xref: /linux/kernel/events/core.c (revision e03ad65cea610b24c6991aebf432d5c6824cd002)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 			  struct perf_event_context *ctx)
160 {
161 	raw_spin_lock(&cpuctx->ctx.lock);
162 	if (ctx)
163 		raw_spin_lock(&ctx->lock);
164 }
165 
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 			    struct perf_event_context *ctx)
168 {
169 	if (ctx)
170 		raw_spin_unlock(&ctx->lock);
171 	raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173 
174 #define TASK_TOMBSTONE ((void *)-1L)
175 
176 static bool is_kernel_event(struct perf_event *event)
177 {
178 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180 
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182 
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 	lockdep_assert_irqs_disabled();
186 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188 
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207 
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 			struct perf_event_context *, void *);
210 
211 struct event_function_struct {
212 	struct perf_event *event;
213 	event_f func;
214 	void *data;
215 };
216 
217 static int event_function(void *info)
218 {
219 	struct event_function_struct *efs = info;
220 	struct perf_event *event = efs->event;
221 	struct perf_event_context *ctx = event->ctx;
222 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 	int ret = 0;
225 
226 	lockdep_assert_irqs_disabled();
227 
228 	perf_ctx_lock(cpuctx, task_ctx);
229 	/*
230 	 * Since we do the IPI call without holding ctx->lock things can have
231 	 * changed, double check we hit the task we set out to hit.
232 	 */
233 	if (ctx->task) {
234 		if (ctx->task != current) {
235 			ret = -ESRCH;
236 			goto unlock;
237 		}
238 
239 		/*
240 		 * We only use event_function_call() on established contexts,
241 		 * and event_function() is only ever called when active (or
242 		 * rather, we'll have bailed in task_function_call() or the
243 		 * above ctx->task != current test), therefore we must have
244 		 * ctx->is_active here.
245 		 */
246 		WARN_ON_ONCE(!ctx->is_active);
247 		/*
248 		 * And since we have ctx->is_active, cpuctx->task_ctx must
249 		 * match.
250 		 */
251 		WARN_ON_ONCE(task_ctx != ctx);
252 	} else {
253 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 	}
255 
256 	efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 	perf_ctx_unlock(cpuctx, task_ctx);
259 
260 	return ret;
261 }
262 
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 	struct perf_event_context *ctx = event->ctx;
266 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 	struct event_function_struct efs = {
268 		.event = event,
269 		.func = func,
270 		.data = data,
271 	};
272 
273 	if (!event->parent) {
274 		/*
275 		 * If this is a !child event, we must hold ctx::mutex to
276 		 * stabilize the event->ctx relation. See
277 		 * perf_event_ctx_lock().
278 		 */
279 		lockdep_assert_held(&ctx->mutex);
280 	}
281 
282 	if (!task) {
283 		cpu_function_call(event->cpu, event_function, &efs);
284 		return;
285 	}
286 
287 	if (task == TASK_TOMBSTONE)
288 		return;
289 
290 again:
291 	if (!task_function_call(task, event_function, &efs))
292 		return;
293 
294 	raw_spin_lock_irq(&ctx->lock);
295 	/*
296 	 * Reload the task pointer, it might have been changed by
297 	 * a concurrent perf_event_context_sched_out().
298 	 */
299 	task = ctx->task;
300 	if (task == TASK_TOMBSTONE) {
301 		raw_spin_unlock_irq(&ctx->lock);
302 		return;
303 	}
304 	if (ctx->is_active) {
305 		raw_spin_unlock_irq(&ctx->lock);
306 		goto again;
307 	}
308 	func(event, NULL, ctx, data);
309 	raw_spin_unlock_irq(&ctx->lock);
310 }
311 
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318 	struct perf_event_context *ctx = event->ctx;
319 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320 	struct task_struct *task = READ_ONCE(ctx->task);
321 	struct perf_event_context *task_ctx = NULL;
322 
323 	lockdep_assert_irqs_disabled();
324 
325 	if (task) {
326 		if (task == TASK_TOMBSTONE)
327 			return;
328 
329 		task_ctx = ctx;
330 	}
331 
332 	perf_ctx_lock(cpuctx, task_ctx);
333 
334 	task = ctx->task;
335 	if (task == TASK_TOMBSTONE)
336 		goto unlock;
337 
338 	if (task) {
339 		/*
340 		 * We must be either inactive or active and the right task,
341 		 * otherwise we're screwed, since we cannot IPI to somewhere
342 		 * else.
343 		 */
344 		if (ctx->is_active) {
345 			if (WARN_ON_ONCE(task != current))
346 				goto unlock;
347 
348 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 				goto unlock;
350 		}
351 	} else {
352 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 	}
354 
355 	func(event, cpuctx, ctx, data);
356 unlock:
357 	perf_ctx_unlock(cpuctx, task_ctx);
358 }
359 
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 		       PERF_FLAG_FD_OUTPUT  |\
362 		       PERF_FLAG_PID_CGROUP |\
363 		       PERF_FLAG_FD_CLOEXEC)
364 
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369 	(PERF_SAMPLE_BRANCH_KERNEL |\
370 	 PERF_SAMPLE_BRANCH_HV)
371 
372 enum event_type_t {
373 	EVENT_FLEXIBLE = 0x1,
374 	EVENT_PINNED = 0x2,
375 	EVENT_TIME = 0x4,
376 	/* see ctx_resched() for details */
377 	EVENT_CPU = 0x8,
378 	EVENT_CGROUP = 0x10,
379 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381 
382 /*
383  * perf_sched_events : >0 events exist
384  */
385 
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391 
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393 
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405 
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411 
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420 
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423 
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE		100000
428 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
430 
431 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
432 
433 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
435 
436 static int perf_sample_allowed_ns __read_mostly =
437 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438 
439 static void update_perf_cpu_limits(void)
440 {
441 	u64 tmp = perf_sample_period_ns;
442 
443 	tmp *= sysctl_perf_cpu_time_max_percent;
444 	tmp = div_u64(tmp, 100);
445 	if (!tmp)
446 		tmp = 1;
447 
448 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450 
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452 
453 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
454 				       void *buffer, size_t *lenp, loff_t *ppos)
455 {
456 	int ret;
457 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 	/*
459 	 * If throttling is disabled don't allow the write:
460 	 */
461 	if (write && (perf_cpu == 100 || perf_cpu == 0))
462 		return -EINVAL;
463 
464 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 	if (ret || !write)
466 		return ret;
467 
468 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 	update_perf_cpu_limits();
471 
472 	return 0;
473 }
474 
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476 
477 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
478 		void *buffer, size_t *lenp, loff_t *ppos)
479 {
480 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481 
482 	if (ret || !write)
483 		return ret;
484 
485 	if (sysctl_perf_cpu_time_max_percent == 100 ||
486 	    sysctl_perf_cpu_time_max_percent == 0) {
487 		printk(KERN_WARNING
488 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 		WRITE_ONCE(perf_sample_allowed_ns, 0);
490 	} else {
491 		update_perf_cpu_limits();
492 	}
493 
494 	return 0;
495 }
496 
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505 
506 static u64 __report_avg;
507 static u64 __report_allowed;
508 
509 static void perf_duration_warn(struct irq_work *w)
510 {
511 	printk_ratelimited(KERN_INFO
512 		"perf: interrupt took too long (%lld > %lld), lowering "
513 		"kernel.perf_event_max_sample_rate to %d\n",
514 		__report_avg, __report_allowed,
515 		sysctl_perf_event_sample_rate);
516 }
517 
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519 
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 	u64 running_len;
524 	u64 avg_len;
525 	u32 max;
526 
527 	if (max_len == 0)
528 		return;
529 
530 	/* Decay the counter by 1 average sample. */
531 	running_len = __this_cpu_read(running_sample_length);
532 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 	running_len += sample_len_ns;
534 	__this_cpu_write(running_sample_length, running_len);
535 
536 	/*
537 	 * Note: this will be biased artificially low until we have
538 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 	 * from having to maintain a count.
540 	 */
541 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 	if (avg_len <= max_len)
543 		return;
544 
545 	__report_avg = avg_len;
546 	__report_allowed = max_len;
547 
548 	/*
549 	 * Compute a throttle threshold 25% below the current duration.
550 	 */
551 	avg_len += avg_len / 4;
552 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 	if (avg_len < max)
554 		max /= (u32)avg_len;
555 	else
556 		max = 1;
557 
558 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 	WRITE_ONCE(max_samples_per_tick, max);
560 
561 	sysctl_perf_event_sample_rate = max * HZ;
562 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563 
564 	if (!irq_work_queue(&perf_duration_work)) {
565 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566 			     "kernel.perf_event_max_sample_rate to %d\n",
567 			     __report_avg, __report_allowed,
568 			     sysctl_perf_event_sample_rate);
569 	}
570 }
571 
572 static atomic64_t perf_event_id;
573 
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576 
577 void __weak perf_event_print_debug(void)	{ }
578 
579 static inline u64 perf_clock(void)
580 {
581 	return local_clock();
582 }
583 
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 	return event->clock();
587 }
588 
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespective of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A further ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610 
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614 	struct perf_event *leader = event->group_leader;
615 
616 	if (leader->state <= PERF_EVENT_STATE_OFF)
617 		return leader->state;
618 
619 	return event->state;
620 }
621 
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 	enum perf_event_state state = __perf_effective_state(event);
626 	u64 delta = now - event->tstamp;
627 
628 	*enabled = event->total_time_enabled;
629 	if (state >= PERF_EVENT_STATE_INACTIVE)
630 		*enabled += delta;
631 
632 	*running = event->total_time_running;
633 	if (state >= PERF_EVENT_STATE_ACTIVE)
634 		*running += delta;
635 }
636 
637 static void perf_event_update_time(struct perf_event *event)
638 {
639 	u64 now = perf_event_time(event);
640 
641 	__perf_update_times(event, now, &event->total_time_enabled,
642 					&event->total_time_running);
643 	event->tstamp = now;
644 }
645 
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 	struct perf_event *sibling;
649 
650 	for_each_sibling_event(sibling, leader)
651 		perf_event_update_time(sibling);
652 }
653 
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 	if (event->state == state)
658 		return;
659 
660 	perf_event_update_time(event);
661 	/*
662 	 * If a group leader gets enabled/disabled all its siblings
663 	 * are affected too.
664 	 */
665 	if ((event->state < 0) ^ (state < 0))
666 		perf_event_update_sibling_time(event);
667 
668 	WRITE_ONCE(event->state, state);
669 }
670 
671 /*
672  * UP store-release, load-acquire
673  */
674 
675 #define __store_release(ptr, val)					\
676 do {									\
677 	barrier();							\
678 	WRITE_ONCE(*(ptr), (val));					\
679 } while (0)
680 
681 #define __load_acquire(ptr)						\
682 ({									\
683 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
684 	barrier();							\
685 	___p;								\
686 })
687 
688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690 	struct perf_event_pmu_context *pmu_ctx;
691 
692 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 		if (cgroup && !pmu_ctx->nr_cgroups)
694 			continue;
695 		perf_pmu_disable(pmu_ctx->pmu);
696 	}
697 }
698 
699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701 	struct perf_event_pmu_context *pmu_ctx;
702 
703 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 		if (cgroup && !pmu_ctx->nr_cgroups)
705 			continue;
706 		perf_pmu_enable(pmu_ctx->pmu);
707 	}
708 }
709 
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712 
713 #ifdef CONFIG_CGROUP_PERF
714 
715 static inline bool
716 perf_cgroup_match(struct perf_event *event)
717 {
718 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719 
720 	/* @event doesn't care about cgroup */
721 	if (!event->cgrp)
722 		return true;
723 
724 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
725 	if (!cpuctx->cgrp)
726 		return false;
727 
728 	/*
729 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
730 	 * also enabled for all its descendant cgroups.  If @cpuctx's
731 	 * cgroup is a descendant of @event's (the test covers identity
732 	 * case), it's a match.
733 	 */
734 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 				    event->cgrp->css.cgroup);
736 }
737 
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740 	css_put(&event->cgrp->css);
741 	event->cgrp = NULL;
742 }
743 
744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746 	return event->cgrp != NULL;
747 }
748 
749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751 	struct perf_cgroup_info *t;
752 
753 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 	return t->time;
755 }
756 
757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759 	struct perf_cgroup_info *t;
760 
761 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 	if (!__load_acquire(&t->active))
763 		return t->time;
764 	now += READ_ONCE(t->timeoffset);
765 	return now;
766 }
767 
768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770 	if (adv)
771 		info->time += now - info->timestamp;
772 	info->timestamp = now;
773 	/*
774 	 * see update_context_time()
775 	 */
776 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778 
779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781 	struct perf_cgroup *cgrp = cpuctx->cgrp;
782 	struct cgroup_subsys_state *css;
783 	struct perf_cgroup_info *info;
784 
785 	if (cgrp) {
786 		u64 now = perf_clock();
787 
788 		for (css = &cgrp->css; css; css = css->parent) {
789 			cgrp = container_of(css, struct perf_cgroup, css);
790 			info = this_cpu_ptr(cgrp->info);
791 
792 			__update_cgrp_time(info, now, true);
793 			if (final)
794 				__store_release(&info->active, 0);
795 		}
796 	}
797 }
798 
799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801 	struct perf_cgroup_info *info;
802 
803 	/*
804 	 * ensure we access cgroup data only when needed and
805 	 * when we know the cgroup is pinned (css_get)
806 	 */
807 	if (!is_cgroup_event(event))
808 		return;
809 
810 	info = this_cpu_ptr(event->cgrp->info);
811 	/*
812 	 * Do not update time when cgroup is not active
813 	 */
814 	if (info->active)
815 		__update_cgrp_time(info, perf_clock(), true);
816 }
817 
818 static inline void
819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821 	struct perf_event_context *ctx = &cpuctx->ctx;
822 	struct perf_cgroup *cgrp = cpuctx->cgrp;
823 	struct perf_cgroup_info *info;
824 	struct cgroup_subsys_state *css;
825 
826 	/*
827 	 * ctx->lock held by caller
828 	 * ensure we do not access cgroup data
829 	 * unless we have the cgroup pinned (css_get)
830 	 */
831 	if (!cgrp)
832 		return;
833 
834 	WARN_ON_ONCE(!ctx->nr_cgroups);
835 
836 	for (css = &cgrp->css; css; css = css->parent) {
837 		cgrp = container_of(css, struct perf_cgroup, css);
838 		info = this_cpu_ptr(cgrp->info);
839 		__update_cgrp_time(info, ctx->timestamp, false);
840 		__store_release(&info->active, 1);
841 	}
842 }
843 
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850 	struct perf_cgroup *cgrp;
851 
852 	/*
853 	 * cpuctx->cgrp is set when the first cgroup event enabled,
854 	 * and is cleared when the last cgroup event disabled.
855 	 */
856 	if (READ_ONCE(cpuctx->cgrp) == NULL)
857 		return;
858 
859 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860 
861 	cgrp = perf_cgroup_from_task(task, NULL);
862 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 		return;
864 
865 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866 	perf_ctx_disable(&cpuctx->ctx, true);
867 
868 	ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869 	/*
870 	 * must not be done before ctxswout due
871 	 * to update_cgrp_time_from_cpuctx() in
872 	 * ctx_sched_out()
873 	 */
874 	cpuctx->cgrp = cgrp;
875 	/*
876 	 * set cgrp before ctxsw in to allow
877 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 	 * to not have to pass task around
879 	 */
880 	ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881 
882 	perf_ctx_enable(&cpuctx->ctx, true);
883 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885 
886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887 				struct cgroup_subsys_state *css)
888 {
889 	struct perf_cpu_context *cpuctx;
890 	struct perf_event **storage;
891 	int cpu, heap_size, ret = 0;
892 
893 	/*
894 	 * Allow storage to have sufficient space for an iterator for each
895 	 * possibly nested cgroup plus an iterator for events with no cgroup.
896 	 */
897 	for (heap_size = 1; css; css = css->parent)
898 		heap_size++;
899 
900 	for_each_possible_cpu(cpu) {
901 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902 		if (heap_size <= cpuctx->heap_size)
903 			continue;
904 
905 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 				       GFP_KERNEL, cpu_to_node(cpu));
907 		if (!storage) {
908 			ret = -ENOMEM;
909 			break;
910 		}
911 
912 		raw_spin_lock_irq(&cpuctx->ctx.lock);
913 		if (cpuctx->heap_size < heap_size) {
914 			swap(cpuctx->heap, storage);
915 			if (storage == cpuctx->heap_default)
916 				storage = NULL;
917 			cpuctx->heap_size = heap_size;
918 		}
919 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
920 
921 		kfree(storage);
922 	}
923 
924 	return ret;
925 }
926 
927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 				      struct perf_event_attr *attr,
929 				      struct perf_event *group_leader)
930 {
931 	struct perf_cgroup *cgrp;
932 	struct cgroup_subsys_state *css;
933 	struct fd f = fdget(fd);
934 	int ret = 0;
935 
936 	if (!f.file)
937 		return -EBADF;
938 
939 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
940 					 &perf_event_cgrp_subsys);
941 	if (IS_ERR(css)) {
942 		ret = PTR_ERR(css);
943 		goto out;
944 	}
945 
946 	ret = perf_cgroup_ensure_storage(event, css);
947 	if (ret)
948 		goto out;
949 
950 	cgrp = container_of(css, struct perf_cgroup, css);
951 	event->cgrp = cgrp;
952 
953 	/*
954 	 * all events in a group must monitor
955 	 * the same cgroup because a task belongs
956 	 * to only one perf cgroup at a time
957 	 */
958 	if (group_leader && group_leader->cgrp != cgrp) {
959 		perf_detach_cgroup(event);
960 		ret = -EINVAL;
961 	}
962 out:
963 	fdput(f);
964 	return ret;
965 }
966 
967 static inline void
968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970 	struct perf_cpu_context *cpuctx;
971 
972 	if (!is_cgroup_event(event))
973 		return;
974 
975 	event->pmu_ctx->nr_cgroups++;
976 
977 	/*
978 	 * Because cgroup events are always per-cpu events,
979 	 * @ctx == &cpuctx->ctx.
980 	 */
981 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982 
983 	if (ctx->nr_cgroups++)
984 		return;
985 
986 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988 
989 static inline void
990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992 	struct perf_cpu_context *cpuctx;
993 
994 	if (!is_cgroup_event(event))
995 		return;
996 
997 	event->pmu_ctx->nr_cgroups--;
998 
999 	/*
1000 	 * Because cgroup events are always per-cpu events,
1001 	 * @ctx == &cpuctx->ctx.
1002 	 */
1003 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004 
1005 	if (--ctx->nr_cgroups)
1006 		return;
1007 
1008 	cpuctx->cgrp = NULL;
1009 }
1010 
1011 #else /* !CONFIG_CGROUP_PERF */
1012 
1013 static inline bool
1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016 	return true;
1017 }
1018 
1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021 
1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024 	return 0;
1025 }
1026 
1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030 
1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 						bool final)
1033 {
1034 }
1035 
1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 				      struct perf_event_attr *attr,
1038 				      struct perf_event *group_leader)
1039 {
1040 	return -EINVAL;
1041 }
1042 
1043 static inline void
1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047 
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050 	return 0;
1051 }
1052 
1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055 	return 0;
1056 }
1057 
1058 static inline void
1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062 
1063 static inline void
1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067 
1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072 
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083 	struct perf_cpu_pmu_context *cpc;
1084 	bool rotations;
1085 
1086 	lockdep_assert_irqs_disabled();
1087 
1088 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 	rotations = perf_rotate_context(cpc);
1090 
1091 	raw_spin_lock(&cpc->hrtimer_lock);
1092 	if (rotations)
1093 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094 	else
1095 		cpc->hrtimer_active = 0;
1096 	raw_spin_unlock(&cpc->hrtimer_lock);
1097 
1098 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100 
1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103 	struct hrtimer *timer = &cpc->hrtimer;
1104 	struct pmu *pmu = cpc->epc.pmu;
1105 	u64 interval;
1106 
1107 	/*
1108 	 * check default is sane, if not set then force to
1109 	 * default interval (1/tick)
1110 	 */
1111 	interval = pmu->hrtimer_interval_ms;
1112 	if (interval < 1)
1113 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114 
1115 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116 
1117 	raw_spin_lock_init(&cpc->hrtimer_lock);
1118 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119 	timer->function = perf_mux_hrtimer_handler;
1120 }
1121 
1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124 	struct hrtimer *timer = &cpc->hrtimer;
1125 	unsigned long flags;
1126 
1127 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 	if (!cpc->hrtimer_active) {
1129 		cpc->hrtimer_active = 1;
1130 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132 	}
1133 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134 
1135 	return 0;
1136 }
1137 
1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140 	return perf_mux_hrtimer_restart(arg);
1141 }
1142 
1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 	if (!(*count)++)
1147 		pmu->pmu_disable(pmu);
1148 }
1149 
1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 	if (!--(*count))
1154 		pmu->pmu_enable(pmu);
1155 }
1156 
1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161 
1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164 	refcount_inc(&ctx->refcount);
1165 }
1166 
1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169 	if (pmu->task_ctx_cache)
1170 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171 
1172 	return NULL;
1173 }
1174 
1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177 	if (pmu->task_ctx_cache && task_ctx_data)
1178 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180 
1181 static void free_ctx(struct rcu_head *head)
1182 {
1183 	struct perf_event_context *ctx;
1184 
1185 	ctx = container_of(head, struct perf_event_context, rcu_head);
1186 	kfree(ctx);
1187 }
1188 
1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191 	if (refcount_dec_and_test(&ctx->refcount)) {
1192 		if (ctx->parent_ctx)
1193 			put_ctx(ctx->parent_ctx);
1194 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195 			put_task_struct(ctx->task);
1196 		call_rcu(&ctx->rcu_head, free_ctx);
1197 	}
1198 }
1199 
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()	[ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()			[ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()		[ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event()	[ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *	task_struct::perf_event_mutex
1255  *	  perf_event_context::mutex
1256  *	    perf_event::child_mutex;
1257  *	      perf_event_context::lock
1258  *	    mmap_lock
1259  *	      perf_event::mmap_mutex
1260  *	        perf_buffer::aux_mutex
1261  *	      perf_addr_filters_head::lock
1262  *
1263  *    cpu_hotplug_lock
1264  *      pmus_lock
1265  *	  cpuctx->mutex / perf_event_context::mutex
1266  */
1267 static struct perf_event_context *
1268 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1269 {
1270 	struct perf_event_context *ctx;
1271 
1272 again:
1273 	rcu_read_lock();
1274 	ctx = READ_ONCE(event->ctx);
1275 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1276 		rcu_read_unlock();
1277 		goto again;
1278 	}
1279 	rcu_read_unlock();
1280 
1281 	mutex_lock_nested(&ctx->mutex, nesting);
1282 	if (event->ctx != ctx) {
1283 		mutex_unlock(&ctx->mutex);
1284 		put_ctx(ctx);
1285 		goto again;
1286 	}
1287 
1288 	return ctx;
1289 }
1290 
1291 static inline struct perf_event_context *
1292 perf_event_ctx_lock(struct perf_event *event)
1293 {
1294 	return perf_event_ctx_lock_nested(event, 0);
1295 }
1296 
1297 static void perf_event_ctx_unlock(struct perf_event *event,
1298 				  struct perf_event_context *ctx)
1299 {
1300 	mutex_unlock(&ctx->mutex);
1301 	put_ctx(ctx);
1302 }
1303 
1304 /*
1305  * This must be done under the ctx->lock, such as to serialize against
1306  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1307  * calling scheduler related locks and ctx->lock nests inside those.
1308  */
1309 static __must_check struct perf_event_context *
1310 unclone_ctx(struct perf_event_context *ctx)
1311 {
1312 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1313 
1314 	lockdep_assert_held(&ctx->lock);
1315 
1316 	if (parent_ctx)
1317 		ctx->parent_ctx = NULL;
1318 	ctx->generation++;
1319 
1320 	return parent_ctx;
1321 }
1322 
1323 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1324 				enum pid_type type)
1325 {
1326 	u32 nr;
1327 	/*
1328 	 * only top level events have the pid namespace they were created in
1329 	 */
1330 	if (event->parent)
1331 		event = event->parent;
1332 
1333 	nr = __task_pid_nr_ns(p, type, event->ns);
1334 	/* avoid -1 if it is idle thread or runs in another ns */
1335 	if (!nr && !pid_alive(p))
1336 		nr = -1;
1337 	return nr;
1338 }
1339 
1340 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1341 {
1342 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1343 }
1344 
1345 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1346 {
1347 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1348 }
1349 
1350 /*
1351  * If we inherit events we want to return the parent event id
1352  * to userspace.
1353  */
1354 static u64 primary_event_id(struct perf_event *event)
1355 {
1356 	u64 id = event->id;
1357 
1358 	if (event->parent)
1359 		id = event->parent->id;
1360 
1361 	return id;
1362 }
1363 
1364 /*
1365  * Get the perf_event_context for a task and lock it.
1366  *
1367  * This has to cope with the fact that until it is locked,
1368  * the context could get moved to another task.
1369  */
1370 static struct perf_event_context *
1371 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1372 {
1373 	struct perf_event_context *ctx;
1374 
1375 retry:
1376 	/*
1377 	 * One of the few rules of preemptible RCU is that one cannot do
1378 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1379 	 * part of the read side critical section was irqs-enabled -- see
1380 	 * rcu_read_unlock_special().
1381 	 *
1382 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1383 	 * side critical section has interrupts disabled.
1384 	 */
1385 	local_irq_save(*flags);
1386 	rcu_read_lock();
1387 	ctx = rcu_dereference(task->perf_event_ctxp);
1388 	if (ctx) {
1389 		/*
1390 		 * If this context is a clone of another, it might
1391 		 * get swapped for another underneath us by
1392 		 * perf_event_task_sched_out, though the
1393 		 * rcu_read_lock() protects us from any context
1394 		 * getting freed.  Lock the context and check if it
1395 		 * got swapped before we could get the lock, and retry
1396 		 * if so.  If we locked the right context, then it
1397 		 * can't get swapped on us any more.
1398 		 */
1399 		raw_spin_lock(&ctx->lock);
1400 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1401 			raw_spin_unlock(&ctx->lock);
1402 			rcu_read_unlock();
1403 			local_irq_restore(*flags);
1404 			goto retry;
1405 		}
1406 
1407 		if (ctx->task == TASK_TOMBSTONE ||
1408 		    !refcount_inc_not_zero(&ctx->refcount)) {
1409 			raw_spin_unlock(&ctx->lock);
1410 			ctx = NULL;
1411 		} else {
1412 			WARN_ON_ONCE(ctx->task != task);
1413 		}
1414 	}
1415 	rcu_read_unlock();
1416 	if (!ctx)
1417 		local_irq_restore(*flags);
1418 	return ctx;
1419 }
1420 
1421 /*
1422  * Get the context for a task and increment its pin_count so it
1423  * can't get swapped to another task.  This also increments its
1424  * reference count so that the context can't get freed.
1425  */
1426 static struct perf_event_context *
1427 perf_pin_task_context(struct task_struct *task)
1428 {
1429 	struct perf_event_context *ctx;
1430 	unsigned long flags;
1431 
1432 	ctx = perf_lock_task_context(task, &flags);
1433 	if (ctx) {
1434 		++ctx->pin_count;
1435 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1436 	}
1437 	return ctx;
1438 }
1439 
1440 static void perf_unpin_context(struct perf_event_context *ctx)
1441 {
1442 	unsigned long flags;
1443 
1444 	raw_spin_lock_irqsave(&ctx->lock, flags);
1445 	--ctx->pin_count;
1446 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1447 }
1448 
1449 /*
1450  * Update the record of the current time in a context.
1451  */
1452 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1453 {
1454 	u64 now = perf_clock();
1455 
1456 	lockdep_assert_held(&ctx->lock);
1457 
1458 	if (adv)
1459 		ctx->time += now - ctx->timestamp;
1460 	ctx->timestamp = now;
1461 
1462 	/*
1463 	 * The above: time' = time + (now - timestamp), can be re-arranged
1464 	 * into: time` = now + (time - timestamp), which gives a single value
1465 	 * offset to compute future time without locks on.
1466 	 *
1467 	 * See perf_event_time_now(), which can be used from NMI context where
1468 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1469 	 * both the above values in a consistent manner.
1470 	 */
1471 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1472 }
1473 
1474 static void update_context_time(struct perf_event_context *ctx)
1475 {
1476 	__update_context_time(ctx, true);
1477 }
1478 
1479 static u64 perf_event_time(struct perf_event *event)
1480 {
1481 	struct perf_event_context *ctx = event->ctx;
1482 
1483 	if (unlikely(!ctx))
1484 		return 0;
1485 
1486 	if (is_cgroup_event(event))
1487 		return perf_cgroup_event_time(event);
1488 
1489 	return ctx->time;
1490 }
1491 
1492 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1493 {
1494 	struct perf_event_context *ctx = event->ctx;
1495 
1496 	if (unlikely(!ctx))
1497 		return 0;
1498 
1499 	if (is_cgroup_event(event))
1500 		return perf_cgroup_event_time_now(event, now);
1501 
1502 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1503 		return ctx->time;
1504 
1505 	now += READ_ONCE(ctx->timeoffset);
1506 	return now;
1507 }
1508 
1509 static enum event_type_t get_event_type(struct perf_event *event)
1510 {
1511 	struct perf_event_context *ctx = event->ctx;
1512 	enum event_type_t event_type;
1513 
1514 	lockdep_assert_held(&ctx->lock);
1515 
1516 	/*
1517 	 * It's 'group type', really, because if our group leader is
1518 	 * pinned, so are we.
1519 	 */
1520 	if (event->group_leader != event)
1521 		event = event->group_leader;
1522 
1523 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1524 	if (!ctx->task)
1525 		event_type |= EVENT_CPU;
1526 
1527 	return event_type;
1528 }
1529 
1530 /*
1531  * Helper function to initialize event group nodes.
1532  */
1533 static void init_event_group(struct perf_event *event)
1534 {
1535 	RB_CLEAR_NODE(&event->group_node);
1536 	event->group_index = 0;
1537 }
1538 
1539 /*
1540  * Extract pinned or flexible groups from the context
1541  * based on event attrs bits.
1542  */
1543 static struct perf_event_groups *
1544 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1545 {
1546 	if (event->attr.pinned)
1547 		return &ctx->pinned_groups;
1548 	else
1549 		return &ctx->flexible_groups;
1550 }
1551 
1552 /*
1553  * Helper function to initializes perf_event_group trees.
1554  */
1555 static void perf_event_groups_init(struct perf_event_groups *groups)
1556 {
1557 	groups->tree = RB_ROOT;
1558 	groups->index = 0;
1559 }
1560 
1561 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1562 {
1563 	struct cgroup *cgroup = NULL;
1564 
1565 #ifdef CONFIG_CGROUP_PERF
1566 	if (event->cgrp)
1567 		cgroup = event->cgrp->css.cgroup;
1568 #endif
1569 
1570 	return cgroup;
1571 }
1572 
1573 /*
1574  * Compare function for event groups;
1575  *
1576  * Implements complex key that first sorts by CPU and then by virtual index
1577  * which provides ordering when rotating groups for the same CPU.
1578  */
1579 static __always_inline int
1580 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1581 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1582 		      const struct perf_event *right)
1583 {
1584 	if (left_cpu < right->cpu)
1585 		return -1;
1586 	if (left_cpu > right->cpu)
1587 		return 1;
1588 
1589 	if (left_pmu) {
1590 		if (left_pmu < right->pmu_ctx->pmu)
1591 			return -1;
1592 		if (left_pmu > right->pmu_ctx->pmu)
1593 			return 1;
1594 	}
1595 
1596 #ifdef CONFIG_CGROUP_PERF
1597 	{
1598 		const struct cgroup *right_cgroup = event_cgroup(right);
1599 
1600 		if (left_cgroup != right_cgroup) {
1601 			if (!left_cgroup) {
1602 				/*
1603 				 * Left has no cgroup but right does, no
1604 				 * cgroups come first.
1605 				 */
1606 				return -1;
1607 			}
1608 			if (!right_cgroup) {
1609 				/*
1610 				 * Right has no cgroup but left does, no
1611 				 * cgroups come first.
1612 				 */
1613 				return 1;
1614 			}
1615 			/* Two dissimilar cgroups, order by id. */
1616 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1617 				return -1;
1618 
1619 			return 1;
1620 		}
1621 	}
1622 #endif
1623 
1624 	if (left_group_index < right->group_index)
1625 		return -1;
1626 	if (left_group_index > right->group_index)
1627 		return 1;
1628 
1629 	return 0;
1630 }
1631 
1632 #define __node_2_pe(node) \
1633 	rb_entry((node), struct perf_event, group_node)
1634 
1635 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1636 {
1637 	struct perf_event *e = __node_2_pe(a);
1638 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1639 				     e->group_index, __node_2_pe(b)) < 0;
1640 }
1641 
1642 struct __group_key {
1643 	int cpu;
1644 	struct pmu *pmu;
1645 	struct cgroup *cgroup;
1646 };
1647 
1648 static inline int __group_cmp(const void *key, const struct rb_node *node)
1649 {
1650 	const struct __group_key *a = key;
1651 	const struct perf_event *b = __node_2_pe(node);
1652 
1653 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1654 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1655 }
1656 
1657 static inline int
1658 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1659 {
1660 	const struct __group_key *a = key;
1661 	const struct perf_event *b = __node_2_pe(node);
1662 
1663 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1664 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1665 				     b->group_index, b);
1666 }
1667 
1668 /*
1669  * Insert @event into @groups' tree; using
1670  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1671  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1672  */
1673 static void
1674 perf_event_groups_insert(struct perf_event_groups *groups,
1675 			 struct perf_event *event)
1676 {
1677 	event->group_index = ++groups->index;
1678 
1679 	rb_add(&event->group_node, &groups->tree, __group_less);
1680 }
1681 
1682 /*
1683  * Helper function to insert event into the pinned or flexible groups.
1684  */
1685 static void
1686 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1687 {
1688 	struct perf_event_groups *groups;
1689 
1690 	groups = get_event_groups(event, ctx);
1691 	perf_event_groups_insert(groups, event);
1692 }
1693 
1694 /*
1695  * Delete a group from a tree.
1696  */
1697 static void
1698 perf_event_groups_delete(struct perf_event_groups *groups,
1699 			 struct perf_event *event)
1700 {
1701 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1702 		     RB_EMPTY_ROOT(&groups->tree));
1703 
1704 	rb_erase(&event->group_node, &groups->tree);
1705 	init_event_group(event);
1706 }
1707 
1708 /*
1709  * Helper function to delete event from its groups.
1710  */
1711 static void
1712 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1713 {
1714 	struct perf_event_groups *groups;
1715 
1716 	groups = get_event_groups(event, ctx);
1717 	perf_event_groups_delete(groups, event);
1718 }
1719 
1720 /*
1721  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1722  */
1723 static struct perf_event *
1724 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1725 			struct pmu *pmu, struct cgroup *cgrp)
1726 {
1727 	struct __group_key key = {
1728 		.cpu = cpu,
1729 		.pmu = pmu,
1730 		.cgroup = cgrp,
1731 	};
1732 	struct rb_node *node;
1733 
1734 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1735 	if (node)
1736 		return __node_2_pe(node);
1737 
1738 	return NULL;
1739 }
1740 
1741 static struct perf_event *
1742 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1743 {
1744 	struct __group_key key = {
1745 		.cpu = event->cpu,
1746 		.pmu = pmu,
1747 		.cgroup = event_cgroup(event),
1748 	};
1749 	struct rb_node *next;
1750 
1751 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1752 	if (next)
1753 		return __node_2_pe(next);
1754 
1755 	return NULL;
1756 }
1757 
1758 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1759 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1760 	     event; event = perf_event_groups_next(event, pmu))
1761 
1762 /*
1763  * Iterate through the whole groups tree.
1764  */
1765 #define perf_event_groups_for_each(event, groups)			\
1766 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1767 				typeof(*event), group_node); event;	\
1768 		event = rb_entry_safe(rb_next(&event->group_node),	\
1769 				typeof(*event), group_node))
1770 
1771 /*
1772  * Add an event from the lists for its context.
1773  * Must be called with ctx->mutex and ctx->lock held.
1774  */
1775 static void
1776 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1777 {
1778 	lockdep_assert_held(&ctx->lock);
1779 
1780 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1781 	event->attach_state |= PERF_ATTACH_CONTEXT;
1782 
1783 	event->tstamp = perf_event_time(event);
1784 
1785 	/*
1786 	 * If we're a stand alone event or group leader, we go to the context
1787 	 * list, group events are kept attached to the group so that
1788 	 * perf_group_detach can, at all times, locate all siblings.
1789 	 */
1790 	if (event->group_leader == event) {
1791 		event->group_caps = event->event_caps;
1792 		add_event_to_groups(event, ctx);
1793 	}
1794 
1795 	list_add_rcu(&event->event_entry, &ctx->event_list);
1796 	ctx->nr_events++;
1797 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1798 		ctx->nr_user++;
1799 	if (event->attr.inherit_stat)
1800 		ctx->nr_stat++;
1801 
1802 	if (event->state > PERF_EVENT_STATE_OFF)
1803 		perf_cgroup_event_enable(event, ctx);
1804 
1805 	ctx->generation++;
1806 	event->pmu_ctx->nr_events++;
1807 }
1808 
1809 /*
1810  * Initialize event state based on the perf_event_attr::disabled.
1811  */
1812 static inline void perf_event__state_init(struct perf_event *event)
1813 {
1814 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1815 					      PERF_EVENT_STATE_INACTIVE;
1816 }
1817 
1818 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1819 {
1820 	int entry = sizeof(u64); /* value */
1821 	int size = 0;
1822 	int nr = 1;
1823 
1824 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1825 		size += sizeof(u64);
1826 
1827 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1828 		size += sizeof(u64);
1829 
1830 	if (read_format & PERF_FORMAT_ID)
1831 		entry += sizeof(u64);
1832 
1833 	if (read_format & PERF_FORMAT_LOST)
1834 		entry += sizeof(u64);
1835 
1836 	if (read_format & PERF_FORMAT_GROUP) {
1837 		nr += nr_siblings;
1838 		size += sizeof(u64);
1839 	}
1840 
1841 	/*
1842 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1843 	 * adding more siblings, this will never overflow.
1844 	 */
1845 	return size + nr * entry;
1846 }
1847 
1848 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1849 {
1850 	struct perf_sample_data *data;
1851 	u16 size = 0;
1852 
1853 	if (sample_type & PERF_SAMPLE_IP)
1854 		size += sizeof(data->ip);
1855 
1856 	if (sample_type & PERF_SAMPLE_ADDR)
1857 		size += sizeof(data->addr);
1858 
1859 	if (sample_type & PERF_SAMPLE_PERIOD)
1860 		size += sizeof(data->period);
1861 
1862 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1863 		size += sizeof(data->weight.full);
1864 
1865 	if (sample_type & PERF_SAMPLE_READ)
1866 		size += event->read_size;
1867 
1868 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1869 		size += sizeof(data->data_src.val);
1870 
1871 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1872 		size += sizeof(data->txn);
1873 
1874 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1875 		size += sizeof(data->phys_addr);
1876 
1877 	if (sample_type & PERF_SAMPLE_CGROUP)
1878 		size += sizeof(data->cgroup);
1879 
1880 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1881 		size += sizeof(data->data_page_size);
1882 
1883 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1884 		size += sizeof(data->code_page_size);
1885 
1886 	event->header_size = size;
1887 }
1888 
1889 /*
1890  * Called at perf_event creation and when events are attached/detached from a
1891  * group.
1892  */
1893 static void perf_event__header_size(struct perf_event *event)
1894 {
1895 	event->read_size =
1896 		__perf_event_read_size(event->attr.read_format,
1897 				       event->group_leader->nr_siblings);
1898 	__perf_event_header_size(event, event->attr.sample_type);
1899 }
1900 
1901 static void perf_event__id_header_size(struct perf_event *event)
1902 {
1903 	struct perf_sample_data *data;
1904 	u64 sample_type = event->attr.sample_type;
1905 	u16 size = 0;
1906 
1907 	if (sample_type & PERF_SAMPLE_TID)
1908 		size += sizeof(data->tid_entry);
1909 
1910 	if (sample_type & PERF_SAMPLE_TIME)
1911 		size += sizeof(data->time);
1912 
1913 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1914 		size += sizeof(data->id);
1915 
1916 	if (sample_type & PERF_SAMPLE_ID)
1917 		size += sizeof(data->id);
1918 
1919 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1920 		size += sizeof(data->stream_id);
1921 
1922 	if (sample_type & PERF_SAMPLE_CPU)
1923 		size += sizeof(data->cpu_entry);
1924 
1925 	event->id_header_size = size;
1926 }
1927 
1928 /*
1929  * Check that adding an event to the group does not result in anybody
1930  * overflowing the 64k event limit imposed by the output buffer.
1931  *
1932  * Specifically, check that the read_size for the event does not exceed 16k,
1933  * read_size being the one term that grows with groups size. Since read_size
1934  * depends on per-event read_format, also (re)check the existing events.
1935  *
1936  * This leaves 48k for the constant size fields and things like callchains,
1937  * branch stacks and register sets.
1938  */
1939 static bool perf_event_validate_size(struct perf_event *event)
1940 {
1941 	struct perf_event *sibling, *group_leader = event->group_leader;
1942 
1943 	if (__perf_event_read_size(event->attr.read_format,
1944 				   group_leader->nr_siblings + 1) > 16*1024)
1945 		return false;
1946 
1947 	if (__perf_event_read_size(group_leader->attr.read_format,
1948 				   group_leader->nr_siblings + 1) > 16*1024)
1949 		return false;
1950 
1951 	/*
1952 	 * When creating a new group leader, group_leader->ctx is initialized
1953 	 * after the size has been validated, but we cannot safely use
1954 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
1955 	 * leader cannot have any siblings yet, so we can safely skip checking
1956 	 * the non-existent siblings.
1957 	 */
1958 	if (event == group_leader)
1959 		return true;
1960 
1961 	for_each_sibling_event(sibling, group_leader) {
1962 		if (__perf_event_read_size(sibling->attr.read_format,
1963 					   group_leader->nr_siblings + 1) > 16*1024)
1964 			return false;
1965 	}
1966 
1967 	return true;
1968 }
1969 
1970 static void perf_group_attach(struct perf_event *event)
1971 {
1972 	struct perf_event *group_leader = event->group_leader, *pos;
1973 
1974 	lockdep_assert_held(&event->ctx->lock);
1975 
1976 	/*
1977 	 * We can have double attach due to group movement (move_group) in
1978 	 * perf_event_open().
1979 	 */
1980 	if (event->attach_state & PERF_ATTACH_GROUP)
1981 		return;
1982 
1983 	event->attach_state |= PERF_ATTACH_GROUP;
1984 
1985 	if (group_leader == event)
1986 		return;
1987 
1988 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1989 
1990 	group_leader->group_caps &= event->event_caps;
1991 
1992 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1993 	group_leader->nr_siblings++;
1994 	group_leader->group_generation++;
1995 
1996 	perf_event__header_size(group_leader);
1997 
1998 	for_each_sibling_event(pos, group_leader)
1999 		perf_event__header_size(pos);
2000 }
2001 
2002 /*
2003  * Remove an event from the lists for its context.
2004  * Must be called with ctx->mutex and ctx->lock held.
2005  */
2006 static void
2007 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2008 {
2009 	WARN_ON_ONCE(event->ctx != ctx);
2010 	lockdep_assert_held(&ctx->lock);
2011 
2012 	/*
2013 	 * We can have double detach due to exit/hot-unplug + close.
2014 	 */
2015 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2016 		return;
2017 
2018 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2019 
2020 	ctx->nr_events--;
2021 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2022 		ctx->nr_user--;
2023 	if (event->attr.inherit_stat)
2024 		ctx->nr_stat--;
2025 
2026 	list_del_rcu(&event->event_entry);
2027 
2028 	if (event->group_leader == event)
2029 		del_event_from_groups(event, ctx);
2030 
2031 	/*
2032 	 * If event was in error state, then keep it
2033 	 * that way, otherwise bogus counts will be
2034 	 * returned on read(). The only way to get out
2035 	 * of error state is by explicit re-enabling
2036 	 * of the event
2037 	 */
2038 	if (event->state > PERF_EVENT_STATE_OFF) {
2039 		perf_cgroup_event_disable(event, ctx);
2040 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2041 	}
2042 
2043 	ctx->generation++;
2044 	event->pmu_ctx->nr_events--;
2045 }
2046 
2047 static int
2048 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2049 {
2050 	if (!has_aux(aux_event))
2051 		return 0;
2052 
2053 	if (!event->pmu->aux_output_match)
2054 		return 0;
2055 
2056 	return event->pmu->aux_output_match(aux_event);
2057 }
2058 
2059 static void put_event(struct perf_event *event);
2060 static void event_sched_out(struct perf_event *event,
2061 			    struct perf_event_context *ctx);
2062 
2063 static void perf_put_aux_event(struct perf_event *event)
2064 {
2065 	struct perf_event_context *ctx = event->ctx;
2066 	struct perf_event *iter;
2067 
2068 	/*
2069 	 * If event uses aux_event tear down the link
2070 	 */
2071 	if (event->aux_event) {
2072 		iter = event->aux_event;
2073 		event->aux_event = NULL;
2074 		put_event(iter);
2075 		return;
2076 	}
2077 
2078 	/*
2079 	 * If the event is an aux_event, tear down all links to
2080 	 * it from other events.
2081 	 */
2082 	for_each_sibling_event(iter, event->group_leader) {
2083 		if (iter->aux_event != event)
2084 			continue;
2085 
2086 		iter->aux_event = NULL;
2087 		put_event(event);
2088 
2089 		/*
2090 		 * If it's ACTIVE, schedule it out and put it into ERROR
2091 		 * state so that we don't try to schedule it again. Note
2092 		 * that perf_event_enable() will clear the ERROR status.
2093 		 */
2094 		event_sched_out(iter, ctx);
2095 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2096 	}
2097 }
2098 
2099 static bool perf_need_aux_event(struct perf_event *event)
2100 {
2101 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2102 }
2103 
2104 static int perf_get_aux_event(struct perf_event *event,
2105 			      struct perf_event *group_leader)
2106 {
2107 	/*
2108 	 * Our group leader must be an aux event if we want to be
2109 	 * an aux_output. This way, the aux event will precede its
2110 	 * aux_output events in the group, and therefore will always
2111 	 * schedule first.
2112 	 */
2113 	if (!group_leader)
2114 		return 0;
2115 
2116 	/*
2117 	 * aux_output and aux_sample_size are mutually exclusive.
2118 	 */
2119 	if (event->attr.aux_output && event->attr.aux_sample_size)
2120 		return 0;
2121 
2122 	if (event->attr.aux_output &&
2123 	    !perf_aux_output_match(event, group_leader))
2124 		return 0;
2125 
2126 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2127 		return 0;
2128 
2129 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2130 		return 0;
2131 
2132 	/*
2133 	 * Link aux_outputs to their aux event; this is undone in
2134 	 * perf_group_detach() by perf_put_aux_event(). When the
2135 	 * group in torn down, the aux_output events loose their
2136 	 * link to the aux_event and can't schedule any more.
2137 	 */
2138 	event->aux_event = group_leader;
2139 
2140 	return 1;
2141 }
2142 
2143 static inline struct list_head *get_event_list(struct perf_event *event)
2144 {
2145 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2146 				    &event->pmu_ctx->flexible_active;
2147 }
2148 
2149 /*
2150  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2151  * cannot exist on their own, schedule them out and move them into the ERROR
2152  * state. Also see _perf_event_enable(), it will not be able to recover
2153  * this ERROR state.
2154  */
2155 static inline void perf_remove_sibling_event(struct perf_event *event)
2156 {
2157 	event_sched_out(event, event->ctx);
2158 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2159 }
2160 
2161 static void perf_group_detach(struct perf_event *event)
2162 {
2163 	struct perf_event *leader = event->group_leader;
2164 	struct perf_event *sibling, *tmp;
2165 	struct perf_event_context *ctx = event->ctx;
2166 
2167 	lockdep_assert_held(&ctx->lock);
2168 
2169 	/*
2170 	 * We can have double detach due to exit/hot-unplug + close.
2171 	 */
2172 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2173 		return;
2174 
2175 	event->attach_state &= ~PERF_ATTACH_GROUP;
2176 
2177 	perf_put_aux_event(event);
2178 
2179 	/*
2180 	 * If this is a sibling, remove it from its group.
2181 	 */
2182 	if (leader != event) {
2183 		list_del_init(&event->sibling_list);
2184 		event->group_leader->nr_siblings--;
2185 		event->group_leader->group_generation++;
2186 		goto out;
2187 	}
2188 
2189 	/*
2190 	 * If this was a group event with sibling events then
2191 	 * upgrade the siblings to singleton events by adding them
2192 	 * to whatever list we are on.
2193 	 */
2194 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2195 
2196 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2197 			perf_remove_sibling_event(sibling);
2198 
2199 		sibling->group_leader = sibling;
2200 		list_del_init(&sibling->sibling_list);
2201 
2202 		/* Inherit group flags from the previous leader */
2203 		sibling->group_caps = event->group_caps;
2204 
2205 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2206 			add_event_to_groups(sibling, event->ctx);
2207 
2208 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2209 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2210 		}
2211 
2212 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2213 	}
2214 
2215 out:
2216 	for_each_sibling_event(tmp, leader)
2217 		perf_event__header_size(tmp);
2218 
2219 	perf_event__header_size(leader);
2220 }
2221 
2222 static void sync_child_event(struct perf_event *child_event);
2223 
2224 static void perf_child_detach(struct perf_event *event)
2225 {
2226 	struct perf_event *parent_event = event->parent;
2227 
2228 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2229 		return;
2230 
2231 	event->attach_state &= ~PERF_ATTACH_CHILD;
2232 
2233 	if (WARN_ON_ONCE(!parent_event))
2234 		return;
2235 
2236 	lockdep_assert_held(&parent_event->child_mutex);
2237 
2238 	sync_child_event(event);
2239 	list_del_init(&event->child_list);
2240 }
2241 
2242 static bool is_orphaned_event(struct perf_event *event)
2243 {
2244 	return event->state == PERF_EVENT_STATE_DEAD;
2245 }
2246 
2247 static inline int
2248 event_filter_match(struct perf_event *event)
2249 {
2250 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2251 	       perf_cgroup_match(event);
2252 }
2253 
2254 static void
2255 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2256 {
2257 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2258 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2259 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2260 
2261 	// XXX cpc serialization, probably per-cpu IRQ disabled
2262 
2263 	WARN_ON_ONCE(event->ctx != ctx);
2264 	lockdep_assert_held(&ctx->lock);
2265 
2266 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2267 		return;
2268 
2269 	/*
2270 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2271 	 * we can schedule events _OUT_ individually through things like
2272 	 * __perf_remove_from_context().
