xref: /linux/mm/filemap.c (revision 5635d8bad221701188017a6087fbe25ab245c226)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <linux/sched/mm.h>
50 #include <asm/pgalloc.h>
51 #include <asm/tlbflush.h>
52 #include "internal.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/filemap.h>
56 
57 /*
58  * FIXME: remove all knowledge of the buffer layer from the core VM
59  */
60 #include <linux/buffer_head.h> /* for try_to_free_buffers */
61 
62 #include <asm/mman.h>
63 
64 #include "swap.h"
65 
66 /*
67  * Shared mappings implemented 30.11.1994. It's not fully working yet,
68  * though.
69  *
70  * Shared mappings now work. 15.8.1995  Bruno.
71  *
72  * finished 'unifying' the page and buffer cache and SMP-threaded the
73  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
74  *
75  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
76  */
77 
78 /*
79  * Lock ordering:
80  *
81  *  ->i_mmap_rwsem		(truncate_pagecache)
82  *    ->private_lock		(__free_pte->block_dirty_folio)
83  *      ->swap_lock		(exclusive_swap_page, others)
84  *        ->i_pages lock
85  *
86  *  ->i_rwsem
87  *    ->invalidate_lock		(acquired by fs in truncate path)
88  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
89  *
90  *  ->mmap_lock
91  *    ->i_mmap_rwsem
92  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
93  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
94  *
95  *  ->mmap_lock
96  *    ->invalidate_lock		(filemap_fault)
97  *      ->lock_page		(filemap_fault, access_process_vm)
98  *
99  *  ->i_rwsem			(generic_perform_write)
100  *    ->mmap_lock		(fault_in_readable->do_page_fault)
101  *
102  *  bdi->wb.list_lock
103  *    sb_lock			(fs/fs-writeback.c)
104  *    ->i_pages lock		(__sync_single_inode)
105  *
106  *  ->i_mmap_rwsem
107  *    ->anon_vma.lock		(vma_merge)
108  *
109  *  ->anon_vma.lock
110  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
111  *
112  *  ->page_table_lock or pte_lock
113  *    ->swap_lock		(try_to_unmap_one)
114  *    ->private_lock		(try_to_unmap_one)
115  *    ->i_pages lock		(try_to_unmap_one)
116  *    ->lruvec->lru_lock	(follow_page_mask->mark_page_accessed)
117  *    ->lruvec->lru_lock	(check_pte_range->folio_isolate_lru)
118  *    ->private_lock		(folio_remove_rmap_pte->set_page_dirty)
119  *    ->i_pages lock		(folio_remove_rmap_pte->set_page_dirty)
120  *    bdi.wb->list_lock		(folio_remove_rmap_pte->set_page_dirty)
121  *    ->inode->i_lock		(folio_remove_rmap_pte->set_page_dirty)
122  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
123  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
124  *    ->private_lock		(zap_pte_range->block_dirty_folio)
125  */
126 
page_cache_delete(struct address_space * mapping,struct folio * folio,void * shadow)127 static void page_cache_delete(struct address_space *mapping,
128 				   struct folio *folio, void *shadow)
129 {
130 	XA_STATE(xas, &mapping->i_pages, folio->index);
131 	long nr = 1;
132 
133 	mapping_set_update(&xas, mapping);
134 
135 	xas_set_order(&xas, folio->index, folio_order(folio));
136 	nr = folio_nr_pages(folio);
137 
138 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
139 
140 	xas_store(&xas, shadow);
141 	xas_init_marks(&xas);
142 
143 	folio->mapping = NULL;
144 	/* Leave page->index set: truncation lookup relies upon it */
145 	mapping->nrpages -= nr;
146 }
147 
filemap_unaccount_folio(struct address_space * mapping,struct folio * folio)148 static void filemap_unaccount_folio(struct address_space *mapping,
149 		struct folio *folio)
150 {
151 	long nr;
152 
153 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
156 			 current->comm, folio_pfn(folio));
157 		dump_page(&folio->page, "still mapped when deleted");
158 		dump_stack();
159 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
160 
161 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 			int mapcount = folio_mapcount(folio);
163 
164 			if (folio_ref_count(folio) >= mapcount + 2) {
165 				/*
166 				 * All vmas have already been torn down, so it's
167 				 * a good bet that actually the page is unmapped
168 				 * and we'd rather not leak it: if we're wrong,
169 				 * another bad page check should catch it later.
170 				 */
171 				atomic_set(&folio->_mapcount, -1);
172 				folio_ref_sub(folio, mapcount);
173 			}
174 		}
175 	}
176 
177 	/* hugetlb folios do not participate in page cache accounting. */
178 	if (folio_test_hugetlb(folio))
179 		return;
180 
181 	nr = folio_nr_pages(folio);
182 
183 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 	if (folio_test_swapbacked(folio)) {
185 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 		if (folio_test_pmd_mappable(folio))
187 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 	} else if (folio_test_pmd_mappable(folio)) {
189 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 		filemap_nr_thps_dec(mapping);
191 	}
192 
193 	/*
194 	 * At this point folio must be either written or cleaned by
195 	 * truncate.  Dirty folio here signals a bug and loss of
196 	 * unwritten data - on ordinary filesystems.
197 	 *
198 	 * But it's harmless on in-memory filesystems like tmpfs; and can
199 	 * occur when a driver which did get_user_pages() sets page dirty
200 	 * before putting it, while the inode is being finally evicted.
201 	 *
202 	 * Below fixes dirty accounting after removing the folio entirely
203 	 * but leaves the dirty flag set: it has no effect for truncated
204 	 * folio and anyway will be cleared before returning folio to
205 	 * buddy allocator.
206 	 */
207 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 			 mapping_can_writeback(mapping)))
209 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
210 }
211 
212 /*
213  * Delete a page from the page cache and free it. Caller has to make
214  * sure the page is locked and that nobody else uses it - or that usage
215  * is safe.  The caller must hold the i_pages lock.
216  */
__filemap_remove_folio(struct folio * folio,void * shadow)217 void __filemap_remove_folio(struct folio *folio, void *shadow)
218 {
219 	struct address_space *mapping = folio->mapping;
220 
221 	trace_mm_filemap_delete_from_page_cache(folio);
222 	filemap_unaccount_folio(mapping, folio);
223 	page_cache_delete(mapping, folio, shadow);
224 }
225 
filemap_free_folio(struct address_space * mapping,struct folio * folio)226 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
227 {
228 	void (*free_folio)(struct folio *);
229 	int refs = 1;
230 
231 	free_folio = mapping->a_ops->free_folio;
232 	if (free_folio)
233 		free_folio(folio);
234 
235 	if (folio_test_large(folio))
236 		refs = folio_nr_pages(folio);
237 	folio_put_refs(folio, refs);
238 }
239 
240 /**
241  * filemap_remove_folio - Remove folio from page cache.
242  * @folio: The folio.
243  *
244  * This must be called only on folios that are locked and have been
245  * verified to be in the page cache.  It will never put the folio into
246  * the free list because the caller has a reference on the page.
247  */
filemap_remove_folio(struct folio * folio)248 void filemap_remove_folio(struct folio *folio)
249 {
250 	struct address_space *mapping = folio->mapping;
251 
252 	BUG_ON(!folio_test_locked(folio));
253 	spin_lock(&mapping->host->i_lock);
254 	xa_lock_irq(&mapping->i_pages);
255 	__filemap_remove_folio(folio, NULL);
256 	xa_unlock_irq(&mapping->i_pages);
257 	if (mapping_shrinkable(mapping))
258 		inode_add_lru(mapping->host);
259 	spin_unlock(&mapping->host->i_lock);
260 
261 	filemap_free_folio(mapping, folio);
262 }
263 
264 /*
265  * page_cache_delete_batch - delete several folios from page cache
266  * @mapping: the mapping to which folios belong
267  * @fbatch: batch of folios to delete
268  *
269  * The function walks over mapping->i_pages and removes folios passed in
270  * @fbatch from the mapping. The function expects @fbatch to be sorted
271  * by page index and is optimised for it to be dense.
272  * It tolerates holes in @fbatch (mapping entries at those indices are not
273  * modified).
274  *
275  * The function expects the i_pages lock to be held.
276  */
page_cache_delete_batch(struct address_space * mapping,struct folio_batch * fbatch)277 static void page_cache_delete_batch(struct address_space *mapping,
278 			     struct folio_batch *fbatch)
279 {
280 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
281 	long total_pages = 0;
282 	int i = 0;
283 	struct folio *folio;
284 
285 	mapping_set_update(&xas, mapping);
286 	xas_for_each(&xas, folio, ULONG_MAX) {
287 		if (i >= folio_batch_count(fbatch))
288 			break;
289 
290 		/* A swap/dax/shadow entry got inserted? Skip it. */
291 		if (xa_is_value(folio))
292 			continue;
293 		/*
294 		 * A page got inserted in our range? Skip it. We have our
295 		 * pages locked so they are protected from being removed.
296 		 * If we see a page whose index is higher than ours, it
297 		 * means our page has been removed, which shouldn't be
298 		 * possible because we're holding the PageLock.
299 		 */
300 		if (folio != fbatch->folios[i]) {
301 			VM_BUG_ON_FOLIO(folio->index >
302 					fbatch->folios[i]->index, folio);
303 			continue;
304 		}
305 
306 		WARN_ON_ONCE(!folio_test_locked(folio));
307 
308 		folio->mapping = NULL;
309 		/* Leave folio->index set: truncation lookup relies on it */
310 
311 		i++;
312 		xas_store(&xas, NULL);
313 		total_pages += folio_nr_pages(folio);
314 	}
315 	mapping->nrpages -= total_pages;
316 }
317 
delete_from_page_cache_batch(struct address_space * mapping,struct folio_batch * fbatch)318 void delete_from_page_cache_batch(struct address_space *mapping,
319 				  struct folio_batch *fbatch)
320 {
321 	int i;
322 
323 	if (!folio_batch_count(fbatch))
324 		return;
325 
326 	spin_lock(&mapping->host->i_lock);
327 	xa_lock_irq(&mapping->i_pages);
328 	for (i = 0; i < folio_batch_count(fbatch); i++) {
329 		struct folio *folio = fbatch->folios[i];
330 
331 		trace_mm_filemap_delete_from_page_cache(folio);
332 		filemap_unaccount_folio(mapping, folio);
333 	}
334 	page_cache_delete_batch(mapping, fbatch);
335 	xa_unlock_irq(&mapping->i_pages);
336 	if (mapping_shrinkable(mapping))
337 		inode_add_lru(mapping->host);
338 	spin_unlock(&mapping->host->i_lock);
339 
340 	for (i = 0; i < folio_batch_count(fbatch); i++)
341 		filemap_free_folio(mapping, fbatch->folios[i]);
342 }
343 
filemap_check_errors(struct address_space * mapping)344 int filemap_check_errors(struct address_space *mapping)
345 {
346 	int ret = 0;
347 	/* Check for outstanding write errors */
348 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
350 		ret = -ENOSPC;
351 	if (test_bit(AS_EIO, &mapping->flags) &&
352 	    test_and_clear_bit(AS_EIO, &mapping->flags))
353 		ret = -EIO;
354 	return ret;
355 }
356 EXPORT_SYMBOL(filemap_check_errors);
357 
filemap_check_and_keep_errors(struct address_space * mapping)358 static int filemap_check_and_keep_errors(struct address_space *mapping)
359 {
360 	/* Check for outstanding write errors */
361 	if (test_bit(AS_EIO, &mapping->flags))
362 		return -EIO;
363 	if (test_bit(AS_ENOSPC, &mapping->flags))
364 		return -ENOSPC;
365 	return 0;
366 }
367 
368 /**
369  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370  * @mapping:	address space structure to write
371  * @wbc:	the writeback_control controlling the writeout
372  *
373  * Call writepages on the mapping using the provided wbc to control the
374  * writeout.
375  *
376  * Return: %0 on success, negative error code otherwise.
377  */
filemap_fdatawrite_wbc(struct address_space * mapping,struct writeback_control * wbc)378 int filemap_fdatawrite_wbc(struct address_space *mapping,
379 			   struct writeback_control *wbc)
380 {
381 	int ret;
382 
383 	if (!mapping_can_writeback(mapping) ||
384 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
385 		return 0;
386 
387 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 	ret = do_writepages(mapping, wbc);
389 	wbc_detach_inode(wbc);
390 	return ret;
391 }
392 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
393 
394 /**
395  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396  * @mapping:	address space structure to write
397  * @start:	offset in bytes where the range starts
398  * @end:	offset in bytes where the range ends (inclusive)
399  * @sync_mode:	enable synchronous operation
400  *
401  * Start writeback against all of a mapping's dirty pages that lie
402  * within the byte offsets <start, end> inclusive.
403  *
404  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
405  * opposed to a regular memory cleansing writeback.  The difference between
406  * these two operations is that if a dirty page/buffer is encountered, it must
407  * be waited upon, and not just skipped over.
408  *
409  * Return: %0 on success, negative error code otherwise.
410  */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 				loff_t end, int sync_mode)
413 {
414 	struct writeback_control wbc = {
415 		.sync_mode = sync_mode,
416 		.nr_to_write = LONG_MAX,
417 		.range_start = start,
418 		.range_end = end,
419 	};
420 
421 	return filemap_fdatawrite_wbc(mapping, &wbc);
422 }
423 
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)424 static inline int __filemap_fdatawrite(struct address_space *mapping,
425 	int sync_mode)
426 {
427 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
428 }
429 
filemap_fdatawrite(struct address_space * mapping)430 int filemap_fdatawrite(struct address_space *mapping)
431 {
432 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433 }
434 EXPORT_SYMBOL(filemap_fdatawrite);
435 
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
437 				loff_t end)
438 {
439 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440 }
441 EXPORT_SYMBOL(filemap_fdatawrite_range);
442 
443 /**
444  * filemap_flush - mostly a non-blocking flush
445  * @mapping:	target address_space
446  *
447  * This is a mostly non-blocking flush.  Not suitable for data-integrity
448  * purposes - I/O may not be started against all dirty pages.
449  *
450  * Return: %0 on success, negative error code otherwise.
451  */
filemap_flush(struct address_space * mapping)452 int filemap_flush(struct address_space *mapping)
453 {
454 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
455 }
456 EXPORT_SYMBOL(filemap_flush);
457 
458 /**
459  * filemap_range_has_page - check if a page exists in range.
460  * @mapping:           address space within which to check
461  * @start_byte:        offset in bytes where the range starts
462  * @end_byte:          offset in bytes where the range ends (inclusive)
463  *
464  * Find at least one page in the range supplied, usually used to check if
465  * direct writing in this range will trigger a writeback.
466  *
467  * Return: %true if at least one page exists in the specified range,
468  * %false otherwise.
469  */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)470 bool filemap_range_has_page(struct address_space *mapping,
471 			   loff_t start_byte, loff_t end_byte)
472 {
473 	struct folio *folio;
474 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 	pgoff_t max = end_byte >> PAGE_SHIFT;
476 
477 	if (end_byte < start_byte)
478 		return false;
479 
480 	rcu_read_lock();
481 	for (;;) {
482 		folio = xas_find(&xas, max);
483 		if (xas_retry(&xas, folio))
484 			continue;
485 		/* Shadow entries don't count */
486 		if (xa_is_value(folio))
487 			continue;
488 		/*
489 		 * We don't need to try to pin this page; we're about to
490 		 * release the RCU lock anyway.  It is enough to know that
491 		 * there was a page here recently.
492 		 */
493 		break;
494 	}
495 	rcu_read_unlock();
496 
497 	return folio != NULL;
498 }
499 EXPORT_SYMBOL(filemap_range_has_page);
500 
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)501 static void __filemap_fdatawait_range(struct address_space *mapping,
502 				     loff_t start_byte, loff_t end_byte)
503 {
504 	pgoff_t index = start_byte >> PAGE_SHIFT;
505 	pgoff_t end = end_byte >> PAGE_SHIFT;
506 	struct folio_batch fbatch;
507 	unsigned nr_folios;
508 
509 	folio_batch_init(&fbatch);
510 
511 	while (index <= end) {
512 		unsigned i;
513 
514 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
515 				PAGECACHE_TAG_WRITEBACK, &fbatch);
516 
517 		if (!nr_folios)
518 			break;
519 
520 		for (i = 0; i < nr_folios; i++) {
521 			struct folio *folio = fbatch.folios[i];
522 
523 			folio_wait_writeback(folio);
524 		}
525 		folio_batch_release(&fbatch);
526 		cond_resched();
527 	}
528 }
529 
530 /**
531  * filemap_fdatawait_range - wait for writeback to complete
532  * @mapping:		address space structure to wait for
533  * @start_byte:		offset in bytes where the range starts
534  * @end_byte:		offset in bytes where the range ends (inclusive)
535  *
536  * Walk the list of under-writeback pages of the given address space
537  * in the given range and wait for all of them.  Check error status of
538  * the address space and return it.
539  *
540  * Since the error status of the address space is cleared by this function,
541  * callers are responsible for checking the return value and handling and/or
542  * reporting the error.
543  *
544  * Return: error status of the address space.
545  */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)546 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
547 			    loff_t end_byte)
548 {
549 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
550 	return filemap_check_errors(mapping);
551 }
552 EXPORT_SYMBOL(filemap_fdatawait_range);
553 
554 /**
555  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
556  * @mapping:		address space structure to wait for
557  * @start_byte:		offset in bytes where the range starts
558  * @end_byte:		offset in bytes where the range ends (inclusive)
559  *
560  * Walk the list of under-writeback pages of the given address space in the
561  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
562  * this function does not clear error status of the address space.
563  *
564  * Use this function if callers don't handle errors themselves.  Expected
565  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
566  * fsfreeze(8)
567  */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)568 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
569 		loff_t start_byte, loff_t end_byte)
570 {
571 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
572 	return filemap_check_and_keep_errors(mapping);
573 }
574 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
575 
576 /**
577  * file_fdatawait_range - wait for writeback to complete
578  * @file:		file pointing to address space structure to wait for
579  * @start_byte:		offset in bytes where the range starts
580  * @end_byte:		offset in bytes where the range ends (inclusive)
581  *
582  * Walk the list of under-writeback pages of the address space that file
583  * refers to, in the given range and wait for all of them.  Check error
584  * status of the address space vs. the file->f_wb_err cursor and return it.
585  *
586  * Since the error status of the file is advanced by this function,
587  * callers are responsible for checking the return value and handling and/or
588  * reporting the error.
589  *
590  * Return: error status of the address space vs. the file->f_wb_err cursor.
591  */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)592 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
593 {
594 	struct address_space *mapping = file->f_mapping;
595 
596 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
597 	return file_check_and_advance_wb_err(file);
598 }
599 EXPORT_SYMBOL(file_fdatawait_range);
600 
601 /**
602  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
603  * @mapping: address space structure to wait for
604  *
605  * Walk the list of under-writeback pages of the given address space
606  * and wait for all of them.  Unlike filemap_fdatawait(), this function
607  * does not clear error status of the address space.
