xref: /linux/drivers/isdn/hardware/mISDN/hfcsusb.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* hfcsusb.c
3  * mISDN driver for Colognechip HFC-S USB chip
4  *
5  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
6  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
7  *
8  * module params
9  *   debug=<n>, default=0, with n=0xHHHHGGGG
10  *      H - l1 driver flags described in hfcsusb.h
11  *      G - common mISDN debug flags described at mISDNhw.h
12  *
13  *   poll=<n>, default 128
14  *     n : burst size of PH_DATA_IND at transparent rx data
15  *
16  * Revision: 0.3.3 (socket), 2008-11-05
17  */
18 
19 #include <linux/module.h>
20 #include <linux/delay.h>
21 #include <linux/usb.h>
22 #include <linux/mISDNhw.h>
23 #include <linux/slab.h>
24 #include "hfcsusb.h"
25 
26 static unsigned int debug;
27 static int poll = DEFAULT_TRANSP_BURST_SZ;
28 
29 static LIST_HEAD(HFClist);
30 static DEFINE_RWLOCK(HFClock);
31 
32 
33 MODULE_AUTHOR("Martin Bachem");
34 MODULE_DESCRIPTION("mISDN driver for Colognechip HFC-S USB chip");
35 MODULE_LICENSE("GPL");
36 module_param(debug, uint, S_IRUGO | S_IWUSR);
37 module_param(poll, int, 0);
38 
39 static int hfcsusb_cnt;
40 
41 /* some function prototypes */
42 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
43 static void release_hw(struct hfcsusb *hw);
44 static void reset_hfcsusb(struct hfcsusb *hw);
45 static void setPortMode(struct hfcsusb *hw);
46 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
47 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
48 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
49 static void deactivate_bchannel(struct bchannel *bch);
50 static int  hfcsusb_ph_info(struct hfcsusb *hw);
51 
52 /* start next background transfer for control channel */
53 static void
ctrl_start_transfer(struct hfcsusb * hw)54 ctrl_start_transfer(struct hfcsusb *hw)
55 {
56 	if (debug & DBG_HFC_CALL_TRACE)
57 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
58 
59 	if (hw->ctrl_cnt) {
60 		hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
61 		hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
62 		hw->ctrl_urb->transfer_buffer = NULL;
63 		hw->ctrl_urb->transfer_buffer_length = 0;
64 		hw->ctrl_write.wIndex =
65 			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
66 		hw->ctrl_write.wValue =
67 			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
68 
69 		usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
70 	}
71 }
72 
73 /*
74  * queue a control transfer request to write HFC-S USB
75  * chip register using CTRL resuest queue
76  */
write_reg(struct hfcsusb * hw,__u8 reg,__u8 val)77 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
78 {
79 	struct ctrl_buf *buf;
80 
81 	if (debug & DBG_HFC_CALL_TRACE)
82 		printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
83 		       hw->name, __func__, reg, val);
84 
85 	spin_lock(&hw->ctrl_lock);
86 	if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
87 		spin_unlock(&hw->ctrl_lock);
88 		return 1;
89 	}
90 	buf = &hw->ctrl_buff[hw->ctrl_in_idx];
91 	buf->hfcs_reg = reg;
92 	buf->reg_val = val;
93 	if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
94 		hw->ctrl_in_idx = 0;
95 	if (++hw->ctrl_cnt == 1)
96 		ctrl_start_transfer(hw);
97 	spin_unlock(&hw->ctrl_lock);
98 
99 	return 0;
100 }
101 
102 /* control completion routine handling background control cmds */
103 static void
ctrl_complete(struct urb * urb)104 ctrl_complete(struct urb *urb)
105 {
106 	struct hfcsusb *hw = (struct hfcsusb *) urb->context;
107 
108 	if (debug & DBG_HFC_CALL_TRACE)
109 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
110 
111 	urb->dev = hw->dev;
112 	if (hw->ctrl_cnt) {
113 		hw->ctrl_cnt--;	/* decrement actual count */
114 		if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
115 			hw->ctrl_out_idx = 0;	/* pointer wrap */
116 
117 		ctrl_start_transfer(hw); /* start next transfer */
118 	}
119 }
120 
121 /* handle LED bits   */
122 static void
set_led_bit(struct hfcsusb * hw,signed short led_bits,int set_on)123 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
124 {
125 	if (set_on) {
126 		if (led_bits < 0)
127 			hw->led_state &= ~abs(led_bits);
128 		else
129 			hw->led_state |= led_bits;
130 	} else {
131 		if (led_bits < 0)
132 			hw->led_state |= abs(led_bits);
133 		else
134 			hw->led_state &= ~led_bits;
135 	}
136 }
137 
138 /* handle LED requests  */
139 static void
handle_led(struct hfcsusb * hw,int event)140 handle_led(struct hfcsusb *hw, int event)
141 {
142 	struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
143 		hfcsusb_idtab[hw->vend_idx].driver_info;
144 	__u8 tmpled;
145 
146 	if (driver_info->led_scheme == LED_OFF)
147 		return;
148 	tmpled = hw->led_state;
149 
150 	switch (event) {
151 	case LED_POWER_ON:
152 		set_led_bit(hw, driver_info->led_bits[0], 1);
153 		set_led_bit(hw, driver_info->led_bits[1], 0);
154 		set_led_bit(hw, driver_info->led_bits[2], 0);
155 		set_led_bit(hw, driver_info->led_bits[3], 0);
156 		break;
157 	case LED_POWER_OFF:
158 		set_led_bit(hw, driver_info->led_bits[0], 0);
159 		set_led_bit(hw, driver_info->led_bits[1], 0);
160 		set_led_bit(hw, driver_info->led_bits[2], 0);
161 		set_led_bit(hw, driver_info->led_bits[3], 0);
162 		break;
163 	case LED_S0_ON:
164 		set_led_bit(hw, driver_info->led_bits[1], 1);
165 		break;
166 	case LED_S0_OFF:
167 		set_led_bit(hw, driver_info->led_bits[1], 0);
168 		break;
169 	case LED_B1_ON:
170 		set_led_bit(hw, driver_info->led_bits[2], 1);
171 		break;
172 	case LED_B1_OFF:
173 		set_led_bit(hw, driver_info->led_bits[2], 0);
174 		break;
175 	case LED_B2_ON:
176 		set_led_bit(hw, driver_info->led_bits[3], 1);
177 		break;
178 	case LED_B2_OFF:
179 		set_led_bit(hw, driver_info->led_bits[3], 0);
180 		break;
181 	}
182 
183 	if (hw->led_state != tmpled) {
184 		if (debug & DBG_HFC_CALL_TRACE)
185 			printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
186 			       hw->name, __func__,
187 			       HFCUSB_P_DATA, hw->led_state);
188 
189 		write_reg(hw, HFCUSB_P_DATA, hw->led_state);
190 	}
191 }
192 
193 /*
194  * Layer2 -> Layer 1 Bchannel data
195  */
196 static int
hfcusb_l2l1B(struct mISDNchannel * ch,struct sk_buff * skb)197 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
198 {
199 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
200 	struct hfcsusb		*hw = bch->hw;
201 	int			ret = -EINVAL;
202 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
203 	u_long			flags;
204 
205 	if (debug & DBG_HFC_CALL_TRACE)
206 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
207 
208 	switch (hh->prim) {
209 	case PH_DATA_REQ:
210 		spin_lock_irqsave(&hw->lock, flags);
211 		ret = bchannel_senddata(bch, skb);
212 		spin_unlock_irqrestore(&hw->lock, flags);
213 		if (debug & DBG_HFC_CALL_TRACE)
214 			printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
215 			       hw->name, __func__, ret);
216 		if (ret > 0)
217 			ret = 0;
218 		return ret;
219 	case PH_ACTIVATE_REQ:
220 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
221 			hfcsusb_start_endpoint(hw, bch->nr - 1);
222 			ret = hfcsusb_setup_bch(bch, ch->protocol);
223 		} else
224 			ret = 0;
225 		if (!ret)
226 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
227 				    0, NULL, GFP_KERNEL);
228 		break;
229 	case PH_DEACTIVATE_REQ:
230 		deactivate_bchannel(bch);
231 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
232 			    0, NULL, GFP_KERNEL);
233 		ret = 0;
234 		break;
235 	}
236 	if (!ret)
237 		dev_kfree_skb(skb);
238 	return ret;
239 }
240 
241 /*
242  * send full D/B channel status information
243  * as MPH_INFORMATION_IND
244  */
245 static int
hfcsusb_ph_info(struct hfcsusb * hw)246 hfcsusb_ph_info(struct hfcsusb *hw)
247 {
248 	struct ph_info *phi;
249 	struct dchannel *dch = &hw->dch;
250 	int i;
251 
252 	phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
253 	if (!phi)
254 		return -ENOMEM;
255 
256 	phi->dch.ch.protocol = hw->protocol;
257 	phi->dch.ch.Flags = dch->Flags;
258 	phi->dch.state = dch->state;