2273 	 */
2274 	list_del_init(&event->active_list);
2275 
2276 	perf_pmu_disable(event->pmu);
2277 
2278 	event->pmu->del(event, 0);
2279 	event->oncpu = -1;
2280 
2281 	if (event->pending_disable) {
2282 		event->pending_disable = 0;
2283 		perf_cgroup_event_disable(event, ctx);
2284 		state = PERF_EVENT_STATE_OFF;
2285 	}
2286 
2287 	perf_event_set_state(event, state);
2288 
2289 	if (!is_software_event(event))
2290 		cpc->active_oncpu--;
2291 	if (event->attr.freq && event->attr.sample_freq) {
2292 		ctx->nr_freq--;
2293 		epc->nr_freq--;
2294 	}
2295 	if (event->attr.exclusive || !cpc->active_oncpu)
2296 		cpc->exclusive = 0;
2297 
2298 	perf_pmu_enable(event->pmu);
2299 }
2300 
2301 static void
2302 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2303 {
2304 	struct perf_event *event;
2305 
2306 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2307 		return;
2308 
2309 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2310 
2311 	event_sched_out(group_event, ctx);
2312 
2313 	/*
2314 	 * Schedule out siblings (if any):
2315 	 */
2316 	for_each_sibling_event(event, group_event)
2317 		event_sched_out(event, ctx);
2318 }
2319 
2320 #define DETACH_GROUP	0x01UL
2321 #define DETACH_CHILD	0x02UL
2322 #define DETACH_DEAD	0x04UL
2323 
2324 /*
2325  * Cross CPU call to remove a performance event
2326  *
2327  * We disable the event on the hardware level first. After that we
2328  * remove it from the context list.
2329  */
2330 static void
2331 __perf_remove_from_context(struct perf_event *event,
2332 			   struct perf_cpu_context *cpuctx,
2333 			   struct perf_event_context *ctx,
2334 			   void *info)
2335 {
2336 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2337 	unsigned long flags = (unsigned long)info;
2338 
2339 	if (ctx->is_active & EVENT_TIME) {
2340 		update_context_time(ctx);
2341 		update_cgrp_time_from_cpuctx(cpuctx, false);
2342 	}
2343 
2344 	/*
2345 	 * Ensure event_sched_out() switches to OFF, at the very least
2346 	 * this avoids raising perf_pending_task() at this time.
2347 	 */
2348 	if (flags & DETACH_DEAD)
2349 		event->pending_disable = 1;
2350 	event_sched_out(event, ctx);
2351 	if (flags & DETACH_GROUP)
2352 		perf_group_detach(event);
2353 	if (flags & DETACH_CHILD)
2354 		perf_child_detach(event);
2355 	list_del_event(event, ctx);
2356 	if (flags & DETACH_DEAD)
2357 		event->state = PERF_EVENT_STATE_DEAD;
2358 
2359 	if (!pmu_ctx->nr_events) {
2360 		pmu_ctx->rotate_necessary = 0;
2361 
2362 		if (ctx->task && ctx->is_active) {
2363 			struct perf_cpu_pmu_context *cpc;
2364 
2365 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2366 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2367 			cpc->task_epc = NULL;
2368 		}
2369 	}
2370 
2371 	if (!ctx->nr_events && ctx->is_active) {
2372 		if (ctx == &cpuctx->ctx)
2373 			update_cgrp_time_from_cpuctx(cpuctx, true);
2374 
2375 		ctx->is_active = 0;
2376 		if (ctx->task) {
2377 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2378 			cpuctx->task_ctx = NULL;
2379 		}
2380 	}
2381 }
2382 
2383 /*
2384  * Remove the event from a task's (or a CPU's) list of events.
2385  *
2386  * If event->ctx is a cloned context, callers must make sure that
2387  * every task struct that event->ctx->task could possibly point to
2388  * remains valid.  This is OK when called from perf_release since
2389  * that only calls us on the top-level context, which can't be a clone.
2390  * When called from perf_event_exit_task, it's OK because the
2391  * context has been detached from its task.
2392  */
2393 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2394 {
2395 	struct perf_event_context *ctx = event->ctx;
2396 
2397 	lockdep_assert_held(&ctx->mutex);
2398 
2399 	/*
2400 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2401 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2402 	 * event_function_call() user.
2403 	 */
2404 	raw_spin_lock_irq(&ctx->lock);
2405 	if (!ctx->is_active) {
2406 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2407 					   ctx, (void *)flags);
2408 		raw_spin_unlock_irq(&ctx->lock);
2409 		return;
2410 	}
2411 	raw_spin_unlock_irq(&ctx->lock);
2412 
2413 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2414 }
2415 
2416 /*
2417  * Cross CPU call to disable a performance event
2418  */
2419 static void __perf_event_disable(struct perf_event *event,
2420 				 struct perf_cpu_context *cpuctx,
2421 				 struct perf_event_context *ctx,
2422 				 void *info)
2423 {
2424 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2425 		return;
2426 
2427 	if (ctx->is_active & EVENT_TIME) {
2428 		update_context_time(ctx);
2429 		update_cgrp_time_from_event(event);
2430 	}
2431 
2432 	perf_pmu_disable(event->pmu_ctx->pmu);
2433 
2434 	if (event == event->group_leader)
2435 		group_sched_out(event, ctx);
2436 	else
2437 		event_sched_out(event, ctx);
2438 
2439 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2440 	perf_cgroup_event_disable(event, ctx);
2441 
2442 	perf_pmu_enable(event->pmu_ctx->pmu);
2443 }
2444 
2445 /*
2446  * Disable an event.
2447  *
2448  * If event->ctx is a cloned context, callers must make sure that
2449  * every task struct that event->ctx->task could possibly point to
2450  * remains valid.  This condition is satisfied when called through
2451  * perf_event_for_each_child or perf_event_for_each because they
2452  * hold the top-level event's child_mutex, so any descendant that
2453  * goes to exit will block in perf_event_exit_event().
2454  *
2455  * When called from perf_pending_disable it's OK because event->ctx
2456  * is the current context on this CPU and preemption is disabled,
2457  * hence we can't get into perf_event_task_sched_out for this context.
2458  */
2459 static void _perf_event_disable(struct perf_event *event)
2460 {
2461 	struct perf_event_context *ctx = event->ctx;
2462 
2463 	raw_spin_lock_irq(&ctx->lock);
2464 	if (event->state <= PERF_EVENT_STATE_OFF) {
2465 		raw_spin_unlock_irq(&ctx->lock);
2466 		return;
2467 	}
2468 	raw_spin_unlock_irq(&ctx->lock);
2469 
2470 	event_function_call(event, __perf_event_disable, NULL);
2471 }
2472 
2473 void perf_event_disable_local(struct perf_event *event)
2474 {
2475 	event_function_local(event, __perf_event_disable, NULL);
2476 }
2477 
2478 /*
2479  * Strictly speaking kernel users cannot create groups and therefore this
2480  * interface does not need the perf_event_ctx_lock() magic.
2481  */
2482 void perf_event_disable(struct perf_event *event)
2483 {
2484 	struct perf_event_context *ctx;
2485 
2486 	ctx = perf_event_ctx_lock(event);
2487 	_perf_event_disable(event);
2488 	perf_event_ctx_unlock(event, ctx);
2489 }
2490 EXPORT_SYMBOL_GPL(perf_event_disable);
2491 
2492 void perf_event_disable_inatomic(struct perf_event *event)
2493 {
2494 	event->pending_disable = 1;
2495 	irq_work_queue(&event->pending_disable_irq);
2496 }
2497 
2498 #define MAX_INTERRUPTS (~0ULL)
2499 
2500 static void perf_log_throttle(struct perf_event *event, int enable);
2501 static void perf_log_itrace_start(struct perf_event *event);
2502 
2503 static int
2504 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2505 {
2506 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2507 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2508 	int ret = 0;
2509 
2510 	WARN_ON_ONCE(event->ctx != ctx);
2511 
2512 	lockdep_assert_held(&ctx->lock);
2513 
2514 	if (event->state <= PERF_EVENT_STATE_OFF)
2515 		return 0;
2516 
2517 	WRITE_ONCE(event->oncpu, smp_processor_id());
2518 	/*
2519 	 * Order event::oncpu write to happen before the ACTIVE state is
2520 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2521 	 * ->oncpu if it sees ACTIVE.
2522 	 */
2523 	smp_wmb();
2524 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2525 
2526 	/*
2527 	 * Unthrottle events, since we scheduled we might have missed several
2528 	 * ticks already, also for a heavily scheduling task there is little
2529 	 * guarantee it'll get a tick in a timely manner.
2530 	 */
2531 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2532 		perf_log_throttle(event, 1);
2533 		event->hw.interrupts = 0;
2534 	}
2535 
2536 	perf_pmu_disable(event->pmu);
2537 
2538 	perf_log_itrace_start(event);
2539 
2540 	if (event->pmu->add(event, PERF_EF_START)) {
2541 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2542 		event->oncpu = -1;
2543 		ret = -EAGAIN;
2544 		goto out;
2545 	}
2546 
2547 	if (!is_software_event(event))
2548 		cpc->active_oncpu++;
2549 	if (event->attr.freq && event->attr.sample_freq) {
2550 		ctx->nr_freq++;
2551 		epc->nr_freq++;
2552 	}
2553 	if (event->attr.exclusive)
2554 		cpc->exclusive = 1;
2555 
2556 out:
2557 	perf_pmu_enable(event->pmu);
2558 
2559 	return ret;
2560 }
2561 
2562 static int
2563 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2564 {
2565 	struct perf_event *event, *partial_group = NULL;
2566 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2567 
2568 	if (group_event->state == PERF_EVENT_STATE_OFF)
2569 		return 0;
2570 
2571 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2572 
2573 	if (event_sched_in(group_event, ctx))
2574 		goto error;
2575 
2576 	/*
2577 	 * Schedule in siblings as one group (if any):
2578 	 */
2579 	for_each_sibling_event(event, group_event) {
2580 		if (event_sched_in(event, ctx)) {
2581 			partial_group = event;
2582 			goto group_error;
2583 		}
2584 	}
2585 
2586 	if (!pmu->commit_txn(pmu))
2587 		return 0;
2588 
2589 group_error:
2590 	/*
2591 	 * Groups can be scheduled in as one unit only, so undo any
2592 	 * partial group before returning:
2593 	 * The events up to the failed event are scheduled out normally.
2594 	 */
2595 	for_each_sibling_event(event, group_event) {
2596 		if (event == partial_group)
2597 			break;
2598 
2599 		event_sched_out(event, ctx);
2600 	}
2601 	event_sched_out(group_event, ctx);
2602 
2603 error:
2604 	pmu->cancel_txn(pmu);
2605 	return -EAGAIN;
2606 }
2607 
2608 /*
2609  * Work out whether we can put this event group on the CPU now.
2610  */
2611 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2612 {
2613 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2614 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2615 
2616 	/*
2617 	 * Groups consisting entirely of software events can always go on.
2618 	 */
2619 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2620 		return 1;
2621 	/*
2622 	 * If an exclusive group is already on, no other hardware
2623 	 * events can go on.
2624 	 */
2625 	if (cpc->exclusive)
2626 		return 0;
2627 	/*
2628 	 * If this group is exclusive and there are already
2629 	 * events on the CPU, it can't go on.
2630 	 */
2631 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2632 		return 0;
2633 	/*
2634 	 * Otherwise, try to add it if all previous groups were able
2635 	 * to go on.
2636 	 */
2637 	return can_add_hw;
2638 }
2639 
2640 static void add_event_to_ctx(struct perf_event *event,
2641 			       struct perf_event_context *ctx)
2642 {
2643 	list_add_event(event, ctx);
2644 	perf_group_attach(event);
2645 }
2646 
2647 static void task_ctx_sched_out(struct perf_event_context *ctx,
2648 				enum event_type_t event_type)
2649 {
2650 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2651 
2652 	if (!cpuctx->task_ctx)
2653 		return;
2654 
2655 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2656 		return;
2657 
2658 	ctx_sched_out(ctx, event_type);
2659 }
2660 
2661 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2662 				struct perf_event_context *ctx)
2663 {
2664 	ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2665 	if (ctx)
2666 		 ctx_sched_in(ctx, EVENT_PINNED);
2667 	ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2668 	if (ctx)
2669 		 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2670 }
2671 
2672 /*
2673  * We want to maintain the following priority of scheduling:
2674  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2675  *  - task pinned (EVENT_PINNED)
2676  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2677  *  - task flexible (EVENT_FLEXIBLE).
2678  *
2679  * In order to avoid unscheduling and scheduling back in everything every
2680  * time an event is added, only do it for the groups of equal priority and
2681  * below.
2682  *
2683  * This can be called after a batch operation on task events, in which case
2684  * event_type is a bit mask of the types of events involved. For CPU events,
2685  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2686  */
2687 /*
2688  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2689  * event to the context or enabling existing event in the context. We can
2690  * probably optimize it by rescheduling only affected pmu_ctx.
2691  */
2692 static void ctx_resched(struct perf_cpu_context *cpuctx,
2693 			struct perf_event_context *task_ctx,
2694 			enum event_type_t event_type)
2695 {
2696 	bool cpu_event = !!(event_type & EVENT_CPU);
2697 
2698 	/*
2699 	 * If pinned groups are involved, flexible groups also need to be
2700 	 * scheduled out.
2701 	 */
2702 	if (event_type & EVENT_PINNED)
2703 		event_type |= EVENT_FLEXIBLE;
2704 
2705 	event_type &= EVENT_ALL;
2706 
2707 	perf_ctx_disable(&cpuctx->ctx, false);
2708 	if (task_ctx) {
2709 		perf_ctx_disable(task_ctx, false);
2710 		task_ctx_sched_out(task_ctx, event_type);
2711 	}
2712 
2713 	/*
2714 	 * Decide which cpu ctx groups to schedule out based on the types
2715 	 * of events that caused rescheduling:
2716 	 *  - EVENT_CPU: schedule out corresponding groups;
2717 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2718 	 *  - otherwise, do nothing more.
2719 	 */
2720 	if (cpu_event)
2721 		ctx_sched_out(&cpuctx->ctx, event_type);
2722 	else if (event_type & EVENT_PINNED)
2723 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2724 
2725 	perf_event_sched_in(cpuctx, task_ctx);
2726 
2727 	perf_ctx_enable(&cpuctx->ctx, false);
2728 	if (task_ctx)
2729 		perf_ctx_enable(task_ctx, false);
2730 }
2731 
2732 void perf_pmu_resched(struct pmu *pmu)
2733 {
2734 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2735 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2736 
2737 	perf_ctx_lock(cpuctx, task_ctx);
2738 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2739 	perf_ctx_unlock(cpuctx, task_ctx);
2740 }
2741 
2742 /*
2743  * Cross CPU call to install and enable a performance event
2744  *
2745  * Very similar to remote_function() + event_function() but cannot assume that
2746  * things like ctx->is_active and cpuctx->task_ctx are set.
2747  */
2748 static int  __perf_install_in_context(void *info)
2749 {
2750 	struct perf_event *event = info;
2751 	struct perf_event_context *ctx = event->ctx;
2752 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2753 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2754 	bool reprogram = true;
2755 	int ret = 0;
2756 
2757 	raw_spin_lock(&cpuctx->ctx.lock);
2758 	if (ctx->task) {
2759 		raw_spin_lock(&ctx->lock);
2760 		task_ctx = ctx;
2761 
2762 		reprogram = (ctx->task == current);
2763 
2764 		/*
2765 		 * If the task is running, it must be running on this CPU,
2766 		 * otherwise we cannot reprogram things.
2767 		 *
2768 		 * If its not running, we don't care, ctx->lock will
2769 		 * serialize against it becoming runnable.
2770 		 */
2771 		if (task_curr(ctx->task) && !reprogram) {
2772 			ret = -ESRCH;
2773 			goto unlock;
2774 		}
2775 
2776 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2777 	} else if (task_ctx) {
2778 		raw_spin_lock(&task_ctx->lock);
2779 	}
2780 
2781 #ifdef CONFIG_CGROUP_PERF
2782 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2783 		/*
2784 		 * If the current cgroup doesn't match the event's
2785 		 * cgroup, we should not try to schedule it.
2786 		 */
2787 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2788 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2789 					event->cgrp->css.cgroup);
2790 	}
2791 #endif
2792 
2793 	if (reprogram) {
2794 		ctx_sched_out(ctx, EVENT_TIME);
2795 		add_event_to_ctx(event, ctx);
2796 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2797 	} else {
2798 		add_event_to_ctx(event, ctx);
2799 	}
2800 
2801 unlock:
2802 	perf_ctx_unlock(cpuctx, task_ctx);
2803 
2804 	return ret;
2805 }
2806 
2807 static bool exclusive_event_installable(struct perf_event *event,
2808 					struct perf_event_context *ctx);
2809 
2810 /*
2811  * Attach a performance event to a context.
2812  *
2813  * Very similar to event_function_call, see comment there.
2814  */
2815 static void
2816 perf_install_in_context(struct perf_event_context *ctx,
2817 			struct perf_event *event,
2818 			int cpu)
2819 {
2820 	struct task_struct *task = READ_ONCE(ctx->task);
2821 
2822 	lockdep_assert_held(&ctx->mutex);
2823 
2824 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2825 
2826 	if (event->cpu != -1)
2827 		WARN_ON_ONCE(event->cpu != cpu);
2828 
2829 	/*
2830 	 * Ensures that if we can observe event->ctx, both the event and ctx
2831 	 * will be 'complete'. See perf_iterate_sb_cpu().
2832 	 */
2833 	smp_store_release(&event->ctx, ctx);
2834 
2835 	/*
2836 	 * perf_event_attr::disabled events will not run and can be initialized
2837 	 * without IPI. Except when this is the first event for the context, in
2838 	 * that case we need the magic of the IPI to set ctx->is_active.
2839 	 *
2840 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2841 	 * event will issue the IPI and reprogram the hardware.
2842 	 */
2843 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2844 	    ctx->nr_events && !is_cgroup_event(event)) {
2845 		raw_spin_lock_irq(&ctx->lock);
2846 		if (ctx->task == TASK_TOMBSTONE) {
2847 			raw_spin_unlock_irq(&ctx->lock);
2848 			return;
2849 		}
2850 		add_event_to_ctx(event, ctx);
2851 		raw_spin_unlock_irq(&ctx->lock);
2852 		return;
2853 	}
2854 
2855 	if (!task) {
2856 		cpu_function_call(cpu, __perf_install_in_context, event);
2857 		return;
2858 	}
2859 
2860 	/*
2861 	 * Should not happen, we validate the ctx is still alive before calling.
2862 	 */
2863 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2864 		return;
2865 
2866 	/*
2867 	 * Installing events is tricky because we cannot rely on ctx->is_active
2868 	 * to be set in case this is the nr_events 0 -> 1 transition.
2869 	 *
2870 	 * Instead we use task_curr(), which tells us if the task is running.
2871 	 * However, since we use task_curr() outside of rq::lock, we can race
2872 	 * against the actual state. This means the result can be wrong.
2873 	 *
2874 	 * If we get a false positive, we retry, this is harmless.
2875 	 *
2876 	 * If we get a false negative, things are complicated. If we are after
2877 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2878 	 * value must be correct. If we're before, it doesn't matter since
2879 	 * perf_event_context_sched_in() will program the counter.
2880 	 *
2881 	 * However, this hinges on the remote context switch having observed
2882 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2883 	 * ctx::lock in perf_event_context_sched_in().
2884 	 *
2885 	 * We do this by task_function_call(), if the IPI fails to hit the task
2886 	 * we know any future context switch of task must see the
2887 	 * perf_event_ctpx[] store.
2888 	 */
2889 
2890 	/*
2891 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2892 	 * task_cpu() load, such that if the IPI then does not find the task
2893 	 * running, a future context switch of that task must observe the
2894 	 * store.
2895 	 */
2896 	smp_mb();
2897 again:
2898 	if (!task_function_call(task, __perf_install_in_context, event))
2899 		return;
2900 
2901 	raw_spin_lock_irq(&ctx->lock);
2902 	task = ctx->task;
2903 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2904 		/*
2905 		 * Cannot happen because we already checked above (which also
2906 		 * cannot happen), and we hold ctx->mutex, which serializes us
2907 		 * against perf_event_exit_task_context().
2908 		 */
2909 		raw_spin_unlock_irq(&ctx->lock);
2910 		return;
2911 	}
2912 	/*
2913 	 * If the task is not running, ctx->lock will avoid it becoming so,
2914 	 * thus we can safely install the event.
2915 	 */
2916 	if (task_curr(task)) {
2917 		raw_spin_unlock_irq(&ctx->lock);
2918 		goto again;
2919 	}
2920 	add_event_to_ctx(event, ctx);
2921 	raw_spin_unlock_irq(&ctx->lock);
2922 }
2923 
2924 /*
2925  * Cross CPU call to enable a performance event
2926  */
2927 static void __perf_event_enable(struct perf_event *event,
2928 				struct perf_cpu_context *cpuctx,
2929 				struct perf_event_context *ctx,
2930 				void *info)
2931 {
2932 	struct perf_event *leader = event->group_leader;
2933 	struct perf_event_context *task_ctx;
2934 
2935 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2936 	    event->state <= PERF_EVENT_STATE_ERROR)
2937 		return;
2938 
2939 	if (ctx->is_active)
2940 		ctx_sched_out(ctx, EVENT_TIME);
2941 
2942 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2943 	perf_cgroup_event_enable(event, ctx);
2944 
2945 	if (!ctx->is_active)
2946 		return;
2947 
2948 	if (!event_filter_match(event)) {
2949 		ctx_sched_in(ctx, EVENT_TIME);
2950 		return;
2951 	}
2952 
2953 	/*
2954 	 * If the event is in a group and isn't the group leader,
2955 	 * then don't put it on unless the group is on.
2956 	 */
2957 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2958 		ctx_sched_in(ctx, EVENT_TIME);
2959 		return;
2960 	}
2961 
2962 	task_ctx = cpuctx->task_ctx;
2963 	if (ctx->task)
2964 		WARN_ON_ONCE(task_ctx != ctx);
2965 
2966 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2967 }
2968 
2969 /*
2970  * Enable an event.
2971  *
2972  * If event->ctx is a cloned context, callers must make sure that
2973  * every task struct that event->ctx->task could possibly point to
2974  * remains valid.  This condition is satisfied when called through
2975  * perf_event_for_each_child or perf_event_for_each as described
2976  * for perf_event_disable.
2977  */
2978 static void _perf_event_enable(struct perf_event *event)
2979 {
2980 	struct perf_event_context *ctx = event->ctx;
2981 
2982 	raw_spin_lock_irq(&ctx->lock);
2983 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2984 	    event->state <  PERF_EVENT_STATE_ERROR) {
2985 out:
2986 		raw_spin_unlock_irq(&ctx->lock);
2987 		return;
2988 	}
2989 
2990 	/*
2991 	 * If the event is in error state, clear that first.
2992 	 *
2993 	 * That way, if we see the event in error state below, we know that it
2994 	 * has gone back into error state, as distinct from the task having
2995 	 * been scheduled away before the cross-call arrived.
2996 	 */
2997 	if (event->state == PERF_EVENT_STATE_ERROR) {
2998 		/*
2999 		 * Detached SIBLING events cannot leave ERROR state.
3000 		 */
3001 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3002 		    event->group_leader == event)
3003 			goto out;
3004 
3005 		event->state = PERF_EVENT_STATE_OFF;
3006 	}
3007 	raw_spin_unlock_irq(&ctx->lock);
3008 
3009 	event_function_call(event, __perf_event_enable, NULL);
3010 }
3011 
3012 /*
3013  * See perf_event_disable();
3014  */
3015 void perf_event_enable(struct perf_event *event)
3016 {
3017 	struct perf_event_context *ctx;
3018 
3019 	ctx = perf_event_ctx_lock(event);
3020 	_perf_event_enable(event);
3021 	perf_event_ctx_unlock(event, ctx);
3022 }
3023 EXPORT_SYMBOL_GPL(perf_event_enable);
3024 
3025 struct stop_event_data {
3026 	struct perf_event	*event;
3027 	unsigned int		restart;
3028 };
3029 
3030 static int __perf_event_stop(void *info)
3031 {
3032 	struct stop_event_data *sd = info;
3033 	struct perf_event *event = sd->event;
3034 
3035 	/* if it's already INACTIVE, do nothing */
3036 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3037 		return 0;
3038 
3039 	/* matches smp_wmb() in event_sched_in() */
3040 	smp_rmb();
3041 
3042 	/*
3043 	 * There is a window with interrupts enabled before we get here,
3044 	 * so we need to check again lest we try to stop another CPU's event.
3045 	 */
3046 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3047 		return -EAGAIN;
3048 
3049 	event->pmu->stop(event, PERF_EF_UPDATE);
3050 
3051 	/*
3052 	 * May race with the actual stop (through perf_pmu_output_stop()),
3053 	 * but it is only used for events with AUX ring buffer, and such
3054 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3055 	 * see comments in perf_aux_output_begin().
3056 	 *
3057 	 * Since this is happening on an event-local CPU, no trace is lost
3058 	 * while restarting.
3059 	 */
3060 	if (sd->restart)
3061 		event->pmu->start(event, 0);
3062 
3063 	return 0;
3064 }
3065 
3066 static int perf_event_stop(struct perf_event *event, int restart)
3067 {
3068 	struct stop_event_data sd = {
3069 		.event		= event,
3070 		.restart	= restart,
3071 	};
3072 	int ret = 0;
3073 
3074 	do {
3075 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3076 			return 0;
3077 
3078 		/* matches smp_wmb() in event_sched_in() */
3079 		smp_rmb();
3080 
3081 		/*
3082 		 * We only want to restart ACTIVE events, so if the event goes
3083 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3084 		 * fall through with ret==-ENXIO.
3085 		 */
3086 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3087 					__perf_event_stop, &sd);
3088 	} while (ret == -EAGAIN);
3089 
3090 	return ret;
3091 }
3092 
3093 /*
3094  * In order to contain the amount of racy and tricky in the address filter
3095  * configuration management, it is a two part process:
3096  *
3097  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3098  *      we update the addresses of corresponding vmas in
3099  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3100  * (p2) when an event is scheduled in (pmu::add), it calls
3101  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3102  *      if the generation has changed since the previous call.
3103  *
3104  * If (p1) happens while the event is active, we restart it to force (p2).
3105  *
3106  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3107  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3108  *     ioctl;
3109  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3110  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3111  *     for reading;
3112  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3113  *     of exec.
3114  */
3115 void perf_event_addr_filters_sync(struct perf_event *event)
3116 {
3117 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3118 
3119 	if (!has_addr_filter(event))
3120 		return;
3121 
3122 	raw_spin_lock(&ifh->lock);
3123 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3124 		event->pmu->addr_filters_sync(event);
3125 		event->hw.addr_filters_gen = event->addr_filters_gen;
3126 	}
3127 	raw_spin_unlock(&ifh->lock);
3128 }
3129 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3130 
3131 static int _perf_event_refresh(struct perf_event *event, int refresh)
3132 {
3133 	/*
3134 	 * not supported on inherited events
3135 	 */
3136 	if (event->attr.inherit || !is_sampling_event(event))
3137 		return -EINVAL;
3138 
3139 	atomic_add(refresh, &event->event_limit);
3140 	_perf_event_enable(event);
3141 
3142 	return 0;
3143 }
3144 
3145 /*
3146  * See perf_event_disable()
3147  */
3148 int perf_event_refresh(struct perf_event *event, int refresh)
3149 {
3150 	struct perf_event_context *ctx;
3151 	int ret;
3152 
3153 	ctx = perf_event_ctx_lock(event);
3154 	ret = _perf_event_refresh(event, refresh);
3155 	perf_event_ctx_unlock(event, ctx);
3156 
3157 	return ret;
3158 }
3159 EXPORT_SYMBOL_GPL(perf_event_refresh);
3160 
3161 static int perf_event_modify_breakpoint(struct perf_event *bp,
3162 					 struct perf_event_attr *attr)
3163 {
3164 	int err;
3165 
3166 	_perf_event_disable(bp);
3167 
3168 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3169 
3170 	if (!bp->attr.disabled)
3171 		_perf_event_enable(bp);
3172 
3173 	return err;
3174 }
3175 
3176 /*
3177  * Copy event-type-independent attributes that may be modified.
3178  */
3179 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3180 					const struct perf_event_attr *from)
3181 {
3182 	to->sig_data = from->sig_data;
3183 }
3184 
3185 static int perf_event_modify_attr(struct perf_event *event,
3186 				  struct perf_event_attr *attr)
3187 {
3188 	int (*func)(struct perf_event *, struct perf_event_attr *);
3189 	struct perf_event *child;
3190 	int err;
3191 
3192 	if (event->attr.type != attr->type)
3193 		return -EINVAL;
3194 
3195 	switch (event->attr.type) {
3196 	case PERF_TYPE_BREAKPOINT:
3197 		func = perf_event_modify_breakpoint;
3198 		break;
3199 	default:
3200 		/* Place holder for future additions. */
3201 		return -EOPNOTSUPP;
3202 	}
3203 
3204 	WARN_ON_ONCE(event->ctx->parent_ctx);
3205 
3206 	mutex_lock(&event->child_mutex);
3207 	/*
3208 	 * Event-type-independent attributes must be copied before event-type
3209 	 * modification, which will validate that final attributes match the
3210 	 * source attributes after all relevant attributes have been copied.
3211 	 */
3212 	perf_event_modify_copy_attr(&event->attr, attr);
3213 	err = func(event, attr);
3214 	if (err)
3215 		goto out;
3216 	list_for_each_entry(child, &event->child_list, child_list) {
3217 		perf_event_modify_copy_attr(&child->attr, attr);
3218 		err = func(child, attr);
3219 		if (err)
3220 			goto out;
3221 	}
3222 out:
3223 	mutex_unlock(&event->child_mutex);
3224 	return err;
3225 }
3226 
3227 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3228 				enum event_type_t event_type)
3229 {
3230 	struct perf_event_context *ctx = pmu_ctx->ctx;
3231 	struct perf_event *event, *tmp;
3232 	struct pmu *pmu = pmu_ctx->pmu;
3233 
3234 	if (ctx->task && !ctx->is_active) {
3235 		struct perf_cpu_pmu_context *cpc;
3236 
3237 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3238 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3239 		cpc->task_epc = NULL;
3240 	}
3241 
3242 	if (!event_type)
3243 		return;
3244 
3245 	perf_pmu_disable(pmu);
3246 	if (event_type & EVENT_PINNED) {
3247 		list_for_each_entry_safe(event, tmp,
3248 					 &pmu_ctx->pinned_active,
3249 					 active_list)
3250 			group_sched_out(event, ctx);
3251 	}
3252 
3253 	if (event_type & EVENT_FLEXIBLE) {
3254 		list_for_each_entry_safe(event, tmp,
3255 					 &pmu_ctx->flexible_active,
3256 					 active_list)
3257 			group_sched_out(event, ctx);
3258 		/*
3259 		 * Since we cleared EVENT_FLEXIBLE, also clear
3260 		 * rotate_necessary, is will be reset by
3261 		 * ctx_flexible_sched_in() when needed.
3262 		 */
3263 		pmu_ctx->rotate_necessary = 0;
3264 	}
3265 	perf_pmu_enable(pmu);
3266 }
3267 
3268 static void
3269 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3270 {
3271 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3272 	struct perf_event_pmu_context *pmu_ctx;
3273 	int is_active = ctx->is_active;
3274 	bool cgroup = event_type & EVENT_CGROUP;
3275 
3276 	event_type &= ~EVENT_CGROUP;
3277 
3278 	lockdep_assert_held(&ctx->lock);
3279 
3280 	if (likely(!ctx->nr_events)) {
3281 		/*
3282 		 * See __perf_remove_from_context().
3283 		 */
3284 		WARN_ON_ONCE(ctx->is_active);
3285 		if (ctx->task)
3286 			WARN_ON_ONCE(cpuctx->task_ctx);
3287 		return;
3288 	}
3289 
3290 	/*
3291 	 * Always update time if it was set; not only when it changes.
3292 	 * Otherwise we can 'forget' to update time for any but the last
3293 	 * context we sched out. For example:
3294 	 *
3295 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3296 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3297 	 *
3298 	 * would only update time for the pinned events.
3299 	 */
3300 	if (is_active & EVENT_TIME) {
3301 		/* update (and stop) ctx time */
3302 		update_context_time(ctx);
3303 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3304 		/*
3305 		 * CPU-release for the below ->is_active store,
3306 		 * see __load_acquire() in perf_event_time_now()
3307 		 */
3308 		barrier();
3309 	}
3310 
3311 	ctx->is_active &= ~event_type;
3312 	if (!(ctx->is_active & EVENT_ALL))
3313 		ctx->is_active = 0;
3314 
3315 	if (ctx->task) {
3316 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3317 		if (!ctx->is_active)
3318 			cpuctx->task_ctx = NULL;
3319 	}
3320 
3321 	is_active ^= ctx->is_active; /* changed bits */
3322 
3323 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3324 		if (cgroup && !pmu_ctx->nr_cgroups)
3325 			continue;
3326 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3327 	}
3328 }
3329 
3330 /*
3331  * Test whether two contexts are equivalent, i.e. whether they have both been
3332  * cloned from the same version of the same context.
3333  *
3334  * Equivalence is measured using a generation number in the context that is
3335  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3336  * and list_del_event().
3337  */
3338 static int context_equiv(struct perf_event_context *ctx1,
3339 			 struct perf_event_context *ctx2)
3340 {
3341 	lockdep_assert_held(&ctx1->lock);
3342 	lockdep_assert_held(&ctx2->lock);
3343 
3344 	/* Pinning disables the swap optimization */
3345 	if (ctx1->pin_count || ctx2->pin_count)
3346 		return 0;
3347 
3348 	/* If ctx1 is the parent of ctx2 */
3349 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3350 		return 1;
3351 
3352 	/* If ctx2 is the parent of ctx1 */
3353 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3354 		return 1;
3355 
3356 	/*
3357 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3358 	 * hierarchy, see perf_event_init_context().
3359 	 */
3360 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3361 			ctx1->parent_gen == ctx2->parent_gen)
3362 		return 1;
3363 
3364 	/* Unmatched */
3365 	return 0;
3366 }
3367 
3368 static void __perf_event_sync_stat(struct perf_event *event,
3369 				     struct perf_event *next_event)
3370 {
3371 	u64 value;
3372 
3373 	if (!event->attr.inherit_stat)
3374 		return;
3375 
3376 	/*
3377 	 * Update the event value, we cannot use perf_event_read()
3378 	 * because we're in the middle of a context switch and have IRQs
3379 	 * disabled, which upsets smp_call_function_single(), however
3380 	 * we know the event must be on the current CPU, therefore we
3381 	 * don't need to use it.
3382 	 */
3383 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3384 		event->pmu->read(event);
3385 
3386 	perf_event_update_time(event);
3387 
3388 	/*
3389 	 * In order to keep per-task stats reliable we need to flip the event
3390 	 * values when we flip the contexts.
3391 	 */
3392 	value = local64_read(&next_event->count);
3393 	value = local64_xchg(&event->count, value);
3394 	local64_set(&next_event->count, value);
3395 
3396 	swap(event->total_time_enabled, next_event->total_time_enabled);
3397 	swap(event->total_time_running, next_event->total_time_running);
3398 
3399 	/*
3400 	 * Since we swizzled the values, update the user visible data too.
3401 	 */
3402 	perf_event_update_userpage(event);
3403 	perf_event_update_userpage(next_event);
3404 }
3405 
3406 static void perf_event_sync_stat(struct perf_event_context *ctx,
3407 				   struct perf_event_context *next_ctx)
3408 {
3409 	struct perf_event *event, *next_event;
3410 
3411 	if (!ctx->nr_stat)
3412 		return;
3413 
3414 	update_context_time(ctx);
3415 
3416 	event = list_first_entry(&ctx->event_list,
3417 				   struct perf_event, event_entry);
3418 
3419 	next_event = list_first_entry(&next_ctx->event_list,
3420 					struct perf_event, event_entry);
3421 
3422 	while (&event->event_entry != &ctx->event_list &&
3423 	       &next_event->event_entry != &next_ctx->event_list) {
3424 
3425 		__perf_event_sync_stat(event, next_event);
3426 
3427 		event = list_next_entry(event, event_entry);
3428 		next_event = list_next_entry(next_event, event_entry);
3429 	}
3430 }
3431 
3432 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3433 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3434 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3435 	     !list_entry_is_head(pos1, head1, member) &&		\
3436 	     !list_entry_is_head(pos2, head2, member);			\
3437 	     pos1 = list_next_entry(pos1, member),			\
3438 	     pos2 = list_next_entry(pos2, member))
3439 
3440 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3441 					  struct perf_event_context *next_ctx)
3442 {
3443 	struct perf_event_pmu_context *prev_epc, *next_epc;
3444 
3445 	if (!prev_ctx->nr_task_data)
3446 		return;
3447 
3448 	double_list_for_each_entry(prev_epc, next_epc,
3449 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3450 				   pmu_ctx_entry) {
3451 
3452 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3453 			continue;
3454 
3455 		/*
3456 		 * PMU specific parts of task perf context can require
3457 		 * additional synchronization. As an example of such
3458 		 * synchronization see implementation details of Intel
3459 		 * LBR call stack data profiling;
3460 		 */
3461 		if (prev_epc->pmu->swap_task_ctx)
3462 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3463 		else
3464 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3465 	}
3466 }
3467 
3468 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3469 {
3470 	struct perf_event_pmu_context *pmu_ctx;
3471 	struct perf_cpu_pmu_context *cpc;
3472 
3473 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3474 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3475 
3476 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3477 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3478 	}
3479 }
3480 
3481 static void
3482 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3483 {
3484 	struct perf_event_context *ctx = task->perf_event_ctxp;
3485 	struct perf_event_context *next_ctx;
3486 	struct perf_event_context *parent, *next_parent;
3487 	int do_switch = 1;
3488 
3489 	if (likely(!ctx))
3490 		return;
3491 
3492 	rcu_read_lock();
3493 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3494 	if (!next_ctx)
3495 		goto unlock;
3496 
3497 	parent = rcu_dereference(ctx->parent_ctx);
3498 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3499 
3500 	/* If neither context have a parent context; they cannot be clones. */
3501 	if (!parent && !next_parent)
3502 		goto unlock;
3503 
3504 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3505 		/*
3506 		 * Looks like the two contexts are clones, so we might be
3507 		 * able to optimize the context switch.  We lock both
3508 		 * contexts and check that they are clones under the
3509 		 * lock (including re-checking that neither has been
3510 		 * uncloned in the meantime).  It doesn't matter which
3511 		 * order we take the locks because no other cpu could
3512 		 * be trying to lock both of these tasks.
3513 		 */
3514 		raw_spin_lock(&ctx->lock);
3515 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3516 		if (context_equiv(ctx, next_ctx)) {
3517 
3518 			perf_ctx_disable(ctx, false);
3519 
3520 			/* PMIs are disabled; ctx->nr_pending is stable. */
3521 			if (local_read(&ctx->nr_pending) ||
3522 			    local_read(&next_ctx->nr_pending)) {
3523 				/*
3524 				 * Must not swap out ctx when there's pending
3525 				 * events that rely on the ctx->task relation.
3526 				 */
3527 				raw_spin_unlock(&next_ctx->lock);
3528 				rcu_read_unlock();
3529 				goto inside_switch;
3530 			}
3531 
3532 			WRITE_ONCE(ctx->task, next);
3533 			WRITE_ONCE(next_ctx->task, task);
3534 
3535 			perf_ctx_sched_task_cb(ctx, false);
3536 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3537 
3538 			perf_ctx_enable(ctx, false);
3539 
3540 			/*
3541 			 * RCU_INIT_POINTER here is safe because we've not
3542 			 * modified the ctx and the above modification of
3543 			 * ctx->task and ctx->task_ctx_data are immaterial
3544 			 * since those values are always verified under
3545 			 * ctx->lock which we're now holding.
3546 			 */
3547 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3548 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3549 
3550 			do_switch = 0;
3551 
3552 			perf_event_sync_stat(ctx, next_ctx);
3553 		}
3554 		raw_spin_unlock(&next_ctx->lock);
3555 		raw_spin_unlock(&ctx->lock);
3556 	}
3557 unlock:
3558 	rcu_read_unlock();
3559 
3560 	if (do_switch) {
3561 		raw_spin_lock(&ctx->lock);
3562 		perf_ctx_disable(ctx, false);
3563 
3564 inside_switch:
3565 		perf_ctx_sched_task_cb(ctx, false);
3566 		task_ctx_sched_out(ctx, EVENT_ALL);
3567 
3568 		perf_ctx_enable(ctx, false);
3569 		raw_spin_unlock(&ctx->lock);
3570 	}
3571 }
3572 
3573 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3574 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3575 
3576 void perf_sched_cb_dec(struct pmu *pmu)
3577 {
3578 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3579 
3580 	this_cpu_dec(perf_sched_cb_usages);
3581 	barrier();
3582 
3583 	if (!--cpc->sched_cb_usage)
3584 		list_del(&cpc->sched_cb_entry);
3585 }
3586 
3587 
3588 void perf_sched_cb_inc(struct pmu *pmu)
3589 {
3590 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3591 
3592 	if (!cpc->sched_cb_usage++)
3593 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3594 
3595 	barrier();
3596 	this_cpu_inc(perf_sched_cb_usages);
3597 }
3598 
3599 /*
3600  * This function provides the context switch callback to the lower code
3601  * layer. It is invoked ONLY when the context switch callback is enabled.
3602  *
3603  * This callback is relevant even to per-cpu events; for example multi event
3604  * PEBS requires this to provide PID/TID information. This requires we flush
3605  * all queued PEBS records before we context switch to a new task.
3606  */
3607 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3608 {
3609 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3610 	struct pmu *pmu;
3611 
3612 	pmu = cpc->epc.pmu;
3613 
3614 	/* software PMUs will not have sched_task */
3615 	if (WARN_ON_ONCE(!pmu->sched_task))
3616 		return;
3617 
3618 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3619 	perf_pmu_disable(pmu);
3620 
3621 	pmu->sched_task(cpc->task_epc, sched_in);
3622 
3623 	perf_pmu_enable(pmu);
3624 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3625 }
3626 
3627 static void perf_pmu_sched_task(struct task_struct *prev,
3628 				struct task_struct *next,
3629 				bool sched_in)
3630 {
3631 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3632 	struct perf_cpu_pmu_context *cpc;
3633 
3634 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3635 	if (prev == next || cpuctx->task_ctx)
3636 		return;
3637 
3638 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3639 		__perf_pmu_sched_task(cpc, sched_in);
3640 }
3641 
3642 static void perf_event_switch(struct task_struct *task,
3643 			      struct task_struct *next_prev, bool sched_in);
3644 
3645 /*
3646  * Called from scheduler to remove the events of the current task,
3647  * with interrupts disabled.
3648  *
3649  * We stop each event and update the event value in event->count.
3650  *
3651  * This does not protect us against NMI, but disable()
3652  * sets the disabled bit in the control field of event _before_
3653  * accessing the event control register. If a NMI hits, then it will
3654  * not restart the event.
3655  */
3656 void __perf_event_task_sched_out(struct task_struct *task,
3657 				 struct task_struct *next)
3658 {
3659 	if (__this_cpu_read(perf_sched_cb_usages))
3660 		perf_pmu_sched_task(task, next, false);
3661 
3662 	if (atomic_read(&nr_switch_events))
3663 		perf_event_switch(task, next, false);
3664 
3665 	perf_event_context_sched_out(task, next);
3666 
3667 	/*
3668 	 * if cgroup events exist on this CPU, then we need
3669 	 * to check if we have to switch out PMU state.
3670 	 * cgroup event are system-wide mode only
3671 	 */
3672 	perf_cgroup_switch(next);
3673 }
3674 
3675 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3676 {
3677 	const struct perf_event *le = *(const struct perf_event **)l;
3678 	const struct perf_event *re = *(const struct perf_event **)r;
3679 
3680 	return le->group_index < re->group_index;
3681 }
3682 
3683 static void swap_ptr(void *l, void *r, void __always_unused *args)
3684 {
3685 	void **lp = l, **rp = r;
3686 
3687 	swap(*lp, *rp);
3688 }
3689 
3690 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3691 
3692 static const struct min_heap_callbacks perf_min_heap = {
3693 	.less = perf_less_group_idx,
3694 	.swp = swap_ptr,
3695 };
3696 
3697 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3698 {
3699 	struct perf_event **itrs = heap->data;
3700 
3701 	if (event) {
3702 		itrs[heap->nr] = event;
3703 		heap->nr++;
3704 	}
3705 }
3706 
3707 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3708 {
3709 	struct perf_cpu_pmu_context *cpc;
3710 
3711 	if (!pmu_ctx->ctx->task)
3712 		return;
3713 
3714 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3715 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3716 	cpc->task_epc = pmu_ctx;
3717 }
3718 
3719 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3720 				struct perf_event_groups *groups, int cpu,
3721 				struct pmu *pmu,
3722 				int (*func)(struct perf_event *, void *),
3723 				void *data)
3724 {
3725 #ifdef CONFIG_CGROUP_PERF
3726 	struct cgroup_subsys_state *css = NULL;
3727 #endif
3728 	struct perf_cpu_context *cpuctx = NULL;
3729 	/* Space for per CPU and/or any CPU event iterators. */
3730 	struct perf_event *itrs[2];
3731 	struct perf_event_min_heap event_heap;
3732 	struct perf_event **evt;
3733 	int ret;
3734 
3735 	if (pmu->filter && pmu->filter(pmu, cpu))
3736 		return 0;
3737 
3738 	if (!ctx->task) {
3739 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3740 		event_heap = (struct perf_event_min_heap){
3741 			.data = cpuctx->heap,
3742 			.nr = 0,
3743 			.size = cpuctx->heap_size,
3744 		};
3745 
3746 		lockdep_assert_held(&cpuctx->ctx.lock);
3747 
3748 #ifdef CONFIG_CGROUP_PERF
3749 		if (cpuctx->cgrp)
3750 			css = &cpuctx->cgrp->css;
3751 #endif
3752 	} else {
3753 		event_heap = (struct perf_event_min_heap){
3754 			.data = itrs,
3755 			.nr = 0,
3756 			.size = ARRAY_SIZE(itrs),
3757 		};
3758 		/* Events not within a CPU context may be on any CPU. */
3759 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3760 	}
3761 	evt = event_heap.data;
3762 
3763 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3764 
3765 #ifdef CONFIG_CGROUP_PERF
3766 	for (; css; css = css->parent)
3767 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3768 #endif
3769 
3770 	if (event_heap.nr) {
3771 		__link_epc((*evt)->pmu_ctx);
3772 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3773 	}
3774 
3775 	min_heapify_all(&event_heap, &perf_min_heap, NULL);
3776 
3777 	while (event_heap.nr) {
3778 		ret = func(*evt, data);
3779 		if (ret)
3780 			return ret;
3781 
3782 		*evt = perf_event_groups_next(*evt, pmu);
3783 		if (*evt)
3784 			min_heap_sift_down(&event_heap, 0, &perf_min_heap, NULL);
3785 		else
3786 			min_heap_pop(&event_heap, &perf_min_heap, NULL);
3787 	}
3788 
3789 	return 0;
3790 }
3791 
3792 /*
3793  * Because the userpage is strictly per-event (there is no concept of context,
3794  * so there cannot be a context indirection), every userpage must be updated
3795  * when context time starts :-(
3796  *
3797  * IOW, we must not miss EVENT_TIME edges.
3798  */
3799 static inline bool event_update_userpage(struct perf_event *event)
3800 {
3801 	if (likely(!atomic_read(&event->mmap_count)))
3802 		return false;
3803 
3804 	perf_event_update_time(event);
3805 	perf_event_update_userpage(event);
3806 
3807 	return true;
3808 }
3809 
3810 static inline void group_update_userpage(struct perf_event *group_event)
3811 {
3812 	struct perf_event *event;
3813 
3814 	if (!event_update_userpage(group_event))
3815 		return;
3816 
3817 	for_each_sibling_event(event, group_event)
3818 		event_update_userpage(event);
3819 }
3820 
3821 static int merge_sched_in(struct perf_event *event, void *data)
3822 {
3823 	struct perf_event_context *ctx = event->ctx;
3824 	int *can_add_hw = data;
3825 
3826 	if (event->state <= PERF_EVENT_STATE_OFF)
3827 		return 0;
3828 
3829 	if (!event_filter_match(event))
3830 		return 0;
3831 
3832 	if (group_can_go_on(event, *can_add_hw)) {
3833 		if (!group_sched_in(event, ctx))
3834 			list_add_tail(&event->active_list, get_event_list(event));
3835 	}
3836 
3837 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3838 		*can_add_hw = 0;
3839 		if (event->attr.pinned) {
3840 			perf_cgroup_event_disable(event, ctx);
3841 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3842 		} else {
3843 			struct perf_cpu_pmu_context *cpc;
3844 
3845 			event->pmu_ctx->rotate_necessary = 1;
3846 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3847 			perf_mux_hrtimer_restart(cpc);
3848 			group_update_userpage(event);
3849 		}
3850 	}
3851 
3852 	return 0;
3853 }
3854 
3855 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3856 				struct perf_event_groups *groups,
3857 				struct pmu *pmu)
3858 {
3859 	int can_add_hw = 1;
3860 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3861 			   merge_sched_in, &can_add_hw);
3862 }
3863 
3864 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3865 				struct perf_event_groups *groups,
3866 				bool cgroup)
3867 {
3868 	struct perf_event_pmu_context *pmu_ctx;
3869 
3870 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3871 		if (cgroup && !pmu_ctx->nr_cgroups)
3872 			continue;
3873 		pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3874 	}
3875 }
3876 
3877 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3878 			       struct pmu *pmu)
3879 {
3880 	pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3881 }
3882 
3883 static void
3884 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3885 {
3886 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3887 	int is_active = ctx->is_active;
3888 	bool cgroup = event_type & EVENT_CGROUP;
3889 
3890 	event_type &= ~EVENT_CGROUP;
3891 
3892 	lockdep_assert_held(&ctx->lock);
3893 
3894 	if (likely(!ctx->nr_events))
3895 		return;
3896 
3897 	if (!(is_active & EVENT_TIME)) {
3898 		/* start ctx time */
3899 		__update_context_time(ctx, false);
3900 		perf_cgroup_set_timestamp(cpuctx);
3901 		/*
3902 		 * CPU-release for the below ->is_active store,
3903 		 * see __load_acquire() in perf_event_time_now()
3904 		 */
3905 		barrier();
3906 	}
3907 
3908 	ctx->is_active |= (event_type | EVENT_TIME);
3909 	if (ctx->task) {
3910 		if (!is_active)
3911 			cpuctx->task_ctx = ctx;
3912 		else
3913 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3914 	}
3915 
3916 	is_active ^= ctx->is_active; /* changed bits */
3917 
3918 	/*
3919 	 * First go through the list and put on any pinned groups
3920 	 * in order to give them the best chance of going on.
