1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_FS_H
3 #define _LINUX_FS_H
4
5 #include <linux/vfsdebug.h>
6 #include <linux/linkage.h>
7 #include <linux/wait_bit.h>
8 #include <linux/kdev_t.h>
9 #include <linux/dcache.h>
10 #include <linux/path.h>
11 #include <linux/stat.h>
12 #include <linux/cache.h>
13 #include <linux/list.h>
14 #include <linux/list_lru.h>
15 #include <linux/llist.h>
16 #include <linux/radix-tree.h>
17 #include <linux/xarray.h>
18 #include <linux/rbtree.h>
19 #include <linux/init.h>
20 #include <linux/pid.h>
21 #include <linux/bug.h>
22 #include <linux/mutex.h>
23 #include <linux/rwsem.h>
24 #include <linux/mm_types.h>
25 #include <linux/capability.h>
26 #include <linux/semaphore.h>
27 #include <linux/fcntl.h>
28 #include <linux/rculist_bl.h>
29 #include <linux/atomic.h>
30 #include <linux/shrinker.h>
31 #include <linux/migrate_mode.h>
32 #include <linux/uidgid.h>
33 #include <linux/lockdep.h>
34 #include <linux/percpu-rwsem.h>
35 #include <linux/workqueue.h>
36 #include <linux/delayed_call.h>
37 #include <linux/uuid.h>
38 #include <linux/errseq.h>
39 #include <linux/ioprio.h>
40 #include <linux/fs_types.h>
41 #include <linux/build_bug.h>
42 #include <linux/stddef.h>
43 #include <linux/mount.h>
44 #include <linux/cred.h>
45 #include <linux/mnt_idmapping.h>
46 #include <linux/slab.h>
47 #include <linux/maple_tree.h>
48 #include <linux/rw_hint.h>
49 #include <linux/file_ref.h>
50 #include <linux/unicode.h>
51
52 #include <asm/byteorder.h>
53 #include <uapi/linux/fs.h>
54
55 struct backing_dev_info;
56 struct bdi_writeback;
57 struct bio;
58 struct io_comp_batch;
59 struct export_operations;
60 struct fiemap_extent_info;
61 struct hd_geometry;
62 struct iovec;
63 struct kiocb;
64 struct kobject;
65 struct pipe_inode_info;
66 struct poll_table_struct;
67 struct kstatfs;
68 struct vm_area_struct;
69 struct vfsmount;
70 struct cred;
71 struct swap_info_struct;
72 struct seq_file;
73 struct workqueue_struct;
74 struct iov_iter;
75 struct fscrypt_operations;
76 struct fsverity_operations;
77 struct fsnotify_mark_connector;
78 struct fsnotify_sb_info;
79 struct fs_context;
80 struct fs_parameter_spec;
81 struct file_kattr;
82 struct iomap_ops;
83
84 extern void __init inode_init(void);
85 extern void __init inode_init_early(void);
86 extern void __init files_init(void);
87 extern void __init files_maxfiles_init(void);
88
89 extern unsigned long get_max_files(void);
90 extern unsigned int sysctl_nr_open;
91
92 typedef __kernel_rwf_t rwf_t;
93
94 struct buffer_head;
95 typedef int (get_block_t)(struct inode *inode, sector_t iblock,
96 struct buffer_head *bh_result, int create);
97 typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset,
98 ssize_t bytes, void *private);
99
100 #define MAY_EXEC 0x00000001
101 #define MAY_WRITE 0x00000002
102 #define MAY_READ 0x00000004
103 #define MAY_APPEND 0x00000008
104 #define MAY_ACCESS 0x00000010
105 #define MAY_OPEN 0x00000020
106 #define MAY_CHDIR 0x00000040
107 /* called from RCU mode, don't block */
108 #define MAY_NOT_BLOCK 0x00000080
109
110 /*
111 * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond
112 * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open()
113 */
114
115 /* file is open for reading */
116 #define FMODE_READ ((__force fmode_t)(1 << 0))
117 /* file is open for writing */
118 #define FMODE_WRITE ((__force fmode_t)(1 << 1))
119 /* file is seekable */
120 #define FMODE_LSEEK ((__force fmode_t)(1 << 2))
121 /* file can be accessed using pread */
122 #define FMODE_PREAD ((__force fmode_t)(1 << 3))
123 /* file can be accessed using pwrite */
124 #define FMODE_PWRITE ((__force fmode_t)(1 << 4))
125 /* File is opened for execution with sys_execve / sys_uselib */
126 #define FMODE_EXEC ((__force fmode_t)(1 << 5))
127 /* File writes are restricted (block device specific) */
128 #define FMODE_WRITE_RESTRICTED ((__force fmode_t)(1 << 6))
129 /* File supports atomic writes */
130 #define FMODE_CAN_ATOMIC_WRITE ((__force fmode_t)(1 << 7))
131
132 /* FMODE_* bit 8 */
133
134 /* 32bit hashes as llseek() offset (for directories) */
135 #define FMODE_32BITHASH ((__force fmode_t)(1 << 9))
136 /* 64bit hashes as llseek() offset (for directories) */
137 #define FMODE_64BITHASH ((__force fmode_t)(1 << 10))
138
139 /*
140 * Don't update ctime and mtime.
141 *
142 * Currently a special hack for the XFS open_by_handle ioctl, but we'll
143 * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon.
