xref: /linux/mm/swapfile.c (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/sort.h>
41 #include <linux/completion.h>
42 #include <linux/suspend.h>
43 #include <linux/zswap.h>
44 #include <linux/plist.h>
45 
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include "swap_table.h"
50 #include "internal.h"
51 #include "swap.h"
52 
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54 				 unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56 static void swap_entries_free(struct swap_info_struct *si,
57 			      struct swap_cluster_info *ci,
58 			      swp_entry_t entry, unsigned int nr_pages);
59 static void swap_range_alloc(struct swap_info_struct *si,
60 			     unsigned int nr_entries);
61 static bool folio_swapcache_freeable(struct folio *folio);
62 static void move_cluster(struct swap_info_struct *si,
63 			 struct swap_cluster_info *ci, struct list_head *list,
64 			 enum swap_cluster_flags new_flags);
65 
66 static DEFINE_SPINLOCK(swap_lock);
67 static unsigned int nr_swapfiles;
68 atomic_long_t nr_swap_pages;
69 /*
70  * Some modules use swappable objects and may try to swap them out under
71  * memory pressure (via the shrinker). Before doing so, they may wish to
72  * check to see if any swap space is available.
73  */
74 EXPORT_SYMBOL_GPL(nr_swap_pages);
75 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
76 long total_swap_pages;
77 static int least_priority = -1;
78 unsigned long swapfile_maximum_size;
79 #ifdef CONFIG_MIGRATION
80 bool swap_migration_ad_supported;
81 #endif	/* CONFIG_MIGRATION */
82 
83 static const char Bad_file[] = "Bad swap file entry ";
84 static const char Unused_file[] = "Unused swap file entry ";
85 static const char Bad_offset[] = "Bad swap offset entry ";
86 static const char Unused_offset[] = "Unused swap offset entry ";
87 
88 /*
89  * all active swap_info_structs
90  * protected with swap_lock, and ordered by priority.
91  */
92 static PLIST_HEAD(swap_active_head);
93 
94 /*
95  * all available (active, not full) swap_info_structs
96  * protected with swap_avail_lock, ordered by priority.
97  * This is used by folio_alloc_swap() instead of swap_active_head
98  * because swap_active_head includes all swap_info_structs,
99  * but folio_alloc_swap() doesn't need to look at full ones.
100  * This uses its own lock instead of swap_lock because when a
101  * swap_info_struct changes between not-full/full, it needs to
102  * add/remove itself to/from this list, but the swap_info_struct->lock
103  * is held and the locking order requires swap_lock to be taken
104  * before any swap_info_struct->lock.
105  */
106 static struct plist_head *swap_avail_heads;
107 static DEFINE_SPINLOCK(swap_avail_lock);
108 
109 struct swap_info_struct *swap_info[MAX_SWAPFILES];
110 
111 static struct kmem_cache *swap_table_cachep;
112 
113 static DEFINE_MUTEX(swapon_mutex);
114 
115 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
116 /* Activity counter to indicate that a swapon or swapoff has occurred */
117 static atomic_t proc_poll_event = ATOMIC_INIT(0);
118 
119 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
120 
121 struct percpu_swap_cluster {
122 	struct swap_info_struct *si[SWAP_NR_ORDERS];
123 	unsigned long offset[SWAP_NR_ORDERS];
124 	local_lock_t lock;
125 };
126 
127 static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = {
128 	.si = { NULL },
129 	.offset = { SWAP_ENTRY_INVALID },
130 	.lock = INIT_LOCAL_LOCK(),
131 };
132 
133 /* May return NULL on invalid type, caller must check for NULL return */
swap_type_to_info(int type)134 static struct swap_info_struct *swap_type_to_info(int type)
135 {
136 	if (type >= MAX_SWAPFILES)
137 		return NULL;
138 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
139 }
140 
141 /* May return NULL on invalid entry, caller must check for NULL return */
swap_entry_to_info(swp_entry_t entry)142 static struct swap_info_struct *swap_entry_to_info(swp_entry_t entry)
143 {
144 	return swap_type_to_info(swp_type(entry));
145 }
146 
swap_count(unsigned char ent)147 static inline unsigned char swap_count(unsigned char ent)
148 {
149 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
150 }
151 
152 /*
153  * Use the second highest bit of inuse_pages counter as the indicator
154  * if one swap device is on the available plist, so the atomic can
155  * still be updated arithmetically while having special data embedded.
156  *
157  * inuse_pages counter is the only thing indicating if a device should
158  * be on avail_lists or not (except swapon / swapoff). By embedding the
159  * off-list bit in the atomic counter, updates no longer need any lock
160  * to check the list status.
161  *
162  * This bit will be set if the device is not on the plist and not
163  * usable, will be cleared if the device is on the plist.
164  */
165 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2))
166 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT)
swap_usage_in_pages(struct swap_info_struct * si)167 static long swap_usage_in_pages(struct swap_info_struct *si)
168 {
169 	return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK;
170 }
171 
172 /* Reclaim the swap entry anyway if possible */
173 #define TTRS_ANYWAY		0x1
174 /*
175  * Reclaim the swap entry if there are no more mappings of the
176  * corresponding page
177  */
178 #define TTRS_UNMAPPED		0x2
179 /* Reclaim the swap entry if swap is getting full */
180 #define TTRS_FULL		0x4
181 
swap_only_has_cache(struct swap_info_struct * si,unsigned long offset,int nr_pages)182 static bool swap_only_has_cache(struct swap_info_struct *si,
183 			      unsigned long offset, int nr_pages)
184 {
185 	unsigned char *map = si->swap_map + offset;
186 	unsigned char *map_end = map + nr_pages;
187 
188 	do {
189 		VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
190 		if (*map != SWAP_HAS_CACHE)
191 			return false;
192 	} while (++map < map_end);
193 
194 	return true;
195 }
196 
swap_is_last_map(struct swap_info_struct * si,unsigned long offset,int nr_pages,bool * has_cache)197 static bool swap_is_last_map(struct swap_info_struct *si,
198 		unsigned long offset, int nr_pages, bool *has_cache)
199 {
200 	unsigned char *map = si->swap_map + offset;
201 	unsigned char *map_end = map + nr_pages;
202 	unsigned char count = *map;
203 
204 	if (swap_count(count) != 1 && swap_count(count) != SWAP_MAP_SHMEM)
205 		return false;
206 
207 	while (++map < map_end) {
208 		if (*map != count)
209 			return false;
210 	}
211 
212 	*has_cache = !!(count & SWAP_HAS_CACHE);
213 	return true;
214 }
215 
216 /*
217  * returns number of pages in the folio that backs the swap entry. If positive,
218  * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
219  * folio was associated with the swap entry.
220  */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)221 static int __try_to_reclaim_swap(struct swap_info_struct *si,
222 				 unsigned long offset, unsigned long flags)
223 {
224 	const swp_entry_t entry = swp_entry(si->type, offset);
225 	struct swap_cluster_info *ci;
226 	struct folio *folio;
227 	int ret, nr_pages;
228 	bool need_reclaim;
229 
230 again:
231 	folio = swap_cache_get_folio(entry);
232 	if (!folio)
233 		return 0;
234 
235 	nr_pages = folio_nr_pages(folio);
236 	ret = -nr_pages;
237 
238 	/*
239 	 * When this function is called from scan_swap_map_slots() and it's
240 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
241 	 * here. We have to use trylock for avoiding deadlock. This is a special
242 	 * case and you should use folio_free_swap() with explicit folio_lock()
243 	 * in usual operations.
244 	 */
245 	if (!folio_trylock(folio))
246 		goto out;
247 
248 	/*
249 	 * Offset could point to the middle of a large folio, or folio
250 	 * may no longer point to the expected offset before it's locked.
251 	 */
252 	if (!folio_matches_swap_entry(folio, entry)) {
253 		folio_unlock(folio);
254 		folio_put(folio);
255 		goto again;
256 	}
257 	offset = swp_offset(folio->swap);
258 
259 	need_reclaim = ((flags & TTRS_ANYWAY) ||
260 			((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
261 			((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
262 	if (!need_reclaim || !folio_swapcache_freeable(folio))
263 		goto out_unlock;
264 
265 	/*
266 	 * It's safe to delete the folio from swap cache only if the folio's
267 	 * swap_map is HAS_CACHE only, which means the slots have no page table
268 	 * reference or pending writeback, and can't be allocated to others.
269 	 */
270 	ci = swap_cluster_lock(si, offset);
271 	need_reclaim = swap_only_has_cache(si, offset, nr_pages);
272 	swap_cluster_unlock(ci);
273 	if (!need_reclaim)
274 		goto out_unlock;
275 
276 	swap_cache_del_folio(folio);
277 	folio_set_dirty(folio);
278 	ret = nr_pages;
279 out_unlock:
280 	folio_unlock(folio);
281 out:
282 	folio_put(folio);
283 	return ret;
284 }
285 
first_se(struct swap_info_struct * sis)286 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
287 {
288 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
289 	return rb_entry(rb, struct swap_extent, rb_node);
290 }
291 
next_se(struct swap_extent * se)292 static inline struct swap_extent *next_se(struct swap_extent *se)
293 {
294 	struct rb_node *rb = rb_next(&se->rb_node);
295 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
296 }
297 
298 /*
299  * swapon tell device that all the old swap contents can be discarded,
300  * to allow the swap device to optimize its wear-levelling.
301  */
discard_swap(struct swap_info_struct * si)302 static int discard_swap(struct swap_info_struct *si)
303 {
304 	struct swap_extent *se;
305 	sector_t start_block;
306 	sector_t nr_blocks;
307 	int err = 0;
308 
309 	/* Do not discard the swap header page! */
310 	se = first_se(si);
311 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
312 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
313 	if (nr_blocks) {
314 		err = blkdev_issue_discard(si->bdev, start_block,
315 				nr_blocks, GFP_KERNEL);
316 		if (err)
317 			return err;
318 		cond_resched();
319 	}
320 
321 	for (se = next_se(se); se; se = next_se(se)) {
322 		start_block = se->start_block << (PAGE_SHIFT - 9);
323 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
324 
325 		err = blkdev_issue_discard(si->bdev, start_block,
326 				nr_blocks, GFP_KERNEL);
327 		if (err)
328 			break;
329 
330 		cond_resched();
331 	}
332 	return err;		/* That will often be -EOPNOTSUPP */
333 }
334 
335 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)336 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
337 {
338 	struct swap_extent *se;
339 	struct rb_node *rb;
340 
341 	rb = sis->swap_extent_root.rb_node;
342 	while (rb) {
343 		se = rb_entry(rb, struct swap_extent, rb_node);
344 		if (offset < se->start_page)
345 			rb = rb->rb_left;
346 		else if (offset >= se->start_page + se->nr_pages)
347 			rb = rb->rb_right;
348 		else
349 			return se;
350 	}
351 	/* It *must* be present */
352 	BUG();
353 }
354 
swap_folio_sector(struct folio * folio)355 sector_t swap_folio_sector(struct folio *folio)
356 {
357 	struct swap_info_struct *sis = __swap_entry_to_info(folio->swap);
358 	struct swap_extent *se;
359 	sector_t sector;
360 	pgoff_t offset;
361 
362 	offset = swp_offset(folio->swap);
363 	se = offset_to_swap_extent(sis, offset);
364 	sector = se->start_block + (offset - se->start_page);
365 	return sector << (PAGE_SHIFT - 9);
366 }
367 
368 /*
369  * swap allocation tell device that a cluster of swap can now be discarded,
370  * to allow the swap device to optimize its wear-levelling.
371  */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)372 static void discard_swap_cluster(struct swap_info_struct *si,
373 				 pgoff_t start_page, pgoff_t nr_pages)
374 {
375 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
376 
377 	while (nr_pages) {
378 		pgoff_t offset = start_page - se->start_page;
379 		sector_t start_block = se->start_block + offset;
380 		sector_t nr_blocks = se->nr_pages - offset;
381 
382 		if (nr_blocks > nr_pages)
383 			nr_blocks = nr_pages;
384 		start_page += nr_blocks;
385 		nr_pages -= nr_blocks;
386 
387 		start_block <<= PAGE_SHIFT - 9;
388 		nr_blocks <<= PAGE_SHIFT - 9;
389 		if (blkdev_issue_discard(si->bdev, start_block,
390 					nr_blocks, GFP_NOIO))
391 			break;
392 
393 		se = next_se(se);
394 	}
395 }
396 
397 #define LATENCY_LIMIT		256
398 
cluster_is_empty(struct swap_cluster_info * info)399 static inline bool cluster_is_empty(struct swap_cluster_info *info)
400 {
401 	return info->count == 0;
402 }
403 
cluster_is_discard(struct swap_cluster_info * info)404 static inline bool cluster_is_discard(struct swap_cluster_info *info)
405 {
406 	return info->flags == CLUSTER_FLAG_DISCARD;
407 }
408 
cluster_table_is_alloced(struct swap_cluster_info * ci)409 static inline bool cluster_table_is_alloced(struct swap_cluster_info *ci)
410 {
411 	return rcu_dereference_protected(ci->table, lockdep_is_held(&ci->lock));
412 }
413 
cluster_is_usable(struct swap_cluster_info * ci,int order)414 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order)
415 {
416 	if (unlikely(ci->flags > CLUSTER_FLAG_USABLE))
417 		return false;
418 	if (!cluster_table_is_alloced(ci))
419 		return false;
420 	if (!order)
421 		return true;
422 	return cluster_is_empty(ci) || order == ci->order;
423 }
424 
cluster_index(struct swap_info_struct * si,struct swap_cluster_info * ci)425 static inline unsigned int cluster_index(struct swap_info_struct *si,
426 					 struct swap_cluster_info *ci)
427 {
428 	return ci - si->cluster_info;
429 }
430 
cluster_offset(struct swap_info_struct * si,struct swap_cluster_info * ci)431 static inline unsigned int cluster_offset(struct swap_info_struct *si,
432 					  struct swap_cluster_info *ci)
433 {
434 	return cluster_index(si, ci) * SWAPFILE_CLUSTER;
435 }
436 
swap_table_alloc(gfp_t gfp)437 static struct swap_table *swap_table_alloc(gfp_t gfp)
438 {
439 	struct folio *folio;
440 
441 	if (!SWP_TABLE_USE_PAGE)
442 		return kmem_cache_zalloc(swap_table_cachep, gfp);
443 
444 	folio = folio_alloc(gfp | __GFP_ZERO, 0);
445 	if (folio)
446 		return folio_address(folio);
447 	return NULL;
448 }
449 
swap_table_free_folio_rcu_cb(struct rcu_head * head)450 static void swap_table_free_folio_rcu_cb(struct rcu_head *head)
451 {
452 	struct folio *folio;
453 
454 	folio = page_folio(container_of(head, struct page, rcu_head));
455 	folio_put(folio);
456 }
457 
swap_table_free(struct swap_table * table)458 static void swap_table_free(struct swap_table *table)
459 {
460 	if (!SWP_TABLE_USE_PAGE) {
461 		kmem_cache_free(swap_table_cachep, table);
462 		return;
463 	}
464 
465 	call_rcu(&(folio_page(virt_to_folio(table), 0)->rcu_head),
466 		 swap_table_free_folio_rcu_cb);
467 }
468 
swap_cluster_free_table(struct swap_cluster_info * ci)469 static void swap_cluster_free_table(struct swap_cluster_info *ci)
470 {
471 	unsigned int ci_off;
472 	struct swap_table *table;
473 
474 	/* Only empty cluster's table is allow to be freed  */
475 	lockdep_assert_held(&ci->lock);
476 	VM_WARN_ON_ONCE(!cluster_is_empty(ci));
477 	for (ci_off = 0; ci_off < SWAPFILE_CLUSTER; ci_off++)
478 		VM_WARN_ON_ONCE(!swp_tb_is_null(__swap_table_get(ci, ci_off)));
479 	table = (void *)rcu_dereference_protected(ci->table, true);
480 	rcu_assign_pointer(ci->table, NULL);
481 
482 	swap_table_free(table);
483 }
484 
485 /*
486  * Allocate swap table for one cluster. Attempt an atomic allocation first,
487  * then fallback to sleeping allocation.
488  */
489 static struct swap_cluster_info *
swap_cluster_alloc_table(struct swap_info_struct * si,struct swap_cluster_info * ci)490 swap_cluster_alloc_table(struct swap_info_struct *si,
491 			 struct swap_cluster_info *ci)
492 {
493 	struct swap_table *table;
494 
495 	/*
496 	 * Only cluster isolation from the allocator does table allocation.
497 	 * Swap allocator uses percpu clusters and holds the local lock.
498 	 */
499 	lockdep_assert_held(&ci->lock);
500 	lockdep_assert_held(&this_cpu_ptr(&percpu_swap_cluster)->lock);
501 
502 	/* The cluster must be free and was just isolated from the free list. */
503 	VM_WARN_ON_ONCE(ci->flags || !cluster_is_empty(ci));
504 
505 	table = swap_table_alloc(__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
506 	if (table) {
507 		rcu_assign_pointer(ci->table, table);
508 		return ci;
509 	}
510 
511 	/*
512 	 * Try a sleep allocation. Each isolated free cluster may cause
513 	 * a sleep allocation, but there is a limited number of them, so
514 	 * the potential recursive allocation is limited.
515 	 */
516 	spin_unlock(&ci->lock);
517 	if (!(si->flags & SWP_SOLIDSTATE))
518 		spin_unlock(&si->global_cluster_lock);
519 	local_unlock(&percpu_swap_cluster.lock);
520 
521 	table = swap_table_alloc(__GFP_HIGH | __GFP_NOMEMALLOC | GFP_KERNEL);
522 
523 	/*
524 	 * Back to atomic context. We might have migrated to a new CPU with a
525 	 * usable percpu cluster. But just keep using the isolated cluster to
526 	 * make things easier. Migration indicates a slight change of workload
527 	 * so using a new free cluster might not be a bad idea, and the worst
528 	 * could happen with ignoring the percpu cluster is fragmentation,
529 	 * which is acceptable since this fallback and race is rare.