3921 	 */
3922 	if (is_active & EVENT_PINNED)
3923 		ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3924 
3925 	/* Then walk through the lower prio flexible groups */
3926 	if (is_active & EVENT_FLEXIBLE)
3927 		ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3928 }
3929 
3930 static void perf_event_context_sched_in(struct task_struct *task)
3931 {
3932 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3933 	struct perf_event_context *ctx;
3934 
3935 	rcu_read_lock();
3936 	ctx = rcu_dereference(task->perf_event_ctxp);
3937 	if (!ctx)
3938 		goto rcu_unlock;
3939 
3940 	if (cpuctx->task_ctx == ctx) {
3941 		perf_ctx_lock(cpuctx, ctx);
3942 		perf_ctx_disable(ctx, false);
3943 
3944 		perf_ctx_sched_task_cb(ctx, true);
3945 
3946 		perf_ctx_enable(ctx, false);
3947 		perf_ctx_unlock(cpuctx, ctx);
3948 		goto rcu_unlock;
3949 	}
3950 
3951 	perf_ctx_lock(cpuctx, ctx);
3952 	/*
3953 	 * We must check ctx->nr_events while holding ctx->lock, such
3954 	 * that we serialize against perf_install_in_context().
3955 	 */
3956 	if (!ctx->nr_events)
3957 		goto unlock;
3958 
3959 	perf_ctx_disable(ctx, false);
3960 	/*
3961 	 * We want to keep the following priority order:
3962 	 * cpu pinned (that don't need to move), task pinned,
3963 	 * cpu flexible, task flexible.
3964 	 *
3965 	 * However, if task's ctx is not carrying any pinned
3966 	 * events, no need to flip the cpuctx's events around.
3967 	 */
3968 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3969 		perf_ctx_disable(&cpuctx->ctx, false);
3970 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3971 	}
3972 
3973 	perf_event_sched_in(cpuctx, ctx);
3974 
3975 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3976 
3977 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3978 		perf_ctx_enable(&cpuctx->ctx, false);
3979 
3980 	perf_ctx_enable(ctx, false);
3981 
3982 unlock:
3983 	perf_ctx_unlock(cpuctx, ctx);
3984 rcu_unlock:
3985 	rcu_read_unlock();
3986 }
3987 
3988 /*
3989  * Called from scheduler to add the events of the current task
3990  * with interrupts disabled.
3991  *
3992  * We restore the event value and then enable it.
3993  *
3994  * This does not protect us against NMI, but enable()
3995  * sets the enabled bit in the control field of event _before_
3996  * accessing the event control register. If a NMI hits, then it will
3997  * keep the event running.
3998  */
3999 void __perf_event_task_sched_in(struct task_struct *prev,
4000 				struct task_struct *task)
4001 {
4002 	perf_event_context_sched_in(task);
4003 
4004 	if (atomic_read(&nr_switch_events))
4005 		perf_event_switch(task, prev, true);
4006 
4007 	if (__this_cpu_read(perf_sched_cb_usages))
4008 		perf_pmu_sched_task(prev, task, true);
4009 }
4010 
4011 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4012 {
4013 	u64 frequency = event->attr.sample_freq;
4014 	u64 sec = NSEC_PER_SEC;
4015 	u64 divisor, dividend;
4016 
4017 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4018 
4019 	count_fls = fls64(count);
4020 	nsec_fls = fls64(nsec);
4021 	frequency_fls = fls64(frequency);
4022 	sec_fls = 30;
4023 
4024 	/*
4025 	 * We got @count in @nsec, with a target of sample_freq HZ
4026 	 * the target period becomes:
4027 	 *
4028 	 *             @count * 10^9
4029 	 * period = -------------------
4030 	 *          @nsec * sample_freq
4031 	 *
4032 	 */
4033 
4034 	/*
4035 	 * Reduce accuracy by one bit such that @a and @b converge
4036 	 * to a similar magnitude.
4037 	 */
4038 #define REDUCE_FLS(a, b)		\
4039 do {					\
4040 	if (a##_fls > b##_fls) {	\
4041 		a >>= 1;		\
4042 		a##_fls--;		\
4043 	} else {			\
4044 		b >>= 1;		\
4045 		b##_fls--;		\
4046 	}				\
4047 } while (0)
4048 
4049 	/*
4050 	 * Reduce accuracy until either term fits in a u64, then proceed with
4051 	 * the other, so that finally we can do a u64/u64 division.
4052 	 */
4053 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4054 		REDUCE_FLS(nsec, frequency);
4055 		REDUCE_FLS(sec, count);
4056 	}
4057 
4058 	if (count_fls + sec_fls > 64) {
4059 		divisor = nsec * frequency;
4060 
4061 		while (count_fls + sec_fls > 64) {
4062 			REDUCE_FLS(count, sec);
4063 			divisor >>= 1;
4064 		}
4065 
4066 		dividend = count * sec;
4067 	} else {
4068 		dividend = count * sec;
4069 
4070 		while (nsec_fls + frequency_fls > 64) {
4071 			REDUCE_FLS(nsec, frequency);
4072 			dividend >>= 1;
4073 		}
4074 
4075 		divisor = nsec * frequency;
4076 	}
4077 
4078 	if (!divisor)
4079 		return dividend;
4080 
4081 	return div64_u64(dividend, divisor);
4082 }
4083 
4084 static DEFINE_PER_CPU(int, perf_throttled_count);
4085 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4086 
4087 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4088 {
4089 	struct hw_perf_event *hwc = &event->hw;
4090 	s64 period, sample_period;
4091 	s64 delta;
4092 
4093 	period = perf_calculate_period(event, nsec, count);
4094 
4095 	delta = (s64)(period - hwc->sample_period);
4096 	delta = (delta + 7) / 8; /* low pass filter */
4097 
4098 	sample_period = hwc->sample_period + delta;
4099 
4100 	if (!sample_period)
4101 		sample_period = 1;
4102 
4103 	hwc->sample_period = sample_period;
4104 
4105 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4106 		if (disable)
4107 			event->pmu->stop(event, PERF_EF_UPDATE);
4108 
4109 		local64_set(&hwc->period_left, 0);
4110 
4111 		if (disable)
4112 			event->pmu->start(event, PERF_EF_RELOAD);
4113 	}
4114 }
4115 
4116 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4117 {
4118 	struct perf_event *event;
4119 	struct hw_perf_event *hwc;
4120 	u64 now, period = TICK_NSEC;
4121 	s64 delta;
4122 
4123 	list_for_each_entry(event, event_list, active_list) {
4124 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4125 			continue;
4126 
4127 		// XXX use visit thingy to avoid the -1,cpu match
4128 		if (!event_filter_match(event))
4129 			continue;
4130 
4131 		hwc = &event->hw;
4132 
4133 		if (hwc->interrupts == MAX_INTERRUPTS) {
4134 			hwc->interrupts = 0;
4135 			perf_log_throttle(event, 1);
4136 			if (!event->attr.freq || !event->attr.sample_freq)
4137 				event->pmu->start(event, 0);
4138 		}
4139 
4140 		if (!event->attr.freq || !event->attr.sample_freq)
4141 			continue;
4142 
4143 		/*
4144 		 * stop the event and update event->count
4145 		 */
4146 		event->pmu->stop(event, PERF_EF_UPDATE);
4147 
4148 		now = local64_read(&event->count);
4149 		delta = now - hwc->freq_count_stamp;
4150 		hwc->freq_count_stamp = now;
4151 
4152 		/*
4153 		 * restart the event
4154 		 * reload only if value has changed
4155 		 * we have stopped the event so tell that
4156 		 * to perf_adjust_period() to avoid stopping it
4157 		 * twice.
4158 		 */
4159 		if (delta > 0)
4160 			perf_adjust_period(event, period, delta, false);
4161 
4162 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4163 	}
4164 }
4165 
4166 /*
4167  * combine freq adjustment with unthrottling to avoid two passes over the
4168  * events. At the same time, make sure, having freq events does not change
4169  * the rate of unthrottling as that would introduce bias.
4170  */
4171 static void
4172 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4173 {
4174 	struct perf_event_pmu_context *pmu_ctx;
4175 
4176 	/*
4177 	 * only need to iterate over all events iff:
4178 	 * - context have events in frequency mode (needs freq adjust)
4179 	 * - there are events to unthrottle on this cpu
4180 	 */
4181 	if (!(ctx->nr_freq || unthrottle))
4182 		return;
4183 
4184 	raw_spin_lock(&ctx->lock);
4185 
4186 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4187 		if (!(pmu_ctx->nr_freq || unthrottle))
4188 			continue;
4189 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4190 			continue;
4191 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4192 			continue;
4193 
4194 		perf_pmu_disable(pmu_ctx->pmu);
4195 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4196 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4197 		perf_pmu_enable(pmu_ctx->pmu);
4198 	}
4199 
4200 	raw_spin_unlock(&ctx->lock);
4201 }
4202 
4203 /*
4204  * Move @event to the tail of the @ctx's elegible events.
4205  */
4206 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4207 {
4208 	/*
4209 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4210 	 * disabled by the inheritance code.
4211 	 */
4212 	if (ctx->rotate_disable)
4213 		return;
4214 
4215 	perf_event_groups_delete(&ctx->flexible_groups, event);
4216 	perf_event_groups_insert(&ctx->flexible_groups, event);
4217 }
4218 
4219 /* pick an event from the flexible_groups to rotate */
4220 static inline struct perf_event *
4221 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4222 {
4223 	struct perf_event *event;
4224 	struct rb_node *node;
4225 	struct rb_root *tree;
4226 	struct __group_key key = {
4227 		.pmu = pmu_ctx->pmu,
4228 	};
4229 
4230 	/* pick the first active flexible event */
4231 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4232 					 struct perf_event, active_list);
4233 	if (event)
4234 		goto out;
4235 
4236 	/* if no active flexible event, pick the first event */
4237 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4238 
4239 	if (!pmu_ctx->ctx->task) {
4240 		key.cpu = smp_processor_id();
4241 
4242 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4243 		if (node)
4244 			event = __node_2_pe(node);
4245 		goto out;
4246 	}
4247 
4248 	key.cpu = -1;
4249 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4250 	if (node) {
4251 		event = __node_2_pe(node);
4252 		goto out;
4253 	}
4254 
4255 	key.cpu = smp_processor_id();
4256 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4257 	if (node)
4258 		event = __node_2_pe(node);
4259 
4260 out:
4261 	/*
4262 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4263 	 * finds there are unschedulable events, it will set it again.
4264 	 */
4265 	pmu_ctx->rotate_necessary = 0;
4266 
4267 	return event;
4268 }
4269 
4270 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4271 {
4272 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4273 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4274 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4275 	int cpu_rotate, task_rotate;
4276 	struct pmu *pmu;
4277 
4278 	/*
4279 	 * Since we run this from IRQ context, nobody can install new
4280 	 * events, thus the event count values are stable.
4281 	 */
4282 
4283 	cpu_epc = &cpc->epc;
4284 	pmu = cpu_epc->pmu;
4285 	task_epc = cpc->task_epc;
4286 
4287 	cpu_rotate = cpu_epc->rotate_necessary;
4288 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4289 
4290 	if (!(cpu_rotate || task_rotate))
4291 		return false;
4292 
4293 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4294 	perf_pmu_disable(pmu);
4295 
4296 	if (task_rotate)
4297 		task_event = ctx_event_to_rotate(task_epc);
4298 	if (cpu_rotate)
4299 		cpu_event = ctx_event_to_rotate(cpu_epc);
4300 
4301 	/*
4302 	 * As per the order given at ctx_resched() first 'pop' task flexible
4303 	 * and then, if needed CPU flexible.
4304 	 */
4305 	if (task_event || (task_epc && cpu_event)) {
4306 		update_context_time(task_epc->ctx);
4307 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4308 	}
4309 
4310 	if (cpu_event) {
4311 		update_context_time(&cpuctx->ctx);
4312 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4313 		rotate_ctx(&cpuctx->ctx, cpu_event);
4314 		__pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4315 	}
4316 
4317 	if (task_event)
4318 		rotate_ctx(task_epc->ctx, task_event);
4319 
4320 	if (task_event || (task_epc && cpu_event))
4321 		__pmu_ctx_sched_in(task_epc->ctx, pmu);
4322 
4323 	perf_pmu_enable(pmu);
4324 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4325 
4326 	return true;
4327 }
4328 
4329 void perf_event_task_tick(void)
4330 {
4331 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4332 	struct perf_event_context *ctx;
4333 	int throttled;
4334 
4335 	lockdep_assert_irqs_disabled();
4336 
4337 	__this_cpu_inc(perf_throttled_seq);
4338 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4339 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4340 
4341 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4342 
4343 	rcu_read_lock();
4344 	ctx = rcu_dereference(current->perf_event_ctxp);
4345 	if (ctx)
4346 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4347 	rcu_read_unlock();
4348 }
4349 
4350 static int event_enable_on_exec(struct perf_event *event,
4351 				struct perf_event_context *ctx)
4352 {
4353 	if (!event->attr.enable_on_exec)
4354 		return 0;
4355 
4356 	event->attr.enable_on_exec = 0;
4357 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4358 		return 0;
4359 
4360 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4361 
4362 	return 1;
4363 }
4364 
4365 /*
4366  * Enable all of a task's events that have been marked enable-on-exec.
4367  * This expects task == current.
4368  */
4369 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4370 {
4371 	struct perf_event_context *clone_ctx = NULL;
4372 	enum event_type_t event_type = 0;
4373 	struct perf_cpu_context *cpuctx;
4374 	struct perf_event *event;
4375 	unsigned long flags;
4376 	int enabled = 0;
4377 
4378 	local_irq_save(flags);
4379 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4380 		goto out;
4381 
4382 	if (!ctx->nr_events)
4383 		goto out;
4384 
4385 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4386 	perf_ctx_lock(cpuctx, ctx);
4387 	ctx_sched_out(ctx, EVENT_TIME);
4388 
4389 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4390 		enabled |= event_enable_on_exec(event, ctx);
4391 		event_type |= get_event_type(event);
4392 	}
4393 
4394 	/*
4395 	 * Unclone and reschedule this context if we enabled any event.
4396 	 */
4397 	if (enabled) {
4398 		clone_ctx = unclone_ctx(ctx);
4399 		ctx_resched(cpuctx, ctx, event_type);
4400 	} else {
4401 		ctx_sched_in(ctx, EVENT_TIME);
4402 	}
4403 	perf_ctx_unlock(cpuctx, ctx);
4404 
4405 out:
4406 	local_irq_restore(flags);
4407 
4408 	if (clone_ctx)
4409 		put_ctx(clone_ctx);
4410 }
4411 
4412 static void perf_remove_from_owner(struct perf_event *event);
4413 static void perf_event_exit_event(struct perf_event *event,
4414 				  struct perf_event_context *ctx);
4415 
4416 /*
4417  * Removes all events from the current task that have been marked
4418  * remove-on-exec, and feeds their values back to parent events.
4419  */
4420 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4421 {
4422 	struct perf_event_context *clone_ctx = NULL;
4423 	struct perf_event *event, *next;
4424 	unsigned long flags;
4425 	bool modified = false;
4426 
4427 	mutex_lock(&ctx->mutex);
4428 
4429 	if (WARN_ON_ONCE(ctx->task != current))
4430 		goto unlock;
4431 
4432 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4433 		if (!event->attr.remove_on_exec)
4434 			continue;
4435 
4436 		if (!is_kernel_event(event))
4437 			perf_remove_from_owner(event);
4438 
4439 		modified = true;
4440 
4441 		perf_event_exit_event(event, ctx);
4442 	}
4443 
4444 	raw_spin_lock_irqsave(&ctx->lock, flags);
4445 	if (modified)
4446 		clone_ctx = unclone_ctx(ctx);
4447 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4448 
4449 unlock:
4450 	mutex_unlock(&ctx->mutex);
4451 
4452 	if (clone_ctx)
4453 		put_ctx(clone_ctx);
4454 }
4455 
4456 struct perf_read_data {
4457 	struct perf_event *event;
4458 	bool group;
4459 	int ret;
4460 };
4461 
4462 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4463 {
4464 	u16 local_pkg, event_pkg;
4465 
4466 	if ((unsigned)event_cpu >= nr_cpu_ids)
4467 		return event_cpu;
4468 
4469 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4470 		int local_cpu = smp_processor_id();
4471 
4472 		event_pkg = topology_physical_package_id(event_cpu);
4473 		local_pkg = topology_physical_package_id(local_cpu);
4474 
4475 		if (event_pkg == local_pkg)
4476 			return local_cpu;
4477 	}
4478 
4479 	return event_cpu;
4480 }
4481 
4482 /*
4483  * Cross CPU call to read the hardware event
4484  */
4485 static void __perf_event_read(void *info)
4486 {
4487 	struct perf_read_data *data = info;
4488 	struct perf_event *sub, *event = data->event;
4489 	struct perf_event_context *ctx = event->ctx;
4490 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4491 	struct pmu *pmu = event->pmu;
4492 
4493 	/*
4494 	 * If this is a task context, we need to check whether it is
4495 	 * the current task context of this cpu.  If not it has been
4496 	 * scheduled out before the smp call arrived.  In that case
4497 	 * event->count would have been updated to a recent sample
4498 	 * when the event was scheduled out.
4499 	 */
4500 	if (ctx->task && cpuctx->task_ctx != ctx)
4501 		return;
4502 
4503 	raw_spin_lock(&ctx->lock);
4504 	if (ctx->is_active & EVENT_TIME) {
4505 		update_context_time(ctx);
4506 		update_cgrp_time_from_event(event);
4507 	}
4508 
4509 	perf_event_update_time(event);
4510 	if (data->group)
4511 		perf_event_update_sibling_time(event);
4512 
4513 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4514 		goto unlock;
4515 
4516 	if (!data->group) {
4517 		pmu->read(event);
4518 		data->ret = 0;
4519 		goto unlock;
4520 	}
4521 
4522 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4523 
4524 	pmu->read(event);
4525 
4526 	for_each_sibling_event(sub, event) {
4527 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4528 			/*
4529 			 * Use sibling's PMU rather than @event's since
4530 			 * sibling could be on different (eg: software) PMU.
4531 			 */
4532 			sub->pmu->read(sub);
4533 		}
4534 	}
4535 
4536 	data->ret = pmu->commit_txn(pmu);
4537 
4538 unlock:
4539 	raw_spin_unlock(&ctx->lock);
4540 }
4541 
4542 static inline u64 perf_event_count(struct perf_event *event)
4543 {
4544 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4545 }
4546 
4547 static void calc_timer_values(struct perf_event *event,
4548 				u64 *now,
4549 				u64 *enabled,
4550 				u64 *running)
4551 {
4552 	u64 ctx_time;
4553 
4554 	*now = perf_clock();
4555 	ctx_time = perf_event_time_now(event, *now);
4556 	__perf_update_times(event, ctx_time, enabled, running);
4557 }
4558 
4559 /*
4560  * NMI-safe method to read a local event, that is an event that
4561  * is:
4562  *   - either for the current task, or for this CPU
4563  *   - does not have inherit set, for inherited task events
4564  *     will not be local and we cannot read them atomically
4565  *   - must not have a pmu::count method
4566  */
4567 int perf_event_read_local(struct perf_event *event, u64 *value,
4568 			  u64 *enabled, u64 *running)
4569 {
4570 	unsigned long flags;
4571 	int event_oncpu;
4572 	int event_cpu;
4573 	int ret = 0;
4574 
4575 	/*
4576 	 * Disabling interrupts avoids all counter scheduling (context
4577 	 * switches, timer based rotation and IPIs).
4578 	 */
4579 	local_irq_save(flags);
4580 
4581 	/*
4582 	 * It must not be an event with inherit set, we cannot read
4583 	 * all child counters from atomic context.
4584 	 */
4585 	if (event->attr.inherit) {
4586 		ret = -EOPNOTSUPP;
4587 		goto out;
4588 	}
4589 
4590 	/* If this is a per-task event, it must be for current */
4591 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4592 	    event->hw.target != current) {
4593 		ret = -EINVAL;
4594 		goto out;
4595 	}
4596 
4597 	/*
4598 	 * Get the event CPU numbers, and adjust them to local if the event is
4599 	 * a per-package event that can be read locally
4600 	 */
4601 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4602 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4603 
4604 	/* If this is a per-CPU event, it must be for this CPU */
4605 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4606 	    event_cpu != smp_processor_id()) {
4607 		ret = -EINVAL;
4608 		goto out;
4609 	}
4610 
4611 	/* If this is a pinned event it must be running on this CPU */
4612 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4613 		ret = -EBUSY;
4614 		goto out;
4615 	}
4616 
4617 	/*
4618 	 * If the event is currently on this CPU, its either a per-task event,
4619 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4620 	 * oncpu == -1).
4621 	 */
4622 	if (event_oncpu == smp_processor_id())
4623 		event->pmu->read(event);
4624 
4625 	*value = local64_read(&event->count);
4626 	if (enabled || running) {
4627 		u64 __enabled, __running, __now;
4628 
4629 		calc_timer_values(event, &__now, &__enabled, &__running);
4630 		if (enabled)
4631 			*enabled = __enabled;
4632 		if (running)
4633 			*running = __running;
4634 	}
4635 out:
4636 	local_irq_restore(flags);
4637 
4638 	return ret;
4639 }
4640 
4641 static int perf_event_read(struct perf_event *event, bool group)
4642 {
4643 	enum perf_event_state state = READ_ONCE(event->state);
4644 	int event_cpu, ret = 0;
4645 
4646 	/*
4647 	 * If event is enabled and currently active on a CPU, update the
4648 	 * value in the event structure:
4649 	 */
4650 again:
4651 	if (state == PERF_EVENT_STATE_ACTIVE) {
4652 		struct perf_read_data data;
4653 
4654 		/*
4655 		 * Orders the ->state and ->oncpu loads such that if we see
4656 		 * ACTIVE we must also see the right ->oncpu.
4657 		 *
4658 		 * Matches the smp_wmb() from event_sched_in().
4659 		 */
4660 		smp_rmb();
4661 
4662 		event_cpu = READ_ONCE(event->oncpu);
4663 		if ((unsigned)event_cpu >= nr_cpu_ids)
4664 			return 0;
4665 
4666 		data = (struct perf_read_data){
4667 			.event = event,
4668 			.group = group,
4669 			.ret = 0,
4670 		};
4671 
4672 		preempt_disable();
4673 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4674 
4675 		/*
4676 		 * Purposely ignore the smp_call_function_single() return
4677 		 * value.
4678 		 *
4679 		 * If event_cpu isn't a valid CPU it means the event got
4680 		 * scheduled out and that will have updated the event count.
4681 		 *
4682 		 * Therefore, either way, we'll have an up-to-date event count
4683 		 * after this.
4684 		 */
4685 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4686 		preempt_enable();
4687 		ret = data.ret;
4688 
4689 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4690 		struct perf_event_context *ctx = event->ctx;
4691 		unsigned long flags;
4692 
4693 		raw_spin_lock_irqsave(&ctx->lock, flags);
4694 		state = event->state;
4695 		if (state != PERF_EVENT_STATE_INACTIVE) {
4696 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4697 			goto again;
4698 		}
4699 
4700 		/*
4701 		 * May read while context is not active (e.g., thread is
4702 		 * blocked), in that case we cannot update context time
4703 		 */
4704 		if (ctx->is_active & EVENT_TIME) {
4705 			update_context_time(ctx);
4706 			update_cgrp_time_from_event(event);
4707 		}
4708 
4709 		perf_event_update_time(event);
4710 		if (group)
4711 			perf_event_update_sibling_time(event);
4712 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4713 	}
4714 
4715 	return ret;
4716 }
4717 
4718 /*
4719  * Initialize the perf_event context in a task_struct:
4720  */
4721 static void __perf_event_init_context(struct perf_event_context *ctx)
4722 {
4723 	raw_spin_lock_init(&ctx->lock);
4724 	mutex_init(&ctx->mutex);
4725 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4726 	perf_event_groups_init(&ctx->pinned_groups);
4727 	perf_event_groups_init(&ctx->flexible_groups);
4728 	INIT_LIST_HEAD(&ctx->event_list);
4729 	refcount_set(&ctx->refcount, 1);
4730 }
4731 
4732 static void
4733 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4734 {
4735 	epc->pmu = pmu;
4736 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4737 	INIT_LIST_HEAD(&epc->pinned_active);
4738 	INIT_LIST_HEAD(&epc->flexible_active);
4739 	atomic_set(&epc->refcount, 1);
4740 }
4741 
4742 static struct perf_event_context *
4743 alloc_perf_context(struct task_struct *task)
4744 {
4745 	struct perf_event_context *ctx;
4746 
4747 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4748 	if (!ctx)
4749 		return NULL;
4750 
4751 	__perf_event_init_context(ctx);
4752 	if (task)
4753 		ctx->task = get_task_struct(task);
4754 
4755 	return ctx;
4756 }
4757 
4758 static struct task_struct *
4759 find_lively_task_by_vpid(pid_t vpid)
4760 {
4761 	struct task_struct *task;
4762 
4763 	rcu_read_lock();
4764 	if (!vpid)
4765 		task = current;
4766 	else
4767 		task = find_task_by_vpid(vpid);
4768 	if (task)
4769 		get_task_struct(task);
4770 	rcu_read_unlock();
4771 
4772 	if (!task)
4773 		return ERR_PTR(-ESRCH);
4774 
4775 	return task;
4776 }
4777 
4778 /*
4779  * Returns a matching context with refcount and pincount.
4780  */
4781 static struct perf_event_context *
4782 find_get_context(struct task_struct *task, struct perf_event *event)
4783 {
4784 	struct perf_event_context *ctx, *clone_ctx = NULL;
4785 	struct perf_cpu_context *cpuctx;
4786 	unsigned long flags;
4787 	int err;
4788 
4789 	if (!task) {
4790 		/* Must be root to operate on a CPU event: */
4791 		err = perf_allow_cpu(&event->attr);
4792 		if (err)
4793 			return ERR_PTR(err);
4794 
4795 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4796 		ctx = &cpuctx->ctx;
4797 		get_ctx(ctx);
4798 		raw_spin_lock_irqsave(&ctx->lock, flags);
4799 		++ctx->pin_count;
4800 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4801 
4802 		return ctx;
4803 	}
4804 
4805 	err = -EINVAL;
4806 retry:
4807 	ctx = perf_lock_task_context(task, &flags);
4808 	if (ctx) {
4809 		clone_ctx = unclone_ctx(ctx);
4810 		++ctx->pin_count;
4811 
4812 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4813 
4814 		if (clone_ctx)
4815 			put_ctx(clone_ctx);
4816 	} else {
4817 		ctx = alloc_perf_context(task);
4818 		err = -ENOMEM;
4819 		if (!ctx)
4820 			goto errout;
4821 
4822 		err = 0;
4823 		mutex_lock(&task->perf_event_mutex);
4824 		/*
4825 		 * If it has already passed perf_event_exit_task().
4826 		 * we must see PF_EXITING, it takes this mutex too.
4827 		 */
4828 		if (task->flags & PF_EXITING)
4829 			err = -ESRCH;
4830 		else if (task->perf_event_ctxp)
4831 			err = -EAGAIN;
4832 		else {
4833 			get_ctx(ctx);
4834 			++ctx->pin_count;
4835 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4836 		}
4837 		mutex_unlock(&task->perf_event_mutex);
4838 
4839 		if (unlikely(err)) {
4840 			put_ctx(ctx);
4841 
4842 			if (err == -EAGAIN)
4843 				goto retry;
4844 			goto errout;
4845 		}
4846 	}
4847 
4848 	return ctx;
4849 
4850 errout:
4851 	return ERR_PTR(err);
4852 }
4853 
4854 static struct perf_event_pmu_context *
4855 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4856 		     struct perf_event *event)
4857 {
4858 	struct perf_event_pmu_context *new = NULL, *epc;
4859 	void *task_ctx_data = NULL;
4860 
4861 	if (!ctx->task) {
4862 		/*
4863 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4864 		 * relies on the fact that find_get_pmu_context() cannot fail
4865 		 * for CPU contexts.
4866 		 */
4867 		struct perf_cpu_pmu_context *cpc;
4868 
4869 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4870 		epc = &cpc->epc;
4871 		raw_spin_lock_irq(&ctx->lock);
4872 		if (!epc->ctx) {
4873 			atomic_set(&epc->refcount, 1);
4874 			epc->embedded = 1;
4875 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4876 			epc->ctx = ctx;
4877 		} else {
4878 			WARN_ON_ONCE(epc->ctx != ctx);
4879 			atomic_inc(&epc->refcount);
4880 		}
4881 		raw_spin_unlock_irq(&ctx->lock);
4882 		return epc;
4883 	}
4884 
4885 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4886 	if (!new)
4887 		return ERR_PTR(-ENOMEM);
4888 
4889 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4890 		task_ctx_data = alloc_task_ctx_data(pmu);
4891 		if (!task_ctx_data) {
4892 			kfree(new);
4893 			return ERR_PTR(-ENOMEM);
4894 		}
4895 	}
4896 
4897 	__perf_init_event_pmu_context(new, pmu);
4898 
4899 	/*
4900 	 * XXX
4901 	 *
4902 	 * lockdep_assert_held(&ctx->mutex);
4903 	 *
4904 	 * can't because perf_event_init_task() doesn't actually hold the
4905 	 * child_ctx->mutex.
4906 	 */
4907 
4908 	raw_spin_lock_irq(&ctx->lock);
4909 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4910 		if (epc->pmu == pmu) {
4911 			WARN_ON_ONCE(epc->ctx != ctx);
4912 			atomic_inc(&epc->refcount);
4913 			goto found_epc;
4914 		}
4915 	}
4916 
4917 	epc = new;
4918 	new = NULL;
4919 
4920 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4921 	epc->ctx = ctx;
4922 
4923 found_epc:
4924 	if (task_ctx_data && !epc->task_ctx_data) {
4925 		epc->task_ctx_data = task_ctx_data;
4926 		task_ctx_data = NULL;
4927 		ctx->nr_task_data++;
4928 	}
4929 	raw_spin_unlock_irq(&ctx->lock);
4930 
4931 	free_task_ctx_data(pmu, task_ctx_data);
4932 	kfree(new);
4933 
4934 	return epc;
4935 }
4936 
4937 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4938 {
4939 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4940 }
4941 
4942 static void free_epc_rcu(struct rcu_head *head)
4943 {
4944 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4945 
4946 	kfree(epc->task_ctx_data);
4947 	kfree(epc);
4948 }
4949 
4950 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4951 {
4952 	struct perf_event_context *ctx = epc->ctx;
4953 	unsigned long flags;
4954 
4955 	/*
4956 	 * XXX
4957 	 *
4958 	 * lockdep_assert_held(&ctx->mutex);
4959 	 *
4960 	 * can't because of the call-site in _free_event()/put_event()
4961 	 * which isn't always called under ctx->mutex.
4962 	 */
4963 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4964 		return;
4965 
4966 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4967 
4968 	list_del_init(&epc->pmu_ctx_entry);
4969 	epc->ctx = NULL;
4970 
4971 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4972 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4973 
4974 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4975 
4976 	if (epc->embedded)
4977 		return;
4978 
4979 	call_rcu(&epc->rcu_head, free_epc_rcu);
4980 }
4981 
4982 static void perf_event_free_filter(struct perf_event *event);
4983 
4984 static void free_event_rcu(struct rcu_head *head)
4985 {
4986 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4987 
4988 	if (event->ns)
4989 		put_pid_ns(event->ns);
4990 	perf_event_free_filter(event);
4991 	kmem_cache_free(perf_event_cache, event);
4992 }
4993 
4994 static void ring_buffer_attach(struct perf_event *event,
4995 			       struct perf_buffer *rb);
4996 
4997 static void detach_sb_event(struct perf_event *event)
4998 {
4999 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5000 
5001 	raw_spin_lock(&pel->lock);
5002 	list_del_rcu(&event->sb_list);
5003 	raw_spin_unlock(&pel->lock);
5004 }
5005 
5006 static bool is_sb_event(struct perf_event *event)
5007 {
5008 	struct perf_event_attr *attr = &event->attr;
5009 
5010 	if (event->parent)
5011 		return false;
5012 
5013 	if (event->attach_state & PERF_ATTACH_TASK)
5014 		return false;
5015 
5016 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5017 	    attr->comm || attr->comm_exec ||
5018 	    attr->task || attr->ksymbol ||
5019 	    attr->context_switch || attr->text_poke ||
5020 	    attr->bpf_event)
5021 		return true;
5022 	return false;
5023 }
5024 
5025 static void unaccount_pmu_sb_event(struct perf_event *event)
5026 {
5027 	if (is_sb_event(event))
5028 		detach_sb_event(event);
5029 }
5030 
5031 #ifdef CONFIG_NO_HZ_FULL
5032 static DEFINE_SPINLOCK(nr_freq_lock);
5033 #endif
5034 
5035 static void unaccount_freq_event_nohz(void)
5036 {
5037 #ifdef CONFIG_NO_HZ_FULL
5038 	spin_lock(&nr_freq_lock);
5039 	if (atomic_dec_and_test(&nr_freq_events))
5040 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5041 	spin_unlock(&nr_freq_lock);
5042 #endif
5043 }
5044 
5045 static void unaccount_freq_event(void)
5046 {
5047 	if (tick_nohz_full_enabled())
5048 		unaccount_freq_event_nohz();
5049 	else
5050 		atomic_dec(&nr_freq_events);
5051 }
5052 
5053 static void unaccount_event(struct perf_event *event)
5054 {
5055 	bool dec = false;
5056 
5057 	if (event->parent)
5058 		return;
5059 
5060 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5061 		dec = true;
5062 	if (event->attr.mmap || event->attr.mmap_data)
5063 		atomic_dec(&nr_mmap_events);
5064 	if (event->attr.build_id)
5065 		atomic_dec(&nr_build_id_events);
5066 	if (event->attr.comm)
5067 		atomic_dec(&nr_comm_events);
5068 	if (event->attr.namespaces)
5069 		atomic_dec(&nr_namespaces_events);
5070 	if (event->attr.cgroup)
5071 		atomic_dec(&nr_cgroup_events);
5072 	if (event->attr.task)
5073 		atomic_dec(&nr_task_events);
5074 	if (event->attr.freq)
5075 		unaccount_freq_event();
5076 	if (event->attr.context_switch) {
5077 		dec = true;
5078 		atomic_dec(&nr_switch_events);
5079 	}
5080 	if (is_cgroup_event(event))
5081 		dec = true;
5082 	if (has_branch_stack(event))
5083 		dec = true;
5084 	if (event->attr.ksymbol)
5085 		atomic_dec(&nr_ksymbol_events);
5086 	if (event->attr.bpf_event)
5087 		atomic_dec(&nr_bpf_events);
5088 	if (event->attr.text_poke)
5089 		atomic_dec(&nr_text_poke_events);
5090 
5091 	if (dec) {
5092 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5093 			schedule_delayed_work(&perf_sched_work, HZ);
5094 	}
5095 
5096 	unaccount_pmu_sb_event(event);
5097 }
5098 
5099 static void perf_sched_delayed(struct work_struct *work)
5100 {
5101 	mutex_lock(&perf_sched_mutex);
5102 	if (atomic_dec_and_test(&perf_sched_count))
5103 		static_branch_disable(&perf_sched_events);
5104 	mutex_unlock(&perf_sched_mutex);
5105 }
5106 
5107 /*
5108  * The following implement mutual exclusion of events on "exclusive" pmus
5109  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5110  * at a time, so we disallow creating events that might conflict, namely:
5111  *
5112  *  1) cpu-wide events in the presence of per-task events,
5113  *  2) per-task events in the presence of cpu-wide events,
5114  *  3) two matching events on the same perf_event_context.
5115  *
5116  * The former two cases are handled in the allocation path (perf_event_alloc(),
5117  * _free_event()), the latter -- before the first perf_install_in_context().
5118  */
5119 static int exclusive_event_init(struct perf_event *event)
5120 {
5121 	struct pmu *pmu = event->pmu;
5122 
5123 	if (!is_exclusive_pmu(pmu))
5124 		return 0;
5125 
5126 	/*
5127 	 * Prevent co-existence of per-task and cpu-wide events on the
5128 	 * same exclusive pmu.
5129 	 *
5130 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5131 	 * events on this "exclusive" pmu, positive means there are
5132 	 * per-task events.
5133 	 *
5134 	 * Since this is called in perf_event_alloc() path, event::ctx
5135 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5136 	 * to mean "per-task event", because unlike other attach states it
5137 	 * never gets cleared.
5138 	 */
5139 	if (event->attach_state & PERF_ATTACH_TASK) {
5140 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5141 			return -EBUSY;
5142 	} else {
5143 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5144 			return -EBUSY;
5145 	}
5146 
5147 	return 0;
5148 }
5149 
5150 static void exclusive_event_destroy(struct perf_event *event)
5151 {
5152 	struct pmu *pmu = event->pmu;
5153 
5154 	if (!is_exclusive_pmu(pmu))
5155 		return;
5156 
5157 	/* see comment in exclusive_event_init() */
5158 	if (event->attach_state & PERF_ATTACH_TASK)
5159 		atomic_dec(&pmu->exclusive_cnt);
5160 	else
5161 		atomic_inc(&pmu->exclusive_cnt);
5162 }
5163 
5164 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5165 {
5166 	if ((e1->pmu == e2->pmu) &&
5167 	    (e1->cpu == e2->cpu ||
5168 	     e1->cpu == -1 ||
5169 	     e2->cpu == -1))
5170 		return true;
5171 	return false;
5172 }
5173 
5174 static bool exclusive_event_installable(struct perf_event *event,
5175 					struct perf_event_context *ctx)
5176 {
5177 	struct perf_event *iter_event;
5178 	struct pmu *pmu = event->pmu;
5179 
5180 	lockdep_assert_held(&ctx->mutex);
5181 
5182 	if (!is_exclusive_pmu(pmu))
5183 		return true;
5184 
5185 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5186 		if (exclusive_event_match(iter_event, event))
5187 			return false;
5188 	}
5189 
5190 	return true;
5191 }
5192 
5193 static void perf_addr_filters_splice(struct perf_event *event,
5194 				       struct list_head *head);
5195 
5196 static void perf_pending_task_sync(struct perf_event *event)
5197 {
5198 	struct callback_head *head = &event->pending_task;
5199 
5200 	if (!event->pending_work)
5201 		return;
5202 	/*
5203 	 * If the task is queued to the current task's queue, we
5204 	 * obviously can't wait for it to complete. Simply cancel it.
5205 	 */
5206 	if (task_work_cancel(current, head)) {
5207 		event->pending_work = 0;
5208 		local_dec(&event->ctx->nr_pending);
5209 		return;
5210 	}
5211 
5212 	/*
5213 	 * All accesses related to the event are within the same RCU section in
5214 	 * perf_pending_task(). The RCU grace period before the event is freed
5215 	 * will make sure all those accesses are complete by then.
5216 	 */
5217 	rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5218 }
5219 
5220 static void _free_event(struct perf_event *event)
5221 {
5222 	irq_work_sync(&event->pending_irq);
5223 	irq_work_sync(&event->pending_disable_irq);
5224 	perf_pending_task_sync(event);
5225 
5226 	unaccount_event(event);
5227 
5228 	security_perf_event_free(event);
5229 
5230 	if (event->rb) {
5231 		/*
5232 		 * Can happen when we close an event with re-directed output.
5233 		 *
5234 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5235 		 * over us; possibly making our ring_buffer_put() the last.
5236 		 */
5237 		mutex_lock(&event->mmap_mutex);
5238 		ring_buffer_attach(event, NULL);
5239 		mutex_unlock(&event->mmap_mutex);
5240 	}
5241 
5242 	if (is_cgroup_event(event))
5243 		perf_detach_cgroup(event);
5244 
5245 	if (!event->parent) {
5246 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5247 			put_callchain_buffers();
5248 	}
5249 
5250 	perf_event_free_bpf_prog(event);
5251 	perf_addr_filters_splice(event, NULL);
5252 	kfree(event->addr_filter_ranges);
5253 
5254 	if (event->destroy)
5255 		event->destroy(event);
5256 
5257 	/*
5258 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5259 	 * hw.target.
5260 	 */
5261 	if (event->hw.target)
5262 		put_task_struct(event->hw.target);
5263 
5264 	if (event->pmu_ctx)
5265 		put_pmu_ctx(event->pmu_ctx);
5266 
5267 	/*
5268 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5269 	 * all task references must be cleaned up.
5270 	 */
5271 	if (event->ctx)
5272 		put_ctx(event->ctx);
5273 
5274 	exclusive_event_destroy(event);
5275 	module_put(event->pmu->module);
5276 
5277 	call_rcu(&event->rcu_head, free_event_rcu);
5278 }
5279 
5280 /*
5281  * Used to free events which have a known refcount of 1, such as in error paths
5282  * where the event isn't exposed yet and inherited events.
5283  */
5284 static void free_event(struct perf_event *event)
5285 {
5286 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5287 				"unexpected event refcount: %ld; ptr=%p\n",
5288 				atomic_long_read(&event->refcount), event)) {
5289 		/* leak to avoid use-after-free */
5290 		return;
5291 	}
5292 
5293 	_free_event(event);
5294 }
5295 
5296 /*
5297  * Remove user event from the owner task.
5298  */
5299 static void perf_remove_from_owner(struct perf_event *event)
5300 {
5301 	struct task_struct *owner;
5302 
5303 	rcu_read_lock();
5304 	/*
5305 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5306 	 * observe !owner it means the list deletion is complete and we can
5307 	 * indeed free this event, otherwise we need to serialize on
5308 	 * owner->perf_event_mutex.
5309 	 */
5310 	owner = READ_ONCE(event->owner);
5311 	if (owner) {
5312 		/*
5313 		 * Since delayed_put_task_struct() also drops the last
5314 		 * task reference we can safely take a new reference
5315 		 * while holding the rcu_read_lock().
5316 		 */
5317 		get_task_struct(owner);
5318 	}
5319 	rcu_read_unlock();
5320 
5321 	if (owner) {
5322 		/*
5323 		 * If we're here through perf_event_exit_task() we're already
5324 		 * holding ctx->mutex which would be an inversion wrt. the
5325 		 * normal lock order.
5326 		 *
5327 		 * However we can safely take this lock because its the child
5328 		 * ctx->mutex.
5329 		 */
5330 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5331 
5332 		/*
5333 		 * We have to re-check the event->owner field, if it is cleared
5334 		 * we raced with perf_event_exit_task(), acquiring the mutex
5335 		 * ensured they're done, and we can proceed with freeing the
5336 		 * event.
5337 		 */
5338 		if (event->owner) {
5339 			list_del_init(&event->owner_entry);
5340 			smp_store_release(&event->owner, NULL);
5341 		}
5342 		mutex_unlock(&owner->perf_event_mutex);
5343 		put_task_struct(owner);
5344 	}
5345 }
5346 
5347 static void put_event(struct perf_event *event)
5348 {
5349 	if (!atomic_long_dec_and_test(&event->refcount))
5350 		return;
5351 
5352 	_free_event(event);
5353 }
5354 
5355 /*
5356  * Kill an event dead; while event:refcount will preserve the event
5357  * object, it will not preserve its functionality. Once the last 'user'
5358  * gives up the object, we'll destroy the thing.
5359  */
5360 int perf_event_release_kernel(struct perf_event *event)
5361 {
5362 	struct perf_event_context *ctx = event->ctx;
5363 	struct perf_event *child, *tmp;
5364 	LIST_HEAD(free_list);
5365 
5366 	/*
5367 	 * If we got here through err_alloc: free_event(event); we will not
5368 	 * have attached to a context yet.
5369 	 */
5370 	if (!ctx) {
5371 		WARN_ON_ONCE(event->attach_state &
5372 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5373 		goto no_ctx;
5374 	}
5375 
5376 	if (!is_kernel_event(event))
5377 		perf_remove_from_owner(event);
5378 
5379 	ctx = perf_event_ctx_lock(event);
5380 	WARN_ON_ONCE(ctx->parent_ctx);
5381 
5382 	/*
5383 	 * Mark this event as STATE_DEAD, there is no external reference to it
5384 	 * anymore.
5385 	 *
5386 	 * Anybody acquiring event->child_mutex after the below loop _must_
5387 	 * also see this, most importantly inherit_event() which will avoid
5388 	 * placing more children on the list.
5389 	 *
5390 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5391 	 * child events.
5392 	 */
5393 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5394 
5395 	perf_event_ctx_unlock(event, ctx);
5396 
5397 again:
5398 	mutex_lock(&event->child_mutex);
5399 	list_for_each_entry(child, &event->child_list, child_list) {
5400 		void *var = NULL;
5401 
5402 		/*
5403 		 * Cannot change, child events are not migrated, see the
5404 		 * comment with perf_event_ctx_lock_nested().
5405 		 */
5406 		ctx = READ_ONCE(child->ctx);
5407 		/*
5408 		 * Since child_mutex nests inside ctx::mutex, we must jump
5409 		 * through hoops. We start by grabbing a reference on the ctx.
5410 		 *
5411 		 * Since the event cannot get freed while we hold the
5412 		 * child_mutex, the context must also exist and have a !0
5413 		 * reference count.
5414 		 */
5415 		get_ctx(ctx);
5416 
5417 		/*
5418 		 * Now that we have a ctx ref, we can drop child_mutex, and
5419 		 * acquire ctx::mutex without fear of it going away. Then we
5420 		 * can re-acquire child_mutex.
5421 		 */
5422 		mutex_unlock(&event->child_mutex);
5423 		mutex_lock(&ctx->mutex);
5424 		mutex_lock(&event->child_mutex);
5425 
5426 		/*
5427 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5428 		 * state, if child is still the first entry, it didn't get freed
5429 		 * and we can continue doing so.
5430 		 */
5431 		tmp = list_first_entry_or_null(&event->child_list,
5432 					       struct perf_event, child_list);
5433 		if (tmp == child) {
5434 			perf_remove_from_context(child, DETACH_GROUP);
5435 			list_move(&child->child_list, &free_list);
5436 			/*
5437 			 * This matches the refcount bump in inherit_event();
5438 			 * this can't be the last reference.
5439 			 */
5440 			put_event(event);
5441 		} else {
5442 			var = &ctx->refcount;
5443 		}
5444 
5445 		mutex_unlock(&event->child_mutex);
5446 		mutex_unlock(&ctx->mutex);
5447 		put_ctx(ctx);
5448 
5449 		if (var) {
5450 			/*
5451 			 * If perf_event_free_task() has deleted all events from the
5452 			 * ctx while the child_mutex got released above, make sure to
5453 			 * notify about the preceding put_ctx().
5454 			 */
5455 			smp_mb(); /* pairs with wait_var_event() */
5456 			wake_up_var(var);
5457 		}
5458 		goto again;
5459 	}
5460 	mutex_unlock(&event->child_mutex);
5461 
5462 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5463 		void *var = &child->ctx->refcount;
5464 
5465 		list_del(&child->child_list);
5466 		free_event(child);
5467 
5468 		/*
5469 		 * Wake any perf_event_free_task() waiting for this event to be
5470 		 * freed.
5471 		 */
5472 		smp_mb(); /* pairs with wait_var_event() */
5473 		wake_up_var(var);
5474 	}
5475 
5476 no_ctx:
5477 	put_event(event); /* Must be the 'last' reference */
5478 	return 0;
5479 }
5480 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5481 
5482 /*
5483  * Called when the last reference to the file is gone.
5484  */
5485 static int perf_release(struct inode *inode, struct file *file)
5486 {
5487 	perf_event_release_kernel(file->private_data);
5488 	return 0;
5489 }
5490 
5491 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5492 {
5493 	struct perf_event *child;
5494 	u64 total = 0;
5495 
5496 	*enabled = 0;
5497 	*running = 0;
5498 
5499 	mutex_lock(&event->child_mutex);
5500 
5501 	(void)perf_event_read(event, false);
5502 	total += perf_event_count(event);
5503 
5504 	*enabled += event->total_time_enabled +
5505 			atomic64_read(&event->child_total_time_enabled);
5506 	*running += event->total_time_running +
5507 			atomic64_read(&event->child_total_time_running);
5508 
5509 	list_for_each_entry(child, &event->child_list, child_list) {
5510 		(void)perf_event_read(child, false);
5511 		total += perf_event_count(child);
5512 		*enabled += child->total_time_enabled;
5513 		*running += child->total_time_running;
5514 	}
5515 	mutex_unlock(&event->child_mutex);
5516 
5517 	return total;
5518 }
5519 
5520 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5521 {
5522 	struct perf_event_context *ctx;
5523 	u64 count;
5524 
5525 	ctx = perf_event_ctx_lock(event);
5526 	count = __perf_event_read_value(event, enabled, running);
5527 	perf_event_ctx_unlock(event, ctx);
5528 
5529 	return count;
5530 }
5531 EXPORT_SYMBOL_GPL(perf_event_read_value);
5532 
5533 static int __perf_read_group_add(struct perf_event *leader,
5534 					u64 read_format, u64 *values)
5535 {
5536 	struct perf_event_context *ctx = leader->ctx;
5537 	struct perf_event *sub, *parent;
5538 	unsigned long flags;
5539 	int n = 1; /* skip @nr */
5540 	int ret;
5541 
5542 	ret = perf_event_read(leader, true);
5543 	if (ret)
5544 		return ret;
5545 
5546 	raw_spin_lock_irqsave(&ctx->lock, flags);
5547 	/*
5548 	 * Verify the grouping between the parent and child (inherited)
5549 	 * events is still in tact.
5550 	 *
5551 	 * Specifically:
5552 	 *  - leader->ctx->lock pins leader->sibling_list
5553 	 *  - parent->child_mutex pins parent->child_list
5554 	 *  - parent->ctx->mutex pins parent->sibling_list
5555 	 *
5556 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5557 	 * ctx->mutex), group destruction is not atomic between children, also
5558 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5559 	 * group.
