
1102  *
1103  * Returns NULL if nothing found.
1104  */
1105 static struct vmap_node *
find_vmap_area_exceed_addr_lock(unsigned long addr,struct vmap_area ** va)1106 find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va)
1107 {
1108 	unsigned long va_start_lowest;
1109 	struct vmap_node *vn;
1110 
1111 repeat:
1112 	va_start_lowest = 0;
1113 
1114 	for_each_vmap_node(vn) {
1115 		spin_lock(&vn->busy.lock);
1116 		*va = __find_vmap_area_exceed_addr(addr, &vn->busy.root);
1117 
1118 		if (*va)
1119 			if (!va_start_lowest || (*va)->va_start < va_start_lowest)
1120 				va_start_lowest = (*va)->va_start;
1121 		spin_unlock(&vn->busy.lock);
1122 	}
1123 
1124 	/*
1125 	 * Check if found VA exists, it might have gone away.  In this case we
1126 	 * repeat the search because a VA has been removed concurrently and we
1127 	 * need to proceed to the next one, which is a rare case.
1128 	 */
1129 	if (va_start_lowest) {
1130 		vn = addr_to_node(va_start_lowest);
1131 
1132 		spin_lock(&vn->busy.lock);
1133 		*va = __find_vmap_area(va_start_lowest, &vn->busy.root);
1134 
1135 		if (*va)
1136 			return vn;
1137 
1138 		spin_unlock(&vn->busy.lock);
1139 		goto repeat;
1140 	}
1141 
1142 	return NULL;
1143 }
1144 
1145 /*
1146  * This function returns back addresses of parent node
1147  * and its left or right link for further processing.
1148  *
1149  * Otherwise NULL is returned. In that case all further
1150  * steps regarding inserting of conflicting overlap range
1151  * have to be declined and actually considered as a bug.
1152  */
1153 static __always_inline struct rb_node **
find_va_links(struct vmap_area * va,struct rb_root * root,struct rb_node * from,struct rb_node ** parent)1154 find_va_links(struct vmap_area *va,
1155 	struct rb_root *root, struct rb_node *from,
1156 	struct rb_node **parent)
1157 {
1158 	struct vmap_area *tmp_va;
1159 	struct rb_node **link;
1160 
1161 	if (root) {
1162 		link = &root->rb_node;
1163 		if (unlikely(!*link)) {
1164 			*parent = NULL;
1165 			return link;
1166 		}
1167 	} else {
1168 		link = &from;
1169 	}
1170 
1171 	/*
1172 	 * Go to the bottom of the tree. When we hit the last point
1173 	 * we end up with parent rb_node and correct direction, i name
1174 	 * it link, where the new va->rb_node will be attached to.
1175 	 */
1176 	do {
1177 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
1178 
1179 		/*
1180 		 * During the traversal we also do some sanity check.
1181 		 * Trigger the BUG() if there are sides(left/right)
1182 		 * or full overlaps.
1183 		 */
1184 		if (va->va_end <= tmp_va->va_start)
1185 			link = &(*link)->rb_left;
1186 		else if (va->va_start >= tmp_va->va_end)
1187 			link = &(*link)->rb_right;
1188 		else {
1189 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
1190 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
1191 
1192 			return NULL;
1193 		}
1194 	} while (*link);
1195 
1196 	*parent = &tmp_va->rb_node;
1197 	return link;
1198 }
1199 
1200 static __always_inline struct list_head *
get_va_next_sibling(struct rb_node * parent,struct rb_node ** link)1201 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
1202 {
1203 	struct list_head *list;
1204 
1205 	if (unlikely(!parent))
1206 		/*
1207 		 * The red-black tree where we try to find VA neighbors
1208 		 * before merging or inserting is empty, i.e. it means
1209 		 * there is no free vmap space. Normally it does not
1210 		 * happen but we handle this case anyway.
1211 		 */
1212 		return NULL;
1213 
1214 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
1215 	return (&parent->rb_right == link ? list->next : list);
1216 }
1217 
1218 static __always_inline void
__link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head,bool augment)1219 __link_va(struct vmap_area *va, struct rb_root *root,
1220 	struct rb_node *parent, struct rb_node **link,
1221 	struct list_head *head, bool augment)
1222 {
1223 	/*
1224 	 * VA is still not in the list, but we can
1225 	 * identify its future previous list_head node.
1226 	 */
1227 	if (likely(parent)) {
1228 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
1229 		if (&parent->rb_right != link)
1230 			head = head->prev;
1231 	}
1232 
1233 	/* Insert to the rb-tree */
1234 	rb_link_node(&va->rb_node, parent, link);
1235 	if (augment) {
1236 		/*
1237 		 * Some explanation here. Just perform simple insertion
1238 		 * to the tree. We do not set va->subtree_max_size to
1239 		 * its current size before calling rb_insert_augmented().
1240 		 * It is because we populate the tree from the bottom
1241 		 * to parent levels when the node _is_ in the tree.
1242 		 *
1243 		 * Therefore we set subtree_max_size to zero after insertion,
1244 		 * to let __augment_tree_propagate_from() puts everything to
1245 		 * the correct order later on.
1246 		 */
1247 		rb_insert_augmented(&va->rb_node,
1248 			root, &free_vmap_area_rb_augment_cb);
1249 		va->subtree_max_size = 0;
1250 	} else {
1251 		rb_insert_color(&va->rb_node, root);
1252 	}
1253 
1254 	/* Address-sort this list */
1255 	list_add(&va->list, head);
1256 }
1257 
1258 static __always_inline void
link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)1259 link_va(struct vmap_area *va, struct rb_root *root,
1260 	struct rb_node *parent, struct rb_node **link,
1261 	struct list_head *head)
1262 {
1263 	__link_va(va, root, parent, link, head, false);
1264 }
1265 
1266 static __always_inline void
link_va_augment(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)1267 link_va_augment(struct vmap_area *va, struct rb_root *root,
1268 	struct rb_node *parent, struct rb_node **link,
1269 	struct list_head *head)
1270 {
1271 	__link_va(va, root, parent, link, head, true);
1272 }
1273 
1274 static __always_inline void
__unlink_va(struct vmap_area * va,struct rb_root * root,bool augment)1275 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
1276 {
1277 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
1278 		return;
1279 
1280 	if (augment)
1281 		rb_erase_augmented(&va->rb_node,
1282 			root, &free_vmap_area_rb_augment_cb);
1283 	else
1284 		rb_erase(&va->rb_node, root);
1285 
1286 	list_del_init(&va->list);
1287 	RB_CLEAR_NODE(&va->rb_node);
1288 }
1289 
1290 static __always_inline void
unlink_va(struct vmap_area * va,struct rb_root * root)1291 unlink_va(struct vmap_area *va, struct rb_root *root)
1292 {
1293 	__unlink_va(va, root, false);
1294 }
1295 
1296 static __always_inline void
unlink_va_augment(struct vmap_area * va,struct rb_root * root)1297 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1298 {
1299 	__unlink_va(va, root, true);
1300 }
1301 
1302 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1303 /*
1304  * Gets called when remove the node and rotate.
1305  */
1306 static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area * va)1307 compute_subtree_max_size(struct vmap_area *va)
1308 {
1309 	return max3(va_size(va),
1310 		get_subtree_max_size(va->rb_node.rb_left),
1311 		get_subtree_max_size(va->rb_node.rb_right));
1312 }
1313 
1314 static void
augment_tree_propagate_check(void)1315 augment_tree_propagate_check(void)
1316 {
1317 	struct vmap_area *va;
1318 	unsigned long computed_size;
1319 
1320 	list_for_each_entry(va, &free_vmap_area_list, list) {
1321 		computed_size = compute_subtree_max_size(va);
1322 		if (computed_size != va->subtree_max_size)
1323 			pr_emerg("tree is corrupted: %lu, %lu\n",
1324 				va_size(va), va->subtree_max_size);
1325 	}
1326 }
1327 #endif
1328 
1329 /*
1330  * This function populates subtree_max_size from bottom to upper
1331  * levels starting from VA point. The propagation must be done
1332  * when VA size is modified by changing its va_start/va_end. Or
1333  * in case of newly inserting of VA to the tree.
1334  *
1335  * It means that __augment_tree_propagate_from() must be called:
1336  * - After VA has been inserted to the tree(free path);
1337  * - After VA has been shrunk(allocation path);
1338  * - After VA has been increased(merging path).
1339  *
1340  * Please note that, it does not mean that upper parent nodes
1341  * and their subtree_max_size are recalculated all the time up
1342  * to the root node.
1343  *
1344  *       4--8
1345  *        /\
1346  *       /  \
1347  *      /    \
1348  *    2--2  8--8
1349  *
1350  * For example if we modify the node 4, shrinking it to 2, then
1351  * no any modification is required. If we shrink the node 2 to 1
1352  * its subtree_max_size is updated only, and set to 1. If we shrink
1353  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1354  * node becomes 4--6.
1355  */
1356 static __always_inline void
augment_tree_propagate_from(struct vmap_area * va)1357 augment_tree_propagate_from(struct vmap_area *va)
1358 {
1359 	/*
1360 	 * Populate the tree from bottom towards the root until
1361 	 * the calculated maximum available size of checked node
1362 	 * is equal to its current one.
1363 	 */
1364 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1365 
1366 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1367 	augment_tree_propagate_check();
1368 #endif
1369 }
1370 
1371 static void
insert_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1372 insert_vmap_area(struct vmap_area *va,
1373 	struct rb_root *root, struct list_head *head)
1374 {
1375 	struct rb_node **link;
1376 	struct rb_node *parent;
1377 
1378 	link = find_va_links(va, root, NULL, &parent);
1379 	if (link)
1380 		link_va(va, root, parent, link, head);
1381 }
1382 
1383 static void
insert_vmap_area_augment(struct vmap_area * va,struct rb_node * from,struct rb_root * root,struct list_head * head)1384 insert_vmap_area_augment(struct vmap_area *va,
1385 	struct rb_node *from, struct rb_root *root,
1386 	struct list_head *head)
1387 {
1388 	struct rb_node **link;
1389 	struct rb_node *parent;
1390 
1391 	if (from)
1392 		link = find_va_links(va, NULL, from, &parent);
1393 	else
1394 		link = find_va_links(va, root, NULL, &parent);
1395 
1396 	if (link) {
1397 		link_va_augment(va, root, parent, link, head);
1398 		augment_tree_propagate_from(va);
1399 	}
1400 }
1401 
1402 /*
1403  * Merge de-allocated chunk of VA memory with previous
1404  * and next free blocks. If coalesce is not done a new
1405  * free area is inserted. If VA has been merged, it is
1406  * freed.
1407  *
1408  * Please note, it can return NULL in case of overlap
1409  * ranges, followed by WARN() report. Despite it is a
1410  * buggy behaviour, a system can be alive and keep
1411  * ongoing.
1412  */
1413 static __always_inline struct vmap_area *
__merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head,bool augment)1414 __merge_or_add_vmap_area(struct vmap_area *va,
1415 	struct rb_root *root, struct list_head *head, bool augment)
1416 {
1417 	struct vmap_area *sibling;
1418 	struct list_head *next;
1419 	struct rb_node **link;
1420 	struct rb_node *parent;
1421 	bool merged = false;
1422 
1423 	/*
1424 	 * Find a place in the tree where VA potentially will be
1425 	 * inserted, unless it is merged with its sibling/siblings.
1426 	 */
1427 	link = find_va_links(va, root, NULL, &parent);
1428 	if (!link)
1429 		return NULL;
1430 
1431 	/*
1432 	 * Get next node of VA to check if merging can be done.
1433 	 */
1434 	next = get_va_next_sibling(parent, link);
1435 	if (unlikely(next == NULL))
1436 		goto insert;
1437 
1438 	/*
1439 	 * start            end
1440 	 * |                |
1441 	 * |<------VA------>|<-----Next----->|
1442 	 *                  |                |
1443 	 *                  start            end
1444 	 */
1445 	if (next != head) {
1446 		sibling = list_entry(next, struct vmap_area, list);
1447 		if (sibling->va_start == va->va_end) {
1448 			sibling->va_start = va->va_start;
1449 
1450 			/* Free vmap_area object. */
1451 			kmem_cache_free(vmap_area_cachep, va);
1452 
1453 			/* Point to the new merged area. */
1454 			va = sibling;
1455 			merged = true;
1456 		}
1457 	}
1458 
1459 	/*
1460 	 * start            end
1461 	 * |                |
1462 	 * |<-----Prev----->|<------VA------>|
1463 	 *                  |                |
1464 	 *                  start            end
1465 	 */
1466 	if (next->prev != head) {
1467 		sibling = list_entry(next->prev, struct vmap_area, list);
1468 		if (sibling->va_end == va->va_start) {
1469 			/*
1470 			 * If both neighbors are coalesced, it is important
1471 			 * to unlink the "next" node first, followed by merging
1472 			 * with "previous" one. Otherwise the tree might not be
1473 			 * fully populated if a sibling's augmented value is
1474 			 * "normalized" because of rotation operations.
1475 			 */
1476 			if (merged)
1477 				__unlink_va(va, root, augment);
1478 
1479 			sibling->va_end = va->va_end;
1480 
1481 			/* Free vmap_area object. */
1482 			kmem_cache_free(vmap_area_cachep, va);
1483 
1484 			/* Point to the new merged area. */
1485 			va = sibling;
1486 			merged = true;
1487 		}
1488 	}
1489 
1490 insert:
1491 	if (!merged)
1492 		__link_va(va, root, parent, link, head, augment);
1493 
1494 	return va;
1495 }
1496 
1497 static __always_inline struct vmap_area *
merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1498 merge_or_add_vmap_area(struct vmap_area *va,
1499 	struct rb_root *root, struct list_head *head)
1500 {
1501 	return __merge_or_add_vmap_area(va, root, head, false);
1502 }
1503 
1504 static __always_inline struct vmap_area *
merge_or_add_vmap_area_augment(struct vmap_area * va,struct rb_root * root,struct list_head * head)1505 merge_or_add_vmap_area_augment(struct vmap_area *va,
1506 	struct rb_root *root, struct list_head *head)
1507 {
1508 	va = __merge_or_add_vmap_area(va, root, head, true);
1509 	if (va)
1510 		augment_tree_propagate_from(va);
1511 
1512 	return va;
1513 }
1514 
1515 static __always_inline bool
is_within_this_va(struct vmap_area * va,unsigned long size,unsigned long align,unsigned long vstart)1516 is_within_this_va(struct vmap_area *va, unsigned long size,
1517 	unsigned long align, unsigned long vstart)
1518 {
1519 	unsigned long nva_start_addr;
1520 
1521 	if (va->va_start > vstart)
1522 		nva_start_addr = ALIGN(va->va_start, align);
1523 	else
1524 		nva_start_addr = ALIGN(vstart, align);
1525 
1526 	/* Can be overflowed due to big size or alignment. */
1527 	if (nva_start_addr + size < nva_start_addr ||
1528 			nva_start_addr < vstart)
1529 		return false;
1530 
1531 	return (nva_start_addr + size <= va->va_end);
1532 }
1533 
1534 /*
1535  * Find the first free block(lowest start address) in the tree,
1536  * that will accomplish the request corresponding to passing
1537  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1538  * a search length is adjusted to account for worst case alignment
1539  * overhead.
1540  */
1541 static __always_inline struct vmap_area *
find_vmap_lowest_match(struct rb_root * root,unsigned long size,unsigned long align,unsigned long vstart,bool adjust_search_size)1542 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1543 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1544 {
1545 	struct vmap_area *va;
1546 	struct rb_node *node;
1547 	unsigned long length;
1548 
1549 	/* Start from the root. */
1550 	node = root->rb_node;
1551 
1552 	/* Adjust the search size for alignment overhead. */
1553 	length = adjust_search_size ? size + align - 1 : size;
1554 
1555 	while (node) {
1556 		va = rb_entry(node, struct vmap_area, rb_node);
1557 
1558 		if (get_subtree_max_size(node->rb_left) >= length &&
1559 				vstart < va->va_start) {
1560 			node = node->rb_left;
1561 		} else {
1562 			if (is_within_this_va(va, size, align, vstart))
1563 				return va;
1564 
1565 			/*
1566 			 * Does not make sense to go deeper towards the right
1567 			 * sub-tree if it does not have a free block that is
1568 			 * equal or bigger to the requested search length.
1569 			 */
1570 			if (get_subtree_max_size(node->rb_right) >= length) {
1571 				node = node->rb_right;
1572 				continue;
1573 			}
1574 
1575 			/*
1576 			 * OK. We roll back and find the first right sub-tree,
1577 			 * that will satisfy the search criteria. It can happen
1578 			 * due to "vstart" restriction or an alignment overhead
1579 			 * that is bigger then PAGE_SIZE.
1580 			 */
1581 			while ((node = rb_parent(node))) {
1582 				va = rb_entry(node, struct vmap_area, rb_node);
1583 				if (is_within_this_va(va, size, align, vstart))
1584 					return va;
1585 
1586 				if (get_subtree_max_size(node->rb_right) >= length &&
1587 						vstart <= va->va_start) {
1588 					/*
1589 					 * Shift the vstart forward. Please note, we update it with
1590 					 * parent's start address adding "1" because we do not want
1591 					 * to enter same sub-tree after it has already been checked
1592 					 * and no suitable free block found there.