530 	 */
531 	local_lock(&percpu_swap_cluster.lock);
532 	if (!(si->flags & SWP_SOLIDSTATE))
533 		spin_lock(&si->global_cluster_lock);
534 	spin_lock(&ci->lock);
535 
536 	/* Nothing except this helper should touch a dangling empty cluster. */
537 	if (WARN_ON_ONCE(cluster_table_is_alloced(ci))) {
538 		if (table)
539 			swap_table_free(table);
540 		return ci;
541 	}
542 
543 	if (!table) {
544 		move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE);
545 		spin_unlock(&ci->lock);
546 		return NULL;
547 	}
548 
549 	rcu_assign_pointer(ci->table, table);
550 	return ci;
551 }
552 
move_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci,struct list_head * list,enum swap_cluster_flags new_flags)553 static void move_cluster(struct swap_info_struct *si,
554 			 struct swap_cluster_info *ci, struct list_head *list,
555 			 enum swap_cluster_flags new_flags)
556 {
557 	VM_WARN_ON(ci->flags == new_flags);
558 
559 	BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX);
560 	lockdep_assert_held(&ci->lock);
561 
562 	spin_lock(&si->lock);
563 	if (ci->flags == CLUSTER_FLAG_NONE)
564 		list_add_tail(&ci->list, list);
565 	else
566 		list_move_tail(&ci->list, list);
567 	spin_unlock(&si->lock);
568 	ci->flags = new_flags;
569 }
570 
571 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,struct swap_cluster_info * ci)572 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
573 		struct swap_cluster_info *ci)
574 {
575 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
576 	move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD);
577 	schedule_work(&si->discard_work);
578 }
579 
__free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)580 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
581 {
582 	swap_cluster_free_table(ci);
583 	move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE);
584 	ci->order = 0;
585 }
586 
587 /*
588  * Isolate and lock the first cluster that is not contented on a list,
589  * clean its flag before taken off-list. Cluster flag must be in sync
590  * with list status, so cluster updaters can always know the cluster
591  * list status without touching si lock.
592  *
593  * Note it's possible that all clusters on a list are contented so
594  * this returns NULL for an non-empty list.
595  */
isolate_lock_cluster(struct swap_info_struct * si,struct list_head * list,int order)596 static struct swap_cluster_info *isolate_lock_cluster(
597 		struct swap_info_struct *si, struct list_head *list, int order)
598 {
599 	struct swap_cluster_info *ci, *found = NULL;
600 
601 	spin_lock(&si->lock);
602 	list_for_each_entry(ci, list, list) {
603 		if (!spin_trylock(&ci->lock))
604 			continue;
605 
606 		/* We may only isolate and clear flags of following lists */
607 		VM_BUG_ON(!ci->flags);
608 		VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE &&
609 			  ci->flags != CLUSTER_FLAG_FULL);
610 
611 		list_del(&ci->list);
612 		ci->flags = CLUSTER_FLAG_NONE;
613 		found = ci;
614 		break;
615 	}
616 	spin_unlock(&si->lock);
617 
618 	if (found && !cluster_table_is_alloced(found)) {
619 		/* Only an empty free cluster's swap table can be freed. */
620 		VM_WARN_ON_ONCE(list != &si->free_clusters);
621 		VM_WARN_ON_ONCE(!cluster_is_empty(found));
622 		return swap_cluster_alloc_table(si, found);
623 	}
624 
625 	return found;
626 }
627 
628 /*
629  * Doing discard actually. After a cluster discard is finished, the cluster
630  * will be added to free cluster list. Discard cluster is a bit special as
631  * they don't participate in allocation or reclaim, so clusters marked as
632  * CLUSTER_FLAG_DISCARD must remain off-list or on discard list.
633  */
swap_do_scheduled_discard(struct swap_info_struct * si)634 static bool swap_do_scheduled_discard(struct swap_info_struct *si)
635 {
636 	struct swap_cluster_info *ci;
637 	bool ret = false;
638 	unsigned int idx;
639 
640 	spin_lock(&si->lock);
641 	while (!list_empty(&si->discard_clusters)) {
642 		ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
643 		/*
644 		 * Delete the cluster from list to prepare for discard, but keep
645 		 * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be
646 		 * pointing to it, or ran into by relocate_cluster.
647 		 */
648 		list_del(&ci->list);
649 		idx = cluster_index(si, ci);
650 		spin_unlock(&si->lock);
651 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
652 				SWAPFILE_CLUSTER);
653 
654 		spin_lock(&ci->lock);
655 		/*
656 		 * Discard is done, clear its flags as it's off-list, then
657 		 * return the cluster to allocation list.
658 		 */
659 		ci->flags = CLUSTER_FLAG_NONE;
660 		__free_cluster(si, ci);
661 		spin_unlock(&ci->lock);
662 		ret = true;
663 		spin_lock(&si->lock);
664 	}
665 	spin_unlock(&si->lock);
666 	return ret;
667 }
668 
swap_discard_work(struct work_struct * work)669 static void swap_discard_work(struct work_struct *work)
670 {
671 	struct swap_info_struct *si;
672 
673 	si = container_of(work, struct swap_info_struct, discard_work);
674 
675 	swap_do_scheduled_discard(si);
676 }
677 
swap_users_ref_free(struct percpu_ref * ref)678 static void swap_users_ref_free(struct percpu_ref *ref)
679 {
680 	struct swap_info_struct *si;
681 
682 	si = container_of(ref, struct swap_info_struct, users);
683 	complete(&si->comp);
684 }
685 
686 /*
687  * Must be called after freeing if ci->count == 0, moves the cluster to free
688  * or discard list.
689  */
free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)690 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
691 {
692 	VM_BUG_ON(ci->count != 0);
693 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
694 	lockdep_assert_held(&ci->lock);
695 
696 	/*
697 	 * If the swap is discardable, prepare discard the cluster
698 	 * instead of free it immediately. The cluster will be freed
699 	 * after discard.
700 	 */
701 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
702 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
703 		swap_cluster_schedule_discard(si, ci);
704 		return;
705 	}
706 
707 	__free_cluster(si, ci);
708 }
709 
710 /*
711  * Must be called after freeing if ci->count != 0, moves the cluster to
712  * nonfull list.
713  */
partial_free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)714 static void partial_free_cluster(struct swap_info_struct *si,
715 				 struct swap_cluster_info *ci)
716 {
717 	VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER);
718 	lockdep_assert_held(&ci->lock);
719 
720 	if (ci->flags != CLUSTER_FLAG_NONFULL)
721 		move_cluster(si, ci, &si->nonfull_clusters[ci->order],
722 			     CLUSTER_FLAG_NONFULL);
723 }
724 
725 /*
726  * Must be called after allocation, moves the cluster to full or frag list.
727  * Note: allocation doesn't acquire si lock, and may drop the ci lock for
728  * reclaim, so the cluster could be any where when called.
729  */
relocate_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)730 static void relocate_cluster(struct swap_info_struct *si,
731 			     struct swap_cluster_info *ci)
732 {
733 	lockdep_assert_held(&ci->lock);
734 
735 	/* Discard cluster must remain off-list or on discard list */
736 	if (cluster_is_discard(ci))
737 		return;
738 
739 	if (!ci->count) {
740 		if (ci->flags != CLUSTER_FLAG_FREE)
741 			free_cluster(si, ci);
742 	} else if (ci->count != SWAPFILE_CLUSTER) {
743 		if (ci->flags != CLUSTER_FLAG_FRAG)
744 			move_cluster(si, ci, &si->frag_clusters[ci->order],
745 				     CLUSTER_FLAG_FRAG);
746 	} else {
747 		if (ci->flags != CLUSTER_FLAG_FULL)
748 			move_cluster(si, ci, &si->full_clusters,
749 				     CLUSTER_FLAG_FULL);
750 	}
751 }
752 
753 /*
754  * The cluster corresponding to page_nr will be used. The cluster will not be
755  * added to free cluster list and its usage counter will be increased by 1.
756  * Only used for initialization.
757  */
inc_cluster_info_page(struct swap_info_struct * si,struct swap_cluster_info * cluster_info,unsigned long page_nr)758 static int inc_cluster_info_page(struct swap_info_struct *si,
759 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
760 {
761 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
762 	struct swap_table *table;
763 	struct swap_cluster_info *ci;
764 
765 	ci = cluster_info + idx;
766 	if (!ci->table) {
767 		table = swap_table_alloc(GFP_KERNEL);
768 		if (!table)
769 			return -ENOMEM;
770 		rcu_assign_pointer(ci->table, table);
771 	}
772 
773 	ci->count++;
774 
775 	VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
776 	VM_BUG_ON(ci->flags);
777 
778 	return 0;
779 }
780 
cluster_reclaim_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long start,unsigned long end)781 static bool cluster_reclaim_range(struct swap_info_struct *si,
782 				  struct swap_cluster_info *ci,
783 				  unsigned long start, unsigned long end)
784 {
785 	unsigned char *map = si->swap_map;
786 	unsigned long offset = start;
787 	int nr_reclaim;
788 
789 	spin_unlock(&ci->lock);
790 	do {
791 		switch (READ_ONCE(map[offset])) {
792 		case 0:
793 			offset++;
794 			break;
795 		case SWAP_HAS_CACHE:
796 			nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
797 			if (nr_reclaim > 0)
798 				offset += nr_reclaim;
799 			else
800 				goto out;
801 			break;
802 		default:
803 			goto out;
804 		}
805 	} while (offset < end);
806 out:
807 	spin_lock(&ci->lock);
808 	/*
809 	 * Recheck the range no matter reclaim succeeded or not, the slot
810 	 * could have been be freed while we are not holding the lock.
811 	 */
812 	for (offset = start; offset < end; offset++)
813 		if (READ_ONCE(map[offset]))
814 			return false;
815 
816 	return true;
817 }
818 
cluster_scan_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long start,unsigned int nr_pages,bool * need_reclaim)819 static bool cluster_scan_range(struct swap_info_struct *si,
820 			       struct swap_cluster_info *ci,
821 			       unsigned long start, unsigned int nr_pages,
822 			       bool *need_reclaim)
823 {
824 	unsigned long offset, end = start + nr_pages;
825 	unsigned char *map = si->swap_map;
826 
827 	if (cluster_is_empty(ci))
828 		return true;
829 
830 	for (offset = start; offset < end; offset++) {
831 		switch (READ_ONCE(map[offset])) {
832 		case 0:
833 			continue;
834 		case SWAP_HAS_CACHE:
835 			if (!vm_swap_full())
836 				return false;
837 			*need_reclaim = true;
838 			continue;
839 		default:
840 			return false;
841 		}
842 	}
843 
844 	return true;
845 }
846 
847 /*
848  * Currently, the swap table is not used for count tracking, just
849  * do a sanity check here to ensure nothing leaked, so the swap
850  * table should be empty upon freeing.
851  */
swap_cluster_assert_table_empty(struct swap_cluster_info * ci,unsigned int start,unsigned int nr)852 static void swap_cluster_assert_table_empty(struct swap_cluster_info *ci,
853 				unsigned int start, unsigned int nr)
854 {
855 	unsigned int ci_off = start % SWAPFILE_CLUSTER;
856 	unsigned int ci_end = ci_off + nr;
857 	unsigned long swp_tb;
858 
859 	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
860 		do {
861 			swp_tb = __swap_table_get(ci, ci_off);
862 			VM_WARN_ON_ONCE(!swp_tb_is_null(swp_tb));
863 		} while (++ci_off < ci_end);
864 	}
865 }
866 
cluster_alloc_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned int start,unsigned char usage,unsigned int order)867 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
868 				unsigned int start, unsigned char usage,
869 				unsigned int order)
870 {
871 	unsigned int nr_pages = 1 << order;
872 
873 	lockdep_assert_held(&ci->lock);
874 
875 	if (!(si->flags & SWP_WRITEOK))
876 		return false;
877 
878 	/*
879 	 * The first allocation in a cluster makes the
880 	 * cluster exclusive to this order
881 	 */
882 	if (cluster_is_empty(ci))
883 		ci->order = order;
884 
885 	memset(si->swap_map + start, usage, nr_pages);
886 	swap_cluster_assert_table_empty(ci, start, nr_pages);
887 	swap_range_alloc(si, nr_pages);
888 	ci->count += nr_pages;
889 
890 	return true;
891 }
892 
893 /* Try use a new cluster for current CPU and allocate from it. */
alloc_swap_scan_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long offset,unsigned int order,unsigned char usage)894 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si,
895 					    struct swap_cluster_info *ci,
896 					    unsigned long offset,
897 					    unsigned int order,
898 					    unsigned char usage)
899 {
900 	unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
901 	unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER);
902 	unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
903 	unsigned int nr_pages = 1 << order;
904 	bool need_reclaim, ret;
905 
906 	lockdep_assert_held(&ci->lock);
907 
908 	if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER)
909 		goto out;
910 
911 	for (end -= nr_pages; offset <= end; offset += nr_pages) {
912 		need_reclaim = false;
913 		if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim))
914 			continue;
915 		if (need_reclaim) {
916 			ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages);
917 			/*
918 			 * Reclaim drops ci->lock and cluster could be used
919 			 * by another order. Not checking flag as off-list
920 			 * cluster has no flag set, and change of list
921 			 * won't cause fragmentation.
922 			 */
923 			if (!cluster_is_usable(ci, order))
924 				goto out;
925 			if (cluster_is_empty(ci))
926 				offset = start;
927 			/* Reclaim failed but cluster is usable, try next */
928 			if (!ret)
929 				continue;
930 		}
931 		if (!cluster_alloc_range(si, ci, offset, usage, order))
932 			break;
933 		found = offset;
934 		offset += nr_pages;
935 		if (ci->count < SWAPFILE_CLUSTER && offset <= end)
936 			next = offset;
937 		break;
938 	}
939 out:
940 	relocate_cluster(si, ci);
941 	swap_cluster_unlock(ci);
942 	if (si->flags & SWP_SOLIDSTATE) {
943 		this_cpu_write(percpu_swap_cluster.offset[order], next);
944 		this_cpu_write(percpu_swap_cluster.si[order], si);
945 	} else {
946 		si->global_cluster->next[order] = next;
947 	}
948 	return found;
949 }
950 
alloc_swap_scan_list(struct swap_info_struct * si,struct list_head * list,unsigned int order,unsigned char usage,bool scan_all)951 static unsigned int alloc_swap_scan_list(struct swap_info_struct *si,
952 					 struct list_head *list,
953 					 unsigned int order,
954 					 unsigned char usage,
955 					 bool scan_all)
956 {
957 	unsigned int found = SWAP_ENTRY_INVALID;
958 
959 	do {
960 		struct swap_cluster_info *ci = isolate_lock_cluster(si, list, order);
961 		unsigned long offset;
962 
963 		if (!ci)
964 			break;
965 		offset = cluster_offset(si, ci);
966 		found = alloc_swap_scan_cluster(si, ci, offset, order, usage);
967 		if (found)
968 			break;
969 	} while (scan_all);
970 
971 	return found;
972 }
973 
swap_reclaim_full_clusters(struct swap_info_struct * si,bool force)974 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
975 {
976 	long to_scan = 1;
977 	unsigned long offset, end;
978 	struct swap_cluster_info *ci;
979 	unsigned char *map = si->swap_map;
980 	int nr_reclaim;
981 
982 	if (force)
983 		to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER;
984 
985 	while ((ci = isolate_lock_cluster(si, &si->full_clusters, 0))) {
986 		offset = cluster_offset(si, ci);
987 		end = min(si->max, offset + SWAPFILE_CLUSTER);
988 		to_scan--;
989 
990 		while (offset < end) {
991 			if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
992 				spin_unlock(&ci->lock);
993 				nr_reclaim = __try_to_reclaim_swap(si, offset,
994 								   TTRS_ANYWAY);
995 				spin_lock(&ci->lock);
996 				if (nr_reclaim) {
997 					offset += abs(nr_reclaim);
998 					continue;
999 				}
1000 			}
1001 			offset++;
1002 		}
1003 
1004 		/* in case no swap cache is reclaimed */
1005 		if (ci->flags == CLUSTER_FLAG_NONE)
1006 			relocate_cluster(si, ci);
1007 
1008 		swap_cluster_unlock(ci);
1009 		if (to_scan <= 0)
1010 			break;
1011 	}
1012 }
1013 
swap_reclaim_work(struct work_struct * work)1014 static void swap_reclaim_work(struct work_struct *work)
1015 {
1016 	struct swap_info_struct *si;
1017 
1018 	si = container_of(work, struct swap_info_struct, reclaim_work);
1019 
1020 	swap_reclaim_full_clusters(si, true);
1021 }
1022 
1023 /*
1024  * Try to allocate swap entries with specified order and try set a new
1025  * cluster for current CPU too.
1026  */
cluster_alloc_swap_entry(struct swap_info_struct * si,int order,unsigned char usage)1027 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
1028 					      unsigned char usage)
1029 {
1030 	struct swap_cluster_info *ci;
1031 	unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
1032 
1033 	/*
1034 	 * Swapfile is not block device so unable
1035 	 * to allocate large entries.