144 */
145 #define FMODE_NOCMTIME ((__force fmode_t)(1 << 11))
146
147 /* Expect random access pattern */
148 #define FMODE_RANDOM ((__force fmode_t)(1 << 12))
149
150 /* Supports IOCB_HAS_METADATA */
151 #define FMODE_HAS_METADATA ((__force fmode_t)(1 << 13))
152
153 /* File is opened with O_PATH; almost nothing can be done with it */
154 #define FMODE_PATH ((__force fmode_t)(1 << 14))
155
156 /* File needs atomic accesses to f_pos */
157 #define FMODE_ATOMIC_POS ((__force fmode_t)(1 << 15))
158 /* Write access to underlying fs */
159 #define FMODE_WRITER ((__force fmode_t)(1 << 16))
160 /* Has read method(s) */
161 #define FMODE_CAN_READ ((__force fmode_t)(1 << 17))
162 /* Has write method(s) */
163 #define FMODE_CAN_WRITE ((__force fmode_t)(1 << 18))
164
165 #define FMODE_OPENED ((__force fmode_t)(1 << 19))
166 #define FMODE_CREATED ((__force fmode_t)(1 << 20))
167
168 /* File is stream-like */
169 #define FMODE_STREAM ((__force fmode_t)(1 << 21))
170
171 /* File supports DIRECT IO */
172 #define FMODE_CAN_ODIRECT ((__force fmode_t)(1 << 22))
173
174 #define FMODE_NOREUSE ((__force fmode_t)(1 << 23))
175
176 /* File is embedded in backing_file object */
177 #define FMODE_BACKING ((__force fmode_t)(1 << 24))
178
179 /*
180 * Together with FMODE_NONOTIFY_PERM defines which fsnotify events shouldn't be
181 * generated (see below)
182 */
183 #define FMODE_NONOTIFY ((__force fmode_t)(1 << 25))
184
185 /*
186 * Together with FMODE_NONOTIFY defines which fsnotify events shouldn't be
187 * generated (see below)
188 */
189 #define FMODE_NONOTIFY_PERM ((__force fmode_t)(1 << 26))
190
191 /* File is capable of returning -EAGAIN if I/O will block */
192 #define FMODE_NOWAIT ((__force fmode_t)(1 << 27))
193
194 /* File represents mount that needs unmounting */
195 #define FMODE_NEED_UNMOUNT ((__force fmode_t)(1 << 28))
196
197 /* File does not contribute to nr_files count */
198 #define FMODE_NOACCOUNT ((__force fmode_t)(1 << 29))
199
200 /*
201 * The two FMODE_NONOTIFY* define which fsnotify events should not be generated
202 * for an open file. These are the possible values of
203 * (f->f_mode & FMODE_FSNOTIFY_MASK) and their meaning:
204 *
205 * FMODE_NONOTIFY - suppress all (incl. non-permission) events.
206 * FMODE_NONOTIFY_PERM - suppress permission (incl. pre-content) events.
207 * FMODE_NONOTIFY | FMODE_NONOTIFY_PERM - suppress only FAN_ACCESS_PERM.
208 */
209 #define FMODE_FSNOTIFY_MASK \
210 (FMODE_NONOTIFY | FMODE_NONOTIFY_PERM)
211
212 #define FMODE_FSNOTIFY_NONE(mode) \
213 ((mode & FMODE_FSNOTIFY_MASK) == FMODE_NONOTIFY)
214 #ifdef CONFIG_FANOTIFY_ACCESS_PERMISSIONS
215 #define FMODE_FSNOTIFY_HSM(mode) \
216 ((mode & FMODE_FSNOTIFY_MASK) == 0 || \
217 (mode & FMODE_FSNOTIFY_MASK) == (FMODE_NONOTIFY | FMODE_NONOTIFY_PERM))
218 #define FMODE_FSNOTIFY_ACCESS_PERM(mode) \
219 ((mode & FMODE_FSNOTIFY_MASK) == 0)
220 #else
221 #define FMODE_FSNOTIFY_ACCESS_PERM(mode) 0
222 #define FMODE_FSNOTIFY_HSM(mode) 0
223 #endif
224
225 /*
226 * Attribute flags. These should be or-ed together to figure out what
227 * has been changed!
228 */
229 #define ATTR_MODE (1 << 0)
230 #define ATTR_UID (1 << 1)
231 #define ATTR_GID (1 << 2)
232 #define ATTR_SIZE (1 << 3)
233 #define ATTR_ATIME (1 << 4)
234 #define ATTR_MTIME (1 << 5)
235 #define ATTR_CTIME (1 << 6)
236 #define ATTR_ATIME_SET (1 << 7)
237 #define ATTR_MTIME_SET (1 << 8)
238 #define ATTR_FORCE (1 << 9) /* Not a change, but a change it */
239 #define ATTR_KILL_SUID (1 << 11)
240 #define ATTR_KILL_SGID (1 << 12)
241 #define ATTR_FILE (1 << 13)
242 #define ATTR_KILL_PRIV (1 << 14)
243 #define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */
244 #define ATTR_TIMES_SET (1 << 16)
245 #define ATTR_TOUCH (1 << 17)
246 #define ATTR_DELEG (1 << 18) /* Delegated attrs. Don't break write delegations */
247
248 /*
249 * Whiteout is represented by a char device. The following constants define the
250 * mode and device number to use.
251 */
252 #define WHITEOUT_MODE 0
253 #define WHITEOUT_DEV 0
254
255 /*
256 * This is the Inode Attributes structure, used for notify_change(). It
257 * uses the above definitions as flags, to know which values have changed.
258 * Also, in this manner, a Filesystem can look at only the values it cares
259 * about. Basically, these are the attributes that the VFS layer can
260 * request to change from the FS layer.
261 *
262 * Derek Atkins <warlord@MIT.EDU> 94-10-20
263 */
264 struct iattr {
265 unsigned int ia_valid;
266 umode_t ia_mode;
267 /*
268 * The two anonymous unions wrap structures with the same member.
269 *
270 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which
271 * are a dedicated type requiring the filesystem to use the dedicated
272 * helpers. Other filesystem can continue to use ia_{g,u}id until they
273 * have been ported.
274 *
275 * They always contain the same value. In other words FS_ALLOW_IDMAP
276 * pass down the same value on idmapped mounts as they would on regular
277 * mounts.
278 */
279 union {
280 kuid_t ia_uid;
281 vfsuid_t ia_vfsuid;
282 };
283 union {
284 kgid_t ia_gid;
285 vfsgid_t ia_vfsgid;
286 };
287 loff_t ia_size;
288 struct timespec64 ia_atime;
289 struct timespec64 ia_mtime;
290 struct timespec64 ia_ctime;
291
292 /*
293 * Not an attribute, but an auxiliary info for filesystems wanting to
294 * implement an ftruncate() like method. NOTE: filesystem should
295 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL).
296 */
297 struct file *ia_file;
298 };
299
300 /*
301 * Includes for diskquotas.