1593 					 */
1594 					vstart = va->va_start + 1;
1595 					node = node->rb_right;
1596 					break;
1597 				}
1598 			}
1599 		}
1600 	}
1601 
1602 	return NULL;
1603 }
1604 
1605 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1606 #include <linux/random.h>
1607 
1608 static struct vmap_area *
find_vmap_lowest_linear_match(struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart)1609 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1610 	unsigned long align, unsigned long vstart)
1611 {
1612 	struct vmap_area *va;
1613 
1614 	list_for_each_entry(va, head, list) {
1615 		if (!is_within_this_va(va, size, align, vstart))
1616 			continue;
1617 
1618 		return va;
1619 	}
1620 
1621 	return NULL;
1622 }
1623 
1624 static void
find_vmap_lowest_match_check(struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align)1625 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1626 			     unsigned long size, unsigned long align)
1627 {
1628 	struct vmap_area *va_1, *va_2;
1629 	unsigned long vstart;
1630 	unsigned int rnd;
1631 
1632 	get_random_bytes(&rnd, sizeof(rnd));
1633 	vstart = VMALLOC_START + rnd;
1634 
1635 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1636 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1637 
1638 	if (va_1 != va_2)
1639 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1640 			va_1, va_2, vstart);
1641 }
1642 #endif
1643 
1644 enum fit_type {
1645 	NOTHING_FIT = 0,
1646 	FL_FIT_TYPE = 1,	/* full fit */
1647 	LE_FIT_TYPE = 2,	/* left edge fit */
1648 	RE_FIT_TYPE = 3,	/* right edge fit */
1649 	NE_FIT_TYPE = 4		/* no edge fit */
1650 };
1651 
1652 static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1653 classify_va_fit_type(struct vmap_area *va,
1654 	unsigned long nva_start_addr, unsigned long size)
1655 {
1656 	enum fit_type type;
1657 
1658 	/* Check if it is within VA. */
1659 	if (nva_start_addr < va->va_start ||
1660 			nva_start_addr + size > va->va_end)
1661 		return NOTHING_FIT;
1662 
1663 	/* Now classify. */
1664 	if (va->va_start == nva_start_addr) {
1665 		if (va->va_end == nva_start_addr + size)
1666 			type = FL_FIT_TYPE;
1667 		else
1668 			type = LE_FIT_TYPE;
1669 	} else if (va->va_end == nva_start_addr + size) {
1670 		type = RE_FIT_TYPE;
1671 	} else {
1672 		type = NE_FIT_TYPE;
1673 	}
1674 
1675 	return type;
1676 }
1677 
1678 static __always_inline int
va_clip(struct rb_root * root,struct list_head * head,struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1679 va_clip(struct rb_root *root, struct list_head *head,
1680 		struct vmap_area *va, unsigned long nva_start_addr,
1681 		unsigned long size)
1682 {
1683 	struct vmap_area *lva = NULL;
1684 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1685 
1686 	if (type == FL_FIT_TYPE) {
1687 		/*
1688 		 * No need to split VA, it fully fits.
1689 		 *
1690 		 * |               |
1691 		 * V      NVA      V
1692 		 * |---------------|
1693 		 */
1694 		unlink_va_augment(va, root);
1695 		kmem_cache_free(vmap_area_cachep, va);
1696 	} else if (type == LE_FIT_TYPE) {
1697 		/*
1698 		 * Split left edge of fit VA.
1699 		 *
1700 		 * |       |
1701 		 * V  NVA  V   R
1702 		 * |-------|-------|
1703 		 */
1704 		va->va_start += size;
1705 	} else if (type == RE_FIT_TYPE) {
1706 		/*
1707 		 * Split right edge of fit VA.
1708 		 *
1709 		 *         |       |
1710 		 *     L   V  NVA  V
1711 		 * |-------|-------|
1712 		 */
1713 		va->va_end = nva_start_addr;
1714 	} else if (type == NE_FIT_TYPE) {
1715 		/*
1716 		 * Split no edge of fit VA.
1717 		 *
1718 		 *     |       |
1719 		 *   L V  NVA  V R
1720 		 * |---|-------|---|
1721 		 */
1722 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1723 		if (unlikely(!lva)) {
1724 			/*
1725 			 * For percpu allocator we do not do any pre-allocation
1726 			 * and leave it as it is. The reason is it most likely
1727 			 * never ends up with NE_FIT_TYPE splitting. In case of
1728 			 * percpu allocations offsets and sizes are aligned to
1729 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1730 			 * are its main fitting cases.
1731 			 *
1732 			 * There are a few exceptions though, as an example it is
1733 			 * a first allocation (early boot up) when we have "one"
1734 			 * big free space that has to be split.
1735 			 *
1736 			 * Also we can hit this path in case of regular "vmap"
1737 			 * allocations, if "this" current CPU was not preloaded.
1738 			 * See the comment in alloc_vmap_area() why. If so, then
1739 			 * GFP_NOWAIT is used instead to get an extra object for
1740 			 * split purpose. That is rare and most time does not
1741 			 * occur.
1742 			 *
1743 			 * What happens if an allocation gets failed. Basically,
1744 			 * an "overflow" path is triggered to purge lazily freed
1745 			 * areas to free some memory, then, the "retry" path is
1746 			 * triggered to repeat one more time. See more details
1747 			 * in alloc_vmap_area() function.
1748 			 */
1749 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1750 			if (!lva)
1751 				return -ENOMEM;
1752 		}
1753 
1754 		/*
1755 		 * Build the remainder.
1756 		 */
1757 		lva->va_start = va->va_start;
1758 		lva->va_end = nva_start_addr;
1759 
1760 		/*
1761 		 * Shrink this VA to remaining size.
1762 		 */
1763 		va->va_start = nva_start_addr + size;
1764 	} else {
1765 		return -EINVAL;
1766 	}
1767 
1768 	if (type != FL_FIT_TYPE) {
1769 		augment_tree_propagate_from(va);
1770 
1771 		if (lva)	/* type == NE_FIT_TYPE */
1772 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1773 	}
1774 
1775 	return 0;
1776 }
1777 
1778 static unsigned long
va_alloc(struct vmap_area * va,struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1779 va_alloc(struct vmap_area *va,
1780 		struct rb_root *root, struct list_head *head,
1781 		unsigned long size, unsigned long align,
1782 		unsigned long vstart, unsigned long vend)
1783 {
1784 	unsigned long nva_start_addr;
1785 	int ret;
1786 
1787 	if (va->va_start > vstart)
1788 		nva_start_addr = ALIGN(va->va_start, align);
1789 	else
1790 		nva_start_addr = ALIGN(vstart, align);
1791 
1792 	/* Check the "vend" restriction. */
1793 	if (nva_start_addr + size > vend)
1794 		return -ERANGE;
1795 
1796 	/* Update the free vmap_area. */
1797 	ret = va_clip(root, head, va, nva_start_addr, size);
1798 	if (WARN_ON_ONCE(ret))
1799 		return ret;
1800 
1801 	return nva_start_addr;
1802 }
1803 
1804 /*
1805  * Returns a start address of the newly allocated area, if success.
1806  * Otherwise an error value is returned that indicates failure.
1807  */
1808 static __always_inline unsigned long
__alloc_vmap_area(struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1809 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1810 	unsigned long size, unsigned long align,
1811 	unsigned long vstart, unsigned long vend)
1812 {
1813 	bool adjust_search_size = true;
1814 	unsigned long nva_start_addr;
1815 	struct vmap_area *va;
1816 
1817 	/*
1818 	 * Do not adjust when:
1819 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1820 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1821 	 *      aligned anyway;
1822 	 *   b) a short range where a requested size corresponds to exactly
1823 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1824 	 *      With adjusted search length an allocation would not succeed.
1825 	 */
1826 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1827 		adjust_search_size = false;
1828 
1829 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1830 	if (unlikely(!va))
1831 		return -ENOENT;
1832 
1833 	nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend);
1834 
1835 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1836 	if (!IS_ERR_VALUE(nva_start_addr))
1837 		find_vmap_lowest_match_check(root, head, size, align);
1838 #endif
1839 
1840 	return nva_start_addr;
1841 }
1842 
1843 /*
1844  * Free a region of KVA allocated by alloc_vmap_area
1845  */
free_vmap_area(struct vmap_area * va)1846 static void free_vmap_area(struct vmap_area *va)
1847 {
1848 	struct vmap_node *vn = addr_to_node(va->va_start);
1849 
1850 	/*
1851 	 * Remove from the busy tree/list.
1852 	 */
1853 	spin_lock(&vn->busy.lock);
1854 	unlink_va(va, &vn->busy.root);
1855 	spin_unlock(&vn->busy.lock);
1856 
1857 	/*
1858 	 * Insert/Merge it back to the free tree/list.
1859 	 */
1860 	spin_lock(&free_vmap_area_lock);
1861 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1862 	spin_unlock(&free_vmap_area_lock);
1863 }
1864 
1865 static inline void
preload_this_cpu_lock(spinlock_t * lock,gfp_t gfp_mask,int node)1866 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1867 {
1868 	struct vmap_area *va = NULL, *tmp;
1869 
1870 	/*
1871 	 * Preload this CPU with one extra vmap_area object. It is used
1872 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1873 	 * a CPU that does an allocation is preloaded.
1874 	 *
1875 	 * We do it in non-atomic context, thus it allows us to use more
1876 	 * permissive allocation masks to be more stable under low memory
1877 	 * condition and high memory pressure.
1878 	 */
1879 	if (!this_cpu_read(ne_fit_preload_node))
1880 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1881 
1882 	spin_lock(lock);
1883 
1884 	tmp = NULL;
1885 	if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va))
1886 		kmem_cache_free(vmap_area_cachep, va);
1887 }
1888 
1889 static struct vmap_pool *
size_to_va_pool(struct vmap_node * vn,unsigned long size)1890 size_to_va_pool(struct vmap_node *vn, unsigned long size)
1891 {
1892 	unsigned int idx = (size - 1) / PAGE_SIZE;
1893 
1894 	if (idx < MAX_VA_SIZE_PAGES)
1895 		return &vn->pool[idx];
1896 
1897 	return NULL;
1898 }
1899 
1900 static bool
node_pool_add_va(struct vmap_node * n,struct vmap_area * va)1901 node_pool_add_va(struct vmap_node *n, struct vmap_area *va)
1902 {
1903 	struct vmap_pool *vp;
1904 
1905 	vp = size_to_va_pool(n, va_size(va));
1906 	if (!vp)
1907 		return false;
1908 
1909 	spin_lock(&n->pool_lock);
1910 	list_add(&va->list, &vp->head);
1911 	WRITE_ONCE(vp->len, vp->len + 1);
1912 	spin_unlock(&n->pool_lock);
1913 
1914 	return true;
1915 }
1916 
1917 static struct vmap_area *
node_pool_del_va(struct vmap_node * vn,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1918 node_pool_del_va(struct vmap_node *vn, unsigned long size,
1919 		unsigned long align, unsigned long vstart,
1920 		unsigned long vend)
1921 {
1922 	struct vmap_area *va = NULL;
1923 	struct vmap_pool *vp;
1924 	int err = 0;
1925 
1926 	vp = size_to_va_pool(vn, size);
1927 	if (!vp || list_empty(&vp->head))
1928 		return NULL;
1929 
1930 	spin_lock(&vn->pool_lock);
1931 	if (!list_empty(&vp->head)) {
1932 		va = list_first_entry(&vp->head, struct vmap_area, list);
1933 
1934 		if (IS_ALIGNED(va->va_start, align)) {
1935 			/*
1936 			 * Do some sanity check and emit a warning
1937 			 * if one of below checks detects an error.
1938 			 */
1939 			err |= (va_size(va) != size);
1940 			err |= (va->va_start < vstart);
1941 			err |= (va->va_end > vend);
1942 
1943 			if (!WARN_ON_ONCE(err)) {
1944 				list_del_init(&va->list);
1945 				WRITE_ONCE(vp->len, vp->len - 1);
1946 			} else {
1947 				va = NULL;
1948 			}
1949 		} else {
1950 			list_move_tail(&va->list, &vp->head);
1951 			va = NULL;
1952 		}
1953 	}
1954 	spin_unlock(&vn->pool_lock);
1955 
1956 	return va;
1957 }
1958 
1959 static struct vmap_area *
node_alloc(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,unsigned long * addr,unsigned int * vn_id)1960 node_alloc(unsigned long size, unsigned long align,
1961 		unsigned long vstart, unsigned long vend,
1962 		unsigned long *addr, unsigned int *vn_id)
1963 {
1964 	struct vmap_area *va;
1965 
1966 	*vn_id = 0;
1967 	*addr = -EINVAL;
1968 
1969 	/*
1970 	 * Fallback to a global heap if not vmalloc or there
1971 	 * is only one node.
1972 	 */
1973 	if (vstart != VMALLOC_START || vend != VMALLOC_END ||
1974 			nr_vmap_nodes == 1)
1975 		return NULL;
1976 
1977 	*vn_id = raw_smp_processor_id() % nr_vmap_nodes;
1978 	va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend);
1979 	*vn_id = encode_vn_id(*vn_id);
1980 
1981 	if (va)
1982 		*addr = va->va_start;
1983 
1984 	return va;
1985 }
1986 
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)1987 static inline void setup_vmalloc_vm(struct vm_struct *vm,
1988 	struct vmap_area *va, unsigned long flags, const void *caller)
1989 {
1990 	vm->flags = flags;
1991 	vm->addr = (void *)va->va_start;
1992 	vm->size = vm->requested_size = va_size(va);
1993 	vm->caller = caller;
1994 	va->vm = vm;
1995 }
1996 
1997 /*
1998  * Allocate a region of KVA of the specified size and alignment, within the
1999  * vstart and vend. If vm is passed in, the two will also be bound.
2000  */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask,unsigned long va_flags,struct vm_struct * vm)2001 static struct vmap_area *alloc_vmap_area(unsigned long size,
2002 				unsigned long align,
2003 				unsigned long vstart, unsigned long vend,
2004 				int node, gfp_t gfp_mask,
2005 				unsigned long va_flags, struct vm_struct *vm)
2006 {
2007 	struct vmap_node *vn;
2008 	struct vmap_area *va;
2009 	unsigned long freed;
2010 	unsigned long addr;
2011 	unsigned int vn_id;
2012 	int purged = 0;
2013 	int ret;
2014 
2015 	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
2016 		return ERR_PTR(-EINVAL);
2017 
2018 	if (unlikely(!vmap_initialized))
2019 		return ERR_PTR(-EBUSY);
2020 
2021 	might_sleep();
2022 
2023 	/*
2024 	 * If a VA is obtained from a global heap(if it fails here)
2025 	 * it is anyway marked with this "vn_id" so it is returned
2026 	 * to this pool's node later. Such way gives a possibility
2027 	 * to populate pools based on users demand.
2028 	 *
2029 	 * On success a ready to go VA is returned.
2030 	 */
2031 	va = node_alloc(size, align, vstart, vend, &addr, &vn_id);
2032 	if (!va) {
2033 		gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
2034 
2035 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
2036 		if (unlikely(!va))
2037 			return ERR_PTR(-ENOMEM);
2038 
2039 		/*
2040 		 * Only scan the relevant parts containing pointers to other objects
2041 		 * to avoid false negatives.
2042 		 */
2043 		kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
2044 	}
2045 
2046 retry:
2047 	if (IS_ERR_VALUE(addr)) {
2048 		preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
2049 		addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
2050 			size, align, vstart, vend);
2051 		spin_unlock(&free_vmap_area_lock);
2052 	}
2053 
2054 	trace_alloc_vmap_area(addr, size, align, vstart, vend, IS_ERR_VALUE(addr));
2055 
2056 	/*
2057 	 * If an allocation fails, the error value is
2058 	 * returned. Therefore trigger the overflow path.
2059 	 */
2060 	if (IS_ERR_VALUE(addr))
2061 		goto overflow;
2062 
2063 	va->va_start = addr;
2064 	va->va_end = addr + size;
2065 	va->vm = NULL;
2066 	va->flags = (va_flags | vn_id);
2067 
2068 	if (vm) {
2069 		vm->addr = (void *)va->va_start;
2070 		vm->size = va_size(va);
2071 		va->vm = vm;
2072 	}
2073 
2074 	vn = addr_to_node(va->va_start);
2075 
2076 	spin_lock(&vn->busy.lock);
2077 	insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
2078 	spin_unlock(&vn->busy.lock);
2079 
2080 	BUG_ON(!IS_ALIGNED(va->va_start, align));
2081 	BUG_ON(va->va_start < vstart);
2082 	BUG_ON(va->va_end > vend);
2083 
2084 	ret = kasan_populate_vmalloc(addr, size);
2085 	if (ret) {
2086 		free_vmap_area(va);
2087 		return ERR_PTR(ret);
2088 	}
2089 
2090 	return va;
2091 
2092 overflow:
2093 	if (!purged) {
2094 		reclaim_and_purge_vmap_areas();
2095 		purged = 1;
2096 		goto retry;
2097 	}
2098 
2099 	freed = 0;
2100 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
2101 
2102 	if (freed > 0) {
2103 		purged = 0;
2104 		goto retry;
2105 	}
2106 
2107 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
2108 		pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n",
2109 				size, vstart, vend);
2110 
2111 	kmem_cache_free(vmap_area_cachep, va);
2112 	return ERR_PTR(-EBUSY);
2113 }
2114 
register_vmap_purge_notifier(struct notifier_block * nb)2115 int register_vmap_purge_notifier(struct notifier_block *nb)
2116 {
2117 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
2118 }
2119 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
2120 
unregister_vmap_purge_notifier(struct notifier_block * nb)2121 int unregister_vmap_purge_notifier(struct notifier_block *nb)
2122 {
2123 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
2124 }
2125 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
2126 
2127 /*
2128  * lazy_max_pages is the maximum amount of virtual address space we gather up
2129  * before attempting to purge with a TLB flush.
2130  *
2131  * There is a tradeoff here: a larger number will cover more kernel page tables
2132  * and take slightly longer to purge, but it will linearly reduce the number of
2133  * global TLB flushes that must be performed. It would seem natural to scale
2134  * this number up linearly with the number of CPUs (because vmapping activity
2135  * could also scale linearly with the number of CPUs), however it is likely
2136  * that in practice, workloads might be constrained in other ways that mean
2137  * vmap activity will not scale linearly with CPUs. Also, I want to be
2138  * conservative and not introduce a big latency on huge systems, so go with
2139  * a less aggressive log scale. It will still be an improvement over the old
2140  * code, and it will be simple to change the scale factor if we find that it
2141  * becomes a problem on bigger systems.
