xref: /linux/include/linux/pagemap.h (revision 51d90a15fedf8366cb96ef68d0ea2d0bf15417d2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4 
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18 
19 struct folio_batch;
20 
21 unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 					pgoff_t start, pgoff_t end);
23 
invalidate_remote_inode(struct inode * inode)24 static inline void invalidate_remote_inode(struct inode *inode)
25 {
26 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 	    S_ISLNK(inode->i_mode))
28 		invalidate_mapping_pages(inode->i_mapping, 0, -1);
29 }
30 int invalidate_inode_pages2(struct address_space *mapping);
31 int invalidate_inode_pages2_range(struct address_space *mapping,
32 		pgoff_t start, pgoff_t end);
33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
35 int filemap_invalidate_pages(struct address_space *mapping,
36 			     loff_t pos, loff_t end, bool nowait);
37 
38 int write_inode_now(struct inode *, int sync);
39 int filemap_fdatawrite(struct address_space *);
40 int filemap_flush(struct address_space *);
41 int filemap_flush_nr(struct address_space *mapping, long *nr_to_write);
42 int filemap_fdatawait_keep_errors(struct address_space *mapping);
43 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
44 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
45 		loff_t start_byte, loff_t end_byte);
46 int filemap_invalidate_inode(struct inode *inode, bool flush,
47 			     loff_t start, loff_t end);
48 
filemap_fdatawait(struct address_space * mapping)49 static inline int filemap_fdatawait(struct address_space *mapping)
50 {
51 	return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
52 }
53 
54 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
55 int filemap_write_and_wait_range(struct address_space *mapping,
56 		loff_t lstart, loff_t lend);
57 int filemap_fdatawrite_range(struct address_space *mapping,
58 		loff_t start, loff_t end);
59 int filemap_check_errors(struct address_space *mapping);
60 void __filemap_set_wb_err(struct address_space *mapping, int err);
61 int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
62 
filemap_write_and_wait(struct address_space * mapping)63 static inline int filemap_write_and_wait(struct address_space *mapping)
64 {
65 	return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
66 }
67 
68 /**
69  * filemap_set_wb_err - set a writeback error on an address_space
70  * @mapping: mapping in which to set writeback error
71  * @err: error to be set in mapping
72  *
73  * When writeback fails in some way, we must record that error so that
74  * userspace can be informed when fsync and the like are called.  We endeavor
75  * to report errors on any file that was open at the time of the error.  Some
76  * internal callers also need to know when writeback errors have occurred.
77  *
78  * When a writeback error occurs, most filesystems will want to call
79  * filemap_set_wb_err to record the error in the mapping so that it will be
80  * automatically reported whenever fsync is called on the file.
81  */
filemap_set_wb_err(struct address_space * mapping,int err)82 static inline void filemap_set_wb_err(struct address_space *mapping, int err)
83 {
84 	/* Fastpath for common case of no error */
85 	if (unlikely(err))
86 		__filemap_set_wb_err(mapping, err);
87 }
88 
89 /**
90  * filemap_check_wb_err - has an error occurred since the mark was sampled?
91  * @mapping: mapping to check for writeback errors
92  * @since: previously-sampled errseq_t
93  *
94  * Grab the errseq_t value from the mapping, and see if it has changed "since"
95  * the given value was sampled.
96  *
97  * If it has then report the latest error set, otherwise return 0.
98  */
filemap_check_wb_err(struct address_space * mapping,errseq_t since)99 static inline int filemap_check_wb_err(struct address_space *mapping,
100 					errseq_t since)
101 {
102 	return errseq_check(&mapping->wb_err, since);
103 }
104 
105 /**
106  * filemap_sample_wb_err - sample the current errseq_t to test for later errors
107  * @mapping: mapping to be sampled
108  *
109  * Writeback errors are always reported relative to a particular sample point
110  * in the past. This function provides those sample points.
111  */
filemap_sample_wb_err(struct address_space * mapping)112 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
113 {
114 	return errseq_sample(&mapping->wb_err);
115 }
116 
117 /**
118  * file_sample_sb_err - sample the current errseq_t to test for later errors
119  * @file: file pointer to be sampled
120  *
121  * Grab the most current superblock-level errseq_t value for the given
122  * struct file.
123  */
file_sample_sb_err(struct file * file)124 static inline errseq_t file_sample_sb_err(struct file *file)
125 {
126 	return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
127 }
128 
129 /*
130  * Flush file data before changing attributes.  Caller must hold any locks
131  * required to prevent further writes to this file until we're done setting
132  * flags.
133  */
inode_drain_writes(struct inode * inode)134 static inline int inode_drain_writes(struct inode *inode)
135 {
136 	inode_dio_wait(inode);
137 	return filemap_write_and_wait(inode->i_mapping);
138 }
139 
mapping_empty(const struct address_space * mapping)140 static inline bool mapping_empty(const struct address_space *mapping)
141 {
142 	return xa_empty(&mapping->i_pages);
143 }
144 
145 /*
146  * mapping_shrinkable - test if page cache state allows inode reclaim
147  * @mapping: the page cache mapping
148  *
149  * This checks the mapping's cache state for the pupose of inode
150  * reclaim and LRU management.
151  *
152  * The caller is expected to hold the i_lock, but is not required to
153  * hold the i_pages lock, which usually protects cache state. That's
154  * because the i_lock and the list_lru lock that protect the inode and
155  * its LRU state don't nest inside the irq-safe i_pages lock.
156  *
157  * Cache deletions are performed under the i_lock, which ensures that
158  * when an inode goes empty, it will reliably get queued on the LRU.
159  *
160  * Cache additions do not acquire the i_lock and may race with this
161  * check, in which case we'll report the inode as shrinkable when it
162  * has cache pages. This is okay: the shrinker also checks the
163  * refcount and the referenced bit, which will be elevated or set in
164  * the process of adding new cache pages to an inode.
165  */
mapping_shrinkable(const struct address_space * mapping)166 static inline bool mapping_shrinkable(const struct address_space *mapping)
167 {
168 	void *head;
169 
170 	/*
171 	 * On highmem systems, there could be lowmem pressure from the
172 	 * inodes before there is highmem pressure from the page
173 	 * cache. Make inodes shrinkable regardless of cache state.
174 	 */
175 	if (IS_ENABLED(CONFIG_HIGHMEM))
176 		return true;
177 
178 	/* Cache completely empty? Shrink away. */
179 	head = rcu_access_pointer(mapping->i_pages.xa_head);
180 	if (!head)
181 		return true;
182 
183 	/*
184 	 * The xarray stores single offset-0 entries directly in the
185 	 * head pointer, which allows non-resident page cache entries
186 	 * to escape the shadow shrinker's list of xarray nodes. The
187 	 * inode shrinker needs to pick them up under memory pressure.
188 	 */
189 	if (!xa_is_node(head) && xa_is_value(head))
190 		return true;
191 
192 	return false;
193 }
194 
195 /*
196  * Bits in mapping->flags.