302 */
303 #include <linux/quota.h>
304
305 /*
306 * Maximum number of layers of fs stack. Needs to be limited to
307 * prevent kernel stack overflow
308 */
309 #define FILESYSTEM_MAX_STACK_DEPTH 2
310
311 /**
312 * enum positive_aop_returns - aop return codes with specific semantics
313 *
314 * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has
315 * completed, that the page is still locked, and
316 * should be considered active. The VM uses this hint
317 * to return the page to the active list -- it won't
318 * be a candidate for writeback again in the near
319 * future. Other callers must be careful to unlock
320 * the page if they get this return. Returned by
321 * writepage();
322 *
323 * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has
324 * unlocked it and the page might have been truncated.
325 * The caller should back up to acquiring a new page and
326 * trying again. The aop will be taking reasonable
327 * precautions not to livelock. If the caller held a page
328 * reference, it should drop it before retrying. Returned
329 * by read_folio().
330 *
331 * address_space_operation functions return these large constants to indicate
332 * special semantics to the caller. These are much larger than the bytes in a
333 * page to allow for functions that return the number of bytes operated on in a
334 * given page.
335 */
336
337 enum positive_aop_returns {
338 AOP_WRITEPAGE_ACTIVATE = 0x80000,
339 AOP_TRUNCATED_PAGE = 0x80001,
340 };
341
342 /*
343 * oh the beauties of C type declarations.
344 */
345 struct page;
346 struct address_space;
347 struct writeback_control;
348 struct readahead_control;
349
350 /* Match RWF_* bits to IOCB bits */
351 #define IOCB_HIPRI (__force int) RWF_HIPRI
352 #define IOCB_DSYNC (__force int) RWF_DSYNC
353 #define IOCB_SYNC (__force int) RWF_SYNC
354 #define IOCB_NOWAIT (__force int) RWF_NOWAIT
355 #define IOCB_APPEND (__force int) RWF_APPEND
356 #define IOCB_ATOMIC (__force int) RWF_ATOMIC
357 #define IOCB_DONTCACHE (__force int) RWF_DONTCACHE
358 #define IOCB_NOSIGNAL (__force int) RWF_NOSIGNAL
359
360 /* non-RWF related bits - start at 16 */
361 #define IOCB_EVENTFD (1 << 16)
362 #define IOCB_DIRECT (1 << 17)
363 #define IOCB_WRITE (1 << 18)
364 /* iocb->ki_waitq is valid */
365 #define IOCB_WAITQ (1 << 19)
366 #define IOCB_NOIO (1 << 20)
367 /* can use bio alloc cache */
368 #define IOCB_ALLOC_CACHE (1 << 21)
369 /*
370 * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the
371 * iocb completion can be passed back to the owner for execution from a safe
372 * context rather than needing to be punted through a workqueue. If this
373 * flag is set, the bio completion handling may set iocb->dio_complete to a
374 * handler function and iocb->private to context information for that handler.
375 * The issuer should call the handler with that context information from task
376 * context to complete the processing of the iocb. Note that while this
377 * provides a task context for the dio_complete() callback, it should only be
378 * used on the completion side for non-IO generating completions. It's fine to
379 * call blocking functions from this callback, but they should not wait for
380 * unrelated IO (like cache flushing, new IO generation, etc).
381 */
382 #define IOCB_DIO_CALLER_COMP (1 << 22)
383 /* kiocb is a read or write operation submitted by fs/aio.c. */
384 #define IOCB_AIO_RW (1 << 23)
385 #define IOCB_HAS_METADATA (1 << 24)
386
387 /* for use in trace events */
388 #define TRACE_IOCB_STRINGS \
389 { IOCB_HIPRI, "HIPRI" }, \
390 { IOCB_DSYNC, "DSYNC" }, \
391 { IOCB_SYNC, "SYNC" }, \
392 { IOCB_NOWAIT, "NOWAIT" }, \
393 { IOCB_APPEND, "APPEND" }, \
394 { IOCB_ATOMIC, "ATOMIC" }, \
395 { IOCB_DONTCACHE, "DONTCACHE" }, \
396 { IOCB_EVENTFD, "EVENTFD"}, \
397 { IOCB_DIRECT, "DIRECT" }, \
398 { IOCB_WRITE, "WRITE" }, \
399 { IOCB_WAITQ, "WAITQ" }, \
400 { IOCB_NOIO, "NOIO" }, \
401 { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \
402 { IOCB_DIO_CALLER_COMP, "CALLER_COMP" }, \
403 { IOCB_AIO_RW, "AIO_RW" }, \
404 { IOCB_HAS_METADATA, "AIO_HAS_METADATA" }
405
406 struct kiocb {
407 struct file *ki_filp;
408 loff_t ki_pos;
409 void (*ki_complete)(struct kiocb *iocb, long ret);
410 void *private;
411 int ki_flags;
412 u16 ki_ioprio; /* See linux/ioprio.h */
413 u8 ki_write_stream;
414 union {
415 /*
416 * Only used for async buffered reads, where it denotes the
417 * page waitqueue associated with completing the read. Valid
418 * IFF IOCB_WAITQ is set.
419 */
420 struct wait_page_queue *ki_waitq;
421 /*
422 * Can be used for O_DIRECT IO, where the completion handling
423 * is punted back to the issuer of the IO. May only be set
424 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer
425 * must then check for presence of this handler when ki_complete
426 * is invoked. The data passed in to this handler must be
427 * assigned to ->private when dio_complete is assigned.
428 */
429 ssize_t (*dio_complete)(void *data);
430 };
431 };
432
is_sync_kiocb(struct kiocb * kiocb)433 static inline bool is_sync_kiocb(struct kiocb *kiocb)
434 {
435 return kiocb->ki_complete == NULL;
436 }
437
438 struct address_space_operations {
439 int (*read_folio)(struct file *, struct folio *);
440
441 /* Write back some dirty pages from this mapping. */
442 int (*writepages)(struct address_space *, struct writeback_control *);
443
444 /* Mark a folio dirty. Return true if this dirtied it */
445 bool (*dirty_folio)(struct address_space *, struct folio *);
446
447 void (*readahead)(struct readahead_control *);
448
449 int (*write_begin)(const struct kiocb *, struct address_space *mapping,
450 loff_t pos, unsigned len,
451 struct folio **foliop, void **fsdata);
452 int (*write_end)(const struct kiocb *, struct address_space *mapping,
453 loff_t pos, unsigned len, unsigned copied,
454 struct folio *folio, void *fsdata);
455
456 /* Unfortunately this kludge is needed for FIBMAP. Don't use it */
457 sector_t (*bmap)(struct address_space *, sector_t);
458 void (*invalidate_folio) (struct folio *, size_t offset, size_t len);
459 bool (*release_folio)(struct folio *, gfp_t);
460 void (*free_folio)(struct folio *folio);
461 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
462 /*
463 * migrate the contents of a folio to the specified target. If
464 * migrate_mode is MIGRATE_ASYNC, it must not block.