5560 	 *
5561 	 * Therefore it is possible to have parent and child groups in a
5562 	 * different configuration and summing over such a beast makes no sense
5563 	 * what so ever.
5564 	 *
5565 	 * Reject this.
5566 	 */
5567 	parent = leader->parent;
5568 	if (parent &&
5569 	    (parent->group_generation != leader->group_generation ||
5570 	     parent->nr_siblings != leader->nr_siblings)) {
5571 		ret = -ECHILD;
5572 		goto unlock;
5573 	}
5574 
5575 	/*
5576 	 * Since we co-schedule groups, {enabled,running} times of siblings
5577 	 * will be identical to those of the leader, so we only publish one
5578 	 * set.
5579 	 */
5580 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5581 		values[n++] += leader->total_time_enabled +
5582 			atomic64_read(&leader->child_total_time_enabled);
5583 	}
5584 
5585 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5586 		values[n++] += leader->total_time_running +
5587 			atomic64_read(&leader->child_total_time_running);
5588 	}
5589 
5590 	/*
5591 	 * Write {count,id} tuples for every sibling.
5592 	 */
5593 	values[n++] += perf_event_count(leader);
5594 	if (read_format & PERF_FORMAT_ID)
5595 		values[n++] = primary_event_id(leader);
5596 	if (read_format & PERF_FORMAT_LOST)
5597 		values[n++] = atomic64_read(&leader->lost_samples);
5598 
5599 	for_each_sibling_event(sub, leader) {
5600 		values[n++] += perf_event_count(sub);
5601 		if (read_format & PERF_FORMAT_ID)
5602 			values[n++] = primary_event_id(sub);
5603 		if (read_format & PERF_FORMAT_LOST)
5604 			values[n++] = atomic64_read(&sub->lost_samples);
5605 	}
5606 
5607 unlock:
5608 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5609 	return ret;
5610 }
5611 
5612 static int perf_read_group(struct perf_event *event,
5613 				   u64 read_format, char __user *buf)
5614 {
5615 	struct perf_event *leader = event->group_leader, *child;
5616 	struct perf_event_context *ctx = leader->ctx;
5617 	int ret;
5618 	u64 *values;
5619 
5620 	lockdep_assert_held(&ctx->mutex);
5621 
5622 	values = kzalloc(event->read_size, GFP_KERNEL);
5623 	if (!values)
5624 		return -ENOMEM;
5625 
5626 	values[0] = 1 + leader->nr_siblings;
5627 
5628 	mutex_lock(&leader->child_mutex);
5629 
5630 	ret = __perf_read_group_add(leader, read_format, values);
5631 	if (ret)
5632 		goto unlock;
5633 
5634 	list_for_each_entry(child, &leader->child_list, child_list) {
5635 		ret = __perf_read_group_add(child, read_format, values);
5636 		if (ret)
5637 			goto unlock;
5638 	}
5639 
5640 	mutex_unlock(&leader->child_mutex);
5641 
5642 	ret = event->read_size;
5643 	if (copy_to_user(buf, values, event->read_size))
5644 		ret = -EFAULT;
5645 	goto out;
5646 
5647 unlock:
5648 	mutex_unlock(&leader->child_mutex);
5649 out:
5650 	kfree(values);
5651 	return ret;
5652 }
5653 
5654 static int perf_read_one(struct perf_event *event,
5655 				 u64 read_format, char __user *buf)
5656 {
5657 	u64 enabled, running;
5658 	u64 values[5];
5659 	int n = 0;
5660 
5661 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5662 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5663 		values[n++] = enabled;
5664 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5665 		values[n++] = running;
5666 	if (read_format & PERF_FORMAT_ID)
5667 		values[n++] = primary_event_id(event);
5668 	if (read_format & PERF_FORMAT_LOST)
5669 		values[n++] = atomic64_read(&event->lost_samples);
5670 
5671 	if (copy_to_user(buf, values, n * sizeof(u64)))
5672 		return -EFAULT;
5673 
5674 	return n * sizeof(u64);
5675 }
5676 
5677 static bool is_event_hup(struct perf_event *event)
5678 {
5679 	bool no_children;
5680 
5681 	if (event->state > PERF_EVENT_STATE_EXIT)
5682 		return false;
5683 
5684 	mutex_lock(&event->child_mutex);
5685 	no_children = list_empty(&event->child_list);
5686 	mutex_unlock(&event->child_mutex);
5687 	return no_children;
5688 }
5689 
5690 /*
5691  * Read the performance event - simple non blocking version for now
5692  */
5693 static ssize_t
5694 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5695 {
5696 	u64 read_format = event->attr.read_format;
5697 	int ret;
5698 
5699 	/*
5700 	 * Return end-of-file for a read on an event that is in
5701 	 * error state (i.e. because it was pinned but it couldn't be
5702 	 * scheduled on to the CPU at some point).
5703 	 */
5704 	if (event->state == PERF_EVENT_STATE_ERROR)
5705 		return 0;
5706 
5707 	if (count < event->read_size)
5708 		return -ENOSPC;
5709 
5710 	WARN_ON_ONCE(event->ctx->parent_ctx);
5711 	if (read_format & PERF_FORMAT_GROUP)
5712 		ret = perf_read_group(event, read_format, buf);
5713 	else
5714 		ret = perf_read_one(event, read_format, buf);
5715 
5716 	return ret;
5717 }
5718 
5719 static ssize_t
5720 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5721 {
5722 	struct perf_event *event = file->private_data;
5723 	struct perf_event_context *ctx;
5724 	int ret;
5725 
5726 	ret = security_perf_event_read(event);
5727 	if (ret)
5728 		return ret;
5729 
5730 	ctx = perf_event_ctx_lock(event);
5731 	ret = __perf_read(event, buf, count);
5732 	perf_event_ctx_unlock(event, ctx);
5733 
5734 	return ret;
5735 }
5736 
5737 static __poll_t perf_poll(struct file *file, poll_table *wait)
5738 {
5739 	struct perf_event *event = file->private_data;
5740 	struct perf_buffer *rb;
5741 	__poll_t events = EPOLLHUP;
5742 
5743 	poll_wait(file, &event->waitq, wait);
5744 
5745 	if (is_event_hup(event))
5746 		return events;
5747 
5748 	/*
5749 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5750 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5751 	 */
5752 	mutex_lock(&event->mmap_mutex);
5753 	rb = event->rb;
5754 	if (rb)
5755 		events = atomic_xchg(&rb->poll, 0);
5756 	mutex_unlock(&event->mmap_mutex);
5757 	return events;
5758 }
5759 
5760 static void _perf_event_reset(struct perf_event *event)
5761 {
5762 	(void)perf_event_read(event, false);
5763 	local64_set(&event->count, 0);
5764 	perf_event_update_userpage(event);
5765 }
5766 
5767 /* Assume it's not an event with inherit set. */
5768 u64 perf_event_pause(struct perf_event *event, bool reset)
5769 {
5770 	struct perf_event_context *ctx;
5771 	u64 count;
5772 
5773 	ctx = perf_event_ctx_lock(event);
5774 	WARN_ON_ONCE(event->attr.inherit);
5775 	_perf_event_disable(event);
5776 	count = local64_read(&event->count);
5777 	if (reset)
5778 		local64_set(&event->count, 0);
5779 	perf_event_ctx_unlock(event, ctx);
5780 
5781 	return count;
5782 }
5783 EXPORT_SYMBOL_GPL(perf_event_pause);
5784 
5785 /*
5786  * Holding the top-level event's child_mutex means that any
5787  * descendant process that has inherited this event will block
5788  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5789  * task existence requirements of perf_event_enable/disable.
5790  */
5791 static void perf_event_for_each_child(struct perf_event *event,
5792 					void (*func)(struct perf_event *))
5793 {
5794 	struct perf_event *child;
5795 
5796 	WARN_ON_ONCE(event->ctx->parent_ctx);
5797 
5798 	mutex_lock(&event->child_mutex);
5799 	func(event);
5800 	list_for_each_entry(child, &event->child_list, child_list)
5801 		func(child);
5802 	mutex_unlock(&event->child_mutex);
5803 }
5804 
5805 static void perf_event_for_each(struct perf_event *event,
5806 				  void (*func)(struct perf_event *))
5807 {
5808 	struct perf_event_context *ctx = event->ctx;
5809 	struct perf_event *sibling;
5810 
5811 	lockdep_assert_held(&ctx->mutex);
5812 
5813 	event = event->group_leader;
5814 
5815 	perf_event_for_each_child(event, func);
5816 	for_each_sibling_event(sibling, event)
5817 		perf_event_for_each_child(sibling, func);
5818 }
5819 
5820 static void __perf_event_period(struct perf_event *event,
5821 				struct perf_cpu_context *cpuctx,
5822 				struct perf_event_context *ctx,
5823 				void *info)
5824 {
5825 	u64 value = *((u64 *)info);
5826 	bool active;
5827 
5828 	if (event->attr.freq) {
5829 		event->attr.sample_freq = value;
5830 	} else {
5831 		event->attr.sample_period = value;
5832 		event->hw.sample_period = value;
5833 	}
5834 
5835 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5836 	if (active) {
5837 		perf_pmu_disable(event->pmu);
5838 		/*
5839 		 * We could be throttled; unthrottle now to avoid the tick
5840 		 * trying to unthrottle while we already re-started the event.
5841 		 */
5842 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5843 			event->hw.interrupts = 0;
5844 			perf_log_throttle(event, 1);
5845 		}
5846 		event->pmu->stop(event, PERF_EF_UPDATE);
5847 	}
5848 
5849 	local64_set(&event->hw.period_left, 0);
5850 
5851 	if (active) {
5852 		event->pmu->start(event, PERF_EF_RELOAD);
5853 		perf_pmu_enable(event->pmu);
5854 	}
5855 }
5856 
5857 static int perf_event_check_period(struct perf_event *event, u64 value)
5858 {
5859 	return event->pmu->check_period(event, value);
5860 }
5861 
5862 static int _perf_event_period(struct perf_event *event, u64 value)
5863 {
5864 	if (!is_sampling_event(event))
5865 		return -EINVAL;
5866 
5867 	if (!value)
5868 		return -EINVAL;
5869 
5870 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5871 		return -EINVAL;
5872 
5873 	if (perf_event_check_period(event, value))
5874 		return -EINVAL;
5875 
5876 	if (!event->attr.freq && (value & (1ULL << 63)))
5877 		return -EINVAL;
5878 
5879 	event_function_call(event, __perf_event_period, &value);
5880 
5881 	return 0;
5882 }
5883 
5884 int perf_event_period(struct perf_event *event, u64 value)
5885 {
5886 	struct perf_event_context *ctx;
5887 	int ret;
5888 
5889 	ctx = perf_event_ctx_lock(event);
5890 	ret = _perf_event_period(event, value);
5891 	perf_event_ctx_unlock(event, ctx);
5892 
5893 	return ret;
5894 }
5895 EXPORT_SYMBOL_GPL(perf_event_period);
5896 
5897 static const struct file_operations perf_fops;
5898 
5899 static inline int perf_fget_light(int fd, struct fd *p)
5900 {
5901 	struct fd f = fdget(fd);
5902 	if (!f.file)
5903 		return -EBADF;
5904 
5905 	if (f.file->f_op != &perf_fops) {
5906 		fdput(f);
5907 		return -EBADF;
5908 	}
5909 	*p = f;
5910 	return 0;
5911 }
5912 
5913 static int perf_event_set_output(struct perf_event *event,
5914 				 struct perf_event *output_event);
5915 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5916 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5917 			  struct perf_event_attr *attr);
5918 
5919 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5920 {
5921 	void (*func)(struct perf_event *);
5922 	u32 flags = arg;
5923 
5924 	switch (cmd) {
5925 	case PERF_EVENT_IOC_ENABLE:
5926 		func = _perf_event_enable;
5927 		break;
5928 	case PERF_EVENT_IOC_DISABLE:
5929 		func = _perf_event_disable;
5930 		break;
5931 	case PERF_EVENT_IOC_RESET:
5932 		func = _perf_event_reset;
5933 		break;
5934 
5935 	case PERF_EVENT_IOC_REFRESH:
5936 		return _perf_event_refresh(event, arg);
5937 
5938 	case PERF_EVENT_IOC_PERIOD:
5939 	{
5940 		u64 value;
5941 
5942 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5943 			return -EFAULT;
5944 
5945 		return _perf_event_period(event, value);
5946 	}
5947 	case PERF_EVENT_IOC_ID:
5948 	{
5949 		u64 id = primary_event_id(event);
5950 
5951 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5952 			return -EFAULT;
5953 		return 0;
5954 	}
5955 
5956 	case PERF_EVENT_IOC_SET_OUTPUT:
5957 	{
5958 		int ret;
5959 		if (arg != -1) {
5960 			struct perf_event *output_event;
5961 			struct fd output;
5962 			ret = perf_fget_light(arg, &output);
5963 			if (ret)
5964 				return ret;
5965 			output_event = output.file->private_data;
5966 			ret = perf_event_set_output(event, output_event);
5967 			fdput(output);
5968 		} else {
5969 			ret = perf_event_set_output(event, NULL);
5970 		}
5971 		return ret;
5972 	}
5973 
5974 	case PERF_EVENT_IOC_SET_FILTER:
5975 		return perf_event_set_filter(event, (void __user *)arg);
5976 
5977 	case PERF_EVENT_IOC_SET_BPF:
5978 	{
5979 		struct bpf_prog *prog;
5980 		int err;
5981 
5982 		prog = bpf_prog_get(arg);
5983 		if (IS_ERR(prog))
5984 			return PTR_ERR(prog);
5985 
5986 		err = perf_event_set_bpf_prog(event, prog, 0);
5987 		if (err) {
5988 			bpf_prog_put(prog);
5989 			return err;
5990 		}
5991 
5992 		return 0;
5993 	}
5994 
5995 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5996 		struct perf_buffer *rb;
5997 
5998 		rcu_read_lock();
5999 		rb = rcu_dereference(event->rb);
6000 		if (!rb || !rb->nr_pages) {
6001 			rcu_read_unlock();
6002 			return -EINVAL;
6003 		}
6004 		rb_toggle_paused(rb, !!arg);
6005 		rcu_read_unlock();
6006 		return 0;
6007 	}
6008 
6009 	case PERF_EVENT_IOC_QUERY_BPF:
6010 		return perf_event_query_prog_array(event, (void __user *)arg);
6011 
6012 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6013 		struct perf_event_attr new_attr;
6014 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6015 					 &new_attr);
6016 
6017 		if (err)
6018 			return err;
6019 
6020 		return perf_event_modify_attr(event,  &new_attr);
6021 	}
6022 	default:
6023 		return -ENOTTY;
6024 	}
6025 
6026 	if (flags & PERF_IOC_FLAG_GROUP)
6027 		perf_event_for_each(event, func);
6028 	else
6029 		perf_event_for_each_child(event, func);
6030 
6031 	return 0;
6032 }
6033 
6034 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6035 {
6036 	struct perf_event *event = file->private_data;
6037 	struct perf_event_context *ctx;
6038 	long ret;
6039 
6040 	/* Treat ioctl like writes as it is likely a mutating operation. */
6041 	ret = security_perf_event_write(event);
6042 	if (ret)
6043 		return ret;
6044 
6045 	ctx = perf_event_ctx_lock(event);
6046 	ret = _perf_ioctl(event, cmd, arg);
6047 	perf_event_ctx_unlock(event, ctx);
6048 
6049 	return ret;
6050 }
6051 
6052 #ifdef CONFIG_COMPAT
6053 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6054 				unsigned long arg)
6055 {
6056 	switch (_IOC_NR(cmd)) {
6057 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6058 	case _IOC_NR(PERF_EVENT_IOC_ID):
6059 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6060 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6061 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6062 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6063 			cmd &= ~IOCSIZE_MASK;
6064 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6065 		}
6066 		break;
6067 	}
6068 	return perf_ioctl(file, cmd, arg);
6069 }
6070 #else
6071 # define perf_compat_ioctl NULL
6072 #endif
6073 
6074 int perf_event_task_enable(void)
6075 {
6076 	struct perf_event_context *ctx;
6077 	struct perf_event *event;
6078 
6079 	mutex_lock(&current->perf_event_mutex);
6080 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6081 		ctx = perf_event_ctx_lock(event);
6082 		perf_event_for_each_child(event, _perf_event_enable);
6083 		perf_event_ctx_unlock(event, ctx);
6084 	}
6085 	mutex_unlock(&current->perf_event_mutex);
6086 
6087 	return 0;
6088 }
6089 
6090 int perf_event_task_disable(void)
6091 {
6092 	struct perf_event_context *ctx;
6093 	struct perf_event *event;
6094 
6095 	mutex_lock(&current->perf_event_mutex);
6096 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6097 		ctx = perf_event_ctx_lock(event);
6098 		perf_event_for_each_child(event, _perf_event_disable);
6099 		perf_event_ctx_unlock(event, ctx);
6100 	}
6101 	mutex_unlock(&current->perf_event_mutex);
6102 
6103 	return 0;
6104 }
6105 
6106 static int perf_event_index(struct perf_event *event)
6107 {
6108 	if (event->hw.state & PERF_HES_STOPPED)
6109 		return 0;
6110 
6111 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6112 		return 0;
6113 
6114 	return event->pmu->event_idx(event);
6115 }
6116 
6117 static void perf_event_init_userpage(struct perf_event *event)
6118 {
6119 	struct perf_event_mmap_page *userpg;
6120 	struct perf_buffer *rb;
6121 
6122 	rcu_read_lock();
6123 	rb = rcu_dereference(event->rb);
6124 	if (!rb)
6125 		goto unlock;
6126 
6127 	userpg = rb->user_page;
6128 
6129 	/* Allow new userspace to detect that bit 0 is deprecated */
6130 	userpg->cap_bit0_is_deprecated = 1;
6131 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6132 	userpg->data_offset = PAGE_SIZE;
6133 	userpg->data_size = perf_data_size(rb);
6134 
6135 unlock:
6136 	rcu_read_unlock();
6137 }
6138 
6139 void __weak arch_perf_update_userpage(
6140 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6141 {
6142 }
6143 
6144 /*
6145  * Callers need to ensure there can be no nesting of this function, otherwise
6146  * the seqlock logic goes bad. We can not serialize this because the arch
6147  * code calls this from NMI context.
6148  */
6149 void perf_event_update_userpage(struct perf_event *event)
6150 {
6151 	struct perf_event_mmap_page *userpg;
6152 	struct perf_buffer *rb;
6153 	u64 enabled, running, now;
6154 
6155 	rcu_read_lock();
6156 	rb = rcu_dereference(event->rb);
6157 	if (!rb)
6158 		goto unlock;
6159 
6160 	/*
6161 	 * compute total_time_enabled, total_time_running
6162 	 * based on snapshot values taken when the event
6163 	 * was last scheduled in.
6164 	 *
6165 	 * we cannot simply called update_context_time()
6166 	 * because of locking issue as we can be called in
6167 	 * NMI context
6168 	 */
6169 	calc_timer_values(event, &now, &enabled, &running);
6170 
6171 	userpg = rb->user_page;
6172 	/*
6173 	 * Disable preemption to guarantee consistent time stamps are stored to
6174 	 * the user page.
6175 	 */
6176 	preempt_disable();
6177 	++userpg->lock;
6178 	barrier();
6179 	userpg->index = perf_event_index(event);
6180 	userpg->offset = perf_event_count(event);
6181 	if (userpg->index)
6182 		userpg->offset -= local64_read(&event->hw.prev_count);
6183 
6184 	userpg->time_enabled = enabled +
6185 			atomic64_read(&event->child_total_time_enabled);
6186 
6187 	userpg->time_running = running +
6188 			atomic64_read(&event->child_total_time_running);
6189 
6190 	arch_perf_update_userpage(event, userpg, now);
6191 
6192 	barrier();
6193 	++userpg->lock;
6194 	preempt_enable();
6195 unlock:
6196 	rcu_read_unlock();
6197 }
6198 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6199 
6200 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6201 {
6202 	struct perf_event *event = vmf->vma->vm_file->private_data;
6203 	struct perf_buffer *rb;
6204 	vm_fault_t ret = VM_FAULT_SIGBUS;
6205 
6206 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6207 		if (vmf->pgoff == 0)
6208 			ret = 0;
6209 		return ret;
6210 	}
6211 
6212 	rcu_read_lock();
6213 	rb = rcu_dereference(event->rb);
6214 	if (!rb)
6215 		goto unlock;
6216 
6217 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6218 		goto unlock;
6219 
6220 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6221 	if (!vmf->page)
6222 		goto unlock;
6223 
6224 	get_page(vmf->page);
6225 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6226 	vmf->page->index   = vmf->pgoff;
6227 
6228 	ret = 0;
6229 unlock:
6230 	rcu_read_unlock();
6231 
6232 	return ret;
6233 }
6234 
6235 static void ring_buffer_attach(struct perf_event *event,
6236 			       struct perf_buffer *rb)
6237 {
6238 	struct perf_buffer *old_rb = NULL;
6239 	unsigned long flags;
6240 
6241 	WARN_ON_ONCE(event->parent);
6242 
6243 	if (event->rb) {
6244 		/*
6245 		 * Should be impossible, we set this when removing
6246 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6247 		 */
6248 		WARN_ON_ONCE(event->rcu_pending);
6249 
6250 		old_rb = event->rb;
6251 		spin_lock_irqsave(&old_rb->event_lock, flags);
6252 		list_del_rcu(&event->rb_entry);
6253 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6254 
6255 		event->rcu_batches = get_state_synchronize_rcu();
6256 		event->rcu_pending = 1;
6257 	}
6258 
6259 	if (rb) {
6260 		if (event->rcu_pending) {
6261 			cond_synchronize_rcu(event->rcu_batches);
6262 			event->rcu_pending = 0;
6263 		}
6264 
6265 		spin_lock_irqsave(&rb->event_lock, flags);
6266 		list_add_rcu(&event->rb_entry, &rb->event_list);
6267 		spin_unlock_irqrestore(&rb->event_lock, flags);
6268 	}
6269 
6270 	/*
6271 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6272 	 * before swizzling the event::rb pointer; if it's getting
6273 	 * unmapped, its aux_mmap_count will be 0 and it won't
6274 	 * restart. See the comment in __perf_pmu_output_stop().
6275 	 *
6276 	 * Data will inevitably be lost when set_output is done in
6277 	 * mid-air, but then again, whoever does it like this is
6278 	 * not in for the data anyway.
6279 	 */
6280 	if (has_aux(event))
6281 		perf_event_stop(event, 0);
6282 
6283 	rcu_assign_pointer(event->rb, rb);
6284 
6285 	if (old_rb) {
6286 		ring_buffer_put(old_rb);
6287 		/*
6288 		 * Since we detached before setting the new rb, so that we
6289 		 * could attach the new rb, we could have missed a wakeup.
6290 		 * Provide it now.
6291 		 */
6292 		wake_up_all(&event->waitq);
6293 	}
6294 }
6295 
6296 static void ring_buffer_wakeup(struct perf_event *event)
6297 {
6298 	struct perf_buffer *rb;
6299 
6300 	if (event->parent)
6301 		event = event->parent;
6302 
6303 	rcu_read_lock();
6304 	rb = rcu_dereference(event->rb);
6305 	if (rb) {
6306 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6307 			wake_up_all(&event->waitq);
6308 	}
6309 	rcu_read_unlock();
6310 }
6311 
6312 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6313 {
6314 	struct perf_buffer *rb;
6315 
6316 	if (event->parent)
6317 		event = event->parent;
6318 
6319 	rcu_read_lock();
6320 	rb = rcu_dereference(event->rb);
6321 	if (rb) {
6322 		if (!refcount_inc_not_zero(&rb->refcount))
6323 			rb = NULL;
6324 	}
6325 	rcu_read_unlock();
6326 
6327 	return rb;
6328 }
6329 
6330 void ring_buffer_put(struct perf_buffer *rb)
6331 {
6332 	if (!refcount_dec_and_test(&rb->refcount))
6333 		return;
6334 
6335 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6336 
6337 	call_rcu(&rb->rcu_head, rb_free_rcu);
6338 }
6339 
6340 static void perf_mmap_open(struct vm_area_struct *vma)
6341 {
6342 	struct perf_event *event = vma->vm_file->private_data;
6343 
6344 	atomic_inc(&event->mmap_count);
6345 	atomic_inc(&event->rb->mmap_count);
6346 
6347 	if (vma->vm_pgoff)
6348 		atomic_inc(&event->rb->aux_mmap_count);
6349 
6350 	if (event->pmu->event_mapped)
6351 		event->pmu->event_mapped(event, vma->vm_mm);
6352 }
6353 
6354 static void perf_pmu_output_stop(struct perf_event *event);
6355 
6356 /*
6357  * A buffer can be mmap()ed multiple times; either directly through the same
6358  * event, or through other events by use of perf_event_set_output().
6359  *
6360  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6361  * the buffer here, where we still have a VM context. This means we need
6362  * to detach all events redirecting to us.
6363  */
6364 static void perf_mmap_close(struct vm_area_struct *vma)
6365 {
6366 	struct perf_event *event = vma->vm_file->private_data;
6367 	struct perf_buffer *rb = ring_buffer_get(event);
6368 	struct user_struct *mmap_user = rb->mmap_user;
6369 	int mmap_locked = rb->mmap_locked;
6370 	unsigned long size = perf_data_size(rb);
6371 	bool detach_rest = false;
6372 
6373 	if (event->pmu->event_unmapped)
6374 		event->pmu->event_unmapped(event, vma->vm_mm);
6375 
6376 	/*
6377 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6378 	 * to avoid complications.
6379 	 */
6380 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6381 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6382 		/*
6383 		 * Stop all AUX events that are writing to this buffer,
6384 		 * so that we can free its AUX pages and corresponding PMU
6385 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6386 		 * they won't start any more (see perf_aux_output_begin()).
6387 		 */
6388 		perf_pmu_output_stop(event);
6389 
6390 		/* now it's safe to free the pages */
6391 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6392 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6393 
6394 		/* this has to be the last one */
6395 		rb_free_aux(rb);
6396 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6397 
6398 		mutex_unlock(&rb->aux_mutex);
6399 	}
6400 
6401 	if (atomic_dec_and_test(&rb->mmap_count))
6402 		detach_rest = true;
6403 
6404 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6405 		goto out_put;
6406 
6407 	ring_buffer_attach(event, NULL);
6408 	mutex_unlock(&event->mmap_mutex);
6409 
6410 	/* If there's still other mmap()s of this buffer, we're done. */
6411 	if (!detach_rest)
6412 		goto out_put;
6413 
6414 	/*
6415 	 * No other mmap()s, detach from all other events that might redirect
6416 	 * into the now unreachable buffer. Somewhat complicated by the
6417 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6418 	 */
6419 again:
6420 	rcu_read_lock();
6421 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6422 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6423 			/*
6424 			 * This event is en-route to free_event() which will
6425 			 * detach it and remove it from the list.
6426 			 */
6427 			continue;
6428 		}
6429 		rcu_read_unlock();
6430 
6431 		mutex_lock(&event->mmap_mutex);
6432 		/*
6433 		 * Check we didn't race with perf_event_set_output() which can
6434 		 * swizzle the rb from under us while we were waiting to
6435 		 * acquire mmap_mutex.
6436 		 *
6437 		 * If we find a different rb; ignore this event, a next
6438 		 * iteration will no longer find it on the list. We have to
6439 		 * still restart the iteration to make sure we're not now
6440 		 * iterating the wrong list.
6441 		 */
6442 		if (event->rb == rb)
6443 			ring_buffer_attach(event, NULL);
6444 
6445 		mutex_unlock(&event->mmap_mutex);
6446 		put_event(event);
6447 
6448 		/*
6449 		 * Restart the iteration; either we're on the wrong list or
6450 		 * destroyed its integrity by doing a deletion.
6451 		 */
6452 		goto again;
6453 	}
6454 	rcu_read_unlock();
6455 
6456 	/*
6457 	 * It could be there's still a few 0-ref events on the list; they'll
6458 	 * get cleaned up by free_event() -- they'll also still have their
6459 	 * ref on the rb and will free it whenever they are done with it.
6460 	 *
6461 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6462 	 * undo the VM accounting.
6463 	 */
6464 
6465 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6466 			&mmap_user->locked_vm);
6467 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6468 	free_uid(mmap_user);
6469 
6470 out_put:
6471 	ring_buffer_put(rb); /* could be last */
6472 }
6473 
6474 static const struct vm_operations_struct perf_mmap_vmops = {
6475 	.open		= perf_mmap_open,
6476 	.close		= perf_mmap_close, /* non mergeable */
6477 	.fault		= perf_mmap_fault,
6478 	.page_mkwrite	= perf_mmap_fault,
6479 };
6480 
6481 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6482 {
6483 	struct perf_event *event = file->private_data;
6484 	unsigned long user_locked, user_lock_limit;
6485 	struct user_struct *user = current_user();
6486 	struct mutex *aux_mutex = NULL;
6487 	struct perf_buffer *rb = NULL;
6488 	unsigned long locked, lock_limit;
6489 	unsigned long vma_size;
6490 	unsigned long nr_pages;
6491 	long user_extra = 0, extra = 0;
6492 	int ret = 0, flags = 0;
6493 
6494 	/*
6495 	 * Don't allow mmap() of inherited per-task counters. This would
6496 	 * create a performance issue due to all children writing to the
6497 	 * same rb.
6498 	 */
6499 	if (event->cpu == -1 && event->attr.inherit)
6500 		return -EINVAL;
6501 
6502 	if (!(vma->vm_flags & VM_SHARED))
6503 		return -EINVAL;
6504 
6505 	ret = security_perf_event_read(event);
6506 	if (ret)
6507 		return ret;
6508 
6509 	vma_size = vma->vm_end - vma->vm_start;
6510 
6511 	if (vma->vm_pgoff == 0) {
6512 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6513 	} else {
6514 		/*
6515 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6516 		 * mapped, all subsequent mappings should have the same size
6517 		 * and offset. Must be above the normal perf buffer.
6518 		 */
6519 		u64 aux_offset, aux_size;
6520 
6521 		if (!event->rb)
6522 			return -EINVAL;
6523 
6524 		nr_pages = vma_size / PAGE_SIZE;
6525 		if (nr_pages > INT_MAX)
6526 			return -ENOMEM;
6527 
6528 		mutex_lock(&event->mmap_mutex);
6529 		ret = -EINVAL;
6530 
6531 		rb = event->rb;
6532 		if (!rb)
6533 			goto aux_unlock;
6534 
6535 		aux_mutex = &rb->aux_mutex;
6536 		mutex_lock(aux_mutex);
6537 
6538 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6539 		aux_size = READ_ONCE(rb->user_page->aux_size);
6540 
6541 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6542 			goto aux_unlock;
6543 
6544 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6545 			goto aux_unlock;
6546 
6547 		/* already mapped with a different offset */
6548 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6549 			goto aux_unlock;
6550 
6551 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6552 			goto aux_unlock;
6553 
6554 		/* already mapped with a different size */
6555 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6556 			goto aux_unlock;
6557 
6558 		if (!is_power_of_2(nr_pages))
6559 			goto aux_unlock;
6560 
6561 		if (!atomic_inc_not_zero(&rb->mmap_count))
6562 			goto aux_unlock;
6563 
6564 		if (rb_has_aux(rb)) {
6565 			atomic_inc(&rb->aux_mmap_count);
6566 			ret = 0;
6567 			goto unlock;
6568 		}
6569 
6570 		atomic_set(&rb->aux_mmap_count, 1);
6571 		user_extra = nr_pages;
6572 
6573 		goto accounting;
6574 	}
6575 
6576 	/*
6577 	 * If we have rb pages ensure they're a power-of-two number, so we
6578 	 * can do bitmasks instead of modulo.
6579 	 */
6580 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6581 		return -EINVAL;
6582 
6583 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6584 		return -EINVAL;
6585 
6586 	WARN_ON_ONCE(event->ctx->parent_ctx);
6587 again:
6588 	mutex_lock(&event->mmap_mutex);
6589 	if (event->rb) {
6590 		if (data_page_nr(event->rb) != nr_pages) {
6591 			ret = -EINVAL;
6592 			goto unlock;
6593 		}
6594 
6595 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6596 			/*
6597 			 * Raced against perf_mmap_close(); remove the
6598 			 * event and try again.
6599 			 */
6600 			ring_buffer_attach(event, NULL);
6601 			mutex_unlock(&event->mmap_mutex);
6602 			goto again;
6603 		}
6604 
6605 		goto unlock;
6606 	}
6607 
6608 	user_extra = nr_pages + 1;
6609 
6610 accounting:
6611 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6612 
6613 	/*
6614 	 * Increase the limit linearly with more CPUs:
6615 	 */
6616 	user_lock_limit *= num_online_cpus();
6617 
6618 	user_locked = atomic_long_read(&user->locked_vm);
6619 
6620 	/*
6621 	 * sysctl_perf_event_mlock may have changed, so that
6622 	 *     user->locked_vm > user_lock_limit
6623 	 */
6624 	if (user_locked > user_lock_limit)
6625 		user_locked = user_lock_limit;
6626 	user_locked += user_extra;
6627 
6628 	if (user_locked > user_lock_limit) {
6629 		/*
6630 		 * charge locked_vm until it hits user_lock_limit;
6631 		 * charge the rest from pinned_vm
6632 		 */
6633 		extra = user_locked - user_lock_limit;
6634 		user_extra -= extra;
6635 	}
6636 
6637 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6638 	lock_limit >>= PAGE_SHIFT;
6639 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6640 
6641 	if ((locked > lock_limit) && perf_is_paranoid() &&
6642 		!capable(CAP_IPC_LOCK)) {
6643 		ret = -EPERM;
6644 		goto unlock;
6645 	}
6646 
6647 	WARN_ON(!rb && event->rb);
6648 
6649 	if (vma->vm_flags & VM_WRITE)
6650 		flags |= RING_BUFFER_WRITABLE;
6651 
6652 	if (!rb) {
6653 		rb = rb_alloc(nr_pages,
6654 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6655 			      event->cpu, flags);
6656 
6657 		if (!rb) {
6658 			ret = -ENOMEM;
6659 			goto unlock;
6660 		}
6661 
6662 		atomic_set(&rb->mmap_count, 1);
6663 		rb->mmap_user = get_current_user();
6664 		rb->mmap_locked = extra;
6665 
6666 		ring_buffer_attach(event, rb);
6667 
6668 		perf_event_update_time(event);
6669 		perf_event_init_userpage(event);
6670 		perf_event_update_userpage(event);
6671 	} else {
6672 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6673 				   event->attr.aux_watermark, flags);
6674 		if (!ret)
6675 			rb->aux_mmap_locked = extra;
6676 	}
6677 
6678 unlock:
6679 	if (!ret) {
6680 		atomic_long_add(user_extra, &user->locked_vm);
6681 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6682 
6683 		atomic_inc(&event->mmap_count);
6684 	} else if (rb) {
6685 		atomic_dec(&rb->mmap_count);
6686 	}
6687 aux_unlock:
6688 	if (aux_mutex)
6689 		mutex_unlock(aux_mutex);
6690 	mutex_unlock(&event->mmap_mutex);
6691 
6692 	/*
6693 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6694 	 * vma.
6695 	 */
6696 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6697 	vma->vm_ops = &perf_mmap_vmops;
6698 
6699 	if (event->pmu->event_mapped)
6700 		event->pmu->event_mapped(event, vma->vm_mm);
6701 
6702 	return ret;
6703 }
6704 
6705 static int perf_fasync(int fd, struct file *filp, int on)
6706 {
6707 	struct inode *inode = file_inode(filp);
6708 	struct perf_event *event = filp->private_data;
6709 	int retval;
6710 
6711 	inode_lock(inode);
6712 	retval = fasync_helper(fd, filp, on, &event->fasync);
6713 	inode_unlock(inode);
6714 
6715 	if (retval < 0)
6716 		return retval;
6717 
6718 	return 0;
6719 }
6720 
6721 static const struct file_operations perf_fops = {
6722 	.llseek			= no_llseek,
6723 	.release		= perf_release,
6724 	.read			= perf_read,
6725 	.poll			= perf_poll,
6726 	.unlocked_ioctl		= perf_ioctl,
6727 	.compat_ioctl		= perf_compat_ioctl,
6728 	.mmap			= perf_mmap,
6729 	.fasync			= perf_fasync,
6730 };
6731 
6732 /*
6733  * Perf event wakeup
6734  *
6735  * If there's data, ensure we set the poll() state and publish everything
6736  * to user-space before waking everybody up.
6737  */
6738 
6739 void perf_event_wakeup(struct perf_event *event)
6740 {
6741 	ring_buffer_wakeup(event);
6742 
6743 	if (event->pending_kill) {
6744 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6745 		event->pending_kill = 0;
6746 	}
6747 }
6748 
6749 static void perf_sigtrap(struct perf_event *event)
6750 {
6751 	/*
6752 	 * We'd expect this to only occur if the irq_work is delayed and either
6753 	 * ctx->task or current has changed in the meantime. This can be the
6754 	 * case on architectures that do not implement arch_irq_work_raise().
6755 	 */
6756 	if (WARN_ON_ONCE(event->ctx->task != current))
6757 		return;
6758 
6759 	/*
6760 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6761 	 * task exiting.
6762 	 */
6763 	if (current->flags & PF_EXITING)
6764 		return;
6765 
6766 	send_sig_perf((void __user *)event->pending_addr,
6767 		      event->orig_type, event->attr.sig_data);
6768 }
6769 
6770 /*
6771  * Deliver the pending work in-event-context or follow the context.
6772  */
6773 static void __perf_pending_disable(struct perf_event *event)
6774 {
6775 	int cpu = READ_ONCE(event->oncpu);
6776 
6777 	/*
6778 	 * If the event isn't running; we done. event_sched_out() will have
6779 	 * taken care of things.
6780 	 */
6781 	if (cpu < 0)
6782 		return;
6783 
6784 	/*
6785 	 * Yay, we hit home and are in the context of the event.
6786 	 */
6787 	if (cpu == smp_processor_id()) {
6788 		if (event->pending_disable) {
6789 			event->pending_disable = 0;
6790 			perf_event_disable_local(event);
6791 		}
6792 		return;
6793 	}
6794 
6795 	/*
6796 	 *  CPU-A			CPU-B
6797 	 *
6798 	 *  perf_event_disable_inatomic()
6799 	 *    @pending_disable = CPU-A;
6800 	 *    irq_work_queue();
6801 	 *
6802 	 *  sched-out
6803 	 *    @pending_disable = -1;
6804 	 *
6805 	 *				sched-in
6806 	 *				perf_event_disable_inatomic()
6807 	 *				  @pending_disable = CPU-B;
6808 	 *				  irq_work_queue(); // FAILS
6809 	 *
6810 	 *  irq_work_run()
6811 	 *    perf_pending_disable()
6812 	 *
6813 	 * But the event runs on CPU-B and wants disabling there.
6814 	 */
6815 	irq_work_queue_on(&event->pending_disable_irq, cpu);
6816 }
6817 
6818 static void perf_pending_disable(struct irq_work *entry)
6819 {
6820 	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
6821 	int rctx;
6822 
6823 	/*
6824 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6825 	 * and we won't recurse 'further'.
6826 	 */
6827 	rctx = perf_swevent_get_recursion_context();
6828 	__perf_pending_disable(event);
6829 	if (rctx >= 0)
6830 		perf_swevent_put_recursion_context(rctx);
6831 }
6832 
6833 static void perf_pending_irq(struct irq_work *entry)
6834 {
6835 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6836 	int rctx;
6837 
6838 	/*
6839 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6840 	 * and we won't recurse 'further'.
6841 	 */
6842 	rctx = perf_swevent_get_recursion_context();
6843 
6844 	/*
6845 	 * The wakeup isn't bound to the context of the event -- it can happen
6846 	 * irrespective of where the event is.
6847 	 */
6848 	if (event->pending_wakeup) {
6849 		event->pending_wakeup = 0;
6850 		perf_event_wakeup(event);
6851 	}
6852 
6853 	if (rctx >= 0)
6854 		perf_swevent_put_recursion_context(rctx);
6855 }
6856 
6857 static void perf_pending_task(struct callback_head *head)
6858 {
6859 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6860 	int rctx;
6861 
6862 	/*
6863 	 * All accesses to the event must belong to the same implicit RCU read-side
6864 	 * critical section as the ->pending_work reset. See comment in
6865 	 * perf_pending_task_sync().
6866 	 */
6867 	rcu_read_lock();
6868 	/*
6869 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6870 	 * and we won't recurse 'further'.
6871 	 */
6872 	rctx = perf_swevent_get_recursion_context();
6873 
6874 	if (event->pending_work) {
6875 		event->pending_work = 0;
6876 		perf_sigtrap(event);
6877 		local_dec(&event->ctx->nr_pending);
6878 		rcuwait_wake_up(&event->pending_work_wait);
6879 	}
6880 	rcu_read_unlock();
6881 
6882 	if (rctx >= 0)
6883 		perf_swevent_put_recursion_context(rctx);
6884 }
6885 
6886 #ifdef CONFIG_GUEST_PERF_EVENTS
6887 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6888 
6889 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6890 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6891 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6892 
6893 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6894 {
6895 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6896 		return;
6897 
6898 	rcu_assign_pointer(perf_guest_cbs, cbs);
6899 	static_call_update(__perf_guest_state, cbs->state);
6900 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6901 
6902 	/* Implementing ->handle_intel_pt_intr is optional. */
6903 	if (cbs->handle_intel_pt_intr)
6904 		static_call_update(__perf_guest_handle_intel_pt_intr,
6905 				   cbs->handle_intel_pt_intr);
6906 }
6907 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6908 
6909 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6910 {
6911 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6912 		return;
6913 
6914 	rcu_assign_pointer(perf_guest_cbs, NULL);
6915 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6916 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6917 	static_call_update(__perf_guest_handle_intel_pt_intr,
6918 			   (void *)&__static_call_return0);
6919 	synchronize_rcu();
6920 }
6921 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6922 #endif
6923 
6924 static void
6925 perf_output_sample_regs(struct perf_output_handle *handle,
6926 			struct pt_regs *regs, u64 mask)
6927 {
6928 	int bit;
6929 	DECLARE_BITMAP(_mask, 64);
6930 
6931 	bitmap_from_u64(_mask, mask);
6932 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6933 		u64 val;
6934 
6935 		val = perf_reg_value(regs, bit);
6936 		perf_output_put(handle, val);
6937 	}
6938 }
6939 
6940 static void perf_sample_regs_user(struct perf_regs *regs_user,
6941 				  struct pt_regs *regs)
6942 {
6943 	if (user_mode(regs)) {
6944 		regs_user->abi = perf_reg_abi(current);
6945 		regs_user->regs = regs;
6946 	} else if (!(current->flags & PF_KTHREAD)) {
6947 		perf_get_regs_user(regs_user, regs);
6948 	} else {
6949 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6950 		regs_user->regs = NULL;
6951 	}
6952 }
6953 
6954 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6955 				  struct pt_regs *regs)
6956 {
6957 	regs_intr->regs = regs;
6958 	regs_intr->abi  = perf_reg_abi(current);
6959 }
6960 
6961 
6962 /*
6963  * Get remaining task size from user stack pointer.
6964  *
6965  * It'd be better to take stack vma map and limit this more
6966  * precisely, but there's no way to get it safely under interrupt,
6967  * so using TASK_SIZE as limit.
6968  */
6969 static u64 perf_ustack_task_size(struct pt_regs *regs)
6970 {
6971 	unsigned long addr = perf_user_stack_pointer(regs);
6972 
6973 	if (!addr || addr >= TASK_SIZE)
6974 		return 0;
6975 
6976 	return TASK_SIZE - addr;
6977 }
6978 
6979 static u16
6980 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6981 			struct pt_regs *regs)
6982 {
6983 	u64 task_size;
6984 
6985 	/* No regs, no stack pointer, no dump. */
6986 	if (!regs)
6987 		return 0;
6988 
6989 	/*
6990 	 * Check if we fit in with the requested stack size into the:
6991 	 * - TASK_SIZE
6992 	 *   If we don't, we limit the size to the TASK_SIZE.
6993 	 *
6994 	 * - remaining sample size
6995 	 *   If we don't, we customize the stack size to
6996 	 *   fit in to the remaining sample size.
6997 	 */
6998 
6999 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7000 	stack_size = min(stack_size, (u16) task_size);
7001 
7002 	/* Current header size plus static size and dynamic size. */
7003 	header_size += 2 * sizeof(u64);
7004 
7005 	/* Do we fit in with the current stack dump size? */
7006 	if ((u16) (header_size + stack_size) < header_size) {
7007 		/*
7008 		 * If we overflow the maximum size for the sample,
7009 		 * we customize the stack dump size to fit in.
7010 		 */
7011 		stack_size = USHRT_MAX - header_size - sizeof(u64);
7012 		stack_size = round_up(stack_size, sizeof(u64));
7013 	}
7014 
7015 	return stack_size;
7016 }
7017 
7018 static void
7019 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7020 			  struct pt_regs *regs)
7021 {
7022 	/* Case of a kernel thread, nothing to dump */
7023 	if (!regs) {
7024 		u64 size = 0;
7025 		perf_output_put(handle, size);
7026 	} else {
7027 		unsigned long sp;
7028 		unsigned int rem;
7029 		u64 dyn_size;
7030 
7031 		/*
7032 		 * We dump:
7033 		 * static size
7034 		 *   - the size requested by user or the best one we can fit
7035 		 *     in to the sample max size
7036 		 * data
7037 		 *   - user stack dump data
7038 		 * dynamic size
7039 		 *   - the actual dumped size
7040 		 */
7041 
7042 		/* Static size. */
7043 		perf_output_put(handle, dump_size);
7044 
7045 		/* Data. */
7046 		sp = perf_user_stack_pointer(regs);
7047 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7048 		dyn_size = dump_size - rem;
7049 
7050 		perf_output_skip(handle, rem);
7051 
7052 		/* Dynamic size. */
7053 		perf_output_put(handle, dyn_size);
7054 	}
7055 }
7056 
7057 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7058 					  struct perf_sample_data *data,
7059 					  size_t size)
7060 {
7061 	struct perf_event *sampler = event->aux_event;
7062 	struct perf_buffer *rb;
7063 
7064 	data->aux_size = 0;
7065 
7066 	if (!sampler)
7067 		goto out;
7068 
7069 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7070 		goto out;
7071 
7072 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7073 		goto out;
7074 
7075 	rb = ring_buffer_get(sampler);
7076 	if (!rb)
7077 		goto out;
7078 
7079 	/*
7080 	 * If this is an NMI hit inside sampling code, don't take
7081 	 * the sample. See also perf_aux_sample_output().
7082 	 */
7083 	if (READ_ONCE(rb->aux_in_sampling)) {
7084 		data->aux_size = 0;
7085 	} else {
7086 		size = min_t(size_t, size, perf_aux_size(rb));
7087 		data->aux_size = ALIGN(size, sizeof(u64));
7088 	}
7089 	ring_buffer_put(rb);
7090 
7091 out:
7092 	return data->aux_size;
7093 }
7094 
7095 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7096                                  struct perf_event *event,
7097                                  struct perf_output_handle *handle,
7098                                  unsigned long size)
7099 {
7100 	unsigned long flags;
7101 	long ret;
7102 
7103 	/*
7104 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7105 	 * paths. If we start calling them in NMI context, they may race with
7106 	 * the IRQ ones, that is, for example, re-starting an event that's just
7107 	 * been stopped, which is why we're using a separate callback that
7108 	 * doesn't change the event state.
7109 	 *
7110 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7111 	 */
7112 	local_irq_save(flags);
7113 	/*
7114 	 * Guard against NMI hits inside the critical section;
7115 	 * see also perf_prepare_sample_aux().
7116 	 */
7117 	WRITE_ONCE(rb->aux_in_sampling, 1);
7118 	barrier();
7119 
7120 	ret = event->pmu->snapshot_aux(event, handle, size);
7121 
7122 	barrier();
7123 	WRITE_ONCE(rb->aux_in_sampling, 0);
7124 	local_irq_restore(flags);
7125 
7126 	return ret;
7127 }
7128 
7129 static void perf_aux_sample_output(struct perf_event *event,
7130 				   struct perf_output_handle *handle,
7131 				   struct perf_sample_data *data)
7132 {
7133 	struct perf_event *sampler = event->aux_event;
7134 	struct perf_buffer *rb;
7135 	unsigned long pad;
7136 	long size;
7137 
7138 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7139 		return;
7140 
7141 	rb = ring_buffer_get(sampler);
7142 	if (!rb)
7143 		return;
7144 
7145 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7146 
7147 	/*
7148 	 * An error here means that perf_output_copy() failed (returned a
7149 	 * non-zero surplus that it didn't copy), which in its current
7150 	 * enlightened implementation is not possible. If that changes, we'd
7151 	 * like to know.
7152 	 */
7153 	if (WARN_ON_ONCE(size < 0))
7154 		goto out_put;
7155 
7156 	/*
7157 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7158 	 * perf_prepare_sample_aux(), so should not be more than that.
7159 	 */
7160 	pad = data->aux_size - size;
7161 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7162 		pad = 8;
7163 
7164 	if (pad) {
7165 		u64 zero = 0;
7166 		perf_output_copy(handle, &zero, pad);
7167 	}
7168 
7169 out_put:
7170 	ring_buffer_put(rb);
7171 }
7172 
7173 /*
7174  * A set of common sample data types saved even for non-sample records
7175  * when event->attr.sample_id_all is set.