259 	phi->dch.num_bch = dch->dev.nrbchan;
260 	for (i = 0; i < dch->dev.nrbchan; i++) {
261 		phi->bch[i].protocol = hw->bch[i].ch.protocol;
262 		phi->bch[i].Flags = hw->bch[i].Flags;
263 	}
264 	_queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
265 		    struct_size(phi, bch, dch->dev.nrbchan), phi, GFP_ATOMIC);
266 	kfree(phi);
267 
268 	return 0;
269 }
270 
271 /*
272  * Layer2 -> Layer 1 Dchannel data
273  */
274 static int
hfcusb_l2l1D(struct mISDNchannel * ch,struct sk_buff * skb)275 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
276 {
277 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
278 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
279 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
280 	struct hfcsusb		*hw = dch->hw;
281 	int			ret = -EINVAL;
282 	u_long			flags;
283 
284 	switch (hh->prim) {
285 	case PH_DATA_REQ:
286 		if (debug & DBG_HFC_CALL_TRACE)
287 			printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
288 			       hw->name, __func__);
289 
290 		spin_lock_irqsave(&hw->lock, flags);
291 		ret = dchannel_senddata(dch, skb);
292 		spin_unlock_irqrestore(&hw->lock, flags);
293 		if (ret > 0) {
294 			ret = 0;
295 			queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
296 		}
297 		break;
298 
299 	case PH_ACTIVATE_REQ:
300 		if (debug & DBG_HFC_CALL_TRACE)
301 			printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
302 			       hw->name, __func__,
303 			       (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
304 
305 		if (hw->protocol == ISDN_P_NT_S0) {
306 			ret = 0;
307 			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
308 				_queue_data(&dch->dev.D,
309 					    PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
310 					    NULL, GFP_ATOMIC);
311 			} else {
312 				hfcsusb_ph_command(hw,
313 						   HFC_L1_ACTIVATE_NT);
314 				test_and_set_bit(FLG_L2_ACTIVATED,
315 						 &dch->Flags);
316 			}
317 		} else {
318 			hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
319 			ret = l1_event(dch->l1, hh->prim);
320 		}
321 		break;
322 
323 	case PH_DEACTIVATE_REQ:
324 		if (debug & DBG_HFC_CALL_TRACE)
325 			printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
326 			       hw->name, __func__);
327 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
328 
329 		if (hw->protocol == ISDN_P_NT_S0) {
330 			struct sk_buff_head free_queue;
331 
332 			__skb_queue_head_init(&free_queue);
333 			hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
334 			spin_lock_irqsave(&hw->lock, flags);
335 			skb_queue_splice_init(&dch->squeue, &free_queue);
336 			if (dch->tx_skb) {
337 				__skb_queue_tail(&free_queue, dch->tx_skb);
338 				dch->tx_skb = NULL;
339 			}
340 			dch->tx_idx = 0;
341 			if (dch->rx_skb) {
342 				__skb_queue_tail(&free_queue, dch->rx_skb);
343 				dch->rx_skb = NULL;
344 			}
345 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
346 			spin_unlock_irqrestore(&hw->lock, flags);
347 			__skb_queue_purge(&free_queue);
348 #ifdef FIXME
349 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
350 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
351 #endif
352 			ret = 0;
353 		} else
354 			ret = l1_event(dch->l1, hh->prim);
355 		break;
356 	case MPH_INFORMATION_REQ:
357 		ret = hfcsusb_ph_info(hw);
358 		break;
359 	}
360 
361 	return ret;
362 }
363 
364 /*
365  * Layer 1 callback function
366  */
367 static int
hfc_l1callback(struct dchannel * dch,u_int cmd)368 hfc_l1callback(struct dchannel *dch, u_int cmd)
369 {
370 	struct hfcsusb *hw = dch->hw;
371 
372 	if (debug & DBG_HFC_CALL_TRACE)
373 		printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
374 		       hw->name, __func__, cmd);
375 
376 	switch (cmd) {
377 	case INFO3_P8:
378 	case INFO3_P10:
379 	case HW_RESET_REQ:
380 	case HW_POWERUP_REQ:
381 		break;
382 
383 	case HW_DEACT_REQ:
384 		skb_queue_purge(&dch->squeue);
385 		if (dch->tx_skb) {
386 			dev_kfree_skb(dch->tx_skb);
387 			dch->tx_skb = NULL;
388 		}
389 		dch->tx_idx = 0;
390 		if (dch->rx_skb) {
391 			dev_kfree_skb(dch->rx_skb);
392 			dch->rx_skb = NULL;
393 		}
394 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
395 		break;
396 	case PH_ACTIVATE_IND:
397 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
398 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
399 			    GFP_ATOMIC);
400 		break;
401 	case PH_DEACTIVATE_IND:
402 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
403 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
404 			    GFP_ATOMIC);
405 		break;
406 	default:
407 		if (dch->debug & DEBUG_HW)
408 			printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
409 			       hw->name, __func__, cmd);
410 		return -1;
411 	}
412 	return hfcsusb_ph_info(hw);
413 }
414 
415 static int
open_dchannel(struct hfcsusb * hw,struct mISDNchannel * ch,struct channel_req * rq)416 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
417 	      struct channel_req *rq)
418 {
419 	int err = 0;
420 
421 	if (debug & DEBUG_HW_OPEN)
422 		printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
423 		       hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
424 		       __builtin_return_address(0));
425 	if (rq->protocol == ISDN_P_NONE)
426 		return -EINVAL;
427 
428 	test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
429 	test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
430 	hfcsusb_start_endpoint(hw, HFC_CHAN_D);
431 
432 	/* E-Channel logging */
433 	if (rq->adr.channel == 1) {
434 		if (hw->fifos[HFCUSB_PCM_RX].pipe) {
435 			hfcsusb_start_endpoint(hw, HFC_CHAN_E);
436 			set_bit(FLG_ACTIVE, &hw->ech.Flags);
437 			_queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
438 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
439 		} else
440 			return -EINVAL;
441 	}
442 
443 	if (!hw->initdone) {
444 		hw->protocol = rq->protocol;
445 		if (rq->protocol == ISDN_P_TE_S0) {
446 			err = create_l1(&hw->dch, hfc_l1callback);
447 			if (err)
448 				return err;
449 		}
450 		setPortMode(hw);
451 		ch->protocol = rq->protocol;
452 		hw->initdone = 1;
453 	} else {
454 		if (rq->protocol != ch->protocol)
455 			return -EPROTONOSUPPORT;
456 	}
457 
458 	if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
459 	    ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
460 		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
461 			    0, NULL, GFP_KERNEL);
462 	rq->ch = ch;
463 	if (!try_module_get(THIS_MODULE))
464 		printk(KERN_WARNING "%s: %s: cannot get module\n",
465 		       hw->name, __func__);
466 	return 0;
467 }
468 
469 static int
open_bchannel(struct hfcsusb * hw,struct channel_req * rq)470 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
471 {
472 	struct bchannel		*bch;
473 
474 	if (rq->adr.channel == 0 || rq->adr.channel > 2)
475 		return -EINVAL;
476 	if (rq->protocol == ISDN_P_NONE)
477 		return -EINVAL;
478 
479 	if (debug & DBG_HFC_CALL_TRACE)
480 		printk(KERN_DEBUG "%s: %s B%i\n",
481 		       hw->name, __func__, rq->adr.channel);
482 
483 	bch = &hw->bch[rq->adr.channel - 1];
484 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
485 		return -EBUSY; /* b-channel can be only open once */
486 	bch->ch.protocol = rq->protocol;
487 	rq->ch = &bch->ch;
488 
489 	if (!try_module_get(THIS_MODULE))
490 		printk(KERN_WARNING "%s: %s:cannot get module\n",
491 		       hw->name, __func__);
492 	return 0;
493 }
494 
495 static int
channel_ctrl(struct hfcsusb * hw,struct mISDN_ctrl_req * cq)496 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
497 {
498 	int ret = 0;
499 
500 	if (debug & DBG_HFC_CALL_TRACE)
501 		printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
502 		       hw->name, __func__, (cq->op), (cq->channel));
503 
504 	switch (cq->op) {
505 	case MISDN_CTRL_GETOP:
506 		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
507 			MISDN_CTRL_DISCONNECT;
508 		break;
509 	default:
510 		printk(KERN_WARNING "%s: %s: unknown Op %x\n",
511 		       hw->name, __func__, cq->op);
512 		ret = -EINVAL;
513 		break;
514 	}
515 	return ret;
516 }