1036 	 */
1037 	if (order && !(si->flags & SWP_BLKDEV))
1038 		return 0;
1039 
1040 	if (!(si->flags & SWP_SOLIDSTATE)) {
1041 		/* Serialize HDD SWAP allocation for each device. */
1042 		spin_lock(&si->global_cluster_lock);
1043 		offset = si->global_cluster->next[order];
1044 		if (offset == SWAP_ENTRY_INVALID)
1045 			goto new_cluster;
1046 
1047 		ci = swap_cluster_lock(si, offset);
1048 		/* Cluster could have been used by another order */
1049 		if (cluster_is_usable(ci, order)) {
1050 			if (cluster_is_empty(ci))
1051 				offset = cluster_offset(si, ci);
1052 			found = alloc_swap_scan_cluster(si, ci, offset,
1053 							order, usage);
1054 		} else {
1055 			swap_cluster_unlock(ci);
1056 		}
1057 		if (found)
1058 			goto done;
1059 	}
1060 
1061 new_cluster:
1062 	/*
1063 	 * If the device need discard, prefer new cluster over nonfull
1064 	 * to spread out the writes.
1065 	 */
1066 	if (si->flags & SWP_PAGE_DISCARD) {
1067 		found = alloc_swap_scan_list(si, &si->free_clusters, order, usage,
1068 					     false);
1069 		if (found)
1070 			goto done;
1071 	}
1072 
1073 	if (order < PMD_ORDER) {
1074 		found = alloc_swap_scan_list(si, &si->nonfull_clusters[order],
1075 					     order, usage, true);
1076 		if (found)
1077 			goto done;
1078 	}
1079 
1080 	if (!(si->flags & SWP_PAGE_DISCARD)) {
1081 		found = alloc_swap_scan_list(si, &si->free_clusters, order, usage,
1082 					     false);
1083 		if (found)
1084 			goto done;
1085 	}
1086 
1087 	/* Try reclaim full clusters if free and nonfull lists are drained */
1088 	if (vm_swap_full())
1089 		swap_reclaim_full_clusters(si, false);
1090 
1091 	if (order < PMD_ORDER) {
1092 		/*
1093 		 * Scan only one fragment cluster is good enough. Order 0
1094 		 * allocation will surely success, and large allocation
1095 		 * failure is not critical. Scanning one cluster still
1096 		 * keeps the list rotated and reclaimed (for HAS_CACHE).
1097 		 */
1098 		found = alloc_swap_scan_list(si, &si->frag_clusters[order], order,
1099 					     usage, false);
1100 		if (found)
1101 			goto done;
1102 	}
1103 
1104 	/*
1105 	 * We don't have free cluster but have some clusters in discarding,
1106 	 * do discard now and reclaim them.
1107 	 */
1108 	if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si))
1109 		goto new_cluster;
1110 
1111 	if (order)
1112 		goto done;
1113 
1114 	/* Order 0 stealing from higher order */
1115 	for (int o = 1; o < SWAP_NR_ORDERS; o++) {
1116 		/*
1117 		 * Clusters here have at least one usable slots and can't fail order 0
1118 		 * allocation, but reclaim may drop si->lock and race with another user.
1119 		 */
1120 		found = alloc_swap_scan_list(si, &si->frag_clusters[o],
1121 					     0, usage, true);
1122 		if (found)
1123 			goto done;
1124 
1125 		found = alloc_swap_scan_list(si, &si->nonfull_clusters[o],
1126 					     0, usage, true);
1127 		if (found)
1128 			goto done;
1129 	}
1130 done:
1131 	if (!(si->flags & SWP_SOLIDSTATE))
1132 		spin_unlock(&si->global_cluster_lock);
1133 
1134 	return found;
1135 }
1136 
1137 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */
del_from_avail_list(struct swap_info_struct * si,bool swapoff)1138 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff)
1139 {
1140 	int nid;
1141 	unsigned long pages;
1142 
1143 	spin_lock(&swap_avail_lock);
1144 
1145 	if (swapoff) {
1146 		/*
1147 		 * Forcefully remove it. Clear the SWP_WRITEOK flags for
1148 		 * swapoff here so it's synchronized by both si->lock and
1149 		 * swap_avail_lock, to ensure the result can be seen by
1150 		 * add_to_avail_list.
1151 		 */
1152 		lockdep_assert_held(&si->lock);
1153 		si->flags &= ~SWP_WRITEOK;
1154 		atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1155 	} else {
1156 		/*
1157 		 * If not called by swapoff, take it off-list only if it's
1158 		 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly
1159 		 * si->inuse_pages == pages), any concurrent slot freeing,
1160 		 * or device already removed from plist by someone else
1161 		 * will make this return false.
1162 		 */
1163 		pages = si->pages;
1164 		if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1165 					     pages | SWAP_USAGE_OFFLIST_BIT))
1166 			goto skip;
1167 	}
1168 
1169 	for_each_node(nid)
1170 		plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
1171 
1172 skip:
1173 	spin_unlock(&swap_avail_lock);
1174 }
1175 
1176 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */
add_to_avail_list(struct swap_info_struct * si,bool swapon)1177 static void add_to_avail_list(struct swap_info_struct *si, bool swapon)
1178 {
1179 	int nid;
1180 	long val;
1181 	unsigned long pages;
1182 
1183 	spin_lock(&swap_avail_lock);
1184 
1185 	/* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */
1186 	if (swapon) {
1187 		lockdep_assert_held(&si->lock);
1188 		si->flags |= SWP_WRITEOK;
1189 	} else {
1190 		if (!(READ_ONCE(si->flags) & SWP_WRITEOK))
1191 			goto skip;
1192 	}
1193 
1194 	if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT))
1195 		goto skip;
1196 
1197 	val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1198 
1199 	/*
1200 	 * When device is full and device is on the plist, only one updater will
1201 	 * see (inuse_pages == si->pages) and will call del_from_avail_list. If
1202 	 * that updater happen to be here, just skip adding.
1203 	 */
1204 	pages = si->pages;
1205 	if (val == pages) {
1206 		/* Just like the cmpxchg in del_from_avail_list */
1207 		if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1208 					    pages | SWAP_USAGE_OFFLIST_BIT))
1209 			goto skip;
1210 	}
1211 
1212 	for_each_node(nid)
1213 		plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
1214 
1215 skip:
1216 	spin_unlock(&swap_avail_lock);
1217 }
1218 
1219 /*
1220  * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock
1221  * within each cluster, so the total contribution to the global counter should
1222  * always be positive and cannot exceed the total number of usable slots.
1223  */
swap_usage_add(struct swap_info_struct * si,unsigned int nr_entries)1224 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries)
1225 {
1226 	long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages);
1227 
1228 	/*
1229 	 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set,
1230 	 * remove it from the plist.
1231 	 */
1232 	if (unlikely(val == si->pages)) {
1233 		del_from_avail_list(si, false);
1234 		return true;
1235 	}
1236 
1237 	return false;
1238 }
1239 
swap_usage_sub(struct swap_info_struct * si,unsigned int nr_entries)1240 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries)
1241 {
1242 	long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages);
1243 
1244 	/*
1245 	 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set,
1246 	 * add it to the plist.
1247 	 */
1248 	if (unlikely(val & SWAP_USAGE_OFFLIST_BIT))
1249 		add_to_avail_list(si, false);
1250 }
1251 
swap_range_alloc(struct swap_info_struct * si,unsigned int nr_entries)1252 static void swap_range_alloc(struct swap_info_struct *si,
1253 			     unsigned int nr_entries)
1254 {
1255 	if (swap_usage_add(si, nr_entries)) {
1256 		if (vm_swap_full())
1257 			schedule_work(&si->reclaim_work);
1258 	}
1259 	atomic_long_sub(nr_entries, &nr_swap_pages);
1260 }
1261 
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)1262 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
1263 			    unsigned int nr_entries)
1264 {
1265 	unsigned long begin = offset;
1266 	unsigned long end = offset + nr_entries - 1;
1267 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
1268 	unsigned int i;
1269 
1270 	/*
1271 	 * Use atomic clear_bit operations only on zeromap instead of non-atomic
1272 	 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
1273 	 */
1274 	for (i = 0; i < nr_entries; i++) {
1275 		clear_bit(offset + i, si->zeromap);
1276 		zswap_invalidate(swp_entry(si->type, offset + i));
1277 	}
1278 
1279 	if (si->flags & SWP_BLKDEV)
1280 		swap_slot_free_notify =
1281 			si->bdev->bd_disk->fops->swap_slot_free_notify;
1282 	else
1283 		swap_slot_free_notify = NULL;
1284 	while (offset <= end) {
1285 		arch_swap_invalidate_page(si->type, offset);
1286 		if (swap_slot_free_notify)
1287 			swap_slot_free_notify(si->bdev, offset);
1288 		offset++;
1289 	}
1290 	__swap_cache_clear_shadow(swp_entry(si->type, begin), nr_entries);
1291 
1292 	/*
1293 	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
1294 	 * only after the above cleanups are done.
1295 	 */
1296 	smp_wmb();
1297 	atomic_long_add(nr_entries, &nr_swap_pages);
1298 	swap_usage_sub(si, nr_entries);
1299 }
1300 
get_swap_device_info(struct swap_info_struct * si)1301 static bool get_swap_device_info(struct swap_info_struct *si)
1302 {
1303 	if (!percpu_ref_tryget_live(&si->users))
1304 		return false;
1305 	/*
1306 	 * Guarantee the si->users are checked before accessing other
1307 	 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is
1308 	 * up to dated.
1309 	 *
1310 	 * Paired with the spin_unlock() after setup_swap_info() in
1311 	 * enable_swap_info(), and smp_wmb() in swapoff.
1312 	 */
1313 	smp_rmb();
1314 	return true;
1315 }
1316 
1317 /*
1318  * Fast path try to get swap entries with specified order from current
1319  * CPU's swap entry pool (a cluster).
1320  */
swap_alloc_fast(swp_entry_t * entry,int order)1321 static bool swap_alloc_fast(swp_entry_t *entry,
1322 			    int order)
1323 {
1324 	struct swap_cluster_info *ci;
1325 	struct swap_info_struct *si;
1326 	unsigned int offset, found = SWAP_ENTRY_INVALID;
1327 
1328 	/*
1329 	 * Once allocated, swap_info_struct will never be completely freed,
1330 	 * so checking it's liveness by get_swap_device_info is enough.
1331 	 */
1332 	si = this_cpu_read(percpu_swap_cluster.si[order]);
1333 	offset = this_cpu_read(percpu_swap_cluster.offset[order]);
1334 	if (!si || !offset || !get_swap_device_info(si))
1335 		return false;
1336 
1337 	ci = swap_cluster_lock(si, offset);
1338 	if (cluster_is_usable(ci, order)) {
1339 		if (cluster_is_empty(ci))
1340 			offset = cluster_offset(si, ci);
1341 		found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE);
1342 		if (found)
1343 			*entry = swp_entry(si->type, found);
1344 	} else {
1345 		swap_cluster_unlock(ci);
1346 	}
1347 
1348 	put_swap_device(si);
1349 	return !!found;
1350 }
1351 
1352 /* Rotate the device and switch to a new cluster */
swap_alloc_slow(swp_entry_t * entry,int order)1353 static bool swap_alloc_slow(swp_entry_t *entry,
1354 			    int order)
1355 {
1356 	int node;
1357 	unsigned long offset;
1358 	struct swap_info_struct *si, *next;
1359 
1360 	node = numa_node_id();
1361 	spin_lock(&swap_avail_lock);
1362 start_over:
1363 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1364 		/* Rotate the device and switch to a new cluster */
1365 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1366 		spin_unlock(&swap_avail_lock);
1367 		if (get_swap_device_info(si)) {
1368 			offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE);
1369 			put_swap_device(si);
1370 			if (offset) {
1371 				*entry = swp_entry(si->type, offset);
1372 				return true;
1373 			}
1374 			if (order)
1375 				return false;
1376 		}
1377 
1378 		spin_lock(&swap_avail_lock);
1379 		/*
1380 		 * if we got here, it's likely that si was almost full before,
1381 		 * and since scan_swap_map_slots() can drop the si->lock,
1382 		 * multiple callers probably all tried to get a page from the
1383 		 * same si and it filled up before we could get one; or, the si
1384 		 * filled up between us dropping swap_avail_lock and taking
1385 		 * si->lock. Since we dropped the swap_avail_lock, the
1386 		 * swap_avail_head list may have been modified; so if next is
1387 		 * still in the swap_avail_head list then try it, otherwise
1388 		 * start over if we have not gotten any slots.
1389 		 */
1390 		if (plist_node_empty(&next->avail_lists[node]))
1391 			goto start_over;
1392 	}
1393 	spin_unlock(&swap_avail_lock);
1394 	return false;
1395 }
1396 
1397 /**
1398  * folio_alloc_swap - allocate swap space for a folio
1399  * @folio: folio we want to move to swap
1400  * @gfp: gfp mask for shadow nodes
1401  *
1402  * Allocate swap space for the folio and add the folio to the
1403  * swap cache.
1404  *
1405  * Context: Caller needs to hold the folio lock.
1406  * Return: Whether the folio was added to the swap cache.
1407  */
folio_alloc_swap(struct folio * folio,gfp_t gfp)1408 int folio_alloc_swap(struct folio *folio, gfp_t gfp)
1409 {
1410 	unsigned int order = folio_order(folio);
1411 	unsigned int size = 1 << order;
1412 	swp_entry_t entry = {};
1413 
1414 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1415 	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
1416 
1417 	if (order) {
1418 		/*
1419 		 * Reject large allocation when THP_SWAP is disabled,
1420 		 * the caller should split the folio and try again.
1421 		 */
1422 		if (!IS_ENABLED(CONFIG_THP_SWAP))
1423 			return -EAGAIN;
1424 
1425 		/*
1426 		 * Allocation size should never exceed cluster size
1427 		 * (HPAGE_PMD_SIZE).
1428 		 */
1429 		if (size > SWAPFILE_CLUSTER) {
1430 			VM_WARN_ON_ONCE(1);
1431 			return -EINVAL;
1432 		}
1433 	}
1434 
1435 	local_lock(&percpu_swap_cluster.lock);
1436 	if (!swap_alloc_fast(&entry, order))
1437 		swap_alloc_slow(&entry, order);
1438 	local_unlock(&percpu_swap_cluster.lock);
1439 
1440 	/* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */
1441 	if (mem_cgroup_try_charge_swap(folio, entry))
1442 		goto out_free;
1443 
1444 	if (!entry.val)
1445 		return -ENOMEM;
1446 
1447 	swap_cache_add_folio(folio, entry, NULL);
1448 
1449 	return 0;
1450 
1451 out_free:
1452 	put_swap_folio(folio, entry);
1453 	return -ENOMEM;
1454 }
1455 
_swap_info_get(swp_entry_t entry)1456 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1457 {
1458 	struct swap_info_struct *si;
1459 	unsigned long offset;
1460 
1461 	if (!entry.val)
1462 		goto out;
1463 	si = swap_entry_to_info(entry);
1464 	if (!si)
1465 		goto bad_nofile;
1466 	if (data_race(!(si->flags & SWP_USED)))
1467 		goto bad_device;
1468 	offset = swp_offset(entry);
1469 	if (offset >= si->max)
1470 		goto bad_offset;
1471 	if (data_race(!si->swap_map[swp_offset(entry)]))
1472 		goto bad_free;
1473 	return si;
1474 
1475 bad_free:
1476 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1477 	goto out;
1478 bad_offset:
1479 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1480 	goto out;
1481 bad_device:
1482 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1483 	goto out;
1484 bad_nofile:
1485 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1486 out:
1487 	return NULL;
1488 }
1489 
swap_entry_put_locked(struct swap_info_struct * si,struct swap_cluster_info * ci,swp_entry_t entry,unsigned char usage)1490 static unsigned char swap_entry_put_locked(struct swap_info_struct *si,
1491 					   struct swap_cluster_info *ci,
1492 					   swp_entry_t entry,
1493 					   unsigned char usage)
1494 {
1495 	unsigned long offset = swp_offset(entry);
1496 	unsigned char count;
1497 	unsigned char has_cache;
1498 
1499 	count = si->swap_map[offset];
1500 
1501 	has_cache = count & SWAP_HAS_CACHE;
1502 	count &= ~SWAP_HAS_CACHE;
1503 
1504 	if (usage == SWAP_HAS_CACHE) {
1505 		VM_BUG_ON(!has_cache);
1506 		has_cache = 0;
1507 	} else if (count == SWAP_MAP_SHMEM) {
1508 		/*
1509 		 * Or we could insist on shmem.c using a special
1510 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1511 		 */
1512 		count = 0;
1513 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1514 		if (count == COUNT_CONTINUED) {
1515 			if (swap_count_continued(si, offset, count))
1516 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1517 			else
1518 				count = SWAP_MAP_MAX;
1519 		} else
1520 			count--;
1521 	}
1522 
1523 	usage = count | has_cache;
1524 	if (usage)
1525 		WRITE_ONCE(si->swap_map[offset], usage);
1526 	else
1527 		swap_entries_free(si, ci, entry, 1);
1528 
1529 	return usage;
1530 }
1531 
1532 /*
1533  * When we get a swap entry, if there aren't some other ways to
1534  * prevent swapoff, such as the folio in swap cache is locked, RCU
1535  * reader side is locked, etc., the swap entry may become invalid
1536  * because of swapoff.  Then, we need to enclose all swap related
1537  * functions with get_swap_device() and put_swap_device(), unless the
1538  * swap functions call get/put_swap_device() by themselves.
1539  *
1540  * RCU reader side lock (including any spinlock) is sufficient to
1541  * prevent swapoff, because synchronize_rcu() is called in swapoff()
1542  * before freeing data structures.
1543  *
1544  * Check whether swap entry is valid in the swap device.  If so,
1545  * return pointer to swap_info_struct, and keep the swap entry valid
1546  * via preventing the swap device from being swapoff, until
1547  * put_swap_device() is called.  Otherwise return NULL.