608  *
609  * Use this function if callers don't handle errors themselves.  Expected
610  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
611  * fsfreeze(8)
612  *
613  * Return: error status of the address space.
614  */
filemap_fdatawait_keep_errors(struct address_space * mapping)615 int filemap_fdatawait_keep_errors(struct address_space *mapping)
616 {
617 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
618 	return filemap_check_and_keep_errors(mapping);
619 }
620 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
621 
622 /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)623 static bool mapping_needs_writeback(struct address_space *mapping)
624 {
625 	return mapping->nrpages;
626 }
627 
filemap_range_has_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)628 bool filemap_range_has_writeback(struct address_space *mapping,
629 				 loff_t start_byte, loff_t end_byte)
630 {
631 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
632 	pgoff_t max = end_byte >> PAGE_SHIFT;
633 	struct folio *folio;
634 
635 	if (end_byte < start_byte)
636 		return false;
637 
638 	rcu_read_lock();
639 	xas_for_each(&xas, folio, max) {
640 		if (xas_retry(&xas, folio))
641 			continue;
642 		if (xa_is_value(folio))
643 			continue;
644 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
645 				folio_test_writeback(folio))
646 			break;
647 	}
648 	rcu_read_unlock();
649 	return folio != NULL;
650 }
651 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
652 
653 /**
654  * filemap_write_and_wait_range - write out & wait on a file range
655  * @mapping:	the address_space for the pages
656  * @lstart:	offset in bytes where the range starts
657  * @lend:	offset in bytes where the range ends (inclusive)
658  *
659  * Write out and wait upon file offsets lstart->lend, inclusive.
660  *
661  * Note that @lend is inclusive (describes the last byte to be written) so
662  * that this function can be used to write to the very end-of-file (end = -1).
663  *
664  * Return: error status of the address space.
665  */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)666 int filemap_write_and_wait_range(struct address_space *mapping,
667 				 loff_t lstart, loff_t lend)
668 {
669 	int err = 0, err2;
670 
671 	if (lend < lstart)
672 		return 0;
673 
674 	if (mapping_needs_writeback(mapping)) {
675 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
676 						 WB_SYNC_ALL);
677 		/*
678 		 * Even if the above returned error, the pages may be
679 		 * written partially (e.g. -ENOSPC), so we wait for it.
680 		 * But the -EIO is special case, it may indicate the worst
681 		 * thing (e.g. bug) happened, so we avoid waiting for it.
682 		 */
683 		if (err != -EIO)
684 			__filemap_fdatawait_range(mapping, lstart, lend);
685 	}
686 	err2 = filemap_check_errors(mapping);
687 	if (!err)
688 		err = err2;
689 	return err;
690 }
691 EXPORT_SYMBOL(filemap_write_and_wait_range);
692 
__filemap_set_wb_err(struct address_space * mapping,int err)693 void __filemap_set_wb_err(struct address_space *mapping, int err)
694 {
695 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
696 
697 	trace_filemap_set_wb_err(mapping, eseq);
698 }
699 EXPORT_SYMBOL(__filemap_set_wb_err);
700 
701 /**
702  * file_check_and_advance_wb_err - report wb error (if any) that was previously
703  * 				   and advance wb_err to current one
704  * @file: struct file on which the error is being reported
705  *
706  * When userland calls fsync (or something like nfsd does the equivalent), we
707  * want to report any writeback errors that occurred since the last fsync (or
708  * since the file was opened if there haven't been any).
709  *
710  * Grab the wb_err from the mapping. If it matches what we have in the file,
711  * then just quickly return 0. The file is all caught up.
712  *
713  * If it doesn't match, then take the mapping value, set the "seen" flag in
714  * it and try to swap it into place. If it works, or another task beat us
715  * to it with the new value, then update the f_wb_err and return the error
716  * portion. The error at this point must be reported via proper channels
717  * (a'la fsync, or NFS COMMIT operation, etc.).
718  *
719  * While we handle mapping->wb_err with atomic operations, the f_wb_err
720  * value is protected by the f_lock since we must ensure that it reflects
721  * the latest value swapped in for this file descriptor.
722  *
723  * Return: %0 on success, negative error code otherwise.
724  */
file_check_and_advance_wb_err(struct file * file)725 int file_check_and_advance_wb_err(struct file *file)
726 {
727 	int err = 0;
728 	errseq_t old = READ_ONCE(file->f_wb_err);
729 	struct address_space *mapping = file->f_mapping;
730 
731 	/* Locklessly handle the common case where nothing has changed */
732 	if (errseq_check(&mapping->wb_err, old)) {
733 		/* Something changed, must use slow path */
734 		spin_lock(&file->f_lock);
735 		old = file->f_wb_err;
736 		err = errseq_check_and_advance(&mapping->wb_err,
737 						&file->f_wb_err);
738 		trace_file_check_and_advance_wb_err(file, old);
739 		spin_unlock(&file->f_lock);
740 	}
741 
742 	/*
743 	 * We're mostly using this function as a drop in replacement for
744 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
745 	 * that the legacy code would have had on these flags.
746 	 */
747 	clear_bit(AS_EIO, &mapping->flags);
748 	clear_bit(AS_ENOSPC, &mapping->flags);
749 	return err;
750 }
751 EXPORT_SYMBOL(file_check_and_advance_wb_err);
752 
753 /**
754  * file_write_and_wait_range - write out & wait on a file range
755  * @file:	file pointing to address_space with pages
756  * @lstart:	offset in bytes where the range starts
757  * @lend:	offset in bytes where the range ends (inclusive)
758  *
759  * Write out and wait upon file offsets lstart->lend, inclusive.
760  *
761  * Note that @lend is inclusive (describes the last byte to be written) so
762  * that this function can be used to write to the very end-of-file (end = -1).
763  *
764  * After writing out and waiting on the data, we check and advance the
765  * f_wb_err cursor to the latest value, and return any errors detected there.
766  *
767  * Return: %0 on success, negative error code otherwise.
768  */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)769 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
770 {
771 	int err = 0, err2;
772 	struct address_space *mapping = file->f_mapping;
773 
774 	if (lend < lstart)
775 		return 0;
776 
777 	if (mapping_needs_writeback(mapping)) {
778 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
779 						 WB_SYNC_ALL);
780 		/* See comment of filemap_write_and_wait() */
781 		if (err != -EIO)
782 			__filemap_fdatawait_range(mapping, lstart, lend);
783 	}
784 	err2 = file_check_and_advance_wb_err(file);
785 	if (!err)
786 		err = err2;
787 	return err;
788 }
789 EXPORT_SYMBOL(file_write_and_wait_range);
790 
791 /**
792  * replace_page_cache_folio - replace a pagecache folio with a new one
793  * @old:	folio to be replaced
794  * @new:	folio to replace with
795  *
796  * This function replaces a folio in the pagecache with a new one.  On
797  * success it acquires the pagecache reference for the new folio and
798  * drops it for the old folio.  Both the old and new folios must be
799  * locked.  This function does not add the new folio to the LRU, the
800  * caller must do that.
801  *
802  * The remove + add is atomic.  This function cannot fail.
803  */
replace_page_cache_folio(struct folio * old,struct folio * new)804 void replace_page_cache_folio(struct folio *old, struct folio *new)
805 {
806 	struct address_space *mapping = old->mapping;
807 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
808 	pgoff_t offset = old->index;
809 	XA_STATE(xas, &mapping->i_pages, offset);
810 
811 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
812 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
813 	VM_BUG_ON_FOLIO(new->mapping, new);
814 
815 	folio_get(new);
816 	new->mapping = mapping;
817 	new->index = offset;
818 
819 	mem_cgroup_replace_folio(old, new);
820 
821 	xas_lock_irq(&xas);
822 	xas_store(&xas, new);
823 
824 	old->mapping = NULL;
825 	/* hugetlb pages do not participate in page cache accounting. */
826 	if (!folio_test_hugetlb(old))
827 		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
828 	if (!folio_test_hugetlb(new))
829 		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
830 	if (folio_test_swapbacked(old))
831 		__lruvec_stat_sub_folio(old, NR_SHMEM);
832 	if (folio_test_swapbacked(new))
833 		__lruvec_stat_add_folio(new, NR_SHMEM);
834 	xas_unlock_irq(&xas);
835 	if (free_folio)
836 		free_folio(old);
837 	folio_put(old);
838 }
839 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
840 
__filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp,void ** shadowp)841 noinline int __filemap_add_folio(struct address_space *mapping,
842 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
843 {
844 	XA_STATE(xas, &mapping->i_pages, index);
845 	void *alloced_shadow = NULL;
846 	int alloced_order = 0;
847 	bool huge;
848 	long nr;
849 
850 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
851 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
852 	VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
853 			folio);
854 	mapping_set_update(&xas, mapping);
855 
856 	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
857 	xas_set_order(&xas, index, folio_order(folio));
858 	huge = folio_test_hugetlb(folio);
859 	nr = folio_nr_pages(folio);
860 
861 	gfp &= GFP_RECLAIM_MASK;
862 	folio_ref_add(folio, nr);
863 	folio->mapping = mapping;
864 	folio->index = xas.xa_index;
865 
866 	for (;;) {
867 		int order = -1, split_order = 0;
868 		void *entry, *old = NULL;
869 
870 		xas_lock_irq(&xas);
871 		xas_for_each_conflict(&xas, entry) {
872 			old = entry;
873 			if (!xa_is_value(entry)) {
874 				xas_set_err(&xas, -EEXIST);
875 				goto unlock;
876 			}
877 			/*
878 			 * If a larger entry exists,
879 			 * it will be the first and only entry iterated.
880 			 */
881 			if (order == -1)
882 				order = xas_get_order(&xas);
883 		}
884 
885 		/* entry may have changed before we re-acquire the lock */
886 		if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
887 			xas_destroy(&xas);
888 			alloced_order = 0;
889 		}
890 
891 		if (old) {
892 			if (order > 0 && order > folio_order(folio)) {
893 				/* How to handle large swap entries? */
894 				BUG_ON(shmem_mapping(mapping));
895 				if (!alloced_order) {
896 					split_order = order;
897 					goto unlock;
898 				}
899 				xas_split(&xas, old, order);
900 				xas_reset(&xas);
901 			}
902 			if (shadowp)
903 				*shadowp = old;
904 		}
905 
906 		xas_store(&xas, folio);
907 		if (xas_error(&xas))
908 			goto unlock;
909 
910 		mapping->nrpages += nr;
911 
912 		/* hugetlb pages do not participate in page cache accounting */
913 		if (!huge) {
914 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
915 			if (folio_test_pmd_mappable(folio))
916 				__lruvec_stat_mod_folio(folio,
917 						NR_FILE_THPS, nr);
918 		}
919 
920 unlock:
921 		xas_unlock_irq(&xas);
922 
923 		/* split needed, alloc here and retry. */
924 		if (split_order) {
925 			xas_split_alloc(&xas, old, split_order, gfp);
926 			if (xas_error(&xas))
927 				goto error;
928 			alloced_shadow = old;
929 			alloced_order = split_order;
930 			xas_reset(&xas);
931 			continue;
932 		}
933 
934 		if (!xas_nomem(&xas, gfp))
935 			break;
936 	}
937 
938 	if (xas_error(&xas))
939 		goto error;
940 
941 	trace_mm_filemap_add_to_page_cache(folio);
942 	return 0;
943 error:
944 	folio->mapping = NULL;
945 	/* Leave page->index set: truncation relies upon it */
946 	folio_put_refs(folio, nr);
947 	return xas_error(&xas);
948 }
949 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
950 
filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp)951 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
952 				pgoff_t index, gfp_t gfp)
953 {
954 	void *shadow = NULL;
955 	int ret;
956 
957 	ret = mem_cgroup_charge(folio, NULL, gfp);
958 	if (ret)
959 		return ret;
960 
961 	__folio_set_locked(folio);
962 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
963 	if (unlikely(ret)) {
964 		mem_cgroup_uncharge(folio);
965 		__folio_clear_locked(folio);
966 	} else {
967 		/*
968 		 * The folio might have been evicted from cache only
969 		 * recently, in which case it should be activated like
970 		 * any other repeatedly accessed folio.
971 		 * The exception is folios getting rewritten; evicting other
972 		 * data from the working set, only to cache data that will
973 		 * get overwritten with something else, is a waste of memory.
974 		 */
975 		WARN_ON_ONCE(folio_test_active(folio));
976 		if (!(gfp & __GFP_WRITE) && shadow)
977 			workingset_refault(folio, shadow);
978 		folio_add_lru(folio);
979 	}
980 	return ret;
981 }
982 EXPORT_SYMBOL_GPL(filemap_add_folio);
983 
984 #ifdef CONFIG_NUMA
filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order)985 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
986 {
987 	int n;
988 	struct folio *folio;
989 
990 	if (cpuset_do_page_mem_spread()) {
991 		unsigned int cpuset_mems_cookie;
992 		do {
993 			cpuset_mems_cookie = read_mems_allowed_begin();
994 			n = cpuset_mem_spread_node();
995 			folio = __folio_alloc_node_noprof(gfp, order, n);
996 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
997 
998 		return folio;
999 	}
1000 	return folio_alloc_noprof(gfp, order);
1001 }
1002 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1003 #endif
1004 
1005 /*
1006  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1007  *
1008  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1009  *
1010  * @mapping1: the first mapping to lock
1011  * @mapping2: the second mapping to lock
1012  */
filemap_invalidate_lock_two(struct address_space * mapping1,struct address_space * mapping2)1013 void filemap_invalidate_lock_two(struct address_space *mapping1,
1014 				 struct address_space *mapping2)
1015 {
1016 	if (mapping1 > mapping2)
1017 		swap(mapping1, mapping2);
1018 	if (mapping1)
1019 		down_write(&mapping1->invalidate_lock);
1020 	if (mapping2 && mapping1 != mapping2)
1021 		down_write_nested(&mapping2->invalidate_lock, 1);
1022 }
1023 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1024 
1025 /*
1026  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1027  *
1028  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1029  *
1030  * @mapping1: the first mapping to unlock
1031  * @mapping2: the second mapping to unlock
1032  */
filemap_invalidate_unlock_two(struct address_space * mapping1,struct address_space * mapping2)1033 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1034 				   struct address_space *mapping2)
1035 {
1036 	if (mapping1)
1037 		up_write(&mapping1->invalidate_lock);
1038 	if (mapping2 && mapping1 != mapping2)
1039 		up_write(&mapping2->invalidate_lock);
1040 }
1041 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1042 
1043 /*
1044  * In order to wait for pages to become available there must be
1045  * waitqueues associated with pages. By using a hash table of
1046  * waitqueues where the bucket discipline is to maintain all
1047  * waiters on the same queue and wake all when any of the pages
1048  * become available, and for the woken contexts to check to be
1049  * sure the appropriate page became available, this saves space
1050  * at a cost of "thundering herd" phenomena during rare hash
1051  * collisions.
1052  */
1053 #define PAGE_WAIT_TABLE_BITS 8
1054 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1055 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1056 
folio_waitqueue(struct folio * folio)1057 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1058 {
1059 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1060 }
1061 
pagecache_init(void)1062 void __init pagecache_init(void)
1063 {
1064 	int i;
1065 
1066 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1067 		init_waitqueue_head(&folio_wait_table[i]);
1068 
1069 	page_writeback_init();
1070 }
1071 
1072 /*
1073  * The page wait code treats the "wait->flags" somewhat unusually, because
1074  * we have multiple different kinds of waits, not just the usual "exclusive"
1075  * one.
1076  *
1077  * We have:
1078  *
1079  *  (a) no special bits set:
1080  *
1081  *	We're just waiting for the bit to be released, and when a waker
1082  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1083  *	and remove it from the wait queue.
1084  *
1085  *	Simple and straightforward.
1086  *
1087  *  (b) WQ_FLAG_EXCLUSIVE:
1088  *
1089  *	The waiter is waiting to get the lock, and only one waiter should
1090  *	be woken up to avoid any thundering herd behavior. We'll set the
1091  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1092  *
1093  *	This is the traditional exclusive wait.
1094  *
1095  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1096  *
1097  *	The waiter is waiting to get the bit, and additionally wants the
1098  *	lock to be transferred to it for fair lock behavior. If the lock
1099  *	cannot be taken, we stop walking the wait queue without waking
1100  *	the waiter.
1101  *
1102  *	This is the "fair lock handoff" case, and in addition to setting
1103  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1104  *	that it now has the lock.
1105  */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1106 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1107 {
1108 	unsigned int flags;
1109 	struct wait_page_key *key = arg;
1110 	struct wait_page_queue *wait_page
1111 		= container_of(wait, struct wait_page_queue, wait);
1112 
1113 	if (!wake_page_match(wait_page, key))
1114 		return 0;
1115 
1116 	/*
1117 	 * If it's a lock handoff wait, we get the bit for it, and
1118 	 * stop walking (and do not wake it up) if we can't.
1119 	 */
1120 	flags = wait->flags;
1121 	if (flags & WQ_FLAG_EXCLUSIVE) {
1122 		if (test_bit(key->bit_nr, &key->folio->flags))
1123 			return -1;
1124 		if (flags & WQ_FLAG_CUSTOM) {
1125 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1126 				return -1;
1127 			flags |= WQ_FLAG_DONE;
1128 		}
1129 	}
1130 
1131 	/*
1132 	 * We are holding the wait-queue lock, but the waiter that
1133 	 * is waiting for this will be checking the flags without
1134 	 * any locking.
1135 	 *
1136 	 * So update the flags atomically, and wake up the waiter
1137 	 * afterwards to avoid any races. This store-release pairs
1138 	 * with the load-acquire in folio_wait_bit_common().
1139 	 */
1140 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1141 	wake_up_state(wait->private, mode);
1142 
1143 	/*
1144 	 * Ok, we have successfully done what we're waiting for,
1145 	 * and we can unconditionally remove the wait entry.
1146 	 *
1147 	 * Note that this pairs with the "finish_wait()" in the
1148 	 * waiter, and has to be the absolute last thing we do.
1149 	 * After this list_del_init(&wait->entry) the wait entry
1150 	 * might be de-allocated and the process might even have
1151 	 * exited.
1152 	 */
1153 	list_del_init_careful(&wait->entry);
1154 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1155 }
1156 
folio_wake_bit(struct folio * folio,int bit_nr)1157 static void folio_wake_bit(struct folio *folio, int bit_nr)
1158 {
1159 	wait_queue_head_t *q = folio_waitqueue(folio);
1160 	struct wait_page_key key;
1161 	unsigned long flags;
1162 
1163 	key.folio = folio;
1164 	key.bit_nr = bit_nr;
1165 	key.page_match = 0;
1166 
1167 	spin_lock_irqsave(&q->lock, flags);
1168 	__wake_up_locked_key(q, TASK_NORMAL, &key);
1169 
1170 	/*
1171 	 * It's possible to miss clearing waiters here, when we woke our page
1172 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1173 	 * That's okay, it's a rare case. The next waker will clear it.