197  */
198 enum mapping_flags {
199 	AS_EIO		= 0,	/* IO error on async write */
200 	AS_ENOSPC	= 1,	/* ENOSPC on async write */
201 	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
202 	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
203 	AS_EXITING	= 4, 	/* final truncate in progress */
204 	/* writeback related tags are not used */
205 	AS_NO_WRITEBACK_TAGS = 5,
206 	AS_RELEASE_ALWAYS = 6,	/* Call ->release_folio(), even if no private data */
207 	AS_STABLE_WRITES = 7,	/* must wait for writeback before modifying
208 				   folio contents */
209 	AS_INACCESSIBLE = 8,	/* Do not attempt direct R/W access to the mapping */
210 	AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM = 9,
211 	AS_KERNEL_FILE = 10,	/* mapping for a fake kernel file that shouldn't
212 				   account usage to user cgroups */
213 	/* Bits 16-25 are used for FOLIO_ORDER */
214 	AS_FOLIO_ORDER_BITS = 5,
215 	AS_FOLIO_ORDER_MIN = 16,
216 	AS_FOLIO_ORDER_MAX = AS_FOLIO_ORDER_MIN + AS_FOLIO_ORDER_BITS,
217 };
218 
219 #define AS_FOLIO_ORDER_BITS_MASK ((1u << AS_FOLIO_ORDER_BITS) - 1)
220 #define AS_FOLIO_ORDER_MIN_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MIN)
221 #define AS_FOLIO_ORDER_MAX_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MAX)
222 #define AS_FOLIO_ORDER_MASK (AS_FOLIO_ORDER_MIN_MASK | AS_FOLIO_ORDER_MAX_MASK)
223 
224 /**
225  * mapping_set_error - record a writeback error in the address_space
226  * @mapping: the mapping in which an error should be set
227  * @error: the error to set in the mapping
228  *
229  * When writeback fails in some way, we must record that error so that
230  * userspace can be informed when fsync and the like are called.  We endeavor
231  * to report errors on any file that was open at the time of the error.  Some
232  * internal callers also need to know when writeback errors have occurred.
233  *
234  * When a writeback error occurs, most filesystems will want to call
235  * mapping_set_error to record the error in the mapping so that it can be
236  * reported when the application calls fsync(2).
237  */
mapping_set_error(struct address_space * mapping,int error)238 static inline void mapping_set_error(struct address_space *mapping, int error)
239 {
240 	if (likely(!error))
241 		return;
242 
243 	/* Record in wb_err for checkers using errseq_t based tracking */
244 	__filemap_set_wb_err(mapping, error);
245 
246 	/* Record it in superblock */
247 	if (mapping->host)
248 		errseq_set(&mapping->host->i_sb->s_wb_err, error);
249 
250 	/* Record it in flags for now, for legacy callers */
251 	if (error == -ENOSPC)
252 		set_bit(AS_ENOSPC, &mapping->flags);
253 	else
254 		set_bit(AS_EIO, &mapping->flags);
255 }
256 
mapping_set_unevictable(struct address_space * mapping)257 static inline void mapping_set_unevictable(struct address_space *mapping)
258 {
259 	set_bit(AS_UNEVICTABLE, &mapping->flags);
260 }
261 
mapping_clear_unevictable(struct address_space * mapping)262 static inline void mapping_clear_unevictable(struct address_space *mapping)
263 {
264 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
265 }
266 
mapping_unevictable(const struct address_space * mapping)267 static inline bool mapping_unevictable(const struct address_space *mapping)
268 {
269 	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
270 }
271 
mapping_set_exiting(struct address_space * mapping)272 static inline void mapping_set_exiting(struct address_space *mapping)
273 {
274 	set_bit(AS_EXITING, &mapping->flags);
275 }
276 
mapping_exiting(const struct address_space * mapping)277 static inline int mapping_exiting(const struct address_space *mapping)
278 {
279 	return test_bit(AS_EXITING, &mapping->flags);
280 }
281 
mapping_set_no_writeback_tags(struct address_space * mapping)282 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
283 {
284 	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
285 }
286 
mapping_use_writeback_tags(const struct address_space * mapping)287 static inline int mapping_use_writeback_tags(const struct address_space *mapping)
288 {
289 	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
290 }
291 
mapping_release_always(const struct address_space * mapping)292 static inline bool mapping_release_always(const struct address_space *mapping)
293 {
294 	return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
295 }
296 
mapping_set_release_always(struct address_space * mapping)297 static inline void mapping_set_release_always(struct address_space *mapping)
298 {
299 	set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
300 }
301 
mapping_clear_release_always(struct address_space * mapping)302 static inline void mapping_clear_release_always(struct address_space *mapping)
303 {
304 	clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
305 }
306 
mapping_stable_writes(const struct address_space * mapping)307 static inline bool mapping_stable_writes(const struct address_space *mapping)
308 {
309 	return test_bit(AS_STABLE_WRITES, &mapping->flags);
310 }
311 
mapping_set_stable_writes(struct address_space * mapping)312 static inline void mapping_set_stable_writes(struct address_space *mapping)
313 {
314 	set_bit(AS_STABLE_WRITES, &mapping->flags);
315 }
316 
mapping_clear_stable_writes(struct address_space * mapping)317 static inline void mapping_clear_stable_writes(struct address_space *mapping)
318 {
319 	clear_bit(AS_STABLE_WRITES, &mapping->flags);
320 }
321 
mapping_set_inaccessible(struct address_space * mapping)322 static inline void mapping_set_inaccessible(struct address_space *mapping)
323 {
324 	/*
325 	 * It's expected inaccessible mappings are also unevictable. Compaction
326 	 * migrate scanner (isolate_migratepages_block()) relies on this to
327 	 * reduce page locking.
328 	 */
329 	set_bit(AS_UNEVICTABLE, &mapping->flags);
330 	set_bit(AS_INACCESSIBLE, &mapping->flags);
331 }
332 
mapping_inaccessible(const struct address_space * mapping)333 static inline bool mapping_inaccessible(const struct address_space *mapping)
334 {
335 	return test_bit(AS_INACCESSIBLE, &mapping->flags);
336 }
337 
mapping_set_writeback_may_deadlock_on_reclaim(struct address_space * mapping)338 static inline void mapping_set_writeback_may_deadlock_on_reclaim(struct address_space *mapping)
339 {
340 	set_bit(AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM, &mapping->flags);
341 }
342 
mapping_writeback_may_deadlock_on_reclaim(const struct address_space * mapping)343 static inline bool mapping_writeback_may_deadlock_on_reclaim(const struct address_space *mapping)
344 {
345 	return test_bit(AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM, &mapping->flags);
346 }
347 
mapping_gfp_mask(const struct address_space * mapping)348 static inline gfp_t mapping_gfp_mask(const struct address_space *mapping)
349 {
350 	return mapping->gfp_mask;
351 }
352 
353 /* Restricts the given gfp_mask to what the mapping allows. */
mapping_gfp_constraint(const struct address_space * mapping,gfp_t gfp_mask)354 static inline gfp_t mapping_gfp_constraint(const struct address_space *mapping,
355 		gfp_t gfp_mask)
356 {
357 	return mapping_gfp_mask(mapping) & gfp_mask;
358 }
359 
360 /*
361  * This is non-atomic.  Only to be used before the mapping is activated.
362  * Probably needs a barrier...
363  */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)364 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
365 {
366 	m->gfp_mask = mask;
367 }
368 
369 /*
370  * There are some parts of the kernel which assume that PMD entries
371  * are exactly HPAGE_PMD_ORDER.  Those should be fixed, but until then,
372  * limit the maximum allocation order to PMD size.  I'm not aware of any
373  * assumptions about maximum order if THP are disabled, but 8 seems like
374  * a good order (that's 1MB if you're using 4kB pages)
375  */
376 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
377 #define PREFERRED_MAX_PAGECACHE_ORDER	HPAGE_PMD_ORDER
378 #else
379 #define PREFERRED_MAX_PAGECACHE_ORDER	8
380 #endif
381 
382 /*
383  * xas_split_alloc() does not support arbitrary orders. This implies no
384  * 512MB THP on ARM64 with 64KB base page size.