1548  *
1549  * Notice that swapoff or swapoff+swapon can still happen before the
1550  * percpu_ref_tryget_live() in get_swap_device() or after the
1551  * percpu_ref_put() in put_swap_device() if there isn't any other way
1552  * to prevent swapoff.  The caller must be prepared for that.  For
1553  * example, the following situation is possible.
1554  *
1555  *   CPU1				CPU2
1556  *   do_swap_page()
1557  *     ...				swapoff+swapon
1558  *     __read_swap_cache_async()
1559  *       swapcache_prepare()
1560  *         __swap_duplicate()
1561  *           // check swap_map
1562  *     // verify PTE not changed
1563  *
1564  * In __swap_duplicate(), the swap_map need to be checked before
1565  * changing partly because the specified swap entry may be for another
1566  * swap device which has been swapoff.  And in do_swap_page(), after
1567  * the page is read from the swap device, the PTE is verified not
1568  * changed with the page table locked to check whether the swap device
1569  * has been swapoff or swapoff+swapon.
1570  */
get_swap_device(swp_entry_t entry)1571 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1572 {
1573 	struct swap_info_struct *si;
1574 	unsigned long offset;
1575 
1576 	if (!entry.val)
1577 		goto out;
1578 	si = swap_entry_to_info(entry);
1579 	if (!si)
1580 		goto bad_nofile;
1581 	if (!get_swap_device_info(si))
1582 		goto out;
1583 	offset = swp_offset(entry);
1584 	if (offset >= si->max)
1585 		goto put_out;
1586 
1587 	return si;
1588 bad_nofile:
1589 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1590 out:
1591 	return NULL;
1592 put_out:
1593 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1594 	percpu_ref_put(&si->users);
1595 	return NULL;
1596 }
1597 
swap_entries_put_cache(struct swap_info_struct * si,swp_entry_t entry,int nr)1598 static void swap_entries_put_cache(struct swap_info_struct *si,
1599 				   swp_entry_t entry, int nr)
1600 {
1601 	unsigned long offset = swp_offset(entry);
1602 	struct swap_cluster_info *ci;
1603 
1604 	ci = swap_cluster_lock(si, offset);
1605 	if (swap_only_has_cache(si, offset, nr)) {
1606 		swap_entries_free(si, ci, entry, nr);
1607 	} else {
1608 		for (int i = 0; i < nr; i++, entry.val++)
1609 			swap_entry_put_locked(si, ci, entry, SWAP_HAS_CACHE);
1610 	}
1611 	swap_cluster_unlock(ci);
1612 }
1613 
swap_entries_put_map(struct swap_info_struct * si,swp_entry_t entry,int nr)1614 static bool swap_entries_put_map(struct swap_info_struct *si,
1615 				 swp_entry_t entry, int nr)
1616 {
1617 	unsigned long offset = swp_offset(entry);
1618 	struct swap_cluster_info *ci;
1619 	bool has_cache = false;
1620 	unsigned char count;
1621 	int i;
1622 
1623 	if (nr <= 1)
1624 		goto fallback;
1625 	count = swap_count(data_race(si->swap_map[offset]));
1626 	if (count != 1 && count != SWAP_MAP_SHMEM)
1627 		goto fallback;
1628 
1629 	ci = swap_cluster_lock(si, offset);
1630 	if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1631 		goto locked_fallback;
1632 	}
1633 	if (!has_cache)
1634 		swap_entries_free(si, ci, entry, nr);
1635 	else
1636 		for (i = 0; i < nr; i++)
1637 			WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1638 	swap_cluster_unlock(ci);
1639 
1640 	return has_cache;
1641 
1642 fallback:
1643 	ci = swap_cluster_lock(si, offset);
1644 locked_fallback:
1645 	for (i = 0; i < nr; i++, entry.val++) {
1646 		count = swap_entry_put_locked(si, ci, entry, 1);
1647 		if (count == SWAP_HAS_CACHE)
1648 			has_cache = true;
1649 	}
1650 	swap_cluster_unlock(ci);
1651 	return has_cache;
1652 }
1653 
1654 /*
1655  * Only functions with "_nr" suffix are able to free entries spanning
1656  * cross multi clusters, so ensure the range is within a single cluster
1657  * when freeing entries with functions without "_nr" suffix.
1658  */
swap_entries_put_map_nr(struct swap_info_struct * si,swp_entry_t entry,int nr)1659 static bool swap_entries_put_map_nr(struct swap_info_struct *si,
1660 				    swp_entry_t entry, int nr)
1661 {
1662 	int cluster_nr, cluster_rest;
1663 	unsigned long offset = swp_offset(entry);
1664 	bool has_cache = false;
1665 
1666 	cluster_rest = SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER;
1667 	while (nr) {
1668 		cluster_nr = min(nr, cluster_rest);
1669 		has_cache |= swap_entries_put_map(si, entry, cluster_nr);
1670 		cluster_rest = SWAPFILE_CLUSTER;
1671 		nr -= cluster_nr;
1672 		entry.val += cluster_nr;
1673 	}
1674 
1675 	return has_cache;
1676 }
1677 
1678 /*
1679  * Check if it's the last ref of swap entry in the freeing path.
1680  * Qualified vlaue includes 1, SWAP_HAS_CACHE or SWAP_MAP_SHMEM.
1681  */
swap_is_last_ref(unsigned char count)1682 static inline bool __maybe_unused swap_is_last_ref(unsigned char count)
1683 {
1684 	return (count == SWAP_HAS_CACHE) || (count == 1) ||
1685 	       (count == SWAP_MAP_SHMEM);
1686 }
1687 
1688 /*
1689  * Drop the last ref of swap entries, caller have to ensure all entries
1690  * belong to the same cgroup and cluster.
1691  */
swap_entries_free(struct swap_info_struct * si,struct swap_cluster_info * ci,swp_entry_t entry,unsigned int nr_pages)1692 static void swap_entries_free(struct swap_info_struct *si,
1693 			      struct swap_cluster_info *ci,
1694 			      swp_entry_t entry, unsigned int nr_pages)
1695 {
1696 	unsigned long offset = swp_offset(entry);
1697 	unsigned char *map = si->swap_map + offset;
1698 	unsigned char *map_end = map + nr_pages;
1699 
1700 	/* It should never free entries across different clusters */
1701 	VM_BUG_ON(ci != __swap_offset_to_cluster(si, offset + nr_pages - 1));
1702 	VM_BUG_ON(cluster_is_empty(ci));
1703 	VM_BUG_ON(ci->count < nr_pages);
1704 
1705 	ci->count -= nr_pages;
1706 	do {
1707 		VM_BUG_ON(!swap_is_last_ref(*map));
1708 		*map = 0;
1709 	} while (++map < map_end);
1710 
1711 	mem_cgroup_uncharge_swap(entry, nr_pages);
1712 	swap_range_free(si, offset, nr_pages);
1713 	swap_cluster_assert_table_empty(ci, offset, nr_pages);
1714 
1715 	if (!ci->count)
1716 		free_cluster(si, ci);
1717 	else
1718 		partial_free_cluster(si, ci);
1719 }
1720 
1721 /*
1722  * Caller has made sure that the swap device corresponding to entry
1723  * is still around or has not been recycled.
1724  */
swap_free_nr(swp_entry_t entry,int nr_pages)1725 void swap_free_nr(swp_entry_t entry, int nr_pages)
1726 {
1727 	int nr;
1728 	struct swap_info_struct *sis;
1729 	unsigned long offset = swp_offset(entry);
1730 
1731 	sis = _swap_info_get(entry);
1732 	if (!sis)
1733 		return;
1734 
1735 	while (nr_pages) {
1736 		nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1737 		swap_entries_put_map(sis, swp_entry(sis->type, offset), nr);
1738 		offset += nr;
1739 		nr_pages -= nr;
1740 	}
1741 }
1742 
1743 /*
1744  * Called after dropping swapcache to decrease refcnt to swap entries.
1745  */
put_swap_folio(struct folio * folio,swp_entry_t entry)1746 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1747 {
1748 	struct swap_info_struct *si;
1749 	int size = 1 << swap_entry_order(folio_order(folio));
1750 
1751 	si = _swap_info_get(entry);
1752 	if (!si)
1753 		return;
1754 
1755 	swap_entries_put_cache(si, entry, size);
1756 }
1757 
__swap_count(swp_entry_t entry)1758 int __swap_count(swp_entry_t entry)
1759 {
1760 	struct swap_info_struct *si = __swap_entry_to_info(entry);
1761 	pgoff_t offset = swp_offset(entry);
1762 
1763 	return swap_count(si->swap_map[offset]);
1764 }
1765 
1766 /*
1767  * How many references to @entry are currently swapped out?
1768  * This does not give an exact answer when swap count is continued,
1769  * but does include the high COUNT_CONTINUED flag to allow for that.
1770  */
swap_entry_swapped(struct swap_info_struct * si,swp_entry_t entry)1771 bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry)
1772 {
1773 	pgoff_t offset = swp_offset(entry);
1774 	struct swap_cluster_info *ci;
1775 	int count;
1776 
1777 	ci = swap_cluster_lock(si, offset);
1778 	count = swap_count(si->swap_map[offset]);
1779 	swap_cluster_unlock(ci);
1780 	return !!count;
1781 }
1782 
1783 /*
1784  * How many references to @entry are currently swapped out?
1785  * This considers COUNT_CONTINUED so it returns exact answer.
1786  */
swp_swapcount(swp_entry_t entry)1787 int swp_swapcount(swp_entry_t entry)
1788 {
1789 	int count, tmp_count, n;
1790 	struct swap_info_struct *si;
1791 	struct swap_cluster_info *ci;
1792 	struct page *page;
1793 	pgoff_t offset;
1794 	unsigned char *map;
1795 
1796 	si = _swap_info_get(entry);
1797 	if (!si)
1798 		return 0;
1799 
1800 	offset = swp_offset(entry);
1801 
1802 	ci = swap_cluster_lock(si, offset);
1803 
1804 	count = swap_count(si->swap_map[offset]);
1805 	if (!(count & COUNT_CONTINUED))
1806 		goto out;
1807 
1808 	count &= ~COUNT_CONTINUED;
1809 	n = SWAP_MAP_MAX + 1;
1810 
1811 	page = vmalloc_to_page(si->swap_map + offset);
1812 	offset &= ~PAGE_MASK;
1813 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1814 
1815 	do {
1816 		page = list_next_entry(page, lru);
1817 		map = kmap_local_page(page);
1818 		tmp_count = map[offset];
1819 		kunmap_local(map);
1820 
1821 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1822 		n *= (SWAP_CONT_MAX + 1);
1823 	} while (tmp_count & COUNT_CONTINUED);
1824 out:
1825 	swap_cluster_unlock(ci);
1826 	return count;
1827 }
1828 
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry,int order)1829 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1830 					 swp_entry_t entry, int order)
1831 {
1832 	struct swap_cluster_info *ci;
1833 	unsigned char *map = si->swap_map;
1834 	unsigned int nr_pages = 1 << order;
1835 	unsigned long roffset = swp_offset(entry);
1836 	unsigned long offset = round_down(roffset, nr_pages);
1837 	int i;
1838 	bool ret = false;
1839 
1840 	ci = swap_cluster_lock(si, offset);
1841 	if (nr_pages == 1) {
1842 		if (swap_count(map[roffset]))
1843 			ret = true;
1844 		goto unlock_out;
1845 	}
1846 	for (i = 0; i < nr_pages; i++) {
1847 		if (swap_count(map[offset + i])) {
1848 			ret = true;
1849 			break;
1850 		}
1851 	}
1852 unlock_out:
1853 	swap_cluster_unlock(ci);
1854 	return ret;
1855 }
1856 
folio_swapped(struct folio * folio)1857 static bool folio_swapped(struct folio *folio)
1858 {
1859 	swp_entry_t entry = folio->swap;
1860 	struct swap_info_struct *si = _swap_info_get(entry);
1861 
1862 	if (!si)
1863 		return false;
1864 
1865 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1866 		return swap_entry_swapped(si, entry);
1867 
1868 	return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1869 }
1870 
folio_swapcache_freeable(struct folio * folio)1871 static bool folio_swapcache_freeable(struct folio *folio)
1872 {
1873 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1874 
1875 	if (!folio_test_swapcache(folio))
1876 		return false;
1877 	if (folio_test_writeback(folio))
1878 		return false;
1879 
1880 	/*
1881 	 * Once hibernation has begun to create its image of memory,
1882 	 * there's a danger that one of the calls to folio_free_swap()
1883 	 * - most probably a call from __try_to_reclaim_swap() while
1884 	 * hibernation is allocating its own swap pages for the image,
1885 	 * but conceivably even a call from memory reclaim - will free
1886 	 * the swap from a folio which has already been recorded in the
1887 	 * image as a clean swapcache folio, and then reuse its swap for
1888 	 * another page of the image.  On waking from hibernation, the
1889 	 * original folio might be freed under memory pressure, then
1890 	 * later read back in from swap, now with the wrong data.
1891 	 *
1892 	 * Hibernation suspends storage while it is writing the image
1893 	 * to disk so check that here.
1894 	 */
1895 	if (pm_suspended_storage())
1896 		return false;
1897 
1898 	return true;
1899 }
1900 
1901 /**
1902  * folio_free_swap() - Free the swap space used for this folio.
1903  * @folio: The folio to remove.
1904  *
1905  * If swap is getting full, or if there are no more mappings of this folio,
1906  * then call folio_free_swap to free its swap space.
1907  *
1908  * Return: true if we were able to release the swap space.
1909  */
folio_free_swap(struct folio * folio)1910 bool folio_free_swap(struct folio *folio)
1911 {
1912 	if (!folio_swapcache_freeable(folio))
1913 		return false;
1914 	if (folio_swapped(folio))
1915 		return false;
1916 
1917 	swap_cache_del_folio(folio);
1918 	folio_set_dirty(folio);
1919 	return true;
1920 }
1921 
1922 /**
1923  * free_swap_and_cache_nr() - Release reference on range of swap entries and
1924  *                            reclaim their cache if no more references remain.
1925  * @entry: First entry of range.
1926  * @nr: Number of entries in range.
1927  *
1928  * For each swap entry in the contiguous range, release a reference. If any swap
1929  * entries become free, try to reclaim their underlying folios, if present. The
1930  * offset range is defined by [entry.offset, entry.offset + nr).
1931  */
free_swap_and_cache_nr(swp_entry_t entry,int nr)1932 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1933 {
1934 	const unsigned long start_offset = swp_offset(entry);
1935 	const unsigned long end_offset = start_offset + nr;
1936 	struct swap_info_struct *si;
1937 	bool any_only_cache = false;
1938 	unsigned long offset;
1939 
1940 	si = get_swap_device(entry);
1941 	if (!si)
1942 		return;
1943 
1944 	if (WARN_ON(end_offset > si->max))
1945 		goto out;
1946 
1947 	/*
1948 	 * First free all entries in the range.
1949 	 */
1950 	any_only_cache = swap_entries_put_map_nr(si, entry, nr);
1951 
1952 	/*
1953 	 * Short-circuit the below loop if none of the entries had their
1954 	 * reference drop to zero.
1955 	 */
1956 	if (!any_only_cache)
1957 		goto out;
1958 
1959 	/*
1960 	 * Now go back over the range trying to reclaim the swap cache.
1961 	 */
1962 	for (offset = start_offset; offset < end_offset; offset += nr) {
1963 		nr = 1;
1964 		if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1965 			/*
1966 			 * Folios are always naturally aligned in swap so
1967 			 * advance forward to the next boundary. Zero means no
1968 			 * folio was found for the swap entry, so advance by 1
1969 			 * in this case. Negative value means folio was found
1970 			 * but could not be reclaimed. Here we can still advance
1971 			 * to the next boundary.
1972 			 */
1973 			nr = __try_to_reclaim_swap(si, offset,
1974 						   TTRS_UNMAPPED | TTRS_FULL);
1975 			if (nr == 0)
1976 				nr = 1;
1977 			else if (nr < 0)
1978 				nr = -nr;
1979 			nr = ALIGN(offset + 1, nr) - offset;
1980 		}
1981 	}
1982 
1983 out:
1984 	put_swap_device(si);
1985 }
1986 
1987 #ifdef CONFIG_HIBERNATION
1988 
get_swap_page_of_type(int type)1989 swp_entry_t get_swap_page_of_type(int type)
1990 {
1991 	struct swap_info_struct *si = swap_type_to_info(type);
1992 	unsigned long offset;
1993 	swp_entry_t entry = {0};
1994 
1995 	if (!si)
1996 		goto fail;
1997 
1998 	/* This is called for allocating swap entry, not cache */
1999 	if (get_swap_device_info(si)) {
2000 		if (si->flags & SWP_WRITEOK) {
2001 			/*
2002 			 * Grab the local lock to be complaint
2003 			 * with swap table allocation.
2004 			 */
2005 			local_lock(&percpu_swap_cluster.lock);
2006 			offset = cluster_alloc_swap_entry(si, 0, 1);
2007 			local_unlock(&percpu_swap_cluster.lock);
2008 			if (offset) {
2009 				entry = swp_entry(si->type, offset);
2010 				atomic_long_dec(&nr_swap_pages);
2011 			}
2012 		}
2013 		put_swap_device(si);
2014 	}
2015 fail:
2016 	return entry;
2017 }
2018 
2019 /*
2020  * Find the swap type that corresponds to given device (if any).
2021  *
2022  * @offset - number of the PAGE_SIZE-sized block of the device, starting
2023  * from 0, in which the swap header is expected to be located.
2024  *
2025  * This is needed for the suspend to disk (aka swsusp).