517 
518 /*
519  * device control function
520  */
521 static int
hfc_dctrl(struct mISDNchannel * ch,u_int cmd,void * arg)522 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
523 {
524 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
525 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
526 	struct hfcsusb		*hw = dch->hw;
527 	struct channel_req	*rq;
528 	int			err = 0;
529 
530 	if (dch->debug & DEBUG_HW)
531 		printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
532 		       hw->name, __func__, cmd, arg);
533 	switch (cmd) {
534 	case OPEN_CHANNEL:
535 		rq = arg;
536 		if ((rq->protocol == ISDN_P_TE_S0) ||
537 		    (rq->protocol == ISDN_P_NT_S0))
538 			err = open_dchannel(hw, ch, rq);
539 		else
540 			err = open_bchannel(hw, rq);
541 		if (!err)
542 			hw->open++;
543 		break;
544 	case CLOSE_CHANNEL:
545 		hw->open--;
546 		if (debug & DEBUG_HW_OPEN)
547 			printk(KERN_DEBUG
548 			       "%s: %s: dev(%d) close from %p (open %d)\n",
549 			       hw->name, __func__, hw->dch.dev.id,
550 			       __builtin_return_address(0), hw->open);
551 		if (!hw->open) {
552 			hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
553 			if (hw->fifos[HFCUSB_PCM_RX].pipe)
554 				hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
555 			handle_led(hw, LED_POWER_ON);
556 		}
557 		module_put(THIS_MODULE);
558 		break;
559 	case CONTROL_CHANNEL:
560 		err = channel_ctrl(hw, arg);
561 		break;
562 	default:
563 		if (dch->debug & DEBUG_HW)
564 			printk(KERN_DEBUG "%s: %s: unknown command %x\n",
565 			       hw->name, __func__, cmd);
566 		return -EINVAL;
567 	}
568 	return err;
569 }
570 
571 /*
572  * S0 TE state change event handler
573  */
574 static void
ph_state_te(struct dchannel * dch)575 ph_state_te(struct dchannel *dch)
576 {
577 	struct hfcsusb *hw = dch->hw;
578 
579 	if (debug & DEBUG_HW) {
580 		if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
581 			printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
582 			       HFC_TE_LAYER1_STATES[dch->state]);
583 		else
584 			printk(KERN_DEBUG "%s: %s: TE F%d\n",
585 			       hw->name, __func__, dch->state);
586 	}
587 
588 	switch (dch->state) {
589 	case 0:
590 		l1_event(dch->l1, HW_RESET_IND);
591 		break;
592 	case 3:
593 		l1_event(dch->l1, HW_DEACT_IND);
594 		break;
595 	case 5:
596 	case 8:
597 		l1_event(dch->l1, ANYSIGNAL);
598 		break;
599 	case 6:
600 		l1_event(dch->l1, INFO2);
601 		break;
602 	case 7:
603 		l1_event(dch->l1, INFO4_P8);
604 		break;
605 	}
606 	if (dch->state == 7)
607 		handle_led(hw, LED_S0_ON);
608 	else
609 		handle_led(hw, LED_S0_OFF);
610 }
611 
612 /*
613  * S0 NT state change event handler
614  */
615 static void
ph_state_nt(struct dchannel * dch)616 ph_state_nt(struct dchannel *dch)
617 {
618 	struct hfcsusb *hw = dch->hw;
619 
620 	if (debug & DEBUG_HW) {
621 		if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
622 			printk(KERN_DEBUG "%s: %s: %s\n",
623 			       hw->name, __func__,
624 			       HFC_NT_LAYER1_STATES[dch->state]);
625 
626 		else
627 			printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
628 			       hw->name, __func__, dch->state);
629 	}
630 
631 	switch (dch->state) {
632 	case (1):
633 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
634 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
635 		hw->nt_timer = 0;
636 		hw->timers &= ~NT_ACTIVATION_TIMER;
637 		handle_led(hw, LED_S0_OFF);
638 		break;
639 
640 	case (2):
641 		if (hw->nt_timer < 0) {
642 			hw->nt_timer = 0;
643 			hw->timers &= ~NT_ACTIVATION_TIMER;
644 			hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
645 		} else {
646 			hw->timers |= NT_ACTIVATION_TIMER;
647 			hw->nt_timer = NT_T1_COUNT;
648 			/* allow G2 -> G3 transition */
649 			write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
650 		}
651 		break;
652 	case (3):
653 		hw->nt_timer = 0;
654 		hw->timers &= ~NT_ACTIVATION_TIMER;
655 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
656 		_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
657 			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
658 		handle_led(hw, LED_S0_ON);
659 		break;
660 	case (4):
661 		hw->nt_timer = 0;
662 		hw->timers &= ~NT_ACTIVATION_TIMER;
663 		break;
664 	default:
665 		break;
666 	}
667 	hfcsusb_ph_info(hw);
668 }
669 
670 static void
ph_state(struct dchannel * dch)671 ph_state(struct dchannel *dch)
672 {
673 	struct hfcsusb *hw = dch->hw;
674 
675 	if (hw->protocol == ISDN_P_NT_S0)
676 		ph_state_nt(dch);
677 	else if (hw->protocol == ISDN_P_TE_S0)
678 		ph_state_te(dch);
679 }
680 
681 /*
682  * disable/enable BChannel for desired protocol
683  */
684 static int
hfcsusb_setup_bch(struct bchannel * bch,int protocol)685 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
686 {
687 	struct hfcsusb *hw = bch->hw;
688 	__u8 conhdlc, sctrl, sctrl_r;
689 
690 	if (debug & DEBUG_HW)
691 		printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
692 		       hw->name, __func__, bch->state, protocol,
693 		       bch->nr);
694 
695 	/* setup val for CON_HDLC */
696 	conhdlc = 0;
697 	if (protocol > ISDN_P_NONE)
698 		conhdlc = 8;	/* enable FIFO */
699 
700 	switch (protocol) {
701 	case (-1):	/* used for init */
702 		bch->state = -1;
703 		fallthrough;
704 	case (ISDN_P_NONE):
705 		if (bch->state == ISDN_P_NONE)
706 			return 0; /* already in idle state */
707 		bch->state = ISDN_P_NONE;
708 		clear_bit(FLG_HDLC, &bch->Flags);
709 		clear_bit(FLG_TRANSPARENT, &bch->Flags);
710 		break;
711 	case (ISDN_P_B_RAW):
712 		conhdlc |= 2;
713 		bch->state = protocol;
714 		set_bit(FLG_TRANSPARENT, &bch->Flags);
715 		break;
716 	case (ISDN_P_B_HDLC):
717 		bch->state = protocol;
718 		set_bit(FLG_HDLC, &bch->Flags);
719 		break;
720 	default:
721 		if (debug & DEBUG_HW)
722 			printk(KERN_DEBUG "%s: %s: prot not known %x\n",
723 			       hw->name, __func__, protocol);
724 		return -ENOPROTOOPT;
725 	}
726 
727 	if (protocol >= ISDN_P_NONE) {
728 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
729 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
730 		write_reg(hw, HFCUSB_INC_RES_F, 2);
731 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
732 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
733 		write_reg(hw, HFCUSB_INC_RES_F, 2);
734 
735 		sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
736 		sctrl_r = 0x0;
737 		if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
738 			sctrl |= 1;
739 			sctrl_r |= 1;
740 		}
741 		if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
742 			sctrl |= 2;
743 			sctrl_r |= 2;
744 		}
745 		write_reg(hw, HFCUSB_SCTRL, sctrl);
746 		write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
747 
748 		if (protocol > ISDN_P_NONE)
749 			handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
750 		else
751 			handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
752 				   LED_B2_OFF);
753 	}
754 	return hfcsusb_ph_info(hw);
755 }
756 
757 static void
hfcsusb_ph_command(struct hfcsusb * hw,u_char command)758 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
759 {
760 	if (debug & DEBUG_HW)
761 		printk(KERN_DEBUG "%s: %s: %x\n",
762 		       hw->name, __func__, command);
763 
764 	switch (command) {
765 	case HFC_L1_ACTIVATE_TE:
766 		/* force sending sending INFO1 */
767 		write_reg(hw, HFCUSB_STATES, 0x14);
768 		/* start l1 activation */
769 		write_reg(hw, HFCUSB_STATES, 0x04);
770 		break;
771 
772 	case HFC_L1_FORCE_DEACTIVATE_TE:
773 		write_reg(hw, HFCUSB_STATES, 0x10);
774 		write_reg(hw, HFCUSB_STATES, 0x03);
775 		break;
776 
777 	case HFC_L1_ACTIVATE_NT:
778 		if (hw->dch.state == 3)
779 			_queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
780 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
781 		else
782 			write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
783 				  HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
784 		break;
785 
786 	case HFC_L1_DEACTIVATE_NT:
787 		write_reg(hw, HFCUSB_STATES,
788 			  HFCUSB_DO_ACTION);
789 		break;
790 	}
791 }
792 
793 /*