2142  */
lazy_max_pages(void)2143 static unsigned long lazy_max_pages(void)
2144 {
2145 	unsigned int log;
2146 
2147 	log = fls(num_online_cpus());
2148 
2149 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
2150 }
2151 
2152 /*
2153  * Serialize vmap purging.  There is no actual critical section protected
2154  * by this lock, but we want to avoid concurrent calls for performance
2155  * reasons and to make the pcpu_get_vm_areas more deterministic.
2156  */
2157 static DEFINE_MUTEX(vmap_purge_lock);
2158 
2159 /* for per-CPU blocks */
2160 static void purge_fragmented_blocks_allcpus(void);
2161 
2162 static void
reclaim_list_global(struct list_head * head)2163 reclaim_list_global(struct list_head *head)
2164 {
2165 	struct vmap_area *va, *n;
2166 
2167 	if (list_empty(head))
2168 		return;
2169 
2170 	spin_lock(&free_vmap_area_lock);
2171 	list_for_each_entry_safe(va, n, head, list)
2172 		merge_or_add_vmap_area_augment(va,
2173 			&free_vmap_area_root, &free_vmap_area_list);
2174 	spin_unlock(&free_vmap_area_lock);
2175 }
2176 
2177 static void
decay_va_pool_node(struct vmap_node * vn,bool full_decay)2178 decay_va_pool_node(struct vmap_node *vn, bool full_decay)
2179 {
2180 	LIST_HEAD(decay_list);
2181 	struct rb_root decay_root = RB_ROOT;
2182 	struct vmap_area *va, *nva;
2183 	unsigned long n_decay, pool_len;
2184 	int i;
2185 
2186 	for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
2187 		LIST_HEAD(tmp_list);
2188 
2189 		if (list_empty(&vn->pool[i].head))
2190 			continue;
2191 
2192 		/* Detach the pool, so no-one can access it. */
2193 		spin_lock(&vn->pool_lock);
2194 		list_replace_init(&vn->pool[i].head, &tmp_list);
2195 		spin_unlock(&vn->pool_lock);
2196 
2197 		pool_len = n_decay = vn->pool[i].len;
2198 		WRITE_ONCE(vn->pool[i].len, 0);
2199 
2200 		/* Decay a pool by ~25% out of left objects. */
2201 		if (!full_decay)
2202 			n_decay >>= 2;
2203 		pool_len -= n_decay;
2204 
2205 		list_for_each_entry_safe(va, nva, &tmp_list, list) {
2206 			if (!n_decay--)
2207 				break;
2208 
2209 			list_del_init(&va->list);
2210 			merge_or_add_vmap_area(va, &decay_root, &decay_list);
2211 		}
2212 
2213 		/*
2214 		 * Attach the pool back if it has been partly decayed.
2215 		 * Please note, it is supposed that nobody(other contexts)
2216 		 * can populate the pool therefore a simple list replace
2217 		 * operation takes place here.
2218 		 */
2219 		if (!list_empty(&tmp_list)) {
2220 			spin_lock(&vn->pool_lock);
2221 			list_replace_init(&tmp_list, &vn->pool[i].head);
2222 			WRITE_ONCE(vn->pool[i].len, pool_len);
2223 			spin_unlock(&vn->pool_lock);
2224 		}
2225 	}
2226 
2227 	reclaim_list_global(&decay_list);
2228 }
2229 
2230 static void
kasan_release_vmalloc_node(struct vmap_node * vn)2231 kasan_release_vmalloc_node(struct vmap_node *vn)
2232 {
2233 	struct vmap_area *va;
2234 	unsigned long start, end;
2235 
2236 	start = list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start;
2237 	end = list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end;
2238 
2239 	list_for_each_entry(va, &vn->purge_list, list) {
2240 		if (is_vmalloc_or_module_addr((void *) va->va_start))
2241 			kasan_release_vmalloc(va->va_start, va->va_end,
2242 				va->va_start, va->va_end,
2243 				KASAN_VMALLOC_PAGE_RANGE);
2244 	}
2245 
2246 	kasan_release_vmalloc(start, end, start, end, KASAN_VMALLOC_TLB_FLUSH);
2247 }
2248 
purge_vmap_node(struct work_struct * work)2249 static void purge_vmap_node(struct work_struct *work)
2250 {
2251 	struct vmap_node *vn = container_of(work,
2252 		struct vmap_node, purge_work);
2253 	unsigned long nr_purged_pages = 0;
2254 	struct vmap_area *va, *n_va;
2255 	LIST_HEAD(local_list);
2256 
2257 	if (IS_ENABLED(CONFIG_KASAN_VMALLOC))
2258 		kasan_release_vmalloc_node(vn);
2259 
2260 	vn->nr_purged = 0;
2261 
2262 	list_for_each_entry_safe(va, n_va, &vn->purge_list, list) {
2263 		unsigned long nr = va_size(va) >> PAGE_SHIFT;
2264 		unsigned int vn_id = decode_vn_id(va->flags);
2265 
2266 		list_del_init(&va->list);
2267 
2268 		nr_purged_pages += nr;
2269 		vn->nr_purged++;
2270 
2271 		if (is_vn_id_valid(vn_id) && !vn->skip_populate)
2272 			if (node_pool_add_va(vn, va))
2273 				continue;
2274 
2275 		/* Go back to global. */
2276 		list_add(&va->list, &local_list);
2277 	}
2278 
2279 	atomic_long_sub(nr_purged_pages, &vmap_lazy_nr);
2280 
2281 	reclaim_list_global(&local_list);
2282 }
2283 
2284 /*
2285  * Purges all lazily-freed vmap areas.
2286  */
__purge_vmap_area_lazy(unsigned long start,unsigned long end,bool full_pool_decay)2287 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end,
2288 		bool full_pool_decay)
2289 {
2290 	unsigned long nr_purged_areas = 0;
2291 	unsigned int nr_purge_helpers;
2292 	static cpumask_t purge_nodes;
2293 	unsigned int nr_purge_nodes;
2294 	struct vmap_node *vn;
2295 	int i;
2296 
2297 	lockdep_assert_held(&vmap_purge_lock);
2298 
2299 	/*
2300 	 * Use cpumask to mark which node has to be processed.
2301 	 */
2302 	purge_nodes = CPU_MASK_NONE;
2303 
2304 	for_each_vmap_node(vn) {
2305 		INIT_LIST_HEAD(&vn->purge_list);
2306 		vn->skip_populate = full_pool_decay;
2307 		decay_va_pool_node(vn, full_pool_decay);
2308 
2309 		if (RB_EMPTY_ROOT(&vn->lazy.root))
2310 			continue;
2311 
2312 		spin_lock(&vn->lazy.lock);
2313 		WRITE_ONCE(vn->lazy.root.rb_node, NULL);
2314 		list_replace_init(&vn->lazy.head, &vn->purge_list);
2315 		spin_unlock(&vn->lazy.lock);
2316 
2317 		start = min(start, list_first_entry(&vn->purge_list,
2318 			struct vmap_area, list)->va_start);
2319 
2320 		end = max(end, list_last_entry(&vn->purge_list,
2321 			struct vmap_area, list)->va_end);
2322 
2323 		cpumask_set_cpu(node_to_id(vn), &purge_nodes);
2324 	}
2325 
2326 	nr_purge_nodes = cpumask_weight(&purge_nodes);
2327 	if (nr_purge_nodes > 0) {
2328 		flush_tlb_kernel_range(start, end);
2329 
2330 		/* One extra worker is per a lazy_max_pages() full set minus one. */
2331 		nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages();
2332 		nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1;
2333 
2334 		for_each_cpu(i, &purge_nodes) {
2335 			vn = &vmap_nodes[i];
2336 
2337 			if (nr_purge_helpers > 0) {
2338 				INIT_WORK(&vn->purge_work, purge_vmap_node);
2339 
2340 				if (cpumask_test_cpu(i, cpu_online_mask))
2341 					schedule_work_on(i, &vn->purge_work);
2342 				else
2343 					schedule_work(&vn->purge_work);
2344 
2345 				nr_purge_helpers--;
2346 			} else {
2347 				vn->purge_work.func = NULL;
2348 				purge_vmap_node(&vn->purge_work);
2349 				nr_purged_areas += vn->nr_purged;
2350 			}
2351 		}
2352 
2353 		for_each_cpu(i, &purge_nodes) {
2354 			vn = &vmap_nodes[i];
2355 
2356 			if (vn->purge_work.func) {
2357 				flush_work(&vn->purge_work);
2358 				nr_purged_areas += vn->nr_purged;
2359 			}
2360 		}
2361 	}
2362 
2363 	trace_purge_vmap_area_lazy(start, end, nr_purged_areas);
2364 	return nr_purged_areas > 0;
2365 }
2366 
2367 /*
2368  * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
2369  */
reclaim_and_purge_vmap_areas(void)2370 static void reclaim_and_purge_vmap_areas(void)
2371 
2372 {
2373 	mutex_lock(&vmap_purge_lock);
2374 	purge_fragmented_blocks_allcpus();
2375 	__purge_vmap_area_lazy(ULONG_MAX, 0, true);
2376 	mutex_unlock(&vmap_purge_lock);
2377 }
2378 
drain_vmap_area_work(struct work_struct * work)2379 static void drain_vmap_area_work(struct work_struct *work)
2380 {
2381 	mutex_lock(&vmap_purge_lock);
2382 	__purge_vmap_area_lazy(ULONG_MAX, 0, false);
2383 	mutex_unlock(&vmap_purge_lock);
2384 }
2385 
2386 /*
2387  * Free a vmap area, caller ensuring that the area has been unmapped,
2388  * unlinked and flush_cache_vunmap had been called for the correct
2389  * range previously.
2390  */
free_vmap_area_noflush(struct vmap_area * va)2391 static void free_vmap_area_noflush(struct vmap_area *va)
2392 {
2393 	unsigned long nr_lazy_max = lazy_max_pages();
2394 	unsigned long va_start = va->va_start;
2395 	unsigned int vn_id = decode_vn_id(va->flags);
2396 	struct vmap_node *vn;
2397 	unsigned long nr_lazy;
2398 
2399 	if (WARN_ON_ONCE(!list_empty(&va->list)))
2400 		return;
2401 
2402 	nr_lazy = atomic_long_add_return_relaxed(va_size(va) >> PAGE_SHIFT,
2403 					 &vmap_lazy_nr);
2404 
2405 	/*
2406 	 * If it was request by a certain node we would like to
2407 	 * return it to that node, i.e. its pool for later reuse.
2408 	 */
2409 	vn = is_vn_id_valid(vn_id) ?
2410 		id_to_node(vn_id):addr_to_node(va->va_start);
2411 
2412 	spin_lock(&vn->lazy.lock);
2413 	insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head);
2414 	spin_unlock(&vn->lazy.lock);
2415 
2416 	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
2417 
2418 	/* After this point, we may free va at any time */
2419 	if (unlikely(nr_lazy > nr_lazy_max))
2420 		schedule_work(&drain_vmap_work);
2421 }
2422 
2423 /*
2424  * Free and unmap a vmap area
2425  */
free_unmap_vmap_area(struct vmap_area * va)2426 static void free_unmap_vmap_area(struct vmap_area *va)
2427 {
2428 	flush_cache_vunmap(va->va_start, va->va_end);
2429 	vunmap_range_noflush(va->va_start, va->va_end);
2430 	if (debug_pagealloc_enabled_static())
2431 		flush_tlb_kernel_range(va->va_start, va->va_end);
2432 
2433 	free_vmap_area_noflush(va);
2434 }
2435 
find_vmap_area(unsigned long addr)2436 struct vmap_area *find_vmap_area(unsigned long addr)
2437 {
2438 	struct vmap_node *vn;
2439 	struct vmap_area *va;
2440 	int i, j;
2441 
2442 	if (unlikely(!vmap_initialized))
2443 		return NULL;
2444 
2445 	/*
2446 	 * An addr_to_node_id(addr) converts an address to a node index
2447 	 * where a VA is located. If VA spans several zones and passed
2448 	 * addr is not the same as va->va_start, what is not common, we
2449 	 * may need to scan extra nodes. See an example:
2450 	 *
2451 	 *      <----va---->
2452 	 * -|-----|-----|-----|-----|-
2453 	 *     1     2     0     1
2454 	 *
2455 	 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
2456 	 * addr is within 2 or 0 nodes we should do extra work.
2457 	 */
2458 	i = j = addr_to_node_id(addr);
2459 	do {
2460 		vn = &vmap_nodes[i];
2461 
2462 		spin_lock(&vn->busy.lock);
2463 		va = __find_vmap_area(addr, &vn->busy.root);
2464 		spin_unlock(&vn->busy.lock);
2465 
2466 		if (va)
2467 			return va;
2468 	} while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j);
2469 
2470 	return NULL;
2471 }
2472 
find_unlink_vmap_area(unsigned long addr)2473 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
2474 {
2475 	struct vmap_node *vn;
2476 	struct vmap_area *va;
2477 	int i, j;
2478 
2479 	/*
2480 	 * Check the comment in the find_vmap_area() about the loop.
2481 	 */
2482 	i = j = addr_to_node_id(addr);
2483 	do {
2484 		vn = &vmap_nodes[i];
2485 
2486 		spin_lock(&vn->busy.lock);
2487 		va = __find_vmap_area(addr, &vn->busy.root);
2488 		if (va)
2489 			unlink_va(va, &vn->busy.root);
2490 		spin_unlock(&vn->busy.lock);
2491 
2492 		if (va)
2493 			return va;
2494 	} while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j);
2495 
2496 	return NULL;
2497 }
2498 
2499 /*** Per cpu kva allocator ***/
2500 
2501 /*
2502  * vmap space is limited especially on 32 bit architectures. Ensure there is
2503  * room for at least 16 percpu vmap blocks per CPU.
2504  */
2505 /*
2506  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
2507  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
2508  * instead (we just need a rough idea)
2509  */
2510 #if BITS_PER_LONG == 32
2511 #define VMALLOC_SPACE		(128UL*1024*1024)
2512 #else
2513 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
2514 #endif
2515 
2516 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
2517 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
2518 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
2519 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
2520 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
2521 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
2522 #define VMAP_BBMAP_BITS		\
2523 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
2524 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
2525 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
2526 
2527 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
2528 
2529 /*
2530  * Purge threshold to prevent overeager purging of fragmented blocks for
2531  * regular operations: Purge if vb->free is less than 1/4 of the capacity.
2532  */
2533 #define VMAP_PURGE_THRESHOLD	(VMAP_BBMAP_BITS / 4)
2534 
2535 #define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
2536 #define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
2537 #define VMAP_FLAGS_MASK		0x3
2538 
2539 struct vmap_block_queue {
2540 	spinlock_t lock;
2541 	struct list_head free;
2542 
2543 	/*
2544 	 * An xarray requires an extra memory dynamically to
2545 	 * be allocated. If it is an issue, we can use rb-tree
2546 	 * instead.
2547 	 */
2548 	struct xarray vmap_blocks;
2549 };
2550 
2551 struct vmap_block {
2552 	spinlock_t lock;
2553 	struct vmap_area *va;
2554 	unsigned long free, dirty;
2555 	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
2556 	unsigned long dirty_min, dirty_max; /*< dirty range */
2557 	struct list_head free_list;
2558 	struct rcu_head rcu_head;
2559 	struct list_head purge;
2560 	unsigned int cpu;
2561 };
2562 
2563 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2564 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
2565 
2566 /*
2567  * In order to fast access to any "vmap_block" associated with a
2568  * specific address, we use a hash.
2569  *
2570  * A per-cpu vmap_block_queue is used in both ways, to serialize
2571  * an access to free block chains among CPUs(alloc path) and it
2572  * also acts as a vmap_block hash(alloc/free paths). It means we
2573  * overload it, since we already have the per-cpu array which is
2574  * used as a hash table. When used as a hash a 'cpu' passed to
2575  * per_cpu() is not actually a CPU but rather a hash index.
2576  *
2577  * A hash function is addr_to_vb_xa() which hashes any address
2578  * to a specific index(in a hash) it belongs to. This then uses a
2579  * per_cpu() macro to access an array with generated index.
2580  *
2581  * An example:
2582  *
2583  *  CPU_1  CPU_2  CPU_0
2584  *    |      |      |
2585  *    V      V      V
2586  * 0     10     20     30     40     50     60
2587  * |------|------|------|------|------|------|...<vmap address space>
2588  *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2
2589  *
2590  * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2591  *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2592  *
2593  * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2594  *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2595  *
2596  * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2597  *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2598  *
2599  * This technique almost always avoids lock contention on insert/remove,
2600  * however xarray spinlocks protect against any contention that remains.
2601  */
2602 static struct xarray *
addr_to_vb_xa(unsigned long addr)2603 addr_to_vb_xa(unsigned long addr)
2604 {
2605 	int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids;
2606 
2607 	/*
2608 	 * Please note, nr_cpu_ids points on a highest set
2609 	 * possible bit, i.e. we never invoke cpumask_next()
2610 	 * if an index points on it which is nr_cpu_ids - 1.
2611 	 */
2612 	if (!cpu_possible(index))
2613 		index = cpumask_next(index, cpu_possible_mask);
2614 
2615 	return &per_cpu(vmap_block_queue, index).vmap_blocks;
2616 }
2617 
2618 /*
2619  * We should probably have a fallback mechanism to allocate virtual memory
2620  * out of partially filled vmap blocks. However vmap block sizing should be
2621  * fairly reasonable according to the vmalloc size, so it shouldn't be a
2622  * big problem.