2026  */
swap_type_of(dev_t device,sector_t offset)2027 int swap_type_of(dev_t device, sector_t offset)
2028 {
2029 	int type;
2030 
2031 	if (!device)
2032 		return -1;
2033 
2034 	spin_lock(&swap_lock);
2035 	for (type = 0; type < nr_swapfiles; type++) {
2036 		struct swap_info_struct *sis = swap_info[type];
2037 
2038 		if (!(sis->flags & SWP_WRITEOK))
2039 			continue;
2040 
2041 		if (device == sis->bdev->bd_dev) {
2042 			struct swap_extent *se = first_se(sis);
2043 
2044 			if (se->start_block == offset) {
2045 				spin_unlock(&swap_lock);
2046 				return type;
2047 			}
2048 		}
2049 	}
2050 	spin_unlock(&swap_lock);
2051 	return -ENODEV;
2052 }
2053 
find_first_swap(dev_t * device)2054 int find_first_swap(dev_t *device)
2055 {
2056 	int type;
2057 
2058 	spin_lock(&swap_lock);
2059 	for (type = 0; type < nr_swapfiles; type++) {
2060 		struct swap_info_struct *sis = swap_info[type];
2061 
2062 		if (!(sis->flags & SWP_WRITEOK))
2063 			continue;
2064 		*device = sis->bdev->bd_dev;
2065 		spin_unlock(&swap_lock);
2066 		return type;
2067 	}
2068 	spin_unlock(&swap_lock);
2069 	return -ENODEV;
2070 }
2071 
2072 /*
2073  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
2074  * corresponding to given index in swap_info (swap type).
2075  */
swapdev_block(int type,pgoff_t offset)2076 sector_t swapdev_block(int type, pgoff_t offset)
2077 {
2078 	struct swap_info_struct *si = swap_type_to_info(type);
2079 	struct swap_extent *se;
2080 
2081 	if (!si || !(si->flags & SWP_WRITEOK))
2082 		return 0;
2083 	se = offset_to_swap_extent(si, offset);
2084 	return se->start_block + (offset - se->start_page);
2085 }
2086 
2087 /*
2088  * Return either the total number of swap pages of given type, or the number
2089  * of free pages of that type (depending on @free)
2090  *
2091  * This is needed for software suspend
2092  */
count_swap_pages(int type,int free)2093 unsigned int count_swap_pages(int type, int free)
2094 {
2095 	unsigned int n = 0;
2096 
2097 	spin_lock(&swap_lock);
2098 	if ((unsigned int)type < nr_swapfiles) {
2099 		struct swap_info_struct *sis = swap_info[type];
2100 
2101 		spin_lock(&sis->lock);
2102 		if (sis->flags & SWP_WRITEOK) {
2103 			n = sis->pages;
2104 			if (free)
2105 				n -= swap_usage_in_pages(sis);
2106 		}
2107 		spin_unlock(&sis->lock);
2108 	}
2109 	spin_unlock(&swap_lock);
2110 	return n;
2111 }
2112 #endif /* CONFIG_HIBERNATION */
2113 
pte_same_as_swp(pte_t pte,pte_t swp_pte)2114 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
2115 {
2116 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
2117 }
2118 
2119 /*
2120  * No need to decide whether this PTE shares the swap entry with others,
2121  * just let do_wp_page work it out if a write is requested later - to
2122  * force COW, vm_page_prot omits write permission from any private vma.
2123  */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct folio * folio)2124 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
2125 		unsigned long addr, swp_entry_t entry, struct folio *folio)
2126 {
2127 	struct page *page;
2128 	struct folio *swapcache;
2129 	spinlock_t *ptl;
2130 	pte_t *pte, new_pte, old_pte;
2131 	bool hwpoisoned = false;
2132 	int ret = 1;
2133 
2134 	/*
2135 	 * If the folio is removed from swap cache by others, continue to
2136 	 * unuse other PTEs. try_to_unuse may try again if we missed this one.
2137 	 */
2138 	if (!folio_matches_swap_entry(folio, entry))
2139 		return 0;
2140 
2141 	swapcache = folio;
2142 	folio = ksm_might_need_to_copy(folio, vma, addr);
2143 	if (unlikely(!folio))
2144 		return -ENOMEM;
2145 	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
2146 		hwpoisoned = true;
2147 		folio = swapcache;
2148 	}
2149 
2150 	page = folio_file_page(folio, swp_offset(entry));
2151 	if (PageHWPoison(page))
2152 		hwpoisoned = true;
2153 
2154 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
2155 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
2156 						swp_entry_to_pte(entry)))) {
2157 		ret = 0;
2158 		goto out;
2159 	}
2160 
2161 	old_pte = ptep_get(pte);
2162 
2163 	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2164 		swp_entry_t swp_entry;
2165 
2166 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2167 		if (hwpoisoned) {
2168 			swp_entry = make_hwpoison_entry(page);
2169 		} else {
2170 			swp_entry = make_poisoned_swp_entry();
2171 		}
2172 		new_pte = swp_entry_to_pte(swp_entry);
2173 		ret = 0;
2174 		goto setpte;
2175 	}
2176 
2177 	/*
2178 	 * Some architectures may have to restore extra metadata to the page
2179 	 * when reading from swap. This metadata may be indexed by swap entry
2180 	 * so this must be called before swap_free().
2181 	 */
2182 	arch_swap_restore(folio_swap(entry, folio), folio);
2183 
2184 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2185 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2186 	folio_get(folio);
2187 	if (folio == swapcache) {
2188 		rmap_t rmap_flags = RMAP_NONE;
2189 
2190 		/*
2191 		 * See do_swap_page(): writeback would be problematic.
2192 		 * However, we do a folio_wait_writeback() just before this
2193 		 * call and have the folio locked.
2194 		 */
2195 		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2196 		if (pte_swp_exclusive(old_pte))
2197 			rmap_flags |= RMAP_EXCLUSIVE;
2198 		/*
2199 		 * We currently only expect small !anon folios, which are either
2200 		 * fully exclusive or fully shared. If we ever get large folios
2201 		 * here, we have to be careful.
2202 		 */
2203 		if (!folio_test_anon(folio)) {
2204 			VM_WARN_ON_ONCE(folio_test_large(folio));
2205 			VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2206 			folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2207 		} else {
2208 			folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2209 		}
2210 	} else { /* ksm created a completely new copy */
2211 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2212 		folio_add_lru_vma(folio, vma);
2213 	}
2214 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2215 	if (pte_swp_soft_dirty(old_pte))
2216 		new_pte = pte_mksoft_dirty(new_pte);
2217 	if (pte_swp_uffd_wp(old_pte))
2218 		new_pte = pte_mkuffd_wp(new_pte);
2219 setpte:
2220 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
2221 	swap_free(entry);
2222 out:
2223 	if (pte)
2224 		pte_unmap_unlock(pte, ptl);
2225 	if (folio != swapcache) {
2226 		folio_unlock(folio);
2227 		folio_put(folio);
2228 	}
2229 	return ret;
2230 }
2231 
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type)2232 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2233 			unsigned long addr, unsigned long end,
2234 			unsigned int type)
2235 {
2236 	pte_t *pte = NULL;
2237 	struct swap_info_struct *si;
2238 
2239 	si = swap_info[type];
2240 	do {
2241 		struct folio *folio;
2242 		unsigned long offset;
2243 		unsigned char swp_count;
2244 		swp_entry_t entry;
2245 		int ret;
2246 		pte_t ptent;
2247 
2248 		if (!pte++) {
2249 			pte = pte_offset_map(pmd, addr);
2250 			if (!pte)
2251 				break;
2252 		}
2253 
2254 		ptent = ptep_get_lockless(pte);
2255 
2256 		if (!is_swap_pte(ptent))
2257 			continue;
2258 
2259 		entry = pte_to_swp_entry(ptent);
2260 		if (swp_type(entry) != type)
2261 			continue;
2262 
2263 		offset = swp_offset(entry);
2264 		pte_unmap(pte);
2265 		pte = NULL;
2266 
2267 		folio = swap_cache_get_folio(entry);
2268 		if (!folio) {
2269 			struct vm_fault vmf = {
2270 				.vma = vma,
2271 				.address = addr,
2272 				.real_address = addr,
2273 				.pmd = pmd,
2274 			};
2275 
2276 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2277 						&vmf);
2278 		}
2279 		if (!folio) {
2280 			swp_count = READ_ONCE(si->swap_map[offset]);
2281 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2282 				continue;
2283 			return -ENOMEM;
2284 		}
2285 
2286 		folio_lock(folio);
2287 		folio_wait_writeback(folio);
2288 		ret = unuse_pte(vma, pmd, addr, entry, folio);
2289 		if (ret < 0) {
2290 			folio_unlock(folio);
2291 			folio_put(folio);
2292 			return ret;
2293 		}
2294 
2295 		folio_free_swap(folio);
2296 		folio_unlock(folio);
2297 		folio_put(folio);
2298 	} while (addr += PAGE_SIZE, addr != end);
2299 
2300 	if (pte)
2301 		pte_unmap(pte);
2302 	return 0;
2303 }
2304 
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type)2305 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2306 				unsigned long addr, unsigned long end,
2307 				unsigned int type)
2308 {
2309 	pmd_t *pmd;
2310 	unsigned long next;
2311 	int ret;
2312 
2313 	pmd = pmd_offset(pud, addr);
2314 	do {
2315 		cond_resched();
2316 		next = pmd_addr_end(addr, end);
2317 		ret = unuse_pte_range(vma, pmd, addr, next, type);
2318 		if (ret)
2319 			return ret;
2320 	} while (pmd++, addr = next, addr != end);
2321 	return 0;
2322 }
2323 
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type)2324 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2325 				unsigned long addr, unsigned long end,
2326 				unsigned int type)
2327 {
2328 	pud_t *pud;
2329 	unsigned long next;
2330 	int ret;
2331 
2332 	pud = pud_offset(p4d, addr);
2333 	do {
2334 		next = pud_addr_end(addr, end);
2335 		if (pud_none_or_clear_bad(pud))
2336 			continue;
2337 		ret = unuse_pmd_range(vma, pud, addr, next, type);
2338 		if (ret)
2339 			return ret;
2340 	} while (pud++, addr = next, addr != end);
2341 	return 0;
2342 }
2343 
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type)2344 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2345 				unsigned long addr, unsigned long end,
2346 				unsigned int type)
2347 {
2348 	p4d_t *p4d;
2349 	unsigned long next;
2350 	int ret;
2351 
2352 	p4d = p4d_offset(pgd, addr);
2353 	do {
2354 		next = p4d_addr_end(addr, end);
2355 		if (p4d_none_or_clear_bad(p4d))
2356 			continue;
2357 		ret = unuse_pud_range(vma, p4d, addr, next, type);
2358 		if (ret)
2359 			return ret;
2360 	} while (p4d++, addr = next, addr != end);
2361 	return 0;
2362 }
2363 
unuse_vma(struct vm_area_struct * vma,unsigned int type)2364 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2365 {
2366 	pgd_t *pgd;
2367 	unsigned long addr, end, next;
2368 	int ret;
2369 
2370 	addr = vma->vm_start;
2371 	end = vma->vm_end;
2372 
2373 	pgd = pgd_offset(vma->vm_mm, addr);
2374 	do {
2375 		next = pgd_addr_end(addr, end);
2376 		if (pgd_none_or_clear_bad(pgd))
2377 			continue;
2378 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
2379 		if (ret)
2380 			return ret;
2381 	} while (pgd++, addr = next, addr != end);
2382 	return 0;
2383 }
2384 
unuse_mm(struct mm_struct * mm,unsigned int type)2385 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2386 {
2387 	struct vm_area_struct *vma;
2388 	int ret = 0;
2389 	VMA_ITERATOR(vmi, mm, 0);
2390 
2391 	mmap_read_lock(mm);
2392 	if (check_stable_address_space(mm))
2393 		goto unlock;
2394 	for_each_vma(vmi, vma) {
2395 		if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2396 			ret = unuse_vma(vma, type);
2397 			if (ret)
2398 				break;
2399 		}
2400 
2401 		cond_resched();
2402 	}
2403 unlock:
2404 	mmap_read_unlock(mm);
2405 	return ret;
2406 }
2407 
2408 /*
2409  * Scan swap_map from current position to next entry still in use.
2410  * Return 0 if there are no inuse entries after prev till end of
2411  * the map.
2412  */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev)2413 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2414 					unsigned int prev)
2415 {
2416 	unsigned int i;
2417 	unsigned char count;
2418 
2419 	/*
2420 	 * No need for swap_lock here: we're just looking
2421 	 * for whether an entry is in use, not modifying it; false
2422 	 * hits are okay, and sys_swapoff() has already prevented new
2423 	 * allocations from this area (while holding swap_lock).
2424 	 */
2425 	for (i = prev + 1; i < si->max; i++) {
2426 		count = READ_ONCE(si->swap_map[i]);
2427 		if (count && swap_count(count) != SWAP_MAP_BAD)
2428 			break;
2429 		if ((i % LATENCY_LIMIT) == 0)
2430 			cond_resched();
2431 	}
2432 
2433 	if (i == si->max)
2434 		i = 0;
2435 
2436 	return i;
2437 }
2438 
try_to_unuse(unsigned int type)2439 static int try_to_unuse(unsigned int type)
2440 {
2441 	struct mm_struct *prev_mm;
2442 	struct mm_struct *mm;
2443 	struct list_head *p;
2444 	int retval = 0;
2445 	struct swap_info_struct *si = swap_info[type];
2446 	struct folio *folio;
2447 	swp_entry_t entry;
2448 	unsigned int i;
2449 
2450 	if (!swap_usage_in_pages(si))
2451 		goto success;
2452 
2453 retry:
2454 	retval = shmem_unuse(type);
2455 	if (retval)
2456 		return retval;
2457 
2458 	prev_mm = &init_mm;
2459 	mmget(prev_mm);
2460 
2461 	spin_lock(&mmlist_lock);
2462 	p = &init_mm.mmlist;
2463 	while (swap_usage_in_pages(si) &&
2464 	       !signal_pending(current) &&
2465 	       (p = p->next) != &init_mm.mmlist) {
2466 
2467 		mm = list_entry(p, struct mm_struct, mmlist);
2468 		if (!mmget_not_zero(mm))
2469 			continue;
2470 		spin_unlock(&mmlist_lock);
2471 		mmput(prev_mm);
2472 		prev_mm = mm;
2473 		retval = unuse_mm(mm, type);
2474 		if (retval) {
2475 			mmput(prev_mm);
2476 			return retval;
2477 		}
2478 
2479 		/*
2480 		 * Make sure that we aren't completely killing
2481 		 * interactive performance.
2482 		 */
2483 		cond_resched();
2484 		spin_lock(&mmlist_lock);
2485 	}
2486 	spin_unlock(&mmlist_lock);
2487 
2488 	mmput(prev_mm);
2489 
2490 	i = 0;
2491 	while (swap_usage_in_pages(si) &&
2492 	       !signal_pending(current) &&
2493 	       (i = find_next_to_unuse(si, i)) != 0) {
2494 
2495 		entry = swp_entry(type, i);
2496 		folio = swap_cache_get_folio(entry);
2497 		if (!folio)
2498 			continue;
2499 
2500 		/*
2501 		 * It is conceivable that a racing task removed this folio from
2502 		 * swap cache just before we acquired the page lock. The folio
2503 		 * might even be back in swap cache on another swap area. But
2504 		 * that is okay, folio_free_swap() only removes stale folios.
2505 		 */
2506 		folio_lock(folio);
2507 		folio_wait_writeback(folio);
2508 		folio_free_swap(folio);
2509 		folio_unlock(folio);
2510 		folio_put(folio);
2511 	}
2512 
2513 	/*
2514 	 * Lets check again to see if there are still swap entries in the map.
2515 	 * If yes, we would need to do retry the unuse logic again.
2516 	 * Under global memory pressure, swap entries can be reinserted back
2517 	 * into process space after the mmlist loop above passes over them.
2518 	 *
2519 	 * Limit the number of retries? No: when mmget_not_zero()
2520 	 * above fails, that mm is likely to be freeing swap from
2521 	 * exit_mmap(), which proceeds at its own independent pace;
2522 	 * and even shmem_writeout() could have been preempted after
2523 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2524 	 * and robust (though cpu-intensive) just to keep retrying.
2525 	 */
2526 	if (swap_usage_in_pages(si)) {
2527 		if (!signal_pending(current))
2528 			goto retry;
2529 		return -EINTR;
2530 	}
2531 
2532 success:
2533 	/*
2534 	 * Make sure that further cleanups after try_to_unuse() returns happen
2535 	 * after swap_range_free() reduces si->inuse_pages to 0.
2536 	 */
2537 	smp_mb();
2538 	return 0;
2539 }
2540 
2541 /*
2542  * After a successful try_to_unuse, if no swap is now in use, we know
2543  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2544  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2545  * added to the mmlist just after page_duplicate - before would be racy.
2546  */
drain_mmlist(void)2547 static void drain_mmlist(void)
2548 {
2549 	struct list_head *p, *next;
2550 	unsigned int type;
2551 
2552 	for (type = 0; type < nr_swapfiles; type++)
2553 		if (swap_usage_in_pages(swap_info[type]))
2554 			return;
2555 	spin_lock(&mmlist_lock);
2556 	list_for_each_safe(p, next, &init_mm.mmlist)
2557 		list_del_init(p);
2558 	spin_unlock(&mmlist_lock);
2559 }
2560 
2561 /*
2562  * Free all of a swapdev's extent information
2563  */
destroy_swap_extents(struct swap_info_struct * sis)2564 static void destroy_swap_extents(struct swap_info_struct *sis)
2565 {
2566 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2567 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2568 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2569 
2570 		rb_erase(rb, &sis->swap_extent_root);
2571 		kfree(se);
2572 	}
2573 
2574 	if (sis->flags & SWP_ACTIVATED) {
2575 		struct file *swap_file = sis->swap_file;
2576 		struct address_space *mapping = swap_file->f_mapping;
2577 
2578 		sis->flags &= ~SWP_ACTIVATED;
2579 		if (mapping->a_ops->swap_deactivate)
2580 			mapping->a_ops->swap_deactivate(swap_file);
2581 	}
2582 }
2583 
2584 /*
2585  * Add a block range (and the corresponding page range) into this swapdev's
2586  * extent tree.
