1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/compat.h> 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/errno.h> 25 #include <linux/stat.h> 26 #include <linux/fcntl.h> 27 #include <linux/string.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/mm.h> 31 #include <linux/sunrpc/clnt.h> 32 #include <linux/nfs_fs.h> 33 #include <linux/nfs_mount.h> 34 #include <linux/pagemap.h> 35 #include <linux/pagevec.h> 36 #include <linux/namei.h> 37 #include <linux/mount.h> 38 #include <linux/swap.h> 39 #include <linux/sched.h> 40 #include <linux/kmemleak.h> 41 #include <linux/xattr.h> 42 #include <linux/hash.h> 43 44 #include "delegation.h" 45 #include "iostat.h" 46 #include "internal.h" 47 #include "fscache.h" 48 49 #include "nfstrace.h" 50 51 /* #define NFS_DEBUG_VERBOSE 1 */ 52 53 static int nfs_opendir(struct inode *, struct file *); 54 static int nfs_closedir(struct inode *, struct file *); 55 static int nfs_readdir(struct file *, struct dir_context *); 56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 57 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58 static void nfs_readdir_clear_array(struct folio *); 59 static int nfs_do_create(struct inode *dir, struct dentry *dentry, 60 umode_t mode, int open_flags); 61 62 const struct file_operations nfs_dir_operations = { 63 .llseek = nfs_llseek_dir, 64 .read = generic_read_dir, 65 .iterate_shared = nfs_readdir, 66 .open = nfs_opendir, 67 .release = nfs_closedir, 68 .fsync = nfs_fsync_dir, 69 }; 70 71 const struct address_space_operations nfs_dir_aops = { 72 .free_folio = nfs_readdir_clear_array, 73 }; 74 75 #define NFS_INIT_DTSIZE PAGE_SIZE 76 77 static struct nfs_open_dir_context * 78 alloc_nfs_open_dir_context(struct inode *dir) 79 { 80 struct nfs_inode *nfsi = NFS_I(dir); 81 struct nfs_open_dir_context *ctx; 82 83 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT); 84 if (ctx != NULL) { 85 ctx->attr_gencount = nfsi->attr_gencount; 86 ctx->dtsize = NFS_INIT_DTSIZE; 87 spin_lock(&dir->i_lock); 88 if (list_empty(&nfsi->open_files) && 89 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 90 nfs_set_cache_invalid(dir, 91 NFS_INO_INVALID_DATA | 92 NFS_INO_REVAL_FORCED); 93 list_add_tail_rcu(&ctx->list, &nfsi->open_files); 94 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf)); 95 spin_unlock(&dir->i_lock); 96 return ctx; 97 } 98 return ERR_PTR(-ENOMEM); 99 } 100 101 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 102 { 103 spin_lock(&dir->i_lock); 104 list_del_rcu(&ctx->list); 105 spin_unlock(&dir->i_lock); 106 kfree_rcu(ctx, rcu_head); 107 } 108 109 /* 110 * Open file 111 */ 112 static int 113 nfs_opendir(struct inode *inode, struct file *filp) 114 { 115 int res = 0; 116 struct nfs_open_dir_context *ctx; 117 118 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 119 120 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 121 122 ctx = alloc_nfs_open_dir_context(inode); 123 if (IS_ERR(ctx)) { 124 res = PTR_ERR(ctx); 125 goto out; 126 } 127 filp->private_data = ctx; 128 out: 129 return res; 130 } 131 132 static int 133 nfs_closedir(struct inode *inode, struct file *filp) 134 { 135 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 136 return 0; 137 } 138 139 struct nfs_cache_array_entry { 140 u64 cookie; 141 u64 ino; 142 const char *name; 143 unsigned int name_len; 144 unsigned char d_type; 145 }; 146 147 struct nfs_cache_array { 148 u64 change_attr; 149 u64 last_cookie; 150 unsigned int size; 151 unsigned char folio_full : 1, 152 folio_is_eof : 1, 153 cookies_are_ordered : 1; 154 struct nfs_cache_array_entry array[] __counted_by(size); 155 }; 156 157 struct nfs_readdir_descriptor { 158 struct file *file; 159 struct folio *folio; 160 struct dir_context *ctx; 161 pgoff_t folio_index; 162 pgoff_t folio_index_max; 163 u64 dir_cookie; 164 u64 last_cookie; 165 loff_t current_index; 166 167 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 168 unsigned long dir_verifier; 169 unsigned long timestamp; 170 unsigned long gencount; 171 unsigned long attr_gencount; 172 unsigned int cache_entry_index; 173 unsigned int buffer_fills; 174 unsigned int dtsize; 175 bool clear_cache; 176 bool plus; 177 bool eob; 178 bool eof; 179 }; 180 181 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz) 182 { 183 struct nfs_server *server = NFS_SERVER(file_inode(desc->file)); 184 unsigned int maxsize = server->dtsize; 185 186 if (sz > maxsize) 187 sz = maxsize; 188 if (sz < NFS_MIN_FILE_IO_SIZE) 189 sz = NFS_MIN_FILE_IO_SIZE; 190 desc->dtsize = sz; 191 } 192 193 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc) 194 { 195 nfs_set_dtsize(desc, desc->dtsize >> 1); 196 } 197 198 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc) 199 { 200 nfs_set_dtsize(desc, desc->dtsize << 1); 201 } 202 203 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie, 204 u64 change_attr) 205 { 206 struct nfs_cache_array *array; 207 208 array = kmap_local_folio(folio, 0); 209 array->change_attr = change_attr; 210 array->last_cookie = last_cookie; 211 array->size = 0; 212 array->folio_full = 0; 213 array->folio_is_eof = 0; 214 array->cookies_are_ordered = 1; 215 kunmap_local(array); 216 } 217 218 /* 219 * we are freeing strings created by nfs_add_to_readdir_array() 220 */ 221 static void nfs_readdir_clear_array(struct folio *folio) 222 { 223 struct nfs_cache_array *array; 224 unsigned int i; 225 226 array = kmap_local_folio(folio, 0); 227 for (i = 0; i < array->size; i++) 228 kfree(array->array[i].name); 229 array->size = 0; 230 kunmap_local(array); 231 } 232 233 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie, 234 u64 change_attr) 235 { 236 nfs_readdir_clear_array(folio); 237 nfs_readdir_folio_init_array(folio, last_cookie, change_attr); 238 } 239 240 static struct folio * 241 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags) 242 { 243 struct folio *folio = folio_alloc(gfp_flags, 0); 244 if (folio) 245 nfs_readdir_folio_init_array(folio, last_cookie, 0); 246 return folio; 247 } 248 249 static void nfs_readdir_folio_array_free(struct folio *folio) 250 { 251 if (folio) { 252 nfs_readdir_clear_array(folio); 253 folio_put(folio); 254 } 255 } 256 257 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array) 258 { 259 return array->size == 0 ? array->last_cookie : array->array[0].cookie; 260 } 261 262 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array) 263 { 264 array->folio_is_eof = 1; 265 array->folio_full = 1; 266 } 267 268 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array) 269 { 270 return array->folio_full; 271 } 272 273 /* 274 * the caller is responsible for freeing qstr.name 275 * when called by nfs_readdir_add_to_array, the strings will be freed in 276 * nfs_clear_readdir_array() 277 */ 278 static const char *nfs_readdir_copy_name(const char *name, unsigned int len) 279 { 280 const char *ret = kmemdup_nul(name, len, GFP_KERNEL); 281 282 /* 283 * Avoid a kmemleak false positive. The pointer to the name is stored 284 * in a page cache page which kmemleak does not scan. 285 */ 286 if (ret != NULL) 287 kmemleak_not_leak(ret); 288 return ret; 289 } 290 291 static size_t nfs_readdir_array_maxentries(void) 292 { 293 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) / 294 sizeof(struct nfs_cache_array_entry); 295 } 296 297 /* 298 * Check that the next array entry lies entirely within the page bounds 299 */ 300 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array) 301 { 302 if (array->folio_full) 303 return -ENOSPC; 304 if (array->size == nfs_readdir_array_maxentries()) { 305 array->folio_full = 1; 306 return -ENOSPC; 307 } 308 return 0; 309 } 310 311 static int nfs_readdir_folio_array_append(struct folio *folio, 312 const struct nfs_entry *entry, 313 u64 *cookie) 314 { 315 struct nfs_cache_array *array; 316 struct nfs_cache_array_entry *cache_entry; 317 const char *name; 318 int ret = -ENOMEM; 319 320 name = nfs_readdir_copy_name(entry->name, entry->len); 321 322 array = kmap_local_folio(folio, 0); 323 if (!name) 324 goto out; 325 ret = nfs_readdir_array_can_expand(array); 326 if (ret) { 327 kfree(name); 328 goto out; 329 } 330 331 array->size++; 332 cache_entry = &array->array[array->size - 1]; 333 cache_entry->cookie = array->last_cookie; 334 cache_entry->ino = entry->ino; 335 cache_entry->d_type = entry->d_type; 336 cache_entry->name_len = entry->len; 337 cache_entry->name = name; 338 array->last_cookie = entry->cookie; 339 if (array->last_cookie <= cache_entry->cookie) 340 array->cookies_are_ordered = 0; 341 if (entry->eof != 0) 342 nfs_readdir_array_set_eof(array); 343 out: 344 *cookie = array->last_cookie; 345 kunmap_local(array); 346 return ret; 347 } 348 349 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14) 350 /* 351 * Hash algorithm allowing content addressible access to sequences 352 * of directory cookies. Content is addressed by the value of the 353 * cookie index of the first readdir entry in a page. 354 * 355 * We select only the first 18 bits to avoid issues with excessive 356 * memory use for the page cache XArray. 18 bits should allow the caching 357 * of 262144 pages of sequences of readdir entries. Since each page holds 358 * 127 readdir entries for a typical 64-bit system, that works out to a 359 * cache of ~ 33 million entries per directory. 360 */ 361 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie) 362 { 363 if (cookie == 0) 364 return 0; 365 return hash_64(cookie, 18); 366 } 367 368 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie, 369 u64 change_attr) 370 { 371 struct nfs_cache_array *array = kmap_local_folio(folio, 0); 372 int ret = true; 373 374 if (array->change_attr != change_attr) 375 ret = false; 376 if (nfs_readdir_array_index_cookie(array) != last_cookie) 377 ret = false; 378 kunmap_local(array); 379 return ret; 380 } 381 382 static void nfs_readdir_folio_unlock_and_put(struct folio *folio) 383 { 384 folio_unlock(folio); 385 folio_put(folio); 386 } 387 388 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie, 389 u64 change_attr) 390 { 391 if (folio_test_uptodate(folio)) { 392 if (nfs_readdir_folio_validate(folio, cookie, change_attr)) 393 return; 394 nfs_readdir_clear_array(folio); 395 } 396 nfs_readdir_folio_init_array(folio, cookie, change_attr); 397 folio_mark_uptodate(folio); 398 } 399 400 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping, 401 u64 cookie, u64 change_attr) 402 { 403 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie); 404 struct folio *folio; 405 406 folio = filemap_grab_folio(mapping, index); 407 if (IS_ERR(folio)) 408 return NULL; 409 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr); 410 return folio; 411 } 412 413 static u64 nfs_readdir_folio_last_cookie(struct folio *folio) 414 { 415 struct nfs_cache_array *array; 416 u64 ret; 417 418 array = kmap_local_folio(folio, 0); 419 ret = array->last_cookie; 420 kunmap_local(array); 421 return ret; 422 } 423 424 static bool nfs_readdir_folio_needs_filling(struct folio *folio) 425 { 426 struct nfs_cache_array *array; 427 bool ret; 428 429 array = kmap_local_folio(folio, 0); 430 ret = !nfs_readdir_array_is_full(array); 431 kunmap_local(array); 432 return ret; 433 } 434 435 static void nfs_readdir_folio_set_eof(struct folio *folio) 436 { 437 struct nfs_cache_array *array; 438 439 array = kmap_local_folio(folio, 0); 440 nfs_readdir_array_set_eof(array); 441 kunmap_local(array); 442 } 443 444 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping, 445 u64 cookie, u64 change_attr) 446 { 447 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie); 448 struct folio *folio; 449 450 folio = __filemap_get_folio(mapping, index, 451 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 452 mapping_gfp_mask(mapping)); 453 if (IS_ERR(folio)) 454 return NULL; 455 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr); 456 if (nfs_readdir_folio_last_cookie(folio) != cookie) 457 nfs_readdir_folio_reinit_array(folio, cookie, change_attr); 458 return folio; 459 } 460 461 static inline 462 int is_32bit_api(void) 463 { 464 #ifdef CONFIG_COMPAT 465 return in_compat_syscall(); 466 #else 467 return (BITS_PER_LONG == 32); 468 #endif 469 } 470 471 static 472 bool nfs_readdir_use_cookie(const struct file *filp) 473 { 474 if ((filp->f_mode & FMODE_32BITHASH) || 475 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 476 return false; 477 return true; 478 } 479 480 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array, 481 struct nfs_readdir_descriptor *desc) 482 { 483 if (array->folio_full) { 484 desc->last_cookie = array->last_cookie; 485 desc->current_index += array->size; 486 desc->cache_entry_index = 0; 487 desc->folio_index++; 488 } else 489 desc->last_cookie = nfs_readdir_array_index_cookie(array); 490 } 491 492 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc) 493 { 494 desc->current_index = 0; 495 desc->last_cookie = 0; 496 desc->folio_index = 0; 497 } 498 499 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array, 500 struct nfs_readdir_descriptor *desc) 501 { 502 loff_t diff = desc->ctx->pos - desc->current_index; 503 unsigned int index; 504 505 if (diff < 0) 506 goto out_eof; 507 if (diff >= array->size) { 508 if (array->folio_is_eof) 509 goto out_eof; 510 nfs_readdir_seek_next_array(array, desc); 511 return -EAGAIN; 512 } 513 514 index = (unsigned int)diff; 515 desc->dir_cookie = array->array[index].cookie; 516 desc->cache_entry_index = index; 517 return 0; 518 out_eof: 519 desc->eof = true; 520 return -EBADCOOKIE; 521 } 522 523 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array, 524 u64 cookie) 525 { 526 if (!array->cookies_are_ordered) 527 return true; 528 /* Optimisation for monotonically increasing cookies */ 529 if (cookie >= array->last_cookie) 530 return false; 531 if (array->size && cookie < array->array[0].cookie) 532 return false; 533 return true; 534 } 535 536 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, 537 struct nfs_readdir_descriptor *desc) 538 { 539 unsigned int i; 540 int status = -EAGAIN; 541 542 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie)) 543 goto check_eof; 544 545 for (i = 0; i < array->size; i++) { 546 if (array->array[i].cookie == desc->dir_cookie) { 547 if (nfs_readdir_use_cookie(desc->file)) 548 desc->ctx->pos = desc->dir_cookie; 549 else 550 desc->ctx->pos = desc->current_index + i; 551 desc->cache_entry_index = i; 552 return 0; 553 } 554 } 555 check_eof: 556 if (array->folio_is_eof) { 557 status = -EBADCOOKIE; 558 if (desc->dir_cookie == array->last_cookie) 559 desc->eof = true; 560 } else 561 nfs_readdir_seek_next_array(array, desc); 562 return status; 563 } 564 565 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc) 566 { 567 struct nfs_cache_array *array; 568 int status; 569 570 array = kmap_local_folio(desc->folio, 0); 571 572 if (desc->dir_cookie == 0) 573 status = nfs_readdir_search_for_pos(array, desc); 574 else 575 status = nfs_readdir_search_for_cookie(array, desc); 576 577 kunmap_local(array); 578 return status; 579 } 580 581 /* Fill a page with xdr information before transferring to the cache page */ 582 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc, 583 __be32 *verf, u64 cookie, 584 struct page **pages, size_t bufsize, 585 __be32 *verf_res) 586 { 587 struct inode *inode = file_inode(desc->file); 588 struct nfs_readdir_arg arg = { 589 .dentry = file_dentry(desc->file), 590 .cred = desc->file->f_cred, 591 .verf = verf, 592 .cookie = cookie, 593 .pages = pages, 594 .page_len = bufsize, 595 .plus = desc->plus, 596 }; 597 struct nfs_readdir_res res = { 598 .verf = verf_res, 599 }; 600 unsigned long timestamp, gencount; 601 int error; 602 603 again: 604 timestamp = jiffies; 605 gencount = nfs_inc_attr_generation_counter(); 606 desc->dir_verifier = nfs_save_change_attribute(inode); 607 error = NFS_PROTO(inode)->readdir(&arg, &res); 608 if (error < 0) { 609 /* We requested READDIRPLUS, but the server doesn't grok it */ 610 if (error == -ENOTSUPP && desc->plus) { 611 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 612 desc->plus = arg.plus = false; 613 goto again; 614 } 615 goto error; 616 } 617 desc->timestamp = timestamp; 618 desc->gencount = gencount; 619 error: 620 return error; 621 } 622 623 static int xdr_decode(struct nfs_readdir_descriptor *desc, 624 struct nfs_entry *entry, struct xdr_stream *xdr) 625 { 626 struct inode *inode = file_inode(desc->file); 627 int error; 628 629 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 630 if (error) 631 return error; 632 entry->fattr->time_start = desc->timestamp; 633 entry->fattr->gencount = desc->gencount; 634 return 0; 635 } 636 637 /* Match file and dirent using either filehandle or fileid 638 * Note: caller is responsible for checking the fsid 639 */ 640 static 641 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 642 { 643 struct inode *inode; 644 struct nfs_inode *nfsi; 645 646 if (d_really_is_negative(dentry)) 647 return 0; 648 649 inode = d_inode(dentry); 650 if (is_bad_inode(inode) || NFS_STALE(inode)) 651 return 0; 652 653 nfsi = NFS_I(inode); 654 if (entry->fattr->fileid != nfsi->fileid) 655 return 0; 656 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 657 return 0; 658 return 1; 659 } 660 661 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL) 662 663 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx, 664 unsigned int cache_hits, 665 unsigned int cache_misses) 666 { 667 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 668 return false; 669 if (NFS_SERVER(dir)->flags & NFS_MOUNT_FORCE_RDIRPLUS) 670 return true; 671 if (ctx->pos == 0 || 672 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD) 673 return true; 674 return false; 675 } 676 677 /* 678 * This function is called by the getattr code to request the 679 * use of readdirplus to accelerate any future lookups in the same 680 * directory. 681 */ 682 void nfs_readdir_record_entry_cache_hit(struct inode *dir) 683 { 684 struct nfs_inode *nfsi = NFS_I(dir); 685 struct nfs_open_dir_context *ctx; 686 687 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 688 S_ISDIR(dir->i_mode)) { 689 rcu_read_lock(); 690 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 691 atomic_inc(&ctx->cache_hits); 692 rcu_read_unlock(); 693 } 694 } 695 696 /* 697 * This function is mainly for use by nfs_getattr(). 698 * 699 * If this is an 'ls -l', we want to force use of readdirplus. 700 */ 701 void nfs_readdir_record_entry_cache_miss(struct inode *dir) 702 { 703 struct nfs_inode *nfsi = NFS_I(dir); 704 struct nfs_open_dir_context *ctx; 705 706 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 707 S_ISDIR(dir->i_mode)) { 708 rcu_read_lock(); 709 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 710 atomic_inc(&ctx->cache_misses); 711 rcu_read_unlock(); 712 } 713 } 714 715 static void nfs_lookup_advise_force_readdirplus(struct inode *dir, 716 unsigned int flags) 717 { 718 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 719 return; 720 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL)) 721 return; 722 nfs_readdir_record_entry_cache_miss(dir); 723 } 724 725 static 726 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 727 unsigned long dir_verifier) 728 { 729 struct qstr filename = QSTR_INIT(entry->name, entry->len); 730 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 731 struct dentry *dentry; 732 struct dentry *alias; 733 struct inode *inode; 734 int status; 735 736 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 737 return; 738 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 739 return; 740 if (filename.len == 0) 741 return; 742 /* Validate that the name doesn't contain any illegal '\0' */ 743 if (strnlen(filename.name, filename.len) != filename.len) 744 return; 745 /* ...or '/' */ 746 if (strnchr(filename.name, filename.len, '/')) 747 return; 748 if (filename.name[0] == '.') { 749 if (filename.len == 1) 750 return; 751 if (filename.len == 2 && filename.name[1] == '.') 752 return; 753 } 754 filename.hash = full_name_hash(parent, filename.name, filename.len); 755 756 dentry = d_lookup(parent, &filename); 757 again: 758 if (!dentry) { 759 dentry = d_alloc_parallel(parent, &filename, &wq); 760 if (IS_ERR(dentry)) 761 return; 762 } 763 if (!d_in_lookup(dentry)) { 764 /* Is there a mountpoint here? If so, just exit */ 765 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 766 &entry->fattr->fsid)) 767 goto out; 768 if (nfs_same_file(dentry, entry)) { 769 if (!entry->fh->size) 770 goto out; 771 nfs_set_verifier(dentry, dir_verifier); 772 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 773 if (!status) 774 nfs_setsecurity(d_inode(dentry), entry->fattr); 775 trace_nfs_readdir_lookup_revalidate(d_inode(parent), 776 dentry, 0, status); 777 goto out; 778 } else { 779 trace_nfs_readdir_lookup_revalidate_failed( 780 d_inode(parent), dentry, 0); 781 d_invalidate(dentry); 782 dput(dentry); 783 dentry = NULL; 784 goto again; 785 } 786 } 787 if (!entry->fh->size) { 788 d_lookup_done(dentry); 789 goto out; 790 } 791 792 nfs_set_verifier(dentry, dir_verifier); 793 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 794 alias = d_splice_alias(inode, dentry); 795 d_lookup_done(dentry); 796 if (alias) { 797 if (IS_ERR(alias)) 798 goto out; 799 nfs_set_verifier(alias, dir_verifier); 800 dput(dentry); 801 dentry = alias; 802 } 803 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0); 804 out: 805 dput(dentry); 806 } 807 808 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc, 809 struct nfs_entry *entry, 810 struct xdr_stream *stream) 811 { 812 int ret; 813 814 if (entry->fattr->label) 815 entry->fattr->label->len = NFS4_MAXLABELLEN; 816 ret = xdr_decode(desc, entry, stream); 817 if (ret || !desc->plus) 818 return ret; 819 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier); 820 return 0; 821 } 822 823 /* Perform conversion from xdr to cache array */ 824 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc, 825 struct nfs_entry *entry, 826 struct page **xdr_pages, unsigned int buflen, 827 struct folio **arrays, size_t narrays, 828 u64 change_attr) 829 { 830 struct address_space *mapping = desc->file->f_mapping; 831 struct folio *new, *folio = *arrays; 832 struct xdr_stream stream; 833 struct folio *scratch; 834 struct xdr_buf buf; 835 u64 cookie; 836 int status; 837 838 scratch = folio_alloc(GFP_KERNEL, 0); 839 if (scratch == NULL) 840 return -ENOMEM; 841 842 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 843 xdr_set_scratch_folio(&stream, scratch); 844 845 do { 846 status = nfs_readdir_entry_decode(desc, entry, &stream); 847 if (status != 0) 848 break; 849 850 status = nfs_readdir_folio_array_append(folio, entry, &cookie); 851 if (status != -ENOSPC) 852 continue; 853 854 if (folio->mapping != mapping) { 855 if (!--narrays) 856 break; 857 new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL); 858 if (!new) 859 break; 860 arrays++; 861 *arrays = folio = new; 862 } else { 863 new = nfs_readdir_folio_get_next(mapping, cookie, 864 change_attr); 865 if (!new) 866 break; 867 if (folio != *arrays) 868 nfs_readdir_folio_unlock_and_put(folio); 869 folio = new; 870 } 871 desc->folio_index_max++; 872 status = nfs_readdir_folio_array_append(folio, entry, &cookie); 873 } while (!status && !entry->eof); 874 875 switch (status) { 876 case -EBADCOOKIE: 877 if (!entry->eof) 878 break; 879 nfs_readdir_folio_set_eof(folio); 880 fallthrough; 881 case -EAGAIN: 882 status = 0; 883 break; 884 case -ENOSPC: 885 status = 0; 886 if (!desc->plus) 887 break; 888 while (!nfs_readdir_entry_decode(desc, entry, &stream)) 889 ; 890 } 891 892 if (folio != *arrays) 893 nfs_readdir_folio_unlock_and_put(folio); 894 895 folio_put(scratch); 896 return status; 897 } 898 899 static void nfs_readdir_free_pages(struct page **pages, size_t npages) 900 { 901 while (npages--) 902 put_page(pages[npages]); 903 kfree(pages); 904 } 905 906 /* 907 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 908 * to nfs_readdir_free_pages() 909 */ 910 static struct page **nfs_readdir_alloc_pages(size_t npages) 911 { 912 struct page **pages; 913 size_t i; 914 915 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL); 916 if (!pages) 917 return NULL; 918 for (i = 0; i < npages; i++) { 919 struct page *page = alloc_page(GFP_KERNEL); 920 if (page == NULL) 921 goto out_freepages; 922 pages[i] = page; 923 } 924 return pages; 925 926 out_freepages: 927 nfs_readdir_free_pages(pages, i); 928 return NULL; 929 } 930 931 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc, 932 __be32 *verf_arg, __be32 *verf_res, 933 struct folio **arrays, size_t narrays) 934 { 935 u64 change_attr; 936 struct page **pages; 937 struct folio *folio = *arrays; 938 struct nfs_entry *entry; 939 size_t array_size; 940 struct inode *inode = file_inode(desc->file); 941 unsigned int dtsize = desc->dtsize; 942 unsigned int pglen; 943 int status = -ENOMEM; 944 945 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 946 if (!entry) 947 return -ENOMEM; 948 entry->cookie = nfs_readdir_folio_last_cookie(folio); 949 entry->fh = nfs_alloc_fhandle(); 950 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 951 entry->server = NFS_SERVER(inode); 952 if (entry->fh == NULL || entry->fattr == NULL) 953 goto out; 954 955 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT; 956 pages = nfs_readdir_alloc_pages(array_size); 957 if (!pages) 958 goto out; 959 960 change_attr = inode_peek_iversion_raw(inode); 961 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages, 962 dtsize, verf_res); 963 if (status < 0) 964 goto free_pages; 965 966 pglen = status; 967 if (pglen != 0) 968 status = nfs_readdir_folio_filler(desc, entry, pages, pglen, 969 arrays, narrays, change_attr); 970 else 971 nfs_readdir_folio_set_eof(folio); 972 desc->buffer_fills++; 973 974 free_pages: 975 nfs_readdir_free_pages(pages, array_size); 976 out: 977 nfs_free_fattr(entry->fattr); 978 nfs_free_fhandle(entry->fh); 979 kfree(entry); 980 return status; 981 } 982 983 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc) 984 { 985 folio_put(desc->folio); 986 desc->folio = NULL; 987 } 988 989 static void 990 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc) 991 { 992 folio_unlock(desc->folio); 993 nfs_readdir_folio_put(desc); 994 } 995 996 static struct folio * 997 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc) 998 { 999 struct address_space *mapping = desc->file->f_mapping; 1000 u64 change_attr = inode_peek_iversion_raw(mapping->host); 1001 u64 cookie = desc->last_cookie; 1002 struct folio *folio; 1003 1004 folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr); 1005 if (!folio) 1006 return NULL; 1007 if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio)) 1008 nfs_readdir_folio_reinit_array(folio, cookie, change_attr); 1009 return folio; 1010 } 1011 1012 /* 1013 * Returns 0 if desc->dir_cookie was found on page desc->page_index 1014 * and locks the page to prevent removal from the page cache. 