7176  */
7177 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7178 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7179 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7180 
7181 static void __perf_event_header__init_id(struct perf_sample_data *data,
7182 					 struct perf_event *event,
7183 					 u64 sample_type)
7184 {
7185 	data->type = event->attr.sample_type;
7186 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7187 
7188 	if (sample_type & PERF_SAMPLE_TID) {
7189 		/* namespace issues */
7190 		data->tid_entry.pid = perf_event_pid(event, current);
7191 		data->tid_entry.tid = perf_event_tid(event, current);
7192 	}
7193 
7194 	if (sample_type & PERF_SAMPLE_TIME)
7195 		data->time = perf_event_clock(event);
7196 
7197 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7198 		data->id = primary_event_id(event);
7199 
7200 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7201 		data->stream_id = event->id;
7202 
7203 	if (sample_type & PERF_SAMPLE_CPU) {
7204 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7205 		data->cpu_entry.reserved = 0;
7206 	}
7207 }
7208 
7209 void perf_event_header__init_id(struct perf_event_header *header,
7210 				struct perf_sample_data *data,
7211 				struct perf_event *event)
7212 {
7213 	if (event->attr.sample_id_all) {
7214 		header->size += event->id_header_size;
7215 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7216 	}
7217 }
7218 
7219 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7220 					   struct perf_sample_data *data)
7221 {
7222 	u64 sample_type = data->type;
7223 
7224 	if (sample_type & PERF_SAMPLE_TID)
7225 		perf_output_put(handle, data->tid_entry);
7226 
7227 	if (sample_type & PERF_SAMPLE_TIME)
7228 		perf_output_put(handle, data->time);
7229 
7230 	if (sample_type & PERF_SAMPLE_ID)
7231 		perf_output_put(handle, data->id);
7232 
7233 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7234 		perf_output_put(handle, data->stream_id);
7235 
7236 	if (sample_type & PERF_SAMPLE_CPU)
7237 		perf_output_put(handle, data->cpu_entry);
7238 
7239 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7240 		perf_output_put(handle, data->id);
7241 }
7242 
7243 void perf_event__output_id_sample(struct perf_event *event,
7244 				  struct perf_output_handle *handle,
7245 				  struct perf_sample_data *sample)
7246 {
7247 	if (event->attr.sample_id_all)
7248 		__perf_event__output_id_sample(handle, sample);
7249 }
7250 
7251 static void perf_output_read_one(struct perf_output_handle *handle,
7252 				 struct perf_event *event,
7253 				 u64 enabled, u64 running)
7254 {
7255 	u64 read_format = event->attr.read_format;
7256 	u64 values[5];
7257 	int n = 0;
7258 
7259 	values[n++] = perf_event_count(event);
7260 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7261 		values[n++] = enabled +
7262 			atomic64_read(&event->child_total_time_enabled);
7263 	}
7264 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7265 		values[n++] = running +
7266 			atomic64_read(&event->child_total_time_running);
7267 	}
7268 	if (read_format & PERF_FORMAT_ID)
7269 		values[n++] = primary_event_id(event);
7270 	if (read_format & PERF_FORMAT_LOST)
7271 		values[n++] = atomic64_read(&event->lost_samples);
7272 
7273 	__output_copy(handle, values, n * sizeof(u64));
7274 }
7275 
7276 static void perf_output_read_group(struct perf_output_handle *handle,
7277 			    struct perf_event *event,
7278 			    u64 enabled, u64 running)
7279 {
7280 	struct perf_event *leader = event->group_leader, *sub;
7281 	u64 read_format = event->attr.read_format;
7282 	unsigned long flags;
7283 	u64 values[6];
7284 	int n = 0;
7285 
7286 	/*
7287 	 * Disabling interrupts avoids all counter scheduling
7288 	 * (context switches, timer based rotation and IPIs).
7289 	 */
7290 	local_irq_save(flags);
7291 
7292 	values[n++] = 1 + leader->nr_siblings;
7293 
7294 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7295 		values[n++] = enabled;
7296 
7297 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7298 		values[n++] = running;
7299 
7300 	if ((leader != event) &&
7301 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7302 		leader->pmu->read(leader);
7303 
7304 	values[n++] = perf_event_count(leader);
7305 	if (read_format & PERF_FORMAT_ID)
7306 		values[n++] = primary_event_id(leader);
7307 	if (read_format & PERF_FORMAT_LOST)
7308 		values[n++] = atomic64_read(&leader->lost_samples);
7309 
7310 	__output_copy(handle, values, n * sizeof(u64));
7311 
7312 	for_each_sibling_event(sub, leader) {
7313 		n = 0;
7314 
7315 		if ((sub != event) &&
7316 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7317 			sub->pmu->read(sub);
7318 
7319 		values[n++] = perf_event_count(sub);
7320 		if (read_format & PERF_FORMAT_ID)
7321 			values[n++] = primary_event_id(sub);
7322 		if (read_format & PERF_FORMAT_LOST)
7323 			values[n++] = atomic64_read(&sub->lost_samples);
7324 
7325 		__output_copy(handle, values, n * sizeof(u64));
7326 	}
7327 
7328 	local_irq_restore(flags);
7329 }
7330 
7331 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7332 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7333 
7334 /*
7335  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7336  *
7337  * The problem is that its both hard and excessively expensive to iterate the
7338  * child list, not to mention that its impossible to IPI the children running
7339  * on another CPU, from interrupt/NMI context.
7340  */
7341 static void perf_output_read(struct perf_output_handle *handle,
7342 			     struct perf_event *event)
7343 {
7344 	u64 enabled = 0, running = 0, now;
7345 	u64 read_format = event->attr.read_format;
7346 
7347 	/*
7348 	 * compute total_time_enabled, total_time_running
7349 	 * based on snapshot values taken when the event
7350 	 * was last scheduled in.
7351 	 *
7352 	 * we cannot simply called update_context_time()
7353 	 * because of locking issue as we are called in
7354 	 * NMI context
7355 	 */
7356 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7357 		calc_timer_values(event, &now, &enabled, &running);
7358 
7359 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7360 		perf_output_read_group(handle, event, enabled, running);
7361 	else
7362 		perf_output_read_one(handle, event, enabled, running);
7363 }
7364 
7365 void perf_output_sample(struct perf_output_handle *handle,
7366 			struct perf_event_header *header,
7367 			struct perf_sample_data *data,
7368 			struct perf_event *event)
7369 {
7370 	u64 sample_type = data->type;
7371 
7372 	perf_output_put(handle, *header);
7373 
7374 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7375 		perf_output_put(handle, data->id);
7376 
7377 	if (sample_type & PERF_SAMPLE_IP)
7378 		perf_output_put(handle, data->ip);
7379 
7380 	if (sample_type & PERF_SAMPLE_TID)
7381 		perf_output_put(handle, data->tid_entry);
7382 
7383 	if (sample_type & PERF_SAMPLE_TIME)
7384 		perf_output_put(handle, data->time);
7385 
7386 	if (sample_type & PERF_SAMPLE_ADDR)
7387 		perf_output_put(handle, data->addr);
7388 
7389 	if (sample_type & PERF_SAMPLE_ID)
7390 		perf_output_put(handle, data->id);
7391 
7392 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7393 		perf_output_put(handle, data->stream_id);
7394 
7395 	if (sample_type & PERF_SAMPLE_CPU)
7396 		perf_output_put(handle, data->cpu_entry);
7397 
7398 	if (sample_type & PERF_SAMPLE_PERIOD)
7399 		perf_output_put(handle, data->period);
7400 
7401 	if (sample_type & PERF_SAMPLE_READ)
7402 		perf_output_read(handle, event);
7403 
7404 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7405 		int size = 1;
7406 
7407 		size += data->callchain->nr;
7408 		size *= sizeof(u64);
7409 		__output_copy(handle, data->callchain, size);
7410 	}
7411 
7412 	if (sample_type & PERF_SAMPLE_RAW) {
7413 		struct perf_raw_record *raw = data->raw;
7414 
7415 		if (raw) {
7416 			struct perf_raw_frag *frag = &raw->frag;
7417 
7418 			perf_output_put(handle, raw->size);
7419 			do {
7420 				if (frag->copy) {
7421 					__output_custom(handle, frag->copy,
7422 							frag->data, frag->size);
7423 				} else {
7424 					__output_copy(handle, frag->data,
7425 						      frag->size);
7426 				}
7427 				if (perf_raw_frag_last(frag))
7428 					break;
7429 				frag = frag->next;
7430 			} while (1);
7431 			if (frag->pad)
7432 				__output_skip(handle, NULL, frag->pad);
7433 		} else {
7434 			struct {
7435 				u32	size;
7436 				u32	data;
7437 			} raw = {
7438 				.size = sizeof(u32),
7439 				.data = 0,
7440 			};
7441 			perf_output_put(handle, raw);
7442 		}
7443 	}
7444 
7445 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7446 		if (data->br_stack) {
7447 			size_t size;
7448 
7449 			size = data->br_stack->nr
7450 			     * sizeof(struct perf_branch_entry);
7451 
7452 			perf_output_put(handle, data->br_stack->nr);
7453 			if (branch_sample_hw_index(event))
7454 				perf_output_put(handle, data->br_stack->hw_idx);
7455 			perf_output_copy(handle, data->br_stack->entries, size);
7456 			/*
7457 			 * Add the extension space which is appended
7458 			 * right after the struct perf_branch_stack.
7459 			 */
7460 			if (data->br_stack_cntr) {
7461 				size = data->br_stack->nr * sizeof(u64);
7462 				perf_output_copy(handle, data->br_stack_cntr, size);
7463 			}
7464 		} else {
7465 			/*
7466 			 * we always store at least the value of nr
7467 			 */
7468 			u64 nr = 0;
7469 			perf_output_put(handle, nr);
7470 		}
7471 	}
7472 
7473 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7474 		u64 abi = data->regs_user.abi;
7475 
7476 		/*
7477 		 * If there are no regs to dump, notice it through
7478 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7479 		 */
7480 		perf_output_put(handle, abi);
7481 
7482 		if (abi) {
7483 			u64 mask = event->attr.sample_regs_user;
7484 			perf_output_sample_regs(handle,
7485 						data->regs_user.regs,
7486 						mask);
7487 		}
7488 	}
7489 
7490 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7491 		perf_output_sample_ustack(handle,
7492 					  data->stack_user_size,
7493 					  data->regs_user.regs);
7494 	}
7495 
7496 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7497 		perf_output_put(handle, data->weight.full);
7498 
7499 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7500 		perf_output_put(handle, data->data_src.val);
7501 
7502 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7503 		perf_output_put(handle, data->txn);
7504 
7505 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7506 		u64 abi = data->regs_intr.abi;
7507 		/*
7508 		 * If there are no regs to dump, notice it through
7509 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7510 		 */
7511 		perf_output_put(handle, abi);
7512 
7513 		if (abi) {
7514 			u64 mask = event->attr.sample_regs_intr;
7515 
7516 			perf_output_sample_regs(handle,
7517 						data->regs_intr.regs,
7518 						mask);
7519 		}
7520 	}
7521 
7522 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7523 		perf_output_put(handle, data->phys_addr);
7524 
7525 	if (sample_type & PERF_SAMPLE_CGROUP)
7526 		perf_output_put(handle, data->cgroup);
7527 
7528 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7529 		perf_output_put(handle, data->data_page_size);
7530 
7531 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7532 		perf_output_put(handle, data->code_page_size);
7533 
7534 	if (sample_type & PERF_SAMPLE_AUX) {
7535 		perf_output_put(handle, data->aux_size);
7536 
7537 		if (data->aux_size)
7538 			perf_aux_sample_output(event, handle, data);
7539 	}
7540 
7541 	if (!event->attr.watermark) {
7542 		int wakeup_events = event->attr.wakeup_events;
7543 
7544 		if (wakeup_events) {
7545 			struct perf_buffer *rb = handle->rb;
7546 			int events = local_inc_return(&rb->events);
7547 
7548 			if (events >= wakeup_events) {
7549 				local_sub(wakeup_events, &rb->events);
7550 				local_inc(&rb->wakeup);
7551 			}
7552 		}
7553 	}
7554 }
7555 
7556 static u64 perf_virt_to_phys(u64 virt)
7557 {
7558 	u64 phys_addr = 0;
7559 
7560 	if (!virt)
7561 		return 0;
7562 
7563 	if (virt >= TASK_SIZE) {
7564 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7565 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7566 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7567 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7568 	} else {
7569 		/*
7570 		 * Walking the pages tables for user address.
7571 		 * Interrupts are disabled, so it prevents any tear down
7572 		 * of the page tables.
7573 		 * Try IRQ-safe get_user_page_fast_only first.
7574 		 * If failed, leave phys_addr as 0.
7575 		 */
7576 		if (current->mm != NULL) {
7577 			struct page *p;
7578 
7579 			pagefault_disable();
7580 			if (get_user_page_fast_only(virt, 0, &p)) {
7581 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7582 				put_page(p);
7583 			}
7584 			pagefault_enable();
7585 		}
7586 	}
7587 
7588 	return phys_addr;
7589 }
7590 
7591 /*
7592  * Return the pagetable size of a given virtual address.
7593  */
7594 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7595 {
7596 	u64 size = 0;
7597 
7598 #ifdef CONFIG_HAVE_GUP_FAST
7599 	pgd_t *pgdp, pgd;
7600 	p4d_t *p4dp, p4d;
7601 	pud_t *pudp, pud;
7602 	pmd_t *pmdp, pmd;
7603 	pte_t *ptep, pte;
7604 
7605 	pgdp = pgd_offset(mm, addr);
7606 	pgd = READ_ONCE(*pgdp);
7607 	if (pgd_none(pgd))
7608 		return 0;
7609 
7610 	if (pgd_leaf(pgd))
7611 		return pgd_leaf_size(pgd);
7612 
7613 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7614 	p4d = READ_ONCE(*p4dp);
7615 	if (!p4d_present(p4d))
7616 		return 0;
7617 
7618 	if (p4d_leaf(p4d))
7619 		return p4d_leaf_size(p4d);
7620 
7621 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7622 	pud = READ_ONCE(*pudp);
7623 	if (!pud_present(pud))
7624 		return 0;
7625 
7626 	if (pud_leaf(pud))
7627 		return pud_leaf_size(pud);
7628 
7629 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7630 again:
7631 	pmd = pmdp_get_lockless(pmdp);
7632 	if (!pmd_present(pmd))
7633 		return 0;
7634 
7635 	if (pmd_leaf(pmd))
7636 		return pmd_leaf_size(pmd);
7637 
7638 	ptep = pte_offset_map(&pmd, addr);
7639 	if (!ptep)
7640 		goto again;
7641 
7642 	pte = ptep_get_lockless(ptep);
7643 	if (pte_present(pte))
7644 		size = __pte_leaf_size(pmd, pte);
7645 	pte_unmap(ptep);
7646 #endif /* CONFIG_HAVE_GUP_FAST */
7647 
7648 	return size;
7649 }
7650 
7651 static u64 perf_get_page_size(unsigned long addr)
7652 {
7653 	struct mm_struct *mm;
7654 	unsigned long flags;
7655 	u64 size;
7656 
7657 	if (!addr)
7658 		return 0;
7659 
7660 	/*
7661 	 * Software page-table walkers must disable IRQs,
7662 	 * which prevents any tear down of the page tables.
7663 	 */
7664 	local_irq_save(flags);
7665 
7666 	mm = current->mm;
7667 	if (!mm) {
7668 		/*
7669 		 * For kernel threads and the like, use init_mm so that
7670 		 * we can find kernel memory.
7671 		 */
7672 		mm = &init_mm;
7673 	}
7674 
7675 	size = perf_get_pgtable_size(mm, addr);
7676 
7677 	local_irq_restore(flags);
7678 
7679 	return size;
7680 }
7681 
7682 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7683 
7684 struct perf_callchain_entry *
7685 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7686 {
7687 	bool kernel = !event->attr.exclude_callchain_kernel;
7688 	bool user   = !event->attr.exclude_callchain_user;
7689 	/* Disallow cross-task user callchains. */
7690 	bool crosstask = event->ctx->task && event->ctx->task != current;
7691 	const u32 max_stack = event->attr.sample_max_stack;
7692 	struct perf_callchain_entry *callchain;
7693 
7694 	if (!kernel && !user)
7695 		return &__empty_callchain;
7696 
7697 	callchain = get_perf_callchain(regs, 0, kernel, user,
7698 				       max_stack, crosstask, true);
7699 	return callchain ?: &__empty_callchain;
7700 }
7701 
7702 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7703 {
7704 	return d * !!(flags & s);
7705 }
7706 
7707 void perf_prepare_sample(struct perf_sample_data *data,
7708 			 struct perf_event *event,
7709 			 struct pt_regs *regs)
7710 {
7711 	u64 sample_type = event->attr.sample_type;
7712 	u64 filtered_sample_type;
7713 
7714 	/*
7715 	 * Add the sample flags that are dependent to others.  And clear the
7716 	 * sample flags that have already been done by the PMU driver.
7717 	 */
7718 	filtered_sample_type = sample_type;
7719 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7720 					   PERF_SAMPLE_IP);
7721 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7722 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7723 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7724 					   PERF_SAMPLE_REGS_USER);
7725 	filtered_sample_type &= ~data->sample_flags;
7726 
7727 	if (filtered_sample_type == 0) {
7728 		/* Make sure it has the correct data->type for output */
7729 		data->type = event->attr.sample_type;
7730 		return;
7731 	}
7732 
7733 	__perf_event_header__init_id(data, event, filtered_sample_type);
7734 
7735 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7736 		data->ip = perf_instruction_pointer(regs);
7737 		data->sample_flags |= PERF_SAMPLE_IP;
7738 	}
7739 
7740 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7741 		perf_sample_save_callchain(data, event, regs);
7742 
7743 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7744 		data->raw = NULL;
7745 		data->dyn_size += sizeof(u64);
7746 		data->sample_flags |= PERF_SAMPLE_RAW;
7747 	}
7748 
7749 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7750 		data->br_stack = NULL;
7751 		data->dyn_size += sizeof(u64);
7752 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7753 	}
7754 
7755 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7756 		perf_sample_regs_user(&data->regs_user, regs);
7757 
7758 	/*
7759 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7760 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7761 	 * the dyn_size if it's not requested by users.
7762 	 */
7763 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7764 		/* regs dump ABI info */
7765 		int size = sizeof(u64);
7766 
7767 		if (data->regs_user.regs) {
7768 			u64 mask = event->attr.sample_regs_user;
7769 			size += hweight64(mask) * sizeof(u64);
7770 		}
7771 
7772 		data->dyn_size += size;
7773 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7774 	}
7775 
7776 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7777 		/*
7778 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7779 		 * processed as the last one or have additional check added
7780 		 * in case new sample type is added, because we could eat
7781 		 * up the rest of the sample size.
7782 		 */
7783 		u16 stack_size = event->attr.sample_stack_user;
7784 		u16 header_size = perf_sample_data_size(data, event);
7785 		u16 size = sizeof(u64);
7786 
7787 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7788 						     data->regs_user.regs);
7789 
7790 		/*
7791 		 * If there is something to dump, add space for the dump
7792 		 * itself and for the field that tells the dynamic size,
7793 		 * which is how many have been actually dumped.
7794 		 */
7795 		if (stack_size)
7796 			size += sizeof(u64) + stack_size;
7797 
7798 		data->stack_user_size = stack_size;
7799 		data->dyn_size += size;
7800 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7801 	}
7802 
7803 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7804 		data->weight.full = 0;
7805 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7806 	}
7807 
7808 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7809 		data->data_src.val = PERF_MEM_NA;
7810 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7811 	}
7812 
7813 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7814 		data->txn = 0;
7815 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7816 	}
7817 
7818 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7819 		data->addr = 0;
7820 		data->sample_flags |= PERF_SAMPLE_ADDR;
7821 	}
7822 
7823 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7824 		/* regs dump ABI info */
7825 		int size = sizeof(u64);
7826 
7827 		perf_sample_regs_intr(&data->regs_intr, regs);
7828 
7829 		if (data->regs_intr.regs) {
7830 			u64 mask = event->attr.sample_regs_intr;
7831 
7832 			size += hweight64(mask) * sizeof(u64);
7833 		}
7834 
7835 		data->dyn_size += size;
7836 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7837 	}
7838 
7839 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7840 		data->phys_addr = perf_virt_to_phys(data->addr);
7841 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7842 	}
7843 
7844 #ifdef CONFIG_CGROUP_PERF
7845 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7846 		struct cgroup *cgrp;
7847 
7848 		/* protected by RCU */
7849 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7850 		data->cgroup = cgroup_id(cgrp);
7851 		data->sample_flags |= PERF_SAMPLE_CGROUP;
7852 	}
7853 #endif
7854 
7855 	/*
7856 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7857 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7858 	 * but the value will not dump to the userspace.
7859 	 */
7860 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7861 		data->data_page_size = perf_get_page_size(data->addr);
7862 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7863 	}
7864 
7865 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7866 		data->code_page_size = perf_get_page_size(data->ip);
7867 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7868 	}
7869 
7870 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7871 		u64 size;
7872 		u16 header_size = perf_sample_data_size(data, event);
7873 
7874 		header_size += sizeof(u64); /* size */
7875 
7876 		/*
7877 		 * Given the 16bit nature of header::size, an AUX sample can
7878 		 * easily overflow it, what with all the preceding sample bits.
7879 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7880 		 * per sample in total (rounded down to 8 byte boundary).
7881 		 */
7882 		size = min_t(size_t, U16_MAX - header_size,
7883 			     event->attr.aux_sample_size);
7884 		size = rounddown(size, 8);
7885 		size = perf_prepare_sample_aux(event, data, size);
7886 
7887 		WARN_ON_ONCE(size + header_size > U16_MAX);
7888 		data->dyn_size += size + sizeof(u64); /* size above */
7889 		data->sample_flags |= PERF_SAMPLE_AUX;
7890 	}
7891 }
7892 
7893 void perf_prepare_header(struct perf_event_header *header,
7894 			 struct perf_sample_data *data,
7895 			 struct perf_event *event,
7896 			 struct pt_regs *regs)
7897 {
7898 	header->type = PERF_RECORD_SAMPLE;
7899 	header->size = perf_sample_data_size(data, event);
7900 	header->misc = perf_misc_flags(regs);
7901 
7902 	/*
7903 	 * If you're adding more sample types here, you likely need to do
7904 	 * something about the overflowing header::size, like repurpose the
7905 	 * lowest 3 bits of size, which should be always zero at the moment.
7906 	 * This raises a more important question, do we really need 512k sized
7907 	 * samples and why, so good argumentation is in order for whatever you
7908 	 * do here next.
7909 	 */
7910 	WARN_ON_ONCE(header->size & 7);
7911 }
7912 
7913 static __always_inline int
7914 __perf_event_output(struct perf_event *event,
7915 		    struct perf_sample_data *data,
7916 		    struct pt_regs *regs,
7917 		    int (*output_begin)(struct perf_output_handle *,
7918 					struct perf_sample_data *,
7919 					struct perf_event *,
7920 					unsigned int))
7921 {
7922 	struct perf_output_handle handle;
7923 	struct perf_event_header header;
7924 	int err;
7925 
7926 	/* protect the callchain buffers */
7927 	rcu_read_lock();
7928 
7929 	perf_prepare_sample(data, event, regs);
7930 	perf_prepare_header(&header, data, event, regs);
7931 
7932 	err = output_begin(&handle, data, event, header.size);
7933 	if (err)
7934 		goto exit;
7935 
7936 	perf_output_sample(&handle, &header, data, event);
7937 
7938 	perf_output_end(&handle);
7939 
7940 exit:
7941 	rcu_read_unlock();
7942 	return err;
7943 }
7944 
7945 void
7946 perf_event_output_forward(struct perf_event *event,
7947 			 struct perf_sample_data *data,
7948 			 struct pt_regs *regs)
7949 {
7950 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7951 }
7952 
7953 void
7954 perf_event_output_backward(struct perf_event *event,
7955 			   struct perf_sample_data *data,
7956 			   struct pt_regs *regs)
7957 {
7958 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7959 }
7960 
7961 int
7962 perf_event_output(struct perf_event *event,
7963 		  struct perf_sample_data *data,
7964 		  struct pt_regs *regs)
7965 {
7966 	return __perf_event_output(event, data, regs, perf_output_begin);
7967 }
7968 
7969 /*
7970  * read event_id
7971  */
7972 
7973 struct perf_read_event {
7974 	struct perf_event_header	header;
7975 
7976 	u32				pid;
7977 	u32				tid;
7978 };
7979 
7980 static void
7981 perf_event_read_event(struct perf_event *event,
7982 			struct task_struct *task)
7983 {
7984 	struct perf_output_handle handle;
7985 	struct perf_sample_data sample;
7986 	struct perf_read_event read_event = {
7987 		.header = {
7988 			.type = PERF_RECORD_READ,
7989 			.misc = 0,
7990 			.size = sizeof(read_event) + event->read_size,
7991 		},
7992 		.pid = perf_event_pid(event, task),
7993 		.tid = perf_event_tid(event, task),
7994 	};
7995 	int ret;
7996 
7997 	perf_event_header__init_id(&read_event.header, &sample, event);
7998 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7999 	if (ret)
8000 		return;
8001 
8002 	perf_output_put(&handle, read_event);
8003 	perf_output_read(&handle, event);
8004 	perf_event__output_id_sample(event, &handle, &sample);
8005 
8006 	perf_output_end(&handle);
8007 }
8008 
8009 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8010 
8011 static void
8012 perf_iterate_ctx(struct perf_event_context *ctx,
8013 		   perf_iterate_f output,
8014 		   void *data, bool all)
8015 {
8016 	struct perf_event *event;
8017 
8018 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8019 		if (!all) {
8020 			if (event->state < PERF_EVENT_STATE_INACTIVE)
8021 				continue;
8022 			if (!event_filter_match(event))
8023 				continue;
8024 		}
8025 
8026 		output(event, data);
8027 	}
8028 }
8029 
8030 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8031 {
8032 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8033 	struct perf_event *event;
8034 
8035 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8036 		/*
8037 		 * Skip events that are not fully formed yet; ensure that
8038 		 * if we observe event->ctx, both event and ctx will be
8039 		 * complete enough. See perf_install_in_context().
8040 		 */
8041 		if (!smp_load_acquire(&event->ctx))
8042 			continue;
8043 
8044 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8045 			continue;
8046 		if (!event_filter_match(event))
8047 			continue;
8048 		output(event, data);
8049 	}
8050 }
8051 
8052 /*
8053  * Iterate all events that need to receive side-band events.
8054  *
8055  * For new callers; ensure that account_pmu_sb_event() includes
8056  * your event, otherwise it might not get delivered.
8057  */
8058 static void
8059 perf_iterate_sb(perf_iterate_f output, void *data,
8060 	       struct perf_event_context *task_ctx)
8061 {
8062 	struct perf_event_context *ctx;
8063 
8064 	rcu_read_lock();
8065 	preempt_disable();
8066 
8067 	/*
8068 	 * If we have task_ctx != NULL we only notify the task context itself.
8069 	 * The task_ctx is set only for EXIT events before releasing task
8070 	 * context.
8071 	 */
8072 	if (task_ctx) {
8073 		perf_iterate_ctx(task_ctx, output, data, false);
8074 		goto done;
8075 	}
8076 
8077 	perf_iterate_sb_cpu(output, data);
8078 
8079 	ctx = rcu_dereference(current->perf_event_ctxp);
8080 	if (ctx)
8081 		perf_iterate_ctx(ctx, output, data, false);
8082 done:
8083 	preempt_enable();
8084 	rcu_read_unlock();
8085 }
8086 
8087 /*
8088  * Clear all file-based filters at exec, they'll have to be
8089  * re-instated when/if these objects are mmapped again.
8090  */
8091 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8092 {
8093 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8094 	struct perf_addr_filter *filter;
8095 	unsigned int restart = 0, count = 0;
8096 	unsigned long flags;
8097 
8098 	if (!has_addr_filter(event))
8099 		return;
8100 
8101 	raw_spin_lock_irqsave(&ifh->lock, flags);
8102 	list_for_each_entry(filter, &ifh->list, entry) {
8103 		if (filter->path.dentry) {
8104 			event->addr_filter_ranges[count].start = 0;
8105 			event->addr_filter_ranges[count].size = 0;
8106 			restart++;
8107 		}
8108 
8109 		count++;
8110 	}
8111 
8112 	if (restart)
8113 		event->addr_filters_gen++;
8114 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8115 
8116 	if (restart)
8117 		perf_event_stop(event, 1);
8118 }
8119 
8120 void perf_event_exec(void)
8121 {
8122 	struct perf_event_context *ctx;
8123 
8124 	ctx = perf_pin_task_context(current);
8125 	if (!ctx)
8126 		return;
8127 
8128 	perf_event_enable_on_exec(ctx);
8129 	perf_event_remove_on_exec(ctx);
8130 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8131 
8132 	perf_unpin_context(ctx);
8133 	put_ctx(ctx);
8134 }
8135 
8136 struct remote_output {
8137 	struct perf_buffer	*rb;
8138 	int			err;
8139 };
8140 
8141 static void __perf_event_output_stop(struct perf_event *event, void *data)
8142 {
8143 	struct perf_event *parent = event->parent;
8144 	struct remote_output *ro = data;
8145 	struct perf_buffer *rb = ro->rb;
8146 	struct stop_event_data sd = {
8147 		.event	= event,
8148 	};
8149 
8150 	if (!has_aux(event))
8151 		return;
8152 
8153 	if (!parent)
8154 		parent = event;
8155 
8156 	/*
8157 	 * In case of inheritance, it will be the parent that links to the
8158 	 * ring-buffer, but it will be the child that's actually using it.
8159 	 *
8160 	 * We are using event::rb to determine if the event should be stopped,
8161 	 * however this may race with ring_buffer_attach() (through set_output),
8162 	 * which will make us skip the event that actually needs to be stopped.
8163 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8164 	 * its rb pointer.
8165 	 */
8166 	if (rcu_dereference(parent->rb) == rb)
8167 		ro->err = __perf_event_stop(&sd);
8168 }
8169 
8170 static int __perf_pmu_output_stop(void *info)
8171 {
8172 	struct perf_event *event = info;
8173 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8174 	struct remote_output ro = {
8175 		.rb	= event->rb,
8176 	};
8177 
8178 	rcu_read_lock();
8179 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8180 	if (cpuctx->task_ctx)
8181 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8182 				   &ro, false);
8183 	rcu_read_unlock();
8184 
8185 	return ro.err;
8186 }
8187 
8188 static void perf_pmu_output_stop(struct perf_event *event)
8189 {
8190 	struct perf_event *iter;
8191 	int err, cpu;
8192 
8193 restart:
8194 	rcu_read_lock();
8195 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8196 		/*
8197 		 * For per-CPU events, we need to make sure that neither they
8198 		 * nor their children are running; for cpu==-1 events it's
8199 		 * sufficient to stop the event itself if it's active, since
8200 		 * it can't have children.
8201 		 */
8202 		cpu = iter->cpu;
8203 		if (cpu == -1)
8204 			cpu = READ_ONCE(iter->oncpu);
8205 
8206 		if (cpu == -1)
8207 			continue;
8208 
8209 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8210 		if (err == -EAGAIN) {
8211 			rcu_read_unlock();
8212 			goto restart;
8213 		}
8214 	}
8215 	rcu_read_unlock();
8216 }
8217 
8218 /*
8219  * task tracking -- fork/exit
8220  *
8221  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8222  */
8223 
8224 struct perf_task_event {
8225 	struct task_struct		*task;
8226 	struct perf_event_context	*task_ctx;
8227 
8228 	struct {
8229 		struct perf_event_header	header;
8230 
8231 		u32				pid;
8232 		u32				ppid;
8233 		u32				tid;
8234 		u32				ptid;
8235 		u64				time;
8236 	} event_id;
8237 };
8238 
8239 static int perf_event_task_match(struct perf_event *event)
8240 {
8241 	return event->attr.comm  || event->attr.mmap ||
8242 	       event->attr.mmap2 || event->attr.mmap_data ||
8243 	       event->attr.task;
8244 }
8245 
8246 static void perf_event_task_output(struct perf_event *event,
8247 				   void *data)
8248 {
8249 	struct perf_task_event *task_event = data;
8250 	struct perf_output_handle handle;
8251 	struct perf_sample_data	sample;
8252 	struct task_struct *task = task_event->task;
8253 	int ret, size = task_event->event_id.header.size;
8254 
8255 	if (!perf_event_task_match(event))
8256 		return;
8257 
8258 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8259 
8260 	ret = perf_output_begin(&handle, &sample, event,
8261 				task_event->event_id.header.size);
8262 	if (ret)
8263 		goto out;
8264 
8265 	task_event->event_id.pid = perf_event_pid(event, task);
8266 	task_event->event_id.tid = perf_event_tid(event, task);
8267 
8268 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8269 		task_event->event_id.ppid = perf_event_pid(event,
8270 							task->real_parent);
8271 		task_event->event_id.ptid = perf_event_pid(event,
8272 							task->real_parent);
8273 	} else {  /* PERF_RECORD_FORK */
8274 		task_event->event_id.ppid = perf_event_pid(event, current);
8275 		task_event->event_id.ptid = perf_event_tid(event, current);
8276 	}
8277 
8278 	task_event->event_id.time = perf_event_clock(event);
8279 
8280 	perf_output_put(&handle, task_event->event_id);
8281 
8282 	perf_event__output_id_sample(event, &handle, &sample);
8283 
8284 	perf_output_end(&handle);
8285 out:
8286 	task_event->event_id.header.size = size;
8287 }
8288 
8289 static void perf_event_task(struct task_struct *task,
8290 			      struct perf_event_context *task_ctx,
8291 			      int new)
8292 {
8293 	struct perf_task_event task_event;
8294 
8295 	if (!atomic_read(&nr_comm_events) &&
8296 	    !atomic_read(&nr_mmap_events) &&
8297 	    !atomic_read(&nr_task_events))
8298 		return;
8299 
8300 	task_event = (struct perf_task_event){
8301 		.task	  = task,
8302 		.task_ctx = task_ctx,
8303 		.event_id    = {
8304 			.header = {
8305 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8306 				.misc = 0,
8307 				.size = sizeof(task_event.event_id),
8308 			},
8309 			/* .pid  */
8310 			/* .ppid */
8311 			/* .tid  */
8312 			/* .ptid */
8313 			/* .time */
8314 		},
8315 	};
8316 
8317 	perf_iterate_sb(perf_event_task_output,
8318 		       &task_event,
8319 		       task_ctx);
8320 }
8321 
8322 void perf_event_fork(struct task_struct *task)
8323 {
8324 	perf_event_task(task, NULL, 1);
8325 	perf_event_namespaces(task);
8326 }
8327 
8328 /*
8329  * comm tracking
8330  */
8331 
8332 struct perf_comm_event {
8333 	struct task_struct	*task;
8334 	char			*comm;
8335 	int			comm_size;
8336 
8337 	struct {
8338 		struct perf_event_header	header;
8339 
8340 		u32				pid;
8341 		u32				tid;
8342 	} event_id;
8343 };
8344 
8345 static int perf_event_comm_match(struct perf_event *event)
8346 {
8347 	return event->attr.comm;
8348 }
8349 
8350 static void perf_event_comm_output(struct perf_event *event,
8351 				   void *data)
8352 {
8353 	struct perf_comm_event *comm_event = data;
8354 	struct perf_output_handle handle;
8355 	struct perf_sample_data sample;
8356 	int size = comm_event->event_id.header.size;
8357 	int ret;
8358 
8359 	if (!perf_event_comm_match(event))
8360 		return;
8361 
8362 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8363 	ret = perf_output_begin(&handle, &sample, event,
8364 				comm_event->event_id.header.size);
8365 
8366 	if (ret)
8367 		goto out;
8368 
8369 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8370 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8371 
8372 	perf_output_put(&handle, comm_event->event_id);
8373 	__output_copy(&handle, comm_event->comm,
8374 				   comm_event->comm_size);
8375 
8376 	perf_event__output_id_sample(event, &handle, &sample);
8377 
8378 	perf_output_end(&handle);
8379 out:
8380 	comm_event->event_id.header.size = size;
8381 }
8382 
8383 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8384 {
8385 	char comm[TASK_COMM_LEN];
8386 	unsigned int size;
8387 
8388 	memset(comm, 0, sizeof(comm));
8389 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8390 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8391 
8392 	comm_event->comm = comm;
8393 	comm_event->comm_size = size;
8394 
8395 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8396 
8397 	perf_iterate_sb(perf_event_comm_output,
8398 		       comm_event,
8399 		       NULL);
8400 }
8401 
8402 void perf_event_comm(struct task_struct *task, bool exec)
8403 {
8404 	struct perf_comm_event comm_event;
8405 
8406 	if (!atomic_read(&nr_comm_events))
8407 		return;
8408 
8409 	comm_event = (struct perf_comm_event){
8410 		.task	= task,
8411 		/* .comm      */
8412 		/* .comm_size */
8413 		.event_id  = {
8414 			.header = {
8415 				.type = PERF_RECORD_COMM,
8416 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8417 				/* .size */
8418 			},
8419 			/* .pid */
8420 			/* .tid */
8421 		},
8422 	};
8423 
8424 	perf_event_comm_event(&comm_event);
8425 }
8426 
8427 /*
8428  * namespaces tracking
8429  */
8430 
8431 struct perf_namespaces_event {
8432 	struct task_struct		*task;
8433 
8434 	struct {
8435 		struct perf_event_header	header;
8436 
8437 		u32				pid;
8438 		u32				tid;
8439 		u64				nr_namespaces;
8440 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8441 	} event_id;
8442 };
8443 
8444 static int perf_event_namespaces_match(struct perf_event *event)
8445 {
8446 	return event->attr.namespaces;
8447 }
8448 
8449 static void perf_event_namespaces_output(struct perf_event *event,
8450 					 void *data)
8451 {
8452 	struct perf_namespaces_event *namespaces_event = data;
8453 	struct perf_output_handle handle;
8454 	struct perf_sample_data sample;
8455 	u16 header_size = namespaces_event->event_id.header.size;
8456 	int ret;
8457 
8458 	if (!perf_event_namespaces_match(event))
8459 		return;
8460 
8461 	perf_event_header__init_id(&namespaces_event->event_id.header,
8462 				   &sample, event);
8463 	ret = perf_output_begin(&handle, &sample, event,
8464 				namespaces_event->event_id.header.size);
8465 	if (ret)
8466 		goto out;
8467 
8468 	namespaces_event->event_id.pid = perf_event_pid(event,
8469 							namespaces_event->task);
8470 	namespaces_event->event_id.tid = perf_event_tid(event,
8471 							namespaces_event->task);
8472 
8473 	perf_output_put(&handle, namespaces_event->event_id);
8474 
8475 	perf_event__output_id_sample(event, &handle, &sample);
8476 
8477 	perf_output_end(&handle);
8478 out:
8479 	namespaces_event->event_id.header.size = header_size;
8480 }
8481 
8482 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8483 				   struct task_struct *task,
8484 				   const struct proc_ns_operations *ns_ops)
8485 {
8486 	struct path ns_path;
8487 	struct inode *ns_inode;
8488 	int error;
8489 
8490 	error = ns_get_path(&ns_path, task, ns_ops);
8491 	if (!error) {
8492 		ns_inode = ns_path.dentry->d_inode;
8493 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8494 		ns_link_info->ino = ns_inode->i_ino;
8495 		path_put(&ns_path);
8496 	}
8497 }
8498 
8499 void perf_event_namespaces(struct task_struct *task)
8500 {
8501 	struct perf_namespaces_event namespaces_event;
8502 	struct perf_ns_link_info *ns_link_info;
8503 
8504 	if (!atomic_read(&nr_namespaces_events))
8505 		return;
8506 
8507 	namespaces_event = (struct perf_namespaces_event){
8508 		.task	= task,
8509 		.event_id  = {
8510 			.header = {
8511 				.type = PERF_RECORD_NAMESPACES,
8512 				.misc = 0,
8513 				.size = sizeof(namespaces_event.event_id),
8514 			},
8515 			/* .pid */
8516 			/* .tid */
8517 			.nr_namespaces = NR_NAMESPACES,
8518 			/* .link_info[NR_NAMESPACES] */
8519 		},
8520 	};
8521 
8522 	ns_link_info = namespaces_event.event_id.link_info;
8523 
8524 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8525 			       task, &mntns_operations);
8526 
8527 #ifdef CONFIG_USER_NS
8528 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8529 			       task, &userns_operations);
8530 #endif
8531 #ifdef CONFIG_NET_NS
8532 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8533 			       task, &netns_operations);
8534 #endif
8535 #ifdef CONFIG_UTS_NS
8536 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8537 			       task, &utsns_operations);
8538 #endif
8539 #ifdef CONFIG_IPC_NS
8540 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8541 			       task, &ipcns_operations);
8542 #endif
8543 #ifdef CONFIG_PID_NS
8544 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8545 			       task, &pidns_operations);
8546 #endif
8547 #ifdef CONFIG_CGROUPS
8548 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8549 			       task, &cgroupns_operations);
8550 #endif
8551 
8552 	perf_iterate_sb(perf_event_namespaces_output,
8553 			&namespaces_event,
8554 			NULL);
8555 }
8556 
8557 /*
8558  * cgroup tracking
8559  */
8560 #ifdef CONFIG_CGROUP_PERF
8561 
8562 struct perf_cgroup_event {
8563 	char				*path;
8564 	int				path_size;
8565 	struct {
8566 		struct perf_event_header	header;
8567 		u64				id;
8568 		char				path[];
8569 	} event_id;
8570 };
8571 
8572 static int perf_event_cgroup_match(struct perf_event *event)
8573 {
8574 	return event->attr.cgroup;
8575 }
8576 
8577 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8578 {
8579 	struct perf_cgroup_event *cgroup_event = data;
8580 	struct perf_output_handle handle;
8581 	struct perf_sample_data sample;
8582 	u16 header_size = cgroup_event->event_id.header.size;
8583 	int ret;
8584 
8585 	if (!perf_event_cgroup_match(event))
8586 		return;
8587 
8588 	perf_event_header__init_id(&cgroup_event->event_id.header,
8589 				   &sample, event);
8590 	ret = perf_output_begin(&handle, &sample, event,
8591 				cgroup_event->event_id.header.size);
8592 	if (ret)
8593 		goto out;
8594 
8595 	perf_output_put(&handle, cgroup_event->event_id);
8596 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8597 
8598 	perf_event__output_id_sample(event, &handle, &sample);
8599 
8600 	perf_output_end(&handle);
8601 out:
8602 	cgroup_event->event_id.header.size = header_size;
8603 }
8604 
8605 static void perf_event_cgroup(struct cgroup *cgrp)
8606 {
8607 	struct perf_cgroup_event cgroup_event;
8608 	char path_enomem[16] = "//enomem";
8609 	char *pathname;
8610 	size_t size;
8611 
8612 	if (!atomic_read(&nr_cgroup_events))
8613 		return;
8614 
8615 	cgroup_event = (struct perf_cgroup_event){
8616 		.event_id  = {
8617 			.header = {
8618 				.type = PERF_RECORD_CGROUP,
8619 				.misc = 0,
8620 				.size = sizeof(cgroup_event.event_id),
8621 			},
8622 			.id = cgroup_id(cgrp),
8623 		},
8624 	};
8625 
8626 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8627 	if (pathname == NULL) {
8628 		cgroup_event.path = path_enomem;
8629 	} else {
8630 		/* just to be sure to have enough space for alignment */
8631 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8632 		cgroup_event.path = pathname;
8633 	}
8634 
8635 	/*
8636 	 * Since our buffer works in 8 byte units we need to align our string
8637 	 * size to a multiple of 8. However, we must guarantee the tail end is
8638 	 * zero'd out to avoid leaking random bits to userspace.
8639 	 */
8640 	size = strlen(cgroup_event.path) + 1;
8641 	while (!IS_ALIGNED(size, sizeof(u64)))
8642 		cgroup_event.path[size++] = '\0';
8643 
8644 	cgroup_event.event_id.header.size += size;
8645 	cgroup_event.path_size = size;
8646 
8647 	perf_iterate_sb(perf_event_cgroup_output,
8648 			&cgroup_event,
8649 			NULL);
8650 
8651 	kfree(pathname);
8652 }
8653 
8654 #endif
8655 
8656 /*
8657  * mmap tracking
8658  */
8659 
8660 struct perf_mmap_event {
8661 	struct vm_area_struct	*vma;
8662 
8663 	const char		*file_name;
8664 	int			file_size;
8665 	int			maj, min;
8666 	u64			ino;
8667 	u64			ino_generation;
8668 	u32			prot, flags;
8669 	u8			build_id[BUILD_ID_SIZE_MAX];
8670 	u32			build_id_size;
8671 
8672 	struct {
8673 		struct perf_event_header	header;
8674 
8675 		u32				pid;
8676 		u32				tid;
8677 		u64				start;
8678 		u64				len;
8679 		u64				pgoff;
8680 	} event_id;
8681 };
8682 
8683 static int perf_event_mmap_match(struct perf_event *event,
8684 				 void *data)
8685 {
8686 	struct perf_mmap_event *mmap_event = data;
8687 	struct vm_area_struct *vma = mmap_event->vma;
8688 	int executable = vma->vm_flags & VM_EXEC;
8689 
8690 	return (!executable && event->attr.mmap_data) ||
8691 	       (executable && (event->attr.mmap || event->attr.mmap2));
8692 }
8693 
8694 static void perf_event_mmap_output(struct perf_event *event,
8695 				   void *data)
8696 {
8697 	struct perf_mmap_event *mmap_event = data;
8698 	struct perf_output_handle handle;
8699 	struct perf_sample_data sample;
8700 	int size = mmap_event->event_id.header.size;
8701 	u32 type = mmap_event->event_id.header.type;
8702 	bool use_build_id;
8703 	int ret;
8704 
8705 	if (!perf_event_mmap_match(event, data))
8706 		return;
8707 
8708 	if (event->attr.mmap2) {
8709 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8710 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8711 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8712 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8713 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8714 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8715 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8716 	}
8717 
8718 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8719 	ret = perf_output_begin(&handle, &sample, event,
8720 				mmap_event->event_id.header.size);
8721 	if (ret)
8722 		goto out;
8723 
8724 	mmap_event->event_id.pid = perf_event_pid(event, current);
8725 	mmap_event->event_id.tid = perf_event_tid(event, current);
8726 
8727 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8728 
8729 	if (event->attr.mmap2 && use_build_id)
8730 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8731 
8732 	perf_output_put(&handle, mmap_event->event_id);
8733 
8734 	if (event->attr.mmap2) {
8735 		if (use_build_id) {
8736 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8737 
8738 			__output_copy(&handle, size, 4);
8739 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8740 		} else {
8741 			perf_output_put(&handle, mmap_event->maj);
8742 			perf_output_put(&handle, mmap_event->min);
8743 			perf_output_put(&handle, mmap_event->ino);
8744 			perf_output_put(&handle, mmap_event->ino_generation);
8745 		}
8746 		perf_output_put(&handle, mmap_event->prot);
8747 		perf_output_put(&handle, mmap_event->flags);
8748 	}
8749 
8750 	__output_copy(&handle, mmap_event->file_name,
8751 				   mmap_event->file_size);
8752 
8753 	perf_event__output_id_sample(event, &handle, &sample);
8754 
8755 	perf_output_end(&handle);
8756 out:
8757 	mmap_event->event_id.header.size = size;
8758 	mmap_event->event_id.header.type = type;
8759 }
8760 
8761 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8762 {
8763 	struct vm_area_struct *vma = mmap_event->vma;
8764 	struct file *file = vma->vm_file;
8765 	int maj = 0, min = 0;
8766 	u64 ino = 0, gen = 0;
8767 	u32 prot = 0, flags = 0;
8768 	unsigned int size;
8769 	char tmp[16];
8770 	char *buf = NULL;
8771 	char *name = NULL;
8772 
8773 	if (vma->vm_flags & VM_READ)
8774 		prot |= PROT_READ;
8775 	if (vma->vm_flags & VM_WRITE)
8776 		prot |= PROT_WRITE;
8777 	if (vma->vm_flags & VM_EXEC)
8778 		prot |= PROT_EXEC;
8779 
8780 	if (vma->vm_flags & VM_MAYSHARE)
8781 		flags = MAP_SHARED;
8782 	else
8783 		flags = MAP_PRIVATE;
8784 
8785 	if (vma->vm_flags & VM_LOCKED)
8786 		flags |= MAP_LOCKED;
8787 	if (is_vm_hugetlb_page(vma))
8788 		flags |= MAP_HUGETLB;
8789 
8790 	if (file) {
8791 		struct inode *inode;
8792 		dev_t dev;
8793 
8794 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8795 		if (!buf) {
8796 			name = "//enomem";
8797 			goto cpy_name;
8798 		}
8799 		/*
8800 		 * d_path() works from the end of the rb backwards, so we
8801 		 * need to add enough zero bytes after the string to handle
8802 		 * the 64bit alignment we do later.
8803 		 */
8804 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8805 		if (IS_ERR(name)) {
8806 			name = "//toolong";
8807 			goto cpy_name;
8808 		}
8809 		inode = file_inode(vma->vm_file);
8810 		dev = inode->i_sb->s_dev;
8811 		ino = inode->i_ino;
8812 		gen = inode->i_generation;
8813 		maj = MAJOR(dev);
8814 		min = MINOR(dev);
8815 
8816 		goto got_name;
8817 	} else {
8818 		if (vma->vm_ops && vma->vm_ops->name)
8819 			name = (char *) vma->vm_ops->name(vma);
8820 		if (!name)
8821 			name = (char *)arch_vma_name(vma);
8822 		if (!name) {
8823 			if (vma_is_initial_heap(vma))
8824 				name = "[heap]";
8825 			else if (vma_is_initial_stack(vma))
8826 				name = "[stack]";
8827 			else
8828 				name = "//anon";
8829 		}
8830 	}
8831 
8832 cpy_name:
8833 	strscpy(tmp, name, sizeof(tmp));
8834 	name = tmp;
8835 got_name:
8836 	/*
8837 	 * Since our buffer works in 8 byte units we need to align our string
8838 	 * size to a multiple of 8. However, we must guarantee the tail end is
8839 	 * zero'd out to avoid leaking random bits to userspace.
8840 	 */
8841 	size = strlen(name)+1;
8842 	while (!IS_ALIGNED(size, sizeof(u64)))
8843 		name[size++] = '\0';
8844 
8845 	mmap_event->file_name = name;
8846 	mmap_event->file_size = size;
8847 	mmap_event->maj = maj;
8848 	mmap_event->min = min;
8849 	mmap_event->ino = ino;
8850 	mmap_event->ino_generation = gen;
8851 	mmap_event->prot = prot;
8852 	mmap_event->flags = flags;
8853 
8854 	if (!(vma->vm_flags & VM_EXEC))
8855 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8856 
8857 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8858 
8859 	if (atomic_read(&nr_build_id_events))
8860 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8861 
8862 	perf_iterate_sb(perf_event_mmap_output,
8863 		       mmap_event,
8864 		       NULL);
8865 
8866 	kfree(buf);
8867 }
8868 
8869 /*
8870  * Check whether inode and address range match filter criteria.