465 */
466 int (*migrate_folio)(struct address_space *, struct folio *dst,
467 struct folio *src, enum migrate_mode);
468 int (*launder_folio)(struct folio *);
469 bool (*is_partially_uptodate) (struct folio *, size_t from,
470 size_t count);
471 void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb);
472 int (*error_remove_folio)(struct address_space *, struct folio *);
473
474 /* swapfile support */
475 int (*swap_activate)(struct swap_info_struct *sis, struct file *file,
476 sector_t *span);
477 void (*swap_deactivate)(struct file *file);
478 int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter);
479 };
480
481 extern const struct address_space_operations empty_aops;
482
483 /**
484 * struct address_space - Contents of a cacheable, mappable object.
485 * @host: Owner, either the inode or the block_device.
486 * @i_pages: Cached pages.
487 * @invalidate_lock: Guards coherency between page cache contents and
488 * file offset->disk block mappings in the filesystem during invalidates.
489 * It is also used to block modification of page cache contents through
490 * memory mappings.
491 * @gfp_mask: Memory allocation flags to use for allocating pages.
492 * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings.
493 * @nr_thps: Number of THPs in the pagecache (non-shmem only).
494 * @i_mmap: Tree of private and shared mappings.
495 * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable.
496 * @nrpages: Number of page entries, protected by the i_pages lock.
497 * @writeback_index: Writeback starts here.
498 * @a_ops: Methods.
499 * @flags: Error bits and flags (AS_*).
500 * @wb_err: The most recent error which has occurred.
501 * @i_private_lock: For use by the owner of the address_space.
502 * @i_private_list: For use by the owner of the address_space.
503 * @i_private_data: For use by the owner of the address_space.
504 */
505 struct address_space {
506 struct inode *host;
507 struct xarray i_pages;
508 struct rw_semaphore invalidate_lock;
509 gfp_t gfp_mask;
510 atomic_t i_mmap_writable;
511 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
512 /* number of thp, only for non-shmem files */
513 atomic_t nr_thps;
514 #endif
515 struct rb_root_cached i_mmap;
516 unsigned long nrpages;
517 pgoff_t writeback_index;
518 const struct address_space_operations *a_ops;
519 unsigned long flags;
520 errseq_t wb_err;
521 spinlock_t i_private_lock;
522 struct list_head i_private_list;
523 struct rw_semaphore i_mmap_rwsem;
524 void * i_private_data;
525 } __attribute__((aligned(sizeof(long)))) __randomize_layout;
526 /*
527 * On most architectures that alignment is already the case; but
528 * must be enforced here for CRIS, to let the least significant bit
529 * of struct folio's "mapping" pointer be used for FOLIO_MAPPING_ANON.
530 */
531
532 /* XArray tags, for tagging dirty and writeback pages in the pagecache. */
533 #define PAGECACHE_TAG_DIRTY XA_MARK_0
534 #define PAGECACHE_TAG_WRITEBACK XA_MARK_1
535 #define PAGECACHE_TAG_TOWRITE XA_MARK_2
536
537 /*
538 * Returns true if any of the pages in the mapping are marked with the tag.
539 */
mapping_tagged(const struct address_space * mapping,xa_mark_t tag)540 static inline bool mapping_tagged(const struct address_space *mapping, xa_mark_t tag)
541 {
542 return xa_marked(&mapping->i_pages, tag);
543 }
544
i_mmap_lock_write(struct address_space * mapping)545 static inline void i_mmap_lock_write(struct address_space *mapping)
546 {
547 down_write(&mapping->i_mmap_rwsem);
548 }
549
i_mmap_trylock_write(struct address_space * mapping)550 static inline int i_mmap_trylock_write(struct address_space *mapping)
551 {
552 return down_write_trylock(&mapping->i_mmap_rwsem);
553 }
554
i_mmap_unlock_write(struct address_space * mapping)555 static inline void i_mmap_unlock_write(struct address_space *mapping)
556 {
557 up_write(&mapping->i_mmap_rwsem);
558 }
559
i_mmap_trylock_read(struct address_space * mapping)560 static inline int i_mmap_trylock_read(struct address_space *mapping)
561 {
562 return down_read_trylock(&mapping->i_mmap_rwsem);
563 }
564
i_mmap_lock_read(struct address_space * mapping)565 static inline void i_mmap_lock_read(struct address_space *mapping)
566 {
567 down_read(&mapping->i_mmap_rwsem);
568 }
569
i_mmap_unlock_read(struct address_space * mapping)570 static inline void i_mmap_unlock_read(struct address_space *mapping)
571 {
572 up_read(&mapping->i_mmap_rwsem);
573 }
574
i_mmap_assert_locked(struct address_space * mapping)575 static inline void i_mmap_assert_locked(struct address_space *mapping)
576 {
577 lockdep_assert_held(&mapping->i_mmap_rwsem);
578 }
579
i_mmap_assert_write_locked(struct address_space * mapping)580 static inline void i_mmap_assert_write_locked(struct address_space *mapping)
581 {
582 lockdep_assert_held_write(&mapping->i_mmap_rwsem);
583 }
584
585 /*
586 * Might pages of this file be mapped into userspace?
587 */
mapping_mapped(const struct address_space * mapping)588 static inline int mapping_mapped(const struct address_space *mapping)
589 {
590 return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root);
591 }
592
593 /*
594 * Might pages of this file have been modified in userspace?
595 * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap
596 * marks vma as VM_SHARED if it is shared, and the file was opened for
597 * writing i.e. vma may be mprotected writable even if now readonly.
598 *
599 * If i_mmap_writable is negative, no new writable mappings are allowed. You
600 * can only deny writable mappings, if none exists right now.
601 */
mapping_writably_mapped(const struct address_space * mapping)602 static inline int mapping_writably_mapped(const struct address_space *mapping)
603 {
604 return atomic_read(&mapping->i_mmap_writable) > 0;
605 }
606
mapping_map_writable(struct address_space * mapping)607 static inline int mapping_map_writable(struct address_space *mapping)
608 {
609 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ?