794  * Layer 1 B-channel hardware access
795  */
796 static int
channel_bctrl(struct bchannel * bch,struct mISDN_ctrl_req * cq)797 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
798 {
799 	return mISDN_ctrl_bchannel(bch, cq);
800 }
801 
802 /* collect data from incoming interrupt or isochron USB data */
803 static void
hfcsusb_rx_frame(struct usb_fifo * fifo,__u8 * data,unsigned int len,int finish)804 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
805 		 int finish)
806 {
807 	struct hfcsusb	*hw = fifo->hw;
808 	struct sk_buff	*rx_skb = NULL;
809 	int		maxlen = 0;
810 	int		fifon = fifo->fifonum;
811 	int		i;
812 	int		hdlc = 0;
813 	unsigned long	flags;
814 
815 	if (debug & DBG_HFC_CALL_TRACE)
816 		printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
817 		       "dch(%p) bch(%p) ech(%p)\n",
818 		       hw->name, __func__, fifon, len,
819 		       fifo->dch, fifo->bch, fifo->ech);
820 
821 	if (!len)
822 		return;
823 
824 	if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
825 		printk(KERN_DEBUG "%s: %s: undefined channel\n",
826 		       hw->name, __func__);
827 		return;
828 	}
829 
830 	spin_lock_irqsave(&hw->lock, flags);
831 	if (fifo->dch) {
832 		rx_skb = fifo->dch->rx_skb;
833 		maxlen = fifo->dch->maxlen;
834 		hdlc = 1;
835 	}
836 	if (fifo->bch) {
837 		if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
838 			fifo->bch->dropcnt += len;
839 			spin_unlock_irqrestore(&hw->lock, flags);
840 			return;
841 		}
842 		maxlen = bchannel_get_rxbuf(fifo->bch, len);
843 		rx_skb = fifo->bch->rx_skb;
844 		if (maxlen < 0) {
845 			if (rx_skb)
846 				skb_trim(rx_skb, 0);
847 			pr_warn("%s.B%d: No bufferspace for %d bytes\n",
848 				hw->name, fifo->bch->nr, len);
849 			spin_unlock_irqrestore(&hw->lock, flags);
850 			return;
851 		}
852 		maxlen = fifo->bch->maxlen;
853 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
854 	}
855 	if (fifo->ech) {
856 		rx_skb = fifo->ech->rx_skb;
857 		maxlen = fifo->ech->maxlen;
858 		hdlc = 1;
859 	}
860 
861 	if (fifo->dch || fifo->ech) {
862 		if (!rx_skb) {
863 			rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
864 			if (rx_skb) {
865 				if (fifo->dch)
866 					fifo->dch->rx_skb = rx_skb;
867 				if (fifo->ech)
868 					fifo->ech->rx_skb = rx_skb;
869 				skb_trim(rx_skb, 0);
870 			} else {
871 				printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
872 				       hw->name, __func__);
873 				spin_unlock_irqrestore(&hw->lock, flags);
874 				return;
875 			}
876 		}
877 		/* D/E-Channel SKB range check */
878 		if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
879 			printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
880 			       "for fifo(%d) HFCUSB_D_RX\n",
881 			       hw->name, __func__, fifon);
882 			skb_trim(rx_skb, 0);
883 			spin_unlock_irqrestore(&hw->lock, flags);
884 			return;
885 		}
886 	}
887 
888 	skb_put_data(rx_skb, data, len);
889 
890 	if (hdlc) {
891 		/* we have a complete hdlc packet */
892 		if (finish) {
893 			if ((rx_skb->len > 3) &&
894 			    (!(rx_skb->data[rx_skb->len - 1]))) {
895 				if (debug & DBG_HFC_FIFO_VERBOSE) {
896 					printk(KERN_DEBUG "%s: %s: fifon(%i)"
897 					       " new RX len(%i): ",
898 					       hw->name, __func__, fifon,
899 					       rx_skb->len);
900 					i = 0;
901 					while (i < rx_skb->len)
902 						printk("%02x ",
903 						       rx_skb->data[i++]);
904 					printk("\n");
905 				}
906 
907 				/* remove CRC & status */
908 				skb_trim(rx_skb, rx_skb->len - 3);
909 
910 				if (fifo->dch)
911 					recv_Dchannel(fifo->dch);
912 				if (fifo->bch)
913 					recv_Bchannel(fifo->bch, MISDN_ID_ANY,
914 						      0);
915 				if (fifo->ech)
916 					recv_Echannel(fifo->ech,
917 						      &hw->dch);
918 			} else {
919 				if (debug & DBG_HFC_FIFO_VERBOSE) {
920 					printk(KERN_DEBUG
921 					       "%s: CRC or minlen ERROR fifon(%i) "
922 					       "RX len(%i): ",
923 					       hw->name, fifon, rx_skb->len);
924 					i = 0;
925 					while (i < rx_skb->len)
926 						printk("%02x ",
927 						       rx_skb->data[i++]);
928 					printk("\n");
929 				}
930 				skb_trim(rx_skb, 0);
931 			}
932 		}
933 	} else {
934 		/* deliver transparent data to layer2 */
935 		recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
936 	}
937 	spin_unlock_irqrestore(&hw->lock, flags);
938 }
939 
940 static void
fill_isoc_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * buf,int num_packets,int packet_size,int interval,usb_complete_t complete,void * context)941 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
942 	      void *buf, int num_packets, int packet_size, int interval,
943 	      usb_complete_t complete, void *context)
944 {
945 	int k;
946 
947 	usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
948 			  complete, context);
949 
950 	urb->number_of_packets = num_packets;
951 	urb->transfer_flags = URB_ISO_ASAP;
952 	urb->actual_length = 0;
953 	urb->interval = interval;
954 
955 	for (k = 0; k < num_packets; k++) {
956 		urb->iso_frame_desc[k].offset = packet_size * k;
957 		urb->iso_frame_desc[k].length = packet_size;
958 		urb->iso_frame_desc[k].actual_length = 0;
959 	}
960 }
961 
962 /* receive completion routine for all ISO tx fifos   */
963 static void
rx_iso_complete(struct urb * urb)964 rx_iso_complete(struct urb *urb)
965 {
966 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
967 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
968 	struct hfcsusb *hw = fifo->hw;
969 	int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
970 		status, iso_status, i;
971 	__u8 *buf;
972 	static __u8 eof[8];
973 	__u8 s0_state;
974 	unsigned long flags;
975 
976 	fifon = fifo->fifonum;
977 	status = urb->status;
978 
979 	spin_lock_irqsave(&hw->lock, flags);
980 	if (fifo->stop_gracefull) {
981 		fifo->stop_gracefull = 0;
982 		fifo->active = 0;
983 		spin_unlock_irqrestore(&hw->lock, flags);
984 		return;
985 	}
986 	spin_unlock_irqrestore(&hw->lock, flags);
987 
988 	/*
989 	 * ISO transfer only partially completed,
990 	 * look at individual frame status for details
991 	 */
992 	if (status == -EXDEV) {
993 		if (debug & DEBUG_HW)
994 			printk(KERN_DEBUG "%s: %s: with -EXDEV "
995 			       "urb->status %d, fifonum %d\n",
996 			       hw->name, __func__,  status, fifon);
997 
998 		/* clear status, so go on with ISO transfers */
999 		status = 0;
1000 	}
1001 
1002 	s0_state = 0;
1003 	if (fifo->active && !status) {
1004 		num_isoc_packets = iso_packets[fifon];
1005 		maxlen = fifo->usb_packet_maxlen;
1006 
1007 		for (k = 0; k < num_isoc_packets; ++k) {
1008 			len = urb->iso_frame_desc[k].actual_length;
1009 			offset = urb->iso_frame_desc[k].offset;
1010 			buf = context_iso_urb->buffer + offset;
1011 			iso_status = urb->iso_frame_desc[k].status;
1012 
1013 			if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1014 				printk(KERN_DEBUG "%s: %s: "
1015 				       "ISO packet %i, status: %i\n",
1016 				       hw->name, __func__, k, iso_status);
1017 			}
1018 
1019 			/* USB data log for every D ISO in */
1020 			if ((fifon == HFCUSB_D_RX) &&
1021 			    (debug & DBG_HFC_USB_VERBOSE)) {
1022 				printk(KERN_DEBUG
1023 				       "%s: %s: %d (%d/%d) len(%d) ",
1024 				       hw->name, __func__, urb->start_frame,
1025 				       k, num_isoc_packets - 1,
1026 				       len);
1027 				for (i = 0; i < len; i++)
1028 					printk("%x ", buf[i]);
1029 				printk("\n");
1030 			}
1031 
1032 			if (!iso_status) {
1033 				if (fifo->last_urblen != maxlen) {
1034 					/*
1035 					 * save fifo fill-level threshold bits
1036 					 * to use them later in TX ISO URB
1037 					 * completions
1038 					 */
1039 					hw->threshold_mask = buf[1];
1040 
1041 					if (fifon == HFCUSB_D_RX)
1042 						s0_state = (buf[0] >> 4);
1043 
1044 					eof[fifon] = buf[0] & 1;
1045 					if (len > 2)
1046 						hfcsusb_rx_frame(fifo, buf + 2,
1047 								 len - 2, (len < maxlen)
1048 								 ? eof[fifon] : 0);
1049 				} else
1050 					hfcsusb_rx_frame(fifo, buf, len,
1051 							 (len < maxlen) ?