1174 	 *
1175 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1176 	 * other), the flag may be cleared in the course of freeing the page;
1177 	 * but that is not required for correctness.
1178 	 */
1179 	if (!waitqueue_active(q) || !key.page_match)
1180 		folio_clear_waiters(folio);
1181 
1182 	spin_unlock_irqrestore(&q->lock, flags);
1183 }
1184 
1185 /*
1186  * A choice of three behaviors for folio_wait_bit_common():
1187  */
1188 enum behavior {
1189 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1190 			 * __folio_lock() waiting on then setting PG_locked.
1191 			 */
1192 	SHARED,		/* Hold ref to page and check the bit when woken, like
1193 			 * folio_wait_writeback() waiting on PG_writeback.
1194 			 */
1195 	DROP,		/* Drop ref to page before wait, no check when woken,
1196 			 * like folio_put_wait_locked() on PG_locked.
1197 			 */
1198 };
1199 
1200 /*
1201  * Attempt to check (or get) the folio flag, and mark us done
1202  * if successful.
1203  */
folio_trylock_flag(struct folio * folio,int bit_nr,struct wait_queue_entry * wait)1204 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1205 					struct wait_queue_entry *wait)
1206 {
1207 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1208 		if (test_and_set_bit(bit_nr, &folio->flags))
1209 			return false;
1210 	} else if (test_bit(bit_nr, &folio->flags))
1211 		return false;
1212 
1213 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1214 	return true;
1215 }
1216 
1217 /* How many times do we accept lock stealing from under a waiter? */
1218 int sysctl_page_lock_unfairness = 5;
1219 
folio_wait_bit_common(struct folio * folio,int bit_nr,int state,enum behavior behavior)1220 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1221 		int state, enum behavior behavior)
1222 {
1223 	wait_queue_head_t *q = folio_waitqueue(folio);
1224 	int unfairness = sysctl_page_lock_unfairness;
1225 	struct wait_page_queue wait_page;
1226 	wait_queue_entry_t *wait = &wait_page.wait;
1227 	bool thrashing = false;
1228 	unsigned long pflags;
1229 	bool in_thrashing;
1230 
1231 	if (bit_nr == PG_locked &&
1232 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1233 		delayacct_thrashing_start(&in_thrashing);
1234 		psi_memstall_enter(&pflags);
1235 		thrashing = true;
1236 	}
1237 
1238 	init_wait(wait);
1239 	wait->func = wake_page_function;
1240 	wait_page.folio = folio;
1241 	wait_page.bit_nr = bit_nr;
1242 
1243 repeat:
1244 	wait->flags = 0;
1245 	if (behavior == EXCLUSIVE) {
1246 		wait->flags = WQ_FLAG_EXCLUSIVE;
1247 		if (--unfairness < 0)
1248 			wait->flags |= WQ_FLAG_CUSTOM;
1249 	}
1250 
1251 	/*
1252 	 * Do one last check whether we can get the
1253 	 * page bit synchronously.
1254 	 *
1255 	 * Do the folio_set_waiters() marking before that
1256 	 * to let any waker we _just_ missed know they
1257 	 * need to wake us up (otherwise they'll never
1258 	 * even go to the slow case that looks at the
1259 	 * page queue), and add ourselves to the wait
1260 	 * queue if we need to sleep.
1261 	 *
1262 	 * This part needs to be done under the queue
1263 	 * lock to avoid races.
1264 	 */
1265 	spin_lock_irq(&q->lock);
1266 	folio_set_waiters(folio);
1267 	if (!folio_trylock_flag(folio, bit_nr, wait))
1268 		__add_wait_queue_entry_tail(q, wait);
1269 	spin_unlock_irq(&q->lock);
1270 
1271 	/*
1272 	 * From now on, all the logic will be based on
1273 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1274 	 * see whether the page bit testing has already
1275 	 * been done by the wake function.
1276 	 *
1277 	 * We can drop our reference to the folio.
1278 	 */
1279 	if (behavior == DROP)
1280 		folio_put(folio);
1281 
1282 	/*
1283 	 * Note that until the "finish_wait()", or until
1284 	 * we see the WQ_FLAG_WOKEN flag, we need to
1285 	 * be very careful with the 'wait->flags', because
1286 	 * we may race with a waker that sets them.
1287 	 */
1288 	for (;;) {
1289 		unsigned int flags;
1290 
1291 		set_current_state(state);
1292 
1293 		/* Loop until we've been woken or interrupted */
1294 		flags = smp_load_acquire(&wait->flags);
1295 		if (!(flags & WQ_FLAG_WOKEN)) {
1296 			if (signal_pending_state(state, current))
1297 				break;
1298 
1299 			io_schedule();
1300 			continue;
1301 		}
1302 
1303 		/* If we were non-exclusive, we're done */
1304 		if (behavior != EXCLUSIVE)
1305 			break;
1306 
1307 		/* If the waker got the lock for us, we're done */
1308 		if (flags & WQ_FLAG_DONE)
1309 			break;
1310 
1311 		/*
1312 		 * Otherwise, if we're getting the lock, we need to
1313 		 * try to get it ourselves.
1314 		 *
1315 		 * And if that fails, we'll have to retry this all.
1316 		 */
1317 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1318 			goto repeat;
1319 
1320 		wait->flags |= WQ_FLAG_DONE;
1321 		break;
1322 	}
1323 
1324 	/*
1325 	 * If a signal happened, this 'finish_wait()' may remove the last
1326 	 * waiter from the wait-queues, but the folio waiters bit will remain
1327 	 * set. That's ok. The next wakeup will take care of it, and trying
1328 	 * to do it here would be difficult and prone to races.
1329 	 */
1330 	finish_wait(q, wait);
1331 
1332 	if (thrashing) {
1333 		delayacct_thrashing_end(&in_thrashing);
1334 		psi_memstall_leave(&pflags);
1335 	}
1336 
1337 	/*
1338 	 * NOTE! The wait->flags weren't stable until we've done the
1339 	 * 'finish_wait()', and we could have exited the loop above due
1340 	 * to a signal, and had a wakeup event happen after the signal
1341 	 * test but before the 'finish_wait()'.
1342 	 *
1343 	 * So only after the finish_wait() can we reliably determine
1344 	 * if we got woken up or not, so we can now figure out the final
1345 	 * return value based on that state without races.
1346 	 *
1347 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1348 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1349 	 */
1350 	if (behavior == EXCLUSIVE)
1351 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1352 
1353 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1354 }
1355 
1356 #ifdef CONFIG_MIGRATION
1357 /**
1358  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1359  * @entry: migration swap entry.
1360  * @ptl: already locked ptl. This function will drop the lock.
1361  *
1362  * Wait for a migration entry referencing the given page to be removed. This is
1363  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1364  * this can be called without taking a reference on the page. Instead this
1365  * should be called while holding the ptl for the migration entry referencing
1366  * the page.
1367  *
1368  * Returns after unlocking the ptl.
1369  *
1370  * This follows the same logic as folio_wait_bit_common() so see the comments
1371  * there.
1372  */
migration_entry_wait_on_locked(swp_entry_t entry,spinlock_t * ptl)1373 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1374 	__releases(ptl)
1375 {
1376 	struct wait_page_queue wait_page;
1377 	wait_queue_entry_t *wait = &wait_page.wait;
1378 	bool thrashing = false;
1379 	unsigned long pflags;
1380 	bool in_thrashing;
1381 	wait_queue_head_t *q;
1382 	struct folio *folio = pfn_swap_entry_folio(entry);
1383 
1384 	q = folio_waitqueue(folio);
1385 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1386 		delayacct_thrashing_start(&in_thrashing);
1387 		psi_memstall_enter(&pflags);
1388 		thrashing = true;
1389 	}
1390 
1391 	init_wait(wait);
1392 	wait->func = wake_page_function;
1393 	wait_page.folio = folio;
1394 	wait_page.bit_nr = PG_locked;
1395 	wait->flags = 0;
1396 
1397 	spin_lock_irq(&q->lock);
1398 	folio_set_waiters(folio);
1399 	if (!folio_trylock_flag(folio, PG_locked, wait))
1400 		__add_wait_queue_entry_tail(q, wait);
1401 	spin_unlock_irq(&q->lock);
1402 
1403 	/*
1404 	 * If a migration entry exists for the page the migration path must hold
1405 	 * a valid reference to the page, and it must take the ptl to remove the
1406 	 * migration entry. So the page is valid until the ptl is dropped.
1407 	 */
1408 	spin_unlock(ptl);
1409 
1410 	for (;;) {
1411 		unsigned int flags;
1412 
1413 		set_current_state(TASK_UNINTERRUPTIBLE);
1414 
1415 		/* Loop until we've been woken or interrupted */
1416 		flags = smp_load_acquire(&wait->flags);
1417 		if (!(flags & WQ_FLAG_WOKEN)) {
1418 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1419 				break;
1420 
1421 			io_schedule();
1422 			continue;
1423 		}
1424 		break;
1425 	}
1426 
1427 	finish_wait(q, wait);
1428 
1429 	if (thrashing) {
1430 		delayacct_thrashing_end(&in_thrashing);
1431 		psi_memstall_leave(&pflags);
1432 	}
1433 }
1434 #endif
1435 
folio_wait_bit(struct folio * folio,int bit_nr)1436 void folio_wait_bit(struct folio *folio, int bit_nr)
1437 {
1438 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1439 }
1440 EXPORT_SYMBOL(folio_wait_bit);
1441 
folio_wait_bit_killable(struct folio * folio,int bit_nr)1442 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1443 {
1444 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1445 }
1446 EXPORT_SYMBOL(folio_wait_bit_killable);
1447 
1448 /**
1449  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1450  * @folio: The folio to wait for.
1451  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1452  *
1453  * The caller should hold a reference on @folio.  They expect the page to
1454  * become unlocked relatively soon, but do not wish to hold up migration
1455  * (for example) by holding the reference while waiting for the folio to
1456  * come unlocked.  After this function returns, the caller should not
1457  * dereference @folio.
1458  *
1459  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1460  */
folio_put_wait_locked(struct folio * folio,int state)1461 static int folio_put_wait_locked(struct folio *folio, int state)
1462 {
1463 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1464 }
1465 
1466 /**
1467  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1468  * @folio: Folio defining the wait queue of interest
1469  * @waiter: Waiter to add to the queue
1470  *
1471  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1472  */
folio_add_wait_queue(struct folio * folio,wait_queue_entry_t * waiter)1473 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1474 {
1475 	wait_queue_head_t *q = folio_waitqueue(folio);
1476 	unsigned long flags;
1477 
1478 	spin_lock_irqsave(&q->lock, flags);
1479 	__add_wait_queue_entry_tail(q, waiter);
1480 	folio_set_waiters(folio);
1481 	spin_unlock_irqrestore(&q->lock, flags);
1482 }
1483 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1484 
1485 /**
1486  * folio_unlock - Unlock a locked folio.
1487  * @folio: The folio.
1488  *
1489  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1490  *
1491  * Context: May be called from interrupt or process context.  May not be
1492  * called from NMI context.
1493  */
folio_unlock(struct folio * folio)1494 void folio_unlock(struct folio *folio)
1495 {
1496 	/* Bit 7 allows x86 to check the byte's sign bit */
1497 	BUILD_BUG_ON(PG_waiters != 7);
1498 	BUILD_BUG_ON(PG_locked > 7);
1499 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1500 	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1501 		folio_wake_bit(folio, PG_locked);
1502 }
1503 EXPORT_SYMBOL(folio_unlock);
1504 
1505 /**
1506  * folio_end_read - End read on a folio.
1507  * @folio: The folio.
1508  * @success: True if all reads completed successfully.
1509  *
1510  * When all reads against a folio have completed, filesystems should
1511  * call this function to let the pagecache know that no more reads
1512  * are outstanding.  This will unlock the folio and wake up any thread
1513  * sleeping on the lock.  The folio will also be marked uptodate if all
1514  * reads succeeded.
1515  *
1516  * Context: May be called from interrupt or process context.  May not be
1517  * called from NMI context.
1518  */
folio_end_read(struct folio * folio,bool success)1519 void folio_end_read(struct folio *folio, bool success)
1520 {
1521 	unsigned long mask = 1 << PG_locked;
1522 
1523 	/* Must be in bottom byte for x86 to work */
1524 	BUILD_BUG_ON(PG_uptodate > 7);
1525 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1526 	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1527 
1528 	if (likely(success))
1529 		mask |= 1 << PG_uptodate;
1530 	if (folio_xor_flags_has_waiters(folio, mask))
1531 		folio_wake_bit(folio, PG_locked);
1532 }
1533 EXPORT_SYMBOL(folio_end_read);
1534 
1535 /**
1536  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1537  * @folio: The folio.
1538  *
1539  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1540  * it.  The folio reference held for PG_private_2 being set is released.
1541  *
1542  * This is, for example, used when a netfs folio is being written to a local
1543  * disk cache, thereby allowing writes to the cache for the same folio to be
1544  * serialised.
1545  */
folio_end_private_2(struct folio * folio)1546 void folio_end_private_2(struct folio *folio)
1547 {
1548 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1549 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1550 	folio_wake_bit(folio, PG_private_2);
1551 	folio_put(folio);
1552 }
1553 EXPORT_SYMBOL(folio_end_private_2);
1554 
1555 /**
1556  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1557  * @folio: The folio to wait on.
1558  *
1559  * Wait for PG_private_2 to be cleared on a folio.
1560  */
folio_wait_private_2(struct folio * folio)1561 void folio_wait_private_2(struct folio *folio)
1562 {
1563 	while (folio_test_private_2(folio))
1564 		folio_wait_bit(folio, PG_private_2);
1565 }
1566 EXPORT_SYMBOL(folio_wait_private_2);
1567 
1568 /**
1569  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1570  * @folio: The folio to wait on.
1571  *
1572  * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1573  * received by the calling task.
1574  *
1575  * Return:
1576  * - 0 if successful.
1577  * - -EINTR if a fatal signal was encountered.
1578  */
folio_wait_private_2_killable(struct folio * folio)1579 int folio_wait_private_2_killable(struct folio *folio)
1580 {
1581 	int ret = 0;
1582 
1583 	while (folio_test_private_2(folio)) {
1584 		ret = folio_wait_bit_killable(folio, PG_private_2);
1585 		if (ret < 0)
1586 			break;
1587 	}
1588 
1589 	return ret;
1590 }
1591 EXPORT_SYMBOL(folio_wait_private_2_killable);
1592 
1593 /**
1594  * folio_end_writeback - End writeback against a folio.
1595  * @folio: The folio.
1596  *
1597  * The folio must actually be under writeback.
1598  *
1599  * Context: May be called from process or interrupt context.
1600  */
folio_end_writeback(struct folio * folio)1601 void folio_end_writeback(struct folio *folio)
1602 {
1603 	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1604 
1605 	/*
1606 	 * folio_test_clear_reclaim() could be used here but it is an
1607 	 * atomic operation and overkill in this particular case. Failing
1608 	 * to shuffle a folio marked for immediate reclaim is too mild
1609 	 * a gain to justify taking an atomic operation penalty at the
1610 	 * end of every folio writeback.
1611 	 */
1612 	if (folio_test_reclaim(folio)) {
1613 		folio_clear_reclaim(folio);
1614 		folio_rotate_reclaimable(folio);
1615 	}
1616 
1617 	/*
1618 	 * Writeback does not hold a folio reference of its own, relying
1619 	 * on truncation to wait for the clearing of PG_writeback.
1620 	 * But here we must make sure that the folio is not freed and
1621 	 * reused before the folio_wake_bit().
1622 	 */
1623 	folio_get(folio);
1624 	if (__folio_end_writeback(folio))
1625 		folio_wake_bit(folio, PG_writeback);
1626 	acct_reclaim_writeback(folio);
1627 	folio_put(folio);
1628 }
1629 EXPORT_SYMBOL(folio_end_writeback);
1630 
1631 /**
1632  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1633  * @folio: The folio to lock
1634  */
__folio_lock(struct folio * folio)1635 void __folio_lock(struct folio *folio)
1636 {
1637 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1638 				EXCLUSIVE);
1639 }
1640 EXPORT_SYMBOL(__folio_lock);
1641 
__folio_lock_killable(struct folio * folio)1642 int __folio_lock_killable(struct folio *folio)
1643 {
1644 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1645 					EXCLUSIVE);
1646 }
1647 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1648 
__folio_lock_async(struct folio * folio,struct wait_page_queue * wait)1649 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1650 {
1651 	struct wait_queue_head *q = folio_waitqueue(folio);
1652 	int ret;
1653 
1654 	wait->folio = folio;
1655 	wait->bit_nr = PG_locked;
1656 
1657 	spin_lock_irq(&q->lock);
1658 	__add_wait_queue_entry_tail(q, &wait->wait);
1659 	folio_set_waiters(folio);
1660 	ret = !folio_trylock(folio);
1661 	/*
1662 	 * If we were successful now, we know we're still on the
1663 	 * waitqueue as we're still under the lock. This means it's
1664 	 * safe to remove and return success, we know the callback
1665 	 * isn't going to trigger.
1666 	 */
1667 	if (!ret)
1668 		__remove_wait_queue(q, &wait->wait);
1669 	else
1670 		ret = -EIOCBQUEUED;
1671 	spin_unlock_irq(&q->lock);
1672 	return ret;
1673 }
1674 
1675 /*
1676  * Return values:
1677  * 0 - folio is locked.
1678  * non-zero - folio is not locked.
1679  *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1680  *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1681  *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1682  *
1683  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1684  * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1685  */
__folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1686 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1687 {
1688 	unsigned int flags = vmf->flags;
1689 
1690 	if (fault_flag_allow_retry_first(flags)) {
1691 		/*
1692 		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1693 		 * released even though returning VM_FAULT_RETRY.
1694 		 */
1695 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1696 			return VM_FAULT_RETRY;
1697 
1698 		release_fault_lock(vmf);
1699 		if (flags & FAULT_FLAG_KILLABLE)
1700 			folio_wait_locked_killable(folio);
1701 		else
1702 			folio_wait_locked(folio);
1703 		return VM_FAULT_RETRY;
1704 	}
1705 	if (flags & FAULT_FLAG_KILLABLE) {
1706 		bool ret;
1707 
1708 		ret = __folio_lock_killable(folio);
1709 		if (ret) {
1710 			release_fault_lock(vmf);
1711 			return VM_FAULT_RETRY;
1712 		}
1713 	} else {
1714 		__folio_lock(folio);
1715 	}
1716 
1717 	return 0;
1718 }
1719 
1720 /**
1721  * page_cache_next_miss() - Find the next gap in the page cache.