2623  */
2624 
addr_to_vb_idx(unsigned long addr)2625 static unsigned long addr_to_vb_idx(unsigned long addr)
2626 {
2627 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2628 	addr /= VMAP_BLOCK_SIZE;
2629 	return addr;
2630 }
2631 
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)2632 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2633 {
2634 	unsigned long addr;
2635 
2636 	addr = va_start + (pages_off << PAGE_SHIFT);
2637 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2638 	return (void *)addr;
2639 }
2640 
2641 /**
2642  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2643  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
2644  * @order:    how many 2^order pages should be occupied in newly allocated block
2645  * @gfp_mask: flags for the page level allocator
2646  *
2647  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2648  */
new_vmap_block(unsigned int order,gfp_t gfp_mask)2649 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2650 {
2651 	struct vmap_block_queue *vbq;
2652 	struct vmap_block *vb;
2653 	struct vmap_area *va;
2654 	struct xarray *xa;
2655 	unsigned long vb_idx;
2656 	int node, err;
2657 	void *vaddr;
2658 
2659 	node = numa_node_id();
2660 
2661 	vb = kmalloc_node(sizeof(struct vmap_block),
2662 			gfp_mask & GFP_RECLAIM_MASK, node);
2663 	if (unlikely(!vb))
2664 		return ERR_PTR(-ENOMEM);
2665 
2666 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2667 					VMALLOC_START, VMALLOC_END,
2668 					node, gfp_mask,
2669 					VMAP_RAM|VMAP_BLOCK, NULL);
2670 	if (IS_ERR(va)) {
2671 		kfree(vb);
2672 		return ERR_CAST(va);
2673 	}
2674 
2675 	vaddr = vmap_block_vaddr(va->va_start, 0);
2676 	spin_lock_init(&vb->lock);
2677 	vb->va = va;
2678 	/* At least something should be left free */
2679 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2680 	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2681 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
2682 	vb->dirty = 0;
2683 	vb->dirty_min = VMAP_BBMAP_BITS;
2684 	vb->dirty_max = 0;
2685 	bitmap_set(vb->used_map, 0, (1UL << order));
2686 	INIT_LIST_HEAD(&vb->free_list);
2687 	vb->cpu = raw_smp_processor_id();
2688 
2689 	xa = addr_to_vb_xa(va->va_start);
2690 	vb_idx = addr_to_vb_idx(va->va_start);
2691 	err = xa_insert(xa, vb_idx, vb, gfp_mask);
2692 	if (err) {
2693 		kfree(vb);
2694 		free_vmap_area(va);
2695 		return ERR_PTR(err);
2696 	}
2697 	/*
2698 	 * list_add_tail_rcu could happened in another core
2699 	 * rather than vb->cpu due to task migration, which
2700 	 * is safe as list_add_tail_rcu will ensure the list's
2701 	 * integrity together with list_for_each_rcu from read
2702 	 * side.
2703 	 */
2704 	vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu);
2705 	spin_lock(&vbq->lock);
2706 	list_add_tail_rcu(&vb->free_list, &vbq->free);
2707 	spin_unlock(&vbq->lock);
2708 
2709 	return vaddr;
2710 }
2711 
free_vmap_block(struct vmap_block * vb)2712 static void free_vmap_block(struct vmap_block *vb)
2713 {
2714 	struct vmap_node *vn;
2715 	struct vmap_block *tmp;
2716 	struct xarray *xa;
2717 
2718 	xa = addr_to_vb_xa(vb->va->va_start);
2719 	tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2720 	BUG_ON(tmp != vb);
2721 
2722 	vn = addr_to_node(vb->va->va_start);
2723 	spin_lock(&vn->busy.lock);
2724 	unlink_va(vb->va, &vn->busy.root);
2725 	spin_unlock(&vn->busy.lock);
2726 
2727 	free_vmap_area_noflush(vb->va);
2728 	kfree_rcu(vb, rcu_head);
2729 }
2730 
purge_fragmented_block(struct vmap_block * vb,struct list_head * purge_list,bool force_purge)2731 static bool purge_fragmented_block(struct vmap_block *vb,
2732 		struct list_head *purge_list, bool force_purge)
2733 {
2734 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu);
2735 
2736 	if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2737 	    vb->dirty == VMAP_BBMAP_BITS)
2738 		return false;
2739 
2740 	/* Don't overeagerly purge usable blocks unless requested */
2741 	if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2742 		return false;
2743 
2744 	/* prevent further allocs after releasing lock */
2745 	WRITE_ONCE(vb->free, 0);
2746 	/* prevent purging it again */
2747 	WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2748 	vb->dirty_min = 0;
2749 	vb->dirty_max = VMAP_BBMAP_BITS;
2750 	spin_lock(&vbq->lock);
2751 	list_del_rcu(&vb->free_list);
2752 	spin_unlock(&vbq->lock);
2753 	list_add_tail(&vb->purge, purge_list);
2754 	return true;
2755 }
2756 
free_purged_blocks(struct list_head * purge_list)2757 static void free_purged_blocks(struct list_head *purge_list)
2758 {
2759 	struct vmap_block *vb, *n_vb;
2760 
2761 	list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2762 		list_del(&vb->purge);
2763 		free_vmap_block(vb);
2764 	}
2765 }
2766 
purge_fragmented_blocks(int cpu)2767 static void purge_fragmented_blocks(int cpu)
2768 {
2769 	LIST_HEAD(purge);
2770 	struct vmap_block *vb;
2771 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2772 
2773 	rcu_read_lock();
2774 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2775 		unsigned long free = READ_ONCE(vb->free);
2776 		unsigned long dirty = READ_ONCE(vb->dirty);
2777 
2778 		if (free + dirty != VMAP_BBMAP_BITS ||
2779 		    dirty == VMAP_BBMAP_BITS)
2780 			continue;
2781 
2782 		spin_lock(&vb->lock);
2783 		purge_fragmented_block(vb, &purge, true);
2784 		spin_unlock(&vb->lock);
2785 	}
2786 	rcu_read_unlock();
2787 	free_purged_blocks(&purge);
2788 }
2789 
purge_fragmented_blocks_allcpus(void)2790 static void purge_fragmented_blocks_allcpus(void)
2791 {
2792 	int cpu;
2793 
2794 	for_each_possible_cpu(cpu)
2795 		purge_fragmented_blocks(cpu);
2796 }
2797 
vb_alloc(unsigned long size,gfp_t gfp_mask)2798 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2799 {
2800 	struct vmap_block_queue *vbq;
2801 	struct vmap_block *vb;
2802 	void *vaddr = NULL;
2803 	unsigned int order;
2804 
2805 	BUG_ON(offset_in_page(size));
2806 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2807 	if (WARN_ON(size == 0)) {
2808 		/*
2809 		 * Allocating 0 bytes isn't what caller wants since
2810 		 * get_order(0) returns funny result. Just warn and terminate
2811 		 * early.
2812 		 */
2813 		return ERR_PTR(-EINVAL);
2814 	}
2815 	order = get_order(size);
2816 
2817 	rcu_read_lock();
2818 	vbq = raw_cpu_ptr(&vmap_block_queue);
2819 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2820 		unsigned long pages_off;
2821 
2822 		if (READ_ONCE(vb->free) < (1UL << order))
2823 			continue;
2824 
2825 		spin_lock(&vb->lock);
2826 		if (vb->free < (1UL << order)) {
2827 			spin_unlock(&vb->lock);
2828 			continue;
2829 		}
2830 
2831 		pages_off = VMAP_BBMAP_BITS - vb->free;
2832 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2833 		WRITE_ONCE(vb->free, vb->free - (1UL << order));
2834 		bitmap_set(vb->used_map, pages_off, (1UL << order));
2835 		if (vb->free == 0) {
2836 			spin_lock(&vbq->lock);
2837 			list_del_rcu(&vb->free_list);
2838 			spin_unlock(&vbq->lock);
2839 		}
2840 
2841 		spin_unlock(&vb->lock);
2842 		break;
2843 	}
2844 
2845 	rcu_read_unlock();
2846 
2847 	/* Allocate new block if nothing was found */
2848 	if (!vaddr)
2849 		vaddr = new_vmap_block(order, gfp_mask);
2850 
2851 	return vaddr;
2852 }
2853 
vb_free(unsigned long addr,unsigned long size)2854 static void vb_free(unsigned long addr, unsigned long size)
2855 {
2856 	unsigned long offset;
2857 	unsigned int order;
2858 	struct vmap_block *vb;
2859 	struct xarray *xa;
2860 
2861 	BUG_ON(offset_in_page(size));
2862 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2863 
2864 	flush_cache_vunmap(addr, addr + size);
2865 
2866 	order = get_order(size);
2867 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2868 
2869 	xa = addr_to_vb_xa(addr);
2870 	vb = xa_load(xa, addr_to_vb_idx(addr));
2871 
2872 	spin_lock(&vb->lock);
2873 	bitmap_clear(vb->used_map, offset, (1UL << order));
2874 	spin_unlock(&vb->lock);
2875 
2876 	vunmap_range_noflush(addr, addr + size);
2877 
2878 	if (debug_pagealloc_enabled_static())
2879 		flush_tlb_kernel_range(addr, addr + size);
2880 
2881 	spin_lock(&vb->lock);
2882 
2883 	/* Expand the not yet TLB flushed dirty range */
2884 	vb->dirty_min = min(vb->dirty_min, offset);
2885 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2886 
2887 	WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2888 	if (vb->dirty == VMAP_BBMAP_BITS) {
2889 		BUG_ON(vb->free);
2890 		spin_unlock(&vb->lock);
2891 		free_vmap_block(vb);
2892 	} else
2893 		spin_unlock(&vb->lock);
2894 }
2895 
_vm_unmap_aliases(unsigned long start,unsigned long end,int flush)2896 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2897 {
2898 	LIST_HEAD(purge_list);
2899 	int cpu;
2900 
2901 	if (unlikely(!vmap_initialized))
2902 		return;
2903 
2904 	mutex_lock(&vmap_purge_lock);
2905 
2906 	for_each_possible_cpu(cpu) {
2907 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2908 		struct vmap_block *vb;
2909 		unsigned long idx;
2910 
2911 		rcu_read_lock();
2912 		xa_for_each(&vbq->vmap_blocks, idx, vb) {
2913 			spin_lock(&vb->lock);
2914 
2915 			/*
2916 			 * Try to purge a fragmented block first. If it's
2917 			 * not purgeable, check whether there is dirty
2918 			 * space to be flushed.
2919 			 */
2920 			if (!purge_fragmented_block(vb, &purge_list, false) &&
2921 			    vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2922 				unsigned long va_start = vb->va->va_start;
2923 				unsigned long s, e;
2924 
2925 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2926 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2927 
2928 				start = min(s, start);
2929 				end   = max(e, end);
2930 
2931 				/* Prevent that this is flushed again */
2932 				vb->dirty_min = VMAP_BBMAP_BITS;
2933 				vb->dirty_max = 0;
2934 
2935 				flush = 1;
2936 			}
2937 			spin_unlock(&vb->lock);
2938 		}
2939 		rcu_read_unlock();
2940 	}
2941 	free_purged_blocks(&purge_list);
2942 
2943 	if (!__purge_vmap_area_lazy(start, end, false) && flush)
2944 		flush_tlb_kernel_range(start, end);
2945 	mutex_unlock(&vmap_purge_lock);
2946 }
2947 
2948 /**
2949  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2950  *
2951  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2952  * to amortize TLB flushing overheads. What this means is that any page you
2953  * have now, may, in a former life, have been mapped into kernel virtual
2954  * address by the vmap layer and so there might be some CPUs with TLB entries
2955  * still referencing that page (additional to the regular 1:1 kernel mapping).
2956  *
2957  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2958  * be sure that none of the pages we have control over will have any aliases
2959  * from the vmap layer.
2960  */
vm_unmap_aliases(void)2961 void vm_unmap_aliases(void)
2962 {
2963 	_vm_unmap_aliases(ULONG_MAX, 0, 0);
2964 }
2965 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2966 
2967 /**
2968  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2969  * @mem: the pointer returned by vm_map_ram
2970  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2971  */
vm_unmap_ram(const void * mem,unsigned int count)2972 void vm_unmap_ram(const void *mem, unsigned int count)
2973 {
2974 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2975 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2976 	struct vmap_area *va;
2977 
2978 	might_sleep();
2979 	BUG_ON(!addr);
2980 	BUG_ON(addr < VMALLOC_START);
2981 	BUG_ON(addr > VMALLOC_END);
2982 	BUG_ON(!PAGE_ALIGNED(addr));
2983 
2984 	kasan_poison_vmalloc(mem, size);
2985 
2986 	if (likely(count <= VMAP_MAX_ALLOC)) {
2987 		debug_check_no_locks_freed(mem, size);
2988 		vb_free(addr, size);
2989 		return;
2990 	}
2991 
2992 	va = find_unlink_vmap_area(addr);
2993 	if (WARN_ON_ONCE(!va))
2994 		return;
2995 
2996 	debug_check_no_locks_freed((void *)va->va_start, va_size(va));
2997 	free_unmap_vmap_area(va);
2998 }
2999 EXPORT_SYMBOL(vm_unmap_ram);
3000 
3001 /**
3002  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
3003  * @pages: an array of pointers to the pages to be mapped
3004  * @count: number of pages
3005  * @node: prefer to allocate data structures on this node
3006  *
3007  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
3008  * faster than vmap so it's good.  But if you mix long-life and short-life
3009  * objects with vm_map_ram(), it could consume lots of address space through
3010  * fragmentation (especially on a 32bit machine).  You could see failures in
3011  * the end.  Please use this function for short-lived objects.
3012  *
3013  * Returns: a pointer to the address that has been mapped, or %NULL on failure
3014  */
vm_map_ram(struct page ** pages,unsigned int count,int node)3015 void *vm_map_ram(struct page **pages, unsigned int count, int node)
3016 {
3017 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
3018 	unsigned long addr;
3019 	void *mem;
3020 
3021 	if (likely(count <= VMAP_MAX_ALLOC)) {
3022 		mem = vb_alloc(size, GFP_KERNEL);
3023 		if (IS_ERR(mem))
3024 			return NULL;
3025 		addr = (unsigned long)mem;
3026 	} else {
3027 		struct vmap_area *va;
3028 		va = alloc_vmap_area(size, PAGE_SIZE,
3029 				VMALLOC_START, VMALLOC_END,
3030 				node, GFP_KERNEL, VMAP_RAM,
3031 				NULL);
3032 		if (IS_ERR(va))
3033 			return NULL;
3034 
3035 		addr = va->va_start;
3036 		mem = (void *)addr;
3037 	}
3038 
3039 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
3040 				pages, PAGE_SHIFT) < 0) {
3041 		vm_unmap_ram(mem, count);
3042 		return NULL;
3043 	}
3044 
3045 	/*
3046 	 * Mark the pages as accessible, now that they are mapped.
3047 	 * With hardware tag-based KASAN, marking is skipped for
3048 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3049 	 */
3050 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
3051 
3052 	return mem;
3053 }
3054 EXPORT_SYMBOL(vm_map_ram);
3055 
3056 static struct vm_struct *vmlist __initdata;
3057 
vm_area_page_order(struct vm_struct * vm)3058 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
3059 {
3060 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3061 	return vm->page_order;
3062 #else
3063 	return 0;
3064 #endif
3065 }
3066 
get_vm_area_page_order(struct vm_struct * vm)3067 unsigned int get_vm_area_page_order(struct vm_struct *vm)
3068 {
3069 	return vm_area_page_order(vm);
3070 }
3071 
set_vm_area_page_order(struct vm_struct * vm,unsigned int order)3072 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
3073 {
3074 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3075 	vm->page_order = order;
3076 #else
3077 	BUG_ON(order != 0);
3078 #endif
3079 }
3080 
3081 /**
3082  * vm_area_add_early - add vmap area early during boot
3083  * @vm: vm_struct to add
3084  *
3085  * This function is used to add fixed kernel vm area to vmlist before
3086  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
3087  * should contain proper values and the other fields should be zero.
3088  *
3089  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3090  */
vm_area_add_early(struct vm_struct * vm)3091 void __init vm_area_add_early(struct vm_struct *vm)
3092 {
3093 	struct vm_struct *tmp, **p;
3094 
3095 	BUG_ON(vmap_initialized);
3096 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
3097 		if (tmp->addr >= vm->addr) {
3098 			BUG_ON(tmp->addr < vm->addr + vm->size);
3099 			break;
3100 		} else
3101 			BUG_ON(tmp->addr + tmp->size > vm->addr);
3102 	}
3103 	vm->next = *p;
3104 	*p = vm;
3105 }
3106 
3107 /**
3108  * vm_area_register_early - register vmap area early during boot
3109  * @vm: vm_struct to register
3110  * @align: requested alignment
3111  *
3112  * This function is used to register kernel vm area before
3113  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
3114  * proper values on entry and other fields should be zero.  On return,
3115  * vm->addr contains the allocated address.
3116  *
3117  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3118  */
vm_area_register_early(struct vm_struct * vm,size_t align)3119 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
3120 {
3121 	unsigned long addr = ALIGN(VMALLOC_START, align);
3122 	struct vm_struct *cur, **p;
3123 
3124 	BUG_ON(vmap_initialized);
3125 
3126 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
3127 		if ((unsigned long)cur->addr - addr >= vm->size)
3128 			break;
3129 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
3130 	}
3131 
3132 	BUG_ON(addr > VMALLOC_END - vm->size);
3133 	vm->addr = (void *)addr;
3134 	vm->next = *p;
3135 	*p = vm;
3136 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
3137 }
3138 
clear_vm_uninitialized_flag(struct vm_struct * vm)3139 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
3140 {
3141 	/*
3142 	 * Before removing VM_UNINITIALIZED,
3143 	 * we should make sure that vm has proper values.
3144 	 * Pair with smp_rmb() in vread_iter() and vmalloc_info_show().