385  */
386 #define MAX_XAS_ORDER		(XA_CHUNK_SHIFT * 2 - 1)
387 #define MAX_PAGECACHE_ORDER	min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER)
388 
389 /*
390  * mapping_max_folio_size_supported() - Check the max folio size supported
391  *
392  * The filesystem should call this function at mount time if there is a
393  * requirement on the folio mapping size in the page cache.
394  */
mapping_max_folio_size_supported(void)395 static inline size_t mapping_max_folio_size_supported(void)
396 {
397 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
398 		return 1U << (PAGE_SHIFT + MAX_PAGECACHE_ORDER);
399 	return PAGE_SIZE;
400 }
401 
402 /*
403  * mapping_set_folio_order_range() - Set the orders supported by a file.
404  * @mapping: The address space of the file.
405  * @min: Minimum folio order (between 0-MAX_PAGECACHE_ORDER inclusive).
406  * @max: Maximum folio order (between @min-MAX_PAGECACHE_ORDER inclusive).
407  *
408  * The filesystem should call this function in its inode constructor to
409  * indicate which base size (min) and maximum size (max) of folio the VFS
410  * can use to cache the contents of the file.  This should only be used
411  * if the filesystem needs special handling of folio sizes (ie there is
412  * something the core cannot know).
413  * Do not tune it based on, eg, i_size.
414  *
415  * Context: This should not be called while the inode is active as it
416  * is non-atomic.
417  */
mapping_set_folio_order_range(struct address_space * mapping,unsigned int min,unsigned int max)418 static inline void mapping_set_folio_order_range(struct address_space *mapping,
419 						 unsigned int min,
420 						 unsigned int max)
421 {
422 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
423 		return;
424 
425 	if (min > MAX_PAGECACHE_ORDER)
426 		min = MAX_PAGECACHE_ORDER;
427 
428 	if (max > MAX_PAGECACHE_ORDER)
429 		max = MAX_PAGECACHE_ORDER;
430 
431 	if (max < min)
432 		max = min;
433 
434 	mapping->flags = (mapping->flags & ~AS_FOLIO_ORDER_MASK) |
435 		(min << AS_FOLIO_ORDER_MIN) | (max << AS_FOLIO_ORDER_MAX);
436 }
437 
mapping_set_folio_min_order(struct address_space * mapping,unsigned int min)438 static inline void mapping_set_folio_min_order(struct address_space *mapping,
439 					       unsigned int min)
440 {
441 	mapping_set_folio_order_range(mapping, min, MAX_PAGECACHE_ORDER);
442 }
443 
444 /**
445  * mapping_set_large_folios() - Indicate the file supports large folios.
446  * @mapping: The address space of the file.
447  *
448  * The filesystem should call this function in its inode constructor to
449  * indicate that the VFS can use large folios to cache the contents of
450  * the file.
451  *
452  * Context: This should not be called while the inode is active as it
453  * is non-atomic.
454  */
mapping_set_large_folios(struct address_space * mapping)455 static inline void mapping_set_large_folios(struct address_space *mapping)
456 {
457 	mapping_set_folio_order_range(mapping, 0, MAX_PAGECACHE_ORDER);
458 }
459 
460 static inline unsigned int
mapping_max_folio_order(const struct address_space * mapping)461 mapping_max_folio_order(const struct address_space *mapping)
462 {
463 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
464 		return 0;
465 	return (mapping->flags & AS_FOLIO_ORDER_MAX_MASK) >> AS_FOLIO_ORDER_MAX;
466 }
467 
468 static inline unsigned int
mapping_min_folio_order(const struct address_space * mapping)469 mapping_min_folio_order(const struct address_space *mapping)
470 {
471 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
472 		return 0;
473 	return (mapping->flags & AS_FOLIO_ORDER_MIN_MASK) >> AS_FOLIO_ORDER_MIN;
474 }
475 
476 static inline unsigned long
mapping_min_folio_nrpages(const struct address_space * mapping)477 mapping_min_folio_nrpages(const struct address_space *mapping)
478 {
479 	return 1UL << mapping_min_folio_order(mapping);
480 }
481 
482 static inline unsigned long
mapping_min_folio_nrbytes(const struct address_space * mapping)483 mapping_min_folio_nrbytes(const struct address_space *mapping)
484 {
485 	return mapping_min_folio_nrpages(mapping) << PAGE_SHIFT;
486 }
487 
488 /**
489  * mapping_align_index() - Align index for this mapping.
490  * @mapping: The address_space.
491  * @index: The page index.
492  *
493  * The index of a folio must be naturally aligned.  If you are adding a
494  * new folio to the page cache and need to know what index to give it,
495  * call this function.
496  */
mapping_align_index(const struct address_space * mapping,pgoff_t index)497 static inline pgoff_t mapping_align_index(const struct address_space *mapping,
498 					  pgoff_t index)
499 {
500 	return round_down(index, mapping_min_folio_nrpages(mapping));
501 }
502 
503 /*
504  * Large folio support currently depends on THP.  These dependencies are
505  * being worked on but are not yet fixed.
506  */
mapping_large_folio_support(const struct address_space * mapping)507 static inline bool mapping_large_folio_support(const struct address_space *mapping)
508 {
509 	/* AS_FOLIO_ORDER is only reasonable for pagecache folios */
510 	VM_WARN_ONCE((unsigned long)mapping & FOLIO_MAPPING_ANON,
511 			"Anonymous mapping always supports large folio");
512 
513 	return mapping_max_folio_order(mapping) > 0;
514 }
515 
516 /* Return the maximum folio size for this pagecache mapping, in bytes. */
mapping_max_folio_size(const struct address_space * mapping)517 static inline size_t mapping_max_folio_size(const struct address_space *mapping)
518 {
519 	return PAGE_SIZE << mapping_max_folio_order(mapping);
520 }
521 
filemap_nr_thps(const struct address_space * mapping)522 static inline int filemap_nr_thps(const struct address_space *mapping)
523 {
524 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
525 	return atomic_read(&mapping->nr_thps);
526 #else
527 	return 0;
528 #endif
529 }
530 
filemap_nr_thps_inc(struct address_space * mapping)531 static inline void filemap_nr_thps_inc(struct address_space *mapping)
532 {
533 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
534 	if (!mapping_large_folio_support(mapping))
535 		atomic_inc(&mapping->nr_thps);
536 #else
537 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
538 #endif
539 }
540 
filemap_nr_thps_dec(struct address_space * mapping)541 static inline void filemap_nr_thps_dec(struct address_space *mapping)
542 {
543 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
544 	if (!mapping_large_folio_support(mapping))
545 		atomic_dec(&mapping->nr_thps);
546 #else
547 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
548 #endif
549 }
550 
551 struct address_space *folio_mapping(const struct folio *folio);
552 
553 /**
554  * folio_flush_mapping - Find the file mapping this folio belongs to.
555  * @folio: The folio.
556  *
557  * For folios which are in the page cache, return the mapping that this
558  * page belongs to.  Anonymous folios return NULL, even if they're in
559  * the swap cache.  Other kinds of folio also return NULL.
560  *
561  * This is ONLY used by architecture cache flushing code.  If you aren't
562  * writing cache flushing code, you want either folio_mapping() or
563  * folio_file_mapping().
564  */
folio_flush_mapping(struct folio * folio)565 static inline struct address_space *folio_flush_mapping(struct folio *folio)
566 {
567 	if (unlikely(folio_test_swapcache(folio)))
568 		return NULL;
569 
570 	return folio_mapping(folio);
571 }
572 
573 /**
574  * folio_inode - Get the host inode for this folio.