1015 */ 1016 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc) 1017 { 1018 struct inode *inode = file_inode(desc->file); 1019 struct nfs_inode *nfsi = NFS_I(inode); 1020 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1021 int res; 1022 1023 desc->folio = nfs_readdir_folio_get_cached(desc); 1024 if (!desc->folio) 1025 return -ENOMEM; 1026 if (nfs_readdir_folio_needs_filling(desc->folio)) { 1027 /* Grow the dtsize if we had to go back for more pages */ 1028 if (desc->folio_index == desc->folio_index_max) 1029 nfs_grow_dtsize(desc); 1030 desc->folio_index_max = desc->folio_index; 1031 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf, 1032 desc->last_cookie, 1033 desc->folio->index, desc->dtsize); 1034 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf, 1035 &desc->folio, 1); 1036 if (res < 0) { 1037 nfs_readdir_folio_unlock_and_put_cached(desc); 1038 trace_nfs_readdir_cache_fill_done(inode, res); 1039 if (res == -EBADCOOKIE || res == -ENOTSYNC) { 1040 invalidate_inode_pages2(desc->file->f_mapping); 1041 nfs_readdir_rewind_search(desc); 1042 trace_nfs_readdir_invalidate_cache_range( 1043 inode, 0, MAX_LFS_FILESIZE); 1044 return -EAGAIN; 1045 } 1046 return res; 1047 } 1048 /* 1049 * Set the cookie verifier if the page cache was empty 1050 */ 1051 if (desc->last_cookie == 0 && 1052 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) { 1053 memcpy(nfsi->cookieverf, verf, 1054 sizeof(nfsi->cookieverf)); 1055 invalidate_inode_pages2_range(desc->file->f_mapping, 1, 1056 -1); 1057 trace_nfs_readdir_invalidate_cache_range( 1058 inode, 1, MAX_LFS_FILESIZE); 1059 } 1060 desc->clear_cache = false; 1061 } 1062 res = nfs_readdir_search_array(desc); 1063 if (res == 0) 1064 return 0; 1065 nfs_readdir_folio_unlock_and_put_cached(desc); 1066 return res; 1067 } 1068 1069 /* Search for desc->dir_cookie from the beginning of the page cache */ 1070 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc) 1071 { 1072 int res; 1073 1074 do { 1075 res = find_and_lock_cache_page(desc); 1076 } while (res == -EAGAIN); 1077 return res; 1078 } 1079 1080 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL) 1081 1082 /* 1083 * Once we've found the start of the dirent within a page: fill 'er up... 1084 */ 1085 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc, 1086 const __be32 *verf) 1087 { 1088 struct file *file = desc->file; 1089 struct nfs_cache_array *array; 1090 unsigned int i; 1091 bool first_emit = !desc->dir_cookie; 1092 1093 array = kmap_local_folio(desc->folio, 0); 1094 for (i = desc->cache_entry_index; i < array->size; i++) { 1095 struct nfs_cache_array_entry *ent; 1096 1097 /* 1098 * nfs_readdir_handle_cache_misses return force clear at 1099 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for 1100 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1 1101 * entries need be emitted here. 1102 */ 1103 if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) { 1104 desc->eob = true; 1105 break; 1106 } 1107 1108 ent = &array->array[i]; 1109 if (!dir_emit(desc->ctx, ent->name, ent->name_len, 1110 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 1111 desc->eob = true; 1112 break; 1113 } 1114 memcpy(desc->verf, verf, sizeof(desc->verf)); 1115 if (i == array->size - 1) { 1116 desc->dir_cookie = array->last_cookie; 1117 nfs_readdir_seek_next_array(array, desc); 1118 } else { 1119 desc->dir_cookie = array->array[i + 1].cookie; 1120 desc->last_cookie = array->array[0].cookie; 1121 } 1122 if (nfs_readdir_use_cookie(file)) 1123 desc->ctx->pos = desc->dir_cookie; 1124 else 1125 desc->ctx->pos++; 1126 } 1127 if (array->folio_is_eof) 1128 desc->eof = !desc->eob; 1129 1130 kunmap_local(array); 1131 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n", 1132 (unsigned long long)desc->dir_cookie); 1133 } 1134 1135 /* 1136 * If we cannot find a cookie in our cache, we suspect that this is 1137 * because it points to a deleted file, so we ask the server to return 1138 * whatever it thinks is the next entry. We then feed this to filldir. 1139 * If all goes well, we should then be able to find our way round the 1140 * cache on the next call to readdir_search_pagecache(); 1141 * 1142 * NOTE: we cannot add the anonymous page to the pagecache because 1143 * the data it contains might not be page aligned. Besides, 1144 * we should already have a complete representation of the 1145 * directory in the page cache by the time we get here. 1146 */ 1147 static int uncached_readdir(struct nfs_readdir_descriptor *desc) 1148 { 1149 struct folio **arrays; 1150 size_t i, sz = 512; 1151 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1152 int status = -ENOMEM; 1153 1154 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n", 1155 (unsigned long long)desc->dir_cookie); 1156 1157 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL); 1158 if (!arrays) 1159 goto out; 1160 arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL); 1161 if (!arrays[0]) 1162 goto out; 1163 1164 desc->folio_index = 0; 1165 desc->cache_entry_index = 0; 1166 desc->last_cookie = desc->dir_cookie; 1167 desc->folio_index_max = 0; 1168 1169 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie, 1170 -1, desc->dtsize); 1171 1172 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz); 1173 if (status < 0) { 1174 trace_nfs_readdir_uncached_done(file_inode(desc->file), status); 1175 goto out_free; 1176 } 1177 1178 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) { 1179 desc->folio = arrays[i]; 1180 nfs_do_filldir(desc, verf); 1181 } 1182 desc->folio = NULL; 1183 1184 /* 1185 * Grow the dtsize if we have to go back for more pages, 1186 * or shrink it if we're reading too many. 1187 */ 1188 if (!desc->eof) { 1189 if (!desc->eob) 1190 nfs_grow_dtsize(desc); 1191 else if (desc->buffer_fills == 1 && 1192 i < (desc->folio_index_max >> 1)) 1193 nfs_shrink_dtsize(desc); 1194 } 1195 out_free: 1196 for (i = 0; i < sz && arrays[i]; i++) 1197 nfs_readdir_folio_array_free(arrays[i]); 1198 out: 1199 if (!nfs_readdir_use_cookie(desc->file)) 1200 nfs_readdir_rewind_search(desc); 1201 desc->folio_index_max = -1; 1202 kfree(arrays); 1203 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status); 1204 return status; 1205 } 1206 1207 static bool nfs_readdir_handle_cache_misses(struct inode *inode, 1208 struct nfs_readdir_descriptor *desc, 1209 unsigned int cache_misses, 1210 bool force_clear) 1211 { 1212 if (desc->ctx->pos == 0 || !desc->plus) 1213 return false; 1214 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear) 1215 return false; 1216 trace_nfs_readdir_force_readdirplus(inode); 1217 return true; 1218 } 1219 1220 /* The file offset position represents the dirent entry number. A 1221 last cookie cache takes care of the common case of reading the 1222 whole directory. 1223 */ 1224 static int nfs_readdir(struct file *file, struct dir_context *ctx) 1225 { 1226 struct dentry *dentry = file_dentry(file); 1227 struct inode *inode = d_inode(dentry); 1228 struct nfs_inode *nfsi = NFS_I(inode); 1229 struct nfs_open_dir_context *dir_ctx = file->private_data; 1230 struct nfs_readdir_descriptor *desc; 1231 unsigned int cache_hits, cache_misses; 1232 bool force_clear; 1233 int res; 1234 1235 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 1236 file, (long long)ctx->pos); 1237 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 1238 1239 /* 1240 * ctx->pos points to the dirent entry number. 1241 * *desc->dir_cookie has the cookie for the next entry. We have 1242 * to either find the entry with the appropriate number or 1243 * revalidate the cookie. 1244 */ 1245 nfs_revalidate_mapping(inode, file->f_mapping); 1246 1247 res = -ENOMEM; 1248 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 1249 if (!desc) 1250 goto out; 1251 desc->file = file; 1252 desc->ctx = ctx; 1253 desc->folio_index_max = -1; 1254 1255 spin_lock(&file->f_lock); 1256 desc->dir_cookie = dir_ctx->dir_cookie; 1257 desc->folio_index = dir_ctx->page_index; 1258 desc->last_cookie = dir_ctx->last_cookie; 1259 desc->attr_gencount = dir_ctx->attr_gencount; 1260 desc->eof = dir_ctx->eof; 1261 nfs_set_dtsize(desc, dir_ctx->dtsize); 1262 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf)); 1263 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0); 1264 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0); 1265 force_clear = dir_ctx->force_clear; 1266 spin_unlock(&file->f_lock); 1267 1268 if (desc->eof) { 1269 res = 0; 1270 goto out_free; 1271 } 1272 1273 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses); 1274 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses, 1275 force_clear); 1276 desc->clear_cache = force_clear; 1277 1278 do { 1279 res = readdir_search_pagecache(desc); 1280 1281 if (res == -EBADCOOKIE) { 1282 res = 0; 1283 /* This means either end of directory */ 1284 if (desc->dir_cookie && !desc->eof) { 1285 /* Or that the server has 'lost' a cookie */ 1286 res = uncached_readdir(desc); 1287 if (res == 0) 1288 continue; 1289 if (res == -EBADCOOKIE || res == -ENOTSYNC) 1290 res = 0; 1291 } 1292 break; 1293 } 1294 if (res == -ETOOSMALL && desc->plus) { 1295 nfs_zap_caches(inode); 1296 desc->plus = false; 1297 desc->eof = false; 1298 continue; 1299 } 1300 if (res < 0) 1301 break; 1302 1303 nfs_do_filldir(desc, nfsi->cookieverf); 1304 nfs_readdir_folio_unlock_and_put_cached(desc); 1305 if (desc->folio_index == desc->folio_index_max) 1306 desc->clear_cache = force_clear; 1307 } while (!desc->eob && !desc->eof); 1308 1309 spin_lock(&file->f_lock); 1310 dir_ctx->dir_cookie = desc->dir_cookie; 1311 dir_ctx->last_cookie = desc->last_cookie; 1312 dir_ctx->attr_gencount = desc->attr_gencount; 1313 dir_ctx->page_index = desc->folio_index; 1314 dir_ctx->force_clear = force_clear; 1315 dir_ctx->eof = desc->eof; 1316 dir_ctx->dtsize = desc->dtsize; 1317 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf)); 1318 spin_unlock(&file->f_lock); 1319 out_free: 1320 kfree(desc); 1321 1322 out: 1323 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 1324 return res; 1325 } 1326 1327 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 1328 { 1329 struct nfs_open_dir_context *dir_ctx = filp->private_data; 1330 1331 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 1332 filp, offset, whence); 1333 1334 switch (whence) { 1335 default: 1336 return -EINVAL; 1337 case SEEK_SET: 1338 if (offset < 0) 1339 return -EINVAL; 1340 spin_lock(&filp->f_lock); 1341 break; 1342 case SEEK_CUR: 1343 if (offset == 0) 1344 return filp->f_pos; 1345 spin_lock(&filp->f_lock); 1346 offset += filp->f_pos; 1347 if (offset < 0) { 1348 spin_unlock(&filp->f_lock); 1349 return -EINVAL; 1350 } 1351 } 1352 if (offset != filp->f_pos) { 1353 filp->f_pos = offset; 1354 dir_ctx->page_index = 0; 1355 if (!nfs_readdir_use_cookie(filp)) { 1356 dir_ctx->dir_cookie = 0; 1357 dir_ctx->last_cookie = 0; 1358 } else { 1359 dir_ctx->dir_cookie = offset; 1360 dir_ctx->last_cookie = offset; 1361 } 1362 dir_ctx->eof = false; 1363 } 1364 spin_unlock(&filp->f_lock); 1365 return offset; 1366 } 1367 1368 /* 1369 * All directory operations under NFS are synchronous, so fsync() 1370 * is a dummy operation. 