3145 	 */
3146 	smp_wmb();
3147 	vm->flags &= ~VM_UNINITIALIZED;
3148 }
3149 
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long shift,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)3150 struct vm_struct *__get_vm_area_node(unsigned long size,
3151 		unsigned long align, unsigned long shift, unsigned long flags,
3152 		unsigned long start, unsigned long end, int node,
3153 		gfp_t gfp_mask, const void *caller)
3154 {
3155 	struct vmap_area *va;
3156 	struct vm_struct *area;
3157 	unsigned long requested_size = size;
3158 
3159 	BUG_ON(in_interrupt());
3160 	size = ALIGN(size, 1ul << shift);
3161 	if (unlikely(!size))
3162 		return NULL;
3163 
3164 	if (flags & VM_IOREMAP)
3165 		align = 1ul << clamp_t(int, get_count_order_long(size),
3166 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
3167 
3168 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
3169 	if (unlikely(!area))
3170 		return NULL;
3171 
3172 	if (!(flags & VM_NO_GUARD))
3173 		size += PAGE_SIZE;
3174 
3175 	area->flags = flags;
3176 	area->caller = caller;
3177 	area->requested_size = requested_size;
3178 
3179 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area);
3180 	if (IS_ERR(va)) {
3181 		kfree(area);
3182 		return NULL;
3183 	}
3184 
3185 	/*
3186 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
3187 	 * best-effort approach, as they can be mapped outside of vmalloc code.
3188 	 * For VM_ALLOC mappings, the pages are marked as accessible after
3189 	 * getting mapped in __vmalloc_node_range().
3190 	 * With hardware tag-based KASAN, marking is skipped for
3191 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3192 	 */
3193 	if (!(flags & VM_ALLOC))
3194 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
3195 						    KASAN_VMALLOC_PROT_NORMAL);
3196 
3197 	return area;
3198 }
3199 
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)3200 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
3201 				       unsigned long start, unsigned long end,
3202 				       const void *caller)
3203 {
3204 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
3205 				  NUMA_NO_NODE, GFP_KERNEL, caller);
3206 }
3207 
3208 /**
3209  * get_vm_area - reserve a contiguous kernel virtual area
3210  * @size:	 size of the area
3211  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
3212  *
3213  * Search an area of @size in the kernel virtual mapping area,
3214  * and reserved it for out purposes.  Returns the area descriptor
3215  * on success or %NULL on failure.
3216  *
3217  * Return: the area descriptor on success or %NULL on failure.
3218  */
get_vm_area(unsigned long size,unsigned long flags)3219 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
3220 {
3221 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3222 				  VMALLOC_START, VMALLOC_END,
3223 				  NUMA_NO_NODE, GFP_KERNEL,
3224 				  __builtin_return_address(0));
3225 }
3226 
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)3227 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
3228 				const void *caller)
3229 {
3230 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3231 				  VMALLOC_START, VMALLOC_END,
3232 				  NUMA_NO_NODE, GFP_KERNEL, caller);
3233 }
3234 
3235 /**
3236  * find_vm_area - find a continuous kernel virtual area
3237  * @addr:	  base address
3238  *
3239  * Search for the kernel VM area starting at @addr, and return it.
3240  * It is up to the caller to do all required locking to keep the returned
3241  * pointer valid.
3242  *
3243  * Return: the area descriptor on success or %NULL on failure.
3244  */
find_vm_area(const void * addr)3245 struct vm_struct *find_vm_area(const void *addr)
3246 {
3247 	struct vmap_area *va;
3248 
3249 	va = find_vmap_area((unsigned long)addr);
3250 	if (!va)
3251 		return NULL;
3252 
3253 	return va->vm;
3254 }
3255 
3256 /**
3257  * remove_vm_area - find and remove a continuous kernel virtual area
3258  * @addr:	    base address
3259  *
3260  * Search for the kernel VM area starting at @addr, and remove it.
3261  * This function returns the found VM area, but using it is NOT safe
3262  * on SMP machines, except for its size or flags.
3263  *
3264  * Return: the area descriptor on success or %NULL on failure.
3265  */
remove_vm_area(const void * addr)3266 struct vm_struct *remove_vm_area(const void *addr)
3267 {
3268 	struct vmap_area *va;
3269 	struct vm_struct *vm;
3270 
3271 	might_sleep();
3272 
3273 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
3274 			addr))
3275 		return NULL;
3276 
3277 	va = find_unlink_vmap_area((unsigned long)addr);
3278 	if (!va || !va->vm)
3279 		return NULL;
3280 	vm = va->vm;
3281 
3282 	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
3283 	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
3284 	kasan_free_module_shadow(vm);
3285 	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
3286 
3287 	free_unmap_vmap_area(va);
3288 	return vm;
3289 }
3290 
set_area_direct_map(const struct vm_struct * area,int (* set_direct_map)(struct page * page))3291 static inline void set_area_direct_map(const struct vm_struct *area,
3292 				       int (*set_direct_map)(struct page *page))
3293 {
3294 	int i;
3295 
3296 	/* HUGE_VMALLOC passes small pages to set_direct_map */
3297 	for (i = 0; i < area->nr_pages; i++)
3298 		if (page_address(area->pages[i]))
3299 			set_direct_map(area->pages[i]);
3300 }
3301 
3302 /*
3303  * Flush the vm mapping and reset the direct map.
3304  */
vm_reset_perms(struct vm_struct * area)3305 static void vm_reset_perms(struct vm_struct *area)
3306 {
3307 	unsigned long start = ULONG_MAX, end = 0;
3308 	unsigned int page_order = vm_area_page_order(area);
3309 	int flush_dmap = 0;
3310 	int i;
3311 
3312 	/*
3313 	 * Find the start and end range of the direct mappings to make sure that
3314 	 * the vm_unmap_aliases() flush includes the direct map.
3315 	 */
3316 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
3317 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
3318 
3319 		if (addr) {
3320 			unsigned long page_size;
3321 
3322 			page_size = PAGE_SIZE << page_order;
3323 			start = min(addr, start);
3324 			end = max(addr + page_size, end);
3325 			flush_dmap = 1;
3326 		}
3327 	}
3328 
3329 	/*
3330 	 * Set direct map to something invalid so that it won't be cached if
3331 	 * there are any accesses after the TLB flush, then flush the TLB and
3332 	 * reset the direct map permissions to the default.
3333 	 */
3334 	set_area_direct_map(area, set_direct_map_invalid_noflush);
3335 	_vm_unmap_aliases(start, end, flush_dmap);
3336 	set_area_direct_map(area, set_direct_map_default_noflush);
3337 }
3338 
delayed_vfree_work(struct work_struct * w)3339 static void delayed_vfree_work(struct work_struct *w)
3340 {
3341 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
3342 	struct llist_node *t, *llnode;
3343 
3344 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
3345 		vfree(llnode);
3346 }
3347 
3348 /**
3349  * vfree_atomic - release memory allocated by vmalloc()
3350  * @addr:	  memory base address
3351  *
3352  * This one is just like vfree() but can be called in any atomic context
3353  * except NMIs.
3354  */
vfree_atomic(const void * addr)3355 void vfree_atomic(const void *addr)
3356 {
3357 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
3358 
3359 	BUG_ON(in_nmi());
3360 	kmemleak_free(addr);
3361 
3362 	/*
3363 	 * Use raw_cpu_ptr() because this can be called from preemptible
3364 	 * context. Preemption is absolutely fine here, because the llist_add()
3365 	 * implementation is lockless, so it works even if we are adding to
3366 	 * another cpu's list. schedule_work() should be fine with this too.
3367 	 */
3368 	if (addr && llist_add((struct llist_node *)addr, &p->list))
3369 		schedule_work(&p->wq);
3370 }
3371 
3372 /**
3373  * vfree - Release memory allocated by vmalloc()
3374  * @addr:  Memory base address
3375  *
3376  * Free the virtually continuous memory area starting at @addr, as obtained
3377  * from one of the vmalloc() family of APIs.  This will usually also free the
3378  * physical memory underlying the virtual allocation, but that memory is
3379  * reference counted, so it will not be freed until the last user goes away.
3380  *
3381  * If @addr is NULL, no operation is performed.
3382  *
3383  * Context:
3384  * May sleep if called *not* from interrupt context.
3385  * Must not be called in NMI context (strictly speaking, it could be
3386  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
3387  * conventions for vfree() arch-dependent would be a really bad idea).
3388  */
vfree(const void * addr)3389 void vfree(const void *addr)
3390 {
3391 	struct vm_struct *vm;
3392 	int i;
3393 
3394 	if (unlikely(in_interrupt())) {
3395 		vfree_atomic(addr);
3396 		return;
3397 	}
3398 
3399 	BUG_ON(in_nmi());
3400 	kmemleak_free(addr);
3401 	might_sleep();
3402 
3403 	if (!addr)
3404 		return;
3405 
3406 	vm = remove_vm_area(addr);
3407 	if (unlikely(!vm)) {
3408 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
3409 				addr);
3410 		return;
3411 	}
3412 
3413 	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
3414 		vm_reset_perms(vm);
3415 	/* All pages of vm should be charged to same memcg, so use first one. */
3416 	if (vm->nr_pages && !(vm->flags & VM_MAP_PUT_PAGES))
3417 		mod_memcg_page_state(vm->pages[0], MEMCG_VMALLOC, -vm->nr_pages);
3418 	for (i = 0; i < vm->nr_pages; i++) {
3419 		struct page *page = vm->pages[i];
3420 
3421 		BUG_ON(!page);
3422 		/*
3423 		 * High-order allocs for huge vmallocs are split, so
3424 		 * can be freed as an array of order-0 allocations
3425 		 */
3426 		__free_page(page);
3427 		cond_resched();
3428 	}
3429 	if (!(vm->flags & VM_MAP_PUT_PAGES))
3430 		atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
3431 	kvfree(vm->pages);
3432 	kfree(vm);
3433 }
3434 EXPORT_SYMBOL(vfree);
3435 
3436 /**
3437  * vunmap - release virtual mapping obtained by vmap()
3438  * @addr:   memory base address
3439  *
3440  * Free the virtually contiguous memory area starting at @addr,
3441  * which was created from the page array passed to vmap().
3442  *
3443  * Must not be called in interrupt context.
3444  */
vunmap(const void * addr)3445 void vunmap(const void *addr)
3446 {
3447 	struct vm_struct *vm;
3448 
3449 	BUG_ON(in_interrupt());
3450 	might_sleep();
3451 
3452 	if (!addr)
3453 		return;
3454 	vm = remove_vm_area(addr);
3455 	if (unlikely(!vm)) {
3456 		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
3457 				addr);
3458 		return;
3459 	}
3460 	kfree(vm);
3461 }
3462 EXPORT_SYMBOL(vunmap);
3463 
3464 /**
3465  * vmap - map an array of pages into virtually contiguous space
3466  * @pages: array of page pointers
3467  * @count: number of pages to map
3468  * @flags: vm_area->flags
3469  * @prot: page protection for the mapping
3470  *
3471  * Maps @count pages from @pages into contiguous kernel virtual space.
3472  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
3473  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
3474  * are transferred from the caller to vmap(), and will be freed / dropped when
3475  * vfree() is called on the return value.
3476  *
3477  * Return: the address of the area or %NULL on failure
3478  */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)3479 void *vmap(struct page **pages, unsigned int count,
3480 	   unsigned long flags, pgprot_t prot)
3481 {
3482 	struct vm_struct *area;
3483 	unsigned long addr;
3484 	unsigned long size;		/* In bytes */
3485 
3486 	might_sleep();
3487 
3488 	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
3489 		return NULL;
3490 
3491 	/*
3492 	 * Your top guard is someone else's bottom guard. Not having a top
3493 	 * guard compromises someone else's mappings too.
3494 	 */
3495 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
3496 		flags &= ~VM_NO_GUARD;
3497 
3498 	if (count > totalram_pages())
3499 		return NULL;
3500 
3501 	size = (unsigned long)count << PAGE_SHIFT;
3502 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
3503 	if (!area)
3504 		return NULL;
3505 
3506 	addr = (unsigned long)area->addr;
3507 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
3508 				pages, PAGE_SHIFT) < 0) {
3509 		vunmap(area->addr);
3510 		return NULL;
3511 	}
3512 
3513 	if (flags & VM_MAP_PUT_PAGES) {
3514 		area->pages = pages;
3515 		area->nr_pages = count;
3516 	}
3517 	return area->addr;
3518 }
3519 EXPORT_SYMBOL(vmap);
3520 
3521 #ifdef CONFIG_VMAP_PFN
3522 struct vmap_pfn_data {
3523 	unsigned long	*pfns;
3524 	pgprot_t	prot;
3525 	unsigned int	idx;
3526 };
3527 
vmap_pfn_apply(pte_t * pte,unsigned long addr,void * private)3528 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
3529 {
3530 	struct vmap_pfn_data *data = private;
3531 	unsigned long pfn = data->pfns[data->idx];
3532 	pte_t ptent;
3533 
3534 	if (WARN_ON_ONCE(pfn_valid(pfn)))
3535 		return -EINVAL;
3536 
3537 	ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
3538 	set_pte_at(&init_mm, addr, pte, ptent);
3539 
3540 	data->idx++;
3541 	return 0;
3542 }
3543 
3544 /**
3545  * vmap_pfn - map an array of PFNs into virtually contiguous space
3546  * @pfns: array of PFNs
3547  * @count: number of pages to map
3548  * @prot: page protection for the mapping
3549  *
3550  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3551  * the start address of the mapping.
3552  */
vmap_pfn(unsigned long * pfns,unsigned int count,pgprot_t prot)3553 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3554 {
3555 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3556 	struct vm_struct *area;
3557 
3558 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3559 			__builtin_return_address(0));
3560 	if (!area)
3561 		return NULL;
3562 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3563 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3564 		free_vm_area(area);
3565 		return NULL;
3566 	}
3567 
3568 	flush_cache_vmap((unsigned long)area->addr,
3569 			 (unsigned long)area->addr + count * PAGE_SIZE);
3570 
3571 	return area->addr;
3572 }
3573 EXPORT_SYMBOL_GPL(vmap_pfn);
3574 #endif /* CONFIG_VMAP_PFN */
3575 
3576 static inline unsigned int
vm_area_alloc_pages(gfp_t gfp,int nid,unsigned int order,unsigned int nr_pages,struct page ** pages)3577 vm_area_alloc_pages(gfp_t gfp, int nid,
3578 		unsigned int order, unsigned int nr_pages, struct page **pages)
3579 {
3580 	unsigned int nr_allocated = 0;
3581 	struct page *page;
3582 	int i;
3583 
3584 	/*
3585 	 * For order-0 pages we make use of bulk allocator, if
3586 	 * the page array is partly or not at all populated due
3587 	 * to fails, fallback to a single page allocator that is
3588 	 * more permissive.
3589 	 */
3590 	if (!order) {
3591 		while (nr_allocated < nr_pages) {
3592 			unsigned int nr, nr_pages_request;
3593 
3594 			/*
3595 			 * A maximum allowed request is hard-coded and is 100
3596 			 * pages per call. That is done in order to prevent a
3597 			 * long preemption off scenario in the bulk-allocator
3598 			 * so the range is [1:100].
3599 			 */
3600 			nr_pages_request = min(100U, nr_pages - nr_allocated);
3601 
3602 			/* memory allocation should consider mempolicy, we can't
3603 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
3604 			 * otherwise memory may be allocated in only one node,
3605 			 * but mempolicy wants to alloc memory by interleaving.
3606 			 */
3607 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3608 				nr = alloc_pages_bulk_mempolicy_noprof(gfp,
3609 							nr_pages_request,
3610 							pages + nr_allocated);
3611 			else
3612 				nr = alloc_pages_bulk_node_noprof(gfp, nid,
3613 							nr_pages_request,
3614 							pages + nr_allocated);
3615 
3616 			nr_allocated += nr;
3617 			cond_resched();
3618 
3619 			/*
3620 			 * If zero or pages were obtained partly,
3621 			 * fallback to a single page allocator.
3622 			 */
3623 			if (nr != nr_pages_request)
3624 				break;
3625 		}
3626 	}
3627 
3628 	/* High-order pages or fallback path if "bulk" fails. */
3629 	while (nr_allocated < nr_pages) {
3630 		if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current))
3631 			break;
3632 
3633 		if (nid == NUMA_NO_NODE)
3634 			page = alloc_pages_noprof(gfp, order);
3635 		else
3636 			page = alloc_pages_node_noprof(nid, gfp, order);
3637 
3638 		if (unlikely(!page))
3639 			break;
3640 
3641 		/*
3642 		 * High-order allocations must be able to be treated as
3643 		 * independent small pages by callers (as they can with
3644 		 * small-page vmallocs). Some drivers do their own refcounting
3645 		 * on vmalloc_to_page() pages, some use page->mapping,
3646 		 * page->lru, etc.
3647 		 */
3648 		if (order)
3649 			split_page(page, order);
3650 
3651 		/*
3652 		 * Careful, we allocate and map page-order pages, but
3653 		 * tracking is done per PAGE_SIZE page so as to keep the
3654 		 * vm_struct APIs independent of the physical/mapped size.
3655 		 */
3656 		for (i = 0; i < (1U << order); i++)
3657 			pages[nr_allocated + i] = page + i;
3658 
3659 		cond_resched();
3660 		nr_allocated += 1U << order;
3661 	}
3662 
3663 	return nr_allocated;
3664 }
3665 
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,unsigned int page_shift,int node)3666 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3667 				 pgprot_t prot, unsigned int page_shift,
3668 				 int node)
3669 {
3670 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3671 	bool nofail = gfp_mask & __GFP_NOFAIL;
3672 	unsigned long addr = (unsigned long)area->addr;
3673 	unsigned long size = get_vm_area_size(area);
3674 	unsigned long array_size;
3675 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3676 	unsigned int page_order;
3677 	unsigned int flags;
3678 	int ret;
3679 
3680 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3681 
3682 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3683 		gfp_mask |= __GFP_HIGHMEM;
3684 
3685 	/* Please note that the recursion is strictly bounded. */
3686 	if (array_size > PAGE_SIZE) {
3687 		area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node,
3688 					area->caller);
3689 	} else {
3690 		area->pages = kmalloc_node_noprof(array_size, nested_gfp, node);
3691 	}
3692 
3693 	if (!area->pages) {
3694 		warn_alloc(gfp_mask, NULL,
3695 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3696 			nr_small_pages * PAGE_SIZE, array_size);
3697 		free_vm_area(area);
3698 		return NULL;
3699 	}
3700 
3701 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3702 	page_order = vm_area_page_order(area);
3703 
3704 	/*
3705 	 * High-order nofail allocations are really expensive and
3706 	 * potentially dangerous (pre-mature OOM, disruptive reclaim
3707 	 * and compaction etc.