575  * @folio: The folio.
576  *
577  * For folios which are in the page cache, return the inode that this folio
578  * belongs to.
579  *
580  * Do not call this for folios which aren't in the page cache.
581  */
folio_inode(struct folio * folio)582 static inline struct inode *folio_inode(struct folio *folio)
583 {
584 	return folio->mapping->host;
585 }
586 
587 /**
588  * folio_attach_private - Attach private data to a folio.
589  * @folio: Folio to attach data to.
590  * @data: Data to attach to folio.
591  *
592  * Attaching private data to a folio increments the page's reference count.
593  * The data must be detached before the folio will be freed.
594  */
folio_attach_private(struct folio * folio,void * data)595 static inline void folio_attach_private(struct folio *folio, void *data)
596 {
597 	folio_get(folio);
598 	folio->private = data;
599 	folio_set_private(folio);
600 }
601 
602 /**
603  * folio_change_private - Change private data on a folio.
604  * @folio: Folio to change the data on.
605  * @data: Data to set on the folio.
606  *
607  * Change the private data attached to a folio and return the old
608  * data.  The page must previously have had data attached and the data
609  * must be detached before the folio will be freed.
610  *
611  * Return: Data that was previously attached to the folio.
612  */
folio_change_private(struct folio * folio,void * data)613 static inline void *folio_change_private(struct folio *folio, void *data)
614 {
615 	void *old = folio_get_private(folio);
616 
617 	folio->private = data;
618 	return old;
619 }
620 
621 /**
622  * folio_detach_private - Detach private data from a folio.
623  * @folio: Folio to detach data from.
624  *
625  * Removes the data that was previously attached to the folio and decrements
626  * the refcount on the page.
627  *
628  * Return: Data that was attached to the folio.
629  */
folio_detach_private(struct folio * folio)630 static inline void *folio_detach_private(struct folio *folio)
631 {
632 	void *data = folio_get_private(folio);
633 
634 	if (!folio_test_private(folio))
635 		return NULL;
636 	folio_clear_private(folio);
637 	folio->private = NULL;
638 	folio_put(folio);
639 
640 	return data;
641 }
642 
attach_page_private(struct page * page,void * data)643 static inline void attach_page_private(struct page *page, void *data)
644 {
645 	folio_attach_private(page_folio(page), data);
646 }
647 
detach_page_private(struct page * page)648 static inline void *detach_page_private(struct page *page)
649 {
650 	return folio_detach_private(page_folio(page));
651 }
652 
653 #ifdef CONFIG_NUMA
654 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order,
655 		struct mempolicy *policy);
656 #else
filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order,struct mempolicy * policy)657 static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order,
658 		struct mempolicy *policy)
659 {
660 	return folio_alloc_noprof(gfp, order);
661 }
662 #endif
663 
664 #define filemap_alloc_folio(...)				\
665 	alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__))
666 
__page_cache_alloc(gfp_t gfp)667 static inline struct page *__page_cache_alloc(gfp_t gfp)
668 {
669 	return &filemap_alloc_folio(gfp, 0, NULL)->page;
670 }
671 
readahead_gfp_mask(struct address_space * x)672 static inline gfp_t readahead_gfp_mask(struct address_space *x)
673 {
674 	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
675 }
676 
677 typedef int filler_t(struct file *, struct folio *);
678 
679 pgoff_t page_cache_next_miss(struct address_space *mapping,
680 			     pgoff_t index, unsigned long max_scan);
681 pgoff_t page_cache_prev_miss(struct address_space *mapping,
682 			     pgoff_t index, unsigned long max_scan);
683 
684 /**
685  * typedef fgf_t - Flags for getting folios from the page cache.
686  *
687  * Most users of the page cache will not need to use these flags;
688  * there are convenience functions such as filemap_get_folio() and
689  * filemap_lock_folio().  For users which need more control over exactly
690  * what is done with the folios, these flags to __filemap_get_folio()
691  * are available.
692  *
693  * * %FGP_ACCESSED - The folio will be marked accessed.
694  * * %FGP_LOCK - The folio is returned locked.
695  * * %FGP_CREAT - If no folio is present then a new folio is allocated,
696  *   added to the page cache and the VM's LRU list.  The folio is
697  *   returned locked.
698  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
699  *   folio is already in cache.  If the folio was allocated, unlock it
700  *   before returning so the caller can do the same dance.
701  * * %FGP_WRITE - The folio will be written to by the caller.
702  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
703  * * %FGP_NOWAIT - Don't block on the folio lock.
704  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
705  * * %FGP_DONTCACHE - Uncached buffered IO
706  * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
707  *   implementation.
708  */
709 typedef unsigned int __bitwise fgf_t;
710 
711 #define FGP_ACCESSED		((__force fgf_t)0x00000001)
712 #define FGP_LOCK		((__force fgf_t)0x00000002)
713 #define FGP_CREAT		((__force fgf_t)0x00000004)
714 #define FGP_WRITE		((__force fgf_t)0x00000008)
715 #define FGP_NOFS		((__force fgf_t)0x00000010)
716 #define FGP_NOWAIT		((__force fgf_t)0x00000020)
717 #define FGP_FOR_MMAP		((__force fgf_t)0x00000040)
718 #define FGP_STABLE		((__force fgf_t)0x00000080)
719 #define FGP_DONTCACHE		((__force fgf_t)0x00000100)
720 #define FGF_GET_ORDER(fgf)	(((__force unsigned)fgf) >> 26)	/* top 6 bits */
721 
722 #define FGP_WRITEBEGIN		(FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
723 
filemap_get_order(size_t size)724 static inline unsigned int filemap_get_order(size_t size)
725 {
726 	unsigned int shift = ilog2(size);
727 
728 	if (shift <= PAGE_SHIFT)
729 		return 0;
730 
731 	return shift - PAGE_SHIFT;
732 }
733 
734 /**
735  * fgf_set_order - Encode a length in the fgf_t flags.
736  * @size: The suggested size of the folio to create.
737  *
738  * The caller of __filemap_get_folio() can use this to suggest a preferred
739  * size for the folio that is created.  If there is already a folio at
740  * the index, it will be returned, no matter what its size.  If a folio
741  * is freshly created, it may be of a different size than requested
742  * due to alignment constraints, memory pressure, or the presence of
743  * other folios at nearby indices.
744  */
fgf_set_order(size_t size)745 static inline fgf_t fgf_set_order(size_t size)
746 {
747 	unsigned int order = filemap_get_order(size);
748 
749 	if (!order)
750 		return 0;
751 	return (__force fgf_t)(order << 26);
752 }
753 
754 void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
755 struct folio *__filemap_get_folio_mpol(struct address_space *mapping,
756 		pgoff_t index, fgf_t fgf_flags, gfp_t gfp, struct mempolicy *policy);
757 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
758 		fgf_t fgp_flags, gfp_t gfp);
759 
__filemap_get_folio(struct address_space * mapping,pgoff_t index,fgf_t fgf_flags,gfp_t gfp)760 static inline struct folio *__filemap_get_folio(struct address_space *mapping,
761 		pgoff_t index, fgf_t fgf_flags, gfp_t gfp)
762 {
763 	return __filemap_get_folio_mpol(mapping, index, fgf_flags, gfp, NULL);
764 }
765 
766 /**
767  * write_begin_get_folio - Get folio for write_begin with flags.
768  * @iocb: The kiocb passed from write_begin (may be NULL).
769  * @mapping: The address space to search.
770  * @index: The page cache index.
771  * @len: Length of data being written.
772  *
773  * This is a helper for filesystem write_begin() implementations.