8871  */
8872 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8873 				     struct file *file, unsigned long offset,
8874 				     unsigned long size)
8875 {
8876 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8877 	if (!filter->path.dentry)
8878 		return false;
8879 
8880 	if (d_inode(filter->path.dentry) != file_inode(file))
8881 		return false;
8882 
8883 	if (filter->offset > offset + size)
8884 		return false;
8885 
8886 	if (filter->offset + filter->size < offset)
8887 		return false;
8888 
8889 	return true;
8890 }
8891 
8892 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8893 					struct vm_area_struct *vma,
8894 					struct perf_addr_filter_range *fr)
8895 {
8896 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8897 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8898 	struct file *file = vma->vm_file;
8899 
8900 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8901 		return false;
8902 
8903 	if (filter->offset < off) {
8904 		fr->start = vma->vm_start;
8905 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8906 	} else {
8907 		fr->start = vma->vm_start + filter->offset - off;
8908 		fr->size = min(vma->vm_end - fr->start, filter->size);
8909 	}
8910 
8911 	return true;
8912 }
8913 
8914 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8915 {
8916 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8917 	struct vm_area_struct *vma = data;
8918 	struct perf_addr_filter *filter;
8919 	unsigned int restart = 0, count = 0;
8920 	unsigned long flags;
8921 
8922 	if (!has_addr_filter(event))
8923 		return;
8924 
8925 	if (!vma->vm_file)
8926 		return;
8927 
8928 	raw_spin_lock_irqsave(&ifh->lock, flags);
8929 	list_for_each_entry(filter, &ifh->list, entry) {
8930 		if (perf_addr_filter_vma_adjust(filter, vma,
8931 						&event->addr_filter_ranges[count]))
8932 			restart++;
8933 
8934 		count++;
8935 	}
8936 
8937 	if (restart)
8938 		event->addr_filters_gen++;
8939 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8940 
8941 	if (restart)
8942 		perf_event_stop(event, 1);
8943 }
8944 
8945 /*
8946  * Adjust all task's events' filters to the new vma
8947  */
8948 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8949 {
8950 	struct perf_event_context *ctx;
8951 
8952 	/*
8953 	 * Data tracing isn't supported yet and as such there is no need
8954 	 * to keep track of anything that isn't related to executable code:
8955 	 */
8956 	if (!(vma->vm_flags & VM_EXEC))
8957 		return;
8958 
8959 	rcu_read_lock();
8960 	ctx = rcu_dereference(current->perf_event_ctxp);
8961 	if (ctx)
8962 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8963 	rcu_read_unlock();
8964 }
8965 
8966 void perf_event_mmap(struct vm_area_struct *vma)
8967 {
8968 	struct perf_mmap_event mmap_event;
8969 
8970 	if (!atomic_read(&nr_mmap_events))
8971 		return;
8972 
8973 	mmap_event = (struct perf_mmap_event){
8974 		.vma	= vma,
8975 		/* .file_name */
8976 		/* .file_size */
8977 		.event_id  = {
8978 			.header = {
8979 				.type = PERF_RECORD_MMAP,
8980 				.misc = PERF_RECORD_MISC_USER,
8981 				/* .size */
8982 			},
8983 			/* .pid */
8984 			/* .tid */
8985 			.start  = vma->vm_start,
8986 			.len    = vma->vm_end - vma->vm_start,
8987 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8988 		},
8989 		/* .maj (attr_mmap2 only) */
8990 		/* .min (attr_mmap2 only) */
8991 		/* .ino (attr_mmap2 only) */
8992 		/* .ino_generation (attr_mmap2 only) */
8993 		/* .prot (attr_mmap2 only) */
8994 		/* .flags (attr_mmap2 only) */
8995 	};
8996 
8997 	perf_addr_filters_adjust(vma);
8998 	perf_event_mmap_event(&mmap_event);
8999 }
9000 
9001 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9002 			  unsigned long size, u64 flags)
9003 {
9004 	struct perf_output_handle handle;
9005 	struct perf_sample_data sample;
9006 	struct perf_aux_event {
9007 		struct perf_event_header	header;
9008 		u64				offset;
9009 		u64				size;
9010 		u64				flags;
9011 	} rec = {
9012 		.header = {
9013 			.type = PERF_RECORD_AUX,
9014 			.misc = 0,
9015 			.size = sizeof(rec),
9016 		},
9017 		.offset		= head,
9018 		.size		= size,
9019 		.flags		= flags,
9020 	};
9021 	int ret;
9022 
9023 	perf_event_header__init_id(&rec.header, &sample, event);
9024 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9025 
9026 	if (ret)
9027 		return;
9028 
9029 	perf_output_put(&handle, rec);
9030 	perf_event__output_id_sample(event, &handle, &sample);
9031 
9032 	perf_output_end(&handle);
9033 }
9034 
9035 /*
9036  * Lost/dropped samples logging
9037  */
9038 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9039 {
9040 	struct perf_output_handle handle;
9041 	struct perf_sample_data sample;
9042 	int ret;
9043 
9044 	struct {
9045 		struct perf_event_header	header;
9046 		u64				lost;
9047 	} lost_samples_event = {
9048 		.header = {
9049 			.type = PERF_RECORD_LOST_SAMPLES,
9050 			.misc = 0,
9051 			.size = sizeof(lost_samples_event),
9052 		},
9053 		.lost		= lost,
9054 	};
9055 
9056 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9057 
9058 	ret = perf_output_begin(&handle, &sample, event,
9059 				lost_samples_event.header.size);
9060 	if (ret)
9061 		return;
9062 
9063 	perf_output_put(&handle, lost_samples_event);
9064 	perf_event__output_id_sample(event, &handle, &sample);
9065 	perf_output_end(&handle);
9066 }
9067 
9068 /*
9069  * context_switch tracking
9070  */
9071 
9072 struct perf_switch_event {
9073 	struct task_struct	*task;
9074 	struct task_struct	*next_prev;
9075 
9076 	struct {
9077 		struct perf_event_header	header;
9078 		u32				next_prev_pid;
9079 		u32				next_prev_tid;
9080 	} event_id;
9081 };
9082 
9083 static int perf_event_switch_match(struct perf_event *event)
9084 {
9085 	return event->attr.context_switch;
9086 }
9087 
9088 static void perf_event_switch_output(struct perf_event *event, void *data)
9089 {
9090 	struct perf_switch_event *se = data;
9091 	struct perf_output_handle handle;
9092 	struct perf_sample_data sample;
9093 	int ret;
9094 
9095 	if (!perf_event_switch_match(event))
9096 		return;
9097 
9098 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9099 	if (event->ctx->task) {
9100 		se->event_id.header.type = PERF_RECORD_SWITCH;
9101 		se->event_id.header.size = sizeof(se->event_id.header);
9102 	} else {
9103 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9104 		se->event_id.header.size = sizeof(se->event_id);
9105 		se->event_id.next_prev_pid =
9106 					perf_event_pid(event, se->next_prev);
9107 		se->event_id.next_prev_tid =
9108 					perf_event_tid(event, se->next_prev);
9109 	}
9110 
9111 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9112 
9113 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9114 	if (ret)
9115 		return;
9116 
9117 	if (event->ctx->task)
9118 		perf_output_put(&handle, se->event_id.header);
9119 	else
9120 		perf_output_put(&handle, se->event_id);
9121 
9122 	perf_event__output_id_sample(event, &handle, &sample);
9123 
9124 	perf_output_end(&handle);
9125 }
9126 
9127 static void perf_event_switch(struct task_struct *task,
9128 			      struct task_struct *next_prev, bool sched_in)
9129 {
9130 	struct perf_switch_event switch_event;
9131 
9132 	/* N.B. caller checks nr_switch_events != 0 */
9133 
9134 	switch_event = (struct perf_switch_event){
9135 		.task		= task,
9136 		.next_prev	= next_prev,
9137 		.event_id	= {
9138 			.header = {
9139 				/* .type */
9140 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9141 				/* .size */
9142 			},
9143 			/* .next_prev_pid */
9144 			/* .next_prev_tid */
9145 		},
9146 	};
9147 
9148 	if (!sched_in && task->on_rq) {
9149 		switch_event.event_id.header.misc |=
9150 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9151 	}
9152 
9153 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9154 }
9155 
9156 /*
9157  * IRQ throttle logging
9158  */
9159 
9160 static void perf_log_throttle(struct perf_event *event, int enable)
9161 {
9162 	struct perf_output_handle handle;
9163 	struct perf_sample_data sample;
9164 	int ret;
9165 
9166 	struct {
9167 		struct perf_event_header	header;
9168 		u64				time;
9169 		u64				id;
9170 		u64				stream_id;
9171 	} throttle_event = {
9172 		.header = {
9173 			.type = PERF_RECORD_THROTTLE,
9174 			.misc = 0,
9175 			.size = sizeof(throttle_event),
9176 		},
9177 		.time		= perf_event_clock(event),
9178 		.id		= primary_event_id(event),
9179 		.stream_id	= event->id,
9180 	};
9181 
9182 	if (enable)
9183 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9184 
9185 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9186 
9187 	ret = perf_output_begin(&handle, &sample, event,
9188 				throttle_event.header.size);
9189 	if (ret)
9190 		return;
9191 
9192 	perf_output_put(&handle, throttle_event);
9193 	perf_event__output_id_sample(event, &handle, &sample);
9194 	perf_output_end(&handle);
9195 }
9196 
9197 /*
9198  * ksymbol register/unregister tracking
9199  */
9200 
9201 struct perf_ksymbol_event {
9202 	const char	*name;
9203 	int		name_len;
9204 	struct {
9205 		struct perf_event_header        header;
9206 		u64				addr;
9207 		u32				len;
9208 		u16				ksym_type;
9209 		u16				flags;
9210 	} event_id;
9211 };
9212 
9213 static int perf_event_ksymbol_match(struct perf_event *event)
9214 {
9215 	return event->attr.ksymbol;
9216 }
9217 
9218 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9219 {
9220 	struct perf_ksymbol_event *ksymbol_event = data;
9221 	struct perf_output_handle handle;
9222 	struct perf_sample_data sample;
9223 	int ret;
9224 
9225 	if (!perf_event_ksymbol_match(event))
9226 		return;
9227 
9228 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9229 				   &sample, event);
9230 	ret = perf_output_begin(&handle, &sample, event,
9231 				ksymbol_event->event_id.header.size);
9232 	if (ret)
9233 		return;
9234 
9235 	perf_output_put(&handle, ksymbol_event->event_id);
9236 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9237 	perf_event__output_id_sample(event, &handle, &sample);
9238 
9239 	perf_output_end(&handle);
9240 }
9241 
9242 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9243 			const char *sym)
9244 {
9245 	struct perf_ksymbol_event ksymbol_event;
9246 	char name[KSYM_NAME_LEN];
9247 	u16 flags = 0;
9248 	int name_len;
9249 
9250 	if (!atomic_read(&nr_ksymbol_events))
9251 		return;
9252 
9253 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9254 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9255 		goto err;
9256 
9257 	strscpy(name, sym, KSYM_NAME_LEN);
9258 	name_len = strlen(name) + 1;
9259 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9260 		name[name_len++] = '\0';
9261 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9262 
9263 	if (unregister)
9264 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9265 
9266 	ksymbol_event = (struct perf_ksymbol_event){
9267 		.name = name,
9268 		.name_len = name_len,
9269 		.event_id = {
9270 			.header = {
9271 				.type = PERF_RECORD_KSYMBOL,
9272 				.size = sizeof(ksymbol_event.event_id) +
9273 					name_len,
9274 			},
9275 			.addr = addr,
9276 			.len = len,
9277 			.ksym_type = ksym_type,
9278 			.flags = flags,
9279 		},
9280 	};
9281 
9282 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9283 	return;
9284 err:
9285 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9286 }
9287 
9288 /*
9289  * bpf program load/unload tracking
9290  */
9291 
9292 struct perf_bpf_event {
9293 	struct bpf_prog	*prog;
9294 	struct {
9295 		struct perf_event_header        header;
9296 		u16				type;
9297 		u16				flags;
9298 		u32				id;
9299 		u8				tag[BPF_TAG_SIZE];
9300 	} event_id;
9301 };
9302 
9303 static int perf_event_bpf_match(struct perf_event *event)
9304 {
9305 	return event->attr.bpf_event;
9306 }
9307 
9308 static void perf_event_bpf_output(struct perf_event *event, void *data)
9309 {
9310 	struct perf_bpf_event *bpf_event = data;
9311 	struct perf_output_handle handle;
9312 	struct perf_sample_data sample;
9313 	int ret;
9314 
9315 	if (!perf_event_bpf_match(event))
9316 		return;
9317 
9318 	perf_event_header__init_id(&bpf_event->event_id.header,
9319 				   &sample, event);
9320 	ret = perf_output_begin(&handle, &sample, event,
9321 				bpf_event->event_id.header.size);
9322 	if (ret)
9323 		return;
9324 
9325 	perf_output_put(&handle, bpf_event->event_id);
9326 	perf_event__output_id_sample(event, &handle, &sample);
9327 
9328 	perf_output_end(&handle);
9329 }
9330 
9331 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9332 					 enum perf_bpf_event_type type)
9333 {
9334 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9335 	int i;
9336 
9337 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9338 			   (u64)(unsigned long)prog->bpf_func,
9339 			   prog->jited_len, unregister,
9340 			   prog->aux->ksym.name);
9341 
9342 	for (i = 1; i < prog->aux->func_cnt; i++) {
9343 		struct bpf_prog *subprog = prog->aux->func[i];
9344 
9345 		perf_event_ksymbol(
9346 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9347 			(u64)(unsigned long)subprog->bpf_func,
9348 			subprog->jited_len, unregister,
9349 			subprog->aux->ksym.name);
9350 	}
9351 }
9352 
9353 void perf_event_bpf_event(struct bpf_prog *prog,
9354 			  enum perf_bpf_event_type type,
9355 			  u16 flags)
9356 {
9357 	struct perf_bpf_event bpf_event;
9358 
9359 	switch (type) {
9360 	case PERF_BPF_EVENT_PROG_LOAD:
9361 	case PERF_BPF_EVENT_PROG_UNLOAD:
9362 		if (atomic_read(&nr_ksymbol_events))
9363 			perf_event_bpf_emit_ksymbols(prog, type);
9364 		break;
9365 	default:
9366 		return;
9367 	}
9368 
9369 	if (!atomic_read(&nr_bpf_events))
9370 		return;
9371 
9372 	bpf_event = (struct perf_bpf_event){
9373 		.prog = prog,
9374 		.event_id = {
9375 			.header = {
9376 				.type = PERF_RECORD_BPF_EVENT,
9377 				.size = sizeof(bpf_event.event_id),
9378 			},
9379 			.type = type,
9380 			.flags = flags,
9381 			.id = prog->aux->id,
9382 		},
9383 	};
9384 
9385 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9386 
9387 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9388 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9389 }
9390 
9391 struct perf_text_poke_event {
9392 	const void		*old_bytes;
9393 	const void		*new_bytes;
9394 	size_t			pad;
9395 	u16			old_len;
9396 	u16			new_len;
9397 
9398 	struct {
9399 		struct perf_event_header	header;
9400 
9401 		u64				addr;
9402 	} event_id;
9403 };
9404 
9405 static int perf_event_text_poke_match(struct perf_event *event)
9406 {
9407 	return event->attr.text_poke;
9408 }
9409 
9410 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9411 {
9412 	struct perf_text_poke_event *text_poke_event = data;
9413 	struct perf_output_handle handle;
9414 	struct perf_sample_data sample;
9415 	u64 padding = 0;
9416 	int ret;
9417 
9418 	if (!perf_event_text_poke_match(event))
9419 		return;
9420 
9421 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9422 
9423 	ret = perf_output_begin(&handle, &sample, event,
9424 				text_poke_event->event_id.header.size);
9425 	if (ret)
9426 		return;
9427 
9428 	perf_output_put(&handle, text_poke_event->event_id);
9429 	perf_output_put(&handle, text_poke_event->old_len);
9430 	perf_output_put(&handle, text_poke_event->new_len);
9431 
9432 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9433 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9434 
9435 	if (text_poke_event->pad)
9436 		__output_copy(&handle, &padding, text_poke_event->pad);
9437 
9438 	perf_event__output_id_sample(event, &handle, &sample);
9439 
9440 	perf_output_end(&handle);
9441 }
9442 
9443 void perf_event_text_poke(const void *addr, const void *old_bytes,
9444 			  size_t old_len, const void *new_bytes, size_t new_len)
9445 {
9446 	struct perf_text_poke_event text_poke_event;
9447 	size_t tot, pad;
9448 
9449 	if (!atomic_read(&nr_text_poke_events))
9450 		return;
9451 
9452 	tot  = sizeof(text_poke_event.old_len) + old_len;
9453 	tot += sizeof(text_poke_event.new_len) + new_len;
9454 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9455 
9456 	text_poke_event = (struct perf_text_poke_event){
9457 		.old_bytes    = old_bytes,
9458 		.new_bytes    = new_bytes,
9459 		.pad          = pad,
9460 		.old_len      = old_len,
9461 		.new_len      = new_len,
9462 		.event_id  = {
9463 			.header = {
9464 				.type = PERF_RECORD_TEXT_POKE,
9465 				.misc = PERF_RECORD_MISC_KERNEL,
9466 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9467 			},
9468 			.addr = (unsigned long)addr,
9469 		},
9470 	};
9471 
9472 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9473 }
9474 
9475 void perf_event_itrace_started(struct perf_event *event)
9476 {
9477 	event->attach_state |= PERF_ATTACH_ITRACE;
9478 }
9479 
9480 static void perf_log_itrace_start(struct perf_event *event)
9481 {
9482 	struct perf_output_handle handle;
9483 	struct perf_sample_data sample;
9484 	struct perf_aux_event {
9485 		struct perf_event_header        header;
9486 		u32				pid;
9487 		u32				tid;
9488 	} rec;
9489 	int ret;
9490 
9491 	if (event->parent)
9492 		event = event->parent;
9493 
9494 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9495 	    event->attach_state & PERF_ATTACH_ITRACE)
9496 		return;
9497 
9498 	rec.header.type	= PERF_RECORD_ITRACE_START;
9499 	rec.header.misc	= 0;
9500 	rec.header.size	= sizeof(rec);
9501 	rec.pid	= perf_event_pid(event, current);
9502 	rec.tid	= perf_event_tid(event, current);
9503 
9504 	perf_event_header__init_id(&rec.header, &sample, event);
9505 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9506 
9507 	if (ret)
9508 		return;
9509 
9510 	perf_output_put(&handle, rec);
9511 	perf_event__output_id_sample(event, &handle, &sample);
9512 
9513 	perf_output_end(&handle);
9514 }
9515 
9516 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9517 {
9518 	struct perf_output_handle handle;
9519 	struct perf_sample_data sample;
9520 	struct perf_aux_event {
9521 		struct perf_event_header        header;
9522 		u64				hw_id;
9523 	} rec;
9524 	int ret;
9525 
9526 	if (event->parent)
9527 		event = event->parent;
9528 
9529 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9530 	rec.header.misc	= 0;
9531 	rec.header.size	= sizeof(rec);
9532 	rec.hw_id	= hw_id;
9533 
9534 	perf_event_header__init_id(&rec.header, &sample, event);
9535 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9536 
9537 	if (ret)
9538 		return;
9539 
9540 	perf_output_put(&handle, rec);
9541 	perf_event__output_id_sample(event, &handle, &sample);
9542 
9543 	perf_output_end(&handle);
9544 }
9545 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9546 
9547 static int
9548 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9549 {
9550 	struct hw_perf_event *hwc = &event->hw;
9551 	int ret = 0;
9552 	u64 seq;
9553 
9554 	seq = __this_cpu_read(perf_throttled_seq);
9555 	if (seq != hwc->interrupts_seq) {
9556 		hwc->interrupts_seq = seq;
9557 		hwc->interrupts = 1;
9558 	} else {
9559 		hwc->interrupts++;
9560 		if (unlikely(throttle &&
9561 			     hwc->interrupts > max_samples_per_tick)) {
9562 			__this_cpu_inc(perf_throttled_count);
9563 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9564 			hwc->interrupts = MAX_INTERRUPTS;
9565 			perf_log_throttle(event, 0);
9566 			ret = 1;
9567 		}
9568 	}
9569 
9570 	if (event->attr.freq) {
9571 		u64 now = perf_clock();
9572 		s64 delta = now - hwc->freq_time_stamp;
9573 
9574 		hwc->freq_time_stamp = now;
9575 
9576 		if (delta > 0 && delta < 2*TICK_NSEC)
9577 			perf_adjust_period(event, delta, hwc->last_period, true);
9578 	}
9579 
9580 	return ret;
9581 }
9582 
9583 int perf_event_account_interrupt(struct perf_event *event)
9584 {
9585 	return __perf_event_account_interrupt(event, 1);
9586 }
9587 
9588 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9589 {
9590 	/*
9591 	 * Due to interrupt latency (AKA "skid"), we may enter the
9592 	 * kernel before taking an overflow, even if the PMU is only
9593 	 * counting user events.
9594 	 */
9595 	if (event->attr.exclude_kernel && !user_mode(regs))
9596 		return false;
9597 
9598 	return true;
9599 }
9600 
9601 #ifdef CONFIG_BPF_SYSCALL
9602 static int bpf_overflow_handler(struct perf_event *event,
9603 				struct perf_sample_data *data,
9604 				struct pt_regs *regs)
9605 {
9606 	struct bpf_perf_event_data_kern ctx = {
9607 		.data = data,
9608 		.event = event,
9609 	};
9610 	struct bpf_prog *prog;
9611 	int ret = 0;
9612 
9613 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9614 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9615 		goto out;
9616 	rcu_read_lock();
9617 	prog = READ_ONCE(event->prog);
9618 	if (prog) {
9619 		perf_prepare_sample(data, event, regs);
9620 		ret = bpf_prog_run(prog, &ctx);
9621 	}
9622 	rcu_read_unlock();
9623 out:
9624 	__this_cpu_dec(bpf_prog_active);
9625 
9626 	return ret;
9627 }
9628 
9629 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9630 					     struct bpf_prog *prog,
9631 					     u64 bpf_cookie)
9632 {
9633 	if (event->overflow_handler_context)
9634 		/* hw breakpoint or kernel counter */
9635 		return -EINVAL;
9636 
9637 	if (event->prog)
9638 		return -EEXIST;
9639 
9640 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9641 		return -EINVAL;
9642 
9643 	if (event->attr.precise_ip &&
9644 	    prog->call_get_stack &&
9645 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9646 	     event->attr.exclude_callchain_kernel ||
9647 	     event->attr.exclude_callchain_user)) {
9648 		/*
9649 		 * On perf_event with precise_ip, calling bpf_get_stack()
9650 		 * may trigger unwinder warnings and occasional crashes.
9651 		 * bpf_get_[stack|stackid] works around this issue by using
9652 		 * callchain attached to perf_sample_data. If the
9653 		 * perf_event does not full (kernel and user) callchain
9654 		 * attached to perf_sample_data, do not allow attaching BPF
9655 		 * program that calls bpf_get_[stack|stackid].
9656 		 */
9657 		return -EPROTO;
9658 	}
9659 
9660 	event->prog = prog;
9661 	event->bpf_cookie = bpf_cookie;
9662 	return 0;
9663 }
9664 
9665 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9666 {
9667 	struct bpf_prog *prog = event->prog;
9668 
9669 	if (!prog)
9670 		return;
9671 
9672 	event->prog = NULL;
9673 	bpf_prog_put(prog);
9674 }
9675 #else
9676 static inline int bpf_overflow_handler(struct perf_event *event,
9677 				       struct perf_sample_data *data,
9678 				       struct pt_regs *regs)
9679 {
9680 	return 1;
9681 }
9682 
9683 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9684 					     struct bpf_prog *prog,
9685 					     u64 bpf_cookie)
9686 {
9687 	return -EOPNOTSUPP;
9688 }
9689 
9690 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9691 {
9692 }
9693 #endif
9694 
9695 /*
9696  * Generic event overflow handling, sampling.
9697  */
9698 
9699 static int __perf_event_overflow(struct perf_event *event,
9700 				 int throttle, struct perf_sample_data *data,
9701 				 struct pt_regs *regs)
9702 {
9703 	int events = atomic_read(&event->event_limit);
9704 	int ret = 0;
9705 
9706 	/*
9707 	 * Non-sampling counters might still use the PMI to fold short
9708 	 * hardware counters, ignore those.
9709 	 */
9710 	if (unlikely(!is_sampling_event(event)))
9711 		return 0;
9712 
9713 	ret = __perf_event_account_interrupt(event, throttle);
9714 
9715 	if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
9716 	    !bpf_overflow_handler(event, data, regs))
9717 		return ret;
9718 
9719 	/*
9720 	 * XXX event_limit might not quite work as expected on inherited
9721 	 * events
9722 	 */
9723 
9724 	event->pending_kill = POLL_IN;
9725 	if (events && atomic_dec_and_test(&event->event_limit)) {
9726 		ret = 1;
9727 		event->pending_kill = POLL_HUP;
9728 		perf_event_disable_inatomic(event);
9729 	}
9730 
9731 	if (event->attr.sigtrap) {
9732 		/*
9733 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9734 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9735 		 * it is the first event, on the other hand, we should also not
9736 		 * trigger the WARN or override the data address.
9737 		 */
9738 		bool valid_sample = sample_is_allowed(event, regs);
9739 		unsigned int pending_id = 1;
9740 		enum task_work_notify_mode notify_mode;
9741 
9742 		if (regs)
9743 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9744 
9745 		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
9746 
9747 		if (!event->pending_work &&
9748 		    !task_work_add(current, &event->pending_task, notify_mode)) {
9749 			event->pending_work = pending_id;
9750 			local_inc(&event->ctx->nr_pending);
9751 
9752 			event->pending_addr = 0;
9753 			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9754 				event->pending_addr = data->addr;
9755 
9756 		} else if (event->attr.exclude_kernel && valid_sample) {
9757 			/*
9758 			 * Should not be able to return to user space without
9759 			 * consuming pending_work; with exceptions:
9760 			 *
9761 			 *  1. Where !exclude_kernel, events can overflow again
9762 			 *     in the kernel without returning to user space.
9763 			 *
9764 			 *  2. Events that can overflow again before the IRQ-
9765 			 *     work without user space progress (e.g. hrtimer).
9766 			 *     To approximate progress (with false negatives),
9767 			 *     check 32-bit hash of the current IP.
9768 			 */
9769 			WARN_ON_ONCE(event->pending_work != pending_id);
9770 		}
9771 	}
9772 
9773 	READ_ONCE(event->overflow_handler)(event, data, regs);
9774 
9775 	if (*perf_event_fasync(event) && event->pending_kill) {
9776 		event->pending_wakeup = 1;
9777 		irq_work_queue(&event->pending_irq);
9778 	}
9779 
9780 	return ret;
9781 }
9782 
9783 int perf_event_overflow(struct perf_event *event,
9784 			struct perf_sample_data *data,
9785 			struct pt_regs *regs)
9786 {
9787 	return __perf_event_overflow(event, 1, data, regs);
9788 }
9789 
9790 /*
9791  * Generic software event infrastructure
9792  */
9793 
9794 struct swevent_htable {
9795 	struct swevent_hlist		*swevent_hlist;
9796 	struct mutex			hlist_mutex;
9797 	int				hlist_refcount;
9798 };
9799 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9800 
9801 /*
9802  * We directly increment event->count and keep a second value in
9803  * event->hw.period_left to count intervals. This period event
9804  * is kept in the range [-sample_period, 0] so that we can use the
9805  * sign as trigger.
9806  */
9807 
9808 u64 perf_swevent_set_period(struct perf_event *event)
9809 {
9810 	struct hw_perf_event *hwc = &event->hw;
9811 	u64 period = hwc->last_period;
9812 	u64 nr, offset;
9813 	s64 old, val;
9814 
9815 	hwc->last_period = hwc->sample_period;
9816 
9817 	old = local64_read(&hwc->period_left);
9818 	do {
9819 		val = old;
9820 		if (val < 0)
9821 			return 0;
9822 
9823 		nr = div64_u64(period + val, period);
9824 		offset = nr * period;
9825 		val -= offset;
9826 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9827 
9828 	return nr;
9829 }
9830 
9831 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9832 				    struct perf_sample_data *data,
9833 				    struct pt_regs *regs)
9834 {
9835 	struct hw_perf_event *hwc = &event->hw;
9836 	int throttle = 0;
9837 
9838 	if (!overflow)
9839 		overflow = perf_swevent_set_period(event);
9840 
9841 	if (hwc->interrupts == MAX_INTERRUPTS)
9842 		return;
9843 
9844 	for (; overflow; overflow--) {
9845 		if (__perf_event_overflow(event, throttle,
9846 					    data, regs)) {
9847 			/*
9848 			 * We inhibit the overflow from happening when
9849 			 * hwc->interrupts == MAX_INTERRUPTS.
9850 			 */
9851 			break;
9852 		}
9853 		throttle = 1;
9854 	}
9855 }
9856 
9857 static void perf_swevent_event(struct perf_event *event, u64 nr,
9858 			       struct perf_sample_data *data,
9859 			       struct pt_regs *regs)
9860 {
9861 	struct hw_perf_event *hwc = &event->hw;
9862 
9863 	local64_add(nr, &event->count);
9864 
9865 	if (!regs)
9866 		return;
9867 
9868 	if (!is_sampling_event(event))
9869 		return;
9870 
9871 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9872 		data->period = nr;
9873 		return perf_swevent_overflow(event, 1, data, regs);
9874 	} else
9875 		data->period = event->hw.last_period;
9876 
9877 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9878 		return perf_swevent_overflow(event, 1, data, regs);
9879 
9880 	if (local64_add_negative(nr, &hwc->period_left))
9881 		return;
9882 
9883 	perf_swevent_overflow(event, 0, data, regs);
9884 }
9885 
9886 static int perf_exclude_event(struct perf_event *event,
9887 			      struct pt_regs *regs)
9888 {
9889 	if (event->hw.state & PERF_HES_STOPPED)
9890 		return 1;
9891 
9892 	if (regs) {
9893 		if (event->attr.exclude_user && user_mode(regs))
9894 			return 1;
9895 
9896 		if (event->attr.exclude_kernel && !user_mode(regs))
9897 			return 1;
9898 	}
9899 
9900 	return 0;
9901 }
9902 
9903 static int perf_swevent_match(struct perf_event *event,
9904 				enum perf_type_id type,
9905 				u32 event_id,
9906 				struct perf_sample_data *data,
9907 				struct pt_regs *regs)
9908 {
9909 	if (event->attr.type != type)
9910 		return 0;
9911 
9912 	if (event->attr.config != event_id)
9913 		return 0;
9914 
9915 	if (perf_exclude_event(event, regs))
9916 		return 0;
9917 
9918 	return 1;
9919 }
9920 
9921 static inline u64 swevent_hash(u64 type, u32 event_id)
9922 {
9923 	u64 val = event_id | (type << 32);
9924 
9925 	return hash_64(val, SWEVENT_HLIST_BITS);
9926 }
9927 
9928 static inline struct hlist_head *
9929 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9930 {
9931 	u64 hash = swevent_hash(type, event_id);
9932 
9933 	return &hlist->heads[hash];
9934 }
9935 
9936 /* For the read side: events when they trigger */
9937 static inline struct hlist_head *
9938 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9939 {
9940 	struct swevent_hlist *hlist;
9941 
9942 	hlist = rcu_dereference(swhash->swevent_hlist);
9943 	if (!hlist)
9944 		return NULL;
9945 
9946 	return __find_swevent_head(hlist, type, event_id);
9947 }
9948 
9949 /* For the event head insertion and removal in the hlist */
9950 static inline struct hlist_head *
9951 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9952 {
9953 	struct swevent_hlist *hlist;
9954 	u32 event_id = event->attr.config;
9955 	u64 type = event->attr.type;
9956 
9957 	/*
9958 	 * Event scheduling is always serialized against hlist allocation
9959 	 * and release. Which makes the protected version suitable here.
9960 	 * The context lock guarantees that.
9961 	 */
9962 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9963 					  lockdep_is_held(&event->ctx->lock));
9964 	if (!hlist)
9965 		return NULL;
9966 
9967 	return __find_swevent_head(hlist, type, event_id);
9968 }
9969 
9970 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9971 				    u64 nr,
9972 				    struct perf_sample_data *data,
9973 				    struct pt_regs *regs)
9974 {
9975 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9976 	struct perf_event *event;
9977 	struct hlist_head *head;
9978 
9979 	rcu_read_lock();
9980 	head = find_swevent_head_rcu(swhash, type, event_id);
9981 	if (!head)
9982 		goto end;
9983 
9984 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9985 		if (perf_swevent_match(event, type, event_id, data, regs))
9986 			perf_swevent_event(event, nr, data, regs);
9987 	}
9988 end:
9989 	rcu_read_unlock();
9990 }
9991 
9992 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9993 
9994 int perf_swevent_get_recursion_context(void)
9995 {
9996 	return get_recursion_context(current->perf_recursion);
9997 }
9998 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9999 
10000 void perf_swevent_put_recursion_context(int rctx)
10001 {
10002 	put_recursion_context(current->perf_recursion, rctx);
10003 }
10004 
10005 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10006 {
10007 	struct perf_sample_data data;
10008 
10009 	if (WARN_ON_ONCE(!regs))
10010 		return;
10011 
10012 	perf_sample_data_init(&data, addr, 0);
10013 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10014 }
10015 
10016 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10017 {
10018 	int rctx;
10019 
10020 	preempt_disable_notrace();
10021 	rctx = perf_swevent_get_recursion_context();
10022 	if (unlikely(rctx < 0))
10023 		goto fail;
10024 
10025 	___perf_sw_event(event_id, nr, regs, addr);
10026 
10027 	perf_swevent_put_recursion_context(rctx);
10028 fail:
10029 	preempt_enable_notrace();
10030 }
10031 
10032 static void perf_swevent_read(struct perf_event *event)
10033 {
10034 }
10035 
10036 static int perf_swevent_add(struct perf_event *event, int flags)
10037 {
10038 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10039 	struct hw_perf_event *hwc = &event->hw;
10040 	struct hlist_head *head;
10041 
10042 	if (is_sampling_event(event)) {
10043 		hwc->last_period = hwc->sample_period;
10044 		perf_swevent_set_period(event);
10045 	}
10046 
10047 	hwc->state = !(flags & PERF_EF_START);
10048 
10049 	head = find_swevent_head(swhash, event);
10050 	if (WARN_ON_ONCE(!head))
10051 		return -EINVAL;
10052 
10053 	hlist_add_head_rcu(&event->hlist_entry, head);
10054 	perf_event_update_userpage(event);
10055 
10056 	return 0;
10057 }
10058 
10059 static void perf_swevent_del(struct perf_event *event, int flags)
10060 {
10061 	hlist_del_rcu(&event->hlist_entry);
10062 }
10063 
10064 static void perf_swevent_start(struct perf_event *event, int flags)
10065 {
10066 	event->hw.state = 0;
10067 }
10068 
10069 static void perf_swevent_stop(struct perf_event *event, int flags)
10070 {
10071 	event->hw.state = PERF_HES_STOPPED;
10072 }
10073 
10074 /* Deref the hlist from the update side */
10075 static inline struct swevent_hlist *
10076 swevent_hlist_deref(struct swevent_htable *swhash)
10077 {
10078 	return rcu_dereference_protected(swhash->swevent_hlist,
10079 					 lockdep_is_held(&swhash->hlist_mutex));
10080 }
10081 
10082 static void swevent_hlist_release(struct swevent_htable *swhash)
10083 {
10084 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10085 
10086 	if (!hlist)
10087 		return;
10088 
10089 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10090 	kfree_rcu(hlist, rcu_head);
10091 }
10092 
10093 static void swevent_hlist_put_cpu(int cpu)
10094 {
10095 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10096 
10097 	mutex_lock(&swhash->hlist_mutex);
10098 
10099 	if (!--swhash->hlist_refcount)
10100 		swevent_hlist_release(swhash);
10101 
10102 	mutex_unlock(&swhash->hlist_mutex);
10103 }
10104 
10105 static void swevent_hlist_put(void)
10106 {
10107 	int cpu;
10108 
10109 	for_each_possible_cpu(cpu)
10110 		swevent_hlist_put_cpu(cpu);
10111 }
10112 
10113 static int swevent_hlist_get_cpu(int cpu)
10114 {
10115 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10116 	int err = 0;
10117 
10118 	mutex_lock(&swhash->hlist_mutex);
10119 	if (!swevent_hlist_deref(swhash) &&
10120 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10121 		struct swevent_hlist *hlist;
10122 
10123 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10124 		if (!hlist) {
10125 			err = -ENOMEM;
10126 			goto exit;
10127 		}
10128 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10129 	}
10130 	swhash->hlist_refcount++;
10131 exit:
10132 	mutex_unlock(&swhash->hlist_mutex);
10133 
10134 	return err;
10135 }
10136 
10137 static int swevent_hlist_get(void)
10138 {
10139 	int err, cpu, failed_cpu;
10140 
10141 	mutex_lock(&pmus_lock);
10142 	for_each_possible_cpu(cpu) {
10143 		err = swevent_hlist_get_cpu(cpu);
10144 		if (err) {
10145 			failed_cpu = cpu;
10146 			goto fail;
10147 		}
10148 	}
10149 	mutex_unlock(&pmus_lock);
10150 	return 0;
10151 fail:
10152 	for_each_possible_cpu(cpu) {
10153 		if (cpu == failed_cpu)
10154 			break;
10155 		swevent_hlist_put_cpu(cpu);
10156 	}
10157 	mutex_unlock(&pmus_lock);
10158 	return err;
10159 }
10160 
10161 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10162 
10163 static void sw_perf_event_destroy(struct perf_event *event)
10164 {
10165 	u64 event_id = event->attr.config;
10166 
10167 	WARN_ON(event->parent);
10168 
10169 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10170 	swevent_hlist_put();
10171 }
10172 
10173 static struct pmu perf_cpu_clock; /* fwd declaration */
10174 static struct pmu perf_task_clock;
10175 
10176 static int perf_swevent_init(struct perf_event *event)
10177 {
10178 	u64 event_id = event->attr.config;
10179 
10180 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10181 		return -ENOENT;
10182 
10183 	/*
10184 	 * no branch sampling for software events
10185 	 */
10186 	if (has_branch_stack(event))
10187 		return -EOPNOTSUPP;
10188 
10189 	switch (event_id) {
10190 	case PERF_COUNT_SW_CPU_CLOCK:
10191 		event->attr.type = perf_cpu_clock.type;
10192 		return -ENOENT;
10193 	case PERF_COUNT_SW_TASK_CLOCK:
10194 		event->attr.type = perf_task_clock.type;
10195 		return -ENOENT;
10196 
10197 	default:
10198 		break;
10199 	}
10200 
10201 	if (event_id >= PERF_COUNT_SW_MAX)
10202 		return -ENOENT;
10203 
10204 	if (!event->parent) {
10205 		int err;
10206 
10207 		err = swevent_hlist_get();
10208 		if (err)
10209 			return err;
10210 
10211 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10212 		event->destroy = sw_perf_event_destroy;
10213 	}
10214 
10215 	return 0;
10216 }
10217 
10218 static struct pmu perf_swevent = {
10219 	.task_ctx_nr	= perf_sw_context,
10220 
10221 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10222 
10223 	.event_init	= perf_swevent_init,
10224 	.add		= perf_swevent_add,
10225 	.del		= perf_swevent_del,
10226 	.start		= perf_swevent_start,
10227 	.stop		= perf_swevent_stop,
10228 	.read		= perf_swevent_read,
10229 };
10230 
10231 #ifdef CONFIG_EVENT_TRACING
10232 
10233 static void tp_perf_event_destroy(struct perf_event *event)
10234 {
10235 	perf_trace_destroy(event);
10236 }
10237 
10238 static int perf_tp_event_init(struct perf_event *event)
10239 {
10240 	int err;
10241 
10242 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10243 		return -ENOENT;
10244 
10245 	/*
10246 	 * no branch sampling for tracepoint events
10247 	 */
10248 	if (has_branch_stack(event))
10249 		return -EOPNOTSUPP;
10250 
10251 	err = perf_trace_init(event);
10252 	if (err)
10253 		return err;
10254 
10255 	event->destroy = tp_perf_event_destroy;
10256 
10257 	return 0;
10258 }
10259 
10260 static struct pmu perf_tracepoint = {
10261 	.task_ctx_nr	= perf_sw_context,
10262 
10263 	.event_init	= perf_tp_event_init,
10264 	.add		= perf_trace_add,
10265 	.del		= perf_trace_del,
10266 	.start		= perf_swevent_start,
10267 	.stop		= perf_swevent_stop,
10268 	.read		= perf_swevent_read,
10269 };
10270 
10271 static int perf_tp_filter_match(struct perf_event *event,
10272 				struct perf_sample_data *data)
10273 {
10274 	void *record = data->raw->frag.data;
10275 
10276 	/* only top level events have filters set */
10277 	if (event->parent)
10278 		event = event->parent;
10279 
10280 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10281 		return 1;
10282 	return 0;
10283 }
10284 
10285 static int perf_tp_event_match(struct perf_event *event,
10286 				struct perf_sample_data *data,
10287 				struct pt_regs *regs)
10288 {
10289 	if (event->hw.state & PERF_HES_STOPPED)
10290 		return 0;
10291 	/*
10292 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10293 	 */
10294 	if (event->attr.exclude_kernel && !user_mode(regs))
10295 		return 0;
10296 
10297 	if (!perf_tp_filter_match(event, data))
10298 		return 0;
10299 
10300 	return 1;
10301 }
10302 
10303 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10304 			       struct trace_event_call *call, u64 count,
10305 			       struct pt_regs *regs, struct hlist_head *head,
10306 			       struct task_struct *task)
10307 {
10308 	if (bpf_prog_array_valid(call)) {
10309 		*(struct pt_regs **)raw_data = regs;
10310 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10311 			perf_swevent_put_recursion_context(rctx);
10312 			return;
10313 		}
10314 	}
10315 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10316 		      rctx, task);
10317 }
10318 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10319 
10320 static void __perf_tp_event_target_task(u64 count, void *record,
10321 					struct pt_regs *regs,
10322 					struct perf_sample_data *data,
10323 					struct perf_event *event)
10324 {
10325 	struct trace_entry *entry = record;
10326 
10327 	if (event->attr.config != entry->type)
10328 		return;
10329 	/* Cannot deliver synchronous signal to other task. */
10330 	if (event->attr.sigtrap)
10331 		return;
10332 	if (perf_tp_event_match(event, data, regs))
10333 		perf_swevent_event(event, count, data, regs);
10334 }
10335 
10336 static void perf_tp_event_target_task(u64 count, void *record,
10337 				      struct pt_regs *regs,
10338 				      struct perf_sample_data *data,
10339 				      struct perf_event_context *ctx)
10340 {
10341 	unsigned int cpu = smp_processor_id();
10342 	struct pmu *pmu = &perf_tracepoint;
10343 	struct perf_event *event, *sibling;
10344 
10345 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10346 		__perf_tp_event_target_task(count, record, regs, data, event);
10347 		for_each_sibling_event(sibling, event)
10348 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10349 	}
10350 
10351 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10352 		__perf_tp_event_target_task(count, record, regs, data, event);
10353 		for_each_sibling_event(sibling, event)
10354 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10355 	}
10356 }
10357 
10358 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10359 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10360 		   struct task_struct *task)
10361 {
10362 	struct perf_sample_data data;
10363 	struct perf_event *event;
10364 
10365 	struct perf_raw_record raw = {
10366 		.frag = {
10367 			.size = entry_size,
10368 			.data = record,
10369 		},
10370 	};
10371 
10372 	perf_sample_data_init(&data, 0, 0);
10373 	perf_sample_save_raw_data(&data, &raw);
10374 
10375 	perf_trace_buf_update(record, event_type);
10376 
10377 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10378 		if (perf_tp_event_match(event, &data, regs)) {
10379 			perf_swevent_event(event, count, &data, regs);
10380 
10381 			/*
10382 			 * Here use the same on-stack perf_sample_data,
10383 			 * some members in data are event-specific and
10384 			 * need to be re-computed for different sweveents.
10385 			 * Re-initialize data->sample_flags safely to avoid
10386 			 * the problem that next event skips preparing data
10387 			 * because data->sample_flags is set.
10388 			 */
10389 			perf_sample_data_init(&data, 0, 0);
10390 			perf_sample_save_raw_data(&data, &raw);
10391 		}
10392 	}
10393 
10394 	/*
10395 	 * If we got specified a target task, also iterate its context and
10396 	 * deliver this event there too.
10397 	 */
10398 	if (task && task != current) {
10399 		struct perf_event_context *ctx;
10400 
10401 		rcu_read_lock();
10402 		ctx = rcu_dereference(task->perf_event_ctxp);
10403 		if (!ctx)
10404 			goto unlock;
10405 
10406 		raw_spin_lock(&ctx->lock);
10407 		perf_tp_event_target_task(count, record, regs, &data, ctx);
10408 		raw_spin_unlock(&ctx->lock);
10409 unlock:
10410 		rcu_read_unlock();
10411 	}
10412 
10413 	perf_swevent_put_recursion_context(rctx);
10414 }
10415 EXPORT_SYMBOL_GPL(perf_tp_event);
10416 
10417 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10418 /*
10419  * Flags in config, used by dynamic PMU kprobe and uprobe
10420  * The flags should match following PMU_FORMAT_ATTR().
10421  *
10422  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10423  *                               if not set, create kprobe/uprobe
10424  *
10425  * The following values specify a reference counter (or semaphore in the
10426  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10427  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10428  *
10429  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10430  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10431  */
10432 enum perf_probe_config {
10433 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10434 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10435 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10436 };
10437 
10438 PMU_FORMAT_ATTR(retprobe, "config:0");
10439 #endif
10440 
10441 #ifdef CONFIG_KPROBE_EVENTS
10442 static struct attribute *kprobe_attrs[] = {
10443 	&format_attr_retprobe.attr,
10444 	NULL,
10445 };
10446 
10447 static struct attribute_group kprobe_format_group = {
10448 	.name = "format",
10449 	.attrs = kprobe_attrs,
10450 };
10451 
10452 static const struct attribute_group *kprobe_attr_groups[] = {
10453 	&kprobe_format_group,
10454 	NULL,
10455 };
10456 
10457 static int perf_kprobe_event_init(struct perf_event *event);
10458 static struct pmu perf_kprobe = {
10459 	.task_ctx_nr	= perf_sw_context,
10460 	.event_init	= perf_kprobe_event_init,
10461 	.add		= perf_trace_add,
10462 	.del		= perf_trace_del,
10463 	.start		= perf_swevent_start,
10464 	.stop		= perf_swevent_stop,
10465 	.read		= perf_swevent_read,
10466 	.attr_groups	= kprobe_attr_groups,
10467 };
10468 
10469 static int perf_kprobe_event_init(struct perf_event *event)
10470 {
10471 	int err;
10472 	bool is_retprobe;
10473 
10474 	if (event->attr.type != perf_kprobe.type)
10475 		return -ENOENT;
10476 
10477 	if (!perfmon_capable())
10478 		return -EACCES;
10479 
10480 	/*
10481 	 * no branch sampling for probe events
10482 	 */
10483 	if (has_branch_stack(event))
10484 		return -EOPNOTSUPP;
10485 
10486 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10487 	err = perf_kprobe_init(event, is_retprobe);
10488 	if (err)
10489 		return err;
10490 
10491 	event->destroy = perf_kprobe_destroy;
10492 
10493 	return 0;
10494 }
10495 #endif /* CONFIG_KPROBE_EVENTS */
10496 
10497 #ifdef CONFIG_UPROBE_EVENTS
10498 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10499 
10500 static struct attribute *uprobe_attrs[] = {
10501 	&format_attr_retprobe.attr,
10502 	&format_attr_ref_ctr_offset.attr,
10503 	NULL,
10504 };
10505 
10506 static struct attribute_group uprobe_format_group = {
10507 	.name = "format",
10508 	.attrs = uprobe_attrs,
10509 };
10510 
10511 static const struct attribute_group *uprobe_attr_groups[] = {
10512 	&uprobe_format_group,
10513 	NULL,
10514 };
10515 
10516 static int perf_uprobe_event_init(struct perf_event *event);
10517 static struct pmu perf_uprobe = {
10518 	.task_ctx_nr	= perf_sw_context,
10519 	.event_init	= perf_uprobe_event_init,
10520 	.add		= perf_trace_add,
10521 	.del		= perf_trace_del,
10522 	.start		= perf_swevent_start,
10523 	.stop		= perf_swevent_stop,
10524 	.read		= perf_swevent_read,
10525 	.attr_groups	= uprobe_attr_groups,
10526 };
10527 
10528 static int perf_uprobe_event_init(struct perf_event *event)
10529 {
10530 	int err;
10531 	unsigned long ref_ctr_offset;
10532 	bool is_retprobe;
10533 
10534 	if (event->attr.type != perf_uprobe.type)
10535 		return -ENOENT;
10536 
10537 	if (!perfmon_capable())
10538 		return -EACCES;
10539 
10540 	/*
10541 	 * no branch sampling for probe events
10542 	 */
10543 	if (has_branch_stack(event))
10544 		return -EOPNOTSUPP;
10545 
10546 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10547 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10548 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10549 	if (err)
10550 		return err;
10551 
10552 	event->destroy = perf_uprobe_destroy;
10553 
10554 	return 0;
10555 }
10556 #endif /* CONFIG_UPROBE_EVENTS */
10557 
10558 static inline void perf_tp_register(void)
10559 {
10560 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10561 #ifdef CONFIG_KPROBE_EVENTS
10562 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10563 #endif
10564 #ifdef CONFIG_UPROBE_EVENTS
10565 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10566 #endif
10567 }
10568 
10569 static void perf_event_free_filter(struct perf_event *event)
10570 {
10571 	ftrace_profile_free_filter(event);
10572 }
10573 
10574 /*
10575  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10576  * with perf_event_open()
10577  */
10578 static inline bool perf_event_is_tracing(struct perf_event *event)
10579 {
10580 	if (event->pmu == &perf_tracepoint)
10581 		return true;
10582 #ifdef CONFIG_KPROBE_EVENTS
10583 	if (event->pmu == &perf_kprobe)
10584 		return true;
10585 #endif
10586 #ifdef CONFIG_UPROBE_EVENTS
10587 	if (event->pmu == &perf_uprobe)
10588 		return true;
10589 #endif
10590 	return false;
10591 }
10592 
10593 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10594 			    u64 bpf_cookie)
10595 {
10596 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10597 
10598 	if (!perf_event_is_tracing(event))
10599 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10600 
10601 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10602 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10603 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10604 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10605 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10606 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10607 		return -EINVAL;
10608 
10609 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10610 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10611 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10612 		return -EINVAL;
10613 
10614 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10615 		/* only uprobe programs are allowed to be sleepable */
10616 		return -EINVAL;
10617 
10618 	/* Kprobe override only works for kprobes, not uprobes. */
10619 	if (prog->kprobe_override && !is_kprobe)
10620 		return -EINVAL;
10621 
10622 	if (is_tracepoint || is_syscall_tp) {
10623 		int off = trace_event_get_offsets(event->tp_event);
10624 
10625 		if (prog->aux->max_ctx_offset > off)
10626 			return -EACCES;
10627 	}
10628 
10629 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10630 }
10631 
10632 void perf_event_free_bpf_prog(struct perf_event *event)
10633 {
10634 	if (!perf_event_is_tracing(event)) {
10635 		perf_event_free_bpf_handler(event);
10636 		return;
10637 	}
10638 	perf_event_detach_bpf_prog(event);
10639 }
10640 
10641 #else
10642 
10643 static inline void perf_tp_register(void)
10644 {
10645 }
10646 
10647 static void perf_event_free_filter(struct perf_event *event)
10648 {
10649 }
10650 
10651 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10652 			    u64 bpf_cookie)
10653 {
10654 	return -ENOENT;
10655 }
10656 
10657 void perf_event_free_bpf_prog(struct perf_event *event)
10658 {
10659 }
10660 #endif /* CONFIG_EVENT_TRACING */
10661 
10662 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10663 void perf_bp_event(struct perf_event *bp, void *data)
10664 {
10665 	struct perf_sample_data sample;
10666 	struct pt_regs *regs = data;
10667 
10668 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10669 
10670 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10671 		perf_swevent_event(bp, 1, &sample, regs);
10672 }
10673 #endif
10674 
10675 /*
10676  * Allocate a new address filter
10677  */
10678 static struct perf_addr_filter *
10679 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10680 {
10681 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10682 	struct perf_addr_filter *filter;
10683 
10684 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10685 	if (!filter)
10686 		return NULL;
10687 
10688 	INIT_LIST_HEAD(&filter->entry);
10689 	list_add_tail(&filter->entry, filters);
10690 
10691 	return filter;
10692 }
10693 
10694 static void free_filters_list(struct list_head *filters)
10695 {
10696 	struct perf_addr_filter *filter, *iter;
10697 
10698 	list_for_each_entry_safe(filter, iter, filters, entry) {
10699 		path_put(&filter->path);
10700 		list_del(&filter->entry);
10701 		kfree(filter);
10702 	}
10703 }
10704 
10705 /*
10706  * Free existing address filters and optionally install new ones
10707  */
10708 static void perf_addr_filters_splice(struct perf_event *event,
10709 				     struct list_head *head)
10710 {
10711 	unsigned long flags;
10712 	LIST_HEAD(list);
10713 
10714 	if (!has_addr_filter(event))
10715 		return;
10716 
10717 	/* don't bother with children, they don't have their own filters */
10718 	if (event->parent)
10719 		return;
10720 
10721 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10722 
10723 	list_splice_init(&event->addr_filters.list, &list);
10724 	if (head)
10725 		list_splice(head, &event->addr_filters.list);
10726 
10727 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10728 
10729 	free_filters_list(&list);
10730 }
10731 
10732 /*
10733  * Scan through mm's vmas and see if one of them matches the
10734  * @filter; if so, adjust filter's address range.