610 0 : -EPERM;
611 }
612
mapping_unmap_writable(struct address_space * mapping)613 static inline void mapping_unmap_writable(struct address_space *mapping)
614 {
615 atomic_dec(&mapping->i_mmap_writable);
616 }
617
mapping_deny_writable(struct address_space * mapping)618 static inline int mapping_deny_writable(struct address_space *mapping)
619 {
620 return atomic_dec_unless_positive(&mapping->i_mmap_writable) ?
621 0 : -EBUSY;
622 }
623
mapping_allow_writable(struct address_space * mapping)624 static inline void mapping_allow_writable(struct address_space *mapping)
625 {
626 atomic_inc(&mapping->i_mmap_writable);
627 }
628
629 /*
630 * Use sequence counter to get consistent i_size on 32-bit processors.
631 */
632 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
633 #include <linux/seqlock.h>
634 #define __NEED_I_SIZE_ORDERED
635 #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount)
636 #else
637 #define i_size_ordered_init(inode) do { } while (0)
638 #endif
639
640 struct posix_acl;
641 #define ACL_NOT_CACHED ((void *)(-1))
642 /*
643 * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to
644 * cache the ACL. This also means that ->get_inode_acl() can be called in RCU
645 * mode with the LOOKUP_RCU flag.
646 */
647 #define ACL_DONT_CACHE ((void *)(-3))
648
649 static inline struct posix_acl *
uncached_acl_sentinel(struct task_struct * task)650 uncached_acl_sentinel(struct task_struct *task)
651 {
652 return (void *)task + 1;
653 }
654
655 static inline bool
is_uncached_acl(struct posix_acl * acl)656 is_uncached_acl(struct posix_acl *acl)
657 {
658 return (long)acl & 1;
659 }
660
661 #define IOP_FASTPERM 0x0001
662 #define IOP_LOOKUP 0x0002
663 #define IOP_NOFOLLOW 0x0004
664 #define IOP_XATTR 0x0008
665 #define IOP_DEFAULT_READLINK 0x0010
666 #define IOP_MGTIME 0x0020
667 #define IOP_CACHED_LINK 0x0040
668
669 /*
670 * Inode state bits. Protected by inode->i_lock
671 *
672 * Four bits determine the dirty state of the inode: I_DIRTY_SYNC,
673 * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME.
674 *
675 * Four bits define the lifetime of an inode. Initially, inodes are I_NEW,
676 * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at
677 * various stages of removing an inode.
678 *
679 * Two bits are used for locking and completion notification, I_NEW and I_SYNC.
680 *
681 * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on
682 * fdatasync() (unless I_DIRTY_DATASYNC is also set).
683 * Timestamp updates are the usual cause.
684 * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of
685 * these changes separately from I_DIRTY_SYNC so that we
686 * don't have to write inode on fdatasync() when only
687 * e.g. the timestamps have changed.
688 * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean.
689 * I_DIRTY_TIME The inode itself has dirty timestamps, and the
690 * lazytime mount option is enabled. We keep track of this
691 * separately from I_DIRTY_SYNC in order to implement
692 * lazytime. This gets cleared if I_DIRTY_INODE
693 * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But
694 * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already
695 * in place because writeback might already be in progress
696 * and we don't want to lose the time update
697 * I_NEW Serves as both a mutex and completion notification.
698 * New inodes set I_NEW. If two processes both create
699 * the same inode, one of them will release its inode and
700 * wait for I_NEW to be released before returning.
701 * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can
702 * also cause waiting on I_NEW, without I_NEW actually
703 * being set. find_inode() uses this to prevent returning
704 * nearly-dead inodes.
705 * I_WILL_FREE Must be set when calling write_inode_now() if i_count
706 * is zero. I_FREEING must be set when I_WILL_FREE is
707 * cleared.
708 * I_FREEING Set when inode is about to be freed but still has dirty
709 * pages or buffers attached or the inode itself is still
710 * dirty.
711 * I_CLEAR Added by clear_inode(). In this state the inode is
712 * clean and can be destroyed. Inode keeps I_FREEING.
713 *
714 * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are
715 * prohibited for many purposes. iget() must wait for
716 * the inode to be completely released, then create it
717 * anew. Other functions will just ignore such inodes,
718 * if appropriate. I_NEW is used for waiting.
719 *
720 * I_SYNC Writeback of inode is running. The bit is set during
721 * data writeback, and cleared with a wakeup on the bit
722 * address once it is done. The bit is also used to pin
723 * the inode in memory for flusher thread.
724 *
725 * I_REFERENCED Marks the inode as recently references on the LRU list.
726 *
727 * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to
728 * synchronize competing switching instances and to tell
729 * wb stat updates to grab the i_pages lock. See
730 * inode_switch_wbs_work_fn() for details.
731 *
732 * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper
733 * and work dirs among overlayfs mounts.
734 *
735 * I_CREATING New object's inode in the middle of setting up.
736 *
737 * I_DONTCACHE Evict inode as soon as it is not used anymore.
738 *
739 * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists.
740 * Used to detect that mark_inode_dirty() should not move
741 * inode between dirty lists.
742 *
743 * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback.
744 *
745 * I_LRU_ISOLATING Inode is pinned being isolated from LRU without holding
746 * i_count.
747 *
748 * Q: What is the difference between I_WILL_FREE and I_FREEING?
749 *
750 * __I_{SYNC,NEW,LRU_ISOLATING} are used to derive unique addresses to wait
751 * upon. There's one free address left.