1722  * @mapping: Mapping.
1723  * @index: Index.
1724  * @max_scan: Maximum range to search.
1725  *
1726  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1727  * gap with the lowest index.
1728  *
1729  * This function may be called under the rcu_read_lock.  However, this will
1730  * not atomically search a snapshot of the cache at a single point in time.
1731  * For example, if a gap is created at index 5, then subsequently a gap is
1732  * created at index 10, page_cache_next_miss covering both indices may
1733  * return 10 if called under the rcu_read_lock.
1734  *
1735  * Return: The index of the gap if found, otherwise an index outside the
1736  * range specified (in which case 'return - index >= max_scan' will be true).
1737  * In the rare case of index wrap-around, 0 will be returned.
1738  */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1739 pgoff_t page_cache_next_miss(struct address_space *mapping,
1740 			     pgoff_t index, unsigned long max_scan)
1741 {
1742 	XA_STATE(xas, &mapping->i_pages, index);
1743 
1744 	while (max_scan--) {
1745 		void *entry = xas_next(&xas);
1746 		if (!entry || xa_is_value(entry))
1747 			return xas.xa_index;
1748 		if (xas.xa_index == 0)
1749 			return 0;
1750 	}
1751 
1752 	return index + max_scan;
1753 }
1754 EXPORT_SYMBOL(page_cache_next_miss);
1755 
1756 /**
1757  * page_cache_prev_miss() - Find the previous gap in the page cache.
1758  * @mapping: Mapping.
1759  * @index: Index.
1760  * @max_scan: Maximum range to search.
1761  *
1762  * Search the range [max(index - max_scan + 1, 0), index] for the
1763  * gap with the highest index.
1764  *
1765  * This function may be called under the rcu_read_lock.  However, this will
1766  * not atomically search a snapshot of the cache at a single point in time.
1767  * For example, if a gap is created at index 10, then subsequently a gap is
1768  * created at index 5, page_cache_prev_miss() covering both indices may
1769  * return 5 if called under the rcu_read_lock.
1770  *
1771  * Return: The index of the gap if found, otherwise an index outside the
1772  * range specified (in which case 'index - return >= max_scan' will be true).
1773  * In the rare case of wrap-around, ULONG_MAX will be returned.
1774  */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1775 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1776 			     pgoff_t index, unsigned long max_scan)
1777 {
1778 	XA_STATE(xas, &mapping->i_pages, index);
1779 
1780 	while (max_scan--) {
1781 		void *entry = xas_prev(&xas);
1782 		if (!entry || xa_is_value(entry))
1783 			break;
1784 		if (xas.xa_index == ULONG_MAX)
1785 			break;
1786 	}
1787 
1788 	return xas.xa_index;
1789 }
1790 EXPORT_SYMBOL(page_cache_prev_miss);
1791 
1792 /*
1793  * Lockless page cache protocol:
1794  * On the lookup side:
1795  * 1. Load the folio from i_pages
1796  * 2. Increment the refcount if it's not zero
1797  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1798  *
1799  * On the removal side:
1800  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1801  * B. Remove the page from i_pages
1802  * C. Return the page to the page allocator
1803  *
1804  * This means that any page may have its reference count temporarily
1805  * increased by a speculative page cache (or GUP-fast) lookup as it can
1806  * be allocated by another user before the RCU grace period expires.
1807  * Because the refcount temporarily acquired here may end up being the
1808  * last refcount on the page, any page allocation must be freeable by
1809  * folio_put().
1810  */
1811 
1812 /*
1813  * filemap_get_entry - Get a page cache entry.
1814  * @mapping: the address_space to search
1815  * @index: The page cache index.
1816  *
1817  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1818  * it is returned with an increased refcount.  If it is a shadow entry
1819  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1820  * it is returned without further action.
1821  *
1822  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1823  */
filemap_get_entry(struct address_space * mapping,pgoff_t index)1824 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1825 {
1826 	XA_STATE(xas, &mapping->i_pages, index);
1827 	struct folio *folio;
1828 
1829 	rcu_read_lock();
1830 repeat:
1831 	xas_reset(&xas);
1832 	folio = xas_load(&xas);
1833 	if (xas_retry(&xas, folio))
1834 		goto repeat;
1835 	/*
1836 	 * A shadow entry of a recently evicted page, or a swap entry from
1837 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1838 	 */
1839 	if (!folio || xa_is_value(folio))
1840 		goto out;
1841 
1842 	if (!folio_try_get(folio))
1843 		goto repeat;
1844 
1845 	if (unlikely(folio != xas_reload(&xas))) {
1846 		folio_put(folio);
1847 		goto repeat;
1848 	}
1849 out:
1850 	rcu_read_unlock();
1851 
1852 	return folio;
1853 }
1854 
1855 /**
1856  * __filemap_get_folio - Find and get a reference to a folio.
1857  * @mapping: The address_space to search.
1858  * @index: The page index.
1859  * @fgp_flags: %FGP flags modify how the folio is returned.
1860  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1861  *
1862  * Looks up the page cache entry at @mapping & @index.
1863  *
1864  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1865  * if the %GFP flags specified for %FGP_CREAT are atomic.
1866  *
1867  * If this function returns a folio, it is returned with an increased refcount.
1868  *
1869  * Return: The found folio or an ERR_PTR() otherwise.
1870  */
__filemap_get_folio(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp)1871 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1872 		fgf_t fgp_flags, gfp_t gfp)
1873 {
1874 	struct folio *folio;
1875 
1876 repeat:
1877 	folio = filemap_get_entry(mapping, index);
1878 	if (xa_is_value(folio))
1879 		folio = NULL;
1880 	if (!folio)
1881 		goto no_page;
1882 
1883 	if (fgp_flags & FGP_LOCK) {
1884 		if (fgp_flags & FGP_NOWAIT) {
1885 			if (!folio_trylock(folio)) {
1886 				folio_put(folio);
1887 				return ERR_PTR(-EAGAIN);
1888 			}
1889 		} else {
1890 			folio_lock(folio);
1891 		}
1892 
1893 		/* Has the page been truncated? */
1894 		if (unlikely(folio->mapping != mapping)) {
1895 			folio_unlock(folio);
1896 			folio_put(folio);
1897 			goto repeat;
1898 		}
1899 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1900 	}
1901 
1902 	if (fgp_flags & FGP_ACCESSED)
1903 		folio_mark_accessed(folio);
1904 	else if (fgp_flags & FGP_WRITE) {
1905 		/* Clear idle flag for buffer write */
1906 		if (folio_test_idle(folio))
1907 			folio_clear_idle(folio);
1908 	}
1909 
1910 	if (fgp_flags & FGP_STABLE)
1911 		folio_wait_stable(folio);
1912 no_page:
1913 	if (!folio && (fgp_flags & FGP_CREAT)) {
1914 		unsigned int min_order = mapping_min_folio_order(mapping);
1915 		unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1916 		int err;
1917 		index = mapping_align_index(mapping, index);
1918 
1919 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1920 			gfp |= __GFP_WRITE;
1921 		if (fgp_flags & FGP_NOFS)
1922 			gfp &= ~__GFP_FS;
1923 		if (fgp_flags & FGP_NOWAIT) {
1924 			gfp &= ~GFP_KERNEL;
1925 			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1926 		}
1927 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1928 			fgp_flags |= FGP_LOCK;
1929 
1930 		if (order > mapping_max_folio_order(mapping))
1931 			order = mapping_max_folio_order(mapping);
1932 		/* If we're not aligned, allocate a smaller folio */
1933 		if (index & ((1UL << order) - 1))
1934 			order = __ffs(index);
1935 
1936 		do {
1937 			gfp_t alloc_gfp = gfp;
1938 
1939 			err = -ENOMEM;
1940 			if (order > min_order)
1941 				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1942 			folio = filemap_alloc_folio(alloc_gfp, order);
1943 			if (!folio)
1944 				continue;
1945 
1946 			/* Init accessed so avoid atomic mark_page_accessed later */
1947 			if (fgp_flags & FGP_ACCESSED)
1948 				__folio_set_referenced(folio);
1949 
1950 			err = filemap_add_folio(mapping, folio, index, gfp);
1951 			if (!err)
1952 				break;
1953 			folio_put(folio);
1954 			folio = NULL;
1955 		} while (order-- > min_order);
1956 
1957 		if (err == -EEXIST)
1958 			goto repeat;
1959 		if (err)
1960 			return ERR_PTR(err);
1961 		/*
1962 		 * filemap_add_folio locks the page, and for mmap
1963 		 * we expect an unlocked page.
1964 		 */
1965 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1966 			folio_unlock(folio);
1967 	}
1968 
1969 	if (!folio)
1970 		return ERR_PTR(-ENOENT);
1971 	return folio;
1972 }
1973 EXPORT_SYMBOL(__filemap_get_folio);
1974 
find_get_entry(struct xa_state * xas,pgoff_t max,xa_mark_t mark)1975 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1976 		xa_mark_t mark)
1977 {
1978 	struct folio *folio;
1979 
1980 retry:
1981 	if (mark == XA_PRESENT)
1982 		folio = xas_find(xas, max);
1983 	else
1984 		folio = xas_find_marked(xas, max, mark);
1985 
1986 	if (xas_retry(xas, folio))
1987 		goto retry;
1988 	/*
1989 	 * A shadow entry of a recently evicted page, a swap
1990 	 * entry from shmem/tmpfs or a DAX entry.  Return it
1991 	 * without attempting to raise page count.
1992 	 */
1993 	if (!folio || xa_is_value(folio))
1994 		return folio;
1995 
1996 	if (!folio_try_get(folio))
1997 		goto reset;
1998 
1999 	if (unlikely(folio != xas_reload(xas))) {
2000 		folio_put(folio);
2001 		goto reset;
2002 	}
2003 
2004 	return folio;
2005 reset:
2006 	xas_reset(xas);
2007 	goto retry;
2008 }
2009 
2010 /**
2011  * find_get_entries - gang pagecache lookup
2012  * @mapping:	The address_space to search
2013  * @start:	The starting page cache index
2014  * @end:	The final page index (inclusive).
2015  * @fbatch:	Where the resulting entries are placed.
2016  * @indices:	The cache indices corresponding to the entries in @entries
2017  *
2018  * find_get_entries() will search for and return a batch of entries in
2019  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2020  * takes a reference on any actual folios it returns.
2021  *
2022  * The entries have ascending indexes.  The indices may not be consecutive
2023  * due to not-present entries or large folios.
2024  *
2025  * Any shadow entries of evicted folios, or swap entries from
2026  * shmem/tmpfs, are included in the returned array.
2027  *
2028  * Return: The number of entries which were found.
2029  */
find_get_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2030 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2031 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2032 {
2033 	XA_STATE(xas, &mapping->i_pages, *start);
2034 	struct folio *folio;
2035 
2036 	rcu_read_lock();
2037 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2038 		indices[fbatch->nr] = xas.xa_index;
2039 		if (!folio_batch_add(fbatch, folio))
2040 			break;
2041 	}
2042 
2043 	if (folio_batch_count(fbatch)) {
2044 		unsigned long nr;
2045 		int idx = folio_batch_count(fbatch) - 1;
2046 
2047 		folio = fbatch->folios[idx];
2048 		if (!xa_is_value(folio))
2049 			nr = folio_nr_pages(folio);
2050 		else
2051 			nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2052 		*start = round_down(indices[idx] + nr, nr);
2053 	}
2054 	rcu_read_unlock();
2055 
2056 	return folio_batch_count(fbatch);
2057 }
2058 
2059 /**
2060  * find_lock_entries - Find a batch of pagecache entries.
2061  * @mapping:	The address_space to search.
2062  * @start:	The starting page cache index.
2063  * @end:	The final page index (inclusive).
2064  * @fbatch:	Where the resulting entries are placed.
2065  * @indices:	The cache indices of the entries in @fbatch.
2066  *
2067  * find_lock_entries() will return a batch of entries from @mapping.
2068  * Swap, shadow and DAX entries are included.  Folios are returned
2069  * locked and with an incremented refcount.  Folios which are locked
2070  * by somebody else or under writeback are skipped.  Folios which are
2071  * partially outside the range are not returned.
2072  *
2073  * The entries have ascending indexes.  The indices may not be consecutive
2074  * due to not-present entries, large folios, folios which could not be
2075  * locked or folios under writeback.
2076  *
2077  * Return: The number of entries which were found.
2078  */
find_lock_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2079 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2080 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2081 {
2082 	XA_STATE(xas, &mapping->i_pages, *start);
2083 	struct folio *folio;
2084 
2085 	rcu_read_lock();
2086 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2087 		unsigned long base;
2088 		unsigned long nr;
2089 
2090 		if (!xa_is_value(folio)) {
2091 			nr = folio_nr_pages(folio);
2092 			base = folio->index;
2093 			/* Omit large folio which begins before the start */
2094 			if (base < *start)
2095 				goto put;
2096 			/* Omit large folio which extends beyond the end */
2097 			if (base + nr - 1 > end)
2098 				goto put;
2099 			if (!folio_trylock(folio))
2100 				goto put;
2101 			if (folio->mapping != mapping ||
2102 			    folio_test_writeback(folio))
2103 				goto unlock;
2104 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2105 					folio);
2106 		} else {
2107 			nr = 1 << xas_get_order(&xas);
2108 			base = xas.xa_index & ~(nr - 1);
2109 			/* Omit order>0 value which begins before the start */
2110 			if (base < *start)
2111 				continue;
2112 			/* Omit order>0 value which extends beyond the end */
2113 			if (base + nr - 1 > end)
2114 				break;
2115 		}
2116 
2117 		/* Update start now so that last update is correct on return */
2118 		*start = base + nr;
2119 		indices[fbatch->nr] = xas.xa_index;
2120 		if (!folio_batch_add(fbatch, folio))
2121 			break;
2122 		continue;
2123 unlock:
2124 		folio_unlock(folio);
2125 put:
2126 		folio_put(folio);
2127 	}
2128 	rcu_read_unlock();
2129 
2130 	return folio_batch_count(fbatch);
2131 }
2132 
2133 /**
2134  * filemap_get_folios - Get a batch of folios
2135  * @mapping:	The address_space to search
2136  * @start:	The starting page index
2137  * @end:	The final page index (inclusive)
2138  * @fbatch:	The batch to fill.
2139  *
2140  * Search for and return a batch of folios in the mapping starting at
2141  * index @start and up to index @end (inclusive).  The folios are returned
2142  * in @fbatch with an elevated reference count.
2143  *
2144  * Return: The number of folios which were found.
2145  * We also update @start to index the next folio for the traversal.
2146  */
filemap_get_folios(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2147 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2148 		pgoff_t end, struct folio_batch *fbatch)
2149 {
2150 	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2151 }
2152 EXPORT_SYMBOL(filemap_get_folios);
2153 
2154 /**
2155  * filemap_get_folios_contig - Get a batch of contiguous folios
2156  * @mapping:	The address_space to search
2157  * @start:	The starting page index
2158  * @end:	The final page index (inclusive)
2159  * @fbatch:	The batch to fill
2160  *
2161  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2162  * except the returned folios are guaranteed to be contiguous. This may
2163  * not return all contiguous folios if the batch gets filled up.
2164  *
2165  * Return: The number of folios found.
2166  * Also update @start to be positioned for traversal of the next folio.
2167  */
2168 
filemap_get_folios_contig(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2169 unsigned filemap_get_folios_contig(struct address_space *mapping,
2170 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2171 {
2172 	XA_STATE(xas, &mapping->i_pages, *start);
2173 	unsigned long nr;
2174 	struct folio *folio;
2175 
2176 	rcu_read_lock();
2177 
2178 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2179 			folio = xas_next(&xas)) {
2180 		if (xas_retry(&xas, folio))
2181 			continue;
2182 		/*
2183 		 * If the entry has been swapped out, we can stop looking.
2184 		 * No current caller is looking for DAX entries.
2185 		 */
2186 		if (xa_is_value(folio))
2187 			goto update_start;
2188 
2189 		/* If we landed in the middle of a THP, continue at its end. */
2190 		if (xa_is_sibling(folio))
2191 			goto update_start;
2192 
2193 		if (!folio_try_get(folio))
2194 			goto retry;
2195 
2196 		if (unlikely(folio != xas_reload(&xas)))
2197 			goto put_folio;
2198 
2199 		if (!folio_batch_add(fbatch, folio)) {
2200 			nr = folio_nr_pages(folio);
2201 			*start = folio->index + nr;
2202 			goto out;
2203 		}
2204 		continue;
2205 put_folio:
2206 		folio_put(folio);
2207 
2208 retry:
2209 		xas_reset(&xas);
2210 	}
2211 
2212 update_start:
2213 	nr = folio_batch_count(fbatch);
2214 
2215 	if (nr) {
2216 		folio = fbatch->folios[nr - 1];
2217 		*start = folio_next_index(folio);
2218 	}
2219 out:
2220 	rcu_read_unlock();
2221 	return folio_batch_count(fbatch);
2222 }
2223 EXPORT_SYMBOL(filemap_get_folios_contig);
2224 
2225 /**
2226  * filemap_get_folios_tag - Get a batch of folios matching @tag
2227  * @mapping:    The address_space to search
2228  * @start:      The starting page index
2229  * @end:        The final page index (inclusive)
2230  * @tag:        The tag index
2231  * @fbatch:     The batch to fill
2232  *
2233  * The first folio may start before @start; if it does, it will contain
2234  * @start.  The final folio may extend beyond @end; if it does, it will
2235  * contain @end.  The folios have ascending indices.  There may be gaps
2236  * between the folios if there are indices which have no folio in the
2237  * page cache.  If folios are added to or removed from the page cache
2238  * while this is running, they may or may not be found by this call.
2239  * Only returns folios that are tagged with @tag.
2240  *
2241  * Return: The number of folios found.
2242  * Also update @start to index the next folio for traversal.
2243  */
filemap_get_folios_tag(struct address_space * mapping,pgoff_t * start,pgoff_t end,xa_mark_t tag,struct folio_batch * fbatch)2244 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2245 			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2246 {
2247 	XA_STATE(xas, &mapping->i_pages, *start);
2248 	struct folio *folio;
2249 
2250 	rcu_read_lock();
2251 	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2252 		/*
2253 		 * Shadow entries should never be tagged, but this iteration
2254 		 * is lockless so there is a window for page reclaim to evict
2255 		 * a page we saw tagged. Skip over it.
2256 		 */
2257 		if (xa_is_value(folio))
2258 			continue;
2259 		if (!folio_batch_add(fbatch, folio)) {
2260 			unsigned long nr = folio_nr_pages(folio);
2261 			*start = folio->index + nr;
2262 			goto out;
2263 		}
2264 	}
2265 	/*
2266 	 * We come here when there is no page beyond @end. We take care to not
2267 	 * overflow the index @start as it confuses some of the callers. This
2268 	 * breaks the iteration when there is a page at index -1 but that is
2269 	 * already broke anyway.