10735  * Called with mm::mmap_lock down for reading.
10736  */
10737 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10738 				   struct mm_struct *mm,
10739 				   struct perf_addr_filter_range *fr)
10740 {
10741 	struct vm_area_struct *vma;
10742 	VMA_ITERATOR(vmi, mm, 0);
10743 
10744 	for_each_vma(vmi, vma) {
10745 		if (!vma->vm_file)
10746 			continue;
10747 
10748 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10749 			return;
10750 	}
10751 }
10752 
10753 /*
10754  * Update event's address range filters based on the
10755  * task's existing mappings, if any.
10756  */
10757 static void perf_event_addr_filters_apply(struct perf_event *event)
10758 {
10759 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10760 	struct task_struct *task = READ_ONCE(event->ctx->task);
10761 	struct perf_addr_filter *filter;
10762 	struct mm_struct *mm = NULL;
10763 	unsigned int count = 0;
10764 	unsigned long flags;
10765 
10766 	/*
10767 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10768 	 * will stop on the parent's child_mutex that our caller is also holding
10769 	 */
10770 	if (task == TASK_TOMBSTONE)
10771 		return;
10772 
10773 	if (ifh->nr_file_filters) {
10774 		mm = get_task_mm(task);
10775 		if (!mm)
10776 			goto restart;
10777 
10778 		mmap_read_lock(mm);
10779 	}
10780 
10781 	raw_spin_lock_irqsave(&ifh->lock, flags);
10782 	list_for_each_entry(filter, &ifh->list, entry) {
10783 		if (filter->path.dentry) {
10784 			/*
10785 			 * Adjust base offset if the filter is associated to a
10786 			 * binary that needs to be mapped:
10787 			 */
10788 			event->addr_filter_ranges[count].start = 0;
10789 			event->addr_filter_ranges[count].size = 0;
10790 
10791 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10792 		} else {
10793 			event->addr_filter_ranges[count].start = filter->offset;
10794 			event->addr_filter_ranges[count].size  = filter->size;
10795 		}
10796 
10797 		count++;
10798 	}
10799 
10800 	event->addr_filters_gen++;
10801 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10802 
10803 	if (ifh->nr_file_filters) {
10804 		mmap_read_unlock(mm);
10805 
10806 		mmput(mm);
10807 	}
10808 
10809 restart:
10810 	perf_event_stop(event, 1);
10811 }
10812 
10813 /*
10814  * Address range filtering: limiting the data to certain
10815  * instruction address ranges. Filters are ioctl()ed to us from
10816  * userspace as ascii strings.
10817  *
10818  * Filter string format:
10819  *
10820  * ACTION RANGE_SPEC
10821  * where ACTION is one of the
10822  *  * "filter": limit the trace to this region
10823  *  * "start": start tracing from this address
10824  *  * "stop": stop tracing at this address/region;
10825  * RANGE_SPEC is
10826  *  * for kernel addresses: <start address>[/<size>]
10827  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10828  *
10829  * if <size> is not specified or is zero, the range is treated as a single
10830  * address; not valid for ACTION=="filter".
10831  */
10832 enum {
10833 	IF_ACT_NONE = -1,
10834 	IF_ACT_FILTER,
10835 	IF_ACT_START,
10836 	IF_ACT_STOP,
10837 	IF_SRC_FILE,
10838 	IF_SRC_KERNEL,
10839 	IF_SRC_FILEADDR,
10840 	IF_SRC_KERNELADDR,
10841 };
10842 
10843 enum {
10844 	IF_STATE_ACTION = 0,
10845 	IF_STATE_SOURCE,
10846 	IF_STATE_END,
10847 };
10848 
10849 static const match_table_t if_tokens = {
10850 	{ IF_ACT_FILTER,	"filter" },
10851 	{ IF_ACT_START,		"start" },
10852 	{ IF_ACT_STOP,		"stop" },
10853 	{ IF_SRC_FILE,		"%u/%u@%s" },
10854 	{ IF_SRC_KERNEL,	"%u/%u" },
10855 	{ IF_SRC_FILEADDR,	"%u@%s" },
10856 	{ IF_SRC_KERNELADDR,	"%u" },
10857 	{ IF_ACT_NONE,		NULL },
10858 };
10859 
10860 /*
10861  * Address filter string parser
10862  */
10863 static int
10864 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10865 			     struct list_head *filters)
10866 {
10867 	struct perf_addr_filter *filter = NULL;
10868 	char *start, *orig, *filename = NULL;
10869 	substring_t args[MAX_OPT_ARGS];
10870 	int state = IF_STATE_ACTION, token;
10871 	unsigned int kernel = 0;
10872 	int ret = -EINVAL;
10873 
10874 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10875 	if (!fstr)
10876 		return -ENOMEM;
10877 
10878 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10879 		static const enum perf_addr_filter_action_t actions[] = {
10880 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10881 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10882 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10883 		};
10884 		ret = -EINVAL;
10885 
10886 		if (!*start)
10887 			continue;
10888 
10889 		/* filter definition begins */
10890 		if (state == IF_STATE_ACTION) {
10891 			filter = perf_addr_filter_new(event, filters);
10892 			if (!filter)
10893 				goto fail;
10894 		}
10895 
10896 		token = match_token(start, if_tokens, args);
10897 		switch (token) {
10898 		case IF_ACT_FILTER:
10899 		case IF_ACT_START:
10900 		case IF_ACT_STOP:
10901 			if (state != IF_STATE_ACTION)
10902 				goto fail;
10903 
10904 			filter->action = actions[token];
10905 			state = IF_STATE_SOURCE;
10906 			break;
10907 
10908 		case IF_SRC_KERNELADDR:
10909 		case IF_SRC_KERNEL:
10910 			kernel = 1;
10911 			fallthrough;
10912 
10913 		case IF_SRC_FILEADDR:
10914 		case IF_SRC_FILE:
10915 			if (state != IF_STATE_SOURCE)
10916 				goto fail;
10917 
10918 			*args[0].to = 0;
10919 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10920 			if (ret)
10921 				goto fail;
10922 
10923 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10924 				*args[1].to = 0;
10925 				ret = kstrtoul(args[1].from, 0, &filter->size);
10926 				if (ret)
10927 					goto fail;
10928 			}
10929 
10930 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10931 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10932 
10933 				kfree(filename);
10934 				filename = match_strdup(&args[fpos]);
10935 				if (!filename) {
10936 					ret = -ENOMEM;
10937 					goto fail;
10938 				}
10939 			}
10940 
10941 			state = IF_STATE_END;
10942 			break;
10943 
10944 		default:
10945 			goto fail;
10946 		}
10947 
10948 		/*
10949 		 * Filter definition is fully parsed, validate and install it.
10950 		 * Make sure that it doesn't contradict itself or the event's
10951 		 * attribute.
10952 		 */
10953 		if (state == IF_STATE_END) {
10954 			ret = -EINVAL;
10955 
10956 			/*
10957 			 * ACTION "filter" must have a non-zero length region
10958 			 * specified.
10959 			 */
10960 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10961 			    !filter->size)
10962 				goto fail;
10963 
10964 			if (!kernel) {
10965 				if (!filename)
10966 					goto fail;
10967 
10968 				/*
10969 				 * For now, we only support file-based filters
10970 				 * in per-task events; doing so for CPU-wide
10971 				 * events requires additional context switching
10972 				 * trickery, since same object code will be
10973 				 * mapped at different virtual addresses in
10974 				 * different processes.
10975 				 */
10976 				ret = -EOPNOTSUPP;
10977 				if (!event->ctx->task)
10978 					goto fail;
10979 
10980 				/* look up the path and grab its inode */
10981 				ret = kern_path(filename, LOOKUP_FOLLOW,
10982 						&filter->path);
10983 				if (ret)
10984 					goto fail;
10985 
10986 				ret = -EINVAL;
10987 				if (!filter->path.dentry ||
10988 				    !S_ISREG(d_inode(filter->path.dentry)
10989 					     ->i_mode))
10990 					goto fail;
10991 
10992 				event->addr_filters.nr_file_filters++;
10993 			}
10994 
10995 			/* ready to consume more filters */
10996 			kfree(filename);
10997 			filename = NULL;
10998 			state = IF_STATE_ACTION;
10999 			filter = NULL;
11000 			kernel = 0;
11001 		}
11002 	}
11003 
11004 	if (state != IF_STATE_ACTION)
11005 		goto fail;
11006 
11007 	kfree(filename);
11008 	kfree(orig);
11009 
11010 	return 0;
11011 
11012 fail:
11013 	kfree(filename);
11014 	free_filters_list(filters);
11015 	kfree(orig);
11016 
11017 	return ret;
11018 }
11019 
11020 static int
11021 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11022 {
11023 	LIST_HEAD(filters);
11024 	int ret;
11025 
11026 	/*
11027 	 * Since this is called in perf_ioctl() path, we're already holding
11028 	 * ctx::mutex.
11029 	 */
11030 	lockdep_assert_held(&event->ctx->mutex);
11031 
11032 	if (WARN_ON_ONCE(event->parent))
11033 		return -EINVAL;
11034 
11035 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11036 	if (ret)
11037 		goto fail_clear_files;
11038 
11039 	ret = event->pmu->addr_filters_validate(&filters);
11040 	if (ret)
11041 		goto fail_free_filters;
11042 
11043 	/* remove existing filters, if any */
11044 	perf_addr_filters_splice(event, &filters);
11045 
11046 	/* install new filters */
11047 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11048 
11049 	return ret;
11050 
11051 fail_free_filters:
11052 	free_filters_list(&filters);
11053 
11054 fail_clear_files:
11055 	event->addr_filters.nr_file_filters = 0;
11056 
11057 	return ret;
11058 }
11059 
11060 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11061 {
11062 	int ret = -EINVAL;
11063 	char *filter_str;
11064 
11065 	filter_str = strndup_user(arg, PAGE_SIZE);
11066 	if (IS_ERR(filter_str))
11067 		return PTR_ERR(filter_str);
11068 
11069 #ifdef CONFIG_EVENT_TRACING
11070 	if (perf_event_is_tracing(event)) {
11071 		struct perf_event_context *ctx = event->ctx;
11072 
11073 		/*
11074 		 * Beware, here be dragons!!
11075 		 *
11076 		 * the tracepoint muck will deadlock against ctx->mutex, but
11077 		 * the tracepoint stuff does not actually need it. So
11078 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11079 		 * already have a reference on ctx.
11080 		 *
11081 		 * This can result in event getting moved to a different ctx,
11082 		 * but that does not affect the tracepoint state.
11083 		 */
11084 		mutex_unlock(&ctx->mutex);
11085 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11086 		mutex_lock(&ctx->mutex);
11087 	} else
11088 #endif
11089 	if (has_addr_filter(event))
11090 		ret = perf_event_set_addr_filter(event, filter_str);
11091 
11092 	kfree(filter_str);
11093 	return ret;
11094 }
11095 
11096 /*
11097  * hrtimer based swevent callback
11098  */
11099 
11100 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11101 {
11102 	enum hrtimer_restart ret = HRTIMER_RESTART;
11103 	struct perf_sample_data data;
11104 	struct pt_regs *regs;
11105 	struct perf_event *event;
11106 	u64 period;
11107 
11108 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11109 
11110 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11111 		return HRTIMER_NORESTART;
11112 
11113 	event->pmu->read(event);
11114 
11115 	perf_sample_data_init(&data, 0, event->hw.last_period);
11116 	regs = get_irq_regs();
11117 
11118 	if (regs && !perf_exclude_event(event, regs)) {
11119 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11120 			if (__perf_event_overflow(event, 1, &data, regs))
11121 				ret = HRTIMER_NORESTART;
11122 	}
11123 
11124 	period = max_t(u64, 10000, event->hw.sample_period);
11125 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11126 
11127 	return ret;
11128 }
11129 
11130 static void perf_swevent_start_hrtimer(struct perf_event *event)
11131 {
11132 	struct hw_perf_event *hwc = &event->hw;
11133 	s64 period;
11134 
11135 	if (!is_sampling_event(event))
11136 		return;
11137 
11138 	period = local64_read(&hwc->period_left);
11139 	if (period) {
11140 		if (period < 0)
11141 			period = 10000;
11142 
11143 		local64_set(&hwc->period_left, 0);
11144 	} else {
11145 		period = max_t(u64, 10000, hwc->sample_period);
11146 	}
11147 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11148 		      HRTIMER_MODE_REL_PINNED_HARD);
11149 }
11150 
11151 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11152 {
11153 	struct hw_perf_event *hwc = &event->hw;
11154 
11155 	if (is_sampling_event(event)) {
11156 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11157 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11158 
11159 		hrtimer_cancel(&hwc->hrtimer);
11160 	}
11161 }
11162 
11163 static void perf_swevent_init_hrtimer(struct perf_event *event)
11164 {
11165 	struct hw_perf_event *hwc = &event->hw;
11166 
11167 	if (!is_sampling_event(event))
11168 		return;
11169 
11170 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11171 	hwc->hrtimer.function = perf_swevent_hrtimer;
11172 
11173 	/*
11174 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11175 	 * mapping and avoid the whole period adjust feedback stuff.
11176 	 */
11177 	if (event->attr.freq) {
11178 		long freq = event->attr.sample_freq;
11179 
11180 		event->attr.sample_period = NSEC_PER_SEC / freq;
11181 		hwc->sample_period = event->attr.sample_period;
11182 		local64_set(&hwc->period_left, hwc->sample_period);
11183 		hwc->last_period = hwc->sample_period;
11184 		event->attr.freq = 0;
11185 	}
11186 }
11187 
11188 /*
11189  * Software event: cpu wall time clock
11190  */
11191 
11192 static void cpu_clock_event_update(struct perf_event *event)
11193 {
11194 	s64 prev;
11195 	u64 now;
11196 
11197 	now = local_clock();
11198 	prev = local64_xchg(&event->hw.prev_count, now);
11199 	local64_add(now - prev, &event->count);
11200 }
11201 
11202 static void cpu_clock_event_start(struct perf_event *event, int flags)
11203 {
11204 	local64_set(&event->hw.prev_count, local_clock());
11205 	perf_swevent_start_hrtimer(event);
11206 }
11207 
11208 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11209 {
11210 	perf_swevent_cancel_hrtimer(event);
11211 	cpu_clock_event_update(event);
11212 }
11213 
11214 static int cpu_clock_event_add(struct perf_event *event, int flags)
11215 {
11216 	if (flags & PERF_EF_START)
11217 		cpu_clock_event_start(event, flags);
11218 	perf_event_update_userpage(event);
11219 
11220 	return 0;
11221 }
11222 
11223 static void cpu_clock_event_del(struct perf_event *event, int flags)
11224 {
11225 	cpu_clock_event_stop(event, flags);
11226 }
11227 
11228 static void cpu_clock_event_read(struct perf_event *event)
11229 {
11230 	cpu_clock_event_update(event);
11231 }
11232 
11233 static int cpu_clock_event_init(struct perf_event *event)
11234 {
11235 	if (event->attr.type != perf_cpu_clock.type)
11236 		return -ENOENT;
11237 
11238 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11239 		return -ENOENT;
11240 
11241 	/*
11242 	 * no branch sampling for software events
11243 	 */
11244 	if (has_branch_stack(event))
11245 		return -EOPNOTSUPP;
11246 
11247 	perf_swevent_init_hrtimer(event);
11248 
11249 	return 0;
11250 }
11251 
11252 static struct pmu perf_cpu_clock = {
11253 	.task_ctx_nr	= perf_sw_context,
11254 
11255 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11256 	.dev		= PMU_NULL_DEV,
11257 
11258 	.event_init	= cpu_clock_event_init,
11259 	.add		= cpu_clock_event_add,
11260 	.del		= cpu_clock_event_del,
11261 	.start		= cpu_clock_event_start,
11262 	.stop		= cpu_clock_event_stop,
11263 	.read		= cpu_clock_event_read,
11264 };
11265 
11266 /*
11267  * Software event: task time clock
11268  */
11269 
11270 static void task_clock_event_update(struct perf_event *event, u64 now)
11271 {
11272 	u64 prev;
11273 	s64 delta;
11274 
11275 	prev = local64_xchg(&event->hw.prev_count, now);
11276 	delta = now - prev;
11277 	local64_add(delta, &event->count);
11278 }
11279 
11280 static void task_clock_event_start(struct perf_event *event, int flags)
11281 {
11282 	local64_set(&event->hw.prev_count, event->ctx->time);
11283 	perf_swevent_start_hrtimer(event);
11284 }
11285 
11286 static void task_clock_event_stop(struct perf_event *event, int flags)
11287 {
11288 	perf_swevent_cancel_hrtimer(event);
11289 	task_clock_event_update(event, event->ctx->time);
11290 }
11291 
11292 static int task_clock_event_add(struct perf_event *event, int flags)
11293 {
11294 	if (flags & PERF_EF_START)
11295 		task_clock_event_start(event, flags);
11296 	perf_event_update_userpage(event);
11297 
11298 	return 0;
11299 }
11300 
11301 static void task_clock_event_del(struct perf_event *event, int flags)
11302 {
11303 	task_clock_event_stop(event, PERF_EF_UPDATE);
11304 }
11305 
11306 static void task_clock_event_read(struct perf_event *event)
11307 {
11308 	u64 now = perf_clock();
11309 	u64 delta = now - event->ctx->timestamp;
11310 	u64 time = event->ctx->time + delta;
11311 
11312 	task_clock_event_update(event, time);
11313 }
11314 
11315 static int task_clock_event_init(struct perf_event *event)
11316 {
11317 	if (event->attr.type != perf_task_clock.type)
11318 		return -ENOENT;
11319 
11320 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11321 		return -ENOENT;
11322 
11323 	/*
11324 	 * no branch sampling for software events
11325 	 */
11326 	if (has_branch_stack(event))
11327 		return -EOPNOTSUPP;
11328 
11329 	perf_swevent_init_hrtimer(event);
11330 
11331 	return 0;
11332 }
11333 
11334 static struct pmu perf_task_clock = {
11335 	.task_ctx_nr	= perf_sw_context,
11336 
11337 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11338 	.dev		= PMU_NULL_DEV,
11339 
11340 	.event_init	= task_clock_event_init,
11341 	.add		= task_clock_event_add,
11342 	.del		= task_clock_event_del,
11343 	.start		= task_clock_event_start,
11344 	.stop		= task_clock_event_stop,
11345 	.read		= task_clock_event_read,
11346 };
11347 
11348 static void perf_pmu_nop_void(struct pmu *pmu)
11349 {
11350 }
11351 
11352 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11353 {
11354 }
11355 
11356 static int perf_pmu_nop_int(struct pmu *pmu)
11357 {
11358 	return 0;
11359 }
11360 
11361 static int perf_event_nop_int(struct perf_event *event, u64 value)
11362 {
11363 	return 0;
11364 }
11365 
11366 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11367 
11368 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11369 {
11370 	__this_cpu_write(nop_txn_flags, flags);
11371 
11372 	if (flags & ~PERF_PMU_TXN_ADD)
11373 		return;
11374 
11375 	perf_pmu_disable(pmu);
11376 }
11377 
11378 static int perf_pmu_commit_txn(struct pmu *pmu)
11379 {
11380 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11381 
11382 	__this_cpu_write(nop_txn_flags, 0);
11383 
11384 	if (flags & ~PERF_PMU_TXN_ADD)
11385 		return 0;
11386 
11387 	perf_pmu_enable(pmu);
11388 	return 0;
11389 }
11390 
11391 static void perf_pmu_cancel_txn(struct pmu *pmu)
11392 {
11393 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11394 
11395 	__this_cpu_write(nop_txn_flags, 0);
11396 
11397 	if (flags & ~PERF_PMU_TXN_ADD)
11398 		return;
11399 
11400 	perf_pmu_enable(pmu);
11401 }
11402 
11403 static int perf_event_idx_default(struct perf_event *event)
11404 {
11405 	return 0;
11406 }
11407 
11408 static void free_pmu_context(struct pmu *pmu)
11409 {
11410 	free_percpu(pmu->cpu_pmu_context);
11411 }
11412 
11413 /*
11414  * Let userspace know that this PMU supports address range filtering:
11415  */
11416 static ssize_t nr_addr_filters_show(struct device *dev,
11417 				    struct device_attribute *attr,
11418 				    char *page)
11419 {
11420 	struct pmu *pmu = dev_get_drvdata(dev);
11421 
11422 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11423 }
11424 DEVICE_ATTR_RO(nr_addr_filters);
11425 
11426 static struct idr pmu_idr;
11427 
11428 static ssize_t
11429 type_show(struct device *dev, struct device_attribute *attr, char *page)
11430 {
11431 	struct pmu *pmu = dev_get_drvdata(dev);
11432 
11433 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11434 }
11435 static DEVICE_ATTR_RO(type);
11436 
11437 static ssize_t
11438 perf_event_mux_interval_ms_show(struct device *dev,
11439 				struct device_attribute *attr,
11440 				char *page)
11441 {
11442 	struct pmu *pmu = dev_get_drvdata(dev);
11443 
11444 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11445 }
11446 
11447 static DEFINE_MUTEX(mux_interval_mutex);
11448 
11449 static ssize_t
11450 perf_event_mux_interval_ms_store(struct device *dev,
11451 				 struct device_attribute *attr,
11452 				 const char *buf, size_t count)
11453 {
11454 	struct pmu *pmu = dev_get_drvdata(dev);
11455 	int timer, cpu, ret;
11456 
11457 	ret = kstrtoint(buf, 0, &timer);
11458 	if (ret)
11459 		return ret;
11460 
11461 	if (timer < 1)
11462 		return -EINVAL;
11463 
11464 	/* same value, noting to do */
11465 	if (timer == pmu->hrtimer_interval_ms)
11466 		return count;
11467 
11468 	mutex_lock(&mux_interval_mutex);
11469 	pmu->hrtimer_interval_ms = timer;
11470 
11471 	/* update all cpuctx for this PMU */
11472 	cpus_read_lock();
11473 	for_each_online_cpu(cpu) {
11474 		struct perf_cpu_pmu_context *cpc;
11475 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11476 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11477 
11478 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11479 	}
11480 	cpus_read_unlock();
11481 	mutex_unlock(&mux_interval_mutex);
11482 
11483 	return count;
11484 }
11485 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11486 
11487 static struct attribute *pmu_dev_attrs[] = {
11488 	&dev_attr_type.attr,
11489 	&dev_attr_perf_event_mux_interval_ms.attr,
11490 	&dev_attr_nr_addr_filters.attr,
11491 	NULL,
11492 };
11493 
11494 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11495 {
11496 	struct device *dev = kobj_to_dev(kobj);
11497 	struct pmu *pmu = dev_get_drvdata(dev);
11498 
11499 	if (n == 2 && !pmu->nr_addr_filters)
11500 		return 0;
11501 
11502 	return a->mode;
11503 }
11504 
11505 static struct attribute_group pmu_dev_attr_group = {
11506 	.is_visible = pmu_dev_is_visible,
11507 	.attrs = pmu_dev_attrs,
11508 };
11509 
11510 static const struct attribute_group *pmu_dev_groups[] = {
11511 	&pmu_dev_attr_group,
11512 	NULL,
11513 };
11514 
11515 static int pmu_bus_running;
11516 static struct bus_type pmu_bus = {
11517 	.name		= "event_source",
11518 	.dev_groups	= pmu_dev_groups,
11519 };
11520 
11521 static void pmu_dev_release(struct device *dev)
11522 {
11523 	kfree(dev);
11524 }
11525 
11526 static int pmu_dev_alloc(struct pmu *pmu)
11527 {
11528 	int ret = -ENOMEM;
11529 
11530 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11531 	if (!pmu->dev)
11532 		goto out;
11533 
11534 	pmu->dev->groups = pmu->attr_groups;
11535 	device_initialize(pmu->dev);
11536 
11537 	dev_set_drvdata(pmu->dev, pmu);
11538 	pmu->dev->bus = &pmu_bus;
11539 	pmu->dev->parent = pmu->parent;
11540 	pmu->dev->release = pmu_dev_release;
11541 
11542 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11543 	if (ret)
11544 		goto free_dev;
11545 
11546 	ret = device_add(pmu->dev);
11547 	if (ret)
11548 		goto free_dev;
11549 
11550 	if (pmu->attr_update) {
11551 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11552 		if (ret)
11553 			goto del_dev;
11554 	}
11555 
11556 out:
11557 	return ret;
11558 
11559 del_dev:
11560 	device_del(pmu->dev);
11561 
11562 free_dev:
11563 	put_device(pmu->dev);
11564 	goto out;
11565 }
11566 
11567 static struct lock_class_key cpuctx_mutex;
11568 static struct lock_class_key cpuctx_lock;
11569 
11570 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11571 {
11572 	int cpu, ret, max = PERF_TYPE_MAX;
11573 
11574 	mutex_lock(&pmus_lock);
11575 	ret = -ENOMEM;
11576 	pmu->pmu_disable_count = alloc_percpu(int);
11577 	if (!pmu->pmu_disable_count)
11578 		goto unlock;
11579 
11580 	pmu->type = -1;
11581 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11582 		ret = -EINVAL;
11583 		goto free_pdc;
11584 	}
11585 
11586 	pmu->name = name;
11587 
11588 	if (type >= 0)
11589 		max = type;
11590 
11591 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11592 	if (ret < 0)
11593 		goto free_pdc;
11594 
11595 	WARN_ON(type >= 0 && ret != type);
11596 
11597 	type = ret;
11598 	pmu->type = type;
11599 
11600 	if (pmu_bus_running && !pmu->dev) {
11601 		ret = pmu_dev_alloc(pmu);
11602 		if (ret)
11603 			goto free_idr;
11604 	}
11605 
11606 	ret = -ENOMEM;
11607 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11608 	if (!pmu->cpu_pmu_context)
11609 		goto free_dev;
11610 
11611 	for_each_possible_cpu(cpu) {
11612 		struct perf_cpu_pmu_context *cpc;
11613 
11614 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11615 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11616 		__perf_mux_hrtimer_init(cpc, cpu);
11617 	}
11618 
11619 	if (!pmu->start_txn) {
11620 		if (pmu->pmu_enable) {
11621 			/*
11622 			 * If we have pmu_enable/pmu_disable calls, install
11623 			 * transaction stubs that use that to try and batch
11624 			 * hardware accesses.
11625 			 */
11626 			pmu->start_txn  = perf_pmu_start_txn;
11627 			pmu->commit_txn = perf_pmu_commit_txn;
11628 			pmu->cancel_txn = perf_pmu_cancel_txn;
11629 		} else {
11630 			pmu->start_txn  = perf_pmu_nop_txn;
11631 			pmu->commit_txn = perf_pmu_nop_int;
11632 			pmu->cancel_txn = perf_pmu_nop_void;
11633 		}
11634 	}
11635 
11636 	if (!pmu->pmu_enable) {
11637 		pmu->pmu_enable  = perf_pmu_nop_void;
11638 		pmu->pmu_disable = perf_pmu_nop_void;
11639 	}
11640 
11641 	if (!pmu->check_period)
11642 		pmu->check_period = perf_event_nop_int;
11643 
11644 	if (!pmu->event_idx)
11645 		pmu->event_idx = perf_event_idx_default;
11646 
11647 	list_add_rcu(&pmu->entry, &pmus);
11648 	atomic_set(&pmu->exclusive_cnt, 0);
11649 	ret = 0;
11650 unlock:
11651 	mutex_unlock(&pmus_lock);
11652 
11653 	return ret;
11654 
11655 free_dev:
11656 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11657 		device_del(pmu->dev);
11658 		put_device(pmu->dev);
11659 	}
11660 
11661 free_idr:
11662 	idr_remove(&pmu_idr, pmu->type);
11663 
11664 free_pdc:
11665 	free_percpu(pmu->pmu_disable_count);
11666 	goto unlock;
11667 }
11668 EXPORT_SYMBOL_GPL(perf_pmu_register);
11669 
11670 void perf_pmu_unregister(struct pmu *pmu)
11671 {
11672 	mutex_lock(&pmus_lock);
11673 	list_del_rcu(&pmu->entry);
11674 
11675 	/*
11676 	 * We dereference the pmu list under both SRCU and regular RCU, so
11677 	 * synchronize against both of those.
11678 	 */
11679 	synchronize_srcu(&pmus_srcu);
11680 	synchronize_rcu();
11681 
11682 	free_percpu(pmu->pmu_disable_count);
11683 	idr_remove(&pmu_idr, pmu->type);
11684 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11685 		if (pmu->nr_addr_filters)
11686 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11687 		device_del(pmu->dev);
11688 		put_device(pmu->dev);
11689 	}
11690 	free_pmu_context(pmu);
11691 	mutex_unlock(&pmus_lock);
11692 }
11693 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11694 
11695 static inline bool has_extended_regs(struct perf_event *event)
11696 {
11697 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11698 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11699 }
11700 
11701 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11702 {
11703 	struct perf_event_context *ctx = NULL;
11704 	int ret;
11705 
11706 	if (!try_module_get(pmu->module))
11707 		return -ENODEV;
11708 
11709 	/*
11710 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11711 	 * for example, validate if the group fits on the PMU. Therefore,
11712 	 * if this is a sibling event, acquire the ctx->mutex to protect
11713 	 * the sibling_list.
11714 	 */
11715 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11716 		/*
11717 		 * This ctx->mutex can nest when we're called through
11718 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11719 		 */
11720 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11721 						 SINGLE_DEPTH_NESTING);
11722 		BUG_ON(!ctx);
11723 	}
11724 
11725 	event->pmu = pmu;
11726 	ret = pmu->event_init(event);
11727 
11728 	if (ctx)
11729 		perf_event_ctx_unlock(event->group_leader, ctx);
11730 
11731 	if (!ret) {
11732 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11733 		    has_extended_regs(event))
11734 			ret = -EOPNOTSUPP;
11735 
11736 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11737 		    event_has_any_exclude_flag(event))
11738 			ret = -EINVAL;
11739 
11740 		if (ret && event->destroy)
11741 			event->destroy(event);
11742 	}
11743 
11744 	if (ret)
11745 		module_put(pmu->module);
11746 
11747 	return ret;
11748 }
11749 
11750 static struct pmu *perf_init_event(struct perf_event *event)
11751 {
11752 	bool extended_type = false;
11753 	int idx, type, ret;
11754 	struct pmu *pmu;
11755 
11756 	idx = srcu_read_lock(&pmus_srcu);
11757 
11758 	/*
11759 	 * Save original type before calling pmu->event_init() since certain
11760 	 * pmus overwrites event->attr.type to forward event to another pmu.
11761 	 */
11762 	event->orig_type = event->attr.type;
11763 
11764 	/* Try parent's PMU first: */
11765 	if (event->parent && event->parent->pmu) {
11766 		pmu = event->parent->pmu;
11767 		ret = perf_try_init_event(pmu, event);
11768 		if (!ret)
11769 			goto unlock;
11770 	}
11771 
11772 	/*
11773 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11774 	 * are often aliases for PERF_TYPE_RAW.
11775 	 */
11776 	type = event->attr.type;
11777 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11778 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11779 		if (!type) {
11780 			type = PERF_TYPE_RAW;
11781 		} else {
11782 			extended_type = true;
11783 			event->attr.config &= PERF_HW_EVENT_MASK;
11784 		}
11785 	}
11786 
11787 again:
11788 	rcu_read_lock();
11789 	pmu = idr_find(&pmu_idr, type);
11790 	rcu_read_unlock();
11791 	if (pmu) {
11792 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11793 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11794 			goto fail;
11795 
11796 		ret = perf_try_init_event(pmu, event);
11797 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11798 			type = event->attr.type;
11799 			goto again;
11800 		}
11801 
11802 		if (ret)
11803 			pmu = ERR_PTR(ret);
11804 
11805 		goto unlock;
11806 	}
11807 
11808 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11809 		ret = perf_try_init_event(pmu, event);
11810 		if (!ret)
11811 			goto unlock;
11812 
11813 		if (ret != -ENOENT) {
11814 			pmu = ERR_PTR(ret);
11815 			goto unlock;
11816 		}
11817 	}
11818 fail:
11819 	pmu = ERR_PTR(-ENOENT);
11820 unlock:
11821 	srcu_read_unlock(&pmus_srcu, idx);
11822 
11823 	return pmu;
11824 }
11825 
11826 static void attach_sb_event(struct perf_event *event)
11827 {
11828 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11829 
11830 	raw_spin_lock(&pel->lock);
11831 	list_add_rcu(&event->sb_list, &pel->list);
11832 	raw_spin_unlock(&pel->lock);
11833 }
11834 
11835 /*
11836  * We keep a list of all !task (and therefore per-cpu) events
11837  * that need to receive side-band records.
11838  *
11839  * This avoids having to scan all the various PMU per-cpu contexts
11840  * looking for them.
11841  */
11842 static void account_pmu_sb_event(struct perf_event *event)
11843 {
11844 	if (is_sb_event(event))
11845 		attach_sb_event(event);
11846 }
11847 
11848 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11849 static void account_freq_event_nohz(void)
11850 {
11851 #ifdef CONFIG_NO_HZ_FULL
11852 	/* Lock so we don't race with concurrent unaccount */
11853 	spin_lock(&nr_freq_lock);
11854 	if (atomic_inc_return(&nr_freq_events) == 1)
11855 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11856 	spin_unlock(&nr_freq_lock);
11857 #endif
11858 }
11859 
11860 static void account_freq_event(void)
11861 {
11862 	if (tick_nohz_full_enabled())
11863 		account_freq_event_nohz();
11864 	else
11865 		atomic_inc(&nr_freq_events);
11866 }
11867 
11868 
11869 static void account_event(struct perf_event *event)
11870 {
11871 	bool inc = false;
11872 
11873 	if (event->parent)
11874 		return;
11875 
11876 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11877 		inc = true;
11878 	if (event->attr.mmap || event->attr.mmap_data)
11879 		atomic_inc(&nr_mmap_events);
11880 	if (event->attr.build_id)
11881 		atomic_inc(&nr_build_id_events);
11882 	if (event->attr.comm)
11883 		atomic_inc(&nr_comm_events);
11884 	if (event->attr.namespaces)
11885 		atomic_inc(&nr_namespaces_events);
11886 	if (event->attr.cgroup)
11887 		atomic_inc(&nr_cgroup_events);
11888 	if (event->attr.task)
11889 		atomic_inc(&nr_task_events);
11890 	if (event->attr.freq)
11891 		account_freq_event();
11892 	if (event->attr.context_switch) {
11893 		atomic_inc(&nr_switch_events);
11894 		inc = true;
11895 	}
11896 	if (has_branch_stack(event))
11897 		inc = true;
11898 	if (is_cgroup_event(event))
11899 		inc = true;
11900 	if (event->attr.ksymbol)
11901 		atomic_inc(&nr_ksymbol_events);
11902 	if (event->attr.bpf_event)
11903 		atomic_inc(&nr_bpf_events);
11904 	if (event->attr.text_poke)
11905 		atomic_inc(&nr_text_poke_events);
11906 
11907 	if (inc) {
11908 		/*
11909 		 * We need the mutex here because static_branch_enable()
11910 		 * must complete *before* the perf_sched_count increment
11911 		 * becomes visible.
11912 		 */
11913 		if (atomic_inc_not_zero(&perf_sched_count))
11914 			goto enabled;
11915 
11916 		mutex_lock(&perf_sched_mutex);
11917 		if (!atomic_read(&perf_sched_count)) {
11918 			static_branch_enable(&perf_sched_events);
11919 			/*
11920 			 * Guarantee that all CPUs observe they key change and
11921 			 * call the perf scheduling hooks before proceeding to
11922 			 * install events that need them.
11923 			 */
11924 			synchronize_rcu();
11925 		}
11926 		/*
11927 		 * Now that we have waited for the sync_sched(), allow further
11928 		 * increments to by-pass the mutex.
11929 		 */
11930 		atomic_inc(&perf_sched_count);
11931 		mutex_unlock(&perf_sched_mutex);
11932 	}
11933 enabled:
11934 
11935 	account_pmu_sb_event(event);
11936 }
11937 
11938 /*
11939  * Allocate and initialize an event structure
11940  */
11941 static struct perf_event *
11942 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11943 		 struct task_struct *task,
11944 		 struct perf_event *group_leader,
11945 		 struct perf_event *parent_event,
11946 		 perf_overflow_handler_t overflow_handler,
11947 		 void *context, int cgroup_fd)
11948 {
11949 	struct pmu *pmu;
11950 	struct perf_event *event;
11951 	struct hw_perf_event *hwc;
11952 	long err = -EINVAL;
11953 	int node;
11954 
11955 	if ((unsigned)cpu >= nr_cpu_ids) {
11956 		if (!task || cpu != -1)
11957 			return ERR_PTR(-EINVAL);
11958 	}
11959 	if (attr->sigtrap && !task) {
11960 		/* Requires a task: avoid signalling random tasks. */
11961 		return ERR_PTR(-EINVAL);
11962 	}
11963 
11964 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11965 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11966 				      node);
11967 	if (!event)
11968 		return ERR_PTR(-ENOMEM);
11969 
11970 	/*
11971 	 * Single events are their own group leaders, with an
11972 	 * empty sibling list:
11973 	 */
11974 	if (!group_leader)
11975 		group_leader = event;
11976 
11977 	mutex_init(&event->child_mutex);
11978 	INIT_LIST_HEAD(&event->child_list);
11979 
11980 	INIT_LIST_HEAD(&event->event_entry);
11981 	INIT_LIST_HEAD(&event->sibling_list);
11982 	INIT_LIST_HEAD(&event->active_list);
11983 	init_event_group(event);
11984 	INIT_LIST_HEAD(&event->rb_entry);
11985 	INIT_LIST_HEAD(&event->active_entry);
11986 	INIT_LIST_HEAD(&event->addr_filters.list);
11987 	INIT_HLIST_NODE(&event->hlist_entry);
11988 
11989 
11990 	init_waitqueue_head(&event->waitq);
11991 	init_irq_work(&event->pending_irq, perf_pending_irq);
11992 	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
11993 	init_task_work(&event->pending_task, perf_pending_task);
11994 	rcuwait_init(&event->pending_work_wait);
11995 
11996 	mutex_init(&event->mmap_mutex);
11997 	raw_spin_lock_init(&event->addr_filters.lock);
11998 
11999 	atomic_long_set(&event->refcount, 1);
12000 	event->cpu		= cpu;
12001 	event->attr		= *attr;
12002 	event->group_leader	= group_leader;
12003 	event->pmu		= NULL;
12004 	event->oncpu		= -1;
12005 
12006 	event->parent		= parent_event;
12007 
12008 	event->ns		= get_pid_ns(task_active_pid_ns(current));
12009 	event->id		= atomic64_inc_return(&perf_event_id);
12010 
12011 	event->state		= PERF_EVENT_STATE_INACTIVE;
12012 
12013 	if (parent_event)
12014 		event->event_caps = parent_event->event_caps;
12015 
12016 	if (task) {
12017 		event->attach_state = PERF_ATTACH_TASK;
12018 		/*
12019 		 * XXX pmu::event_init needs to know what task to account to
12020 		 * and we cannot use the ctx information because we need the
12021 		 * pmu before we get a ctx.
12022 		 */
12023 		event->hw.target = get_task_struct(task);
12024 	}
12025 
12026 	event->clock = &local_clock;
12027 	if (parent_event)
12028 		event->clock = parent_event->clock;
12029 
12030 	if (!overflow_handler && parent_event) {
12031 		overflow_handler = parent_event->overflow_handler;
12032 		context = parent_event->overflow_handler_context;
12033 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12034 		if (parent_event->prog) {
12035 			struct bpf_prog *prog = parent_event->prog;
12036 
12037 			bpf_prog_inc(prog);
12038 			event->prog = prog;
12039 		}
12040 #endif
12041 	}
12042 
12043 	if (overflow_handler) {
12044 		event->overflow_handler	= overflow_handler;
12045 		event->overflow_handler_context = context;
12046 	} else if (is_write_backward(event)){
12047 		event->overflow_handler = perf_event_output_backward;
12048 		event->overflow_handler_context = NULL;
12049 	} else {
12050 		event->overflow_handler = perf_event_output_forward;
12051 		event->overflow_handler_context = NULL;
12052 	}
12053 
12054 	perf_event__state_init(event);
12055 
12056 	pmu = NULL;
12057 
12058 	hwc = &event->hw;
12059 	hwc->sample_period = attr->sample_period;
12060 	if (attr->freq && attr->sample_freq)
12061 		hwc->sample_period = 1;
12062 	hwc->last_period = hwc->sample_period;
12063 
12064 	local64_set(&hwc->period_left, hwc->sample_period);
12065 
12066 	/*
12067 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
12068 	 * See perf_output_read().
12069 	 */
12070 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
12071 		goto err_ns;
12072 
12073 	if (!has_branch_stack(event))
12074 		event->attr.branch_sample_type = 0;
12075 
12076 	pmu = perf_init_event(event);
12077 	if (IS_ERR(pmu)) {
12078 		err = PTR_ERR(pmu);
12079 		goto err_ns;
12080 	}
12081 
12082 	/*
12083 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12084 	 * events (they don't make sense as the cgroup will be different
12085 	 * on other CPUs in the uncore mask).
12086 	 */
12087 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12088 		err = -EINVAL;
12089 		goto err_pmu;
12090 	}
12091 
12092 	if (event->attr.aux_output &&
12093 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12094 		err = -EOPNOTSUPP;
12095 		goto err_pmu;
12096 	}
12097 
12098 	if (cgroup_fd != -1) {
12099 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12100 		if (err)
12101 			goto err_pmu;
12102 	}
12103 
12104 	err = exclusive_event_init(event);
12105 	if (err)
12106 		goto err_pmu;
12107 
12108 	if (has_addr_filter(event)) {
12109 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12110 						    sizeof(struct perf_addr_filter_range),
12111 						    GFP_KERNEL);
12112 		if (!event->addr_filter_ranges) {
12113 			err = -ENOMEM;
12114 			goto err_per_task;
12115 		}
12116 
12117 		/*
12118 		 * Clone the parent's vma offsets: they are valid until exec()
12119 		 * even if the mm is not shared with the parent.
12120 		 */
12121 		if (event->parent) {
12122 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12123 
12124 			raw_spin_lock_irq(&ifh->lock);
12125 			memcpy(event->addr_filter_ranges,
12126 			       event->parent->addr_filter_ranges,
12127 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12128 			raw_spin_unlock_irq(&ifh->lock);
12129 		}
12130 
12131 		/* force hw sync on the address filters */
12132 		event->addr_filters_gen = 1;
12133 	}
12134 
12135 	if (!event->parent) {
12136 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12137 			err = get_callchain_buffers(attr->sample_max_stack);
12138 			if (err)
12139 				goto err_addr_filters;
12140 		}
12141 	}
12142 
12143 	err = security_perf_event_alloc(event);
12144 	if (err)
12145 		goto err_callchain_buffer;
12146 
12147 	/* symmetric to unaccount_event() in _free_event() */
12148 	account_event(event);
12149 
12150 	return event;
12151 
12152 err_callchain_buffer:
12153 	if (!event->parent) {
12154 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12155 			put_callchain_buffers();
12156 	}
12157 err_addr_filters:
12158 	kfree(event->addr_filter_ranges);
12159 
12160 err_per_task:
12161 	exclusive_event_destroy(event);
12162 
12163 err_pmu:
12164 	if (is_cgroup_event(event))
12165 		perf_detach_cgroup(event);
12166 	if (event->destroy)
12167 		event->destroy(event);
12168 	module_put(pmu->module);
12169 err_ns:
12170 	if (event->hw.target)
12171 		put_task_struct(event->hw.target);
12172 	call_rcu(&event->rcu_head, free_event_rcu);
12173 
12174 	return ERR_PTR(err);
12175 }
12176 
12177 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12178 			  struct perf_event_attr *attr)
12179 {
12180 	u32 size;
12181 	int ret;
12182 
12183 	/* Zero the full structure, so that a short copy will be nice. */
12184 	memset(attr, 0, sizeof(*attr));
12185 
12186 	ret = get_user(size, &uattr->size);
12187 	if (ret)
12188 		return ret;
12189 
12190 	/* ABI compatibility quirk: */
12191 	if (!size)
12192 		size = PERF_ATTR_SIZE_VER0;
12193 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12194 		goto err_size;
12195 
12196 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12197 	if (ret) {
12198 		if (ret == -E2BIG)
12199 			goto err_size;
12200 		return ret;
12201 	}
12202 
12203 	attr->size = size;
12204 
12205 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12206 		return -EINVAL;
12207 
12208 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12209 		return -EINVAL;
12210 
12211 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12212 		return -EINVAL;
12213 
12214 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12215 		u64 mask = attr->branch_sample_type;
12216 
12217 		/* only using defined bits */
12218 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12219 			return -EINVAL;
12220 
12221 		/* at least one branch bit must be set */
12222 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12223 			return -EINVAL;
12224 
12225 		/* propagate priv level, when not set for branch */
12226 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12227 
12228 			/* exclude_kernel checked on syscall entry */
12229 			if (!attr->exclude_kernel)
12230 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12231 
12232 			if (!attr->exclude_user)
12233 				mask |= PERF_SAMPLE_BRANCH_USER;
12234 
12235 			if (!attr->exclude_hv)
12236 				mask |= PERF_SAMPLE_BRANCH_HV;
12237 			/*
12238 			 * adjust user setting (for HW filter setup)
12239 			 */
12240 			attr->branch_sample_type = mask;
12241 		}
12242 		/* privileged levels capture (kernel, hv): check permissions */
12243 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12244 			ret = perf_allow_kernel(attr);
12245 			if (ret)
12246 				return ret;
12247 		}
12248 	}
12249 
12250 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12251 		ret = perf_reg_validate(attr->sample_regs_user);
12252 		if (ret)
12253 			return ret;
12254 	}
12255 
12256 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12257 		if (!arch_perf_have_user_stack_dump())
12258 			return -ENOSYS;
12259 
12260 		/*
12261 		 * We have __u32 type for the size, but so far
12262 		 * we can only use __u16 as maximum due to the
12263 		 * __u16 sample size limit.
12264 		 */
12265 		if (attr->sample_stack_user >= USHRT_MAX)
12266 			return -EINVAL;
12267 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12268 			return -EINVAL;
12269 	}
12270 
12271 	if (!attr->sample_max_stack)
12272 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12273 
12274 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12275 		ret = perf_reg_validate(attr->sample_regs_intr);
12276 
12277 #ifndef CONFIG_CGROUP_PERF
12278 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12279 		return -EINVAL;
12280 #endif
12281 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12282 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12283 		return -EINVAL;
12284 
12285 	if (!attr->inherit && attr->inherit_thread)
12286 		return -EINVAL;
12287 
12288 	if (attr->remove_on_exec && attr->enable_on_exec)
12289 		return -EINVAL;
12290 
12291 	if (attr->sigtrap && !attr->remove_on_exec)
12292 		return -EINVAL;
12293 
12294 out:
12295 	return ret;
12296 
12297 err_size:
12298 	put_user(sizeof(*attr), &uattr->size);
12299 	ret = -E2BIG;
12300 	goto out;
12301 }
12302 
12303 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12304 {
12305 	if (b < a)
12306 		swap(a, b);
12307 
12308 	mutex_lock(a);
12309 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12310 }
12311 
12312 static int
12313 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12314 {
12315 	struct perf_buffer *rb = NULL;
12316 	int ret = -EINVAL;
12317 
12318 	if (!output_event) {
12319 		mutex_lock(&event->mmap_mutex);
12320 		goto set;
12321 	}
12322 
12323 	/* don't allow circular references */
12324 	if (event == output_event)
12325 		goto out;
12326 
12327 	/*
12328 	 * Don't allow cross-cpu buffers
12329 	 */
12330 	if (output_event->cpu != event->cpu)
12331 		goto out;
12332 
12333 	/*
12334 	 * If its not a per-cpu rb, it must be the same task.