1052 							 eof[fifon] : 0);
1053 				fifo->last_urblen = len;
1054 			}
1055 		}
1056 
1057 		/* signal S0 layer1 state change */
1058 		if ((s0_state) && (hw->initdone) &&
1059 		    (s0_state != hw->dch.state)) {
1060 			hw->dch.state = s0_state;
1061 			schedule_event(&hw->dch, FLG_PHCHANGE);
1062 		}
1063 
1064 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1065 			      context_iso_urb->buffer, num_isoc_packets,
1066 			      fifo->usb_packet_maxlen, fifo->intervall,
1067 			      (usb_complete_t)rx_iso_complete, urb->context);
1068 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1069 		if (errcode < 0) {
1070 			if (debug & DEBUG_HW)
1071 				printk(KERN_DEBUG "%s: %s: error submitting "
1072 				       "ISO URB: %d\n",
1073 				       hw->name, __func__, errcode);
1074 		}
1075 	} else {
1076 		if (status && (debug & DBG_HFC_URB_INFO))
1077 			printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1078 			       "urb->status %d, fifonum %d\n",
1079 			       hw->name, __func__, status, fifon);
1080 	}
1081 }
1082 
1083 /* receive completion routine for all interrupt rx fifos */
1084 static void
rx_int_complete(struct urb * urb)1085 rx_int_complete(struct urb *urb)
1086 {
1087 	int len, status, i;
1088 	__u8 *buf, maxlen, fifon;
1089 	struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1090 	struct hfcsusb *hw = fifo->hw;
1091 	static __u8 eof[8];
1092 	unsigned long flags;
1093 
1094 	spin_lock_irqsave(&hw->lock, flags);
1095 	if (fifo->stop_gracefull) {
1096 		fifo->stop_gracefull = 0;
1097 		fifo->active = 0;
1098 		spin_unlock_irqrestore(&hw->lock, flags);
1099 		return;
1100 	}
1101 	spin_unlock_irqrestore(&hw->lock, flags);
1102 
1103 	fifon = fifo->fifonum;
1104 	if ((!fifo->active) || (urb->status)) {
1105 		if (debug & DBG_HFC_URB_ERROR)
1106 			printk(KERN_DEBUG
1107 			       "%s: %s: RX-Fifo %i is going down (%i)\n",
1108 			       hw->name, __func__, fifon, urb->status);
1109 
1110 		fifo->urb->interval = 0; /* cancel automatic rescheduling */
1111 		return;
1112 	}
1113 	len = urb->actual_length;
1114 	buf = fifo->buffer;
1115 	maxlen = fifo->usb_packet_maxlen;
1116 
1117 	/* USB data log for every D INT in */
1118 	if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1119 		printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1120 		       hw->name, __func__, len);
1121 		for (i = 0; i < len; i++)
1122 			printk("%02x ", buf[i]);
1123 		printk("\n");
1124 	}
1125 
1126 	if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1127 		/* the threshold mask is in the 2nd status byte */
1128 		hw->threshold_mask = buf[1];
1129 
1130 		/* signal S0 layer1 state change */
1131 		if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1132 			hw->dch.state = (buf[0] >> 4);
1133 			schedule_event(&hw->dch, FLG_PHCHANGE);
1134 		}
1135 
1136 		eof[fifon] = buf[0] & 1;
1137 		/* if we have more than the 2 status bytes -> collect data */
1138 		if (len > 2)
1139 			hfcsusb_rx_frame(fifo, buf + 2,
1140 					 urb->actual_length - 2,
1141 					 (len < maxlen) ? eof[fifon] : 0);
1142 	} else {
1143 		hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1144 				 (len < maxlen) ? eof[fifon] : 0);
1145 	}
1146 	fifo->last_urblen = urb->actual_length;
1147 
1148 	status = usb_submit_urb(urb, GFP_ATOMIC);
1149 	if (status) {
1150 		if (debug & DEBUG_HW)
1151 			printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1152 			       hw->name, __func__);
1153 	}
1154 }
1155 
1156 /* transmit completion routine for all ISO tx fifos */
1157 static void
tx_iso_complete(struct urb * urb)1158 tx_iso_complete(struct urb *urb)
1159 {
1160 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1161 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1162 	struct hfcsusb *hw = fifo->hw;
1163 	struct sk_buff *tx_skb;
1164 	int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1165 		errcode, hdlc, i;
1166 	int *tx_idx;
1167 	int frame_complete, fifon, status, fillempty = 0;
1168 	__u8 threshbit, *p;
1169 	unsigned long flags;
1170 
1171 	spin_lock_irqsave(&hw->lock, flags);
1172 	if (fifo->stop_gracefull) {
1173 		fifo->stop_gracefull = 0;
1174 		fifo->active = 0;
1175 		spin_unlock_irqrestore(&hw->lock, flags);
1176 		return;
1177 	}
1178 
1179 	if (fifo->dch) {
1180 		tx_skb = fifo->dch->tx_skb;
1181 		tx_idx = &fifo->dch->tx_idx;
1182 		hdlc = 1;
1183 	} else if (fifo->bch) {
1184 		tx_skb = fifo->bch->tx_skb;
1185 		tx_idx = &fifo->bch->tx_idx;
1186 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1187 		if (!tx_skb && !hdlc &&
1188 		    test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1189 			fillempty = 1;
1190 	} else {
1191 		printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1192 		       hw->name, __func__);
1193 		spin_unlock_irqrestore(&hw->lock, flags);
1194 		return;
1195 	}
1196 
1197 	fifon = fifo->fifonum;
1198 	status = urb->status;
1199 
1200 	tx_offset = 0;
1201 
1202 	/*
1203 	 * ISO transfer only partially completed,
1204 	 * look at individual frame status for details
1205 	 */
1206 	if (status == -EXDEV) {
1207 		if (debug & DBG_HFC_URB_ERROR)
1208 			printk(KERN_DEBUG "%s: %s: "
1209 			       "-EXDEV (%i) fifon (%d)\n",
1210 			       hw->name, __func__, status, fifon);
1211 
1212 		/* clear status, so go on with ISO transfers */
1213 		status = 0;
1214 	}
1215 
1216 	if (fifo->active && !status) {
1217 		/* is FifoFull-threshold set for our channel? */
1218 		threshbit = (hw->threshold_mask & (1 << fifon));
1219 		num_isoc_packets = iso_packets[fifon];
1220 
1221 		/* predict dataflow to avoid fifo overflow */
1222 		if (fifon >= HFCUSB_D_TX)
1223 			sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1224 		else
1225 			sink = (threshbit) ? SINK_MIN : SINK_MAX;
1226 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1227 			      context_iso_urb->buffer, num_isoc_packets,
1228 			      fifo->usb_packet_maxlen, fifo->intervall,
1229 			      (usb_complete_t)tx_iso_complete, urb->context);
1230 		memset(context_iso_urb->buffer, 0,
1231 		       sizeof(context_iso_urb->buffer));
1232 		frame_complete = 0;
1233 
1234 		for (k = 0; k < num_isoc_packets; ++k) {
1235 			/* analyze tx success of previous ISO packets */
1236 			if (debug & DBG_HFC_URB_ERROR) {
1237 				errcode = urb->iso_frame_desc[k].status;
1238 				if (errcode) {
1239 					printk(KERN_DEBUG "%s: %s: "
1240 					       "ISO packet %i, status: %i\n",
1241 					       hw->name, __func__, k, errcode);
1242 				}
1243 			}
1244 
1245 			/* Generate next ISO Packets */
1246 			if (tx_skb)
1247 				remain = tx_skb->len - *tx_idx;
1248 			else if (fillempty)
1249 				remain = 15; /* > not complete */
1250 			else
1251 				remain = 0;
1252 
1253 			if (remain > 0) {
1254 				fifo->bit_line -= sink;
1255 				current_len = (0 - fifo->bit_line) / 8;
1256 				if (current_len > 14)
1257 					current_len = 14;
1258 				if (current_len < 0)
1259 					current_len = 0;
1260 				if (remain < current_len)
1261 					current_len = remain;
1262 
1263 				/* how much bit do we put on the line? */
1264 				fifo->bit_line += current_len * 8;
1265 
1266 				context_iso_urb->buffer[tx_offset] = 0;
1267 				if (current_len == remain) {
1268 					if (hdlc) {
1269 						/* signal frame completion */
1270 						context_iso_urb->
1271 							buffer[tx_offset] = 1;
1272 						/* add 2 byte flags and 16bit
1273 						 * CRC at end of ISDN frame */
1274 						fifo->bit_line += 32;
1275 					}
1276 					frame_complete = 1;
1277 				}
1278 
1279 				/* copy tx data to iso-urb buffer */
1280 				p = context_iso_urb->buffer + tx_offset + 1;
1281 				if (fillempty) {
1282 					memset(p, fifo->bch->fill[0],
1283 					       current_len);
1284 				} else {
1285 					memcpy(p, (tx_skb->data + *tx_idx),
1286 					       current_len);
1287 					*tx_idx += current_len;
1288 				}
1289 				urb->iso_frame_desc[k].offset = tx_offset;
1290 				urb->iso_frame_desc[k].length = current_len + 1;
1291 
1292 				/* USB data log for every D ISO out */
1293 				if ((fifon == HFCUSB_D_RX) && !fillempty &&
1294 				    (debug & DBG_HFC_USB_VERBOSE)) {
1295 					printk(KERN_DEBUG
1296 					       "%s: %s (%d/%d) offs(%d) len(%d) ",
1297 					       hw->name, __func__,
1298 					       k, num_isoc_packets - 1,
1299 					       urb->iso_frame_desc[k].offset,
1300 					       urb->iso_frame_desc[k].length);
1301 
1302 					for (i = urb->iso_frame_desc[k].offset;
1303 					     i < (urb->iso_frame_desc[k].offset
1304 						  + urb->iso_frame_desc[k].length);
1305 					     i++)
1306 						printk("%x ",
1307 						       context_iso_urb->buffer[i]);
1308 
1309 					printk(" skb->len(%i) tx-idx(%d)\n",
1310 					       tx_skb->len, *tx_idx);
1311 				}
1312 
1313 				tx_offset += (current_len + 1);
1314 			} else {
1315 				urb->iso_frame_desc[k].offset = tx_offset++;
1316 				urb->iso_frame_desc[k].length = 1;
1317 				/* we lower data margin every msec */
1318 				fifo->bit_line -= sink;
1319 				if (fifo->bit_line < BITLINE_INF)
1320 					fifo->bit_line = BITLINE_INF;
1321 			}
1322 