774  * It wraps __filemap_get_folio(), setting appropriate flags in
775  * the write begin context.
776  *
777  * Return: A folio or an ERR_PTR.
778  */
write_begin_get_folio(const struct kiocb * iocb,struct address_space * mapping,pgoff_t index,size_t len)779 static inline struct folio *write_begin_get_folio(const struct kiocb *iocb,
780 		  struct address_space *mapping, pgoff_t index, size_t len)
781 {
782         fgf_t fgp_flags = FGP_WRITEBEGIN;
783 
784         fgp_flags |= fgf_set_order(len);
785 
786         if (iocb && iocb->ki_flags & IOCB_DONTCACHE)
787                 fgp_flags |= FGP_DONTCACHE;
788 
789         return __filemap_get_folio(mapping, index, fgp_flags,
790                                    mapping_gfp_mask(mapping));
791 }
792 
793 /**
794  * filemap_get_folio - Find and get a folio.
795  * @mapping: The address_space to search.
796  * @index: The page index.
797  *
798  * Looks up the page cache entry at @mapping & @index.  If a folio is
799  * present, it is returned with an increased refcount.
800  *
801  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
802  * this index.  Will not return a shadow, swap or DAX entry.
803  */
filemap_get_folio(struct address_space * mapping,pgoff_t index)804 static inline struct folio *filemap_get_folio(struct address_space *mapping,
805 					pgoff_t index)
806 {
807 	return __filemap_get_folio(mapping, index, 0, 0);
808 }
809 
810 /**
811  * filemap_lock_folio - Find and lock a folio.
812  * @mapping: The address_space to search.
813  * @index: The page index.
814  *
815  * Looks up the page cache entry at @mapping & @index.  If a folio is
816  * present, it is returned locked with an increased refcount.
817  *
818  * Context: May sleep.
819  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
820  * this index.  Will not return a shadow, swap or DAX entry.
821  */
filemap_lock_folio(struct address_space * mapping,pgoff_t index)822 static inline struct folio *filemap_lock_folio(struct address_space *mapping,
823 					pgoff_t index)
824 {
825 	return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
826 }
827 
828 /**
829  * filemap_grab_folio - grab a folio from the page cache
830  * @mapping: The address space to search
831  * @index: The page index
832  *
833  * Looks up the page cache entry at @mapping & @index. If no folio is found,
834  * a new folio is created. The folio is locked, marked as accessed, and
835  * returned.
836  *
837  * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
838  * and failed to create a folio.
839  */
filemap_grab_folio(struct address_space * mapping,pgoff_t index)840 static inline struct folio *filemap_grab_folio(struct address_space *mapping,
841 					pgoff_t index)
842 {
843 	return __filemap_get_folio(mapping, index,
844 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
845 			mapping_gfp_mask(mapping));
846 }
847 
848 /**
849  * find_get_page - find and get a page reference
850  * @mapping: the address_space to search
851  * @offset: the page index
852  *
853  * Looks up the page cache slot at @mapping & @offset.  If there is a
854  * page cache page, it is returned with an increased refcount.
855  *
856  * Otherwise, %NULL is returned.
857  */
find_get_page(struct address_space * mapping,pgoff_t offset)858 static inline struct page *find_get_page(struct address_space *mapping,
859 					pgoff_t offset)
860 {
861 	return pagecache_get_page(mapping, offset, 0, 0);
862 }
863 
find_get_page_flags(struct address_space * mapping,pgoff_t offset,fgf_t fgp_flags)864 static inline struct page *find_get_page_flags(struct address_space *mapping,
865 					pgoff_t offset, fgf_t fgp_flags)
866 {
867 	return pagecache_get_page(mapping, offset, fgp_flags, 0);
868 }
869 
870 /**
871  * find_lock_page - locate, pin and lock a pagecache page
872  * @mapping: the address_space to search
873  * @index: the page index
874  *
875  * Looks up the page cache entry at @mapping & @index.  If there is a
876  * page cache page, it is returned locked and with an increased
877  * refcount.
878  *
879  * Context: May sleep.
880  * Return: A struct page or %NULL if there is no page in the cache for this
881  * index.
882  */
find_lock_page(struct address_space * mapping,pgoff_t index)883 static inline struct page *find_lock_page(struct address_space *mapping,
884 					pgoff_t index)
885 {
886 	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
887 }
888 
889 /**
890  * find_or_create_page - locate or add a pagecache page
891  * @mapping: the page's address_space
892  * @index: the page's index into the mapping
893  * @gfp_mask: page allocation mode
894  *
895  * Looks up the page cache slot at @mapping & @offset.  If there is a
896  * page cache page, it is returned locked and with an increased
897  * refcount.
898  *
899  * If the page is not present, a new page is allocated using @gfp_mask
900  * and added to the page cache and the VM's LRU list.  The page is
901  * returned locked and with an increased refcount.
902  *
903  * On memory exhaustion, %NULL is returned.
904  *
905  * find_or_create_page() may sleep, even if @gfp_flags specifies an
906  * atomic allocation!
907  */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)908 static inline struct page *find_or_create_page(struct address_space *mapping,
909 					pgoff_t index, gfp_t gfp_mask)
910 {
911 	return pagecache_get_page(mapping, index,
912 					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
913 					gfp_mask);
914 }
915 
916 /**
917  * grab_cache_page_nowait - returns locked page at given index in given cache
918  * @mapping: target address_space
919  * @index: the page index
920  *
921  * Returns locked page at given index in given cache, creating it if
922  * needed, but do not wait if the page is locked or to reclaim memory.
923  * This is intended for speculative data generators, where the data can
924  * be regenerated if the page couldn't be grabbed.  This routine should
925  * be safe to call while holding the lock for another page.
926  *
927  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
928  * and deadlock against the caller's locked page.
929  */
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)930 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
931 				pgoff_t index)
932 {
933 	return pagecache_get_page(mapping, index,
934 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
935 			mapping_gfp_mask(mapping));
936 }
937 
938 /**
939  * folio_next_index - Get the index of the next folio.
940  * @folio: The current folio.
941  *
942  * Return: The index of the folio which follows this folio in the file.
943  */
folio_next_index(const struct folio * folio)944 static inline pgoff_t folio_next_index(const struct folio *folio)
945 {
946 	return folio->index + folio_nr_pages(folio);
947 }
948 
949 /**
950  * folio_next_pos - Get the file position of the next folio.
951  * @folio: The current folio.
952  *
953  * Return: The position of the folio which follows this folio in the file.
954  */
folio_next_pos(const struct folio * folio)955 static inline loff_t folio_next_pos(const struct folio *folio)
956 {
957 	return (loff_t)folio_next_index(folio) << PAGE_SHIFT;
958 }
959 
960 /**
961  * folio_file_page - The page for a particular index.
962  * @folio: The folio which contains this index.
963  * @index: The index we want to look up.
964  *
965  * Sometimes after looking up a folio in the page cache, we need to
966  * obtain the specific page for an index (eg a page fault).
967  *
968  * Return: The page containing the file data for this index.
969  */
folio_file_page(struct folio * folio,pgoff_t index)970 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
971 {
972 	return folio_page(folio, index & (folio_nr_pages(folio) - 1));
973 }
974 
975 /**
976  * folio_contains - Does this folio contain this index?
977  * @folio: The folio.
978  * @index: The page index within the file.
979  *
980  * Context: The caller should have the folio locked and ensure
981  * e.g., shmem did not move this folio to the swap cache.
982  * Return: true or false.