2270 	 */
2271 	if (end == (pgoff_t)-1)
2272 		*start = (pgoff_t)-1;
2273 	else
2274 		*start = end + 1;
2275 out:
2276 	rcu_read_unlock();
2277 
2278 	return folio_batch_count(fbatch);
2279 }
2280 EXPORT_SYMBOL(filemap_get_folios_tag);
2281 
2282 /*
2283  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2284  * a _large_ part of the i/o request. Imagine the worst scenario:
2285  *
2286  *      ---R__________________________________________B__________
2287  *         ^ reading here                             ^ bad block(assume 4k)
2288  *
2289  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2290  * => failing the whole request => read(R) => read(R+1) =>
2291  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2292  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2293  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2294  *
2295  * It is going insane. Fix it by quickly scaling down the readahead size.
2296  */
shrink_readahead_size_eio(struct file_ra_state * ra)2297 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2298 {
2299 	ra->ra_pages /= 4;
2300 }
2301 
2302 /*
2303  * filemap_get_read_batch - Get a batch of folios for read
2304  *
2305  * Get a batch of folios which represent a contiguous range of bytes in
2306  * the file.  No exceptional entries will be returned.  If @index is in
2307  * the middle of a folio, the entire folio will be returned.  The last
2308  * folio in the batch may have the readahead flag set or the uptodate flag
2309  * clear so that the caller can take the appropriate action.
2310  */
filemap_get_read_batch(struct address_space * mapping,pgoff_t index,pgoff_t max,struct folio_batch * fbatch)2311 static void filemap_get_read_batch(struct address_space *mapping,
2312 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2313 {
2314 	XA_STATE(xas, &mapping->i_pages, index);
2315 	struct folio *folio;
2316 
2317 	rcu_read_lock();
2318 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2319 		if (xas_retry(&xas, folio))
2320 			continue;
2321 		if (xas.xa_index > max || xa_is_value(folio))
2322 			break;
2323 		if (xa_is_sibling(folio))
2324 			break;
2325 		if (!folio_try_get(folio))
2326 			goto retry;
2327 
2328 		if (unlikely(folio != xas_reload(&xas)))
2329 			goto put_folio;
2330 
2331 		if (!folio_batch_add(fbatch, folio))
2332 			break;
2333 		if (!folio_test_uptodate(folio))
2334 			break;
2335 		if (folio_test_readahead(folio))
2336 			break;
2337 		xas_advance(&xas, folio_next_index(folio) - 1);
2338 		continue;
2339 put_folio:
2340 		folio_put(folio);
2341 retry:
2342 		xas_reset(&xas);
2343 	}
2344 	rcu_read_unlock();
2345 }
2346 
filemap_read_folio(struct file * file,filler_t filler,struct folio * folio)2347 static int filemap_read_folio(struct file *file, filler_t filler,
2348 		struct folio *folio)
2349 {
2350 	bool workingset = folio_test_workingset(folio);
2351 	unsigned long pflags;
2352 	int error;
2353 
2354 	/* Start the actual read. The read will unlock the page. */
2355 	if (unlikely(workingset))
2356 		psi_memstall_enter(&pflags);
2357 	error = filler(file, folio);
2358 	if (unlikely(workingset))
2359 		psi_memstall_leave(&pflags);
2360 	if (error)
2361 		return error;
2362 
2363 	error = folio_wait_locked_killable(folio);
2364 	if (error)
2365 		return error;
2366 	if (folio_test_uptodate(folio))
2367 		return 0;
2368 	if (file)
2369 		shrink_readahead_size_eio(&file->f_ra);
2370 	return -EIO;
2371 }
2372 
filemap_range_uptodate(struct address_space * mapping,loff_t pos,size_t count,struct folio * folio,bool need_uptodate)2373 static bool filemap_range_uptodate(struct address_space *mapping,
2374 		loff_t pos, size_t count, struct folio *folio,
2375 		bool need_uptodate)
2376 {
2377 	if (folio_test_uptodate(folio))
2378 		return true;
2379 	/* pipes can't handle partially uptodate pages */
2380 	if (need_uptodate)
2381 		return false;
2382 	if (!mapping->a_ops->is_partially_uptodate)
2383 		return false;
2384 	if (mapping->host->i_blkbits >= folio_shift(folio))
2385 		return false;
2386 
2387 	if (folio_pos(folio) > pos) {
2388 		count -= folio_pos(folio) - pos;
2389 		pos = 0;
2390 	} else {
2391 		pos -= folio_pos(folio);
2392 	}
2393 
2394 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2395 }
2396 
filemap_update_page(struct kiocb * iocb,struct address_space * mapping,size_t count,struct folio * folio,bool need_uptodate)2397 static int filemap_update_page(struct kiocb *iocb,
2398 		struct address_space *mapping, size_t count,
2399 		struct folio *folio, bool need_uptodate)
2400 {
2401 	int error;
2402 
2403 	if (iocb->ki_flags & IOCB_NOWAIT) {
2404 		if (!filemap_invalidate_trylock_shared(mapping))
2405 			return -EAGAIN;
2406 	} else {
2407 		filemap_invalidate_lock_shared(mapping);
2408 	}
2409 
2410 	if (!folio_trylock(folio)) {
2411 		error = -EAGAIN;
2412 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2413 			goto unlock_mapping;
2414 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2415 			filemap_invalidate_unlock_shared(mapping);
2416 			/*
2417 			 * This is where we usually end up waiting for a
2418 			 * previously submitted readahead to finish.
2419 			 */
2420 			folio_put_wait_locked(folio, TASK_KILLABLE);
2421 			return AOP_TRUNCATED_PAGE;
2422 		}
2423 		error = __folio_lock_async(folio, iocb->ki_waitq);
2424 		if (error)
2425 			goto unlock_mapping;
2426 	}
2427 
2428 	error = AOP_TRUNCATED_PAGE;
2429 	if (!folio->mapping)
2430 		goto unlock;
2431 
2432 	error = 0;
2433 	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2434 				   need_uptodate))
2435 		goto unlock;
2436 
2437 	error = -EAGAIN;
2438 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2439 		goto unlock;
2440 
2441 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2442 			folio);
2443 	goto unlock_mapping;
2444 unlock:
2445 	folio_unlock(folio);
2446 unlock_mapping:
2447 	filemap_invalidate_unlock_shared(mapping);
2448 	if (error == AOP_TRUNCATED_PAGE)
2449 		folio_put(folio);
2450 	return error;
2451 }
2452 
filemap_create_folio(struct file * file,struct address_space * mapping,loff_t pos,struct folio_batch * fbatch)2453 static int filemap_create_folio(struct file *file,
2454 		struct address_space *mapping, loff_t pos,
2455 		struct folio_batch *fbatch)
2456 {
2457 	struct folio *folio;
2458 	int error;
2459 	unsigned int min_order = mapping_min_folio_order(mapping);
2460 	pgoff_t index;
2461 
2462 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2463 	if (!folio)
2464 		return -ENOMEM;
2465 
2466 	/*
2467 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2468 	 * here assures we cannot instantiate and bring uptodate new
2469 	 * pagecache folios after evicting page cache during truncate
2470 	 * and before actually freeing blocks.	Note that we could
2471 	 * release invalidate_lock after inserting the folio into
2472 	 * the page cache as the locked folio would then be enough to
2473 	 * synchronize with hole punching. But there are code paths
2474 	 * such as filemap_update_page() filling in partially uptodate
2475 	 * pages or ->readahead() that need to hold invalidate_lock
2476 	 * while mapping blocks for IO so let's hold the lock here as
2477 	 * well to keep locking rules simple.
2478 	 */
2479 	filemap_invalidate_lock_shared(mapping);
2480 	index = (pos >> (PAGE_SHIFT + min_order)) << min_order;
2481 	error = filemap_add_folio(mapping, folio, index,
2482 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2483 	if (error == -EEXIST)
2484 		error = AOP_TRUNCATED_PAGE;
2485 	if (error)
2486 		goto error;
2487 
2488 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2489 	if (error)
2490 		goto error;
2491 
2492 	filemap_invalidate_unlock_shared(mapping);
2493 	folio_batch_add(fbatch, folio);
2494 	return 0;
2495 error:
2496 	filemap_invalidate_unlock_shared(mapping);
2497 	folio_put(folio);
2498 	return error;
2499 }
2500 
filemap_readahead(struct kiocb * iocb,struct file * file,struct address_space * mapping,struct folio * folio,pgoff_t last_index)2501 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2502 		struct address_space *mapping, struct folio *folio,
2503 		pgoff_t last_index)
2504 {
2505 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2506 
2507 	if (iocb->ki_flags & IOCB_NOIO)
2508 		return -EAGAIN;
2509 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2510 	return 0;
2511 }
2512 
filemap_get_pages(struct kiocb * iocb,size_t count,struct folio_batch * fbatch,bool need_uptodate)2513 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2514 		struct folio_batch *fbatch, bool need_uptodate)
2515 {
2516 	struct file *filp = iocb->ki_filp;
2517 	struct address_space *mapping = filp->f_mapping;
2518 	struct file_ra_state *ra = &filp->f_ra;
2519 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2520 	pgoff_t last_index;
2521 	struct folio *folio;
2522 	unsigned int flags;
2523 	int err = 0;
2524 
2525 	/* "last_index" is the index of the page beyond the end of the read */
2526 	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2527 retry:
2528 	if (fatal_signal_pending(current))
2529 		return -EINTR;
2530 
2531 	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2532 	if (!folio_batch_count(fbatch)) {
2533 		if (iocb->ki_flags & IOCB_NOIO)
2534 			return -EAGAIN;
2535 		if (iocb->ki_flags & IOCB_NOWAIT)
2536 			flags = memalloc_noio_save();
2537 		page_cache_sync_readahead(mapping, ra, filp, index,
2538 				last_index - index);
2539 		if (iocb->ki_flags & IOCB_NOWAIT)
2540 			memalloc_noio_restore(flags);
2541 		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2542 	}
2543 	if (!folio_batch_count(fbatch)) {
2544 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2545 			return -EAGAIN;
2546 		err = filemap_create_folio(filp, mapping, iocb->ki_pos, fbatch);
2547 		if (err == AOP_TRUNCATED_PAGE)
2548 			goto retry;
2549 		return err;
2550 	}
2551 
2552 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2553 	if (folio_test_readahead(folio)) {
2554 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2555 		if (err)
2556 			goto err;
2557 	}
2558 	if (!folio_test_uptodate(folio)) {
2559 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2560 		    folio_batch_count(fbatch) > 1)
2561 			iocb->ki_flags |= IOCB_NOWAIT;
2562 		err = filemap_update_page(iocb, mapping, count, folio,
2563 					  need_uptodate);
2564 		if (err)
2565 			goto err;
2566 	}
2567 
2568 	trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2569 	return 0;
2570 err:
2571 	if (err < 0)
2572 		folio_put(folio);
2573 	if (likely(--fbatch->nr))
2574 		return 0;
2575 	if (err == AOP_TRUNCATED_PAGE)
2576 		goto retry;
2577 	return err;
2578 }
2579 
pos_same_folio(loff_t pos1,loff_t pos2,struct folio * folio)2580 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2581 {
2582 	unsigned int shift = folio_shift(folio);
2583 
2584 	return (pos1 >> shift == pos2 >> shift);
2585 }
2586 
2587 /**
2588  * filemap_read - Read data from the page cache.
2589  * @iocb: The iocb to read.
2590  * @iter: Destination for the data.
2591  * @already_read: Number of bytes already read by the caller.
2592  *
2593  * Copies data from the page cache.  If the data is not currently present,
2594  * uses the readahead and read_folio address_space operations to fetch it.
2595  *
2596  * Return: Total number of bytes copied, including those already read by
2597  * the caller.  If an error happens before any bytes are copied, returns
2598  * a negative error number.
2599  */
filemap_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t already_read)2600 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2601 		ssize_t already_read)
2602 {
2603 	struct file *filp = iocb->ki_filp;
2604 	struct file_ra_state *ra = &filp->f_ra;
2605 	struct address_space *mapping = filp->f_mapping;
2606 	struct inode *inode = mapping->host;
2607 	struct folio_batch fbatch;
2608 	int i, error = 0;
2609 	bool writably_mapped;
2610 	loff_t isize, end_offset;
2611 	loff_t last_pos = ra->prev_pos;
2612 
2613 	if (unlikely(iocb->ki_pos < 0))
2614 		return -EINVAL;
2615 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2616 		return 0;
2617 	if (unlikely(!iov_iter_count(iter)))
2618 		return 0;
2619 
2620 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2621 	folio_batch_init(&fbatch);
2622 
2623 	do {
2624 		cond_resched();
2625 
2626 		/*
2627 		 * If we've already successfully copied some data, then we
2628 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2629 		 * an async read NOWAIT at that point.
2630 		 */
2631 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2632 			iocb->ki_flags |= IOCB_NOWAIT;
2633 
2634 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2635 			break;
2636 
2637 		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2638 		if (error < 0)
2639 			break;
2640 
2641 		/*
2642 		 * i_size must be checked after we know the pages are Uptodate.
2643 		 *
2644 		 * Checking i_size after the check allows us to calculate
2645 		 * the correct value for "nr", which means the zero-filled
2646 		 * part of the page is not copied back to userspace (unless
2647 		 * another truncate extends the file - this is desired though).
2648 		 */
2649 		isize = i_size_read(inode);
2650 		if (unlikely(iocb->ki_pos >= isize))
2651 			goto put_folios;
2652 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2653 
2654 		/*
2655 		 * Once we start copying data, we don't want to be touching any
2656 		 * cachelines that might be contended:
2657 		 */
2658 		writably_mapped = mapping_writably_mapped(mapping);
2659 
2660 		/*
2661 		 * When a read accesses the same folio several times, only
2662 		 * mark it as accessed the first time.
2663 		 */
2664 		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2665 				    fbatch.folios[0]))
2666 			folio_mark_accessed(fbatch.folios[0]);
2667 
2668 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2669 			struct folio *folio = fbatch.folios[i];
2670 			size_t fsize = folio_size(folio);
2671 			size_t offset = iocb->ki_pos & (fsize - 1);
2672 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2673 					     fsize - offset);
2674 			size_t copied;
2675 
2676 			if (end_offset < folio_pos(folio))
2677 				break;
2678 			if (i > 0)
2679 				folio_mark_accessed(folio);
2680 			/*
2681 			 * If users can be writing to this folio using arbitrary
2682 			 * virtual addresses, take care of potential aliasing
2683 			 * before reading the folio on the kernel side.
2684 			 */
2685 			if (writably_mapped)
2686 				flush_dcache_folio(folio);
2687 
2688 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2689 
2690 			already_read += copied;
2691 			iocb->ki_pos += copied;
2692 			last_pos = iocb->ki_pos;
2693 
2694 			if (copied < bytes) {
2695 				error = -EFAULT;
2696 				break;
2697 			}
2698 		}
2699 put_folios:
2700 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2701 			folio_put(fbatch.folios[i]);
2702 		folio_batch_init(&fbatch);
2703 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2704 
2705 	file_accessed(filp);
2706 	ra->prev_pos = last_pos;
2707 	return already_read ? already_read : error;
2708 }
2709 EXPORT_SYMBOL_GPL(filemap_read);
2710 
kiocb_write_and_wait(struct kiocb * iocb,size_t count)2711 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2712 {
2713 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2714 	loff_t pos = iocb->ki_pos;
2715 	loff_t end = pos + count - 1;
2716 
2717 	if (iocb->ki_flags & IOCB_NOWAIT) {
2718 		if (filemap_range_needs_writeback(mapping, pos, end))
2719 			return -EAGAIN;
2720 		return 0;
2721 	}
2722 
2723 	return filemap_write_and_wait_range(mapping, pos, end);
2724 }
2725 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2726 
filemap_invalidate_pages(struct address_space * mapping,loff_t pos,loff_t end,bool nowait)2727 int filemap_invalidate_pages(struct address_space *mapping,
2728 			     loff_t pos, loff_t end, bool nowait)
2729 {
2730 	int ret;
2731 
2732 	if (nowait) {
2733 		/* we could block if there are any pages in the range */
2734 		if (filemap_range_has_page(mapping, pos, end))
2735 			return -EAGAIN;
2736 	} else {
2737 		ret = filemap_write_and_wait_range(mapping, pos, end);
2738 		if (ret)
2739 			return ret;
2740 	}
2741 
2742 	/*
2743 	 * After a write we want buffered reads to be sure to go to disk to get
2744 	 * the new data.  We invalidate clean cached page from the region we're
2745 	 * about to write.  We do this *before* the write so that we can return
2746 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2747 	 */
2748 	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2749 					     end >> PAGE_SHIFT);
2750 }
2751 
kiocb_invalidate_pages(struct kiocb * iocb,size_t count)2752 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2753 {
2754 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2755 
2756 	return filemap_invalidate_pages(mapping, iocb->ki_pos,
2757 					iocb->ki_pos + count - 1,
2758 					iocb->ki_flags & IOCB_NOWAIT);
2759 }
2760 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2761 
2762 /**
2763  * generic_file_read_iter - generic filesystem read routine
2764  * @iocb:	kernel I/O control block
2765  * @iter:	destination for the data read
2766  *
2767  * This is the "read_iter()" routine for all filesystems
2768  * that can use the page cache directly.
2769  *
2770  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2771  * be returned when no data can be read without waiting for I/O requests
2772  * to complete; it doesn't prevent readahead.
2773  *
2774  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2775  * requests shall be made for the read or for readahead.  When no data
2776  * can be read, -EAGAIN shall be returned.  When readahead would be
2777  * triggered, a partial, possibly empty read shall be returned.
2778  *
2779  * Return:
2780  * * number of bytes copied, even for partial reads
2781  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2782  */
2783 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2784 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2785 {
2786 	size_t count = iov_iter_count(iter);
2787 	ssize_t retval = 0;
2788 
2789 	if (!count)
2790 		return 0; /* skip atime */
2791 
2792 	if (iocb->ki_flags & IOCB_DIRECT) {
2793 		struct file *file = iocb->ki_filp;
2794 		struct address_space *mapping = file->f_mapping;
2795 		struct inode *inode = mapping->host;
2796 
2797 		retval = kiocb_write_and_wait(iocb, count);
2798 		if (retval < 0)
2799 			return retval;
2800 		file_accessed(file);
2801 
2802 		retval = mapping->a_ops->direct_IO(iocb, iter);
2803 		if (retval >= 0) {
2804 			iocb->ki_pos += retval;
2805 			count -= retval;
2806 		}
2807 		if (retval != -EIOCBQUEUED)
2808 			iov_iter_revert(iter, count - iov_iter_count(iter));
2809 
2810 		/*
2811 		 * Btrfs can have a short DIO read if we encounter
2812 		 * compressed extents, so if there was an error, or if
2813 		 * we've already read everything we wanted to, or if
2814 		 * there was a short read because we hit EOF, go ahead
2815 		 * and return.  Otherwise fallthrough to buffered io for
2816 		 * the rest of the read.  Buffered reads will not work for
2817 		 * DAX files, so don't bother trying.