1323 			if (frame_complete) {
1324 				frame_complete = 0;
1325 
1326 				if (debug & DBG_HFC_FIFO_VERBOSE) {
1327 					printk(KERN_DEBUG  "%s: %s: "
1328 					       "fifon(%i) new TX len(%i): ",
1329 					       hw->name, __func__,
1330 					       fifon, tx_skb->len);
1331 					i = 0;
1332 					while (i < tx_skb->len)
1333 						printk("%02x ",
1334 						       tx_skb->data[i++]);
1335 					printk("\n");
1336 				}
1337 
1338 				dev_consume_skb_irq(tx_skb);
1339 				tx_skb = NULL;
1340 				if (fifo->dch && get_next_dframe(fifo->dch))
1341 					tx_skb = fifo->dch->tx_skb;
1342 				else if (fifo->bch &&
1343 					 get_next_bframe(fifo->bch))
1344 					tx_skb = fifo->bch->tx_skb;
1345 			}
1346 		}
1347 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1348 		if (errcode < 0) {
1349 			if (debug & DEBUG_HW)
1350 				printk(KERN_DEBUG
1351 				       "%s: %s: error submitting ISO URB: %d \n",
1352 				       hw->name, __func__, errcode);
1353 		}
1354 
1355 		/*
1356 		 * abuse DChannel tx iso completion to trigger NT mode state
1357 		 * changes tx_iso_complete is assumed to be called every
1358 		 * fifo->intervall (ms)
1359 		 */
1360 		if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1361 		    && (hw->timers & NT_ACTIVATION_TIMER)) {
1362 			if ((--hw->nt_timer) < 0)
1363 				schedule_event(&hw->dch, FLG_PHCHANGE);
1364 		}
1365 
1366 	} else {
1367 		if (status && (debug & DBG_HFC_URB_ERROR))
1368 			printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1369 			       "fifonum=%d\n",
1370 			       hw->name, __func__,
1371 			       symbolic(urb_errlist, status), status, fifon);
1372 	}
1373 	spin_unlock_irqrestore(&hw->lock, flags);
1374 }
1375 
1376 /*
1377  * allocs urbs and start isoc transfer with two pending urbs to avoid
1378  * gaps in the transfer chain
1379  */
1380 static int
start_isoc_chain(struct usb_fifo * fifo,int num_packets_per_urb,usb_complete_t complete,int packet_size)1381 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1382 		 usb_complete_t complete, int packet_size)
1383 {
1384 	struct hfcsusb *hw = fifo->hw;
1385 	int i, k, errcode;
1386 
1387 	if (debug)
1388 		printk(KERN_DEBUG "%s: %s: fifo %i\n",
1389 		       hw->name, __func__, fifo->fifonum);
1390 
1391 	/* allocate Memory for Iso out Urbs */
1392 	for (i = 0; i < 2; i++) {
1393 		if (!(fifo->iso[i].urb)) {
1394 			fifo->iso[i].urb =
1395 				usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1396 			if (!(fifo->iso[i].urb)) {
1397 				printk(KERN_DEBUG
1398 				       "%s: %s: alloc urb for fifo %i failed",
1399 				       hw->name, __func__, fifo->fifonum);
1400 				continue;
1401 			}
1402 			fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1403 			fifo->iso[i].indx = i;
1404 
1405 			/* Init the first iso */
1406 			if (ISO_BUFFER_SIZE >=
1407 			    (fifo->usb_packet_maxlen *
1408 			     num_packets_per_urb)) {
1409 				fill_isoc_urb(fifo->iso[i].urb,
1410 					      fifo->hw->dev, fifo->pipe,
1411 					      fifo->iso[i].buffer,
1412 					      num_packets_per_urb,
1413 					      fifo->usb_packet_maxlen,
1414 					      fifo->intervall, complete,
1415 					      &fifo->iso[i]);
1416 				memset(fifo->iso[i].buffer, 0,
1417 				       sizeof(fifo->iso[i].buffer));
1418 
1419 				for (k = 0; k < num_packets_per_urb; k++) {
1420 					fifo->iso[i].urb->
1421 						iso_frame_desc[k].offset =
1422 						k * packet_size;
1423 					fifo->iso[i].urb->
1424 						iso_frame_desc[k].length =
1425 						packet_size;
1426 				}
1427 			} else {
1428 				printk(KERN_DEBUG
1429 				       "%s: %s: ISO Buffer size to small!\n",
1430 				       hw->name, __func__);
1431 			}
1432 		}
1433 		fifo->bit_line = BITLINE_INF;
1434 
1435 		errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1436 		fifo->active = (errcode >= 0) ? 1 : 0;
1437 		fifo->stop_gracefull = 0;
1438 		if (errcode < 0) {
1439 			printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1440 			       hw->name, __func__,
1441 			       symbolic(urb_errlist, errcode), i);
1442 		}
1443 	}
1444 	return fifo->active;
1445 }
1446 
1447 static void
stop_iso_gracefull(struct usb_fifo * fifo)1448 stop_iso_gracefull(struct usb_fifo *fifo)
1449 {
1450 	struct hfcsusb *hw = fifo->hw;
1451 	int i, timeout;
1452 	u_long flags;
1453 
1454 	for (i = 0; i < 2; i++) {
1455 		spin_lock_irqsave(&hw->lock, flags);
1456 		if (debug)
1457 			printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1458 			       hw->name, __func__, fifo->fifonum, i);
1459 		fifo->stop_gracefull = 1;
1460 		spin_unlock_irqrestore(&hw->lock, flags);
1461 	}
1462 
1463 	for (i = 0; i < 2; i++) {
1464 		timeout = 3;
1465 		while (fifo->stop_gracefull && timeout--)
1466 			schedule_timeout_interruptible((HZ / 1000) * 16);
1467 		if (debug && fifo->stop_gracefull)
1468 			printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1469 			       hw->name, __func__, fifo->fifonum, i);
1470 	}
1471 }
1472 
1473 static void
stop_int_gracefull(struct usb_fifo * fifo)1474 stop_int_gracefull(struct usb_fifo *fifo)
1475 {
1476 	struct hfcsusb *hw = fifo->hw;
1477 	int timeout;
1478 	u_long flags;
1479 
1480 	spin_lock_irqsave(&hw->lock, flags);
1481 	if (debug)
1482 		printk(KERN_DEBUG "%s: %s for fifo %i\n",
1483 		       hw->name, __func__, fifo->fifonum);
1484 	fifo->stop_gracefull = 1;
1485 	spin_unlock_irqrestore(&hw->lock, flags);
1486 
1487 	timeout = 3;
1488 	while (fifo->stop_gracefull && timeout--)
1489 		schedule_timeout_interruptible((HZ / 1000) * 3);
1490 	if (debug && fifo->stop_gracefull)
1491 		printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1492 		       hw->name, __func__, fifo->fifonum);
1493 }
1494 
1495 /* start the interrupt transfer for the given fifo */
1496 static void
start_int_fifo(struct usb_fifo * fifo)1497 start_int_fifo(struct usb_fifo *fifo)
1498 {
1499 	struct hfcsusb *hw = fifo->hw;
1500 	int errcode;
1501 
1502 	if (debug)
1503 		printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1504 		       hw->name, __func__, fifo->fifonum);
1505 
1506 	if (!fifo->urb) {
1507 		fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1508 		if (!fifo->urb)
1509 			return;
1510 	}
1511 	usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1512 			 fifo->buffer, fifo->usb_packet_maxlen,
1513 			 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1514 	fifo->active = 1;
1515 	fifo->stop_gracefull = 0;
1516 	errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1517 	if (errcode) {
1518 		printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1519 		       hw->name, __func__, errcode);
1520 		fifo->active = 0;
1521 	}
1522 }
1523 
1524 static void
setPortMode(struct hfcsusb * hw)1525 setPortMode(struct hfcsusb *hw)
1526 {
1527 	if (debug & DEBUG_HW)
1528 		printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1529 		       (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1530 
1531 	if (hw->protocol == ISDN_P_TE_S0) {
1532 		write_reg(hw, HFCUSB_SCTRL, 0x40);
1533 		write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1534 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1535 		write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1536 		write_reg(hw, HFCUSB_STATES, 3);
1537 	} else {
1538 		write_reg(hw, HFCUSB_SCTRL, 0x44);
1539 		write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1540 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1541 		write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1542 		write_reg(hw, HFCUSB_STATES, 1);
1543 	}
1544 }
1545 
1546 static void
reset_hfcsusb(struct hfcsusb * hw)1547 reset_hfcsusb(struct hfcsusb *hw)
1548 {
1549 	struct usb_fifo *fifo;
1550 	int i;
1551 
1552 	if (debug & DEBUG_HW)
1553 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1554 
1555 	/* do Chip reset */
1556 	write_reg(hw, HFCUSB_CIRM, 8);
1557 
1558 	/* aux = output, reset off */
1559 	write_reg(hw, HFCUSB_CIRM, 0x10);
1560 
1561 	/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1562 	write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1563 		  ((hw->packet_size / 8) << 4));
1564 
1565 	/* set USB_SIZE_I to match the wMaxPacketSize for ISO transfers */
1566 	write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1567 
1568 	/* enable PCM/GCI master mode */
1569 	write_reg(hw, HFCUSB_MST_MODE1, 0);	/* set default values */
1570 	write_reg(hw, HFCUSB_MST_MODE0, 1);	/* enable master mode */
1571 
1572 	/* init the fifos */
1573 	write_reg(hw, HFCUSB_F_THRES,
1574 		  (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1575 
1576 	fifo = hw->fifos;
1577 	for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1578 		write_reg(hw, HFCUSB_FIFO, i);	/* select the desired fifo */
1579 		fifo[i].max_size =
1580 			(i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1581 		fifo[i].last_urblen = 0;
1582 
1583 		/* set 2 bit for D- & E-channel */
1584 		write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1585 
1586 		/* enable all fifos */
1587 		if (i == HFCUSB_D_TX)
1588 			write_reg(hw, HFCUSB_CON_HDLC,