983  */
folio_contains(const struct folio * folio,pgoff_t index)984 static inline bool folio_contains(const struct folio *folio, pgoff_t index)
985 {
986 	VM_WARN_ON_ONCE_FOLIO(folio_test_swapcache(folio), folio);
987 	return index - folio->index < folio_nr_pages(folio);
988 }
989 
990 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
991 		pgoff_t end, struct folio_batch *fbatch);
992 unsigned filemap_get_folios_contig(struct address_space *mapping,
993 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
994 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
995 		pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
996 unsigned filemap_get_folios_dirty(struct address_space *mapping,
997 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
998 
999 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
1000 		filler_t *filler, struct file *file);
1001 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
1002 		gfp_t flags);
1003 struct page *read_cache_page(struct address_space *, pgoff_t index,
1004 		filler_t *filler, struct file *file);
1005 extern struct page * read_cache_page_gfp(struct address_space *mapping,
1006 				pgoff_t index, gfp_t gfp_mask);
1007 
read_mapping_page(struct address_space * mapping,pgoff_t index,struct file * file)1008 static inline struct page *read_mapping_page(struct address_space *mapping,
1009 				pgoff_t index, struct file *file)
1010 {
1011 	return read_cache_page(mapping, index, NULL, file);
1012 }
1013 
read_mapping_folio(struct address_space * mapping,pgoff_t index,struct file * file)1014 static inline struct folio *read_mapping_folio(struct address_space *mapping,
1015 				pgoff_t index, struct file *file)
1016 {
1017 	return read_cache_folio(mapping, index, NULL, file);
1018 }
1019 
1020 /**
1021  * page_pgoff - Calculate the logical page offset of this page.
1022  * @folio: The folio containing this page.
1023  * @page: The page which we need the offset of.
1024  *
1025  * For file pages, this is the offset from the beginning of the file
1026  * in units of PAGE_SIZE.  For anonymous pages, this is the offset from
1027  * the beginning of the anon_vma in units of PAGE_SIZE.  This will
1028  * return nonsense for KSM pages.
1029  *
1030  * Context: Caller must have a reference on the folio or otherwise
1031  * prevent it from being split or freed.
1032  *
1033  * Return: The offset in units of PAGE_SIZE.
1034  */
page_pgoff(const struct folio * folio,const struct page * page)1035 static inline pgoff_t page_pgoff(const struct folio *folio,
1036 		const struct page *page)
1037 {
1038 	return folio->index + folio_page_idx(folio, page);
1039 }
1040 
1041 /**
1042  * folio_pos - Returns the byte position of this folio in its file.
1043  * @folio: The folio.
1044  */
folio_pos(const struct folio * folio)1045 static inline loff_t folio_pos(const struct folio *folio)
1046 {
1047 	return ((loff_t)folio->index) * PAGE_SIZE;
1048 }
1049 
1050 /*
1051  * Return byte-offset into filesystem object for page.
1052  */
page_offset(struct page * page)1053 static inline loff_t page_offset(struct page *page)
1054 {
1055 	struct folio *folio = page_folio(page);
1056 
1057 	return folio_pos(folio) + folio_page_idx(folio, page) * PAGE_SIZE;
1058 }
1059 
1060 /*
1061  * Get the offset in PAGE_SIZE (even for hugetlb folios).
1062  */
folio_pgoff(const struct folio * folio)1063 static inline pgoff_t folio_pgoff(const struct folio *folio)
1064 {
1065 	return folio->index;
1066 }
1067 
linear_page_index(const struct vm_area_struct * vma,const unsigned long address)1068 static inline pgoff_t linear_page_index(const struct vm_area_struct *vma,
1069 					const unsigned long address)
1070 {
1071 	pgoff_t pgoff;
1072 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1073 	pgoff += vma->vm_pgoff;
1074 	return pgoff;
1075 }
1076 
1077 struct wait_page_key {
1078 	struct folio *folio;
1079 	int bit_nr;
1080 	int page_match;
1081 };
1082 
1083 struct wait_page_queue {
1084 	struct folio *folio;
1085 	int bit_nr;
1086 	wait_queue_entry_t wait;
1087 };
1088 
wake_page_match(struct wait_page_queue * wait_page,struct wait_page_key * key)1089 static inline bool wake_page_match(struct wait_page_queue *wait_page,
1090 				  struct wait_page_key *key)
1091 {
1092 	if (wait_page->folio != key->folio)
1093 	       return false;
1094 	key->page_match = 1;
1095 
1096 	if (wait_page->bit_nr != key->bit_nr)
1097 		return false;
1098 
1099 	return true;
1100 }
1101 
1102 void __folio_lock(struct folio *folio);
1103 int __folio_lock_killable(struct folio *folio);
1104 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
1105 void unlock_page(struct page *page);
1106 void folio_unlock(struct folio *folio);
1107 
1108 /**
1109  * folio_trylock() - Attempt to lock a folio.
1110  * @folio: The folio to attempt to lock.
1111  *
1112  * Sometimes it is undesirable to wait for a folio to be unlocked (eg
1113  * when the locks are being taken in the wrong order, or if making
1114  * progress through a batch of folios is more important than processing
1115  * them in order).  Usually folio_lock() is the correct function to call.
1116  *
1117  * Context: Any context.
1118  * Return: Whether the lock was successfully acquired.
1119  */
folio_trylock(struct folio * folio)1120 static inline bool folio_trylock(struct folio *folio)
1121 {
1122 	return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
1123 }
1124 
1125 /*
1126  * Return true if the page was successfully locked
1127  */
trylock_page(struct page * page)1128 static inline bool trylock_page(struct page *page)
1129 {
1130 	return folio_trylock(page_folio(page));
1131 }
1132 
1133 /**
1134  * folio_lock() - Lock this folio.
1135  * @folio: The folio to lock.
1136  *
1137  * The folio lock protects against many things, probably more than it
1138  * should.  It is primarily held while a folio is being brought uptodate,
1139  * either from its backing file or from swap.  It is also held while a
1140  * folio is being truncated from its address_space, so holding the lock
1141  * is sufficient to keep folio->mapping stable.
1142  *
1143  * The folio lock is also held while write() is modifying the page to
1144  * provide POSIX atomicity guarantees (as long as the write does not
1145  * cross a page boundary).  Other modifications to the data in the folio
1146  * do not hold the folio lock and can race with writes, eg DMA and stores
1147  * to mapped pages.
1148  *
1149  * Context: May sleep.  If you need to acquire the locks of two or
1150  * more folios, they must be in order of ascending index, if they are
1151  * in the same address_space.  If they are in different address_spaces,
1152  * acquire the lock of the folio which belongs to the address_space which
1153  * has the lowest address in memory first.
1154  */
folio_lock(struct folio * folio)1155 static inline void folio_lock(struct folio *folio)
1156 {
1157 	might_sleep();
1158 	if (!folio_trylock(folio))
1159 		__folio_lock(folio);
1160 }
1161 
1162 /**
1163  * lock_page() - Lock the folio containing this page.
1164  * @page: The page to lock.
1165  *
1166  * See folio_lock() for a description of what the lock protects.
1167  * This is a legacy function and new code should probably use folio_lock()
1168  * instead.
1169  *
1170  * Context: May sleep.  Pages in the same folio share a lock, so do not
1171  * attempt to lock two pages which share a folio.
1172  */
lock_page(struct page * page)1173 static inline void lock_page(struct page *page)
1174 {
1175 	struct folio *folio;
1176 	might_sleep();
1177 
1178 	folio = page_folio(page);
1179 	if (!folio_trylock(folio))
1180 		__folio_lock(folio);
1181 }
1182 
1183 /**
1184  * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1185  * @folio: The folio to lock.