752 */
753
754 enum inode_state_bits {
755 __I_NEW = 0U,
756 __I_SYNC = 1U,
757 __I_LRU_ISOLATING = 2U
758 /* reserved wait address bit 3 */
759 };
760
761 enum inode_state_flags_t {
762 I_NEW = (1U << __I_NEW),
763 I_SYNC = (1U << __I_SYNC),
764 I_LRU_ISOLATING = (1U << __I_LRU_ISOLATING),
765 /* reserved flag bit 3 */
766 I_DIRTY_SYNC = (1U << 4),
767 I_DIRTY_DATASYNC = (1U << 5),
768 I_DIRTY_PAGES = (1U << 6),
769 I_WILL_FREE = (1U << 7),
770 I_FREEING = (1U << 8),
771 I_CLEAR = (1U << 9),
772 I_REFERENCED = (1U << 10),
773 I_LINKABLE = (1U << 11),
774 I_DIRTY_TIME = (1U << 12),
775 I_WB_SWITCH = (1U << 13),
776 I_OVL_INUSE = (1U << 14),
777 I_CREATING = (1U << 15),
778 I_DONTCACHE = (1U << 16),
779 I_SYNC_QUEUED = (1U << 17),
780 I_PINNING_NETFS_WB = (1U << 18)
781 };
782
783 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
784 #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES)
785 #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME)
786
787 /*
788 * Keep mostly read-only and often accessed (especially for
789 * the RCU path lookup and 'stat' data) fields at the beginning
790 * of the 'struct inode'
791 */
792 struct inode {
793 umode_t i_mode;
794 unsigned short i_opflags;
795 kuid_t i_uid;
796 kgid_t i_gid;
797 unsigned int i_flags;
798
799 #ifdef CONFIG_FS_POSIX_ACL
800 struct posix_acl *i_acl;
801 struct posix_acl *i_default_acl;
802 #endif
803
804 const struct inode_operations *i_op;
805 struct super_block *i_sb;
806 struct address_space *i_mapping;
807
808 #ifdef CONFIG_SECURITY
809 void *i_security;
810 #endif
811
812 /* Stat data, not accessed from path walking */
813 unsigned long i_ino;
814 /*
815 * Filesystems may only read i_nlink directly. They shall use the
816 * following functions for modification:
817 *
818 * (set|clear|inc|drop)_nlink
819 * inode_(inc|dec)_link_count
820 */
821 union {
822 const unsigned int i_nlink;
823 unsigned int __i_nlink;
824 };
825 dev_t i_rdev;
826 loff_t i_size;
827 time64_t i_atime_sec;
828 time64_t i_mtime_sec;
829 time64_t i_ctime_sec;
830 u32 i_atime_nsec;
831 u32 i_mtime_nsec;
832 u32 i_ctime_nsec;
833 u32 i_generation;
834 spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */
835 unsigned short i_bytes;
836 u8 i_blkbits;
837 enum rw_hint i_write_hint;
838 blkcnt_t i_blocks;
839
840 #ifdef __NEED_I_SIZE_ORDERED
841 seqcount_t i_size_seqcount;
842 #endif
843
844 /* Misc */
845 enum inode_state_flags_t i_state;
846 /* 32-bit hole */
847 struct rw_semaphore i_rwsem;
848
849 unsigned long dirtied_when; /* jiffies of first dirtying */
850 unsigned long dirtied_time_when;
851
852 struct hlist_node i_hash;
853 struct list_head i_io_list; /* backing dev IO list */
854 #ifdef CONFIG_CGROUP_WRITEBACK
855 struct bdi_writeback *i_wb; /* the associated cgroup wb */
856
857 /* foreign inode detection, see wbc_detach_inode() */
858 int i_wb_frn_winner;
859 u16 i_wb_frn_avg_time;
860 u16 i_wb_frn_history;
861 #endif
862 struct list_head i_lru; /* inode LRU list */
863 struct list_head i_sb_list;
864 struct list_head i_wb_list; /* backing dev writeback list */
865 union {
866 struct hlist_head i_dentry;
867 struct rcu_head i_rcu;
868 };
869 atomic64_t i_version;
870 atomic64_t i_sequence; /* see futex */
871 atomic_t i_count;
872 atomic_t i_dio_count;
873 atomic_t i_writecount;
874 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
875 atomic_t i_readcount; /* struct files open RO */
876 #endif
877 union {
878 const struct file_operations *i_fop; /* former ->i_op->default_file_ops */
879 void (*free_inode)(struct inode *);
880 };
881 struct file_lock_context *i_flctx;
882 struct address_space i_data;
883 union {
884 struct list_head i_devices;
885 int i_linklen;
886 };
887 union {
888 struct pipe_inode_info *i_pipe;
889 struct cdev *i_cdev;
890 char *i_link;
891 unsigned i_dir_seq;
892 };
893
894
895 #ifdef CONFIG_FSNOTIFY
896 __u32 i_fsnotify_mask; /* all events this inode cares about */
897 /* 32-bit hole reserved for expanding i_fsnotify_mask */
898 struct fsnotify_mark_connector __rcu *i_fsnotify_marks;
899 #endif
900
901 void *i_private; /* fs or device private pointer */
902 } __randomize_layout;
903
inode_set_cached_link(struct inode * inode,char * link,int linklen)904 static inline void inode_set_cached_link(struct inode *inode, char *link, int linklen)
905 {
906 VFS_WARN_ON_INODE(strlen(link) != linklen, inode);
907 VFS_WARN_ON_INODE(inode->i_opflags & IOP_CACHED_LINK, inode);
908 inode->i_link = link;
909 inode->i_linklen = linklen;
910 inode->i_opflags |= IOP_CACHED_LINK;
911 }
912
913 /*
914 * Get bit address from inode->i_state to use with wait_var_event()
915 * infrastructre.
916 */
917 #define inode_state_wait_address(inode, bit) ((char *)&(inode)->i_state + (bit))
918
919 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
920 struct inode *inode, u32 bit);
921
inode_wake_up_bit(struct inode * inode,u32 bit)922 static inline void inode_wake_up_bit(struct inode *inode, u32 bit)
923 {
924 /* Caller is responsible for correct memory barriers. */
925 wake_up_var(inode_state_wait_address(inode, bit));
926 }
927
928 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode);
929
i_blocksize(const struct inode * node)930 static inline unsigned int i_blocksize(const struct inode *node)
931 {
932 return (1 << node->i_blkbits);
933 }
934
inode_unhashed(struct inode * inode)935 static inline int inode_unhashed(struct inode *inode)
936 {
937 return hlist_unhashed(&inode->i_hash);
938 }
939
940 /*
941 * __mark_inode_dirty expects inodes to be hashed. Since we don't
942 * want special inodes in the fileset inode space, we make them
943 * appear hashed, but do not put on any lists. hlist_del()
944 * will work fine and require no locking.
945 */
inode_fake_hash(struct inode * inode)946 static inline void inode_fake_hash(struct inode *inode)
947 {
948 hlist_add_fake(&inode->i_hash);
949 }
950
951 /*
952 * inode->i_rwsem nesting subclasses for the lock validator:
953 *
954 * 0: the object of the current VFS operation
955 * 1: parent
956 * 2: child/target
957 * 3: xattr
958 * 4: second non-directory
959 * 5: second parent (when locking independent directories in rename)
960 *
961 * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two
962 * non-directories at once.