2818 		 */
2819 		if (retval < 0 || !count || IS_DAX(inode))
2820 			return retval;
2821 		if (iocb->ki_pos >= i_size_read(inode))
2822 			return retval;
2823 	}
2824 
2825 	return filemap_read(iocb, iter, retval);
2826 }
2827 EXPORT_SYMBOL(generic_file_read_iter);
2828 
2829 /*
2830  * Splice subpages from a folio into a pipe.
2831  */
splice_folio_into_pipe(struct pipe_inode_info * pipe,struct folio * folio,loff_t fpos,size_t size)2832 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2833 			      struct folio *folio, loff_t fpos, size_t size)
2834 {
2835 	struct page *page;
2836 	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2837 
2838 	page = folio_page(folio, offset / PAGE_SIZE);
2839 	size = min(size, folio_size(folio) - offset);
2840 	offset %= PAGE_SIZE;
2841 
2842 	while (spliced < size &&
2843 	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2844 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2845 		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2846 
2847 		*buf = (struct pipe_buffer) {
2848 			.ops	= &page_cache_pipe_buf_ops,
2849 			.page	= page,
2850 			.offset	= offset,
2851 			.len	= part,
2852 		};
2853 		folio_get(folio);
2854 		pipe->head++;
2855 		page++;
2856 		spliced += part;
2857 		offset = 0;
2858 	}
2859 
2860 	return spliced;
2861 }
2862 
2863 /**
2864  * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2865  * @in: The file to read from
2866  * @ppos: Pointer to the file position to read from
2867  * @pipe: The pipe to splice into
2868  * @len: The amount to splice
2869  * @flags: The SPLICE_F_* flags
2870  *
2871  * This function gets folios from a file's pagecache and splices them into the
2872  * pipe.  Readahead will be called as necessary to fill more folios.  This may
2873  * be used for blockdevs also.
2874  *
2875  * Return: On success, the number of bytes read will be returned and *@ppos
2876  * will be updated if appropriate; 0 will be returned if there is no more data
2877  * to be read; -EAGAIN will be returned if the pipe had no space, and some
2878  * other negative error code will be returned on error.  A short read may occur
2879  * if the pipe has insufficient space, we reach the end of the data or we hit a
2880  * hole.
2881  */
filemap_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2882 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2883 			    struct pipe_inode_info *pipe,
2884 			    size_t len, unsigned int flags)
2885 {
2886 	struct folio_batch fbatch;
2887 	struct kiocb iocb;
2888 	size_t total_spliced = 0, used, npages;
2889 	loff_t isize, end_offset;
2890 	bool writably_mapped;
2891 	int i, error = 0;
2892 
2893 	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2894 		return 0;
2895 
2896 	init_sync_kiocb(&iocb, in);
2897 	iocb.ki_pos = *ppos;
2898 
2899 	/* Work out how much data we can actually add into the pipe */
2900 	used = pipe_occupancy(pipe->head, pipe->tail);
2901 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2902 	len = min_t(size_t, len, npages * PAGE_SIZE);
2903 
2904 	folio_batch_init(&fbatch);
2905 
2906 	do {
2907 		cond_resched();
2908 
2909 		if (*ppos >= i_size_read(in->f_mapping->host))
2910 			break;
2911 
2912 		iocb.ki_pos = *ppos;
2913 		error = filemap_get_pages(&iocb, len, &fbatch, true);
2914 		if (error < 0)
2915 			break;
2916 
2917 		/*
2918 		 * i_size must be checked after we know the pages are Uptodate.
2919 		 *
2920 		 * Checking i_size after the check allows us to calculate
2921 		 * the correct value for "nr", which means the zero-filled
2922 		 * part of the page is not copied back to userspace (unless
2923 		 * another truncate extends the file - this is desired though).
2924 		 */
2925 		isize = i_size_read(in->f_mapping->host);
2926 		if (unlikely(*ppos >= isize))
2927 			break;
2928 		end_offset = min_t(loff_t, isize, *ppos + len);
2929 
2930 		/*
2931 		 * Once we start copying data, we don't want to be touching any
2932 		 * cachelines that might be contended:
2933 		 */
2934 		writably_mapped = mapping_writably_mapped(in->f_mapping);
2935 
2936 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2937 			struct folio *folio = fbatch.folios[i];
2938 			size_t n;
2939 
2940 			if (folio_pos(folio) >= end_offset)
2941 				goto out;
2942 			folio_mark_accessed(folio);
2943 
2944 			/*
2945 			 * If users can be writing to this folio using arbitrary
2946 			 * virtual addresses, take care of potential aliasing
2947 			 * before reading the folio on the kernel side.
2948 			 */
2949 			if (writably_mapped)
2950 				flush_dcache_folio(folio);
2951 
2952 			n = min_t(loff_t, len, isize - *ppos);
2953 			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2954 			if (!n)
2955 				goto out;
2956 			len -= n;
2957 			total_spliced += n;
2958 			*ppos += n;
2959 			in->f_ra.prev_pos = *ppos;
2960 			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2961 				goto out;
2962 		}
2963 
2964 		folio_batch_release(&fbatch);
2965 	} while (len);
2966 
2967 out:
2968 	folio_batch_release(&fbatch);
2969 	file_accessed(in);
2970 
2971 	return total_spliced ? total_spliced : error;
2972 }
2973 EXPORT_SYMBOL(filemap_splice_read);
2974 
folio_seek_hole_data(struct xa_state * xas,struct address_space * mapping,struct folio * folio,loff_t start,loff_t end,bool seek_data)2975 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2976 		struct address_space *mapping, struct folio *folio,
2977 		loff_t start, loff_t end, bool seek_data)
2978 {
2979 	const struct address_space_operations *ops = mapping->a_ops;
2980 	size_t offset, bsz = i_blocksize(mapping->host);
2981 
2982 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2983 		return seek_data ? start : end;
2984 	if (!ops->is_partially_uptodate)
2985 		return seek_data ? end : start;
2986 
2987 	xas_pause(xas);
2988 	rcu_read_unlock();
2989 	folio_lock(folio);
2990 	if (unlikely(folio->mapping != mapping))
2991 		goto unlock;
2992 
2993 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2994 
2995 	do {
2996 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2997 							seek_data)
2998 			break;
2999 		start = (start + bsz) & ~(bsz - 1);
3000 		offset += bsz;
3001 	} while (offset < folio_size(folio));
3002 unlock:
3003 	folio_unlock(folio);
3004 	rcu_read_lock();
3005 	return start;
3006 }
3007 
seek_folio_size(struct xa_state * xas,struct folio * folio)3008 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3009 {
3010 	if (xa_is_value(folio))
3011 		return PAGE_SIZE << xas_get_order(xas);
3012 	return folio_size(folio);
3013 }
3014 
3015 /**
3016  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3017  * @mapping: Address space to search.
3018  * @start: First byte to consider.
3019  * @end: Limit of search (exclusive).
3020  * @whence: Either SEEK_HOLE or SEEK_DATA.
3021  *
3022  * If the page cache knows which blocks contain holes and which blocks
3023  * contain data, your filesystem can use this function to implement
3024  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
3025  * entirely memory-based such as tmpfs, and filesystems which support
3026  * unwritten extents.
3027  *
3028  * Return: The requested offset on success, or -ENXIO if @whence specifies
3029  * SEEK_DATA and there is no data after @start.  There is an implicit hole
3030  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3031  * and @end contain data.
3032  */
mapping_seek_hole_data(struct address_space * mapping,loff_t start,loff_t end,int whence)3033 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3034 		loff_t end, int whence)
3035 {
3036 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3037 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
3038 	bool seek_data = (whence == SEEK_DATA);
3039 	struct folio *folio;
3040 
3041 	if (end <= start)
3042 		return -ENXIO;
3043 
3044 	rcu_read_lock();
3045 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3046 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3047 		size_t seek_size;
3048 
3049 		if (start < pos) {
3050 			if (!seek_data)
3051 				goto unlock;
3052 			start = pos;
3053 		}
3054 
3055 		seek_size = seek_folio_size(&xas, folio);
3056 		pos = round_up((u64)pos + 1, seek_size);
3057 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3058 				seek_data);
3059 		if (start < pos)
3060 			goto unlock;
3061 		if (start >= end)
3062 			break;
3063 		if (seek_size > PAGE_SIZE)
3064 			xas_set(&xas, pos >> PAGE_SHIFT);
3065 		if (!xa_is_value(folio))
3066 			folio_put(folio);
3067 	}
3068 	if (seek_data)
3069 		start = -ENXIO;
3070 unlock:
3071 	rcu_read_unlock();
3072 	if (folio && !xa_is_value(folio))
3073 		folio_put(folio);
3074 	if (start > end)
3075 		return end;
3076 	return start;
3077 }
3078 
3079 #ifdef CONFIG_MMU
3080 #define MMAP_LOTSAMISS  (100)
3081 /*
3082  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3083  * @vmf - the vm_fault for this fault.
3084  * @folio - the folio to lock.
3085  * @fpin - the pointer to the file we may pin (or is already pinned).
3086  *
3087  * This works similar to lock_folio_or_retry in that it can drop the
3088  * mmap_lock.  It differs in that it actually returns the folio locked
3089  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3090  * to drop the mmap_lock then fpin will point to the pinned file and
3091  * needs to be fput()'ed at a later point.
3092  */
lock_folio_maybe_drop_mmap(struct vm_fault * vmf,struct folio * folio,struct file ** fpin)3093 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3094 				     struct file **fpin)
3095 {
3096 	if (folio_trylock(folio))
3097 		return 1;
3098 
3099 	/*
3100 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3101 	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3102 	 * is supposed to work. We have way too many special cases..
3103 	 */
3104 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3105 		return 0;
3106 
3107 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3108 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3109 		if (__folio_lock_killable(folio)) {
3110 			/*
3111 			 * We didn't have the right flags to drop the
3112 			 * fault lock, but all fault_handlers only check
3113 			 * for fatal signals if we return VM_FAULT_RETRY,
3114 			 * so we need to drop the fault lock here and
3115 			 * return 0 if we don't have a fpin.
3116 			 */
3117 			if (*fpin == NULL)
3118 				release_fault_lock(vmf);
3119 			return 0;
3120 		}
3121 	} else
3122 		__folio_lock(folio);
3123 
3124 	return 1;
3125 }
3126 
3127 /*
3128  * Synchronous readahead happens when we don't even find a page in the page
3129  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3130  * to drop the mmap sem we return the file that was pinned in order for us to do
3131  * that.  If we didn't pin a file then we return NULL.  The file that is
3132  * returned needs to be fput()'ed when we're done with it.
3133  */
do_sync_mmap_readahead(struct vm_fault * vmf)3134 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3135 {
3136 	struct file *file = vmf->vma->vm_file;
3137 	struct file_ra_state *ra = &file->f_ra;
3138 	struct address_space *mapping = file->f_mapping;
3139 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3140 	struct file *fpin = NULL;
3141 	unsigned long vm_flags = vmf->vma->vm_flags;
3142 	unsigned int mmap_miss;
3143 
3144 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3145 	/* Use the readahead code, even if readahead is disabled */
3146 	if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3147 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3148 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3149 		ra->size = HPAGE_PMD_NR;
3150 		/*
3151 		 * Fetch two PMD folios, so we get the chance to actually
3152 		 * readahead, unless we've been told not to.
3153 		 */
3154 		if (!(vm_flags & VM_RAND_READ))
3155 			ra->size *= 2;
3156 		ra->async_size = HPAGE_PMD_NR;
3157 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3158 		return fpin;
3159 	}
3160 #endif
3161 
3162 	/* If we don't want any read-ahead, don't bother */
3163 	if (vm_flags & VM_RAND_READ)
3164 		return fpin;
3165 	if (!ra->ra_pages)
3166 		return fpin;
3167 
3168 	if (vm_flags & VM_SEQ_READ) {
3169 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3170 		page_cache_sync_ra(&ractl, ra->ra_pages);
3171 		return fpin;
3172 	}
3173 
3174 	/* Avoid banging the cache line if not needed */
3175 	mmap_miss = READ_ONCE(ra->mmap_miss);
3176 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3177 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3178 
3179 	/*
3180 	 * Do we miss much more than hit in this file? If so,
3181 	 * stop bothering with read-ahead. It will only hurt.
3182 	 */
3183 	if (mmap_miss > MMAP_LOTSAMISS)
3184 		return fpin;
3185 
3186 	/*
3187 	 * mmap read-around
3188 	 */
3189 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3190 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3191 	ra->size = ra->ra_pages;
3192 	ra->async_size = ra->ra_pages / 4;
3193 	ractl._index = ra->start;
3194 	page_cache_ra_order(&ractl, ra, 0);
3195 	return fpin;
3196 }
3197 
3198 /*
3199  * Asynchronous readahead happens when we find the page and PG_readahead,
3200  * so we want to possibly extend the readahead further.  We return the file that
3201  * was pinned if we have to drop the mmap_lock in order to do IO.
3202  */
do_async_mmap_readahead(struct vm_fault * vmf,struct folio * folio)3203 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3204 					    struct folio *folio)
3205 {
3206 	struct file *file = vmf->vma->vm_file;
3207 	struct file_ra_state *ra = &file->f_ra;
3208 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3209 	struct file *fpin = NULL;
3210 	unsigned int mmap_miss;
3211 
3212 	/* If we don't want any read-ahead, don't bother */
3213 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3214 		return fpin;
3215 
3216 	mmap_miss = READ_ONCE(ra->mmap_miss);
3217 	if (mmap_miss)
3218 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3219 
3220 	if (folio_test_readahead(folio)) {
3221 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3222 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3223 	}
3224 	return fpin;
3225 }
3226 
filemap_fault_recheck_pte_none(struct vm_fault * vmf)3227 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3228 {
3229 	struct vm_area_struct *vma = vmf->vma;
3230 	vm_fault_t ret = 0;
3231 	pte_t *ptep;
3232 
3233 	/*
3234 	 * We might have COW'ed a pagecache folio and might now have an mlocked
3235 	 * anon folio mapped. The original pagecache folio is not mlocked and
3236 	 * might have been evicted. During a read+clear/modify/write update of
3237 	 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3238 	 * temporarily clear the PTE under PT lock and might detect it here as
3239 	 * "none" when not holding the PT lock.
3240 	 *
3241 	 * Not rechecking the PTE under PT lock could result in an unexpected
3242 	 * major fault in an mlock'ed region. Recheck only for this special
3243 	 * scenario while holding the PT lock, to not degrade non-mlocked
3244 	 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3245 	 * the number of times we hold PT lock.
3246 	 */
3247 	if (!(vma->vm_flags & VM_LOCKED))
3248 		return 0;
3249 
3250 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3251 		return 0;
3252 
3253 	ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3254 					&vmf->ptl);
3255 	if (unlikely(!ptep))
3256 		return VM_FAULT_NOPAGE;
3257 
3258 	if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3259 		ret = VM_FAULT_NOPAGE;
3260 	} else {
3261 		spin_lock(vmf->ptl);
3262 		if (unlikely(!pte_none(ptep_get(ptep))))
3263 			ret = VM_FAULT_NOPAGE;
3264 		spin_unlock(vmf->ptl);
3265 	}
3266 	pte_unmap(ptep);
3267 	return ret;
3268 }
3269 
3270 /**
3271  * filemap_fault - read in file data for page fault handling
3272  * @vmf:	struct vm_fault containing details of the fault
3273  *
3274  * filemap_fault() is invoked via the vma operations vector for a
3275  * mapped memory region to read in file data during a page fault.
3276  *
3277  * The goto's are kind of ugly, but this streamlines the normal case of having
3278  * it in the page cache, and handles the special cases reasonably without
3279  * having a lot of duplicated code.
3280  *
3281  * vma->vm_mm->mmap_lock must be held on entry.
3282  *
3283  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3284  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3285  *
3286  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3287  * has not been released.
3288  *
3289  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3290  *
3291  * Return: bitwise-OR of %VM_FAULT_ codes.
3292  */
filemap_fault(struct vm_fault * vmf)3293 vm_fault_t filemap_fault(struct vm_fault *vmf)
3294 {
3295 	int error;
3296 	struct file *file = vmf->vma->vm_file;
3297 	struct file *fpin = NULL;
3298 	struct address_space *mapping = file->f_mapping;
3299 	struct inode *inode = mapping->host;
3300 	pgoff_t max_idx, index = vmf->pgoff;
3301 	struct folio *folio;
3302 	vm_fault_t ret = 0;
3303 	bool mapping_locked = false;
3304 
3305 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3306 	if (unlikely(index >= max_idx))
3307 		return VM_FAULT_SIGBUS;
3308 
3309 	trace_mm_filemap_fault(mapping, index);
3310 
3311 	/*
3312 	 * Do we have something in the page cache already?
3313 	 */
3314 	folio = filemap_get_folio(mapping, index);
3315 	if (likely(!IS_ERR(folio))) {
3316 		/*
3317 		 * We found the page, so try async readahead before waiting for
3318 		 * the lock.
3319 		 */
3320 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3321 			fpin = do_async_mmap_readahead(vmf, folio);
3322 		if (unlikely(!folio_test_uptodate(folio))) {
3323 			filemap_invalidate_lock_shared(mapping);
3324 			mapping_locked = true;
3325 		}
3326 	} else {
3327 		ret = filemap_fault_recheck_pte_none(vmf);
3328 		if (unlikely(ret))
3329 			return ret;
3330 
3331 		/* No page in the page cache at all */
3332 		count_vm_event(PGMAJFAULT);
3333 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3334 		ret = VM_FAULT_MAJOR;
3335 		fpin = do_sync_mmap_readahead(vmf);
3336 retry_find:
3337 		/*
3338 		 * See comment in filemap_create_folio() why we need
3339 		 * invalidate_lock
3340 		 */
3341 		if (!mapping_locked) {
3342 			filemap_invalidate_lock_shared(mapping);
3343 			mapping_locked = true;
3344 		}
3345 		folio = __filemap_get_folio(mapping, index,
3346 					  FGP_CREAT|FGP_FOR_MMAP,
3347 					  vmf->gfp_mask);
3348 		if (IS_ERR(folio)) {
3349 			if (fpin)
3350 				goto out_retry;
3351 			filemap_invalidate_unlock_shared(mapping);
3352 			return VM_FAULT_OOM;
3353 		}
3354 	}
3355 
3356 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3357 		goto out_retry;
3358 
3359 	/* Did it get truncated? */
3360 	if (unlikely(folio->mapping != mapping)) {
3361 		folio_unlock(folio);
3362 		folio_put(folio);
3363 		goto retry_find;
3364 	}
3365 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3366 
3367 	/*
3368 	 * We have a locked folio in the page cache, now we need to check
3369 	 * that it's up-to-date. If not, it is going to be due to an error,
3370 	 * or because readahead was otherwise unable to retrieve it.