2587  *
2588  * This function rather assumes that it is called in ascending page order.
2589  */
2590 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2591 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2592 		unsigned long nr_pages, sector_t start_block)
2593 {
2594 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2595 	struct swap_extent *se;
2596 	struct swap_extent *new_se;
2597 
2598 	/*
2599 	 * place the new node at the right most since the
2600 	 * function is called in ascending page order.
2601 	 */
2602 	while (*link) {
2603 		parent = *link;
2604 		link = &parent->rb_right;
2605 	}
2606 
2607 	if (parent) {
2608 		se = rb_entry(parent, struct swap_extent, rb_node);
2609 		BUG_ON(se->start_page + se->nr_pages != start_page);
2610 		if (se->start_block + se->nr_pages == start_block) {
2611 			/* Merge it */
2612 			se->nr_pages += nr_pages;
2613 			return 0;
2614 		}
2615 	}
2616 
2617 	/* No merge, insert a new extent. */
2618 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2619 	if (new_se == NULL)
2620 		return -ENOMEM;
2621 	new_se->start_page = start_page;
2622 	new_se->nr_pages = nr_pages;
2623 	new_se->start_block = start_block;
2624 
2625 	rb_link_node(&new_se->rb_node, parent, link);
2626 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2627 	return 1;
2628 }
2629 EXPORT_SYMBOL_GPL(add_swap_extent);
2630 
2631 /*
2632  * A `swap extent' is a simple thing which maps a contiguous range of pages
2633  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2634  * built at swapon time and is then used at swap_writepage/swap_read_folio
2635  * time for locating where on disk a page belongs.
2636  *
2637  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2638  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2639  * swap files identically.
2640  *
2641  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2642  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2643  * swapfiles are handled *identically* after swapon time.
2644  *
2645  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2646  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2647  * blocks are found which do not fall within the PAGE_SIZE alignment
2648  * requirements, they are simply tossed out - we will never use those blocks
2649  * for swapping.
2650  *
2651  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2652  * prevents users from writing to the swap device, which will corrupt memory.
2653  *
2654  * The amount of disk space which a single swap extent represents varies.
2655  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2656  * extents in the rbtree. - akpm.
2657  */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2658 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2659 {
2660 	struct file *swap_file = sis->swap_file;
2661 	struct address_space *mapping = swap_file->f_mapping;
2662 	struct inode *inode = mapping->host;
2663 	int ret;
2664 
2665 	if (S_ISBLK(inode->i_mode)) {
2666 		ret = add_swap_extent(sis, 0, sis->max, 0);
2667 		*span = sis->pages;
2668 		return ret;
2669 	}
2670 
2671 	if (mapping->a_ops->swap_activate) {
2672 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2673 		if (ret < 0)
2674 			return ret;
2675 		sis->flags |= SWP_ACTIVATED;
2676 		if ((sis->flags & SWP_FS_OPS) &&
2677 		    sio_pool_init() != 0) {
2678 			destroy_swap_extents(sis);
2679 			return -ENOMEM;
2680 		}
2681 		return ret;
2682 	}
2683 
2684 	return generic_swapfile_activate(sis, swap_file, span);
2685 }
2686 
swap_node(struct swap_info_struct * si)2687 static int swap_node(struct swap_info_struct *si)
2688 {
2689 	struct block_device *bdev;
2690 
2691 	if (si->bdev)
2692 		bdev = si->bdev;
2693 	else
2694 		bdev = si->swap_file->f_inode->i_sb->s_bdev;
2695 
2696 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2697 }
2698 
setup_swap_info(struct swap_info_struct * si,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * zeromap)2699 static void setup_swap_info(struct swap_info_struct *si, int prio,
2700 			    unsigned char *swap_map,
2701 			    struct swap_cluster_info *cluster_info,
2702 			    unsigned long *zeromap)
2703 {
2704 	int i;
2705 
2706 	if (prio >= 0)
2707 		si->prio = prio;
2708 	else
2709 		si->prio = --least_priority;
2710 	/*
2711 	 * the plist prio is negated because plist ordering is
2712 	 * low-to-high, while swap ordering is high-to-low
2713 	 */
2714 	si->list.prio = -si->prio;
2715 	for_each_node(i) {
2716 		if (si->prio >= 0)
2717 			si->avail_lists[i].prio = -si->prio;
2718 		else {
2719 			if (swap_node(si) == i)
2720 				si->avail_lists[i].prio = 1;
2721 			else
2722 				si->avail_lists[i].prio = -si->prio;
2723 		}
2724 	}
2725 	si->swap_map = swap_map;
2726 	si->cluster_info = cluster_info;
2727 	si->zeromap = zeromap;
2728 }
2729 
_enable_swap_info(struct swap_info_struct * si)2730 static void _enable_swap_info(struct swap_info_struct *si)
2731 {
2732 	atomic_long_add(si->pages, &nr_swap_pages);
2733 	total_swap_pages += si->pages;
2734 
2735 	assert_spin_locked(&swap_lock);
2736 	/*
2737 	 * both lists are plists, and thus priority ordered.
2738 	 * swap_active_head needs to be priority ordered for swapoff(),
2739 	 * which on removal of any swap_info_struct with an auto-assigned
2740 	 * (i.e. negative) priority increments the auto-assigned priority
2741 	 * of any lower-priority swap_info_structs.
2742 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2743 	 * which allocates swap pages from the highest available priority
2744 	 * swap_info_struct.
2745 	 */
2746 	plist_add(&si->list, &swap_active_head);
2747 
2748 	/* Add back to available list */
2749 	add_to_avail_list(si, true);
2750 }
2751 
enable_swap_info(struct swap_info_struct * si,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * zeromap)2752 static void enable_swap_info(struct swap_info_struct *si, int prio,
2753 				unsigned char *swap_map,
2754 				struct swap_cluster_info *cluster_info,
2755 				unsigned long *zeromap)
2756 {
2757 	spin_lock(&swap_lock);
2758 	spin_lock(&si->lock);
2759 	setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2760 	spin_unlock(&si->lock);
2761 	spin_unlock(&swap_lock);
2762 	/*
2763 	 * Finished initializing swap device, now it's safe to reference it.
2764 	 */
2765 	percpu_ref_resurrect(&si->users);
2766 	spin_lock(&swap_lock);
2767 	spin_lock(&si->lock);
2768 	_enable_swap_info(si);
2769 	spin_unlock(&si->lock);
2770 	spin_unlock(&swap_lock);
2771 }
2772 
reinsert_swap_info(struct swap_info_struct * si)2773 static void reinsert_swap_info(struct swap_info_struct *si)
2774 {
2775 	spin_lock(&swap_lock);
2776 	spin_lock(&si->lock);
2777 	setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2778 	_enable_swap_info(si);
2779 	spin_unlock(&si->lock);
2780 	spin_unlock(&swap_lock);
2781 }
2782 
2783 /*
2784  * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range
2785  * see the updated flags, so there will be no more allocations.
2786  */
wait_for_allocation(struct swap_info_struct * si)2787 static void wait_for_allocation(struct swap_info_struct *si)
2788 {
2789 	unsigned long offset;
2790 	unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER);
2791 	struct swap_cluster_info *ci;
2792 
2793 	BUG_ON(si->flags & SWP_WRITEOK);
2794 
2795 	for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) {
2796 		ci = swap_cluster_lock(si, offset);
2797 		swap_cluster_unlock(ci);
2798 	}
2799 }
2800 
free_cluster_info(struct swap_cluster_info * cluster_info,unsigned long maxpages)2801 static void free_cluster_info(struct swap_cluster_info *cluster_info,
2802 			      unsigned long maxpages)
2803 {
2804 	struct swap_cluster_info *ci;
2805 	int i, nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2806 
2807 	if (!cluster_info)
2808 		return;
2809 	for (i = 0; i < nr_clusters; i++) {
2810 		ci = cluster_info + i;
2811 		/* Cluster with bad marks count will have a remaining table */
2812 		spin_lock(&ci->lock);
2813 		if (rcu_dereference_protected(ci->table, true)) {
2814 			ci->count = 0;
2815 			swap_cluster_free_table(ci);
2816 		}
2817 		spin_unlock(&ci->lock);
2818 	}
2819 	kvfree(cluster_info);
2820 }
2821 
2822 /*
2823  * Called after swap device's reference count is dead, so
2824  * neither scan nor allocation will use it.
2825  */
flush_percpu_swap_cluster(struct swap_info_struct * si)2826 static void flush_percpu_swap_cluster(struct swap_info_struct *si)
2827 {
2828 	int cpu, i;
2829 	struct swap_info_struct **pcp_si;
2830 
2831 	for_each_possible_cpu(cpu) {
2832 		pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu);
2833 		/*
2834 		 * Invalidate the percpu swap cluster cache, si->users
2835 		 * is dead, so no new user will point to it, just flush
2836 		 * any existing user.
2837 		 */
2838 		for (i = 0; i < SWAP_NR_ORDERS; i++)
2839 			cmpxchg(&pcp_si[i], si, NULL);
2840 	}
2841 }
2842 
2843 
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2844 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2845 {
2846 	struct swap_info_struct *p = NULL;
2847 	unsigned char *swap_map;
2848 	unsigned long *zeromap;
2849 	struct swap_cluster_info *cluster_info;
2850 	struct file *swap_file, *victim;
2851 	struct address_space *mapping;
2852 	struct inode *inode;
2853 	struct filename *pathname;
2854 	unsigned int maxpages;
2855 	int err, found = 0;
2856 
2857 	if (!capable(CAP_SYS_ADMIN))
2858 		return -EPERM;
2859 
2860 	BUG_ON(!current->mm);
2861 
2862 	pathname = getname(specialfile);
2863 	if (IS_ERR(pathname))
2864 		return PTR_ERR(pathname);
2865 
2866 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2867 	err = PTR_ERR(victim);
2868 	if (IS_ERR(victim))
2869 		goto out;
2870 
2871 	mapping = victim->f_mapping;
2872 	spin_lock(&swap_lock);
2873 	plist_for_each_entry(p, &swap_active_head, list) {
2874 		if (p->flags & SWP_WRITEOK) {
2875 			if (p->swap_file->f_mapping == mapping) {
2876 				found = 1;
2877 				break;
2878 			}
2879 		}
2880 	}
2881 	if (!found) {
2882 		err = -EINVAL;
2883 		spin_unlock(&swap_lock);
2884 		goto out_dput;
2885 	}
2886 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2887 		vm_unacct_memory(p->pages);
2888 	else {
2889 		err = -ENOMEM;
2890 		spin_unlock(&swap_lock);
2891 		goto out_dput;
2892 	}
2893 	spin_lock(&p->lock);
2894 	del_from_avail_list(p, true);
2895 	if (p->prio < 0) {
2896 		struct swap_info_struct *si = p;
2897 		int nid;
2898 
2899 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2900 			si->prio++;
2901 			si->list.prio--;
2902 			for_each_node(nid) {
2903 				if (si->avail_lists[nid].prio != 1)
2904 					si->avail_lists[nid].prio--;
2905 			}
2906 		}
2907 		least_priority++;
2908 	}
2909 	plist_del(&p->list, &swap_active_head);
2910 	atomic_long_sub(p->pages, &nr_swap_pages);
2911 	total_swap_pages -= p->pages;
2912 	spin_unlock(&p->lock);
2913 	spin_unlock(&swap_lock);
2914 
2915 	wait_for_allocation(p);
2916 
2917 	set_current_oom_origin();
2918 	err = try_to_unuse(p->type);
2919 	clear_current_oom_origin();
2920 
2921 	if (err) {
2922 		/* re-insert swap space back into swap_list */
2923 		reinsert_swap_info(p);
2924 		goto out_dput;
2925 	}
2926 
2927 	/*
2928 	 * Wait for swap operations protected by get/put_swap_device()
2929 	 * to complete.  Because of synchronize_rcu() here, all swap
2930 	 * operations protected by RCU reader side lock (including any
2931 	 * spinlock) will be waited too.  This makes it easy to
2932 	 * prevent folio_test_swapcache() and the following swap cache
2933 	 * operations from racing with swapoff.
2934 	 */
2935 	percpu_ref_kill(&p->users);
2936 	synchronize_rcu();
2937 	wait_for_completion(&p->comp);
2938 
2939 	flush_work(&p->discard_work);
2940 	flush_work(&p->reclaim_work);
2941 	flush_percpu_swap_cluster(p);
2942 
2943 	destroy_swap_extents(p);
2944 	if (p->flags & SWP_CONTINUED)
2945 		free_swap_count_continuations(p);
2946 
2947 	if (!p->bdev || !bdev_nonrot(p->bdev))
2948 		atomic_dec(&nr_rotate_swap);
2949 
2950 	mutex_lock(&swapon_mutex);
2951 	spin_lock(&swap_lock);
2952 	spin_lock(&p->lock);
2953 	drain_mmlist();
2954 
2955 	swap_file = p->swap_file;
2956 	p->swap_file = NULL;
2957 	swap_map = p->swap_map;
2958 	p->swap_map = NULL;
2959 	zeromap = p->zeromap;
2960 	p->zeromap = NULL;
2961 	maxpages = p->max;
2962 	cluster_info = p->cluster_info;
2963 	p->max = 0;
2964 	p->cluster_info = NULL;
2965 	spin_unlock(&p->lock);
2966 	spin_unlock(&swap_lock);
2967 	arch_swap_invalidate_area(p->type);
2968 	zswap_swapoff(p->type);
2969 	mutex_unlock(&swapon_mutex);
2970 	kfree(p->global_cluster);
2971 	p->global_cluster = NULL;
2972 	vfree(swap_map);
2973 	kvfree(zeromap);
2974 	free_cluster_info(cluster_info, maxpages);
2975 	/* Destroy swap account information */
2976 	swap_cgroup_swapoff(p->type);
2977 
2978 	inode = mapping->host;
2979 
2980 	inode_lock(inode);
2981 	inode->i_flags &= ~S_SWAPFILE;
2982 	inode_unlock(inode);
2983 	filp_close(swap_file, NULL);
2984 
2985 	/*
2986 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2987 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2988 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2989 	 */
2990 	spin_lock(&swap_lock);
2991 	p->flags = 0;
2992 	spin_unlock(&swap_lock);
2993 
2994 	err = 0;
2995 	atomic_inc(&proc_poll_event);
2996 	wake_up_interruptible(&proc_poll_wait);
2997 
2998 out_dput:
2999 	filp_close(victim, NULL);
3000 out:
3001 	putname(pathname);
3002 	return err;
3003 }
3004 
3005 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)3006 static __poll_t swaps_poll(struct file *file, poll_table *wait)
3007 {
3008 	struct seq_file *seq = file->private_data;
3009 
3010 	poll_wait(file, &proc_poll_wait, wait);
3011 
3012 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
3013 		seq->poll_event = atomic_read(&proc_poll_event);
3014 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
3015 	}
3016 
3017 	return EPOLLIN | EPOLLRDNORM;
3018 }
3019 
3020 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)3021 static void *swap_start(struct seq_file *swap, loff_t *pos)
3022 {
3023 	struct swap_info_struct *si;
3024 	int type;
3025 	loff_t l = *pos;
3026 
3027 	mutex_lock(&swapon_mutex);
3028 
3029 	if (!l)
3030 		return SEQ_START_TOKEN;
3031 
3032 	for (type = 0; (si = swap_type_to_info(type)); type++) {
3033 		if (!(si->flags & SWP_USED) || !si->swap_map)
3034 			continue;
3035 		if (!--l)
3036 			return si;
3037 	}
3038 
3039 	return NULL;
3040 }
3041 
swap_next(struct seq_file * swap,void * v,loff_t * pos)3042 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
3043 {
3044 	struct swap_info_struct *si = v;
3045 	int type;
3046 
3047 	if (v == SEQ_START_TOKEN)
3048 		type = 0;
3049 	else
3050 		type = si->type + 1;
3051 
3052 	++(*pos);
3053 	for (; (si = swap_type_to_info(type)); type++) {
3054 		if (!(si->flags & SWP_USED) || !si->swap_map)
3055 			continue;
3056 		return si;
3057 	}
3058 
3059 	return NULL;
3060 }
3061 
swap_stop(struct seq_file * swap,void * v)3062 static void swap_stop(struct seq_file *swap, void *v)
3063 {
3064 	mutex_unlock(&swapon_mutex);
3065 }
3066 
swap_show(struct seq_file * swap,void * v)3067 static int swap_show(struct seq_file *swap, void *v)
3068 {
3069 	struct swap_info_struct *si = v;
3070 	struct file *file;
3071 	int len;
3072 	unsigned long bytes, inuse;
3073 
3074 	if (si == SEQ_START_TOKEN) {
3075 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
3076 		return 0;
3077 	}
3078 
3079 	bytes = K(si->pages);
3080 	inuse = K(swap_usage_in_pages(si));
3081 
3082 	file = si->swap_file;
3083 	len = seq_file_path(swap, file, " \t\n\\");