963 *
964 * The locking order between these classes is
965 * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory
966 */
967 enum inode_i_mutex_lock_class
968 {
969 I_MUTEX_NORMAL,
970 I_MUTEX_PARENT,
971 I_MUTEX_CHILD,
972 I_MUTEX_XATTR,
973 I_MUTEX_NONDIR2,
974 I_MUTEX_PARENT2,
975 };
976
inode_lock(struct inode * inode)977 static inline void inode_lock(struct inode *inode)
978 {
979 down_write(&inode->i_rwsem);
980 }
981
inode_lock_killable(struct inode * inode)982 static inline __must_check int inode_lock_killable(struct inode *inode)
983 {
984 return down_write_killable(&inode->i_rwsem);
985 }
986
inode_unlock(struct inode * inode)987 static inline void inode_unlock(struct inode *inode)
988 {
989 up_write(&inode->i_rwsem);
990 }
991
inode_lock_shared(struct inode * inode)992 static inline void inode_lock_shared(struct inode *inode)
993 {
994 down_read(&inode->i_rwsem);
995 }
996
inode_lock_shared_killable(struct inode * inode)997 static inline __must_check int inode_lock_shared_killable(struct inode *inode)
998 {
999 return down_read_killable(&inode->i_rwsem);
1000 }
1001
inode_unlock_shared(struct inode * inode)1002 static inline void inode_unlock_shared(struct inode *inode)
1003 {
1004 up_read(&inode->i_rwsem);
1005 }
1006
inode_trylock(struct inode * inode)1007 static inline int inode_trylock(struct inode *inode)
1008 {
1009 return down_write_trylock(&inode->i_rwsem);
1010 }
1011
inode_trylock_shared(struct inode * inode)1012 static inline int inode_trylock_shared(struct inode *inode)
1013 {
1014 return down_read_trylock(&inode->i_rwsem);
1015 }
1016
inode_is_locked(struct inode * inode)1017 static inline int inode_is_locked(struct inode *inode)
1018 {
1019 return rwsem_is_locked(&inode->i_rwsem);
1020 }
1021
inode_lock_nested(struct inode * inode,unsigned subclass)1022 static inline void inode_lock_nested(struct inode *inode, unsigned subclass)
1023 {
1024 down_write_nested(&inode->i_rwsem, subclass);
1025 }
1026
inode_lock_shared_nested(struct inode * inode,unsigned subclass)1027 static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass)
1028 {
1029 down_read_nested(&inode->i_rwsem, subclass);
1030 }
1031
filemap_invalidate_lock(struct address_space * mapping)1032 static inline void filemap_invalidate_lock(struct address_space *mapping)
1033 {
1034 down_write(&mapping->invalidate_lock);
1035 }
1036
filemap_invalidate_unlock(struct address_space * mapping)1037 static inline void filemap_invalidate_unlock(struct address_space *mapping)
1038 {
1039 up_write(&mapping->invalidate_lock);
1040 }
1041
filemap_invalidate_lock_shared(struct address_space * mapping)1042 static inline void filemap_invalidate_lock_shared(struct address_space *mapping)
1043 {
1044 down_read(&mapping->invalidate_lock);
1045 }
1046
filemap_invalidate_trylock_shared(struct address_space * mapping)1047 static inline int filemap_invalidate_trylock_shared(
1048 struct address_space *mapping)
1049 {
1050 return down_read_trylock(&mapping->invalidate_lock);
1051 }
1052
filemap_invalidate_unlock_shared(struct address_space * mapping)1053 static inline void filemap_invalidate_unlock_shared(
1054 struct address_space *mapping)
1055 {
1056 up_read(&mapping->invalidate_lock);
1057 }
1058
1059 void lock_two_nondirectories(struct inode *, struct inode*);
1060 void unlock_two_nondirectories(struct inode *, struct inode*);
1061
1062 void filemap_invalidate_lock_two(struct address_space *mapping1,
1063 struct address_space *mapping2);
1064 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1065 struct address_space *mapping2);
1066
1067
1068 /*
1069 * NOTE: in a 32bit arch with a preemptable kernel and
1070 * an UP compile the i_size_read/write must be atomic
1071 * with respect to the local cpu (unlike with preempt disabled),
1072 * but they don't need to be atomic with respect to other cpus like in
1073 * true SMP (so they need either to either locally disable irq around
1074 * the read or for example on x86 they can be still implemented as a
1075 * cmpxchg8b without the need of the lock prefix). For SMP compiles
1076 * and 64bit archs it makes no difference if preempt is enabled or not.
1077 */
i_size_read(const struct inode * inode)1078 static inline loff_t i_size_read(const struct inode *inode)
1079 {
1080 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
1081 loff_t i_size;
1082 unsigned int seq;
1083
1084 do {
1085 seq = read_seqcount_begin(&inode->i_size_seqcount);
1086 i_size = inode->i_size;
1087 } while (read_seqcount_retry(&inode->i_size_seqcount, seq));
1088 return i_size;
1089 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
1090 loff_t i_size;
1091
1092 preempt_disable();
1093 i_size = inode->i_size;
1094 preempt_enable();
1095 return i_size;
1096 #else
1097 /* Pairs with smp_store_release() in i_size_write() */
1098 return smp_load_acquire(&inode->i_size);
1099 #endif
1100 }
1101
1102 /*
1103 * NOTE: unlike i_size_read(), i_size_write() does need locking around it
1104 * (normally i_rwsem), otherwise on 32bit/SMP an update of i_size_seqcount
1105 * can be lost, resulting in subsequent i_size_read() calls spinning forever.
1106 */
i_size_write(struct inode * inode,loff_t i_size)1107 static inline void i_size_write(struct inode *inode, loff_t i_size)
1108 {
1109 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
1110 preempt_disable();
1111 write_seqcount_begin(&inode->i_size_seqcount);
1112 inode->i_size = i_size;
1113 write_seqcount_end(&inode->i_size_seqcount);
1114 preempt_enable();
1115 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
1116 preempt_disable();
1117 inode->i_size = i_size;
1118 preempt_enable();
1119 #else
1120 /*
1121 * Pairs with smp_load_acquire() in i_size_read() to ensure
1122 * changes related to inode size (such as page contents) are
1123 * visible before we see the changed inode size.