1371 */ 1372 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 1373 int datasync) 1374 { 1375 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1376 1377 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); 1378 return 0; 1379 } 1380 1381 /** 1382 * nfs_force_lookup_revalidate - Mark the directory as having changed 1383 * @dir: pointer to directory inode 1384 * 1385 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1386 * full lookup on all child dentries of 'dir' whenever a change occurs 1387 * on the server that might have invalidated our dcache. 1388 * 1389 * Note that we reserve bit '0' as a tag to let us know when a dentry 1390 * was revalidated while holding a delegation on its inode. 1391 * 1392 * The caller should be holding dir->i_lock 1393 */ 1394 void nfs_force_lookup_revalidate(struct inode *dir) 1395 { 1396 NFS_I(dir)->cache_change_attribute += 2; 1397 } 1398 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1399 1400 /** 1401 * nfs_verify_change_attribute - Detects NFS remote directory changes 1402 * @dir: pointer to parent directory inode 1403 * @verf: previously saved change attribute 1404 * 1405 * Return "false" if the verifiers doesn't match the change attribute. 1406 * This would usually indicate that the directory contents have changed on 1407 * the server, and that any dentries need revalidating. 1408 */ 1409 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1410 { 1411 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1412 } 1413 1414 static void nfs_set_verifier_delegated(unsigned long *verf) 1415 { 1416 *verf |= 1UL; 1417 } 1418 1419 #if IS_ENABLED(CONFIG_NFS_V4) 1420 static void nfs_unset_verifier_delegated(unsigned long *verf) 1421 { 1422 *verf &= ~1UL; 1423 } 1424 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1425 1426 static bool nfs_test_verifier_delegated(unsigned long verf) 1427 { 1428 return verf & 1; 1429 } 1430 1431 static bool nfs_verifier_is_delegated(struct dentry *dentry) 1432 { 1433 return nfs_test_verifier_delegated(dentry->d_time); 1434 } 1435 1436 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1437 { 1438 struct inode *inode = d_inode(dentry); 1439 struct inode *dir = d_inode_rcu(dentry->d_parent); 1440 1441 if (!dir || !nfs_verify_change_attribute(dir, verf)) 1442 return; 1443 if (NFS_PROTO(dir)->have_delegation(dir, FMODE_READ, 0) || 1444 (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ, 0))) 1445 nfs_set_verifier_delegated(&verf); 1446 dentry->d_time = verf; 1447 } 1448 1449 /** 1450 * nfs_set_verifier - save a parent directory verifier in the dentry 1451 * @dentry: pointer to dentry 1452 * @verf: verifier to save 1453 * 1454 * Saves the parent directory verifier in @dentry. If the inode has 1455 * a delegation, we also tag the dentry as having been revalidated 1456 * while holding a delegation so that we know we don't have to 1457 * look it up again after a directory change. 1458 */ 1459 void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1460 { 1461 1462 spin_lock(&dentry->d_lock); 1463 nfs_set_verifier_locked(dentry, verf); 1464 spin_unlock(&dentry->d_lock); 1465 } 1466 EXPORT_SYMBOL_GPL(nfs_set_verifier); 1467 1468 #if IS_ENABLED(CONFIG_NFS_V4) 1469 static void nfs_clear_verifier_file(struct inode *inode) 1470 { 1471 struct dentry *alias; 1472 struct inode *dir; 1473 1474 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1475 spin_lock(&alias->d_lock); 1476 dir = d_inode_rcu(alias->d_parent); 1477 if (!dir || 1478 !NFS_PROTO(dir)->have_delegation(dir, FMODE_READ, 0)) 1479 nfs_unset_verifier_delegated(&alias->d_time); 1480 spin_unlock(&alias->d_lock); 1481 } 1482 } 1483 1484 static void nfs_clear_verifier_directory(struct inode *dir) 1485 { 1486 struct dentry *this_parent; 1487 struct dentry *dentry; 1488 struct inode *inode; 1489 1490 if (hlist_empty(&dir->i_dentry)) 1491 return; 1492 this_parent = 1493 hlist_entry(dir->i_dentry.first, struct dentry, d_u.d_alias); 1494 1495 spin_lock(&this_parent->d_lock); 1496 nfs_unset_verifier_delegated(&this_parent->d_time); 1497 dentry = d_first_child(this_parent); 1498 hlist_for_each_entry_from(dentry, d_sib) { 1499 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1500 continue; 1501 inode = d_inode_rcu(dentry); 1502 if (inode && 1503 NFS_PROTO(inode)->have_delegation(inode, FMODE_READ, 0)) 1504 continue; 1505 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1506 nfs_unset_verifier_delegated(&dentry->d_time); 1507 spin_unlock(&dentry->d_lock); 1508 } 1509 spin_unlock(&this_parent->d_lock); 1510 } 1511 1512 /** 1513 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1514 * @inode: pointer to inode 1515 * 1516 * Iterates through the dentries in the inode alias list and clears 1517 * the tag used to indicate that the dentry has been revalidated 1518 * while holding a delegation. 1519 * This function is intended for use when the delegation is being 1520 * returned or revoked. 1521 */ 1522 void nfs_clear_verifier_delegated(struct inode *inode) 1523 { 1524 if (!inode) 1525 return; 1526 spin_lock(&inode->i_lock); 1527 if (S_ISREG(inode->i_mode)) 1528 nfs_clear_verifier_file(inode); 1529 else if (S_ISDIR(inode->i_mode)) 1530 nfs_clear_verifier_directory(inode); 1531 spin_unlock(&inode->i_lock); 1532 } 1533 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1534 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1535 1536 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry) 1537 { 1538 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) && 1539 d_really_is_negative(dentry)) 1540 return dentry->d_time == inode_peek_iversion_raw(dir); 1541 return nfs_verify_change_attribute(dir, dentry->d_time); 1542 } 1543 1544 /* 1545 * A check for whether or not the parent directory has changed. 1546 * In the case it has, we assume that the dentries are untrustworthy 1547 * and may need to be looked up again. 1548 * If rcu_walk prevents us from performing a full check, return 0. 1549 */ 1550 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1551 int rcu_walk) 1552 { 1553 if (IS_ROOT(dentry)) 1554 return 1; 1555 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1556 return 0; 1557 if (!nfs_dentry_verify_change(dir, dentry)) 1558 return 0; 1559 1560 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1561 if (nfs_mapping_need_revalidate_inode(dir)) { 1562 if (rcu_walk) 1563 return 0; 1564 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1565 return 0; 1566 } 1567 if (!nfs_dentry_verify_change(dir, dentry)) 1568 return 0; 1569 return 1; 1570 } 1571 1572 /* 1573 * Use intent information to check whether or not we're going to do 1574 * an O_EXCL create using this path component. 1575 */ 1576 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1577 { 1578 if (NFS_PROTO(dir)->version == 2) 1579 return 0; 1580 return (flags & (LOOKUP_CREATE | LOOKUP_EXCL)) == 1581 (LOOKUP_CREATE | LOOKUP_EXCL); 1582 } 1583 1584 /* 1585 * Inode and filehandle revalidation for lookups. 1586 * 1587 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1588 * or if the intent information indicates that we're about to open this 1589 * particular file and the "nocto" mount flag is not set. 1590 * 1591 */ 1592 static 1593 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1594 { 1595 struct nfs_server *server = NFS_SERVER(inode); 1596 int ret; 1597 1598 if (IS_AUTOMOUNT(inode)) 1599 return 0; 1600 1601 if (flags & LOOKUP_OPEN) { 1602 switch (inode->i_mode & S_IFMT) { 1603 case S_IFREG: 1604 /* A NFSv4 OPEN will revalidate later */ 1605 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1606 goto out; 1607 fallthrough; 1608 case S_IFDIR: 1609 if (server->flags & NFS_MOUNT_NOCTO) 1610 break; 1611 /* NFS close-to-open cache consistency validation */ 1612 goto out_force; 1613 } 1614 } 1615 1616 /* VFS wants an on-the-wire revalidation */ 1617 if (flags & LOOKUP_REVAL) 1618 goto out_force; 1619 out: 1620 if (inode->i_nlink > 0 || 1621 (inode->i_nlink == 0 && 1622 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags))) 1623 return 0; 1624 else 1625 return -ESTALE; 1626 out_force: 1627 if (flags & LOOKUP_RCU) 1628 return -ECHILD; 1629 ret = __nfs_revalidate_inode(server, inode); 1630 if (ret != 0) 1631 return ret; 1632 goto out; 1633 } 1634 1635 static void nfs_mark_dir_for_revalidate(struct inode *inode) 1636 { 1637 spin_lock(&inode->i_lock); 1638 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE); 1639 spin_unlock(&inode->i_lock); 1640 } 1641 1642 /* 1643 * We judge how long we want to trust negative 1644 * dentries by looking at the parent inode mtime. 1645 * 1646 * If parent mtime has changed, we revalidate, else we wait for a 1647 * period corresponding to the parent's attribute cache timeout value. 1648 * 1649 * If LOOKUP_RCU prevents us from performing a full check, return 1 1650 * suggesting a reval is needed. 1651 * 1652 * Note that when creating a new file, or looking up a rename target, 1653 * then it shouldn't be necessary to revalidate a negative dentry. 1654 */ 1655 static inline 1656 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1657 unsigned int flags) 1658 { 1659 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1660 return 0; 1661 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1662 return 1; 1663 /* Case insensitive server? Revalidate negative dentries */ 1664 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1665 return 1; 1666 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1667 } 1668 1669 static int 1670 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1671 struct inode *inode, int error) 1672 { 1673 switch (error) { 1674 case 1: 1675 break; 1676 case -ETIMEDOUT: 1677 if (inode && (IS_ROOT(dentry) || 1678 NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)) 1679 error = 1; 1680 break; 1681 case -ESTALE: 1682 case -ENOENT: 1683 error = 0; 1684 fallthrough; 1685 default: 1686 /* 1687 * We can't d_drop the root of a disconnected tree: 1688 * its d_hash is on the s_anon list and d_drop() would hide 1689 * it from shrink_dcache_for_unmount(), leading to busy 1690 * inodes on unmount and further oopses. 1691 */ 1692 if (inode && IS_ROOT(dentry)) 1693 error = 1; 1694 break; 1695 } 1696 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error); 1697 return error; 1698 } 1699 1700 static int 1701 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1702 unsigned int flags) 1703 { 1704 int ret = 1; 1705 if (nfs_neg_need_reval(dir, dentry, flags)) { 1706 if (flags & LOOKUP_RCU) 1707 return -ECHILD; 1708 ret = 0; 1709 } 1710 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1711 } 1712 1713 static int 1714 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1715 struct inode *inode) 1716 { 1717 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1718 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1719 } 1720 1721 static int nfs_lookup_revalidate_dentry(struct inode *dir, const struct qstr *name, 1722 struct dentry *dentry, 1723 struct inode *inode, unsigned int flags) 1724 { 1725 struct nfs_fh *fhandle; 1726 struct nfs_fattr *fattr; 1727 unsigned long dir_verifier; 1728 int ret; 1729 1730 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1731 1732 ret = -ENOMEM; 1733 fhandle = nfs_alloc_fhandle(); 1734 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 1735 if (fhandle == NULL || fattr == NULL) 1736 goto out; 1737 1738 dir_verifier = nfs_save_change_attribute(dir); 1739 ret = NFS_PROTO(dir)->lookup(dir, dentry, name, fhandle, fattr); 1740 if (ret < 0) 1741 goto out; 1742 1743 /* Request help from readdirplus */ 1744 nfs_lookup_advise_force_readdirplus(dir, flags); 1745 1746 ret = 0; 1747 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1748 goto out; 1749 if (nfs_refresh_inode(inode, fattr) < 0) 1750 goto out; 1751 1752 nfs_setsecurity(inode, fattr); 1753 nfs_set_verifier(dentry, dir_verifier); 1754 1755 ret = 1; 1756 out: 1757 nfs_free_fattr(fattr); 1758 nfs_free_fhandle(fhandle); 1759 1760 /* 1761 * If the lookup failed despite the dentry change attribute being 1762 * a match, then we should revalidate the directory cache. 