3371 	 */
3372 	if (unlikely(!folio_test_uptodate(folio))) {
3373 		/*
3374 		 * If the invalidate lock is not held, the folio was in cache
3375 		 * and uptodate and now it is not. Strange but possible since we
3376 		 * didn't hold the page lock all the time. Let's drop
3377 		 * everything, get the invalidate lock and try again.
3378 		 */
3379 		if (!mapping_locked) {
3380 			folio_unlock(folio);
3381 			folio_put(folio);
3382 			goto retry_find;
3383 		}
3384 
3385 		/*
3386 		 * OK, the folio is really not uptodate. This can be because the
3387 		 * VMA has the VM_RAND_READ flag set, or because an error
3388 		 * arose. Let's read it in directly.
3389 		 */
3390 		goto page_not_uptodate;
3391 	}
3392 
3393 	/*
3394 	 * We've made it this far and we had to drop our mmap_lock, now is the
3395 	 * time to return to the upper layer and have it re-find the vma and
3396 	 * redo the fault.
3397 	 */
3398 	if (fpin) {
3399 		folio_unlock(folio);
3400 		goto out_retry;
3401 	}
3402 	if (mapping_locked)
3403 		filemap_invalidate_unlock_shared(mapping);
3404 
3405 	/*
3406 	 * Found the page and have a reference on it.
3407 	 * We must recheck i_size under page lock.
3408 	 */
3409 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3410 	if (unlikely(index >= max_idx)) {
3411 		folio_unlock(folio);
3412 		folio_put(folio);
3413 		return VM_FAULT_SIGBUS;
3414 	}
3415 
3416 	vmf->page = folio_file_page(folio, index);
3417 	return ret | VM_FAULT_LOCKED;
3418 
3419 page_not_uptodate:
3420 	/*
3421 	 * Umm, take care of errors if the page isn't up-to-date.
3422 	 * Try to re-read it _once_. We do this synchronously,
3423 	 * because there really aren't any performance issues here
3424 	 * and we need to check for errors.
3425 	 */
3426 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3427 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3428 	if (fpin)
3429 		goto out_retry;
3430 	folio_put(folio);
3431 
3432 	if (!error || error == AOP_TRUNCATED_PAGE)
3433 		goto retry_find;
3434 	filemap_invalidate_unlock_shared(mapping);
3435 
3436 	return VM_FAULT_SIGBUS;
3437 
3438 out_retry:
3439 	/*
3440 	 * We dropped the mmap_lock, we need to return to the fault handler to
3441 	 * re-find the vma and come back and find our hopefully still populated
3442 	 * page.
3443 	 */
3444 	if (!IS_ERR(folio))
3445 		folio_put(folio);
3446 	if (mapping_locked)
3447 		filemap_invalidate_unlock_shared(mapping);
3448 	if (fpin)
3449 		fput(fpin);
3450 	return ret | VM_FAULT_RETRY;
3451 }
3452 EXPORT_SYMBOL(filemap_fault);
3453 
filemap_map_pmd(struct vm_fault * vmf,struct folio * folio,pgoff_t start)3454 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3455 		pgoff_t start)
3456 {
3457 	struct mm_struct *mm = vmf->vma->vm_mm;
3458 
3459 	/* Huge page is mapped? No need to proceed. */
3460 	if (pmd_trans_huge(*vmf->pmd)) {
3461 		folio_unlock(folio);
3462 		folio_put(folio);
3463 		return true;
3464 	}
3465 
3466 	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3467 		struct page *page = folio_file_page(folio, start);
3468 		vm_fault_t ret = do_set_pmd(vmf, page);
3469 		if (!ret) {
3470 			/* The page is mapped successfully, reference consumed. */
3471 			folio_unlock(folio);
3472 			return true;
3473 		}
3474 	}
3475 
3476 	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3477 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3478 
3479 	return false;
3480 }
3481 
next_uptodate_folio(struct xa_state * xas,struct address_space * mapping,pgoff_t end_pgoff)3482 static struct folio *next_uptodate_folio(struct xa_state *xas,
3483 		struct address_space *mapping, pgoff_t end_pgoff)
3484 {
3485 	struct folio *folio = xas_next_entry(xas, end_pgoff);
3486 	unsigned long max_idx;
3487 
3488 	do {
3489 		if (!folio)
3490 			return NULL;
3491 		if (xas_retry(xas, folio))
3492 			continue;
3493 		if (xa_is_value(folio))
3494 			continue;
3495 		if (!folio_try_get(folio))
3496 			continue;
3497 		if (folio_test_locked(folio))
3498 			goto skip;
3499 		/* Has the page moved or been split? */
3500 		if (unlikely(folio != xas_reload(xas)))
3501 			goto skip;
3502 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3503 			goto skip;
3504 		if (!folio_trylock(folio))
3505 			goto skip;
3506 		if (folio->mapping != mapping)
3507 			goto unlock;
3508 		if (!folio_test_uptodate(folio))
3509 			goto unlock;
3510 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3511 		if (xas->xa_index >= max_idx)
3512 			goto unlock;
3513 		return folio;
3514 unlock:
3515 		folio_unlock(folio);
3516 skip:
3517 		folio_put(folio);
3518 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3519 
3520 	return NULL;
3521 }
3522 
3523 /*
3524  * Map page range [start_page, start_page + nr_pages) of folio.
3525  * start_page is gotten from start by folio_page(folio, start)
3526  */
filemap_map_folio_range(struct vm_fault * vmf,struct folio * folio,unsigned long start,unsigned long addr,unsigned int nr_pages,unsigned long * rss,unsigned int * mmap_miss)3527 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3528 			struct folio *folio, unsigned long start,
3529 			unsigned long addr, unsigned int nr_pages,
3530 			unsigned long *rss, unsigned int *mmap_miss)
3531 {
3532 	vm_fault_t ret = 0;
3533 	struct page *page = folio_page(folio, start);
3534 	unsigned int count = 0;
3535 	pte_t *old_ptep = vmf->pte;
3536 
3537 	do {
3538 		if (PageHWPoison(page + count))
3539 			goto skip;
3540 
3541 		/*
3542 		 * If there are too many folios that are recently evicted
3543 		 * in a file, they will probably continue to be evicted.
3544 		 * In such situation, read-ahead is only a waste of IO.
3545 		 * Don't decrease mmap_miss in this scenario to make sure
3546 		 * we can stop read-ahead.
3547 		 */
3548 		if (!folio_test_workingset(folio))
3549 			(*mmap_miss)++;
3550 
3551 		/*
3552 		 * NOTE: If there're PTE markers, we'll leave them to be
3553 		 * handled in the specific fault path, and it'll prohibit the
3554 		 * fault-around logic.
3555 		 */
3556 		if (!pte_none(ptep_get(&vmf->pte[count])))
3557 			goto skip;
3558 
3559 		count++;
3560 		continue;
3561 skip:
3562 		if (count) {
3563 			set_pte_range(vmf, folio, page, count, addr);
3564 			*rss += count;
3565 			folio_ref_add(folio, count);
3566 			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3567 				ret = VM_FAULT_NOPAGE;
3568 		}
3569 
3570 		count++;
3571 		page += count;
3572 		vmf->pte += count;
3573 		addr += count * PAGE_SIZE;
3574 		count = 0;
3575 	} while (--nr_pages > 0);
3576 
3577 	if (count) {
3578 		set_pte_range(vmf, folio, page, count, addr);
3579 		*rss += count;
3580 		folio_ref_add(folio, count);
3581 		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3582 			ret = VM_FAULT_NOPAGE;
3583 	}
3584 
3585 	vmf->pte = old_ptep;
3586 
3587 	return ret;
3588 }
3589 
filemap_map_order0_folio(struct vm_fault * vmf,struct folio * folio,unsigned long addr,unsigned long * rss,unsigned int * mmap_miss)3590 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3591 		struct folio *folio, unsigned long addr,
3592 		unsigned long *rss, unsigned int *mmap_miss)
3593 {
3594 	vm_fault_t ret = 0;
3595 	struct page *page = &folio->page;
3596 
3597 	if (PageHWPoison(page))
3598 		return ret;
3599 
3600 	/* See comment of filemap_map_folio_range() */
3601 	if (!folio_test_workingset(folio))
3602 		(*mmap_miss)++;
3603 
3604 	/*
3605 	 * NOTE: If there're PTE markers, we'll leave them to be
3606 	 * handled in the specific fault path, and it'll prohibit
3607 	 * the fault-around logic.
3608 	 */
3609 	if (!pte_none(ptep_get(vmf->pte)))
3610 		return ret;
3611 
3612 	if (vmf->address == addr)
3613 		ret = VM_FAULT_NOPAGE;
3614 
3615 	set_pte_range(vmf, folio, page, 1, addr);
3616 	(*rss)++;
3617 	folio_ref_inc(folio);
3618 
3619 	return ret;
3620 }
3621 
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3622 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3623 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3624 {
3625 	struct vm_area_struct *vma = vmf->vma;
3626 	struct file *file = vma->vm_file;
3627 	struct address_space *mapping = file->f_mapping;
3628 	pgoff_t file_end, last_pgoff = start_pgoff;
3629 	unsigned long addr;
3630 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3631 	struct folio *folio;
3632 	vm_fault_t ret = 0;
3633 	unsigned long rss = 0;
3634 	unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type;
3635 
3636 	rcu_read_lock();
3637 	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3638 	if (!folio)
3639 		goto out;
3640 
3641 	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3642 		ret = VM_FAULT_NOPAGE;
3643 		goto out;
3644 	}
3645 
3646 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3647 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3648 	if (!vmf->pte) {
3649 		folio_unlock(folio);
3650 		folio_put(folio);
3651 		goto out;
3652 	}
3653 
3654 	file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3655 	if (end_pgoff > file_end)
3656 		end_pgoff = file_end;
3657 
3658 	folio_type = mm_counter_file(folio);
3659 	do {
3660 		unsigned long end;
3661 
3662 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3663 		vmf->pte += xas.xa_index - last_pgoff;
3664 		last_pgoff = xas.xa_index;
3665 		end = folio_next_index(folio) - 1;
3666 		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3667 
3668 		if (!folio_test_large(folio))
3669 			ret |= filemap_map_order0_folio(vmf,
3670 					folio, addr, &rss, &mmap_miss);
3671 		else
3672 			ret |= filemap_map_folio_range(vmf, folio,
3673 					xas.xa_index - folio->index, addr,
3674 					nr_pages, &rss, &mmap_miss);
3675 
3676 		folio_unlock(folio);
3677 		folio_put(folio);
3678 	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3679 	add_mm_counter(vma->vm_mm, folio_type, rss);
3680 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3681 	trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3682 out:
3683 	rcu_read_unlock();
3684 
3685 	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3686 	if (mmap_miss >= mmap_miss_saved)
3687 		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3688 	else
3689 		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3690 
3691 	return ret;
3692 }
3693 EXPORT_SYMBOL(filemap_map_pages);
3694 
filemap_page_mkwrite(struct vm_fault * vmf)3695 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3696 {
3697 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3698 	struct folio *folio = page_folio(vmf->page);
3699 	vm_fault_t ret = VM_FAULT_LOCKED;
3700 
3701 	sb_start_pagefault(mapping->host->i_sb);
3702 	file_update_time(vmf->vma->vm_file);
3703 	folio_lock(folio);
3704 	if (folio->mapping != mapping) {
3705 		folio_unlock(folio);
3706 		ret = VM_FAULT_NOPAGE;
3707 		goto out;
3708 	}
3709 	/*
3710 	 * We mark the folio dirty already here so that when freeze is in
3711 	 * progress, we are guaranteed that writeback during freezing will
3712 	 * see the dirty folio and writeprotect it again.
3713 	 */
3714 	folio_mark_dirty(folio);
3715 	folio_wait_stable(folio);
3716 out:
3717 	sb_end_pagefault(mapping->host->i_sb);
3718 	return ret;
3719 }
3720 
3721 const struct vm_operations_struct generic_file_vm_ops = {
3722 	.fault		= filemap_fault,
3723 	.map_pages	= filemap_map_pages,
3724 	.page_mkwrite	= filemap_page_mkwrite,
3725 };
3726 
3727 /* This is used for a general mmap of a disk file */
3728 
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3729 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3730 {
3731 	struct address_space *mapping = file->f_mapping;
3732 
3733 	if (!mapping->a_ops->read_folio)
3734 		return -ENOEXEC;
3735 	file_accessed(file);
3736 	vma->vm_ops = &generic_file_vm_ops;
3737 	return 0;
3738 }
3739 
3740 /*
3741  * This is for filesystems which do not implement ->writepage.
3742  */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3743 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3744 {
3745 	if (vma_is_shared_maywrite(vma))
3746 		return -EINVAL;
3747 	return generic_file_mmap(file, vma);
3748 }
3749 #else
filemap_page_mkwrite(struct vm_fault * vmf)3750 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3751 {
3752 	return VM_FAULT_SIGBUS;
3753 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3754 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3755 {
3756 	return -ENOSYS;
3757 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3758 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3759 {
3760 	return -ENOSYS;
3761 }
3762 #endif /* CONFIG_MMU */
3763 
3764 EXPORT_SYMBOL(filemap_page_mkwrite);
3765 EXPORT_SYMBOL(generic_file_mmap);
3766 EXPORT_SYMBOL(generic_file_readonly_mmap);
3767 
do_read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file,gfp_t gfp)3768 static struct folio *do_read_cache_folio(struct address_space *mapping,
3769 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3770 {
3771 	struct folio *folio;
3772 	int err;
3773 
3774 	if (!filler)
3775 		filler = mapping->a_ops->read_folio;
3776 repeat:
3777 	folio = filemap_get_folio(mapping, index);
3778 	if (IS_ERR(folio)) {
3779 		folio = filemap_alloc_folio(gfp,
3780 					    mapping_min_folio_order(mapping));
3781 		if (!folio)
3782 			return ERR_PTR(-ENOMEM);
3783 		index = mapping_align_index(mapping, index);
3784 		err = filemap_add_folio(mapping, folio, index, gfp);
3785 		if (unlikely(err)) {
3786 			folio_put(folio);
3787 			if (err == -EEXIST)
3788 				goto repeat;
3789 			/* Presumably ENOMEM for xarray node */
3790 			return ERR_PTR(err);
3791 		}
3792 
3793 		goto filler;
3794 	}
3795 	if (folio_test_uptodate(folio))
3796 		goto out;
3797 
3798 	if (!folio_trylock(folio)) {
3799 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3800 		goto repeat;
3801 	}
3802 
3803 	/* Folio was truncated from mapping */
3804 	if (!folio->mapping) {
3805 		folio_unlock(folio);
3806 		folio_put(folio);
3807 		goto repeat;
3808 	}
3809 
3810 	/* Someone else locked and filled the page in a very small window */
3811 	if (folio_test_uptodate(folio)) {
3812 		folio_unlock(folio);
3813 		goto out;
3814 	}
3815 
3816 filler:
3817 	err = filemap_read_folio(file, filler, folio);
3818 	if (err) {
3819 		folio_put(folio);
3820 		if (err == AOP_TRUNCATED_PAGE)
3821 			goto repeat;
3822 		return ERR_PTR(err);
3823 	}
3824 
3825 out:
3826 	folio_mark_accessed(folio);
3827 	return folio;
3828 }
3829 
3830 /**
3831  * read_cache_folio - Read into page cache, fill it if needed.
3832  * @mapping: The address_space to read from.
3833  * @index: The index to read.
3834  * @filler: Function to perform the read, or NULL to use aops->read_folio().
3835  * @file: Passed to filler function, may be NULL if not required.
3836  *
3837  * Read one page into the page cache.  If it succeeds, the folio returned
3838  * will contain @index, but it may not be the first page of the folio.
3839  *
3840  * If the filler function returns an error, it will be returned to the
3841  * caller.
3842  *
3843  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3844  * Return: An uptodate folio on success, ERR_PTR() on failure.
3845  */
read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file)3846 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3847 		filler_t filler, struct file *file)
3848 {
3849 	return do_read_cache_folio(mapping, index, filler, file,
3850 			mapping_gfp_mask(mapping));
3851 }
3852 EXPORT_SYMBOL(read_cache_folio);
3853 
3854 /**
3855  * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3856  * @mapping:	The address_space for the folio.
3857  * @index:	The index that the allocated folio will contain.
3858  * @gfp:	The page allocator flags to use if allocating.
3859  *
3860  * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3861  * any new memory allocations done using the specified allocation flags.
3862  *
3863  * The most likely error from this function is EIO, but ENOMEM is
3864  * possible and so is EINTR.  If ->read_folio returns another error,
3865  * that will be returned to the caller.
3866  *
3867  * The function expects mapping->invalidate_lock to be already held.
3868  *
3869  * Return: Uptodate folio on success, ERR_PTR() on failure.
3870  */
mapping_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3871 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3872 		pgoff_t index, gfp_t gfp)
3873 {
3874 	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3875 }
3876 EXPORT_SYMBOL(mapping_read_folio_gfp);
3877 
do_read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file,gfp_t gfp)3878 static struct page *do_read_cache_page(struct address_space *mapping,
3879 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3880 {
3881 	struct folio *folio;
3882 
3883 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3884 	if (IS_ERR(folio))
3885 		return &folio->page;
3886 	return folio_file_page(folio, index);
3887 }
3888 
read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file)3889 struct page *read_cache_page(struct address_space *mapping,
3890 			pgoff_t index, filler_t *filler, struct file *file)
3891 {
3892 	return do_read_cache_page(mapping, index, filler, file,
3893 			mapping_gfp_mask(mapping));
3894 }
3895 EXPORT_SYMBOL(read_cache_page);
3896 
3897 /**
3898  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3899  * @mapping:	the page's address_space
3900  * @index:	the page index
3901  * @gfp:	the page allocator flags to use if allocating
3902  *
3903  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3904  * any new page allocations done using the specified allocation flags.
3905  *
3906  * If the page does not get brought uptodate, return -EIO.
3907  *
3908  * The function expects mapping->invalidate_lock to be already held.
3909  *
3910  * Return: up to date page on success, ERR_PTR() on failure.
3911  */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3912 struct page *read_cache_page_gfp(struct address_space *mapping,
3913 				pgoff_t index,
3914 				gfp_t gfp)
3915 {
3916 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3917 }
3918 EXPORT_SYMBOL(read_cache_page_gfp);
3919 
3920 /*
3921  * Warn about a page cache invalidation failure during a direct I/O write.