3708 	 *
3709 	 * Please note, the __vmalloc_node_range_noprof() falls-back
3710 	 * to order-0 pages if high-order attempt is unsuccessful.
3711 	 */
3712 	area->nr_pages = vm_area_alloc_pages((page_order ?
3713 		gfp_mask & ~__GFP_NOFAIL : gfp_mask) | __GFP_NOWARN,
3714 		node, page_order, nr_small_pages, area->pages);
3715 
3716 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3717 	/* All pages of vm should be charged to same memcg, so use first one. */
3718 	if (gfp_mask & __GFP_ACCOUNT && area->nr_pages)
3719 		mod_memcg_page_state(area->pages[0], MEMCG_VMALLOC,
3720 				     area->nr_pages);
3721 
3722 	/*
3723 	 * If not enough pages were obtained to accomplish an
3724 	 * allocation request, free them via vfree() if any.
3725 	 */
3726 	if (area->nr_pages != nr_small_pages) {
3727 		/*
3728 		 * vm_area_alloc_pages() can fail due to insufficient memory but
3729 		 * also:-
3730 		 *
3731 		 * - a pending fatal signal
3732 		 * - insufficient huge page-order pages
3733 		 *
3734 		 * Since we always retry allocations at order-0 in the huge page
3735 		 * case a warning for either is spurious.
3736 		 */
3737 		if (!fatal_signal_pending(current) && page_order == 0)
3738 			warn_alloc(gfp_mask, NULL,
3739 				"vmalloc error: size %lu, failed to allocate pages",
3740 				area->nr_pages * PAGE_SIZE);
3741 		goto fail;
3742 	}
3743 
3744 	/*
3745 	 * page tables allocations ignore external gfp mask, enforce it
3746 	 * by the scope API
3747 	 */
3748 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3749 		flags = memalloc_nofs_save();
3750 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3751 		flags = memalloc_noio_save();
3752 
3753 	do {
3754 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3755 			page_shift);
3756 		if (nofail && (ret < 0))
3757 			schedule_timeout_uninterruptible(1);
3758 	} while (nofail && (ret < 0));
3759 
3760 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3761 		memalloc_nofs_restore(flags);
3762 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3763 		memalloc_noio_restore(flags);
3764 
3765 	if (ret < 0) {
3766 		warn_alloc(gfp_mask, NULL,
3767 			"vmalloc error: size %lu, failed to map pages",
3768 			area->nr_pages * PAGE_SIZE);
3769 		goto fail;
3770 	}
3771 
3772 	return area->addr;
3773 
3774 fail:
3775 	vfree(area->addr);
3776 	return NULL;
3777 }
3778 
3779 /**
3780  * __vmalloc_node_range - allocate virtually contiguous memory
3781  * @size:		  allocation size
3782  * @align:		  desired alignment
3783  * @start:		  vm area range start
3784  * @end:		  vm area range end
3785  * @gfp_mask:		  flags for the page level allocator
3786  * @prot:		  protection mask for the allocated pages
3787  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3788  * @node:		  node to use for allocation or NUMA_NO_NODE
3789  * @caller:		  caller's return address
3790  *
3791  * Allocate enough pages to cover @size from the page level
3792  * allocator with @gfp_mask flags. Please note that the full set of gfp
3793  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3794  * supported.
3795  * Zone modifiers are not supported. From the reclaim modifiers
3796  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3797  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3798  * __GFP_RETRY_MAYFAIL are not supported).
3799  *
3800  * __GFP_NOWARN can be used to suppress failures messages.
3801  *
3802  * Map them into contiguous kernel virtual space, using a pagetable
3803  * protection of @prot.
3804  *
3805  * Return: the address of the area or %NULL on failure
3806  */
__vmalloc_node_range_noprof(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)3807 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
3808 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3809 			pgprot_t prot, unsigned long vm_flags, int node,
3810 			const void *caller)
3811 {
3812 	struct vm_struct *area;
3813 	void *ret;
3814 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3815 	unsigned long original_align = align;
3816 	unsigned int shift = PAGE_SHIFT;
3817 
3818 	if (WARN_ON_ONCE(!size))
3819 		return NULL;
3820 
3821 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3822 		warn_alloc(gfp_mask, NULL,
3823 			"vmalloc error: size %lu, exceeds total pages",
3824 			size);
3825 		return NULL;
3826 	}
3827 
3828 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3829 		/*
3830 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3831 		 * others like modules don't yet expect huge pages in
3832 		 * their allocations due to apply_to_page_range not
3833 		 * supporting them.
3834 		 */
3835 
3836 		if (arch_vmap_pmd_supported(prot) && size >= PMD_SIZE)
3837 			shift = PMD_SHIFT;
3838 		else
3839 			shift = arch_vmap_pte_supported_shift(size);
3840 
3841 		align = max(original_align, 1UL << shift);
3842 	}
3843 
3844 again:
3845 	area = __get_vm_area_node(size, align, shift, VM_ALLOC |
3846 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3847 				  gfp_mask, caller);
3848 	if (!area) {
3849 		bool nofail = gfp_mask & __GFP_NOFAIL;
3850 		warn_alloc(gfp_mask, NULL,
3851 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3852 			size, (nofail) ? ". Retrying." : "");
3853 		if (nofail) {
3854 			schedule_timeout_uninterruptible(1);
3855 			goto again;
3856 		}
3857 		goto fail;
3858 	}
3859 
3860 	/*
3861 	 * Prepare arguments for __vmalloc_area_node() and
3862 	 * kasan_unpoison_vmalloc().
3863 	 */
3864 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3865 		if (kasan_hw_tags_enabled()) {
3866 			/*
3867 			 * Modify protection bits to allow tagging.
3868 			 * This must be done before mapping.
3869 			 */
3870 			prot = arch_vmap_pgprot_tagged(prot);
3871 
3872 			/*
3873 			 * Skip page_alloc poisoning and zeroing for physical
3874 			 * pages backing VM_ALLOC mapping. Memory is instead
3875 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3876 			 */
3877 			gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3878 		}
3879 
3880 		/* Take note that the mapping is PAGE_KERNEL. */
3881 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3882 	}
3883 
3884 	/* Allocate physical pages and map them into vmalloc space. */
3885 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3886 	if (!ret)
3887 		goto fail;
3888 
3889 	/*
3890 	 * Mark the pages as accessible, now that they are mapped.
3891 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3892 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3893 	 * to make sure that memory is initialized under the same conditions.
3894 	 * Tag-based KASAN modes only assign tags to normal non-executable
3895 	 * allocations, see __kasan_unpoison_vmalloc().
3896 	 */
3897 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3898 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3899 	    (gfp_mask & __GFP_SKIP_ZERO))
3900 		kasan_flags |= KASAN_VMALLOC_INIT;
3901 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3902 	area->addr = kasan_unpoison_vmalloc(area->addr, size, kasan_flags);
3903 
3904 	/*
3905 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3906 	 * flag. It means that vm_struct is not fully initialized.
3907 	 * Now, it is fully initialized, so remove this flag here.
3908 	 */
3909 	clear_vm_uninitialized_flag(area);
3910 
3911 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3912 		kmemleak_vmalloc(area, PAGE_ALIGN(size), gfp_mask);
3913 
3914 	return area->addr;
3915 
3916 fail:
3917 	if (shift > PAGE_SHIFT) {
3918 		shift = PAGE_SHIFT;
3919 		align = original_align;
3920 		goto again;
3921 	}
3922 
3923 	return NULL;
3924 }
3925 
3926 /**
3927  * __vmalloc_node - allocate virtually contiguous memory
3928  * @size:	    allocation size
3929  * @align:	    desired alignment
3930  * @gfp_mask:	    flags for the page level allocator
3931  * @node:	    node to use for allocation or NUMA_NO_NODE
3932  * @caller:	    caller's return address
3933  *
3934  * Allocate enough pages to cover @size from the page level allocator with
3935  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3936  *
3937  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3938  * and __GFP_NOFAIL are not supported
3939  *
3940  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3941  * with mm people.
3942  *
3943  * Return: pointer to the allocated memory or %NULL on error
3944  */
__vmalloc_node_noprof(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)3945 void *__vmalloc_node_noprof(unsigned long size, unsigned long align,
3946 			    gfp_t gfp_mask, int node, const void *caller)
3947 {
3948 	return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
3949 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3950 }
3951 /*
3952  * This is only for performance analysis of vmalloc and stress purpose.
3953  * It is required by vmalloc test module, therefore do not use it other
3954  * than that.
3955  */
3956 #ifdef CONFIG_TEST_VMALLOC_MODULE
3957 EXPORT_SYMBOL_GPL(__vmalloc_node_noprof);
3958 #endif
3959 
__vmalloc_noprof(unsigned long size,gfp_t gfp_mask)3960 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
3961 {
3962 	return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE,
3963 				__builtin_return_address(0));
3964 }
3965 EXPORT_SYMBOL(__vmalloc_noprof);
3966 
3967 /**
3968  * vmalloc - allocate virtually contiguous memory
3969  * @size:    allocation size
3970  *
3971  * Allocate enough pages to cover @size from the page level
3972  * allocator and map them into contiguous kernel virtual space.
3973  *
3974  * For tight control over page level allocator and protection flags
3975  * use __vmalloc() instead.
3976  *
3977  * Return: pointer to the allocated memory or %NULL on error
3978  */
vmalloc_noprof(unsigned long size)3979 void *vmalloc_noprof(unsigned long size)
3980 {
3981 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3982 				__builtin_return_address(0));
3983 }
3984 EXPORT_SYMBOL(vmalloc_noprof);
3985 
3986 /**
3987  * vmalloc_huge_node - allocate virtually contiguous memory, allow huge pages
3988  * @size:      allocation size
3989  * @gfp_mask:  flags for the page level allocator
3990  * @node:	    node to use for allocation or NUMA_NO_NODE
3991  *
3992  * Allocate enough pages to cover @size from the page level
3993  * allocator and map them into contiguous kernel virtual space.
3994  * If @size is greater than or equal to PMD_SIZE, allow using
3995  * huge pages for the memory
3996  *
3997  * Return: pointer to the allocated memory or %NULL on error
3998  */
vmalloc_huge_node_noprof(unsigned long size,gfp_t gfp_mask,int node)3999 void *vmalloc_huge_node_noprof(unsigned long size, gfp_t gfp_mask, int node)
4000 {
4001 	return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
4002 					   gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
4003 					   node, __builtin_return_address(0));
4004 }
4005 EXPORT_SYMBOL_GPL(vmalloc_huge_node_noprof);
4006 
4007 /**
4008  * vzalloc - allocate virtually contiguous memory with zero fill
4009  * @size:    allocation size
4010  *
4011  * Allocate enough pages to cover @size from the page level
4012  * allocator and map them into contiguous kernel virtual space.
4013  * The memory allocated is set to zero.
4014  *
4015  * For tight control over page level allocator and protection flags
4016  * use __vmalloc() instead.
4017  *
4018  * Return: pointer to the allocated memory or %NULL on error
4019  */
vzalloc_noprof(unsigned long size)4020 void *vzalloc_noprof(unsigned long size)
4021 {
4022 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
4023 				__builtin_return_address(0));
4024 }
4025 EXPORT_SYMBOL(vzalloc_noprof);
4026 
4027 /**
4028  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
4029  * @size: allocation size
4030  *
4031  * The resulting memory area is zeroed so it can be mapped to userspace
4032  * without leaking data.
4033  *
4034  * Return: pointer to the allocated memory or %NULL on error
4035  */
vmalloc_user_noprof(unsigned long size)4036 void *vmalloc_user_noprof(unsigned long size)
4037 {
4038 	return __vmalloc_node_range_noprof(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
4039 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
4040 				    VM_USERMAP, NUMA_NO_NODE,
4041 				    __builtin_return_address(0));
4042 }
4043 EXPORT_SYMBOL(vmalloc_user_noprof);
4044 
4045 /**
4046  * vmalloc_node - allocate memory on a specific node
4047  * @size:	  allocation size
4048  * @node:	  numa node
4049  *
4050  * Allocate enough pages to cover @size from the page level
4051  * allocator and map them into contiguous kernel virtual space.
4052  *
4053  * For tight control over page level allocator and protection flags
4054  * use __vmalloc() instead.
4055  *
4056  * Return: pointer to the allocated memory or %NULL on error
4057  */
vmalloc_node_noprof(unsigned long size,int node)4058 void *vmalloc_node_noprof(unsigned long size, int node)
4059 {
4060 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node,
4061 			__builtin_return_address(0));
4062 }
4063 EXPORT_SYMBOL(vmalloc_node_noprof);
4064 
4065 /**
4066  * vzalloc_node - allocate memory on a specific node with zero fill
4067  * @size:	allocation size
4068  * @node:	numa node
4069  *
4070  * Allocate enough pages to cover @size from the page level
4071  * allocator and map them into contiguous kernel virtual space.
4072  * The memory allocated is set to zero.
4073  *
4074  * Return: pointer to the allocated memory or %NULL on error
4075  */
vzalloc_node_noprof(unsigned long size,int node)4076 void *vzalloc_node_noprof(unsigned long size, int node)
4077 {
4078 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node,
4079 				__builtin_return_address(0));
4080 }
4081 EXPORT_SYMBOL(vzalloc_node_noprof);
4082 
4083 /**
4084  * vrealloc - reallocate virtually contiguous memory; contents remain unchanged
4085  * @p: object to reallocate memory for
4086  * @size: the size to reallocate
4087  * @flags: the flags for the page level allocator
4088  *
4089  * If @p is %NULL, vrealloc() behaves exactly like vmalloc(). If @size is 0 and
4090  * @p is not a %NULL pointer, the object pointed to is freed.
4091  *
4092  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4093  * initial memory allocation, every subsequent call to this API for the same
4094  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4095  * __GFP_ZERO is not fully honored by this API.
4096  *
4097  * In any case, the contents of the object pointed to are preserved up to the
4098  * lesser of the new and old sizes.
4099  *
4100  * This function must not be called concurrently with itself or vfree() for the
4101  * same memory allocation.
4102  *
4103  * Return: pointer to the allocated memory; %NULL if @size is zero or in case of
4104  *         failure
4105  */
vrealloc_noprof(const void * p,size_t size,gfp_t flags)4106 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags)
4107 {
4108 	struct vm_struct *vm = NULL;
4109 	size_t alloced_size = 0;
4110 	size_t old_size = 0;
4111 	void *n;
4112 
4113 	if (!size) {
4114 		vfree(p);
4115 		return NULL;
4116 	}
4117 
4118 	if (p) {
4119 		vm = find_vm_area(p);
4120 		if (unlikely(!vm)) {
4121 			WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p);
4122 			return NULL;
4123 		}
4124 
4125 		alloced_size = get_vm_area_size(vm);
4126 		old_size = vm->requested_size;
4127 		if (WARN(alloced_size < old_size,
4128 			 "vrealloc() has mismatched area vs requested sizes (%p)\n", p))
4129 			return NULL;
4130 	}
4131 
4132 	/*
4133 	 * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What
4134 	 * would be a good heuristic for when to shrink the vm_area?
4135 	 */
4136 	if (size <= old_size) {
4137 		/* Zero out "freed" memory, potentially for future realloc. */
4138 		if (want_init_on_free() || want_init_on_alloc(flags))
4139 			memset((void *)p + size, 0, old_size - size);
4140 		vm->requested_size = size;
4141 		kasan_poison_vmalloc(p + size, old_size - size);
4142 		return (void *)p;
4143 	}
4144 
4145 	/*
4146 	 * We already have the bytes available in the allocation; use them.
4147 	 */
4148 	if (size <= alloced_size) {
4149 		kasan_unpoison_vmalloc(p + old_size, size - old_size,
4150 				       KASAN_VMALLOC_PROT_NORMAL);
4151 		/*
4152 		 * No need to zero memory here, as unused memory will have
4153 		 * already been zeroed at initial allocation time or during
4154 		 * realloc shrink time.
4155 		 */
4156 		vm->requested_size = size;
4157 		return (void *)p;
4158 	}
4159 
4160 	/* TODO: Grow the vm_area, i.e. allocate and map additional pages. */
4161 	n = __vmalloc_noprof(size, flags);
4162 	if (!n)
4163 		return NULL;
4164 
4165 	if (p) {
4166 		memcpy(n, p, old_size);
4167 		vfree(p);
4168 	}
4169 
4170 	return n;
4171 }
4172 
4173 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
4174 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4175 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
4176 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
4177 #else
4178 /*
4179  * 64b systems should always have either DMA or DMA32 zones. For others
4180  * GFP_DMA32 should do the right thing and use the normal zone.
4181  */
4182 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4183 #endif
4184 
4185 /**
4186  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
4187  * @size:	allocation size
4188  *
4189  * Allocate enough 32bit PA addressable pages to cover @size from the
4190  * page level allocator and map them into contiguous kernel virtual space.
4191  *
4192  * Return: pointer to the allocated memory or %NULL on error
4193  */
vmalloc_32_noprof(unsigned long size)4194 void *vmalloc_32_noprof(unsigned long size)
4195 {
4196 	return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
4197 			__builtin_return_address(0));
4198 }
4199 EXPORT_SYMBOL(vmalloc_32_noprof);
4200 
4201 /**
4202  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
4203  * @size:	     allocation size
4204  *
4205  * The resulting memory area is 32bit addressable and zeroed so it can be
4206  * mapped to userspace without leaking data.
4207  *
4208  * Return: pointer to the allocated memory or %NULL on error
4209  */
vmalloc_32_user_noprof(unsigned long size)4210 void *vmalloc_32_user_noprof(unsigned long size)
4211 {
4212 	return __vmalloc_node_range_noprof(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
4213 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
4214 				    VM_USERMAP, NUMA_NO_NODE,
4215 				    __builtin_return_address(0));
4216 }
4217 EXPORT_SYMBOL(vmalloc_32_user_noprof);
4218 
4219 /*
4220  * Atomically zero bytes in the iterator.