1589 				  (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1590 		else
1591 			write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1592 		write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1593 	}
1594 
1595 	write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1596 	handle_led(hw, LED_POWER_ON);
1597 }
1598 
1599 /* start USB data pipes dependand on device's endpoint configuration */
1600 static void
hfcsusb_start_endpoint(struct hfcsusb * hw,int channel)1601 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1602 {
1603 	/* quick check if endpoint already running */
1604 	if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1605 		return;
1606 	if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1607 		return;
1608 	if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1609 		return;
1610 	if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1611 		return;
1612 
1613 	/* start rx endpoints using USB INT IN method */
1614 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1615 		start_int_fifo(hw->fifos + channel * 2 + 1);
1616 
1617 	/* start rx endpoints using USB ISO IN method */
1618 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1619 		switch (channel) {
1620 		case HFC_CHAN_D:
1621 			start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1622 					 ISOC_PACKETS_D,
1623 					 (usb_complete_t)rx_iso_complete,
1624 					 16);
1625 			break;
1626 		case HFC_CHAN_E:
1627 			start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1628 					 ISOC_PACKETS_D,
1629 					 (usb_complete_t)rx_iso_complete,
1630 					 16);
1631 			break;
1632 		case HFC_CHAN_B1:
1633 			start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1634 					 ISOC_PACKETS_B,
1635 					 (usb_complete_t)rx_iso_complete,
1636 					 16);
1637 			break;
1638 		case HFC_CHAN_B2:
1639 			start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1640 					 ISOC_PACKETS_B,
1641 					 (usb_complete_t)rx_iso_complete,
1642 					 16);
1643 			break;
1644 		}
1645 	}
1646 
1647 	/* start tx endpoints using USB ISO OUT method */
1648 	switch (channel) {
1649 	case HFC_CHAN_D:
1650 		start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1651 				 ISOC_PACKETS_B,
1652 				 (usb_complete_t)tx_iso_complete, 1);
1653 		break;
1654 	case HFC_CHAN_B1:
1655 		start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1656 				 ISOC_PACKETS_D,
1657 				 (usb_complete_t)tx_iso_complete, 1);
1658 		break;
1659 	case HFC_CHAN_B2:
1660 		start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1661 				 ISOC_PACKETS_B,
1662 				 (usb_complete_t)tx_iso_complete, 1);
1663 		break;
1664 	}
1665 }
1666 
1667 /* stop USB data pipes dependand on device's endpoint configuration */
1668 static void
hfcsusb_stop_endpoint(struct hfcsusb * hw,int channel)1669 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1670 {
1671 	/* quick check if endpoint currently running */
1672 	if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1673 		return;
1674 	if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1675 		return;
1676 	if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1677 		return;
1678 	if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1679 		return;
1680 
1681 	/* rx endpoints using USB INT IN method */
1682 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1683 		stop_int_gracefull(hw->fifos + channel * 2 + 1);
1684 
1685 	/* rx endpoints using USB ISO IN method */
1686 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1687 		stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1688 
1689 	/* tx endpoints using USB ISO OUT method */
1690 	if (channel != HFC_CHAN_E)
1691 		stop_iso_gracefull(hw->fifos + channel * 2);
1692 }
1693 
1694 
1695 /* Hardware Initialization */
1696 static int
setup_hfcsusb(struct hfcsusb * hw)1697 setup_hfcsusb(struct hfcsusb *hw)
1698 {
1699 	void *dmabuf = kmalloc(sizeof(u_char), GFP_KERNEL);
1700 	u_char b;
1701 	int ret;
1702 
1703 	if (debug & DBG_HFC_CALL_TRACE)
1704 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1705 
1706 	if (!dmabuf)
1707 		return -ENOMEM;
1708 
1709 	ret = read_reg_atomic(hw, HFCUSB_CHIP_ID, dmabuf);
1710 
1711 	memcpy(&b, dmabuf, sizeof(u_char));
1712 	kfree(dmabuf);
1713 
1714 	/* check the chip id */
1715 	if (ret != 1) {
1716 		printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1717 		       hw->name, __func__);
1718 		return 1;
1719 	}
1720 	if (b != HFCUSB_CHIPID) {
1721 		printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1722 		       hw->name, __func__, b);
1723 		return 1;
1724 	}
1725 
1726 	/* first set the needed config, interface and alternate */
1727 	(void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1728 
1729 	hw->led_state = 0;
1730 
1731 	/* init the background machinery for control requests */
1732 	hw->ctrl_read.bRequestType = 0xc0;
1733 	hw->ctrl_read.bRequest = 1;
1734 	hw->ctrl_read.wLength = cpu_to_le16(1);
1735 	hw->ctrl_write.bRequestType = 0x40;
1736 	hw->ctrl_write.bRequest = 0;
1737 	hw->ctrl_write.wLength = 0;
1738 	usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1739 			     (u_char *)&hw->ctrl_write, NULL, 0,
1740 			     (usb_complete_t)ctrl_complete, hw);
1741 
1742 	reset_hfcsusb(hw);
1743 	return 0;
1744 }
1745 
1746 static void
release_hw(struct hfcsusb * hw)1747 release_hw(struct hfcsusb *hw)
1748 {
1749 	if (debug & DBG_HFC_CALL_TRACE)
1750 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1751 
1752 	/*
1753 	 * stop all endpoints gracefully
1754 	 * TODO: mISDN_core should generate CLOSE_CHANNEL
1755 	 *       signals after calling mISDN_unregister_device()
1756 	 */
1757 	hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1758 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1759 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1760 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1761 		hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1762 	if (hw->protocol == ISDN_P_TE_S0)
1763 		l1_event(hw->dch.l1, CLOSE_CHANNEL);
1764 
1765 	mISDN_unregister_device(&hw->dch.dev);
1766 	mISDN_freebchannel(&hw->bch[1]);
1767 	mISDN_freebchannel(&hw->bch[0]);
1768 	mISDN_freedchannel(&hw->dch);
1769 
1770 	if (hw->ctrl_urb) {
1771 		usb_kill_urb(hw->ctrl_urb);
1772 		usb_free_urb(hw->ctrl_urb);
1773 		hw->ctrl_urb = NULL;
1774 	}
1775 
1776 	if (hw->intf)
1777 		usb_set_intfdata(hw->intf, NULL);
1778 	list_del(&hw->list);
1779 	kfree(hw);
1780 	hw = NULL;
1781 }
1782 
1783 static void
deactivate_bchannel(struct bchannel * bch)1784 deactivate_bchannel(struct bchannel *bch)
1785 {
1786 	struct hfcsusb *hw = bch->hw;
1787 	u_long flags;
1788 
1789 	if (bch->debug & DEBUG_HW)
1790 		printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1791 		       hw->name, __func__, bch->nr);
1792 
1793 	spin_lock_irqsave(&hw->lock, flags);
1794 	mISDN_clear_bchannel(bch);
1795 	spin_unlock_irqrestore(&hw->lock, flags);
1796 	hfcsusb_setup_bch(bch, ISDN_P_NONE);
1797 	hfcsusb_stop_endpoint(hw, bch->nr - 1);
1798 }
1799 
1800 /*
1801  * Layer 1 B-channel hardware access
1802  */
1803 static int
hfc_bctrl(struct mISDNchannel * ch,u_int cmd,void * arg)1804 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1805 {
1806 	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1807 	int		ret = -EINVAL;
1808 
1809 	if (bch->debug & DEBUG_HW)
1810 		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1811 
1812 	switch (cmd) {
1813 	case HW_TESTRX_RAW:
1814 	case HW_TESTRX_HDLC:
1815 	case HW_TESTRX_OFF:
1816 		ret = -EINVAL;
1817 		break;
1818 
1819 	case CLOSE_CHANNEL:
1820 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1821 		deactivate_bchannel(bch);
1822 		ch->protocol = ISDN_P_NONE;
1823 		ch->peer = NULL;
1824 		module_put(THIS_MODULE);
1825 		ret = 0;
1826 		break;
1827 	case CONTROL_CHANNEL:
1828 		ret = channel_bctrl(bch, arg);
1829 		break;
1830 	default:
1831 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1832 		       __func__, cmd);
1833 	}
1834 	return ret;
1835 }
1836 
1837 static int
setup_instance(struct hfcsusb * hw,struct device * parent)1838 setup_instance(struct hfcsusb *hw, struct device *parent)
1839 {
1840 	u_long	flags;
1841 	int	err, i;
1842 
1843 	if (debug & DBG_HFC_CALL_TRACE)
1844 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1845 
1846 	spin_lock_init(&hw->ctrl_lock);
1847 	spin_lock_init(&hw->lock);
1848 
1849 	mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1850 	hw->dch.debug = debug & 0xFFFF;
1851 	hw->dch.hw = hw;
1852 	hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1853 	hw->dch.dev.D.send = hfcusb_l2l1D;
1854 	hw->dch.dev.D.ctrl = hfc_dctrl;
1855 
1856 	/* enable E-Channel logging */
1857 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1858 		mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1859 
1860 	hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1861 		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1862 	hw->dch.dev.nrbchan = 2;
1863 	for (i = 0; i < 2; i++) {
1864 		hw->bch[i].nr = i + 1;
1865 		set_channelmap(i + 1, hw->dch.dev.channelmap);