3922  */
dio_warn_stale_pagecache(struct file * filp)3923 static void dio_warn_stale_pagecache(struct file *filp)
3924 {
3925 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3926 	char pathname[128];
3927 	char *path;
3928 
3929 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3930 	if (__ratelimit(&_rs)) {
3931 		path = file_path(filp, pathname, sizeof(pathname));
3932 		if (IS_ERR(path))
3933 			path = "(unknown)";
3934 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3935 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3936 			current->comm);
3937 	}
3938 }
3939 
kiocb_invalidate_post_direct_write(struct kiocb * iocb,size_t count)3940 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3941 {
3942 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3943 
3944 	if (mapping->nrpages &&
3945 	    invalidate_inode_pages2_range(mapping,
3946 			iocb->ki_pos >> PAGE_SHIFT,
3947 			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3948 		dio_warn_stale_pagecache(iocb->ki_filp);
3949 }
3950 
3951 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)3952 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3953 {
3954 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3955 	size_t write_len = iov_iter_count(from);
3956 	ssize_t written;
3957 
3958 	/*
3959 	 * If a page can not be invalidated, return 0 to fall back
3960 	 * to buffered write.
3961 	 */
3962 	written = kiocb_invalidate_pages(iocb, write_len);
3963 	if (written) {
3964 		if (written == -EBUSY)
3965 			return 0;
3966 		return written;
3967 	}
3968 
3969 	written = mapping->a_ops->direct_IO(iocb, from);
3970 
3971 	/*
3972 	 * Finally, try again to invalidate clean pages which might have been
3973 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3974 	 * if the source of the write was an mmap'ed region of the file
3975 	 * we're writing.  Either one is a pretty crazy thing to do,
3976 	 * so we don't support it 100%.  If this invalidation
3977 	 * fails, tough, the write still worked...
3978 	 *
3979 	 * Most of the time we do not need this since dio_complete() will do
3980 	 * the invalidation for us. However there are some file systems that
3981 	 * do not end up with dio_complete() being called, so let's not break
3982 	 * them by removing it completely.
3983 	 *
3984 	 * Noticeable example is a blkdev_direct_IO().
3985 	 *
3986 	 * Skip invalidation for async writes or if mapping has no pages.
3987 	 */
3988 	if (written > 0) {
3989 		struct inode *inode = mapping->host;
3990 		loff_t pos = iocb->ki_pos;
3991 
3992 		kiocb_invalidate_post_direct_write(iocb, written);
3993 		pos += written;
3994 		write_len -= written;
3995 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3996 			i_size_write(inode, pos);
3997 			mark_inode_dirty(inode);
3998 		}
3999 		iocb->ki_pos = pos;
4000 	}
4001 	if (written != -EIOCBQUEUED)
4002 		iov_iter_revert(from, write_len - iov_iter_count(from));
4003 	return written;
4004 }
4005 EXPORT_SYMBOL(generic_file_direct_write);
4006 
generic_perform_write(struct kiocb * iocb,struct iov_iter * i)4007 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4008 {
4009 	struct file *file = iocb->ki_filp;
4010 	loff_t pos = iocb->ki_pos;
4011 	struct address_space *mapping = file->f_mapping;
4012 	const struct address_space_operations *a_ops = mapping->a_ops;
4013 	size_t chunk = mapping_max_folio_size(mapping);
4014 	long status = 0;
4015 	ssize_t written = 0;
4016 
4017 	do {
4018 		struct folio *folio;
4019 		size_t offset;		/* Offset into folio */
4020 		size_t bytes;		/* Bytes to write to folio */
4021 		size_t copied;		/* Bytes copied from user */
4022 		void *fsdata = NULL;
4023 
4024 		bytes = iov_iter_count(i);
4025 retry:
4026 		offset = pos & (chunk - 1);
4027 		bytes = min(chunk - offset, bytes);
4028 		balance_dirty_pages_ratelimited(mapping);
4029 
4030 		/*
4031 		 * Bring in the user page that we will copy from _first_.
4032 		 * Otherwise there's a nasty deadlock on copying from the
4033 		 * same page as we're writing to, without it being marked
4034 		 * up-to-date.
4035 		 */
4036 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
4037 			status = -EFAULT;
4038 			break;
4039 		}
4040 
4041 		if (fatal_signal_pending(current)) {
4042 			status = -EINTR;
4043 			break;
4044 		}
4045 
4046 		status = a_ops->write_begin(file, mapping, pos, bytes,
4047 						&folio, &fsdata);
4048 		if (unlikely(status < 0))
4049 			break;
4050 
4051 		offset = offset_in_folio(folio, pos);
4052 		if (bytes > folio_size(folio) - offset)
4053 			bytes = folio_size(folio) - offset;
4054 
4055 		if (mapping_writably_mapped(mapping))
4056 			flush_dcache_folio(folio);
4057 
4058 		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4059 		flush_dcache_folio(folio);
4060 
4061 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
4062 						folio, fsdata);
4063 		if (unlikely(status != copied)) {
4064 			iov_iter_revert(i, copied - max(status, 0L));
4065 			if (unlikely(status < 0))
4066 				break;
4067 		}
4068 		cond_resched();
4069 
4070 		if (unlikely(status == 0)) {
4071 			/*
4072 			 * A short copy made ->write_end() reject the
4073 			 * thing entirely.  Might be memory poisoning
4074 			 * halfway through, might be a race with munmap,
4075 			 * might be severe memory pressure.
4076 			 */
4077 			if (chunk > PAGE_SIZE)
4078 				chunk /= 2;
4079 			if (copied) {
4080 				bytes = copied;
4081 				goto retry;
4082 			}
4083 		} else {
4084 			pos += status;
4085 			written += status;
4086 		}
4087 	} while (iov_iter_count(i));
4088 
4089 	if (!written)
4090 		return status;
4091 	iocb->ki_pos += written;
4092 	return written;
4093 }
4094 EXPORT_SYMBOL(generic_perform_write);
4095 
4096 /**
4097  * __generic_file_write_iter - write data to a file
4098  * @iocb:	IO state structure (file, offset, etc.)
4099  * @from:	iov_iter with data to write
4100  *
4101  * This function does all the work needed for actually writing data to a
4102  * file. It does all basic checks, removes SUID from the file, updates
4103  * modification times and calls proper subroutines depending on whether we
4104  * do direct IO or a standard buffered write.
4105  *
4106  * It expects i_rwsem to be grabbed unless we work on a block device or similar
4107  * object which does not need locking at all.
4108  *
4109  * This function does *not* take care of syncing data in case of O_SYNC write.
4110  * A caller has to handle it. This is mainly due to the fact that we want to
4111  * avoid syncing under i_rwsem.
4112  *
4113  * Return:
4114  * * number of bytes written, even for truncated writes
4115  * * negative error code if no data has been written at all
4116  */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4117 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4118 {
4119 	struct file *file = iocb->ki_filp;
4120 	struct address_space *mapping = file->f_mapping;
4121 	struct inode *inode = mapping->host;
4122 	ssize_t ret;
4123 
4124 	ret = file_remove_privs(file);
4125 	if (ret)
4126 		return ret;
4127 
4128 	ret = file_update_time(file);
4129 	if (ret)
4130 		return ret;
4131 
4132 	if (iocb->ki_flags & IOCB_DIRECT) {
4133 		ret = generic_file_direct_write(iocb, from);
4134 		/*
4135 		 * If the write stopped short of completing, fall back to
4136 		 * buffered writes.  Some filesystems do this for writes to
4137 		 * holes, for example.  For DAX files, a buffered write will
4138 		 * not succeed (even if it did, DAX does not handle dirty
4139 		 * page-cache pages correctly).
4140 		 */
4141 		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4142 			return ret;
4143 		return direct_write_fallback(iocb, from, ret,
4144 				generic_perform_write(iocb, from));
4145 	}
4146 
4147 	return generic_perform_write(iocb, from);
4148 }
4149 EXPORT_SYMBOL(__generic_file_write_iter);
4150 
4151 /**
4152  * generic_file_write_iter - write data to a file
4153  * @iocb:	IO state structure
4154  * @from:	iov_iter with data to write
4155  *
4156  * This is a wrapper around __generic_file_write_iter() to be used by most
4157  * filesystems. It takes care of syncing the file in case of O_SYNC file
4158  * and acquires i_rwsem as needed.
4159  * Return:
4160  * * negative error code if no data has been written at all of
4161  *   vfs_fsync_range() failed for a synchronous write
4162  * * number of bytes written, even for truncated writes
4163  */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4164 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4165 {
4166 	struct file *file = iocb->ki_filp;
4167 	struct inode *inode = file->f_mapping->host;
4168 	ssize_t ret;
4169 
4170 	inode_lock(inode);
4171 	ret = generic_write_checks(iocb, from);
4172 	if (ret > 0)
4173 		ret = __generic_file_write_iter(iocb, from);
4174 	inode_unlock(inode);
4175 
4176 	if (ret > 0)
4177 		ret = generic_write_sync(iocb, ret);
4178 	return ret;
4179 }
4180 EXPORT_SYMBOL(generic_file_write_iter);
4181 
4182 /**
4183  * filemap_release_folio() - Release fs-specific metadata on a folio.
4184  * @folio: The folio which the kernel is trying to free.
4185  * @gfp: Memory allocation flags (and I/O mode).
4186  *
4187  * The address_space is trying to release any data attached to a folio
4188  * (presumably at folio->private).
4189  *
4190  * This will also be called if the private_2 flag is set on a page,
4191  * indicating that the folio has other metadata associated with it.
4192  *
4193  * The @gfp argument specifies whether I/O may be performed to release
4194  * this page (__GFP_IO), and whether the call may block
4195  * (__GFP_RECLAIM & __GFP_FS).
4196  *
4197  * Return: %true if the release was successful, otherwise %false.
4198  */
filemap_release_folio(struct folio * folio,gfp_t gfp)4199 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4200 {
4201 	struct address_space * const mapping = folio->mapping;
4202 
4203 	BUG_ON(!folio_test_locked(folio));
4204 	if (!folio_needs_release(folio))
4205 		return true;
4206 	if (folio_test_writeback(folio))
4207 		return false;
4208 
4209 	if (mapping && mapping->a_ops->release_folio)
4210 		return mapping->a_ops->release_folio(folio, gfp);
4211 	return try_to_free_buffers(folio);
4212 }
4213 EXPORT_SYMBOL(filemap_release_folio);
4214 
4215 /**
4216  * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4217  * @inode: The inode to flush
4218  * @flush: Set to write back rather than simply invalidate.
4219  * @start: First byte to in range.
4220  * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4221  *       onwards.
4222  *
4223  * Invalidate all the folios on an inode that contribute to the specified
4224  * range, possibly writing them back first.  Whilst the operation is
4225  * undertaken, the invalidate lock is held to prevent new folios from being
4226  * installed.
4227  */
filemap_invalidate_inode(struct inode * inode,bool flush,loff_t start,loff_t end)4228 int filemap_invalidate_inode(struct inode *inode, bool flush,
4229 			     loff_t start, loff_t end)
4230 {
4231 	struct address_space *mapping = inode->i_mapping;
4232 	pgoff_t first = start >> PAGE_SHIFT;
4233 	pgoff_t last = end >> PAGE_SHIFT;
4234 	pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4235 
4236 	if (!mapping || !mapping->nrpages || end < start)
4237 		goto out;
4238 
4239 	/* Prevent new folios from being added to the inode. */
4240 	filemap_invalidate_lock(mapping);
4241 
4242 	if (!mapping->nrpages)
4243 		goto unlock;
4244 
4245 	unmap_mapping_pages(mapping, first, nr, false);
4246 
4247 	/* Write back the data if we're asked to. */
4248 	if (flush) {
4249 		struct writeback_control wbc = {
4250 			.sync_mode	= WB_SYNC_ALL,
4251 			.nr_to_write	= LONG_MAX,
4252 			.range_start	= start,
4253 			.range_end	= end,
4254 		};
4255 
4256 		filemap_fdatawrite_wbc(mapping, &wbc);
4257 	}
4258 
4259 	/* Wait for writeback to complete on all folios and discard. */
4260 	invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4261 
4262 unlock:
4263 	filemap_invalidate_unlock(mapping);
4264 out:
4265 	return filemap_check_errors(mapping);
4266 }
4267 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4268 
4269 #ifdef CONFIG_CACHESTAT_SYSCALL
4270 /**
4271  * filemap_cachestat() - compute the page cache statistics of a mapping
4272  * @mapping:	The mapping to compute the statistics for.
4273  * @first_index:	The starting page cache index.
4274  * @last_index:	The final page index (inclusive).
4275  * @cs:	the cachestat struct to write the result to.
4276  *
4277  * This will query the page cache statistics of a mapping in the
4278  * page range of [first_index, last_index] (inclusive). The statistics
4279  * queried include: number of dirty pages, number of pages marked for
4280  * writeback, and the number of (recently) evicted pages.
4281  */
filemap_cachestat(struct address_space * mapping,pgoff_t first_index,pgoff_t last_index,struct cachestat * cs)4282 static void filemap_cachestat(struct address_space *mapping,
4283 		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4284 {
4285 	XA_STATE(xas, &mapping->i_pages, first_index);
4286 	struct folio *folio;
4287 
4288 	/* Flush stats (and potentially sleep) outside the RCU read section. */
4289 	mem_cgroup_flush_stats_ratelimited(NULL);
4290 
4291 	rcu_read_lock();
4292 	xas_for_each(&xas, folio, last_index) {
4293 		int order;
4294 		unsigned long nr_pages;
4295 		pgoff_t folio_first_index, folio_last_index;
4296 
4297 		/*
4298 		 * Don't deref the folio. It is not pinned, and might
4299 		 * get freed (and reused) underneath us.
4300 		 *
4301 		 * We *could* pin it, but that would be expensive for
4302 		 * what should be a fast and lightweight syscall.
4303 		 *
4304 		 * Instead, derive all information of interest from
4305 		 * the rcu-protected xarray.
4306 		 */
4307 
4308 		if (xas_retry(&xas, folio))
4309 			continue;
4310 
4311 		order = xas_get_order(&xas);
4312 		nr_pages = 1 << order;
4313 		folio_first_index = round_down(xas.xa_index, 1 << order);
4314 		folio_last_index = folio_first_index + nr_pages - 1;
4315 
4316 		/* Folios might straddle the range boundaries, only count covered pages */
4317 		if (folio_first_index < first_index)
4318 			nr_pages -= first_index - folio_first_index;
4319 
4320 		if (folio_last_index > last_index)
4321 			nr_pages -= folio_last_index - last_index;
4322 
4323 		if (xa_is_value(folio)) {
4324 			/* page is evicted */
4325 			void *shadow = (void *)folio;
4326 			bool workingset; /* not used */
4327 
4328 			cs->nr_evicted += nr_pages;
4329 
4330 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4331 			if (shmem_mapping(mapping)) {
4332 				/* shmem file - in swap cache */
4333 				swp_entry_t swp = radix_to_swp_entry(folio);
4334 
4335 				/* swapin error results in poisoned entry */
4336 				if (non_swap_entry(swp))
4337 					goto resched;
4338 
4339 				/*
4340 				 * Getting a swap entry from the shmem
4341 				 * inode means we beat
4342 				 * shmem_unuse(). rcu_read_lock()
4343 				 * ensures swapoff waits for us before
4344 				 * freeing the swapper space. However,
4345 				 * we can race with swapping and
4346 				 * invalidation, so there might not be
4347 				 * a shadow in the swapcache (yet).
4348 				 */
4349 				shadow = get_shadow_from_swap_cache(swp);
4350 				if (!shadow)
4351 					goto resched;
4352 			}
4353 #endif
4354 			if (workingset_test_recent(shadow, true, &workingset, false))
4355 				cs->nr_recently_evicted += nr_pages;
4356 
4357 			goto resched;
4358 		}
4359 
4360 		/* page is in cache */
4361 		cs->nr_cache += nr_pages;
4362 
4363 		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4364 			cs->nr_dirty += nr_pages;
4365 
4366 		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4367 			cs->nr_writeback += nr_pages;
4368 
4369 resched:
4370 		if (need_resched()) {
4371 			xas_pause(&xas);
4372 			cond_resched_rcu();
4373 		}
4374 	}
4375 	rcu_read_unlock();
4376 }
4377 
4378 /*
4379  * The cachestat(2) system call.
4380  *
4381  * cachestat() returns the page cache statistics of a file in the
4382  * bytes range specified by `off` and `len`: number of cached pages,
4383  * number of dirty pages, number of pages marked for writeback,
4384  * number of evicted pages, and number of recently evicted pages.
4385  *
4386  * An evicted page is a page that is previously in the page cache
4387  * but has been evicted since. A page is recently evicted if its last
4388  * eviction was recent enough that its reentry to the cache would
4389  * indicate that it is actively being used by the system, and that
4390  * there is memory pressure on the system.
4391  *
4392  * `off` and `len` must be non-negative integers. If `len` > 0,
4393  * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4394  * we will query in the range from `off` to the end of the file.
4395  *
4396  * The `flags` argument is unused for now, but is included for future
4397  * extensibility. User should pass 0 (i.e no flag specified).
4398  *
4399  * Currently, hugetlbfs is not supported.
4400  *
4401  * Because the status of a page can change after cachestat() checks it
4402  * but before it returns to the application, the returned values may
4403  * contain stale information.
4404  *
4405  * return values:
4406  *  zero        - success
4407  *  -EFAULT     - cstat or cstat_range points to an illegal address
4408  *  -EINVAL     - invalid flags
4409  *  -EBADF      - invalid file descriptor
4410  *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4411  */
SYSCALL_DEFINE4(cachestat,unsigned int,fd,struct cachestat_range __user *,cstat_range,struct cachestat __user *,cstat,unsigned int,flags)4412 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4413 		struct cachestat_range __user *, cstat_range,
4414 		struct cachestat __user *, cstat, unsigned int, flags)
4415 {
4416 	CLASS(fd, f)(fd);
4417 	struct address_space *mapping;
4418 	struct cachestat_range csr;
4419 	struct cachestat cs;
4420 	pgoff_t first_index, last_index;
4421 
4422 	if (fd_empty(f))
4423 		return -EBADF;
4424 
4425 	if (copy_from_user(&csr, cstat_range,
4426 			sizeof(struct cachestat_range)))
4427 		return -EFAULT;
4428 
4429 	/* hugetlbfs is not supported */
4430 	if (is_file_hugepages(fd_file(f)))
4431 		return -EOPNOTSUPP;
4432 
4433 	if (flags != 0)
4434 		return -EINVAL;
4435 
4436 	first_index = csr.off >> PAGE_SHIFT;
4437 	last_index =
4438 		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4439 	memset(&cs, 0, sizeof(struct cachestat));
4440 	mapping = fd_file(f)->f_mapping;
4441 	filemap_cachestat(mapping, first_index, last_index, &cs);
4442 
4443 	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4444 		return -EFAULT;
4445 
4446 	return 0;
4447 }
4448 #endif /* CONFIG_CACHESTAT_SYSCALL */
4449