4221  *
4222  * Returns the number of zeroed bytes.
4223  */
zero_iter(struct iov_iter * iter,size_t count)4224 static size_t zero_iter(struct iov_iter *iter, size_t count)
4225 {
4226 	size_t remains = count;
4227 
4228 	while (remains > 0) {
4229 		size_t num, copied;
4230 
4231 		num = min_t(size_t, remains, PAGE_SIZE);
4232 		copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
4233 		remains -= copied;
4234 
4235 		if (copied < num)
4236 			break;
4237 	}
4238 
4239 	return count - remains;
4240 }
4241 
4242 /*
4243  * small helper routine, copy contents to iter from addr.
4244  * If the page is not present, fill zero.
4245  *
4246  * Returns the number of copied bytes.
4247  */
aligned_vread_iter(struct iov_iter * iter,const char * addr,size_t count)4248 static size_t aligned_vread_iter(struct iov_iter *iter,
4249 				 const char *addr, size_t count)
4250 {
4251 	size_t remains = count;
4252 	struct page *page;
4253 
4254 	while (remains > 0) {
4255 		unsigned long offset, length;
4256 		size_t copied = 0;
4257 
4258 		offset = offset_in_page(addr);
4259 		length = PAGE_SIZE - offset;
4260 		if (length > remains)
4261 			length = remains;
4262 		page = vmalloc_to_page(addr);
4263 		/*
4264 		 * To do safe access to this _mapped_ area, we need lock. But
4265 		 * adding lock here means that we need to add overhead of
4266 		 * vmalloc()/vfree() calls for this _debug_ interface, rarely
4267 		 * used. Instead of that, we'll use an local mapping via
4268 		 * copy_page_to_iter_nofault() and accept a small overhead in
4269 		 * this access function.
4270 		 */
4271 		if (page)
4272 			copied = copy_page_to_iter_nofault(page, offset,
4273 							   length, iter);
4274 		else
4275 			copied = zero_iter(iter, length);
4276 
4277 		addr += copied;
4278 		remains -= copied;
4279 
4280 		if (copied != length)
4281 			break;
4282 	}
4283 
4284 	return count - remains;
4285 }
4286 
4287 /*
4288  * Read from a vm_map_ram region of memory.
4289  *
4290  * Returns the number of copied bytes.
4291  */
vmap_ram_vread_iter(struct iov_iter * iter,const char * addr,size_t count,unsigned long flags)4292 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
4293 				  size_t count, unsigned long flags)
4294 {
4295 	char *start;
4296 	struct vmap_block *vb;
4297 	struct xarray *xa;
4298 	unsigned long offset;
4299 	unsigned int rs, re;
4300 	size_t remains, n;
4301 
4302 	/*
4303 	 * If it's area created by vm_map_ram() interface directly, but
4304 	 * not further subdividing and delegating management to vmap_block,
4305 	 * handle it here.
4306 	 */
4307 	if (!(flags & VMAP_BLOCK))
4308 		return aligned_vread_iter(iter, addr, count);
4309 
4310 	remains = count;
4311 
4312 	/*
4313 	 * Area is split into regions and tracked with vmap_block, read out
4314 	 * each region and zero fill the hole between regions.
4315 	 */
4316 	xa = addr_to_vb_xa((unsigned long) addr);
4317 	vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
4318 	if (!vb)
4319 		goto finished_zero;
4320 
4321 	spin_lock(&vb->lock);
4322 	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
4323 		spin_unlock(&vb->lock);
4324 		goto finished_zero;
4325 	}
4326 
4327 	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4328 		size_t copied;
4329 
4330 		if (remains == 0)
4331 			goto finished;
4332 
4333 		start = vmap_block_vaddr(vb->va->va_start, rs);
4334 
4335 		if (addr < start) {
4336 			size_t to_zero = min_t(size_t, start - addr, remains);
4337 			size_t zeroed = zero_iter(iter, to_zero);
4338 
4339 			addr += zeroed;
4340 			remains -= zeroed;
4341 
4342 			if (remains == 0 || zeroed != to_zero)
4343 				goto finished;
4344 		}
4345 
4346 		/*it could start reading from the middle of used region*/
4347 		offset = offset_in_page(addr);
4348 		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4349 		if (n > remains)
4350 			n = remains;
4351 
4352 		copied = aligned_vread_iter(iter, start + offset, n);
4353 
4354 		addr += copied;
4355 		remains -= copied;
4356 
4357 		if (copied != n)
4358 			goto finished;
4359 	}
4360 
4361 	spin_unlock(&vb->lock);
4362 
4363 finished_zero:
4364 	/* zero-fill the left dirty or free regions */
4365 	return count - remains + zero_iter(iter, remains);
4366 finished:
4367 	/* We couldn't copy/zero everything */
4368 	spin_unlock(&vb->lock);
4369 	return count - remains;
4370 }
4371 
4372 /**
4373  * vread_iter() - read vmalloc area in a safe way to an iterator.
4374  * @iter:         the iterator to which data should be written.
4375  * @addr:         vm address.
4376  * @count:        number of bytes to be read.
4377  *
4378  * This function checks that addr is a valid vmalloc'ed area, and
4379  * copy data from that area to a given buffer. If the given memory range
4380  * of [addr...addr+count) includes some valid address, data is copied to
4381  * proper area of @buf. If there are memory holes, they'll be zero-filled.
4382  * IOREMAP area is treated as memory hole and no copy is done.
4383  *
4384  * If [addr...addr+count) doesn't includes any intersects with alive
4385  * vm_struct area, returns 0. @buf should be kernel's buffer.
4386  *
4387  * Note: In usual ops, vread() is never necessary because the caller
4388  * should know vmalloc() area is valid and can use memcpy().
4389  * This is for routines which have to access vmalloc area without
4390  * any information, as /proc/kcore.
4391  *
4392  * Return: number of bytes for which addr and buf should be increased
4393  * (same number as @count) or %0 if [addr...addr+count) doesn't
4394  * include any intersection with valid vmalloc area
4395  */
vread_iter(struct iov_iter * iter,const char * addr,size_t count)4396 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
4397 {
4398 	struct vmap_node *vn;
4399 	struct vmap_area *va;
4400 	struct vm_struct *vm;
4401 	char *vaddr;
4402 	size_t n, size, flags, remains;
4403 	unsigned long next;
4404 
4405 	addr = kasan_reset_tag(addr);
4406 
4407 	/* Don't allow overflow */
4408 	if ((unsigned long) addr + count < count)
4409 		count = -(unsigned long) addr;
4410 
4411 	remains = count;
4412 
4413 	vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va);
4414 	if (!vn)
4415 		goto finished_zero;
4416 
4417 	/* no intersects with alive vmap_area */
4418 	if ((unsigned long)addr + remains <= va->va_start)
4419 		goto finished_zero;
4420 
4421 	do {
4422 		size_t copied;
4423 
4424 		if (remains == 0)
4425 			goto finished;
4426 
4427 		vm = va->vm;
4428 		flags = va->flags & VMAP_FLAGS_MASK;
4429 		/*
4430 		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
4431 		 * be set together with VMAP_RAM.
4432 		 */
4433 		WARN_ON(flags == VMAP_BLOCK);
4434 
4435 		if (!vm && !flags)
4436 			goto next_va;
4437 
4438 		if (vm && (vm->flags & VM_UNINITIALIZED))
4439 			goto next_va;
4440 
4441 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4442 		smp_rmb();
4443 
4444 		vaddr = (char *) va->va_start;
4445 		size = vm ? get_vm_area_size(vm) : va_size(va);
4446 
4447 		if (addr >= vaddr + size)
4448 			goto next_va;
4449 
4450 		if (addr < vaddr) {
4451 			size_t to_zero = min_t(size_t, vaddr - addr, remains);
4452 			size_t zeroed = zero_iter(iter, to_zero);
4453 
4454 			addr += zeroed;
4455 			remains -= zeroed;
4456 
4457 			if (remains == 0 || zeroed != to_zero)
4458 				goto finished;
4459 		}
4460 
4461 		n = vaddr + size - addr;
4462 		if (n > remains)
4463 			n = remains;
4464 
4465 		if (flags & VMAP_RAM)
4466 			copied = vmap_ram_vread_iter(iter, addr, n, flags);
4467 		else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
4468 			copied = aligned_vread_iter(iter, addr, n);
4469 		else /* IOREMAP | SPARSE area is treated as memory hole */
4470 			copied = zero_iter(iter, n);
4471 
4472 		addr += copied;
4473 		remains -= copied;
4474 
4475 		if (copied != n)
4476 			goto finished;
4477 
4478 	next_va:
4479 		next = va->va_end;
4480 		spin_unlock(&vn->busy.lock);
4481 	} while ((vn = find_vmap_area_exceed_addr_lock(next, &va)));
4482 
4483 finished_zero:
4484 	if (vn)
4485 		spin_unlock(&vn->busy.lock);
4486 
4487 	/* zero-fill memory holes */
4488 	return count - remains + zero_iter(iter, remains);
4489 finished:
4490 	/* Nothing remains, or We couldn't copy/zero everything. */
4491 	if (vn)
4492 		spin_unlock(&vn->busy.lock);
4493 
4494 	return count - remains;
4495 }
4496 
4497 /**
4498  * remap_vmalloc_range_partial - map vmalloc pages to userspace
4499  * @vma:		vma to cover
4500  * @uaddr:		target user address to start at
4501  * @kaddr:		virtual address of vmalloc kernel memory
4502  * @pgoff:		offset from @kaddr to start at
4503  * @size:		size of map area
4504  *
4505  * Returns:	0 for success, -Exxx on failure
4506  *
4507  * This function checks that @kaddr is a valid vmalloc'ed area,
4508  * and that it is big enough to cover the range starting at
4509  * @uaddr in @vma. Will return failure if that criteria isn't
4510  * met.
4511  *
4512  * Similar to remap_pfn_range() (see mm/memory.c)
4513  */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long pgoff,unsigned long size)4514 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
4515 				void *kaddr, unsigned long pgoff,
4516 				unsigned long size)
4517 {
4518 	struct vm_struct *area;
4519 	unsigned long off;
4520 	unsigned long end_index;
4521 
4522 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
4523 		return -EINVAL;
4524 
4525 	size = PAGE_ALIGN(size);
4526 
4527 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
4528 		return -EINVAL;
4529 
4530 	area = find_vm_area(kaddr);
4531 	if (!area)
4532 		return -EINVAL;
4533 
4534 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
4535 		return -EINVAL;
4536 
4537 	if (check_add_overflow(size, off, &end_index) ||
4538 	    end_index > get_vm_area_size(area))
4539 		return -EINVAL;
4540 	kaddr += off;
4541 
4542 	do {
4543 		struct page *page = vmalloc_to_page(kaddr);
4544 		int ret;
4545 
4546 		ret = vm_insert_page(vma, uaddr, page);
4547 		if (ret)
4548 			return ret;
4549 
4550 		uaddr += PAGE_SIZE;
4551 		kaddr += PAGE_SIZE;
4552 		size -= PAGE_SIZE;
4553 	} while (size > 0);
4554 
4555 	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
4556 
4557 	return 0;
4558 }
4559 
4560 /**
4561  * remap_vmalloc_range - map vmalloc pages to userspace
4562  * @vma:		vma to cover (map full range of vma)
4563  * @addr:		vmalloc memory
4564  * @pgoff:		number of pages into addr before first page to map
4565  *
4566  * Returns:	0 for success, -Exxx on failure
4567  *
4568  * This function checks that addr is a valid vmalloc'ed area, and
4569  * that it is big enough to cover the vma. Will return failure if
4570  * that criteria isn't met.
4571  *
4572  * Similar to remap_pfn_range() (see mm/memory.c)
4573  */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)4574 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
4575 						unsigned long pgoff)
4576 {
4577 	return remap_vmalloc_range_partial(vma, vma->vm_start,
4578 					   addr, pgoff,
4579 					   vma->vm_end - vma->vm_start);
4580 }
4581 EXPORT_SYMBOL(remap_vmalloc_range);
4582 
free_vm_area(struct vm_struct * area)4583 void free_vm_area(struct vm_struct *area)
4584 {
4585 	struct vm_struct *ret;
4586 	ret = remove_vm_area(area->addr);
4587 	BUG_ON(ret != area);
4588 	kfree(area);
4589 }
4590 EXPORT_SYMBOL_GPL(free_vm_area);
4591 
4592 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)4593 static struct vmap_area *node_to_va(struct rb_node *n)
4594 {
4595 	return rb_entry_safe(n, struct vmap_area, rb_node);
4596 }
4597 
4598 /**
4599  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4600  * @addr: target address
4601  *
4602  * Returns: vmap_area if it is found. If there is no such area
4603  *   the first highest(reverse order) vmap_area is returned
4604  *   i.e. va->va_start < addr && va->va_end < addr or NULL
4605  *   if there are no any areas before @addr.
4606  */
4607 static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)4608 pvm_find_va_enclose_addr(unsigned long addr)
4609 {
4610 	struct vmap_area *va, *tmp;
4611 	struct rb_node *n;
4612 
4613 	n = free_vmap_area_root.rb_node;
4614 	va = NULL;
4615 
4616 	while (n) {
4617 		tmp = rb_entry(n, struct vmap_area, rb_node);
4618 		if (tmp->va_start <= addr) {
4619 			va = tmp;
4620 			if (tmp->va_end >= addr)
4621 				break;
4622 
4623 			n = n->rb_right;
4624 		} else {
4625 			n = n->rb_left;
4626 		}
4627 	}
4628 
4629 	return va;
4630 }
4631 
4632 /**
4633  * pvm_determine_end_from_reverse - find the highest aligned address
4634  * of free block below VMALLOC_END
4635  * @va:
4636  *   in - the VA we start the search(reverse order);
4637  *   out - the VA with the highest aligned end address.
4638  * @align: alignment for required highest address
4639  *
4640  * Returns: determined end address within vmap_area
4641  */
4642 static unsigned long
pvm_determine_end_from_reverse(struct vmap_area ** va,unsigned long align)4643 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4644 {
4645 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4646 	unsigned long addr;
4647 
4648 	if (likely(*va)) {
4649 		list_for_each_entry_from_reverse((*va),
4650 				&free_vmap_area_list, list) {
4651 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4652 			if ((*va)->va_start < addr)
4653 				return addr;
4654 		}
4655 	}
4656 
4657 	return 0;
4658 }
4659 
4660 /**
4661  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4662  * @offsets: array containing offset of each area
4663  * @sizes: array containing size of each area
4664  * @nr_vms: the number of areas to allocate
4665  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4666  *
4667  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4668  *	    vm_structs on success, %NULL on failure
4669  *
4670  * Percpu allocator wants to use congruent vm areas so that it can
4671  * maintain the offsets among percpu areas.  This function allocates
4672  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
4673  * be scattered pretty far, distance between two areas easily going up
4674  * to gigabytes.  To avoid interacting with regular vmallocs, these
4675  * areas are allocated from top.
4676  *
4677  * Despite its complicated look, this allocator is rather simple. It
4678  * does everything top-down and scans free blocks from the end looking
4679  * for matching base. While scanning, if any of the areas do not fit the
4680  * base address is pulled down to fit the area. Scanning is repeated till
4681  * all the areas fit and then all necessary data structures are inserted
4682  * and the result is returned.
4683  */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)4684 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4685 				     const size_t *sizes, int nr_vms,
4686 				     size_t align)
4687 {
4688 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4689 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4690 	struct vmap_area **vas, *va;
4691 	struct vm_struct **vms;
4692 	int area, area2, last_area, term_area;
4693 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
4694 	bool purged = false;
4695 
4696 	/* verify parameters and allocate data structures */
4697 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4698 	for (last_area = 0, area = 0; area < nr_vms; area++) {
4699 		start = offsets[area];
4700 		end = start + sizes[area];
4701 
4702 		/* is everything aligned properly? */
4703 		BUG_ON(!IS_ALIGNED(offsets[area], align));
4704 		BUG_ON(!IS_ALIGNED(sizes[area], align));
4705 
4706 		/* detect the area with the highest address */
4707 		if (start > offsets[last_area])
4708 			last_area = area;
4709 
4710 		for (area2 = area + 1; area2 < nr_vms; area2++) {
4711 			unsigned long start2 = offsets[area2];
4712 			unsigned long end2 = start2 + sizes[area2];
4713 
4714 			BUG_ON(start2 < end && start < end2);
4715 		}
4716 	}
4717 	last_end = offsets[last_area] + sizes[last_area];
4718 
4719 	if (vmalloc_end - vmalloc_start < last_end) {
4720 		WARN_ON(true);
4721 		return NULL;
4722 	}
4723 
4724 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4725 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4726 	if (!vas || !vms)
4727 		goto err_free2;
4728 
4729 	for (area = 0; area < nr_vms; area++) {
4730 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4731 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4732 		if (!vas[area] || !vms[area])
4733 			goto err_free;
4734 	}
4735 retry:
4736 	spin_lock(&free_vmap_area_lock);
4737 
4738 	/* start scanning - we scan from the top, begin with the last area */
4739 	area = term_area = last_area;
4740 	start = offsets[area];
4741 	end = start + sizes[area];
4742 
4743 	va = pvm_find_va_enclose_addr(vmalloc_end);
4744 	base = pvm_determine_end_from_reverse(&va, align) - end;
4745 
4746 	while (true) {
4747 		/*
4748 		 * base might have underflowed, add last_end before
4749 		 * comparing.
4750 		 */
4751 		if (base + last_end < vmalloc_start + last_end)
4752 			goto overflow;
4753 
4754 		/*
4755 		 * Fitting base has not been found.
4756 		 */
4757 		if (va == NULL)
4758 			goto overflow;
4759 
4760 		/*
4761 		 * If required width exceeds current VA block, move
4762 		 * base downwards and then recheck.
4763 		 */
4764 		if (base + end > va->va_end) {
4765 			base = pvm_determine_end_from_reverse(&va, align) - end;
4766 			term_area = area;
4767 			continue;
4768 		}
4769 
4770 		/*
4771 		 * If this VA does not fit, move base downwards and recheck.