1763 */ 1764 if (!ret && nfs_dentry_verify_change(dir, dentry)) 1765 nfs_mark_dir_for_revalidate(dir); 1766 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1767 } 1768 1769 /* 1770 * This is called every time the dcache has a lookup hit, 1771 * and we should check whether we can really trust that 1772 * lookup. 1773 * 1774 * NOTE! The hit can be a negative hit too, don't assume 1775 * we have an inode! 1776 * 1777 * If the parent directory is seen to have changed, we throw out the 1778 * cached dentry and do a new lookup. 1779 */ 1780 static int 1781 nfs_do_lookup_revalidate(struct inode *dir, const struct qstr *name, 1782 struct dentry *dentry, unsigned int flags) 1783 { 1784 struct inode *inode; 1785 int error = 0; 1786 1787 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1788 inode = d_inode(dentry); 1789 1790 if (!inode) 1791 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1792 1793 if (is_bad_inode(inode)) { 1794 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1795 __func__, dentry); 1796 goto out_bad; 1797 } 1798 1799 if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 && 1800 nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1801 goto out_bad; 1802 1803 if (nfs_verifier_is_delegated(dentry)) 1804 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1805 1806 /* Force a full look up iff the parent directory has changed */ 1807 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1808 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1809 error = nfs_lookup_verify_inode(inode, flags); 1810 if (error) { 1811 if (error == -ESTALE) 1812 nfs_mark_dir_for_revalidate(dir); 1813 goto out_bad; 1814 } 1815 goto out_valid; 1816 } 1817 1818 if (flags & LOOKUP_RCU) 1819 return -ECHILD; 1820 1821 if (NFS_STALE(inode)) 1822 goto out_bad; 1823 1824 return nfs_lookup_revalidate_dentry(dir, name, dentry, inode, flags); 1825 out_valid: 1826 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1827 out_bad: 1828 if (flags & LOOKUP_RCU) 1829 return -ECHILD; 1830 return nfs_lookup_revalidate_done(dir, dentry, inode, error); 1831 } 1832 1833 static int 1834 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1835 { 1836 if (flags & LOOKUP_RCU) { 1837 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED) 1838 return -ECHILD; 1839 } else { 1840 /* Wait for unlink to complete - see unblock_revalidate() */ 1841 wait_var_event(&dentry->d_fsdata, 1842 smp_load_acquire(&dentry->d_fsdata) 1843 != NFS_FSDATA_BLOCKED); 1844 } 1845 return 0; 1846 } 1847 1848 static int nfs_lookup_revalidate(struct inode *dir, const struct qstr *name, 1849 struct dentry *dentry, unsigned int flags) 1850 { 1851 if (__nfs_lookup_revalidate(dentry, flags)) 1852 return -ECHILD; 1853 return nfs_do_lookup_revalidate(dir, name, dentry, flags); 1854 } 1855 1856 static void block_revalidate(struct dentry *dentry) 1857 { 1858 /* old devname - just in case */ 1859 kfree(dentry->d_fsdata); 1860 1861 /* Any new reference that could lead to an open 1862 * will take ->d_lock in lookup_open() -> d_lookup(). 1863 * Holding this lock ensures we cannot race with 1864 * __nfs_lookup_revalidate() and removes and need 1865 * for further barriers. 1866 */ 1867 lockdep_assert_held(&dentry->d_lock); 1868 1869 dentry->d_fsdata = NFS_FSDATA_BLOCKED; 1870 } 1871 1872 static void unblock_revalidate(struct dentry *dentry) 1873 { 1874 store_release_wake_up(&dentry->d_fsdata, NULL); 1875 } 1876 1877 /* 1878 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1879 * when we don't really care about the dentry name. This is called when a 1880 * pathwalk ends on a dentry that was not found via a normal lookup in the 1881 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1882 * 1883 * In this situation, we just want to verify that the inode itself is OK 1884 * since the dentry might have changed on the server. 1885 */ 1886 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1887 { 1888 struct inode *inode = d_inode(dentry); 1889 int error = 0; 1890 1891 /* 1892 * I believe we can only get a negative dentry here in the case of a 1893 * procfs-style symlink. Just assume it's correct for now, but we may 1894 * eventually need to do something more here. 1895 */ 1896 if (!inode) { 1897 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1898 __func__, dentry); 1899 return 1; 1900 } 1901 1902 if (is_bad_inode(inode)) { 1903 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1904 __func__, dentry); 1905 return 0; 1906 } 1907 1908 error = nfs_lookup_verify_inode(inode, flags); 1909 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1910 __func__, inode->i_ino, error ? "invalid" : "valid"); 1911 return !error; 1912 } 1913 1914 /* 1915 * This is called from dput() when d_count is going to 0. 1916 */ 1917 static int nfs_dentry_delete(const struct dentry *dentry) 1918 { 1919 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1920 dentry, dentry->d_flags); 1921 1922 /* Unhash any dentry with a stale inode */ 1923 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1924 return 1; 1925 1926 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1927 /* Unhash it, so that ->d_iput() would be called */ 1928 return 1; 1929 } 1930 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1931 /* Unhash it, so that ancestors of killed async unlink 1932 * files will be cleaned up during umount */ 1933 return 1; 1934 } 1935 return 0; 1936 1937 } 1938 1939 /* Ensure that we revalidate inode->i_nlink */ 1940 static void nfs_drop_nlink(struct inode *inode, unsigned long gencount) 1941 { 1942 struct nfs_inode *nfsi = NFS_I(inode); 1943 1944 spin_lock(&inode->i_lock); 1945 /* drop the inode if we're reasonably sure this is the last link */ 1946 if (inode->i_nlink > 0 && gencount == nfsi->attr_gencount) 1947 drop_nlink(inode); 1948 nfsi->attr_gencount = nfs_inc_attr_generation_counter(); 1949 nfs_set_cache_invalid( 1950 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | 1951 NFS_INO_INVALID_NLINK); 1952 spin_unlock(&inode->i_lock); 1953 } 1954 1955 /* 1956 * Called when the dentry loses inode. 1957 * We use it to clean up silly-renamed files. 1958 */ 1959 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1960 { 1961 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1962 unsigned long gencount = READ_ONCE(NFS_I(inode)->attr_gencount); 1963 nfs_complete_unlink(dentry, inode); 1964 nfs_drop_nlink(inode, gencount); 1965 } 1966 iput(inode); 1967 } 1968 1969 static void nfs_d_release(struct dentry *dentry) 1970 { 1971 /* free cached devname value, if it survived that far */ 1972 if (unlikely(dentry->d_fsdata)) { 1973 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1974 WARN_ON(1); 1975 else 1976 kfree(dentry->d_fsdata); 1977 } 1978 } 1979 1980 const struct dentry_operations nfs_dentry_operations = { 1981 .d_revalidate = nfs_lookup_revalidate, 1982 .d_weak_revalidate = nfs_weak_revalidate, 1983 .d_delete = nfs_dentry_delete, 1984 .d_iput = nfs_dentry_iput, 1985 .d_automount = nfs_d_automount, 1986 .d_release = nfs_d_release, 1987 }; 1988 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1989 1990 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1991 { 1992 struct dentry *res; 1993 struct inode *inode = NULL; 1994 struct nfs_fh *fhandle = NULL; 1995 struct nfs_fattr *fattr = NULL; 1996 unsigned long dir_verifier; 1997 int error; 1998 1999 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 2000 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 2001 2002 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 2003 return ERR_PTR(-ENAMETOOLONG); 2004 2005 /* 2006 * If we're doing an exclusive create, optimize away the lookup 2007 * but don't hash the dentry. 2008 */ 2009 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 2010 return NULL; 2011 2012 res = ERR_PTR(-ENOMEM); 2013 fhandle = nfs_alloc_fhandle(); 2014 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir)); 2015 if (fhandle == NULL || fattr == NULL) 2016 goto out; 2017 2018 dir_verifier = nfs_save_change_attribute(dir); 2019 trace_nfs_lookup_enter(dir, dentry, flags); 2020 error = NFS_PROTO(dir)->lookup(dir, dentry, &dentry->d_name, 2021 fhandle, fattr); 2022 if (error == -ENOENT) { 2023 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 2024 dir_verifier = inode_peek_iversion_raw(dir); 2025 goto no_entry; 2026 } 2027 if (error < 0) { 2028 res = ERR_PTR(error); 2029 goto out; 2030 } 2031 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 2032 res = ERR_CAST(inode); 2033 if (IS_ERR(res)) 2034 goto out; 2035 2036 /* Notify readdir to use READDIRPLUS */ 2037 nfs_lookup_advise_force_readdirplus(dir, flags); 2038 2039 no_entry: 2040 nfs_set_verifier(dentry, dir_verifier); 2041 res = d_splice_alias(inode, dentry); 2042 if (res != NULL) { 2043 if (IS_ERR(res)) 2044 goto out; 2045 nfs_set_verifier(res, dir_verifier); 2046 dentry = res; 2047 } 2048 out: 2049 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res)); 2050 nfs_free_fattr(fattr); 2051 nfs_free_fhandle(fhandle); 2052 return res; 2053 } 2054 EXPORT_SYMBOL_GPL(nfs_lookup); 2055 2056 void nfs_d_prune_case_insensitive_aliases(struct inode *inode) 2057 { 2058 /* Case insensitive server? Revalidate dentries */ 2059 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE)) 2060 d_prune_aliases(inode); 2061 } 2062 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases); 2063 2064 #if IS_ENABLED(CONFIG_NFS_V4) 2065 static int nfs4_lookup_revalidate(struct inode *, const struct qstr *, 2066 struct dentry *, unsigned int); 2067 2068 const struct dentry_operations nfs4_dentry_operations = { 2069 .d_revalidate = nfs4_lookup_revalidate, 2070 .d_weak_revalidate = nfs_weak_revalidate, 2071 .d_delete = nfs_dentry_delete, 2072 .d_iput = nfs_dentry_iput, 2073 .d_automount = nfs_d_automount, 2074 .d_release = nfs_d_release, 2075 }; 2076 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 2077 2078 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 2079 { 2080 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 2081 } 2082 2083 static int do_open(struct inode *inode, struct file *filp) 2084 { 2085 nfs_fscache_open_file(inode, filp); 2086 return 0; 2087 } 2088 2089 static int nfs_finish_open(struct nfs_open_context *ctx, 2090 struct dentry *dentry, 2091 struct file *file, unsigned open_flags) 2092 { 2093 int err; 2094 2095 err = finish_open(file, dentry, do_open); 2096 if (err) 2097 goto out; 2098 if (S_ISREG(file_inode(file)->i_mode)) 2099 nfs_file_set_open_context(file, ctx); 2100 else 2101 err = -EOPENSTALE; 2102 out: 2103 return err; 2104 } 2105 2106 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 2107 struct file *file, unsigned open_flags, 2108 umode_t mode) 2109 { 2110 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2111 struct nfs_open_context *ctx; 2112 struct dentry *res; 2113 struct iattr attr = { .ia_valid = ATTR_OPEN }; 2114 struct inode *inode; 2115 unsigned int lookup_flags = 0; 2116 unsigned long dir_verifier; 2117 bool switched = false; 2118 int created = 0; 2119 int err; 2120 2121 /* Expect a negative dentry */ 2122 BUG_ON(d_inode(dentry)); 2123 2124 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 2125 dir->i_sb->s_id, dir->i_ino, dentry); 2126 2127 err = nfs_check_flags(open_flags); 2128 if (err) 2129 return err; 2130 2131 /* NFS only supports OPEN on regular files */ 2132 if ((open_flags & O_DIRECTORY)) { 2133 if (!d_in_lookup(dentry)) { 2134 /* 2135 * Hashed negative dentry with O_DIRECTORY: dentry was 2136 * revalidated and is fine, no need to perform lookup 2137 * again 2138 */ 2139 return -ENOENT; 2140 } 2141 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 2142 goto no_open; 2143 } 2144 2145 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 2146 return -ENAMETOOLONG; 2147 2148 if (open_flags & O_CREAT) { 2149 struct nfs_server *server = NFS_SERVER(dir); 2150 2151 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 2152 mode &= ~current_umask(); 2153 2154 attr.ia_valid |= ATTR_MODE; 2155 attr.ia_mode = mode; 2156 } 2157 if (open_flags & O_TRUNC) { 2158 attr.ia_valid |= ATTR_SIZE; 2159 attr.ia_size = 0; 2160 } 2161 2162 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 2163 d_drop(dentry); 2164 switched = true; 2165 dentry = d_alloc_parallel(dentry->d_parent, 2166 &dentry->d_name, &wq); 2167 if (IS_ERR(dentry)) 2168 return PTR_ERR(dentry); 2169 if (unlikely(!d_in_lookup(dentry))) 2170 return finish_no_open(file, dentry); 2171 } 2172 2173 ctx = create_nfs_open_context(dentry, open_flags, file); 2174 err = PTR_ERR(ctx); 2175 if (IS_ERR(ctx)) 2176 goto out; 2177 2178 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 2179 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 2180 if (created) 2181 file->f_mode |= FMODE_CREATED; 2182 if (IS_ERR(inode)) { 2183 err = PTR_ERR(inode); 2184 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2185 put_nfs_open_context(ctx); 2186 d_drop(dentry); 2187 switch (err) { 2188 case -ENOENT: 2189 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 2190 dir_verifier = inode_peek_iversion_raw(dir); 2191 else 2192 dir_verifier = nfs_save_change_attribute(dir); 2193 nfs_set_verifier(dentry, dir_verifier); 2194 d_splice_alias(NULL, dentry); 2195 break; 2196 case -EISDIR: 2197 case -ENOTDIR: 2198 goto no_open; 2199 case -ELOOP: 2200 if (!