3084 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
3085 			len < 40 ? 40 - len : 1, " ",
3086 			S_ISBLK(file_inode(file)->i_mode) ?
3087 				"partition" : "file\t",
3088 			bytes, bytes < 10000000 ? "\t" : "",
3089 			inuse, inuse < 10000000 ? "\t" : "",
3090 			si->prio);
3091 	return 0;
3092 }
3093 
3094 static const struct seq_operations swaps_op = {
3095 	.start =	swap_start,
3096 	.next =		swap_next,
3097 	.stop =		swap_stop,
3098 	.show =		swap_show
3099 };
3100 
swaps_open(struct inode * inode,struct file * file)3101 static int swaps_open(struct inode *inode, struct file *file)
3102 {
3103 	struct seq_file *seq;
3104 	int ret;
3105 
3106 	ret = seq_open(file, &swaps_op);
3107 	if (ret)
3108 		return ret;
3109 
3110 	seq = file->private_data;
3111 	seq->poll_event = atomic_read(&proc_poll_event);
3112 	return 0;
3113 }
3114 
3115 static const struct proc_ops swaps_proc_ops = {
3116 	.proc_flags	= PROC_ENTRY_PERMANENT,
3117 	.proc_open	= swaps_open,
3118 	.proc_read	= seq_read,
3119 	.proc_lseek	= seq_lseek,
3120 	.proc_release	= seq_release,
3121 	.proc_poll	= swaps_poll,
3122 };
3123 
procswaps_init(void)3124 static int __init procswaps_init(void)
3125 {
3126 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
3127 	return 0;
3128 }
3129 __initcall(procswaps_init);
3130 #endif /* CONFIG_PROC_FS */
3131 
3132 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)3133 static int __init max_swapfiles_check(void)
3134 {
3135 	MAX_SWAPFILES_CHECK();
3136 	return 0;
3137 }
3138 late_initcall(max_swapfiles_check);
3139 #endif
3140 
alloc_swap_info(void)3141 static struct swap_info_struct *alloc_swap_info(void)
3142 {
3143 	struct swap_info_struct *p;
3144 	struct swap_info_struct *defer = NULL;
3145 	unsigned int type;
3146 	int i;
3147 
3148 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
3149 	if (!p)
3150 		return ERR_PTR(-ENOMEM);
3151 
3152 	if (percpu_ref_init(&p->users, swap_users_ref_free,
3153 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
3154 		kvfree(p);
3155 		return ERR_PTR(-ENOMEM);
3156 	}
3157 
3158 	spin_lock(&swap_lock);
3159 	for (type = 0; type < nr_swapfiles; type++) {
3160 		if (!(swap_info[type]->flags & SWP_USED))
3161 			break;
3162 	}
3163 	if (type >= MAX_SWAPFILES) {
3164 		spin_unlock(&swap_lock);
3165 		percpu_ref_exit(&p->users);
3166 		kvfree(p);
3167 		return ERR_PTR(-EPERM);
3168 	}
3169 	if (type >= nr_swapfiles) {
3170 		p->type = type;
3171 		/*
3172 		 * Publish the swap_info_struct after initializing it.
3173 		 * Note that kvzalloc() above zeroes all its fields.
3174 		 */
3175 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
3176 		nr_swapfiles++;
3177 	} else {
3178 		defer = p;
3179 		p = swap_info[type];
3180 		/*
3181 		 * Do not memset this entry: a racing procfs swap_next()
3182 		 * would be relying on p->type to remain valid.
3183 		 */
3184 	}
3185 	p->swap_extent_root = RB_ROOT;
3186 	plist_node_init(&p->list, 0);
3187 	for_each_node(i)
3188 		plist_node_init(&p->avail_lists[i], 0);
3189 	p->flags = SWP_USED;
3190 	spin_unlock(&swap_lock);
3191 	if (defer) {
3192 		percpu_ref_exit(&defer->users);
3193 		kvfree(defer);
3194 	}
3195 	spin_lock_init(&p->lock);
3196 	spin_lock_init(&p->cont_lock);
3197 	atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT);
3198 	init_completion(&p->comp);
3199 
3200 	return p;
3201 }
3202 
claim_swapfile(struct swap_info_struct * si,struct inode * inode)3203 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3204 {
3205 	if (S_ISBLK(inode->i_mode)) {
3206 		si->bdev = I_BDEV(inode);
3207 		/*
3208 		 * Zoned block devices contain zones that have a sequential
3209 		 * write only restriction.  Hence zoned block devices are not
3210 		 * suitable for swapping.  Disallow them here.
3211 		 */
3212 		if (bdev_is_zoned(si->bdev))
3213 			return -EINVAL;
3214 		si->flags |= SWP_BLKDEV;
3215 	} else if (S_ISREG(inode->i_mode)) {
3216 		si->bdev = inode->i_sb->s_bdev;
3217 	}
3218 
3219 	return 0;
3220 }
3221 
3222 
3223 /*
3224  * Find out how many pages are allowed for a single swap device. There
3225  * are two limiting factors:
3226  * 1) the number of bits for the swap offset in the swp_entry_t type, and
3227  * 2) the number of bits in the swap pte, as defined by the different
3228  * architectures.
3229  *
3230  * In order to find the largest possible bit mask, a swap entry with
3231  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3232  * decoded to a swp_entry_t again, and finally the swap offset is
3233  * extracted.
3234  *
3235  * This will mask all the bits from the initial ~0UL mask that can't
3236  * be encoded in either the swp_entry_t or the architecture definition
3237  * of a swap pte.
3238  */
generic_max_swapfile_size(void)3239 unsigned long generic_max_swapfile_size(void)
3240 {
3241 	return swp_offset(pte_to_swp_entry(
3242 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3243 }
3244 
3245 /* Can be overridden by an architecture for additional checks. */
arch_max_swapfile_size(void)3246 __weak unsigned long arch_max_swapfile_size(void)
3247 {
3248 	return generic_max_swapfile_size();
3249 }
3250 
read_swap_header(struct swap_info_struct * si,union swap_header * swap_header,struct inode * inode)3251 static unsigned long read_swap_header(struct swap_info_struct *si,
3252 					union swap_header *swap_header,
3253 					struct inode *inode)
3254 {
3255 	int i;
3256 	unsigned long maxpages;
3257 	unsigned long swapfilepages;
3258 	unsigned long last_page;
3259 
3260 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3261 		pr_err("Unable to find swap-space signature\n");
3262 		return 0;
3263 	}
3264 
3265 	/* swap partition endianness hack... */
3266 	if (swab32(swap_header->info.version) == 1) {
3267 		swab32s(&swap_header->info.version);
3268 		swab32s(&swap_header->info.last_page);
3269 		swab32s(&swap_header->info.nr_badpages);
3270 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3271 			return 0;
3272 		for (i = 0; i < swap_header->info.nr_badpages; i++)
3273 			swab32s(&swap_header->info.badpages[i]);
3274 	}
3275 	/* Check the swap header's sub-version */
3276 	if (swap_header->info.version != 1) {
3277 		pr_warn("Unable to handle swap header version %d\n",
3278 			swap_header->info.version);
3279 		return 0;
3280 	}
3281 
3282 	maxpages = swapfile_maximum_size;
3283 	last_page = swap_header->info.last_page;
3284 	if (!last_page) {
3285 		pr_warn("Empty swap-file\n");
3286 		return 0;
3287 	}
3288 	if (last_page > maxpages) {
3289 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3290 			K(maxpages), K(last_page));
3291 	}
3292 	if (maxpages > last_page) {
3293 		maxpages = last_page + 1;
3294 		/* p->max is an unsigned int: don't overflow it */
3295 		if ((unsigned int)maxpages == 0)
3296 			maxpages = UINT_MAX;
3297 	}
3298 
3299 	if (!maxpages)
3300 		return 0;
3301 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3302 	if (swapfilepages && maxpages > swapfilepages) {
3303 		pr_warn("Swap area shorter than signature indicates\n");
3304 		return 0;
3305 	}
3306 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3307 		return 0;
3308 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3309 		return 0;
3310 
3311 	return maxpages;
3312 }
3313 
setup_swap_map(struct swap_info_struct * si,union swap_header * swap_header,unsigned char * swap_map,unsigned long maxpages)3314 static int setup_swap_map(struct swap_info_struct *si,
3315 			  union swap_header *swap_header,
3316 			  unsigned char *swap_map,
3317 			  unsigned long maxpages)
3318 {
3319 	unsigned long i;
3320 
3321 	swap_map[0] = SWAP_MAP_BAD; /* omit header page */
3322 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3323 		unsigned int page_nr = swap_header->info.badpages[i];
3324 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3325 			return -EINVAL;
3326 		if (page_nr < maxpages) {
3327 			swap_map[page_nr] = SWAP_MAP_BAD;
3328 			si->pages--;
3329 		}
3330 	}
3331 
3332 	if (!si->pages) {
3333 		pr_warn("Empty swap-file\n");
3334 		return -EINVAL;
3335 	}
3336 
3337 	return 0;
3338 }
3339 
setup_clusters(struct swap_info_struct * si,union swap_header * swap_header,unsigned long maxpages)3340 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3341 						union swap_header *swap_header,
3342 						unsigned long maxpages)
3343 {
3344 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3345 	struct swap_cluster_info *cluster_info;
3346 	int err = -ENOMEM;
3347 	unsigned long i;
3348 
3349 	cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3350 	if (!cluster_info)
3351 		goto err;
3352 
3353 	for (i = 0; i < nr_clusters; i++)
3354 		spin_lock_init(&cluster_info[i].lock);
3355 
3356 	if (!(si->flags & SWP_SOLIDSTATE)) {
3357 		si->global_cluster = kmalloc(sizeof(*si->global_cluster),
3358 				     GFP_KERNEL);
3359 		if (!si->global_cluster)
3360 			goto err_free;
3361 		for (i = 0; i < SWAP_NR_ORDERS; i++)
3362 			si->global_cluster->next[i] = SWAP_ENTRY_INVALID;
3363 		spin_lock_init(&si->global_cluster_lock);
3364 	}
3365 
3366 	/*
3367 	 * Mark unusable pages as unavailable. The clusters aren't
3368 	 * marked free yet, so no list operations are involved yet.
3369 	 *
3370 	 * See setup_swap_map(): header page, bad pages,
3371 	 * and the EOF part of the last cluster.
3372 	 */
3373 	err = inc_cluster_info_page(si, cluster_info, 0);
3374 	if (err)
3375 		goto err;
3376 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3377 		unsigned int page_nr = swap_header->info.badpages[i];
3378 
3379 		if (page_nr >= maxpages)
3380 			continue;
3381 		err = inc_cluster_info_page(si, cluster_info, page_nr);
3382 		if (err)
3383 			goto err;
3384 	}
3385 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) {
3386 		err = inc_cluster_info_page(si, cluster_info, i);
3387 		if (err)
3388 			goto err;
3389 	}
3390 
3391 	INIT_LIST_HEAD(&si->free_clusters);
3392 	INIT_LIST_HEAD(&si->full_clusters);
3393 	INIT_LIST_HEAD(&si->discard_clusters);
3394 
3395 	for (i = 0; i < SWAP_NR_ORDERS; i++) {
3396 		INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3397 		INIT_LIST_HEAD(&si->frag_clusters[i]);
3398 	}
3399 
3400 	for (i = 0; i < nr_clusters; i++) {
3401 		struct swap_cluster_info *ci = &cluster_info[i];
3402 
3403 		if (ci->count) {
3404 			ci->flags = CLUSTER_FLAG_NONFULL;
3405 			list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3406 		} else {
3407 			ci->flags = CLUSTER_FLAG_FREE;
3408 			list_add_tail(&ci->list, &si->free_clusters);
3409 		}
3410 	}
3411 
3412 	return cluster_info;
3413 err_free:
3414 	free_cluster_info(cluster_info, maxpages);
3415 err:
3416 	return ERR_PTR(err);
3417 }
3418 
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)3419 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3420 {
3421 	struct swap_info_struct *si;
3422 	struct filename *name;
3423 	struct file *swap_file = NULL;
3424 	struct address_space *mapping;
3425 	struct dentry *dentry;
3426 	int prio;
3427 	int error;
3428 	union swap_header *swap_header;
3429 	int nr_extents;
3430 	sector_t span;
3431 	unsigned long maxpages;
3432 	unsigned char *swap_map = NULL;
3433 	unsigned long *zeromap = NULL;
3434 	struct swap_cluster_info *cluster_info = NULL;
3435 	struct folio *folio = NULL;
3436 	struct inode *inode = NULL;
3437 	bool inced_nr_rotate_swap = false;
3438 
3439 	if (swap_flags & ~SWAP_FLAGS_VALID)
3440 		return -EINVAL;
3441 
3442 	if (!capable(CAP_SYS_ADMIN))
3443 		return -EPERM;
3444 
3445 	if (!swap_avail_heads)
3446 		return -ENOMEM;
3447 
3448 	si = alloc_swap_info();
3449 	if (IS_ERR(si))
3450 		return PTR_ERR(si);
3451 
3452 	INIT_WORK(&si->discard_work, swap_discard_work);
3453 	INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3454 
3455 	name = getname(specialfile);
3456 	if (IS_ERR(name)) {
3457 		error = PTR_ERR(name);
3458 		name = NULL;
3459 		goto bad_swap;
3460 	}
3461 	swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3462 	if (IS_ERR(swap_file)) {
3463 		error = PTR_ERR(swap_file);
3464 		swap_file = NULL;
3465 		goto bad_swap;
3466 	}
3467 
3468 	si->swap_file = swap_file;
3469 	mapping = swap_file->f_mapping;
3470 	dentry = swap_file->f_path.dentry;
3471 	inode = mapping->host;
3472 
3473 	error = claim_swapfile(si, inode);
3474 	if (unlikely(error))
3475 		goto bad_swap;
3476 
3477 	inode_lock(inode);
3478 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3479 		error = -ENOENT;
3480 		goto bad_swap_unlock_inode;
3481 	}
3482 	if (IS_SWAPFILE(inode)) {
3483 		error = -EBUSY;
3484 		goto bad_swap_unlock_inode;
3485 	}
3486 
3487 	/*
3488 	 * The swap subsystem needs a major overhaul to support this.
3489 	 * It doesn't work yet so just disable it for now.
3490 	 */
3491 	if (mapping_min_folio_order(mapping) > 0) {
3492 		error = -EINVAL;
3493 		goto bad_swap_unlock_inode;
3494 	}
3495 
3496 	/*
3497 	 * Read the swap header.
3498 	 */
3499 	if (!mapping->a_ops->read_folio) {
3500 		error = -EINVAL;
3501 		goto bad_swap_unlock_inode;
3502 	}
3503 	folio = read_mapping_folio(mapping, 0, swap_file);
3504 	if (IS_ERR(folio)) {
3505 		error = PTR_ERR(folio);
3506 		goto bad_swap_unlock_inode;
3507 	}
3508 	swap_header = kmap_local_folio(folio, 0);
3509 
3510 	maxpages = read_swap_header(si, swap_header, inode);
3511 	if (unlikely(!maxpages)) {
3512 		error = -EINVAL;
3513 		goto bad_swap_unlock_inode;
3514 	}
3515 
3516 	si->max = maxpages;
3517 	si->pages = maxpages - 1;
3518 	nr_extents = setup_swap_extents(si, &span);
3519 	if (nr_extents < 0) {
3520 		error = nr_extents;
3521 		goto bad_swap_unlock_inode;
3522 	}
3523 	if (si->pages != si->max - 1) {
3524 		pr_err("swap:%u != (max:%u - 1)\n", si->pages, si->max);
3525 		error = -EINVAL;
3526 		goto bad_swap_unlock_inode;
3527 	}
3528 
3529 	maxpages = si->max;
3530 
3531 	/* OK, set up the swap map and apply the bad block list */
3532 	swap_map = vzalloc(maxpages);
3533 	if (!swap_map) {
3534 		error = -ENOMEM;
3535 		goto bad_swap_unlock_inode;
3536 	}
3537 
3538 	error = swap_cgroup_swapon(si->type, maxpages);
3539 	if (error)
3540 		goto bad_swap_unlock_inode;
3541 
3542 	error = setup_swap_map(si, swap_header, swap_map, maxpages);
3543 	if (error)
3544 		goto bad_swap_unlock_inode;
3545 
3546 	/*
3547 	 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3548 	 * be above MAX_PAGE_ORDER incase of a large swap file.
3549 	 */
3550 	zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3551 				    GFP_KERNEL | __GFP_ZERO);
3552 	if (!zeromap) {
3553 		error = -ENOMEM;
3554 		goto bad_swap_unlock_inode;
3555 	}
3556 
3557 	if (si->bdev && bdev_stable_writes(si->bdev))
3558 		si->flags |= SWP_STABLE_WRITES;
3559 
3560 	if (si->bdev && bdev_synchronous(si->bdev))
3561 		si->flags |= SWP_SYNCHRONOUS_IO;
3562 
3563 	if (si->bdev && bdev_nonrot(si->bdev)) {
3564 		si->flags |= SWP_SOLIDSTATE;
3565 	} else {
3566 		atomic_inc(&nr_rotate_swap);
3567 		inced_nr_rotate_swap = true;
3568 	}
3569 
3570 	cluster_info = setup_clusters(si, swap_header, maxpages);
3571 	if (IS_ERR(cluster_info)) {
3572 		error = PTR_ERR(cluster_info);
3573 		cluster_info = NULL;
3574 		goto bad_swap_unlock_inode;
3575 	}
3576 
3577 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3578 	    si->bdev && bdev_max_discard_sectors(si->bdev)) {
3579 		/*
3580 		 * When discard is enabled for swap with no particular
3581 		 * policy flagged, we set all swap discard flags here in
3582 		 * order to sustain backward compatibility with older
3583 		 * swapon(8) releases.