1186  *
1187  * Attempts to lock the folio, like folio_lock(), except that the sleep
1188  * to acquire the lock is interruptible by a fatal signal.
1189  *
1190  * Context: May sleep; see folio_lock().
1191  * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1192  */
folio_lock_killable(struct folio * folio)1193 static inline int folio_lock_killable(struct folio *folio)
1194 {
1195 	might_sleep();
1196 	if (!folio_trylock(folio))
1197 		return __folio_lock_killable(folio);
1198 	return 0;
1199 }
1200 
1201 /*
1202  * folio_lock_or_retry - Lock the folio, unless this would block and the
1203  * caller indicated that it can handle a retry.
1204  *
1205  * Return value and mmap_lock implications depend on flags; see
1206  * __folio_lock_or_retry().
1207  */
folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1208 static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1209 					     struct vm_fault *vmf)
1210 {
1211 	might_sleep();
1212 	if (!folio_trylock(folio))
1213 		return __folio_lock_or_retry(folio, vmf);
1214 	return 0;
1215 }
1216 
1217 /*
1218  * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1219  * and should not be used directly.
1220  */
1221 void folio_wait_bit(struct folio *folio, int bit_nr);
1222 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1223 
1224 /*
1225  * Wait for a folio to be unlocked.
1226  *
1227  * This must be called with the caller "holding" the folio,
1228  * ie with increased folio reference count so that the folio won't
1229  * go away during the wait.
1230  */
folio_wait_locked(struct folio * folio)1231 static inline void folio_wait_locked(struct folio *folio)
1232 {
1233 	if (folio_test_locked(folio))
1234 		folio_wait_bit(folio, PG_locked);
1235 }
1236 
folio_wait_locked_killable(struct folio * folio)1237 static inline int folio_wait_locked_killable(struct folio *folio)
1238 {
1239 	if (!folio_test_locked(folio))
1240 		return 0;
1241 	return folio_wait_bit_killable(folio, PG_locked);
1242 }
1243 
1244 void folio_end_read(struct folio *folio, bool success);
1245 void wait_on_page_writeback(struct page *page);
1246 void folio_wait_writeback(struct folio *folio);
1247 int folio_wait_writeback_killable(struct folio *folio);
1248 void end_page_writeback(struct page *page);
1249 void folio_end_writeback(struct folio *folio);
1250 void folio_end_writeback_no_dropbehind(struct folio *folio);
1251 void folio_end_dropbehind(struct folio *folio);
1252 void folio_wait_stable(struct folio *folio);
1253 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1254 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1255 void __folio_cancel_dirty(struct folio *folio);
folio_cancel_dirty(struct folio * folio)1256 static inline void folio_cancel_dirty(struct folio *folio)
1257 {
1258 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1259 	if (folio_test_dirty(folio))
1260 		__folio_cancel_dirty(folio);
1261 }
1262 bool folio_clear_dirty_for_io(struct folio *folio);
1263 bool clear_page_dirty_for_io(struct page *page);
1264 void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1265 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1266 
1267 #ifdef CONFIG_MIGRATION
1268 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1269 		struct folio *src, enum migrate_mode mode);
1270 #else
1271 #define filemap_migrate_folio NULL
1272 #endif
1273 void folio_end_private_2(struct folio *folio);
1274 void folio_wait_private_2(struct folio *folio);
1275 int folio_wait_private_2_killable(struct folio *folio);
1276 
1277 /*
1278  * Fault in userspace address range.
1279  */
1280 size_t fault_in_writeable(char __user *uaddr, size_t size);
1281 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1282 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1283 size_t fault_in_readable(const char __user *uaddr, size_t size);
1284 
1285 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1286 		pgoff_t index, gfp_t gfp);
1287 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1288 		pgoff_t index, gfp_t gfp);
1289 void filemap_remove_folio(struct folio *folio);
1290 void __filemap_remove_folio(struct folio *folio, void *shadow);
1291 void replace_page_cache_folio(struct folio *old, struct folio *new);
1292 void delete_from_page_cache_batch(struct address_space *mapping,
1293 				  struct folio_batch *fbatch);
1294 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1295 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1296 		int whence);
1297 
1298 /* Must be non-static for BPF error injection */
1299 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1300 		pgoff_t index, gfp_t gfp, void **shadowp);
1301 
1302 bool filemap_range_has_writeback(struct address_space *mapping,
1303 				 loff_t start_byte, loff_t end_byte);
1304 
1305 /**
1306  * filemap_range_needs_writeback - check if range potentially needs writeback
1307  * @mapping:           address space within which to check
1308  * @start_byte:        offset in bytes where the range starts
1309  * @end_byte:          offset in bytes where the range ends (inclusive)
1310  *
1311  * Find at least one page in the range supplied, usually used to check if
1312  * direct writing in this range will trigger a writeback. Used by O_DIRECT
1313  * read/write with IOCB_NOWAIT, to see if the caller needs to do
1314  * filemap_write_and_wait_range() before proceeding.
1315  *
1316  * Return: %true if the caller should do filemap_write_and_wait_range() before
1317  * doing O_DIRECT to a page in this range, %false otherwise.
1318  */
filemap_range_needs_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)1319 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1320 						 loff_t start_byte,
1321 						 loff_t end_byte)
1322 {
1323 	if (!mapping->nrpages)
1324 		return false;
1325 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1326 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1327 		return false;
1328 	return filemap_range_has_writeback(mapping, start_byte, end_byte);
1329 }
1330 
1331 /**
1332  * struct readahead_control - Describes a readahead request.
1333  *
1334  * A readahead request is for consecutive pages.  Filesystems which
1335  * implement the ->readahead method should call readahead_folio() or
1336  * __readahead_batch() in a loop and attempt to start reads into each
1337  * folio in the request.
1338  *
1339  * Most of the fields in this struct are private and should be accessed
1340  * by the functions below.
1341  *
1342  * @file: The file, used primarily by network filesystems for authentication.
1343  *	  May be NULL if invoked internally by the filesystem.
1344  * @mapping: Readahead this filesystem object.
1345  * @ra: File readahead state.  May be NULL.
1346  */
1347 struct readahead_control {
1348 	struct file *file;
1349 	struct address_space *mapping;
1350 	struct file_ra_state *ra;
1351 /* private: use the readahead_* accessors instead */
1352 	pgoff_t _index;
1353 	unsigned int _nr_pages;
1354 	unsigned int _batch_count;
1355 	bool dropbehind;
1356 	bool _workingset;
1357 	unsigned long _pflags;
1358 };
1359 
1360 #define DEFINE_READAHEAD(ractl, f, r, m, i)				\
1361 	struct readahead_control ractl = {				\
1362 		.file = f,						\
1363 		.mapping = m,						\
1364 		.ra = r,						\
1365 		._index = i,						\
1366 	}
1367 
1368 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
1369 
1370 void page_cache_ra_unbounded(struct readahead_control *,
1371 		unsigned long nr_to_read, unsigned long lookahead_count);
1372 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1373 void page_cache_async_ra(struct readahead_control *, struct folio *,
1374 		unsigned long req_count);
1375 void readahead_expand(struct readahead_control *ractl,
1376 		      loff_t new_start, size_t new_len);
1377 
1378 /**
1379  * page_cache_sync_readahead - generic file readahead
1380  * @mapping: address_space which holds the pagecache and I/O vectors
1381  * @ra: file_ra_state which holds the readahead state
1382  * @file: Used by the filesystem for authentication.
1383  * @index: Index of first page to be read.
1384  * @req_count: Total number of pages being read by the caller.