(open_flags & O_NOFOLLOW)) 2201 goto no_open; 2202 break; 2203 /* case -EINVAL: */ 2204 default: 2205 break; 2206 } 2207 goto out; 2208 } 2209 file->f_mode |= FMODE_CAN_ODIRECT; 2210 2211 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 2212 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2213 put_nfs_open_context(ctx); 2214 out: 2215 if (unlikely(switched)) { 2216 d_lookup_done(dentry); 2217 dput(dentry); 2218 } 2219 return err; 2220 2221 no_open: 2222 res = nfs_lookup(dir, dentry, lookup_flags); 2223 if (!res) { 2224 inode = d_inode(dentry); 2225 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2226 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) 2227 res = ERR_PTR(-ENOTDIR); 2228 else if (inode && S_ISREG(inode->i_mode)) 2229 res = ERR_PTR(-EOPENSTALE); 2230 } else if (!IS_ERR(res)) { 2231 inode = d_inode(res); 2232 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2233 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) { 2234 dput(res); 2235 res = ERR_PTR(-ENOTDIR); 2236 } else if (inode && S_ISREG(inode->i_mode)) { 2237 dput(res); 2238 res = ERR_PTR(-EOPENSTALE); 2239 } 2240 } 2241 if (switched) { 2242 d_lookup_done(dentry); 2243 if (!res) 2244 res = dentry; 2245 else 2246 dput(dentry); 2247 } 2248 return finish_no_open(file, res); 2249 } 2250 EXPORT_SYMBOL_GPL(nfs_atomic_open); 2251 2252 static int 2253 nfs4_lookup_revalidate(struct inode *dir, const struct qstr *name, 2254 struct dentry *dentry, unsigned int flags) 2255 { 2256 struct inode *inode; 2257 2258 if (__nfs_lookup_revalidate(dentry, flags)) 2259 return -ECHILD; 2260 2261 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 2262 2263 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 2264 goto full_reval; 2265 if (d_mountpoint(dentry)) 2266 goto full_reval; 2267 2268 inode = d_inode(dentry); 2269 2270 /* We can't create new files in nfs_open_revalidate(), so we 2271 * optimize away revalidation of negative dentries. 2272 */ 2273 if (inode == NULL) 2274 goto full_reval; 2275 2276 if (nfs_verifier_is_delegated(dentry) || 2277 nfs_have_directory_delegation(inode)) 2278 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 2279 2280 /* NFS only supports OPEN on regular files */ 2281 if (!S_ISREG(inode->i_mode)) 2282 goto full_reval; 2283 2284 /* We cannot do exclusive creation on a positive dentry */ 2285 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 2286 goto reval_dentry; 2287 2288 /* Check if the directory changed */ 2289 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 2290 goto reval_dentry; 2291 2292 /* Let f_op->open() actually open (and revalidate) the file */ 2293 return 1; 2294 reval_dentry: 2295 if (flags & LOOKUP_RCU) 2296 return -ECHILD; 2297 return nfs_lookup_revalidate_dentry(dir, name, dentry, inode, flags); 2298 2299 full_reval: 2300 return nfs_do_lookup_revalidate(dir, name, dentry, flags); 2301 } 2302 2303 #endif /* CONFIG_NFSV4 */ 2304 2305 int nfs_atomic_open_v23(struct inode *dir, struct dentry *dentry, 2306 struct file *file, unsigned int open_flags, 2307 umode_t mode) 2308 { 2309 struct dentry *res = NULL; 2310 /* Same as look+open from lookup_open(), but with different O_TRUNC 2311 * handling. 2312 */ 2313 int error = 0; 2314 2315 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 2316 return -ENAMETOOLONG; 2317 2318 if (open_flags & O_CREAT) { 2319 error = nfs_do_create(dir, dentry, mode, open_flags); 2320 if (!error) { 2321 file->f_mode |= FMODE_CREATED; 2322 return finish_open(file, dentry, NULL); 2323 } else if (error != -EEXIST || open_flags & O_EXCL) 2324 return error; 2325 } 2326 if (d_in_lookup(dentry)) { 2327 /* The only flags nfs_lookup considers are 2328 * LOOKUP_EXCL and LOOKUP_RENAME_TARGET, and 2329 * we want those to be zero so the lookup isn't skipped. 2330 */ 2331 res = nfs_lookup(dir, dentry, 0); 2332 } 2333 return finish_no_open(file, res); 2334 2335 } 2336 EXPORT_SYMBOL_GPL(nfs_atomic_open_v23); 2337 2338 struct dentry * 2339 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 2340 struct nfs_fattr *fattr) 2341 { 2342 struct dentry *parent = dget_parent(dentry); 2343 struct inode *dir = d_inode(parent); 2344 struct inode *inode; 2345 struct dentry *d; 2346 int error; 2347 2348 d_drop(dentry); 2349 2350 if (fhandle->size == 0) { 2351 error = NFS_PROTO(dir)->lookup(dir, dentry, &dentry->d_name, 2352 fhandle, fattr); 2353 if (error) 2354 goto out_error; 2355 } 2356 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2357 if (!(fattr->valid & NFS_ATTR_FATTR)) { 2358 struct nfs_server *server = NFS_SB(dentry->d_sb); 2359 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 2360 fattr, NULL); 2361 if (error < 0) 2362 goto out_error; 2363 } 2364 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 2365 d = d_splice_alias(inode, dentry); 2366 out: 2367 dput(parent); 2368 return d; 2369 out_error: 2370 d = ERR_PTR(error); 2371 goto out; 2372 } 2373 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 2374 2375 /* 2376 * Code common to create, mkdir, and mknod. 2377 */ 2378 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 2379 struct nfs_fattr *fattr) 2380 { 2381 struct dentry *d; 2382 2383 d = nfs_add_or_obtain(dentry, fhandle, fattr); 2384 if (IS_ERR(d)) 2385 return PTR_ERR(d); 2386 2387 /* Callers don't care */ 2388 dput(d); 2389 return 0; 2390 } 2391 EXPORT_SYMBOL_GPL(nfs_instantiate); 2392 2393 /* 2394 * Following a failed create operation, we drop the dentry rather 2395 * than retain a negative dentry. This avoids a problem in the event 2396 * that the operation succeeded on the server, but an error in the 2397 * reply path made it appear to have failed. 2398 */ 2399 static int nfs_do_create(struct inode *dir, struct dentry *dentry, 2400 umode_t mode, int open_flags) 2401 { 2402 struct iattr attr; 2403 int error; 2404 2405 open_flags |= O_CREAT; 2406 2407 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 2408 dir->i_sb->s_id, dir->i_ino, dentry); 2409 2410 attr.ia_mode = mode; 2411 attr.ia_valid = ATTR_MODE; 2412 if (open_flags & O_TRUNC) { 2413 attr.ia_size = 0; 2414 attr.ia_valid |= ATTR_SIZE; 2415 } 2416 2417 trace_nfs_create_enter(dir, dentry, open_flags); 2418 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 2419 trace_nfs_create_exit(dir, dentry, open_flags, error); 2420 if (error != 0) 2421 goto out_err; 2422 return 0; 2423 out_err: 2424 d_drop(dentry); 2425 return error; 2426 } 2427 2428 int nfs_create(struct mnt_idmap *idmap, struct inode *dir, 2429 struct dentry *dentry, umode_t mode, bool excl) 2430 { 2431 return nfs_do_create(dir, dentry, mode, excl ? O_EXCL : 0); 2432 } 2433 EXPORT_SYMBOL_GPL(nfs_create); 2434 2435 /* 2436 * See comments for nfs_proc_create regarding failed operations. 2437 */ 2438 int 2439 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 2440 struct dentry *dentry, umode_t mode, dev_t rdev) 2441 { 2442 struct iattr attr; 2443 int status; 2444 2445 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 2446 dir->i_sb->s_id, dir->i_ino, dentry); 2447 2448 attr.ia_mode = mode; 2449 attr.ia_valid = ATTR_MODE; 2450 2451 trace_nfs_mknod_enter(dir, dentry); 2452 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 2453 trace_nfs_mknod_exit(dir, dentry, status); 2454 if (status != 0) 2455 goto out_err; 2456 return 0; 2457 out_err: 2458 d_drop(dentry); 2459 return status; 2460 } 2461 EXPORT_SYMBOL_GPL(nfs_mknod); 2462 2463 /* 2464 * See comments for nfs_proc_create regarding failed operations. 2465 */ 2466 struct dentry *nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 2467 struct dentry *dentry, umode_t mode) 2468 { 2469 struct iattr attr; 2470 struct dentry *ret; 2471 2472 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 2473 dir->i_sb->s_id, dir->i_ino, dentry); 2474 2475 attr.ia_valid = ATTR_MODE; 2476 attr.ia_mode = mode | S_IFDIR; 2477 2478 trace_nfs_mkdir_enter(dir, dentry); 2479 ret = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 2480 trace_nfs_mkdir_exit(dir, dentry, PTR_ERR_OR_ZERO(ret)); 2481 return ret; 2482 } 2483 EXPORT_SYMBOL_GPL(nfs_mkdir); 2484 2485 static void nfs_dentry_handle_enoent(struct dentry *dentry) 2486 { 2487 if (simple_positive(dentry)) 2488 d_delete(dentry); 2489 } 2490 2491 static void nfs_dentry_remove_handle_error(struct inode *dir, 2492 struct dentry *dentry, int error) 2493 { 2494 switch (error) { 2495 case -ENOENT: 2496 if (d_really_is_positive(dentry)) 2497 d_delete(dentry); 2498 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2499 break; 2500 case 0: 2501 nfs_d_prune_case_insensitive_aliases(d_inode(dentry)); 2502 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2503 } 2504 } 2505 2506 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 2507 { 2508 int error; 2509 2510 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 2511 dir->i_sb->s_id, dir->i_ino, dentry); 2512 2513 trace_nfs_rmdir_enter(dir, dentry); 2514 if (d_really_is_positive(dentry)) { 2515 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2516 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2517 /* Ensure the VFS deletes this inode */ 2518 switch (error) { 2519 case 0: 2520 clear_nlink(d_inode(dentry)); 2521 break; 2522 case -ENOENT: 2523 nfs_dentry_handle_enoent(dentry); 2524 } 2525 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2526 } else 2527 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2528 nfs_dentry_remove_handle_error(dir, dentry, error); 2529 trace_nfs_rmdir_exit(dir, dentry, error); 2530 2531 return error; 2532 } 2533 EXPORT_SYMBOL_GPL(nfs_rmdir); 2534 2535 /* 2536 * Remove a file after making sure there are no pending writes, 2537 * and after checking that the file has only one user. 2538 * 2539 * We invalidate the attribute cache and free the inode prior to the operation 2540 * to avoid possible races if the server reuses the inode. 2541 */ 2542 static int nfs_safe_remove(struct dentry *dentry) 2543 { 2544 struct inode *dir = d_inode(dentry->d_parent); 2545 struct inode *inode = d_inode(dentry); 2546 int error = -EBUSY; 2547 2548 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2549 2550 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2551 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2552 error = 0; 2553 goto out; 2554 } 2555 2556 trace_nfs_remove_enter(dir, dentry); 2557 if (inode != NULL) { 2558 unsigned long gencount = READ_ONCE(NFS_I(inode)->attr_gencount); 2559 2560 error = NFS_PROTO(dir)->remove(dir, dentry); 2561 if (error == 0) 2562 nfs_drop_nlink(inode, gencount); 2563 } else 2564 error = NFS_PROTO(dir)->remove(dir, dentry); 2565 if (error == -ENOENT) 2566 nfs_dentry_handle_enoent(dentry); 2567 trace_nfs_remove_exit(dir, dentry, error); 2568 out: 2569 return error; 2570 } 2571 2572 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2573 * belongs to an active ".nfs..." file and we return -EBUSY. 2574 * 2575 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2576 */ 2577 int nfs_unlink(struct inode *dir, struct dentry *dentry) 2578 { 2579 int error; 2580 2581 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2582 dir->i_ino, dentry); 2583 2584 trace_nfs_unlink_enter(dir, dentry); 2585 spin_lock(&dentry->d_lock); 2586 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED, 2587 &NFS_I(d_inode(dentry))->flags)) { 2588 spin_unlock(&dentry->d_lock); 2589 /* Start asynchronous writeout of the inode */ 2590 write_inode_now(d_inode(dentry), 0); 2591 error = nfs_sillyrename(dir, dentry); 2592 goto out; 2593 } 2594 /* We must prevent any concurrent open until the unlink 2595 * completes. ->d_revalidate will wait for ->d_fsdata 2596 * to clear. We set it here to ensure no lookup succeeds until 2597 * the unlink is complete on the server. 