1866 		hw->bch[i].debug = debug;
1867 		mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1868 		hw->bch[i].hw = hw;
1869 		hw->bch[i].ch.send = hfcusb_l2l1B;
1870 		hw->bch[i].ch.ctrl = hfc_bctrl;
1871 		hw->bch[i].ch.nr = i + 1;
1872 		list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1873 	}
1874 
1875 	hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1876 	hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1877 	hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1878 	hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1879 	hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1880 	hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1881 	hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1882 	hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1883 
1884 	err = setup_hfcsusb(hw);
1885 	if (err)
1886 		goto out;
1887 
1888 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1889 		 hfcsusb_cnt + 1);
1890 	printk(KERN_INFO "%s: registered as '%s'\n",
1891 	       DRIVER_NAME, hw->name);
1892 
1893 	err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1894 	if (err)
1895 		goto out;
1896 
1897 	hfcsusb_cnt++;
1898 	write_lock_irqsave(&HFClock, flags);
1899 	list_add_tail(&hw->list, &HFClist);
1900 	write_unlock_irqrestore(&HFClock, flags);
1901 	return 0;
1902 
1903 out:
1904 	mISDN_freebchannel(&hw->bch[1]);
1905 	mISDN_freebchannel(&hw->bch[0]);
1906 	mISDN_freedchannel(&hw->dch);
1907 	kfree(hw);
1908 	return err;
1909 }
1910 
1911 static int
hfcsusb_probe(struct usb_interface * intf,const struct usb_device_id * id)1912 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1913 {
1914 	struct hfcsusb			*hw;
1915 	struct usb_device		*dev = interface_to_usbdev(intf);
1916 	struct usb_host_interface	*iface = intf->cur_altsetting;
1917 	struct usb_host_interface	*iface_used = NULL;
1918 	struct usb_host_endpoint	*ep;
1919 	struct hfcsusb_vdata		*driver_info;
1920 	int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1921 		probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1922 		ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1923 		alt_used = 0;
1924 
1925 	vend_idx = 0xffff;
1926 	for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1927 		if ((le16_to_cpu(dev->descriptor.idVendor)
1928 		     == hfcsusb_idtab[i].idVendor) &&
1929 		    (le16_to_cpu(dev->descriptor.idProduct)
1930 		     == hfcsusb_idtab[i].idProduct)) {
1931 			vend_idx = i;
1932 			continue;
1933 		}
1934 	}
1935 
1936 	printk(KERN_DEBUG
1937 	       "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1938 	       __func__, ifnum, iface->desc.bAlternateSetting,
1939 	       intf->minor, vend_idx);
1940 
1941 	if (vend_idx == 0xffff) {
1942 		printk(KERN_WARNING
1943 		       "%s: no valid vendor found in USB descriptor\n",
1944 		       __func__);
1945 		return -EIO;
1946 	}
1947 	/* if vendor and product ID is OK, start probing alternate settings */
1948 	alt_idx = 0;
1949 	small_match = -1;
1950 
1951 	/* default settings */
1952 	iso_packet_size = 16;
1953 	packet_size = 64;
1954 
1955 	while (alt_idx < intf->num_altsetting) {
1956 		iface = intf->altsetting + alt_idx;
1957 		probe_alt_setting = iface->desc.bAlternateSetting;
1958 		cfg_used = 0;
1959 
1960 		while (validconf[cfg_used][0]) {
1961 			cfg_found = 1;
1962 			vcf = validconf[cfg_used];
1963 			ep = iface->endpoint;
1964 			memcpy(cmptbl, vcf, 16 * sizeof(int));
1965 
1966 			/* check for all endpoints in this alternate setting */
1967 			for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1968 				ep_addr = ep->desc.bEndpointAddress;
1969 
1970 				/* get endpoint base */
1971 				idx = ((ep_addr & 0x7f) - 1) * 2;
1972 				if (idx > 15)
1973 					return -EIO;
1974 
1975 				if (ep_addr & 0x80)
1976 					idx++;
1977 				attr = ep->desc.bmAttributes;
1978 
1979 				if (cmptbl[idx] != EP_NOP) {
1980 					if (cmptbl[idx] == EP_NUL)
1981 						cfg_found = 0;
1982 					if (attr == USB_ENDPOINT_XFER_INT
1983 					    && cmptbl[idx] == EP_INT)
1984 						cmptbl[idx] = EP_NUL;
1985 					if (attr == USB_ENDPOINT_XFER_BULK
1986 					    && cmptbl[idx] == EP_BLK)
1987 						cmptbl[idx] = EP_NUL;
1988 					if (attr == USB_ENDPOINT_XFER_ISOC
1989 					    && cmptbl[idx] == EP_ISO)
1990 						cmptbl[idx] = EP_NUL;
1991 
1992 					if (attr == USB_ENDPOINT_XFER_INT &&
1993 					    ep->desc.bInterval < vcf[17]) {
1994 						cfg_found = 0;
1995 					}
1996 				}
1997 				ep++;
1998 			}
1999 
2000 			for (i = 0; i < 16; i++)
2001 				if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
2002 					cfg_found = 0;
2003 
2004 			if (cfg_found) {
2005 				if (small_match < cfg_used) {
2006 					small_match = cfg_used;
2007 					alt_used = probe_alt_setting;
2008 					iface_used = iface;
2009 				}
2010 			}
2011 			cfg_used++;
2012 		}
2013 		alt_idx++;
2014 	}	/* (alt_idx < intf->num_altsetting) */
2015 
2016 	/* not found a valid USB Ta Endpoint config */
2017 	if (small_match == -1)
2018 		return -EIO;
2019 
2020 	iface = iface_used;
2021 	hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2022 	if (!hw)
2023 		return -ENOMEM;	/* got no mem */
2024 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2025 
2026 	ep = iface->endpoint;
2027 	vcf = validconf[small_match];
2028 
2029 	for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2030 		struct usb_fifo *f;
2031 
2032 		ep_addr = ep->desc.bEndpointAddress;
2033 		/* get endpoint base */
2034 		idx = ((ep_addr & 0x7f) - 1) * 2;
2035 		if (ep_addr & 0x80)
2036 			idx++;
2037 		f = &hw->fifos[idx & 7];
2038 
2039 		/* init Endpoints */
2040 		if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2041 			ep++;
2042 			continue;
2043 		}
2044 		switch (ep->desc.bmAttributes) {
2045 		case USB_ENDPOINT_XFER_INT:
2046 			f->pipe = usb_rcvintpipe(dev,
2047 						 ep->desc.bEndpointAddress);
2048 			f->usb_transfer_mode = USB_INT;
2049 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2050 			break;
2051 		case USB_ENDPOINT_XFER_BULK:
2052 			if (ep_addr & 0x80)
2053 				f->pipe = usb_rcvbulkpipe(dev,
2054 							  ep->desc.bEndpointAddress);
2055 			else
2056 				f->pipe = usb_sndbulkpipe(dev,
2057 							  ep->desc.bEndpointAddress);
2058 			f->usb_transfer_mode = USB_BULK;
2059 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2060 			break;
2061 		case USB_ENDPOINT_XFER_ISOC:
2062 			if (ep_addr & 0x80)
2063 				f->pipe = usb_rcvisocpipe(dev,
2064 							  ep->desc.bEndpointAddress);
2065 			else
2066 				f->pipe = usb_sndisocpipe(dev,
2067 							  ep->desc.bEndpointAddress);
2068 			f->usb_transfer_mode = USB_ISOC;
2069 			iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2070 			break;
2071 		default:
2072 			f->pipe = 0;
2073 		}
2074 
2075 		if (f->pipe) {
2076 			f->fifonum = idx & 7;
2077 			f->hw = hw;
2078 			f->usb_packet_maxlen =
2079 				le16_to_cpu(ep->desc.wMaxPacketSize);
2080 			f->intervall = ep->desc.bInterval;
2081 		}
2082 		ep++;
2083 	}
2084 	hw->dev = dev; /* save device */
2085 	hw->if_used = ifnum; /* save used interface */
2086 	hw->alt_used = alt_used; /* and alternate config */
2087 	hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2088 	hw->cfg_used = vcf[16];	/* store used config */
2089 	hw->vend_idx = vend_idx; /* store found vendor */
2090 	hw->packet_size = packet_size;
2091 	hw->iso_packet_size = iso_packet_size;
2092 
2093 	/* create the control pipes needed for register access */
2094 	hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2095 	hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2096 
2097 	driver_info = (struct hfcsusb_vdata *)
2098 		      hfcsusb_idtab[vend_idx].driver_info;
2099 
2100 	hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2101 	if (!hw->ctrl_urb) {
2102 		pr_warn("%s: No memory for control urb\n",
2103 			driver_info->vend_name);
2104 		kfree(hw);
2105 		return -ENOMEM;
2106 	}
2107 
2108 	pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2109 		hw->name, __func__, driver_info->vend_name,
2110 		conf_str[small_match], ifnum, alt_used);
2111 
2112 	if (setup_instance(hw, dev->dev.parent))
2113 		return -EIO;
2114 
2115 	hw->intf = intf;
2116 	usb_set_intfdata(hw->intf, hw);
2117 	return 0;
2118 }
2119 
2120 /* function called when an active device is removed */
2121 static void
hfcsusb_disconnect(struct usb_interface * intf)2122 hfcsusb_disconnect(struct usb_interface *intf)
2123 {
2124 	struct hfcsusb *hw = usb_get_intfdata(intf);
2125 	struct hfcsusb *next;
2126 	int cnt = 0;
2127 
2128 	printk(KERN_INFO "%s: device disconnected\n", hw->name);
2129 
2130 	handle_led(hw, LED_POWER_OFF);
2131 	release_hw(hw);
2132 
2133 	list_for_each_entry_safe(hw, next, &HFClist, list)
2134 		cnt++;
2135 	if (!cnt)
2136 		hfcsusb_cnt = 0;
2137 
2138 	usb_set_intfdata(intf, NULL);
2139 }
2140 
2141 static struct usb_driver hfcsusb_drv = {
2142 	.name = DRIVER_NAME,
2143 	.id_table = hfcsusb_idtab,
2144 	.probe = hfcsusb_probe,
2145 	.disconnect = hfcsusb_disconnect,
2146 	.disable_hub_initiated_lpm = 1,
2147 };
2148 
2149 module_usb_driver(hfcsusb_drv);
2150