12335 	 */
12336 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12337 		goto out;
12338 
12339 	/*
12340 	 * Mixing clocks in the same buffer is trouble you don't need.
12341 	 */
12342 	if (output_event->clock != event->clock)
12343 		goto out;
12344 
12345 	/*
12346 	 * Either writing ring buffer from beginning or from end.
12347 	 * Mixing is not allowed.
12348 	 */
12349 	if (is_write_backward(output_event) != is_write_backward(event))
12350 		goto out;
12351 
12352 	/*
12353 	 * If both events generate aux data, they must be on the same PMU
12354 	 */
12355 	if (has_aux(event) && has_aux(output_event) &&
12356 	    event->pmu != output_event->pmu)
12357 		goto out;
12358 
12359 	/*
12360 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12361 	 * output_event is already on rb->event_list, and the list iteration
12362 	 * restarts after every removal, it is guaranteed this new event is
12363 	 * observed *OR* if output_event is already removed, it's guaranteed we
12364 	 * observe !rb->mmap_count.
12365 	 */
12366 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12367 set:
12368 	/* Can't redirect output if we've got an active mmap() */
12369 	if (atomic_read(&event->mmap_count))
12370 		goto unlock;
12371 
12372 	if (output_event) {
12373 		/* get the rb we want to redirect to */
12374 		rb = ring_buffer_get(output_event);
12375 		if (!rb)
12376 			goto unlock;
12377 
12378 		/* did we race against perf_mmap_close() */
12379 		if (!atomic_read(&rb->mmap_count)) {
12380 			ring_buffer_put(rb);
12381 			goto unlock;
12382 		}
12383 	}
12384 
12385 	ring_buffer_attach(event, rb);
12386 
12387 	ret = 0;
12388 unlock:
12389 	mutex_unlock(&event->mmap_mutex);
12390 	if (output_event)
12391 		mutex_unlock(&output_event->mmap_mutex);
12392 
12393 out:
12394 	return ret;
12395 }
12396 
12397 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12398 {
12399 	bool nmi_safe = false;
12400 
12401 	switch (clk_id) {
12402 	case CLOCK_MONOTONIC:
12403 		event->clock = &ktime_get_mono_fast_ns;
12404 		nmi_safe = true;
12405 		break;
12406 
12407 	case CLOCK_MONOTONIC_RAW:
12408 		event->clock = &ktime_get_raw_fast_ns;
12409 		nmi_safe = true;
12410 		break;
12411 
12412 	case CLOCK_REALTIME:
12413 		event->clock = &ktime_get_real_ns;
12414 		break;
12415 
12416 	case CLOCK_BOOTTIME:
12417 		event->clock = &ktime_get_boottime_ns;
12418 		break;
12419 
12420 	case CLOCK_TAI:
12421 		event->clock = &ktime_get_clocktai_ns;
12422 		break;
12423 
12424 	default:
12425 		return -EINVAL;
12426 	}
12427 
12428 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12429 		return -EINVAL;
12430 
12431 	return 0;
12432 }
12433 
12434 static bool
12435 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12436 {
12437 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12438 	bool is_capable = perfmon_capable();
12439 
12440 	if (attr->sigtrap) {
12441 		/*
12442 		 * perf_event_attr::sigtrap sends signals to the other task.
12443 		 * Require the current task to also have CAP_KILL.
12444 		 */
12445 		rcu_read_lock();
12446 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12447 		rcu_read_unlock();
12448 
12449 		/*
12450 		 * If the required capabilities aren't available, checks for
12451 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12452 		 * can effectively change the target task.
12453 		 */
12454 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12455 	}
12456 
12457 	/*
12458 	 * Preserve ptrace permission check for backwards compatibility. The
12459 	 * ptrace check also includes checks that the current task and other
12460 	 * task have matching uids, and is therefore not done here explicitly.
12461 	 */
12462 	return is_capable || ptrace_may_access(task, ptrace_mode);
12463 }
12464 
12465 /**
12466  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12467  *
12468  * @attr_uptr:	event_id type attributes for monitoring/sampling
12469  * @pid:		target pid
12470  * @cpu:		target cpu
12471  * @group_fd:		group leader event fd
12472  * @flags:		perf event open flags
12473  */
12474 SYSCALL_DEFINE5(perf_event_open,
12475 		struct perf_event_attr __user *, attr_uptr,
12476 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12477 {
12478 	struct perf_event *group_leader = NULL, *output_event = NULL;
12479 	struct perf_event_pmu_context *pmu_ctx;
12480 	struct perf_event *event, *sibling;
12481 	struct perf_event_attr attr;
12482 	struct perf_event_context *ctx;
12483 	struct file *event_file = NULL;
12484 	struct fd group = {NULL, 0};
12485 	struct task_struct *task = NULL;
12486 	struct pmu *pmu;
12487 	int event_fd;
12488 	int move_group = 0;
12489 	int err;
12490 	int f_flags = O_RDWR;
12491 	int cgroup_fd = -1;
12492 
12493 	/* for future expandability... */
12494 	if (flags & ~PERF_FLAG_ALL)
12495 		return -EINVAL;
12496 
12497 	err = perf_copy_attr(attr_uptr, &attr);
12498 	if (err)
12499 		return err;
12500 
12501 	/* Do we allow access to perf_event_open(2) ? */
12502 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12503 	if (err)
12504 		return err;
12505 
12506 	if (!attr.exclude_kernel) {
12507 		err = perf_allow_kernel(&attr);
12508 		if (err)
12509 			return err;
12510 	}
12511 
12512 	if (attr.namespaces) {
12513 		if (!perfmon_capable())
12514 			return -EACCES;
12515 	}
12516 
12517 	if (attr.freq) {
12518 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12519 			return -EINVAL;
12520 	} else {
12521 		if (attr.sample_period & (1ULL << 63))
12522 			return -EINVAL;
12523 	}
12524 
12525 	/* Only privileged users can get physical addresses */
12526 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12527 		err = perf_allow_kernel(&attr);
12528 		if (err)
12529 			return err;
12530 	}
12531 
12532 	/* REGS_INTR can leak data, lockdown must prevent this */
12533 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12534 		err = security_locked_down(LOCKDOWN_PERF);
12535 		if (err)
12536 			return err;
12537 	}
12538 
12539 	/*
12540 	 * In cgroup mode, the pid argument is used to pass the fd
12541 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12542 	 * designates the cpu on which to monitor threads from that
12543 	 * cgroup.
12544 	 */
12545 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12546 		return -EINVAL;
12547 
12548 	if (flags & PERF_FLAG_FD_CLOEXEC)
12549 		f_flags |= O_CLOEXEC;
12550 
12551 	event_fd = get_unused_fd_flags(f_flags);
12552 	if (event_fd < 0)
12553 		return event_fd;
12554 
12555 	if (group_fd != -1) {
12556 		err = perf_fget_light(group_fd, &group);
12557 		if (err)
12558 			goto err_fd;
12559 		group_leader = group.file->private_data;
12560 		if (flags & PERF_FLAG_FD_OUTPUT)
12561 			output_event = group_leader;
12562 		if (flags & PERF_FLAG_FD_NO_GROUP)
12563 			group_leader = NULL;
12564 	}
12565 
12566 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12567 		task = find_lively_task_by_vpid(pid);
12568 		if (IS_ERR(task)) {
12569 			err = PTR_ERR(task);
12570 			goto err_group_fd;
12571 		}
12572 	}
12573 
12574 	if (task && group_leader &&
12575 	    group_leader->attr.inherit != attr.inherit) {
12576 		err = -EINVAL;
12577 		goto err_task;
12578 	}
12579 
12580 	if (flags & PERF_FLAG_PID_CGROUP)
12581 		cgroup_fd = pid;
12582 
12583 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12584 				 NULL, NULL, cgroup_fd);
12585 	if (IS_ERR(event)) {
12586 		err = PTR_ERR(event);
12587 		goto err_task;
12588 	}
12589 
12590 	if (is_sampling_event(event)) {
12591 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12592 			err = -EOPNOTSUPP;
12593 			goto err_alloc;
12594 		}
12595 	}
12596 
12597 	/*
12598 	 * Special case software events and allow them to be part of
12599 	 * any hardware group.
12600 	 */
12601 	pmu = event->pmu;
12602 
12603 	if (attr.use_clockid) {
12604 		err = perf_event_set_clock(event, attr.clockid);
12605 		if (err)
12606 			goto err_alloc;
12607 	}
12608 
12609 	if (pmu->task_ctx_nr == perf_sw_context)
12610 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12611 
12612 	if (task) {
12613 		err = down_read_interruptible(&task->signal->exec_update_lock);
12614 		if (err)
12615 			goto err_alloc;
12616 
12617 		/*
12618 		 * We must hold exec_update_lock across this and any potential
12619 		 * perf_install_in_context() call for this new event to
12620 		 * serialize against exec() altering our credentials (and the
12621 		 * perf_event_exit_task() that could imply).
12622 		 */
12623 		err = -EACCES;
12624 		if (!perf_check_permission(&attr, task))
12625 			goto err_cred;
12626 	}
12627 
12628 	/*
12629 	 * Get the target context (task or percpu):
12630 	 */
12631 	ctx = find_get_context(task, event);
12632 	if (IS_ERR(ctx)) {
12633 		err = PTR_ERR(ctx);
12634 		goto err_cred;
12635 	}
12636 
12637 	mutex_lock(&ctx->mutex);
12638 
12639 	if (ctx->task == TASK_TOMBSTONE) {
12640 		err = -ESRCH;
12641 		goto err_locked;
12642 	}
12643 
12644 	if (!task) {
12645 		/*
12646 		 * Check if the @cpu we're creating an event for is online.
12647 		 *
12648 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12649 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12650 		 */
12651 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12652 
12653 		if (!cpuctx->online) {
12654 			err = -ENODEV;
12655 			goto err_locked;
12656 		}
12657 	}
12658 
12659 	if (group_leader) {
12660 		err = -EINVAL;
12661 
12662 		/*
12663 		 * Do not allow a recursive hierarchy (this new sibling
12664 		 * becoming part of another group-sibling):
12665 		 */
12666 		if (group_leader->group_leader != group_leader)
12667 			goto err_locked;
12668 
12669 		/* All events in a group should have the same clock */
12670 		if (group_leader->clock != event->clock)
12671 			goto err_locked;
12672 
12673 		/*
12674 		 * Make sure we're both events for the same CPU;
12675 		 * grouping events for different CPUs is broken; since
12676 		 * you can never concurrently schedule them anyhow.
12677 		 */
12678 		if (group_leader->cpu != event->cpu)
12679 			goto err_locked;
12680 
12681 		/*
12682 		 * Make sure we're both on the same context; either task or cpu.
12683 		 */
12684 		if (group_leader->ctx != ctx)
12685 			goto err_locked;
12686 
12687 		/*
12688 		 * Only a group leader can be exclusive or pinned
12689 		 */
12690 		if (attr.exclusive || attr.pinned)
12691 			goto err_locked;
12692 
12693 		if (is_software_event(event) &&
12694 		    !in_software_context(group_leader)) {
12695 			/*
12696 			 * If the event is a sw event, but the group_leader
12697 			 * is on hw context.
12698 			 *
12699 			 * Allow the addition of software events to hw
12700 			 * groups, this is safe because software events
12701 			 * never fail to schedule.
12702 			 *
12703 			 * Note the comment that goes with struct
12704 			 * perf_event_pmu_context.
12705 			 */
12706 			pmu = group_leader->pmu_ctx->pmu;
12707 		} else if (!is_software_event(event)) {
12708 			if (is_software_event(group_leader) &&
12709 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12710 				/*
12711 				 * In case the group is a pure software group, and we
12712 				 * try to add a hardware event, move the whole group to
12713 				 * the hardware context.
12714 				 */
12715 				move_group = 1;
12716 			}
12717 
12718 			/* Don't allow group of multiple hw events from different pmus */
12719 			if (!in_software_context(group_leader) &&
12720 			    group_leader->pmu_ctx->pmu != pmu)
12721 				goto err_locked;
12722 		}
12723 	}
12724 
12725 	/*
12726 	 * Now that we're certain of the pmu; find the pmu_ctx.
12727 	 */
12728 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12729 	if (IS_ERR(pmu_ctx)) {
12730 		err = PTR_ERR(pmu_ctx);
12731 		goto err_locked;
12732 	}
12733 	event->pmu_ctx = pmu_ctx;
12734 
12735 	if (output_event) {
12736 		err = perf_event_set_output(event, output_event);
12737 		if (err)
12738 			goto err_context;
12739 	}
12740 
12741 	if (!perf_event_validate_size(event)) {
12742 		err = -E2BIG;
12743 		goto err_context;
12744 	}
12745 
12746 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12747 		err = -EINVAL;
12748 		goto err_context;
12749 	}
12750 
12751 	/*
12752 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12753 	 * because we need to serialize with concurrent event creation.
12754 	 */
12755 	if (!exclusive_event_installable(event, ctx)) {
12756 		err = -EBUSY;
12757 		goto err_context;
12758 	}
12759 
12760 	WARN_ON_ONCE(ctx->parent_ctx);
12761 
12762 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12763 	if (IS_ERR(event_file)) {
12764 		err = PTR_ERR(event_file);
12765 		event_file = NULL;
12766 		goto err_context;
12767 	}
12768 
12769 	/*
12770 	 * This is the point on no return; we cannot fail hereafter. This is
12771 	 * where we start modifying current state.
12772 	 */
12773 
12774 	if (move_group) {
12775 		perf_remove_from_context(group_leader, 0);
12776 		put_pmu_ctx(group_leader->pmu_ctx);
12777 
12778 		for_each_sibling_event(sibling, group_leader) {
12779 			perf_remove_from_context(sibling, 0);
12780 			put_pmu_ctx(sibling->pmu_ctx);
12781 		}
12782 
12783 		/*
12784 		 * Install the group siblings before the group leader.
12785 		 *
12786 		 * Because a group leader will try and install the entire group
12787 		 * (through the sibling list, which is still in-tact), we can
12788 		 * end up with siblings installed in the wrong context.
12789 		 *
12790 		 * By installing siblings first we NO-OP because they're not
12791 		 * reachable through the group lists.
12792 		 */
12793 		for_each_sibling_event(sibling, group_leader) {
12794 			sibling->pmu_ctx = pmu_ctx;
12795 			get_pmu_ctx(pmu_ctx);
12796 			perf_event__state_init(sibling);
12797 			perf_install_in_context(ctx, sibling, sibling->cpu);
12798 		}
12799 
12800 		/*
12801 		 * Removing from the context ends up with disabled
12802 		 * event. What we want here is event in the initial
12803 		 * startup state, ready to be add into new context.
12804 		 */
12805 		group_leader->pmu_ctx = pmu_ctx;
12806 		get_pmu_ctx(pmu_ctx);
12807 		perf_event__state_init(group_leader);
12808 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12809 	}
12810 
12811 	/*
12812 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12813 	 * that we're serialized against further additions and before
12814 	 * perf_install_in_context() which is the point the event is active and
12815 	 * can use these values.
12816 	 */
12817 	perf_event__header_size(event);
12818 	perf_event__id_header_size(event);
12819 
12820 	event->owner = current;
12821 
12822 	perf_install_in_context(ctx, event, event->cpu);
12823 	perf_unpin_context(ctx);
12824 
12825 	mutex_unlock(&ctx->mutex);
12826 
12827 	if (task) {
12828 		up_read(&task->signal->exec_update_lock);
12829 		put_task_struct(task);
12830 	}
12831 
12832 	mutex_lock(&current->perf_event_mutex);
12833 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12834 	mutex_unlock(&current->perf_event_mutex);
12835 
12836 	/*
12837 	 * Drop the reference on the group_event after placing the
12838 	 * new event on the sibling_list. This ensures destruction
12839 	 * of the group leader will find the pointer to itself in
12840 	 * perf_group_detach().
12841 	 */
12842 	fdput(group);
12843 	fd_install(event_fd, event_file);
12844 	return event_fd;
12845 
12846 err_context:
12847 	put_pmu_ctx(event->pmu_ctx);
12848 	event->pmu_ctx = NULL; /* _free_event() */
12849 err_locked:
12850 	mutex_unlock(&ctx->mutex);
12851 	perf_unpin_context(ctx);
12852 	put_ctx(ctx);
12853 err_cred:
12854 	if (task)
12855 		up_read(&task->signal->exec_update_lock);
12856 err_alloc:
12857 	free_event(event);
12858 err_task:
12859 	if (task)
12860 		put_task_struct(task);
12861 err_group_fd:
12862 	fdput(group);
12863 err_fd:
12864 	put_unused_fd(event_fd);
12865 	return err;
12866 }
12867 
12868 /**
12869  * perf_event_create_kernel_counter
12870  *
12871  * @attr: attributes of the counter to create
12872  * @cpu: cpu in which the counter is bound
12873  * @task: task to profile (NULL for percpu)
12874  * @overflow_handler: callback to trigger when we hit the event
12875  * @context: context data could be used in overflow_handler callback
12876  */
12877 struct perf_event *
12878 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12879 				 struct task_struct *task,
12880 				 perf_overflow_handler_t overflow_handler,
12881 				 void *context)
12882 {
12883 	struct perf_event_pmu_context *pmu_ctx;
12884 	struct perf_event_context *ctx;
12885 	struct perf_event *event;
12886 	struct pmu *pmu;
12887 	int err;
12888 
12889 	/*
12890 	 * Grouping is not supported for kernel events, neither is 'AUX',
12891 	 * make sure the caller's intentions are adjusted.
12892 	 */
12893 	if (attr->aux_output)
12894 		return ERR_PTR(-EINVAL);
12895 
12896 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12897 				 overflow_handler, context, -1);
12898 	if (IS_ERR(event)) {
12899 		err = PTR_ERR(event);
12900 		goto err;
12901 	}
12902 
12903 	/* Mark owner so we could distinguish it from user events. */
12904 	event->owner = TASK_TOMBSTONE;
12905 	pmu = event->pmu;
12906 
12907 	if (pmu->task_ctx_nr == perf_sw_context)
12908 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12909 
12910 	/*
12911 	 * Get the target context (task or percpu):
12912 	 */
12913 	ctx = find_get_context(task, event);
12914 	if (IS_ERR(ctx)) {
12915 		err = PTR_ERR(ctx);
12916 		goto err_alloc;
12917 	}
12918 
12919 	WARN_ON_ONCE(ctx->parent_ctx);
12920 	mutex_lock(&ctx->mutex);
12921 	if (ctx->task == TASK_TOMBSTONE) {
12922 		err = -ESRCH;
12923 		goto err_unlock;
12924 	}
12925 
12926 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12927 	if (IS_ERR(pmu_ctx)) {
12928 		err = PTR_ERR(pmu_ctx);
12929 		goto err_unlock;
12930 	}
12931 	event->pmu_ctx = pmu_ctx;
12932 
12933 	if (!task) {
12934 		/*
12935 		 * Check if the @cpu we're creating an event for is online.
12936 		 *
12937 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12938 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12939 		 */
12940 		struct perf_cpu_context *cpuctx =
12941 			container_of(ctx, struct perf_cpu_context, ctx);
12942 		if (!cpuctx->online) {
12943 			err = -ENODEV;
12944 			goto err_pmu_ctx;
12945 		}
12946 	}
12947 
12948 	if (!exclusive_event_installable(event, ctx)) {
12949 		err = -EBUSY;
12950 		goto err_pmu_ctx;
12951 	}
12952 
12953 	perf_install_in_context(ctx, event, event->cpu);
12954 	perf_unpin_context(ctx);
12955 	mutex_unlock(&ctx->mutex);
12956 
12957 	return event;
12958 
12959 err_pmu_ctx:
12960 	put_pmu_ctx(pmu_ctx);
12961 	event->pmu_ctx = NULL; /* _free_event() */
12962 err_unlock:
12963 	mutex_unlock(&ctx->mutex);
12964 	perf_unpin_context(ctx);
12965 	put_ctx(ctx);
12966 err_alloc:
12967 	free_event(event);
12968 err:
12969 	return ERR_PTR(err);
12970 }
12971 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12972 
12973 static void __perf_pmu_remove(struct perf_event_context *ctx,
12974 			      int cpu, struct pmu *pmu,
12975 			      struct perf_event_groups *groups,
12976 			      struct list_head *events)
12977 {
12978 	struct perf_event *event, *sibling;
12979 
12980 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12981 		perf_remove_from_context(event, 0);
12982 		put_pmu_ctx(event->pmu_ctx);
12983 		list_add(&event->migrate_entry, events);
12984 
12985 		for_each_sibling_event(sibling, event) {
12986 			perf_remove_from_context(sibling, 0);
12987 			put_pmu_ctx(sibling->pmu_ctx);
12988 			list_add(&sibling->migrate_entry, events);
12989 		}
12990 	}
12991 }
12992 
12993 static void __perf_pmu_install_event(struct pmu *pmu,
12994 				     struct perf_event_context *ctx,
12995 				     int cpu, struct perf_event *event)
12996 {
12997 	struct perf_event_pmu_context *epc;
12998 	struct perf_event_context *old_ctx = event->ctx;
12999 
13000 	get_ctx(ctx); /* normally find_get_context() */
13001 
13002 	event->cpu = cpu;
13003 	epc = find_get_pmu_context(pmu, ctx, event);
13004 	event->pmu_ctx = epc;
13005 
13006 	if (event->state >= PERF_EVENT_STATE_OFF)
13007 		event->state = PERF_EVENT_STATE_INACTIVE;
13008 	perf_install_in_context(ctx, event, cpu);
13009 
13010 	/*
13011 	 * Now that event->ctx is updated and visible, put the old ctx.
13012 	 */
13013 	put_ctx(old_ctx);
13014 }
13015 
13016 static void __perf_pmu_install(struct perf_event_context *ctx,
13017 			       int cpu, struct pmu *pmu, struct list_head *events)
13018 {
13019 	struct perf_event *event, *tmp;
13020 
13021 	/*
13022 	 * Re-instate events in 2 passes.
13023 	 *
13024 	 * Skip over group leaders and only install siblings on this first
13025 	 * pass, siblings will not get enabled without a leader, however a
13026 	 * leader will enable its siblings, even if those are still on the old
13027 	 * context.
13028 	 */
13029 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13030 		if (event->group_leader == event)
13031 			continue;
13032 
13033 		list_del(&event->migrate_entry);
13034 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13035 	}
13036 
13037 	/*
13038 	 * Once all the siblings are setup properly, install the group leaders
13039 	 * to make it go.
13040 	 */
13041 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13042 		list_del(&event->migrate_entry);
13043 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13044 	}
13045 }
13046 
13047 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13048 {
13049 	struct perf_event_context *src_ctx, *dst_ctx;
13050 	LIST_HEAD(events);
13051 
13052 	/*
13053 	 * Since per-cpu context is persistent, no need to grab an extra
13054 	 * reference.
13055 	 */
13056 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13057 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13058 
13059 	/*
13060 	 * See perf_event_ctx_lock() for comments on the details
13061 	 * of swizzling perf_event::ctx.
13062 	 */
13063 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13064 
13065 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13066 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13067 
13068 	if (!list_empty(&events)) {
13069 		/*
13070 		 * Wait for the events to quiesce before re-instating them.
13071 		 */
13072 		synchronize_rcu();
13073 
13074 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13075 	}
13076 
13077 	mutex_unlock(&dst_ctx->mutex);
13078 	mutex_unlock(&src_ctx->mutex);
13079 }
13080 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13081 
13082 static void sync_child_event(struct perf_event *child_event)
13083 {
13084 	struct perf_event *parent_event = child_event->parent;
13085 	u64 child_val;
13086 
13087 	if (child_event->attr.inherit_stat) {
13088 		struct task_struct *task = child_event->ctx->task;
13089 
13090 		if (task && task != TASK_TOMBSTONE)
13091 			perf_event_read_event(child_event, task);
13092 	}
13093 
13094 	child_val = perf_event_count(child_event);
13095 
13096 	/*
13097 	 * Add back the child's count to the parent's count:
13098 	 */
13099 	atomic64_add(child_val, &parent_event->child_count);
13100 	atomic64_add(child_event->total_time_enabled,
13101 		     &parent_event->child_total_time_enabled);
13102 	atomic64_add(child_event->total_time_running,
13103 		     &parent_event->child_total_time_running);
13104 }
13105 
13106 static void
13107 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13108 {
13109 	struct perf_event *parent_event = event->parent;
13110 	unsigned long detach_flags = 0;
13111 
13112 	if (parent_event) {
13113 		/*
13114 		 * Do not destroy the 'original' grouping; because of the
13115 		 * context switch optimization the original events could've
13116 		 * ended up in a random child task.
13117 		 *
13118 		 * If we were to destroy the original group, all group related
13119 		 * operations would cease to function properly after this
13120 		 * random child dies.
13121 		 *
13122 		 * Do destroy all inherited groups, we don't care about those
13123 		 * and being thorough is better.
13124 		 */
13125 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13126 		mutex_lock(&parent_event->child_mutex);
13127 	}
13128 
13129 	perf_remove_from_context(event, detach_flags);
13130 
13131 	raw_spin_lock_irq(&ctx->lock);
13132 	if (event->state > PERF_EVENT_STATE_EXIT)
13133 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13134 	raw_spin_unlock_irq(&ctx->lock);
13135 
13136 	/*
13137 	 * Child events can be freed.
13138 	 */
13139 	if (parent_event) {
13140 		mutex_unlock(&parent_event->child_mutex);
13141 		/*
13142 		 * Kick perf_poll() for is_event_hup();
13143 		 */
13144 		perf_event_wakeup(parent_event);
13145 		free_event(event);
13146 		put_event(parent_event);
13147 		return;
13148 	}
13149 
13150 	/*
13151 	 * Parent events are governed by their filedesc, retain them.
13152 	 */
13153 	perf_event_wakeup(event);
13154 }
13155 
13156 static void perf_event_exit_task_context(struct task_struct *child)
13157 {
13158 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13159 	struct perf_event *child_event, *next;
13160 
13161 	WARN_ON_ONCE(child != current);
13162 
13163 	child_ctx = perf_pin_task_context(child);
13164 	if (!child_ctx)
13165 		return;
13166 
13167 	/*
13168 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13169 	 * ctx::mutex over the entire thing. This serializes against almost
13170 	 * everything that wants to access the ctx.
13171 	 *
13172 	 * The exception is sys_perf_event_open() /
13173 	 * perf_event_create_kernel_count() which does find_get_context()
13174 	 * without ctx::mutex (it cannot because of the move_group double mutex
13175 	 * lock thing). See the comments in perf_install_in_context().
13176 	 */
13177 	mutex_lock(&child_ctx->mutex);
13178 
13179 	/*
13180 	 * In a single ctx::lock section, de-schedule the events and detach the
13181 	 * context from the task such that we cannot ever get it scheduled back
13182 	 * in.
13183 	 */
13184 	raw_spin_lock_irq(&child_ctx->lock);
13185 	task_ctx_sched_out(child_ctx, EVENT_ALL);
13186 
13187 	/*
13188 	 * Now that the context is inactive, destroy the task <-> ctx relation
13189 	 * and mark the context dead.
13190 	 */
13191 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13192 	put_ctx(child_ctx); /* cannot be last */
13193 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13194 	put_task_struct(current); /* cannot be last */
13195 
13196 	clone_ctx = unclone_ctx(child_ctx);
13197 	raw_spin_unlock_irq(&child_ctx->lock);
13198 
13199 	if (clone_ctx)
13200 		put_ctx(clone_ctx);
13201 
13202 	/*
13203 	 * Report the task dead after unscheduling the events so that we
13204 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13205 	 * get a few PERF_RECORD_READ events.
13206 	 */
13207 	perf_event_task(child, child_ctx, 0);
13208 
13209 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13210 		perf_event_exit_event(child_event, child_ctx);
13211 
13212 	mutex_unlock(&child_ctx->mutex);
13213 
13214 	put_ctx(child_ctx);
13215 }
13216 
13217 /*
13218  * When a child task exits, feed back event values to parent events.
13219  *
13220  * Can be called with exec_update_lock held when called from
13221  * setup_new_exec().
13222  */
13223 void perf_event_exit_task(struct task_struct *child)
13224 {
13225 	struct perf_event *event, *tmp;
13226 
13227 	mutex_lock(&child->perf_event_mutex);
13228 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13229 				 owner_entry) {
13230 		list_del_init(&event->owner_entry);
13231 
13232 		/*
13233 		 * Ensure the list deletion is visible before we clear
13234 		 * the owner, closes a race against perf_release() where
13235 		 * we need to serialize on the owner->perf_event_mutex.
13236 		 */
13237 		smp_store_release(&event->owner, NULL);
13238 	}
13239 	mutex_unlock(&child->perf_event_mutex);
13240 
13241 	perf_event_exit_task_context(child);
13242 
13243 	/*
13244 	 * The perf_event_exit_task_context calls perf_event_task
13245 	 * with child's task_ctx, which generates EXIT events for
13246 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13247 	 * At this point we need to send EXIT events to cpu contexts.
13248 	 */
13249 	perf_event_task(child, NULL, 0);
13250 }
13251 
13252 static void perf_free_event(struct perf_event *event,
13253 			    struct perf_event_context *ctx)
13254 {
13255 	struct perf_event *parent = event->parent;
13256 
13257 	if (WARN_ON_ONCE(!parent))
13258 		return;
13259 
13260 	mutex_lock(&parent->child_mutex);
13261 	list_del_init(&event->child_list);
13262 	mutex_unlock(&parent->child_mutex);
13263 
13264 	put_event(parent);
13265 
13266 	raw_spin_lock_irq(&ctx->lock);
13267 	perf_group_detach(event);
13268 	list_del_event(event, ctx);
13269 	raw_spin_unlock_irq(&ctx->lock);
13270 	free_event(event);
13271 }
13272 
13273 /*
13274  * Free a context as created by inheritance by perf_event_init_task() below,
13275  * used by fork() in case of fail.
13276  *
13277  * Even though the task has never lived, the context and events have been
13278  * exposed through the child_list, so we must take care tearing it all down.
13279  */
13280 void perf_event_free_task(struct task_struct *task)
13281 {
13282 	struct perf_event_context *ctx;
13283 	struct perf_event *event, *tmp;
13284 
13285 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13286 	if (!ctx)
13287 		return;
13288 
13289 	mutex_lock(&ctx->mutex);
13290 	raw_spin_lock_irq(&ctx->lock);
13291 	/*
13292 	 * Destroy the task <-> ctx relation and mark the context dead.
13293 	 *
13294 	 * This is important because even though the task hasn't been
13295 	 * exposed yet the context has been (through child_list).
13296 	 */
13297 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13298 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13299 	put_task_struct(task); /* cannot be last */
13300 	raw_spin_unlock_irq(&ctx->lock);
13301 
13302 
13303 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13304 		perf_free_event(event, ctx);
13305 
13306 	mutex_unlock(&ctx->mutex);
13307 
13308 	/*
13309 	 * perf_event_release_kernel() could've stolen some of our
13310 	 * child events and still have them on its free_list. In that
13311 	 * case we must wait for these events to have been freed (in
13312 	 * particular all their references to this task must've been
13313 	 * dropped).
13314 	 *
13315 	 * Without this copy_process() will unconditionally free this
13316 	 * task (irrespective of its reference count) and
13317 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13318 	 * use-after-free.
13319 	 *
13320 	 * Wait for all events to drop their context reference.
13321 	 */
13322 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13323 	put_ctx(ctx); /* must be last */
13324 }
13325 
13326 void perf_event_delayed_put(struct task_struct *task)
13327 {
13328 	WARN_ON_ONCE(task->perf_event_ctxp);
13329 }
13330 
13331 struct file *perf_event_get(unsigned int fd)
13332 {
13333 	struct file *file = fget(fd);
13334 	if (!file)
13335 		return ERR_PTR(-EBADF);
13336 
13337 	if (file->f_op != &perf_fops) {
13338 		fput(file);
13339 		return ERR_PTR(-EBADF);
13340 	}
13341 
13342 	return file;
13343 }
13344 
13345 const struct perf_event *perf_get_event(struct file *file)
13346 {
13347 	if (file->f_op != &perf_fops)
13348 		return ERR_PTR(-EINVAL);
13349 
13350 	return file->private_data;
13351 }
13352 
13353 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13354 {
13355 	if (!event)
13356 		return ERR_PTR(-EINVAL);
13357 
13358 	return &event->attr;
13359 }
13360 
13361 /*
13362  * Inherit an event from parent task to child task.
13363  *
13364  * Returns:
13365  *  - valid pointer on success
13366  *  - NULL for orphaned events
13367  *  - IS_ERR() on error
13368  */
13369 static struct perf_event *
13370 inherit_event(struct perf_event *parent_event,
13371 	      struct task_struct *parent,
13372 	      struct perf_event_context *parent_ctx,
13373 	      struct task_struct *child,
13374 	      struct perf_event *group_leader,
13375 	      struct perf_event_context *child_ctx)
13376 {
13377 	enum perf_event_state parent_state = parent_event->state;
13378 	struct perf_event_pmu_context *pmu_ctx;
13379 	struct perf_event *child_event;
13380 	unsigned long flags;
13381 
13382 	/*
13383 	 * Instead of creating recursive hierarchies of events,
13384 	 * we link inherited events back to the original parent,
13385 	 * which has a filp for sure, which we use as the reference
13386 	 * count:
13387 	 */
13388 	if (parent_event->parent)
13389 		parent_event = parent_event->parent;
13390 
13391 	child_event = perf_event_alloc(&parent_event->attr,
13392 					   parent_event->cpu,
13393 					   child,
13394 					   group_leader, parent_event,
13395 					   NULL, NULL, -1);
13396 	if (IS_ERR(child_event))
13397 		return child_event;
13398 
13399 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13400 	if (IS_ERR(pmu_ctx)) {
13401 		free_event(child_event);
13402 		return ERR_CAST(pmu_ctx);
13403 	}
13404 	child_event->pmu_ctx = pmu_ctx;
13405 
13406 	/*
13407 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13408 	 * must be under the same lock in order to serialize against
13409 	 * perf_event_release_kernel(), such that either we must observe
13410 	 * is_orphaned_event() or they will observe us on the child_list.
13411 	 */
13412 	mutex_lock(&parent_event->child_mutex);
13413 	if (is_orphaned_event(parent_event) ||
13414 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13415 		mutex_unlock(&parent_event->child_mutex);
13416 		/* task_ctx_data is freed with child_ctx */
13417 		free_event(child_event);
13418 		return NULL;
13419 	}
13420 
13421 	get_ctx(child_ctx);
13422 
13423 	/*
13424 	 * Make the child state follow the state of the parent event,
13425 	 * not its attr.disabled bit.  We hold the parent's mutex,
13426 	 * so we won't race with perf_event_{en, dis}able_family.
13427 	 */
13428 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13429 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13430 	else
13431 		child_event->state = PERF_EVENT_STATE_OFF;
13432 
13433 	if (parent_event->attr.freq) {
13434 		u64 sample_period = parent_event->hw.sample_period;
13435 		struct hw_perf_event *hwc = &child_event->hw;
13436 
13437 		hwc->sample_period = sample_period;
13438 		hwc->last_period   = sample_period;
13439 
13440 		local64_set(&hwc->period_left, sample_period);
13441 	}
13442 
13443 	child_event->ctx = child_ctx;
13444 	child_event->overflow_handler = parent_event->overflow_handler;
13445 	child_event->overflow_handler_context
13446 		= parent_event->overflow_handler_context;
13447 
13448 	/*
13449 	 * Precalculate sample_data sizes
13450 	 */
13451 	perf_event__header_size(child_event);
13452 	perf_event__id_header_size(child_event);
13453 
13454 	/*
13455 	 * Link it up in the child's context:
13456 	 */
13457 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13458 	add_event_to_ctx(child_event, child_ctx);
13459 	child_event->attach_state |= PERF_ATTACH_CHILD;
13460 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13461 
13462 	/*
13463 	 * Link this into the parent event's child list
13464 	 */
13465 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13466 	mutex_unlock(&parent_event->child_mutex);
13467 
13468 	return child_event;
13469 }
13470 
13471 /*
13472  * Inherits an event group.
13473  *
13474  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13475  * This matches with perf_event_release_kernel() removing all child events.
13476  *
13477  * Returns:
13478  *  - 0 on success
13479  *  - <0 on error
13480  */
13481 static int inherit_group(struct perf_event *parent_event,
13482 	      struct task_struct *parent,
13483 	      struct perf_event_context *parent_ctx,
13484 	      struct task_struct *child,
13485 	      struct perf_event_context *child_ctx)
13486 {
13487 	struct perf_event *leader;
13488 	struct perf_event *sub;
13489 	struct perf_event *child_ctr;
13490 
13491 	leader = inherit_event(parent_event, parent, parent_ctx,
13492 				 child, NULL, child_ctx);
13493 	if (IS_ERR(leader))
13494 		return PTR_ERR(leader);
13495 	/*
13496 	 * @leader can be NULL here because of is_orphaned_event(). In this
13497 	 * case inherit_event() will create individual events, similar to what
13498 	 * perf_group_detach() would do anyway.
13499 	 */
13500 	for_each_sibling_event(sub, parent_event) {
13501 		child_ctr = inherit_event(sub, parent, parent_ctx,
13502 					    child, leader, child_ctx);
13503 		if (IS_ERR(child_ctr))
13504 			return PTR_ERR(child_ctr);
13505 
13506 		if (sub->aux_event == parent_event && child_ctr &&
13507 		    !perf_get_aux_event(child_ctr, leader))
13508 			return -EINVAL;
13509 	}
13510 	if (leader)
13511 		leader->group_generation = parent_event->group_generation;
13512 	return 0;
13513 }
13514 
13515 /*
13516  * Creates the child task context and tries to inherit the event-group.
13517  *
13518  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13519  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13520  * consistent with perf_event_release_kernel() removing all child events.
13521  *
13522  * Returns:
13523  *  - 0 on success
13524  *  - <0 on error
13525  */
13526 static int
13527 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13528 		   struct perf_event_context *parent_ctx,
13529 		   struct task_struct *child,
13530 		   u64 clone_flags, int *inherited_all)
13531 {
13532 	struct perf_event_context *child_ctx;
13533 	int ret;
13534 
13535 	if (!event->attr.inherit ||
13536 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13537 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13538 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13539 		*inherited_all = 0;
13540 		return 0;
13541 	}
13542 
13543 	child_ctx = child->perf_event_ctxp;
13544 	if (!child_ctx) {
13545 		/*
13546 		 * This is executed from the parent task context, so
13547 		 * inherit events that have been marked for cloning.
13548 		 * First allocate and initialize a context for the
13549 		 * child.
13550 		 */
13551 		child_ctx = alloc_perf_context(child);
13552 		if (!child_ctx)
13553 			return -ENOMEM;
13554 
13555 		child->perf_event_ctxp = child_ctx;
13556 	}
13557 
13558 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13559 	if (ret)
13560 		*inherited_all = 0;
13561 
13562 	return ret;
13563 }
13564 
13565 /*
13566  * Initialize the perf_event context in task_struct
13567  */
13568 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13569 {
13570 	struct perf_event_context *child_ctx, *parent_ctx;
13571 	struct perf_event_context *cloned_ctx;
13572 	struct perf_event *event;
13573 	struct task_struct *parent = current;
13574 	int inherited_all = 1;
13575 	unsigned long flags;
13576 	int ret = 0;
13577 
13578 	if (likely(!parent->perf_event_ctxp))
13579 		return 0;
13580 
13581 	/*
13582 	 * If the parent's context is a clone, pin it so it won't get
13583 	 * swapped under us.
13584 	 */
13585 	parent_ctx = perf_pin_task_context(parent);
13586 	if (!parent_ctx)
13587 		return 0;
13588 
13589 	/*
13590 	 * No need to check if parent_ctx != NULL here; since we saw
13591 	 * it non-NULL earlier, the only reason for it to become NULL
13592 	 * is if we exit, and since we're currently in the middle of
13593 	 * a fork we can't be exiting at the same time.
13594 	 */
13595 
13596 	/*
13597 	 * Lock the parent list. No need to lock the child - not PID
13598 	 * hashed yet and not running, so nobody can access it.
13599 	 */
13600 	mutex_lock(&parent_ctx->mutex);
13601 
13602 	/*
13603 	 * We dont have to disable NMIs - we are only looking at
13604 	 * the list, not manipulating it:
13605 	 */
13606 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13607 		ret = inherit_task_group(event, parent, parent_ctx,
13608 					 child, clone_flags, &inherited_all);
13609 		if (ret)
13610 			goto out_unlock;
13611 	}
13612 
13613 	/*
13614 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13615 	 * to allocations, but we need to prevent rotation because
13616 	 * rotate_ctx() will change the list from interrupt context.
13617 	 */
13618 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13619 	parent_ctx->rotate_disable = 1;
13620 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13621 
13622 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13623 		ret = inherit_task_group(event, parent, parent_ctx,
13624 					 child, clone_flags, &inherited_all);
13625 		if (ret)
13626 			goto out_unlock;
13627 	}
13628 
13629 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13630 	parent_ctx->rotate_disable = 0;
13631 
13632 	child_ctx = child->perf_event_ctxp;
13633 
13634 	if (child_ctx && inherited_all) {
13635 		/*
13636 		 * Mark the child context as a clone of the parent
13637 		 * context, or of whatever the parent is a clone of.
13638 		 *
13639 		 * Note that if the parent is a clone, the holding of
13640 		 * parent_ctx->lock avoids it from being uncloned.
13641 		 */
13642 		cloned_ctx = parent_ctx->parent_ctx;
13643 		if (cloned_ctx) {
13644 			child_ctx->parent_ctx = cloned_ctx;
13645 			child_ctx->parent_gen = parent_ctx->parent_gen;
13646 		} else {
13647 			child_ctx->parent_ctx = parent_ctx;
13648 			child_ctx->parent_gen = parent_ctx->generation;
13649 		}
13650 		get_ctx(child_ctx->parent_ctx);
13651 	}
13652 
13653 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13654 out_unlock:
13655 	mutex_unlock(&parent_ctx->mutex);
13656 
13657 	perf_unpin_context(parent_ctx);
13658 	put_ctx(parent_ctx);
13659 
13660 	return ret;
13661 }
13662 
13663 /*
13664  * Initialize the perf_event context in task_struct
13665  */
13666 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13667 {
13668 	int ret;
13669 
13670 	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
13671 	child->perf_event_ctxp = NULL;
13672 	mutex_init(&child->perf_event_mutex);
13673 	INIT_LIST_HEAD(&child->perf_event_list);
13674 
13675 	ret = perf_event_init_context(child, clone_flags);
13676 	if (ret) {
13677 		perf_event_free_task(child);
13678 		return ret;
13679 	}
13680 
13681 	return 0;
13682 }
13683 
13684 static void __init perf_event_init_all_cpus(void)
13685 {
13686 	struct swevent_htable *swhash;
13687 	struct perf_cpu_context *cpuctx;
13688 	int cpu;
13689 
13690 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13691 
13692 	for_each_possible_cpu(cpu) {
13693 		swhash = &per_cpu(swevent_htable, cpu);
13694 		mutex_init(&swhash->hlist_mutex);
13695 
13696 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13697 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13698 
13699 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13700 
13701 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13702 		__perf_event_init_context(&cpuctx->ctx);
13703 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13704 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13705 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13706 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13707 		cpuctx->heap = cpuctx->heap_default;
13708 	}
13709 }
13710 
13711 static void perf_swevent_init_cpu(unsigned int cpu)
13712 {
13713 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13714 
13715 	mutex_lock(&swhash->hlist_mutex);
13716 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13717 		struct swevent_hlist *hlist;
13718 
13719 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13720 		WARN_ON(!hlist);
13721 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13722 	}
13723 	mutex_unlock(&swhash->hlist_mutex);
13724 }
13725 
13726 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13727 static void __perf_event_exit_context(void *__info)
13728 {
13729 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13730 	struct perf_event_context *ctx = __info;
13731 	struct perf_event *event;
13732 
13733 	raw_spin_lock(&ctx->lock);
13734 	ctx_sched_out(ctx, EVENT_TIME);
13735 	list_for_each_entry(event, &ctx->event_list, event_entry)
13736 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13737 	raw_spin_unlock(&ctx->lock);
13738 }
13739 
13740 static void perf_event_exit_cpu_context(int cpu)
13741 {
13742 	struct perf_cpu_context *cpuctx;
13743 	struct perf_event_context *ctx;
13744 
13745 	// XXX simplify cpuctx->online
13746 	mutex_lock(&pmus_lock);
13747 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13748 	ctx = &cpuctx->ctx;
13749 
13750 	mutex_lock(&ctx->mutex);
13751 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13752 	cpuctx->online = 0;
13753 	mutex_unlock(&ctx->mutex);
13754 	cpumask_clear_cpu(cpu, perf_online_mask);
13755 	mutex_unlock(&pmus_lock);
13756 }
13757 #else
13758 
13759 static void perf_event_exit_cpu_context(int cpu) { }
13760 
13761 #endif
13762 
13763 int perf_event_init_cpu(unsigned int cpu)
13764 {
13765 	struct perf_cpu_context *cpuctx;
13766 	struct perf_event_context *ctx;
13767 
13768 	perf_swevent_init_cpu(cpu);
13769 
13770 	mutex_lock(&pmus_lock);
13771 	cpumask_set_cpu(cpu, perf_online_mask);
13772 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13773 	ctx = &cpuctx->ctx;
13774 
13775 	mutex_lock(&ctx->mutex);
13776 	cpuctx->online = 1;
13777 	mutex_unlock(&ctx->mutex);
13778 	mutex_unlock(&pmus_lock);
13779 
13780 	return 0;
13781 }
13782 
13783 int perf_event_exit_cpu(unsigned int cpu)
13784 {
13785 	perf_event_exit_cpu_context(cpu);
13786 	return 0;
13787 }
13788 
13789 static int
13790 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13791 {
13792 	int cpu;
13793 
13794 	for_each_online_cpu(cpu)
13795 		perf_event_exit_cpu(cpu);
13796 
13797 	return NOTIFY_OK;
13798 }
13799 
13800 /*
13801  * Run the perf reboot notifier at the very last possible moment so that
13802  * the generic watchdog code runs as long as possible.
13803  */
13804 static struct notifier_block perf_reboot_notifier = {
13805 	.notifier_call = perf_reboot,
13806 	.priority = INT_MIN,
13807 };
13808 
13809 void __init perf_event_init(void)
13810 {
13811 	int ret;
13812 
13813 	idr_init(&pmu_idr);
13814 
13815 	perf_event_init_all_cpus();
13816 	init_srcu_struct(&pmus_srcu);
13817 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13818 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13819 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
13820 	perf_tp_register();
13821 	perf_event_init_cpu(smp_processor_id());
13822 	register_reboot_notifier(&perf_reboot_notifier);
13823 
13824 	ret = init_hw_breakpoint();
13825 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13826 
13827 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13828 
13829 	/*
13830 	 * Build time assertion that we keep the data_head at the intended
13831 	 * location.  IOW, validation we got the __reserved[] size right.
13832 	 */
13833 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13834 		     != 1024);
13835 }
13836 
13837 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13838 			      char *page)
13839 {
13840 	struct perf_pmu_events_attr *pmu_attr =
13841 		container_of(attr, struct perf_pmu_events_attr, attr);
13842 
13843 	if (pmu_attr->event_str)
13844 		return sprintf(page, "%s\n", pmu_attr->event_str);
13845 
13846 	return 0;
13847 }
13848 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13849 
13850 static int __init perf_event_sysfs_init(void)
13851 {
13852 	struct pmu *pmu;
13853 	int ret;
13854 
13855 	mutex_lock(&pmus_lock);
13856 
13857 	ret = bus_register(&pmu_bus);
13858 	if (ret)
13859 		goto unlock;
13860 
13861 	list_for_each_entry(pmu, &pmus, entry) {
13862 		if (pmu->dev)
13863 			continue;
13864 
13865 		ret = pmu_dev_alloc(pmu);
13866 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13867 	}
13868 	pmu_bus_running = 1;
13869 	ret = 0;
13870 
13871 unlock:
13872 	mutex_unlock(&pmus_lock);
13873 
13874 	return ret;
13875 }
13876 device_initcall(perf_event_sysfs_init);
13877 
13878 #ifdef CONFIG_CGROUP_PERF
13879 static struct cgroup_subsys_state *
13880 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13881 {
13882 	struct perf_cgroup *jc;
13883 
13884 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13885 	if (!jc)
13886 		return ERR_PTR(-ENOMEM);
13887 
13888 	jc->info = alloc_percpu(struct perf_cgroup_info);
13889 	if (!jc->info) {
13890 		kfree(jc);
13891 		return ERR_PTR(-ENOMEM);
13892 	}
13893 
13894 	return &jc->css;
13895 }
13896 
13897 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13898 {
13899 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13900 
13901 	free_percpu(jc->info);
13902 	kfree(jc);
13903 }
13904 
13905 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13906 {
13907 	perf_event_cgroup(css->cgroup);
13908 	return 0;
13909 }
13910 
13911 static int __perf_cgroup_move(void *info)
13912 {
13913 	struct task_struct *task = info;
13914 
13915 	preempt_disable();
13916 	perf_cgroup_switch(task);
13917 	preempt_enable();
13918 
13919 	return 0;
13920 }
13921 
13922 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13923 {
13924 	struct task_struct *task;
13925 	struct cgroup_subsys_state *css;
13926 
13927 	cgroup_taskset_for_each(task, css, tset)
13928 		task_function_call(task, __perf_cgroup_move, task);
13929 }
13930 
13931 struct cgroup_subsys perf_event_cgrp_subsys = {
13932 	.css_alloc	= perf_cgroup_css_alloc,
13933 	.css_free	= perf_cgroup_css_free,
13934 	.css_online	= perf_cgroup_css_online,
13935 	.attach		= perf_cgroup_attach,
13936 	/*
13937 	 * Implicitly enable on dfl hierarchy so that perf events can
13938 	 * always be filtered by cgroup2 path as long as perf_event
13939 	 * controller is not mounted on a legacy hierarchy.
13940 	 */
13941 	.implicit_on_dfl = true,
13942 	.threaded	= true,
13943 };
13944 #endif /* CONFIG_CGROUP_PERF */
13945 
13946 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13947