2598 */ 2599 error = -ETXTBSY; 2600 if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) || 2601 WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) { 2602 spin_unlock(&dentry->d_lock); 2603 goto out; 2604 } 2605 block_revalidate(dentry); 2606 2607 spin_unlock(&dentry->d_lock); 2608 error = nfs_safe_remove(dentry); 2609 nfs_dentry_remove_handle_error(dir, dentry, error); 2610 unblock_revalidate(dentry); 2611 out: 2612 trace_nfs_unlink_exit(dir, dentry, error); 2613 return error; 2614 } 2615 EXPORT_SYMBOL_GPL(nfs_unlink); 2616 2617 /* 2618 * To create a symbolic link, most file systems instantiate a new inode, 2619 * add a page to it containing the path, then write it out to the disk 2620 * using prepare_write/commit_write. 2621 * 2622 * Unfortunately the NFS client can't create the in-core inode first 2623 * because it needs a file handle to create an in-core inode (see 2624 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2625 * symlink request has completed on the server. 2626 * 2627 * So instead we allocate a raw page, copy the symname into it, then do 2628 * the SYMLINK request with the page as the buffer. If it succeeds, we 2629 * now have a new file handle and can instantiate an in-core NFS inode 2630 * and move the raw page into its mapping. 2631 */ 2632 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 2633 struct dentry *dentry, const char *symname) 2634 { 2635 struct folio *folio; 2636 char *kaddr; 2637 struct iattr attr; 2638 unsigned int pathlen = strlen(symname); 2639 int error; 2640 2641 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2642 dir->i_ino, dentry, symname); 2643 2644 if (pathlen > PAGE_SIZE) 2645 return -ENAMETOOLONG; 2646 2647 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2648 attr.ia_valid = ATTR_MODE; 2649 2650 folio = folio_alloc(GFP_USER, 0); 2651 if (!folio) 2652 return -ENOMEM; 2653 2654 kaddr = folio_address(folio); 2655 memcpy(kaddr, symname, pathlen); 2656 if (pathlen < PAGE_SIZE) 2657 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2658 2659 trace_nfs_symlink_enter(dir, dentry); 2660 error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr); 2661 trace_nfs_symlink_exit(dir, dentry, error); 2662 if (error != 0) { 2663 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2664 dir->i_sb->s_id, dir->i_ino, 2665 dentry, symname, error); 2666 d_drop(dentry); 2667 folio_put(folio); 2668 return error; 2669 } 2670 2671 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2672 2673 /* 2674 * No big deal if we can't add this page to the page cache here. 2675 * READLINK will get the missing page from the server if needed. 2676 */ 2677 if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0, 2678 GFP_KERNEL) == 0) { 2679 folio_mark_uptodate(folio); 2680 folio_unlock(folio); 2681 } 2682 2683 folio_put(folio); 2684 return 0; 2685 } 2686 EXPORT_SYMBOL_GPL(nfs_symlink); 2687 2688 int 2689 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2690 { 2691 struct inode *inode = d_inode(old_dentry); 2692 int error; 2693 2694 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2695 old_dentry, dentry); 2696 2697 trace_nfs_link_enter(inode, dir, dentry); 2698 d_drop(dentry); 2699 if (S_ISREG(inode->i_mode)) 2700 nfs_sync_inode(inode); 2701 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2702 if (error == 0) { 2703 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2704 ihold(inode); 2705 d_add(dentry, inode); 2706 } 2707 trace_nfs_link_exit(inode, dir, dentry, error); 2708 return error; 2709 } 2710 EXPORT_SYMBOL_GPL(nfs_link); 2711 2712 static void 2713 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data) 2714 { 2715 struct dentry *new_dentry = data->new_dentry; 2716 2717 unblock_revalidate(new_dentry); 2718 } 2719 2720 static bool nfs_rename_is_unsafe_cross_dir(struct dentry *old_dentry, 2721 struct dentry *new_dentry) 2722 { 2723 struct nfs_server *server = NFS_SB(old_dentry->d_sb); 2724 2725 if (old_dentry->d_parent != new_dentry->d_parent) 2726 return false; 2727 if (server->fh_expire_type & NFS_FH_RENAME_UNSAFE) 2728 return !(server->fh_expire_type & NFS_FH_NOEXPIRE_WITH_OPEN); 2729 return true; 2730 } 2731 2732 /* 2733 * RENAME 2734 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2735 * different file handle for the same inode after a rename (e.g. when 2736 * moving to a different directory). A fail-safe method to do so would 2737 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2738 * rename the old file using the sillyrename stuff. This way, the original 2739 * file in old_dir will go away when the last process iput()s the inode. 2740 * 2741 * FIXED. 2742 * 2743 * It actually works quite well. One needs to have the possibility for 2744 * at least one ".nfs..." file in each directory the file ever gets 2745 * moved or linked to which happens automagically with the new 2746 * implementation that only depends on the dcache stuff instead of 2747 * using the inode layer 2748 * 2749 * Unfortunately, things are a little more complicated than indicated 2750 * above. For a cross-directory move, we want to make sure we can get 2751 * rid of the old inode after the operation. This means there must be 2752 * no pending writes (if it's a file), and the use count must be 1. 2753 * If these conditions are met, we can drop the dentries before doing 2754 * the rename. 2755 */ 2756 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir, 2757 struct dentry *old_dentry, struct inode *new_dir, 2758 struct dentry *new_dentry, unsigned int flags) 2759 { 2760 struct inode *old_inode = d_inode(old_dentry); 2761 struct inode *new_inode = d_inode(new_dentry); 2762 unsigned long new_gencount = 0; 2763 struct dentry *dentry = NULL; 2764 struct rpc_task *task; 2765 bool must_unblock = false; 2766 int error = -EBUSY; 2767 2768 if (flags) 2769 return -EINVAL; 2770 2771 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2772 old_dentry, new_dentry, 2773 d_count(new_dentry)); 2774 2775 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2776 /* 2777 * For non-directories, check whether the target is busy and if so, 2778 * make a copy of the dentry and then do a silly-rename. If the 2779 * silly-rename succeeds, the copied dentry is hashed and becomes 2780 * the new target. 2781 */ 2782 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2783 /* We must prevent any concurrent open until the unlink 2784 * completes. ->d_revalidate will wait for ->d_fsdata 2785 * to clear. We set it here to ensure no lookup succeeds until 2786 * the unlink is complete on the server. 2787 */ 2788 error = -ETXTBSY; 2789 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) || 2790 WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED)) 2791 goto out; 2792 2793 spin_lock(&new_dentry->d_lock); 2794 if (d_count(new_dentry) > 2) { 2795 int err; 2796 2797 spin_unlock(&new_dentry->d_lock); 2798 2799 /* copy the target dentry's name */ 2800 dentry = d_alloc(new_dentry->d_parent, 2801 &new_dentry->d_name); 2802 if (!dentry) 2803 goto out; 2804 2805 /* silly-rename the existing target ... */ 2806 err = nfs_sillyrename(new_dir, new_dentry); 2807 if (err) 2808 goto out; 2809 2810 new_dentry = dentry; 2811 new_inode = NULL; 2812 } else { 2813 block_revalidate(new_dentry); 2814 must_unblock = true; 2815 new_gencount = NFS_I(new_inode)->attr_gencount; 2816 spin_unlock(&new_dentry->d_lock); 2817 } 2818 2819 } 2820 2821 if (S_ISREG(old_inode->i_mode) && 2822 nfs_rename_is_unsafe_cross_dir(old_dentry, new_dentry)) 2823 nfs_sync_inode(old_inode); 2824 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, 2825 must_unblock ? nfs_unblock_rename : NULL); 2826 if (IS_ERR(task)) { 2827 if (must_unblock) 2828 unblock_revalidate(new_dentry); 2829 error = PTR_ERR(task); 2830 goto out; 2831 } 2832 2833 error = rpc_wait_for_completion_task(task); 2834 if (error != 0) { 2835 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2836 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2837 smp_wmb(); 2838 } else 2839 error = task->tk_status; 2840 rpc_put_task(task); 2841 /* Ensure the inode attributes are revalidated */ 2842 if (error == 0) { 2843 spin_lock(&old_inode->i_lock); 2844 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2845 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE | 2846 NFS_INO_INVALID_CTIME | 2847 NFS_INO_REVAL_FORCED); 2848 spin_unlock(&old_inode->i_lock); 2849 } 2850 out: 2851 trace_nfs_rename_exit(old_dir, old_dentry, 2852 new_dir, new_dentry, error); 2853 if (!error) { 2854 if (new_inode != NULL) 2855 nfs_drop_nlink(new_inode, new_gencount); 2856 /* 2857 * The d_move() should be here instead of in an async RPC completion 2858 * handler because we need the proper locks to move the dentry. If 2859 * we're interrupted by a signal, the async RPC completion handler 2860 * should mark the directories for revalidation. 2861 */ 2862 d_move(old_dentry, new_dentry); 2863 nfs_set_verifier(old_dentry, 2864 nfs_save_change_attribute(new_dir)); 2865 } else if (error == -ENOENT) 2866 nfs_dentry_handle_enoent(old_dentry); 2867 2868 /* new dentry created? */ 2869 if (dentry) 2870 dput(dentry); 2871 return error; 2872 } 2873 EXPORT_SYMBOL_GPL(nfs_rename); 2874 2875 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2876 static LIST_HEAD(nfs_access_lru_list); 2877 static atomic_long_t nfs_access_nr_entries; 2878 2879 static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2880 module_param(nfs_access_max_cachesize, ulong, 0644); 2881 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2882 2883 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2884 { 2885 put_group_info(entry->group_info); 2886 kfree_rcu(entry, rcu_head); 2887 smp_mb__before_atomic(); 2888 atomic_long_dec(&nfs_access_nr_entries); 2889 smp_mb__after_atomic(); 2890 } 2891 2892 static void nfs_access_free_list(struct list_head *head) 2893 { 2894 struct nfs_access_entry *cache; 2895 2896 while (!list_empty(head)) { 2897 cache = list_entry(head->next, struct nfs_access_entry, lru); 2898 list_del(&cache->lru); 2899 nfs_access_free_entry(cache); 2900 } 2901 } 2902 2903 static unsigned long 2904 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2905 { 2906 LIST_HEAD(head); 2907 struct nfs_inode *nfsi, *next; 2908 struct nfs_access_entry *cache; 2909 long freed = 0; 2910 2911 spin_lock(&nfs_access_lru_lock); 2912 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2913 struct inode *inode; 2914 2915 if (nr_to_scan-- == 0) 2916 break; 2917 inode = &nfsi->vfs_inode; 2918 spin_lock(&inode->i_lock); 2919 if (list_empty(&nfsi->access_cache_entry_lru)) 2920 goto remove_lru_entry; 2921 cache = list_entry(nfsi->access_cache_entry_lru.next, 2922 struct nfs_access_entry, lru); 2923 list_move(&cache->lru, &head); 2924 rb_erase(&cache->rb_node, &nfsi->access_cache); 2925 freed++; 2926 if (!list_empty(&nfsi->access_cache_entry_lru)) 2927 list_move_tail(&nfsi->access_cache_inode_lru, 2928 &nfs_access_lru_list); 2929 else { 2930 remove_lru_entry: 2931 list_del_init(&nfsi->access_cache_inode_lru); 2932 smp_mb__before_atomic(); 2933 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2934 smp_mb__after_atomic(); 2935 } 2936 spin_unlock(&inode->i_lock); 2937 } 2938 spin_unlock(&nfs_access_lru_lock); 2939 nfs_access_free_list(&head); 2940 return freed; 2941 } 2942 2943 unsigned long 2944 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2945 { 2946 int nr_to_scan = sc->nr_to_scan; 2947 gfp_t gfp_mask = sc->gfp_mask; 2948 2949 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2950 return SHRINK_STOP; 2951 return nfs_do_access_cache_scan(nr_to_scan); 2952 } 2953 2954 2955 unsigned long 2956 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2957 { 2958 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2959 } 2960 2961 static void 2962 nfs_access_cache_enforce_limit(void) 2963 { 2964 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2965 unsigned long diff; 2966 unsigned int nr_to_scan; 2967 2968 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2969 return; 2970 nr_to_scan = 100; 2971 diff = nr_entries - nfs_access_max_cachesize; 2972 if (diff < nr_to_scan) 2973 nr_to_scan = diff; 2974 nfs_do_access_cache_scan(nr_to_scan); 2975 } 2976 2977 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2978 { 2979 struct rb_root *root_node = &nfsi->access_cache; 2980 struct rb_node *n; 2981 struct nfs_access_entry *entry; 2982 2983 /* Unhook entries from the cache */ 2984 while ((n = rb_first(root_node)) != NULL) { 2985 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2986 rb_erase(n, root_node); 