1385  *
1386  * page_cache_sync_readahead() should be called when a cache miss happened:
1387  * it will submit the read.  The readahead logic may decide to piggyback more
1388  * pages onto the read request if access patterns suggest it will improve
1389  * performance.
1390  */
1391 static inline
page_cache_sync_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t index,unsigned long req_count)1392 void page_cache_sync_readahead(struct address_space *mapping,
1393 		struct file_ra_state *ra, struct file *file, pgoff_t index,
1394 		unsigned long req_count)
1395 {
1396 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1397 	page_cache_sync_ra(&ractl, req_count);
1398 }
1399 
1400 /**
1401  * page_cache_async_readahead - file readahead for marked pages
1402  * @mapping: address_space which holds the pagecache and I/O vectors
1403  * @ra: file_ra_state which holds the readahead state
1404  * @file: Used by the filesystem for authentication.
1405  * @folio: The folio which triggered the readahead call.
1406  * @req_count: Total number of pages being read by the caller.
1407  *
1408  * page_cache_async_readahead() should be called when a page is used which
1409  * is marked as PageReadahead; this is a marker to suggest that the application
1410  * has used up enough of the readahead window that we should start pulling in
1411  * more pages.
1412  */
1413 static inline
page_cache_async_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,struct folio * folio,unsigned long req_count)1414 void page_cache_async_readahead(struct address_space *mapping,
1415 		struct file_ra_state *ra, struct file *file,
1416 		struct folio *folio, unsigned long req_count)
1417 {
1418 	DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index);
1419 	page_cache_async_ra(&ractl, folio, req_count);
1420 }
1421 
__readahead_folio(struct readahead_control * ractl)1422 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1423 {
1424 	struct folio *folio;
1425 
1426 	BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1427 	ractl->_nr_pages -= ractl->_batch_count;
1428 	ractl->_index += ractl->_batch_count;
1429 
1430 	if (!ractl->_nr_pages) {
1431 		ractl->_batch_count = 0;
1432 		return NULL;
1433 	}
1434 
1435 	folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1436 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1437 	ractl->_batch_count = folio_nr_pages(folio);
1438 
1439 	return folio;
1440 }
1441 
1442 /**
1443  * readahead_folio - Get the next folio to read.
1444  * @ractl: The current readahead request.
1445  *
1446  * Context: The folio is locked.  The caller should unlock the folio once
1447  * all I/O to that folio has completed.
1448  * Return: A pointer to the next folio, or %NULL if we are done.
1449  */
readahead_folio(struct readahead_control * ractl)1450 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1451 {
1452 	struct folio *folio = __readahead_folio(ractl);
1453 
1454 	if (folio)
1455 		folio_put(folio);
1456 	return folio;
1457 }
1458 
__readahead_batch(struct readahead_control * rac,struct page ** array,unsigned int array_sz)1459 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1460 		struct page **array, unsigned int array_sz)
1461 {
1462 	unsigned int i = 0;
1463 	XA_STATE(xas, &rac->mapping->i_pages, 0);
1464 	struct folio *folio;
1465 
1466 	BUG_ON(rac->_batch_count > rac->_nr_pages);
1467 	rac->_nr_pages -= rac->_batch_count;
1468 	rac->_index += rac->_batch_count;
1469 	rac->_batch_count = 0;
1470 
1471 	xas_set(&xas, rac->_index);
1472 	rcu_read_lock();
1473 	xas_for_each(&xas, folio, rac->_index + rac->_nr_pages - 1) {
1474 		if (xas_retry(&xas, folio))
1475 			continue;
1476 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1477 		array[i++] = folio_page(folio, 0);
1478 		rac->_batch_count += folio_nr_pages(folio);
1479 		if (i == array_sz)
1480 			break;
1481 	}
1482 	rcu_read_unlock();
1483 
1484 	return i;
1485 }
1486 
1487 /**
1488  * readahead_pos - The byte offset into the file of this readahead request.
1489  * @rac: The readahead request.
1490  */
readahead_pos(const struct readahead_control * rac)1491 static inline loff_t readahead_pos(const struct readahead_control *rac)
1492 {
1493 	return (loff_t)rac->_index * PAGE_SIZE;
1494 }
1495 
1496 /**
1497  * readahead_length - The number of bytes in this readahead request.
1498  * @rac: The readahead request.
1499  */
readahead_length(const struct readahead_control * rac)1500 static inline size_t readahead_length(const struct readahead_control *rac)
1501 {
1502 	return rac->_nr_pages * PAGE_SIZE;
1503 }
1504 
1505 /**
1506  * readahead_index - The index of the first page in this readahead request.
1507  * @rac: The readahead request.
1508  */
readahead_index(const struct readahead_control * rac)1509 static inline pgoff_t readahead_index(const struct readahead_control *rac)
1510 {
1511 	return rac->_index;
1512 }
1513 
1514 /**
1515  * readahead_count - The number of pages in this readahead request.
1516  * @rac: The readahead request.
1517  */
readahead_count(const struct readahead_control * rac)1518 static inline unsigned int readahead_count(const struct readahead_control *rac)
1519 {
1520 	return rac->_nr_pages;
1521 }
1522 
1523 /**
1524  * readahead_batch_length - The number of bytes in the current batch.
1525  * @rac: The readahead request.
1526  */
readahead_batch_length(const struct readahead_control * rac)1527 static inline size_t readahead_batch_length(const struct readahead_control *rac)
1528 {
1529 	return rac->_batch_count * PAGE_SIZE;
1530 }
1531 
dir_pages(const struct inode * inode)1532 static inline unsigned long dir_pages(const struct inode *inode)
1533 {
1534 	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1535 			       PAGE_SHIFT;
1536 }
1537 
1538 /**
1539  * folio_mkwrite_check_truncate - check if folio was truncated
1540  * @folio: the folio to check
1541  * @inode: the inode to check the folio against
1542  *
1543  * Return: the number of bytes in the folio up to EOF,
1544  * or -EFAULT if the folio was truncated.
1545  */
folio_mkwrite_check_truncate(const struct folio * folio,const struct inode * inode)1546 static inline ssize_t folio_mkwrite_check_truncate(const struct folio *folio,
1547 						   const struct inode *inode)
1548 {
1549 	loff_t size = i_size_read(inode);
1550 	pgoff_t index = size >> PAGE_SHIFT;
1551 	size_t offset = offset_in_folio(folio, size);
1552 
1553 	if (!folio->mapping)
1554 		return -EFAULT;
1555 
1556 	/* folio is wholly inside EOF */
1557 	if (folio_next_index(folio) - 1 < index)
1558 		return folio_size(folio);
1559 	/* folio is wholly past EOF */
1560 	if (folio->index > index || !offset)
1561 		return -EFAULT;
1562 	/* folio is partially inside EOF */
1563 	return offset;
1564 }
1565 
1566 /**
1567  * i_blocks_per_folio - How many blocks fit in this folio.
1568  * @inode: The inode which contains the blocks.
1569  * @folio: The folio.
1570  *
1571  * If the block size is larger than the size of this folio, return zero.
1572  *
1573  * Context: The caller should hold a refcount on the folio to prevent it
1574  * from being split.
1575  * Return: The number of filesystem blocks covered by this folio.
1576  */
1577 static inline
i_blocks_per_folio(const struct inode * inode,const struct folio * folio)1578 unsigned int i_blocks_per_folio(const struct inode *inode,
1579 				const struct folio *folio)
1580 {
1581 	return folio_size(folio) >> inode->i_blkbits;
1582 }
1583 #endif /* _LINUX_PAGEMAP_H */
1584