3584 		 */
3585 		si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3586 			     SWP_PAGE_DISCARD);
3587 
3588 		/*
3589 		 * By flagging sys_swapon, a sysadmin can tell us to
3590 		 * either do single-time area discards only, or to just
3591 		 * perform discards for released swap page-clusters.
3592 		 * Now it's time to adjust the p->flags accordingly.
3593 		 */
3594 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3595 			si->flags &= ~SWP_PAGE_DISCARD;
3596 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3597 			si->flags &= ~SWP_AREA_DISCARD;
3598 
3599 		/* issue a swapon-time discard if it's still required */
3600 		if (si->flags & SWP_AREA_DISCARD) {
3601 			int err = discard_swap(si);
3602 			if (unlikely(err))
3603 				pr_err("swapon: discard_swap(%p): %d\n",
3604 					si, err);
3605 		}
3606 	}
3607 
3608 	error = zswap_swapon(si->type, maxpages);
3609 	if (error)
3610 		goto bad_swap_unlock_inode;
3611 
3612 	/*
3613 	 * Flush any pending IO and dirty mappings before we start using this
3614 	 * swap device.
3615 	 */
3616 	inode->i_flags |= S_SWAPFILE;
3617 	error = inode_drain_writes(inode);
3618 	if (error) {
3619 		inode->i_flags &= ~S_SWAPFILE;
3620 		goto free_swap_zswap;
3621 	}
3622 
3623 	mutex_lock(&swapon_mutex);
3624 	prio = -1;
3625 	if (swap_flags & SWAP_FLAG_PREFER)
3626 		prio = swap_flags & SWAP_FLAG_PRIO_MASK;
3627 	enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3628 
3629 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3630 		K(si->pages), name->name, si->prio, nr_extents,
3631 		K((unsigned long long)span),
3632 		(si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3633 		(si->flags & SWP_DISCARDABLE) ? "D" : "",
3634 		(si->flags & SWP_AREA_DISCARD) ? "s" : "",
3635 		(si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3636 
3637 	mutex_unlock(&swapon_mutex);
3638 	atomic_inc(&proc_poll_event);
3639 	wake_up_interruptible(&proc_poll_wait);
3640 
3641 	error = 0;
3642 	goto out;
3643 free_swap_zswap:
3644 	zswap_swapoff(si->type);
3645 bad_swap_unlock_inode:
3646 	inode_unlock(inode);
3647 bad_swap:
3648 	kfree(si->global_cluster);
3649 	si->global_cluster = NULL;
3650 	inode = NULL;
3651 	destroy_swap_extents(si);
3652 	swap_cgroup_swapoff(si->type);
3653 	spin_lock(&swap_lock);
3654 	si->swap_file = NULL;
3655 	si->flags = 0;
3656 	spin_unlock(&swap_lock);
3657 	vfree(swap_map);
3658 	kvfree(zeromap);
3659 	if (cluster_info)
3660 		free_cluster_info(cluster_info, maxpages);
3661 	if (inced_nr_rotate_swap)
3662 		atomic_dec(&nr_rotate_swap);
3663 	if (swap_file)
3664 		filp_close(swap_file, NULL);
3665 out:
3666 	if (!IS_ERR_OR_NULL(folio))
3667 		folio_release_kmap(folio, swap_header);
3668 	if (name)
3669 		putname(name);
3670 	if (inode)
3671 		inode_unlock(inode);
3672 	return error;
3673 }
3674 
si_swapinfo(struct sysinfo * val)3675 void si_swapinfo(struct sysinfo *val)
3676 {
3677 	unsigned int type;
3678 	unsigned long nr_to_be_unused = 0;
3679 
3680 	spin_lock(&swap_lock);
3681 	for (type = 0; type < nr_swapfiles; type++) {
3682 		struct swap_info_struct *si = swap_info[type];
3683 
3684 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3685 			nr_to_be_unused += swap_usage_in_pages(si);
3686 	}
3687 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3688 	val->totalswap = total_swap_pages + nr_to_be_unused;
3689 	spin_unlock(&swap_lock);
3690 }
3691 
3692 /*
3693  * Verify that nr swap entries are valid and increment their swap map counts.
3694  *
3695  * Returns error code in following case.
3696  * - success -> 0
3697  * - swp_entry is invalid -> EINVAL
3698  * - swap-cache reference is requested but there is already one. -> EEXIST
3699  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3700  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3701  */
__swap_duplicate(swp_entry_t entry,unsigned char usage,int nr)3702 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3703 {
3704 	struct swap_info_struct *si;
3705 	struct swap_cluster_info *ci;
3706 	unsigned long offset;
3707 	unsigned char count;
3708 	unsigned char has_cache;
3709 	int err, i;
3710 
3711 	si = swap_entry_to_info(entry);
3712 	if (WARN_ON_ONCE(!si)) {
3713 		pr_err("%s%08lx\n", Bad_file, entry.val);
3714 		return -EINVAL;
3715 	}
3716 
3717 	offset = swp_offset(entry);
3718 	VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3719 	VM_WARN_ON(usage == 1 && nr > 1);
3720 	ci = swap_cluster_lock(si, offset);
3721 
3722 	err = 0;
3723 	for (i = 0; i < nr; i++) {
3724 		count = si->swap_map[offset + i];
3725 
3726 		/*
3727 		 * swapin_readahead() doesn't check if a swap entry is valid, so the
3728 		 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3729 		 */
3730 		if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3731 			err = -ENOENT;
3732 			goto unlock_out;
3733 		}
3734 
3735 		has_cache = count & SWAP_HAS_CACHE;
3736 		count &= ~SWAP_HAS_CACHE;
3737 
3738 		if (!count && !has_cache) {
3739 			err = -ENOENT;
3740 		} else if (usage == SWAP_HAS_CACHE) {
3741 			if (has_cache)
3742 				err = -EEXIST;
3743 		} else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3744 			err = -EINVAL;
3745 		}
3746 
3747 		if (err)
3748 			goto unlock_out;
3749 	}
3750 
3751 	for (i = 0; i < nr; i++) {
3752 		count = si->swap_map[offset + i];
3753 		has_cache = count & SWAP_HAS_CACHE;
3754 		count &= ~SWAP_HAS_CACHE;
3755 
3756 		if (usage == SWAP_HAS_CACHE)
3757 			has_cache = SWAP_HAS_CACHE;
3758 		else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3759 			count += usage;
3760 		else if (swap_count_continued(si, offset + i, count))
3761 			count = COUNT_CONTINUED;
3762 		else {
3763 			/*
3764 			 * Don't need to rollback changes, because if
3765 			 * usage == 1, there must be nr == 1.
3766 			 */
3767 			err = -ENOMEM;
3768 			goto unlock_out;
3769 		}
3770 
3771 		WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3772 	}
3773 
3774 unlock_out:
3775 	swap_cluster_unlock(ci);
3776 	return err;
3777 }
3778 
3779 /*
3780  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3781  * (in which case its reference count is never incremented).
3782  */
swap_shmem_alloc(swp_entry_t entry,int nr)3783 void swap_shmem_alloc(swp_entry_t entry, int nr)
3784 {
3785 	__swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3786 }
3787 
3788 /*
3789  * Increase reference count of swap entry by 1.
3790  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3791  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3792  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3793  * might occur if a page table entry has got corrupted.
3794  */
swap_duplicate(swp_entry_t entry)3795 int swap_duplicate(swp_entry_t entry)
3796 {
3797 	int err = 0;
3798 
3799 	while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3800 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3801 	return err;
3802 }
3803 
3804 /*
3805  * @entry: first swap entry from which we allocate nr swap cache.
3806  *
3807  * Called when allocating swap cache for existing swap entries,
3808  * This can return error codes. Returns 0 at success.
3809  * -EEXIST means there is a swap cache.
3810  * Note: return code is different from swap_duplicate().
3811  */
swapcache_prepare(swp_entry_t entry,int nr)3812 int swapcache_prepare(swp_entry_t entry, int nr)
3813 {
3814 	return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3815 }
3816 
3817 /*
3818  * Caller should ensure entries belong to the same folio so
3819  * the entries won't span cross cluster boundary.
3820  */
swapcache_clear(struct swap_info_struct * si,swp_entry_t entry,int nr)3821 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3822 {
3823 	swap_entries_put_cache(si, entry, nr);
3824 }
3825 
3826 /*
3827  * add_swap_count_continuation - called when a swap count is duplicated
3828  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3829  * page of the original vmalloc'ed swap_map, to hold the continuation count
3830  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3831  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3832  *
3833  * These continuation pages are seldom referenced: the common paths all work
3834  * on the original swap_map, only referring to a continuation page when the
3835  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3836  *
3837  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3838  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3839  * can be called after dropping locks.
3840  */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3841 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3842 {
3843 	struct swap_info_struct *si;
3844 	struct swap_cluster_info *ci;
3845 	struct page *head;
3846 	struct page *page;
3847 	struct page *list_page;
3848 	pgoff_t offset;
3849 	unsigned char count;
3850 	int ret = 0;
3851 
3852 	/*
3853 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3854 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3855 	 */
3856 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3857 
3858 	si = get_swap_device(entry);
3859 	if (!si) {
3860 		/*
3861 		 * An acceptable race has occurred since the failing
3862 		 * __swap_duplicate(): the swap device may be swapoff
3863 		 */
3864 		goto outer;
3865 	}
3866 
3867 	offset = swp_offset(entry);
3868 
3869 	ci = swap_cluster_lock(si, offset);
3870 
3871 	count = swap_count(si->swap_map[offset]);
3872 
3873 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3874 		/*
3875 		 * The higher the swap count, the more likely it is that tasks
3876 		 * will race to add swap count continuation: we need to avoid
3877 		 * over-provisioning.
3878 		 */
3879 		goto out;
3880 	}
3881 
3882 	if (!page) {
3883 		ret = -ENOMEM;
3884 		goto out;
3885 	}
3886 
3887 	head = vmalloc_to_page(si->swap_map + offset);
3888 	offset &= ~PAGE_MASK;
3889 
3890 	spin_lock(&si->cont_lock);
3891 	/*
3892 	 * Page allocation does not initialize the page's lru field,
3893 	 * but it does always reset its private field.
3894 	 */
3895 	if (!page_private(head)) {
3896 		BUG_ON(count & COUNT_CONTINUED);
3897 		INIT_LIST_HEAD(&head->lru);
3898 		set_page_private(head, SWP_CONTINUED);
3899 		si->flags |= SWP_CONTINUED;
3900 	}
3901 
3902 	list_for_each_entry(list_page, &head->lru, lru) {
3903 		unsigned char *map;
3904 
3905 		/*
3906 		 * If the previous map said no continuation, but we've found
3907 		 * a continuation page, free our allocation and use this one.
3908 		 */
3909 		if (!(count & COUNT_CONTINUED))
3910 			goto out_unlock_cont;
3911 
3912 		map = kmap_local_page(list_page) + offset;
3913 		count = *map;
3914 		kunmap_local(map);
3915 
3916 		/*
3917 		 * If this continuation count now has some space in it,
3918 		 * free our allocation and use this one.
3919 		 */
3920 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3921 			goto out_unlock_cont;
3922 	}
3923 
3924 	list_add_tail(&page->lru, &head->lru);
3925 	page = NULL;			/* now it's attached, don't free it */
3926 out_unlock_cont:
3927 	spin_unlock(&si->cont_lock);
3928 out:
3929 	swap_cluster_unlock(ci);
3930 	put_swap_device(si);
3931 outer:
3932 	if (page)
3933 		__free_page(page);
3934 	return ret;
3935 }
3936 
3937 /*
3938  * swap_count_continued - when the original swap_map count is incremented
3939  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3940  * into, carry if so, or else fail until a new continuation page is allocated;
3941  * when the original swap_map count is decremented from 0 with continuation,
3942  * borrow from the continuation and report whether it still holds more.
3943  * Called while __swap_duplicate() or caller of swap_entry_put_locked()
3944  * holds cluster lock.
3945  */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3946 static bool swap_count_continued(struct swap_info_struct *si,
3947 				 pgoff_t offset, unsigned char count)
3948 {
3949 	struct page *head;
3950 	struct page *page;
3951 	unsigned char *map;
3952 	bool ret;
3953 
3954 	head = vmalloc_to_page(si->swap_map + offset);
3955 	if (page_private(head) != SWP_CONTINUED) {
3956 		BUG_ON(count & COUNT_CONTINUED);
3957 		return false;		/* need to add count continuation */
3958 	}
3959 
3960 	spin_lock(&si->cont_lock);
3961 	offset &= ~PAGE_MASK;
3962 	page = list_next_entry(head, lru);
3963 	map = kmap_local_page(page) + offset;
3964 
3965 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3966 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3967 
3968 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3969 		/*
3970 		 * Think of how you add 1 to 999
3971 		 */
3972 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3973 			kunmap_local(map);
3974 			page = list_next_entry(page, lru);
3975 			BUG_ON(page == head);
3976 			map = kmap_local_page(page) + offset;
3977 		}
3978 		if (*map == SWAP_CONT_MAX) {
3979 			kunmap_local(map);
3980 			page = list_next_entry(page, lru);
3981 			if (page == head) {
3982 				ret = false;	/* add count continuation */
3983 				goto out;
3984 			}
3985 			map = kmap_local_page(page) + offset;
3986 init_map:		*map = 0;		/* we didn't zero the page */
3987 		}
3988 		*map += 1;
3989 		kunmap_local(map);
3990 		while ((page = list_prev_entry(page, lru)) != head) {
3991 			map = kmap_local_page(page) + offset;
3992 			*map = COUNT_CONTINUED;
3993 			kunmap_local(map);
3994 		}
3995 		ret = true;			/* incremented */
3996 
3997 	} else {				/* decrementing */
3998 		/*
3999 		 * Think of how you subtract 1 from 1000
4000 		 */
4001 		BUG_ON(count != COUNT_CONTINUED);
4002 		while (*map == COUNT_CONTINUED) {
4003 			kunmap_local(map);
4004 			page = list_next_entry(page, lru);
4005 			BUG_ON(page == head);
4006 			map = kmap_local_page(page) + offset;
4007 		}
4008 		BUG_ON(*map == 0);
4009 		*map -= 1;
4010 		if (*map == 0)
4011 			count = 0;
4012 		kunmap_local(map);
4013 		while ((page = list_prev_entry(page, lru)) != head) {
4014 			map = kmap_local_page(page) + offset;
4015 			*map = SWAP_CONT_MAX | count;
4016 			count = COUNT_CONTINUED;
4017 			kunmap_local(map);
4018 		}
4019 		ret = count == COUNT_CONTINUED;
4020 	}
4021 out:
4022 	spin_unlock(&si->cont_lock);
4023 	return ret;
4024 }
4025 
4026 /*
4027  * free_swap_count_continuations - swapoff free all the continuation pages
4028  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
4029  */
free_swap_count_continuations(struct swap_info_struct * si)4030 static void free_swap_count_continuations(struct swap_info_struct *si)
4031 {
4032 	pgoff_t offset;
4033 
4034 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
4035 		struct page *head;
4036 		head = vmalloc_to_page(si->swap_map + offset);
4037 		if (page_private(head)) {
4038 			struct page *page, *next;
4039 
4040 			list_for_each_entry_safe(page, next, &head->lru, lru) {
4041 				list_del(&page->lru);
4042 				__free_page(page);
4043 			}
4044 		}
4045 	}
4046 }
4047 
4048 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
__has_usable_swap(void)4049 static bool __has_usable_swap(void)
4050 {
4051 	return !plist_head_empty(&swap_active_head);
4052 }
4053 
__folio_throttle_swaprate(struct folio * folio,gfp_t gfp)4054 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
4055 {
4056 	struct swap_info_struct *si, *next;
4057 	int nid = folio_nid(folio);
4058 
4059 	if (!(gfp & __GFP_IO))
4060 		return;
4061 
4062 	if (!__has_usable_swap())
4063 		return;
4064 
4065 	if (!blk_cgroup_congested())
4066 		return;
4067 
4068 	/*
4069 	 * We've already scheduled a throttle, avoid taking the global swap
4070 	 * lock.
4071 	 */
4072 	if (current->throttle_disk)
4073 		return;
4074 
4075 	spin_lock(&swap_avail_lock);
4076 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
4077 				  avail_lists[nid]) {
4078 		if (si->bdev) {
4079 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
4080 			break;
4081 		}
4082 	}
4083 	spin_unlock(&swap_avail_lock);
4084 }
4085 #endif
4086 
swapfile_init(void)4087 static int __init swapfile_init(void)
4088 {
4089 	int nid;
4090 
4091 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
4092 					 GFP_KERNEL);
4093 	if (!swap_avail_heads) {
4094 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
4095 		return -ENOMEM;
4096 	}
4097 
4098 	for_each_node(nid)
4099 		plist_head_init(&swap_avail_heads[nid]);
4100 
4101 	swapfile_maximum_size = arch_max_swapfile_size();
4102 
4103 	/*
4104 	 * Once a cluster is freed, it's swap table content is read
4105 	 * only, and all swap cache readers (swap_cache_*) verifies
4106 	 * the content before use. So it's safe to use RCU slab here.
4107 	 */
4108 	if (!SWP_TABLE_USE_PAGE)
4109 		swap_table_cachep = kmem_cache_create("swap_table",
4110 				    sizeof(struct swap_table),
4111 				    0, SLAB_PANIC | SLAB_TYPESAFE_BY_RCU, NULL);
4112 
4113 #ifdef CONFIG_MIGRATION
4114 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
4115 		swap_migration_ad_supported = true;
4116 #endif	/* CONFIG_MIGRATION */
4117 
4118 	return 0;
4119 }
4120 subsys_initcall(swapfile_init);
4121