2987 list_move(&entry->lru, head); 2988 } 2989 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2990 } 2991 2992 void nfs_access_zap_cache(struct inode *inode) 2993 { 2994 LIST_HEAD(head); 2995 2996 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2997 return; 2998 /* Remove from global LRU init */ 2999 spin_lock(&nfs_access_lru_lock); 3000 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 3001 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 3002 3003 spin_lock(&inode->i_lock); 3004 __nfs_access_zap_cache(NFS_I(inode), &head); 3005 spin_unlock(&inode->i_lock); 3006 spin_unlock(&nfs_access_lru_lock); 3007 nfs_access_free_list(&head); 3008 } 3009 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 3010 3011 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b) 3012 { 3013 struct group_info *ga, *gb; 3014 int g; 3015 3016 if (uid_lt(a->fsuid, b->fsuid)) 3017 return -1; 3018 if (uid_gt(a->fsuid, b->fsuid)) 3019 return 1; 3020 3021 if (gid_lt(a->fsgid, b->fsgid)) 3022 return -1; 3023 if (gid_gt(a->fsgid, b->fsgid)) 3024 return 1; 3025 3026 ga = a->group_info; 3027 gb = b->group_info; 3028 if (ga == gb) 3029 return 0; 3030 if (ga == NULL) 3031 return -1; 3032 if (gb == NULL) 3033 return 1; 3034 if (ga->ngroups < gb->ngroups) 3035 return -1; 3036 if (ga->ngroups > gb->ngroups) 3037 return 1; 3038 3039 for (g = 0; g < ga->ngroups; g++) { 3040 if (gid_lt(ga->gid[g], gb->gid[g])) 3041 return -1; 3042 if (gid_gt(ga->gid[g], gb->gid[g])) 3043 return 1; 3044 } 3045 return 0; 3046 } 3047 3048 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 3049 { 3050 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 3051 3052 while (n != NULL) { 3053 struct nfs_access_entry *entry = 3054 rb_entry(n, struct nfs_access_entry, rb_node); 3055 int cmp = access_cmp(cred, entry); 3056 3057 if (cmp < 0) 3058 n = n->rb_left; 3059 else if (cmp > 0) 3060 n = n->rb_right; 3061 else 3062 return entry; 3063 } 3064 return NULL; 3065 } 3066 3067 static u64 nfs_access_login_time(const struct task_struct *task, 3068 const struct cred *cred) 3069 { 3070 const struct task_struct *parent; 3071 const struct cred *pcred; 3072 u64 ret; 3073 3074 rcu_read_lock(); 3075 for (;;) { 3076 parent = rcu_dereference(task->real_parent); 3077 pcred = __task_cred(parent); 3078 if (parent == task || cred_fscmp(pcred, cred) != 0) 3079 break; 3080 task = parent; 3081 } 3082 ret = task->start_time; 3083 rcu_read_unlock(); 3084 return ret; 3085 } 3086 3087 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block) 3088 { 3089 struct nfs_inode *nfsi = NFS_I(inode); 3090 u64 login_time = nfs_access_login_time(current, cred); 3091 struct nfs_access_entry *cache; 3092 bool retry = true; 3093 int err; 3094 3095 spin_lock(&inode->i_lock); 3096 for(;;) { 3097 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 3098 goto out_zap; 3099 cache = nfs_access_search_rbtree(inode, cred); 3100 err = -ENOENT; 3101 if (cache == NULL) 3102 goto out; 3103 /* Found an entry, is our attribute cache valid? */ 3104 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 3105 break; 3106 if (!retry) 3107 break; 3108 err = -ECHILD; 3109 if (!may_block) 3110 goto out; 3111 spin_unlock(&inode->i_lock); 3112 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 3113 if (err) 3114 return err; 3115 spin_lock(&inode->i_lock); 3116 retry = false; 3117 } 3118 err = -ENOENT; 3119 if ((s64)(login_time - cache->timestamp) > 0) 3120 goto out; 3121 *mask = cache->mask; 3122 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 3123 err = 0; 3124 out: 3125 spin_unlock(&inode->i_lock); 3126 return err; 3127 out_zap: 3128 spin_unlock(&inode->i_lock); 3129 nfs_access_zap_cache(inode); 3130 return -ENOENT; 3131 } 3132 3133 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask) 3134 { 3135 /* Only check the most recently returned cache entry, 3136 * but do it without locking. 3137 */ 3138 struct nfs_inode *nfsi = NFS_I(inode); 3139 u64 login_time = nfs_access_login_time(current, cred); 3140 struct nfs_access_entry *cache; 3141 int err = -ECHILD; 3142 struct list_head *lh; 3143 3144 rcu_read_lock(); 3145 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 3146 goto out; 3147 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 3148 cache = list_entry(lh, struct nfs_access_entry, lru); 3149 if (lh == &nfsi->access_cache_entry_lru || 3150 access_cmp(cred, cache) != 0) 3151 cache = NULL; 3152 if (cache == NULL) 3153 goto out; 3154 if ((s64)(login_time - cache->timestamp) > 0) 3155 goto out; 3156 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 3157 goto out; 3158 *mask = cache->mask; 3159 err = 0; 3160 out: 3161 rcu_read_unlock(); 3162 return err; 3163 } 3164 3165 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, 3166 u32 *mask, bool may_block) 3167 { 3168 int status; 3169 3170 status = nfs_access_get_cached_rcu(inode, cred, mask); 3171 if (status != 0) 3172 status = nfs_access_get_cached_locked(inode, cred, mask, 3173 may_block); 3174 3175 return status; 3176 } 3177 EXPORT_SYMBOL_GPL(nfs_access_get_cached); 3178 3179 static void nfs_access_add_rbtree(struct inode *inode, 3180 struct nfs_access_entry *set, 3181 const struct cred *cred) 3182 { 3183 struct nfs_inode *nfsi = NFS_I(inode); 3184 struct rb_root *root_node = &nfsi->access_cache; 3185 struct rb_node **p = &root_node->rb_node; 3186 struct rb_node *parent = NULL; 3187 struct nfs_access_entry *entry; 3188 int cmp; 3189 3190 spin_lock(&inode->i_lock); 3191 while (*p != NULL) { 3192 parent = *p; 3193 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 3194 cmp = access_cmp(cred, entry); 3195 3196 if (cmp < 0) 3197 p = &parent->rb_left; 3198 else if (cmp > 0) 3199 p = &parent->rb_right; 3200 else 3201 goto found; 3202 } 3203 rb_link_node(&set->rb_node, parent, p); 3204 rb_insert_color(&set->rb_node, root_node); 3205 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3206 spin_unlock(&inode->i_lock); 3207 return; 3208 found: 3209 rb_replace_node(parent, &set->rb_node, root_node); 3210 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3211 list_del(&entry->lru); 3212 spin_unlock(&inode->i_lock); 3213 nfs_access_free_entry(entry); 3214 } 3215 3216 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set, 3217 const struct cred *cred) 3218 { 3219 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 3220 if (cache == NULL) 3221 return; 3222 RB_CLEAR_NODE(&cache->rb_node); 3223 cache->fsuid = cred->fsuid; 3224 cache->fsgid = cred->fsgid; 3225 cache->group_info = get_group_info(cred->group_info); 3226 cache->mask = set->mask; 3227 cache->timestamp = ktime_get_ns(); 3228 3229 /* The above field assignments must be visible 3230 * before this item appears on the lru. We cannot easily 3231 * use rcu_assign_pointer, so just force the memory barrier. 3232 */ 3233 smp_wmb(); 3234 nfs_access_add_rbtree(inode, cache, cred); 3235 3236 /* Update accounting */ 3237 smp_mb__before_atomic(); 3238 atomic_long_inc(&nfs_access_nr_entries); 3239 smp_mb__after_atomic(); 3240 3241 /* Add inode to global LRU list */ 3242 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 3243 spin_lock(&nfs_access_lru_lock); 3244 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 3245 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 3246 &nfs_access_lru_list); 3247 spin_unlock(&nfs_access_lru_lock); 3248 } 3249 nfs_access_cache_enforce_limit(); 3250 } 3251 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 3252 3253 #define NFS_MAY_READ (NFS_ACCESS_READ) 3254 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3255 NFS_ACCESS_EXTEND | \ 3256 NFS_ACCESS_DELETE) 3257 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3258 NFS_ACCESS_EXTEND) 3259 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 3260 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 3261 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 3262 static int 3263 nfs_access_calc_mask(u32 access_result, umode_t umode) 3264 { 3265 int mask = 0; 3266 3267 if (access_result & NFS_MAY_READ) 3268 mask |= MAY_READ; 3269 if (S_ISDIR(umode)) { 3270 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 3271 mask |= MAY_WRITE; 3272 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 3273 mask |= MAY_EXEC; 3274 } else if (S_ISREG(umode)) { 3275 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 3276 mask |= MAY_WRITE; 3277 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 3278 mask |= MAY_EXEC; 3279 } else if (access_result & NFS_MAY_WRITE) 3280 mask |= MAY_WRITE; 3281 return mask; 3282 } 3283 3284 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 3285 { 3286 entry->mask = access_result; 3287 } 3288 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 3289 3290 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 3291 { 3292 struct nfs_access_entry cache; 3293 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 3294 int cache_mask = -1; 3295 int status; 3296 3297 trace_nfs_access_enter(inode); 3298 3299 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block); 3300 if (status == 0) 3301 goto out_cached; 3302 3303 status = -ECHILD; 3304 if (!may_block) 3305 goto out; 3306 3307 /* 3308 * Determine which access bits we want to ask for... 3309 */ 3310 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND | 3311 nfs_access_xattr_mask(NFS_SERVER(inode)); 3312 if (S_ISDIR(inode->i_mode)) 3313 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 3314 else 3315 cache.mask |= NFS_ACCESS_EXECUTE; 3316 status = NFS_PROTO(inode)->access(inode, &cache, cred); 3317 if (status != 0) { 3318 if (status == -ESTALE) { 3319 if (!S_ISDIR(inode->i_mode)) 3320 nfs_set_inode_stale(inode); 3321 else 3322 nfs_zap_caches(inode); 3323 } 3324 goto out; 3325 } 3326 nfs_access_add_cache(inode, &cache, cred); 3327 out_cached: 3328 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 3329 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 3330 status = -EACCES; 3331 out: 3332 trace_nfs_access_exit(inode, mask, cache_mask, status); 3333 return status; 3334 } 3335 3336 static int nfs_open_permission_mask(int openflags) 3337 { 3338 int mask = 0; 3339 3340 if (openflags & __FMODE_EXEC) { 3341 /* ONLY check exec rights */ 3342 mask = MAY_EXEC; 3343 } else { 3344 if ((openflags & O_ACCMODE) != O_WRONLY) 3345 mask |= MAY_READ; 3346 if ((openflags & O_ACCMODE) != O_RDONLY) 3347 mask |= MAY_WRITE; 3348 } 3349 3350 return mask; 3351 } 3352 3353 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 3354 { 3355 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 3356 } 3357 EXPORT_SYMBOL_GPL(nfs_may_open); 3358 3359 static int nfs_execute_ok(struct inode *inode, int mask) 3360 { 3361 struct nfs_server *server = NFS_SERVER(inode); 3362 int ret = 0; 3363 3364 if (S_ISDIR(inode->i_mode)) 3365 return 0; 3366 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) { 3367 if (mask & MAY_NOT_BLOCK) 3368 return -ECHILD; 3369 ret = __nfs_revalidate_inode(server, inode); 3370 } 3371 if (ret == 0 && !execute_ok(inode)) 3372 ret = -EACCES; 3373 return ret; 3374 } 3375 3376 int nfs_permission(struct mnt_idmap *idmap, 3377 struct inode *inode, 3378 int mask) 3379 { 3380 const struct cred *cred = current_cred(); 3381 int res = 0; 3382 3383 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 3384 3385 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 3386 goto out; 3387 /* Is this sys_access() ? */ 3388 if (mask & (MAY_ACCESS | MAY_CHDIR)) 3389 goto force_lookup; 3390 3391 switch (inode->i_mode & S_IFMT) { 3392 case S_IFLNK: 3393 goto out; 3394 case S_IFREG: 3395 if ((mask & MAY_OPEN) && 3396 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 3397 return 0; 3398 break; 3399 case S_IFDIR: 3400 /* 3401 * Optimize away all write operations, since the server 3402 * will check permissions when we perform the op. 3403 */ 3404 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 3405 goto out; 3406 } 3407 3408 force_lookup: 3409 if (!NFS_PROTO(inode)->access) 3410 goto out_notsup; 3411 3412 res = nfs_do_access(inode, cred, mask); 3413 out: 3414 if (!res && (mask & MAY_EXEC)) 3415 res = nfs_execute_ok(inode, mask); 3416 3417 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 3418 inode->i_sb->s_id, inode->i_ino, mask, res); 3419 return res; 3420 out_notsup: 3421 if (mask & MAY_NOT_BLOCK) 3422 return -ECHILD; 3423 3424 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE | 3425 NFS_INO_INVALID_OTHER); 3426 if (res == 0) 3427 res = generic_permission(&nop_mnt_idmap, inode, mask); 3428 goto out; 3429 } 3430 EXPORT_SYMBOL_GPL(nfs_permission); 3431