4772 		 */
4773 		if (base + start < va->va_start) {
4774 			va = node_to_va(rb_prev(&va->rb_node));
4775 			base = pvm_determine_end_from_reverse(&va, align) - end;
4776 			term_area = area;
4777 			continue;
4778 		}
4779 
4780 		/*
4781 		 * This area fits, move on to the previous one.  If
4782 		 * the previous one is the terminal one, we're done.
4783 		 */
4784 		area = (area + nr_vms - 1) % nr_vms;
4785 		if (area == term_area)
4786 			break;
4787 
4788 		start = offsets[area];
4789 		end = start + sizes[area];
4790 		va = pvm_find_va_enclose_addr(base + end);
4791 	}
4792 
4793 	/* we've found a fitting base, insert all va's */
4794 	for (area = 0; area < nr_vms; area++) {
4795 		int ret;
4796 
4797 		start = base + offsets[area];
4798 		size = sizes[area];
4799 
4800 		va = pvm_find_va_enclose_addr(start);
4801 		if (WARN_ON_ONCE(va == NULL))
4802 			/* It is a BUG(), but trigger recovery instead. */
4803 			goto recovery;
4804 
4805 		ret = va_clip(&free_vmap_area_root,
4806 			&free_vmap_area_list, va, start, size);
4807 		if (WARN_ON_ONCE(unlikely(ret)))
4808 			/* It is a BUG(), but trigger recovery instead. */
4809 			goto recovery;
4810 
4811 		/* Allocated area. */
4812 		va = vas[area];
4813 		va->va_start = start;
4814 		va->va_end = start + size;
4815 	}
4816 
4817 	spin_unlock(&free_vmap_area_lock);
4818 
4819 	/* populate the kasan shadow space */
4820 	for (area = 0; area < nr_vms; area++) {
4821 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4822 			goto err_free_shadow;
4823 	}
4824 
4825 	/* insert all vm's */
4826 	for (area = 0; area < nr_vms; area++) {
4827 		struct vmap_node *vn = addr_to_node(vas[area]->va_start);
4828 
4829 		spin_lock(&vn->busy.lock);
4830 		insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head);
4831 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
4832 				 pcpu_get_vm_areas);
4833 		spin_unlock(&vn->busy.lock);
4834 	}
4835 
4836 	/*
4837 	 * Mark allocated areas as accessible. Do it now as a best-effort
4838 	 * approach, as they can be mapped outside of vmalloc code.
4839 	 * With hardware tag-based KASAN, marking is skipped for
4840 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4841 	 */
4842 	for (area = 0; area < nr_vms; area++)
4843 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4844 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4845 
4846 	kfree(vas);
4847 	return vms;
4848 
4849 recovery:
4850 	/*
4851 	 * Remove previously allocated areas. There is no
4852 	 * need in removing these areas from the busy tree,
4853 	 * because they are inserted only on the final step
4854 	 * and when pcpu_get_vm_areas() is success.
4855 	 */
4856 	while (area--) {
4857 		orig_start = vas[area]->va_start;
4858 		orig_end = vas[area]->va_end;
4859 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4860 				&free_vmap_area_list);
4861 		if (va)
4862 			kasan_release_vmalloc(orig_start, orig_end,
4863 				va->va_start, va->va_end,
4864 				KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH);
4865 		vas[area] = NULL;
4866 	}
4867 
4868 overflow:
4869 	spin_unlock(&free_vmap_area_lock);
4870 	if (!purged) {
4871 		reclaim_and_purge_vmap_areas();
4872 		purged = true;
4873 
4874 		/* Before "retry", check if we recover. */
4875 		for (area = 0; area < nr_vms; area++) {
4876 			if (vas[area])
4877 				continue;
4878 
4879 			vas[area] = kmem_cache_zalloc(
4880 				vmap_area_cachep, GFP_KERNEL);
4881 			if (!vas[area])
4882 				goto err_free;
4883 		}
4884 
4885 		goto retry;
4886 	}
4887 
4888 err_free:
4889 	for (area = 0; area < nr_vms; area++) {
4890 		if (vas[area])
4891 			kmem_cache_free(vmap_area_cachep, vas[area]);
4892 
4893 		kfree(vms[area]);
4894 	}
4895 err_free2:
4896 	kfree(vas);
4897 	kfree(vms);
4898 	return NULL;
4899 
4900 err_free_shadow:
4901 	spin_lock(&free_vmap_area_lock);
4902 	/*
4903 	 * We release all the vmalloc shadows, even the ones for regions that
4904 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
4905 	 * being able to tolerate this case.
4906 	 */
4907 	for (area = 0; area < nr_vms; area++) {
4908 		orig_start = vas[area]->va_start;
4909 		orig_end = vas[area]->va_end;
4910 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4911 				&free_vmap_area_list);
4912 		if (va)
4913 			kasan_release_vmalloc(orig_start, orig_end,
4914 				va->va_start, va->va_end,
4915 				KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH);
4916 		vas[area] = NULL;
4917 		kfree(vms[area]);
4918 	}
4919 	spin_unlock(&free_vmap_area_lock);
4920 	kfree(vas);
4921 	kfree(vms);
4922 	return NULL;
4923 }
4924 
4925 /**
4926  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4927  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4928  * @nr_vms: the number of allocated areas
4929  *
4930  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4931  */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)4932 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4933 {
4934 	int i;
4935 
4936 	for (i = 0; i < nr_vms; i++)
4937 		free_vm_area(vms[i]);
4938 	kfree(vms);
4939 }
4940 #endif	/* CONFIG_SMP */
4941 
4942 #ifdef CONFIG_PRINTK
vmalloc_dump_obj(void * object)4943 bool vmalloc_dump_obj(void *object)
4944 {
4945 	const void *caller;
4946 	struct vm_struct *vm;
4947 	struct vmap_area *va;
4948 	struct vmap_node *vn;
4949 	unsigned long addr;
4950 	unsigned int nr_pages;
4951 
4952 	addr = PAGE_ALIGN((unsigned long) object);
4953 	vn = addr_to_node(addr);
4954 
4955 	if (!spin_trylock(&vn->busy.lock))
4956 		return false;
4957 
4958 	va = __find_vmap_area(addr, &vn->busy.root);
4959 	if (!va || !va->vm) {
4960 		spin_unlock(&vn->busy.lock);
4961 		return false;
4962 	}
4963 
4964 	vm = va->vm;
4965 	addr = (unsigned long) vm->addr;
4966 	caller = vm->caller;
4967 	nr_pages = vm->nr_pages;
4968 	spin_unlock(&vn->busy.lock);
4969 
4970 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4971 		nr_pages, addr, caller);
4972 
4973 	return true;
4974 }
4975 #endif
4976 
4977 #ifdef CONFIG_PROC_FS
4978 
4979 /*
4980  * Print number of pages allocated on each memory node.
4981  *
4982  * This function can only be called if CONFIG_NUMA is enabled
4983  * and VM_UNINITIALIZED bit in v->flags is disabled.
4984  */
show_numa_info(struct seq_file * m,struct vm_struct * v,unsigned int * counters)4985 static void show_numa_info(struct seq_file *m, struct vm_struct *v,
4986 				 unsigned int *counters)
4987 {
4988 	unsigned int nr;
4989 	unsigned int step = 1U << vm_area_page_order(v);
4990 
4991 	if (!counters)
4992 		return;
4993 
4994 	memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4995 
4996 	for (nr = 0; nr < v->nr_pages; nr += step)
4997 		counters[page_to_nid(v->pages[nr])] += step;
4998 	for_each_node_state(nr, N_HIGH_MEMORY)
4999 		if (counters[nr])
5000 			seq_printf(m, " N%u=%u", nr, counters[nr]);
5001 }
5002 
show_purge_info(struct seq_file * m)5003 static void show_purge_info(struct seq_file *m)
5004 {
5005 	struct vmap_node *vn;
5006 	struct vmap_area *va;
5007 
5008 	for_each_vmap_node(vn) {
5009 		spin_lock(&vn->lazy.lock);
5010 		list_for_each_entry(va, &vn->lazy.head, list) {
5011 			seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
5012 				(void *)va->va_start, (void *)va->va_end,
5013 				va_size(va));
5014 		}
5015 		spin_unlock(&vn->lazy.lock);
5016 	}
5017 }
5018 
vmalloc_info_show(struct seq_file * m,void * p)5019 static int vmalloc_info_show(struct seq_file *m, void *p)
5020 {
5021 	struct vmap_node *vn;
5022 	struct vmap_area *va;
5023 	struct vm_struct *v;
5024 	unsigned int *counters;
5025 
5026 	if (IS_ENABLED(CONFIG_NUMA))
5027 		counters = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
5028 
5029 	for_each_vmap_node(vn) {
5030 		spin_lock(&vn->busy.lock);
5031 		list_for_each_entry(va, &vn->busy.head, list) {
5032 			if (!va->vm) {
5033 				if (va->flags & VMAP_RAM)
5034 					seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
5035 						(void *)va->va_start, (void *)va->va_end,
5036 						va_size(va));
5037 
5038 				continue;
5039 			}
5040 
5041 			v = va->vm;
5042 			if (v->flags & VM_UNINITIALIZED)
5043 				continue;
5044 
5045 			/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
5046 			smp_rmb();
5047 
5048 			seq_printf(m, "0x%pK-0x%pK %7ld",
5049 				v->addr, v->addr + v->size, v->size);
5050 
5051 			if (v->caller)
5052 				seq_printf(m, " %pS", v->caller);
5053 
5054 			if (v->nr_pages)
5055 				seq_printf(m, " pages=%d", v->nr_pages);
5056 
5057 			if (v->phys_addr)
5058 				seq_printf(m, " phys=%pa", &v->phys_addr);
5059 
5060 			if (v->flags & VM_IOREMAP)
5061 				seq_puts(m, " ioremap");
5062 
5063 			if (v->flags & VM_SPARSE)
5064 				seq_puts(m, " sparse");
5065 
5066 			if (v->flags & VM_ALLOC)
5067 				seq_puts(m, " vmalloc");
5068 
5069 			if (v->flags & VM_MAP)
5070 				seq_puts(m, " vmap");
5071 
5072 			if (v->flags & VM_USERMAP)
5073 				seq_puts(m, " user");
5074 
5075 			if (v->flags & VM_DMA_COHERENT)
5076 				seq_puts(m, " dma-coherent");
5077 
5078 			if (is_vmalloc_addr(v->pages))
5079 				seq_puts(m, " vpages");
5080 
5081 			if (IS_ENABLED(CONFIG_NUMA))
5082 				show_numa_info(m, v, counters);
5083 
5084 			seq_putc(m, '\n');
5085 		}
5086 		spin_unlock(&vn->busy.lock);
5087 	}
5088 
5089 	/*
5090 	 * As a final step, dump "unpurged" areas.
5091 	 */
5092 	show_purge_info(m);
5093 	if (IS_ENABLED(CONFIG_NUMA))
5094 		kfree(counters);
5095 	return 0;
5096 }
5097 
proc_vmalloc_init(void)5098 static int __init proc_vmalloc_init(void)
5099 {
5100 	proc_create_single("vmallocinfo", 0400, NULL, vmalloc_info_show);
5101 	return 0;
5102 }
5103 module_init(proc_vmalloc_init);
5104 
5105 #endif
5106 
vmap_init_free_space(void)5107 static void __init vmap_init_free_space(void)
5108 {
5109 	unsigned long vmap_start = 1;
5110 	const unsigned long vmap_end = ULONG_MAX;
5111 	struct vmap_area *free;
5112 	struct vm_struct *busy;
5113 
5114 	/*
5115 	 *     B     F     B     B     B     F
5116 	 * -|-----|.....|-----|-----|-----|.....|-
5117 	 *  |           The KVA space           |
5118 	 *  |<--------------------------------->|
5119 	 */
5120 	for (busy = vmlist; busy; busy = busy->next) {
5121 		if ((unsigned long) busy->addr - vmap_start > 0) {
5122 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5123 			if (!WARN_ON_ONCE(!free)) {
5124 				free->va_start = vmap_start;
5125 				free->va_end = (unsigned long) busy->addr;
5126 
5127 				insert_vmap_area_augment(free, NULL,
5128 					&free_vmap_area_root,
5129 						&free_vmap_area_list);
5130 			}
5131 		}
5132 
5133 		vmap_start = (unsigned long) busy->addr + busy->size;
5134 	}
5135 
5136 	if (vmap_end - vmap_start > 0) {
5137 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5138 		if (!WARN_ON_ONCE(!free)) {
5139 			free->va_start = vmap_start;
5140 			free->va_end = vmap_end;
5141 
5142 			insert_vmap_area_augment(free, NULL,
5143 				&free_vmap_area_root,
5144 					&free_vmap_area_list);
5145 		}
5146 	}
5147 }
5148 
vmap_init_nodes(void)5149 static void vmap_init_nodes(void)
5150 {
5151 	struct vmap_node *vn;
5152 	int i;
5153 
5154 #if BITS_PER_LONG == 64
5155 	/*
5156 	 * A high threshold of max nodes is fixed and bound to 128,
5157 	 * thus a scale factor is 1 for systems where number of cores
5158 	 * are less or equal to specified threshold.
5159 	 *
5160 	 * As for NUMA-aware notes. For bigger systems, for example
5161 	 * NUMA with multi-sockets, where we can end-up with thousands
5162 	 * of cores in total, a "sub-numa-clustering" should be added.
5163 	 *
5164 	 * In this case a NUMA domain is considered as a single entity
5165 	 * with dedicated sub-nodes in it which describe one group or
5166 	 * set of cores. Therefore a per-domain purging is supposed to
5167 	 * be added as well as a per-domain balancing.
5168 	 */
5169 	int n = clamp_t(unsigned int, num_possible_cpus(), 1, 128);
5170 
5171 	if (n > 1) {
5172 		vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN);
5173 		if (vn) {
5174 			/* Node partition is 16 pages. */
5175 			vmap_zone_size = (1 << 4) * PAGE_SIZE;
5176 			nr_vmap_nodes = n;
5177 			vmap_nodes = vn;
5178 		} else {
5179 			pr_err("Failed to allocate an array. Disable a node layer\n");
5180 		}
5181 	}
5182 #endif
5183 
5184 	for_each_vmap_node(vn) {
5185 		vn->busy.root = RB_ROOT;
5186 		INIT_LIST_HEAD(&vn->busy.head);
5187 		spin_lock_init(&vn->busy.lock);
5188 
5189 		vn->lazy.root = RB_ROOT;
5190 		INIT_LIST_HEAD(&vn->lazy.head);
5191 		spin_lock_init(&vn->lazy.lock);
5192 
5193 		for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
5194 			INIT_LIST_HEAD(&vn->pool[i].head);
5195 			WRITE_ONCE(vn->pool[i].len, 0);
5196 		}
5197 
5198 		spin_lock_init(&vn->pool_lock);
5199 	}
5200 }
5201 
5202 static unsigned long
vmap_node_shrink_count(struct shrinker * shrink,struct shrink_control * sc)5203 vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5204 {
5205 	unsigned long count = 0;
5206 	struct vmap_node *vn;
5207 	int i;
5208 
5209 	for_each_vmap_node(vn) {
5210 		for (i = 0; i < MAX_VA_SIZE_PAGES; i++)
5211 			count += READ_ONCE(vn->pool[i].len);
5212 	}
5213 
5214 	return count ? count : SHRINK_EMPTY;
5215 }
5216 
5217 static unsigned long
vmap_node_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)5218 vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5219 {
5220 	struct vmap_node *vn;
5221 
5222 	for_each_vmap_node(vn)
5223 		decay_va_pool_node(vn, true);
5224 
5225 	return SHRINK_STOP;
5226 }
5227 
vmalloc_init(void)5228 void __init vmalloc_init(void)
5229 {
5230 	struct shrinker *vmap_node_shrinker;
5231 	struct vmap_area *va;
5232 	struct vmap_node *vn;
5233 	struct vm_struct *tmp;
5234 	int i;
5235 
5236 	/*
5237 	 * Create the cache for vmap_area objects.
5238 	 */
5239 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
5240 
5241 	for_each_possible_cpu(i) {
5242 		struct vmap_block_queue *vbq;
5243 		struct vfree_deferred *p;
5244 
5245 		vbq = &per_cpu(vmap_block_queue, i);
5246 		spin_lock_init(&vbq->lock);
5247 		INIT_LIST_HEAD(&vbq->free);
5248 		p = &per_cpu(vfree_deferred, i);
5249 		init_llist_head(&p->list);
5250 		INIT_WORK(&p->wq, delayed_vfree_work);
5251 		xa_init(&vbq->vmap_blocks);
5252 	}
5253 
5254 	/*
5255 	 * Setup nodes before importing vmlist.
5256 	 */
5257 	vmap_init_nodes();
5258 
5259 	/* Import existing vmlist entries. */
5260 	for (tmp = vmlist; tmp; tmp = tmp->next) {
5261 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5262 		if (WARN_ON_ONCE(!va))
5263 			continue;
5264 
5265 		va->va_start = (unsigned long)tmp->addr;
5266 		va->va_end = va->va_start + tmp->size;
5267 		va->vm = tmp;
5268 
5269 		vn = addr_to_node(va->va_start);
5270 		insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
5271 	}
5272 
5273 	/*
5274 	 * Now we can initialize a free vmap space.
5275 	 */
5276 	vmap_init_free_space();
5277 	vmap_initialized = true;
5278 
5279 	vmap_node_shrinker = shrinker_alloc(0, "vmap-node");
5280 	if (!vmap_node_shrinker) {
5281 		pr_err("Failed to allocate vmap-node shrinker!\n");
5282 		return;
5283 	}
5284 
5285 	vmap_node_shrinker->count_objects = vmap_node_shrink_count;
5286 	vmap_node_shrinker->scan_objects = vmap_node_shrink_scan;
5287 	shrinker_register(vmap_node_shrinker);
5288 }
5289