1124 */
1125 smp_store_release(&inode->i_size, i_size);
1126 #endif
1127 }
1128
iminor(const struct inode * inode)1129 static inline unsigned iminor(const struct inode *inode)
1130 {
1131 return MINOR(inode->i_rdev);
1132 }
1133
imajor(const struct inode * inode)1134 static inline unsigned imajor(const struct inode *inode)
1135 {
1136 return MAJOR(inode->i_rdev);
1137 }
1138
1139 struct fown_struct {
1140 struct file *file; /* backpointer for security modules */
1141 rwlock_t lock; /* protects pid, uid, euid fields */
1142 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */
1143 enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */
1144 kuid_t uid, euid; /* uid/euid of process setting the owner */
1145 int signum; /* posix.1b rt signal to be delivered on IO */
1146 };
1147
1148 /**
1149 * struct file_ra_state - Track a file's readahead state.
1150 * @start: Where the most recent readahead started.
1151 * @size: Number of pages read in the most recent readahead.
1152 * @async_size: Numer of pages that were/are not needed immediately
1153 * and so were/are genuinely "ahead". Start next readahead when
1154 * the first of these pages is accessed.
1155 * @ra_pages: Maximum size of a readahead request, copied from the bdi.
1156 * @order: Preferred folio order used for most recent readahead.
1157 * @mmap_miss: How many mmap accesses missed in the page cache.
1158 * @prev_pos: The last byte in the most recent read request.
1159 *
1160 * When this structure is passed to ->readahead(), the "most recent"
1161 * readahead means the current readahead.
1162 */
1163 struct file_ra_state {
1164 pgoff_t start;
1165 unsigned int size;
1166 unsigned int async_size;
1167 unsigned int ra_pages;
1168 unsigned short order;
1169 unsigned short mmap_miss;
1170 loff_t prev_pos;
1171 };
1172
1173 /*
1174 * Check if @index falls in the readahead windows.
1175 */
ra_has_index(struct file_ra_state * ra,pgoff_t index)1176 static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index)
1177 {
1178 return (index >= ra->start &&
1179 index < ra->start + ra->size);
1180 }
1181
1182 /**
1183 * struct file - Represents a file
1184 * @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context.
1185 * @f_mode: FMODE_* flags often used in hotpaths
1186 * @f_op: file operations
1187 * @f_mapping: Contents of a cacheable, mappable object.
1188 * @private_data: filesystem or driver specific data
1189 * @f_inode: cached inode
1190 * @f_flags: file flags
1191 * @f_iocb_flags: iocb flags
1192 * @f_cred: stashed credentials of creator/opener
1193 * @f_owner: file owner
1194 * @f_path: path of the file
1195 * @__f_path: writable alias for @f_path; *ONLY* for core VFS and only before
1196 * the file gets open
1197 * @f_pos_lock: lock protecting file position
1198 * @f_pipe: specific to pipes
1199 * @f_pos: file position
1200 * @f_security: LSM security context of this file
1201 * @f_wb_err: writeback error
1202 * @f_sb_err: per sb writeback errors
1203 * @f_ep: link of all epoll hooks for this file
1204 * @f_task_work: task work entry point
1205 * @f_llist: work queue entrypoint
1206 * @f_ra: file's readahead state
1207 * @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.)
1208 * @f_ref: reference count
1209 */
1210 struct file {
1211 spinlock_t f_lock;
1212 fmode_t f_mode;
1213 const struct file_operations *f_op;
1214 struct address_space *f_mapping;
1215 void *private_data;
1216 struct inode *f_inode;
1217 unsigned int f_flags;
1218 unsigned int f_iocb_flags;
1219 const struct cred *f_cred;
1220 struct fown_struct *f_owner;
1221 /* --- cacheline 1 boundary (64 bytes) --- */
1222 union {
1223 const struct path f_path;
1224 struct path __f_path;
1225 };
1226 union {
1227 /* regular files (with FMODE_ATOMIC_POS) and directories */
1228 struct mutex f_pos_lock;
1229 /* pipes */
1230 u64 f_pipe;
1231 };
1232 loff_t f_pos;
1233 #ifdef CONFIG_SECURITY
1234 void *f_security;
1235 #endif
1236 /* --- cacheline 2 boundary (128 bytes) --- */
1237 errseq_t f_wb_err;
1238 errseq_t f_sb_err;
1239 #ifdef CONFIG_EPOLL
1240 struct hlist_head *f_ep;
1241 #endif
1242 union {
1243 struct callback_head f_task_work;
1244 struct llist_node f_llist;
1245 struct file_ra_state f_ra;
1246 freeptr_t f_freeptr;
1247 };
1248 file_ref_t f_ref;
1249 /* --- cacheline 3 boundary (192 bytes) --- */
1250 } __randomize_layout
1251 __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */
1252
1253 struct file_handle {
1254 __u32 handle_bytes;
1255 int handle_type;
1256 /* file identifier */
1257 unsigned char f_handle[] __counted_by(handle_bytes);
1258 };
1259
get_file(struct file * f)1260 static inline struct file *get_file(struct file *f)
1261 {
1262 file_ref_inc(&f->f_ref);
1263 return f;
1264 }
1265
1266 struct file *get_file_rcu(struct file __rcu **f);
1267 struct file *get_file_active(struct file **f);
1268
1269 #define file_count(f) file_ref_read(&(f)->f_ref)
1270
1271 #define MAX_NON_LFS ((1UL<<31) - 1)
1272
1273 /* Page cache limit. The filesystems should put that into their s_maxbytes
1274 limits, otherwise bad things can happen in VM. */
1275 #if BITS_PER_LONG==32
1276 #define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT)
1277 #elif BITS_PER_LONG==64
1278 #define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX)
1279 #endif
1280
1281 /* legacy typedef, should eventually be removed */
1282 typedef void *fl_owner_t;
1283
1284 struct file_lock;
1285 struct file_lease;
1286
1287 /* The following constant reflects the upper bound of the file/locking space */
1288 #ifndef OFFSET_MAX
1289 #define OFFSET_MAX type_max(loff_t)
1290 #define OFFT_OFFSET_MAX type_max(off_t)
1291 #endif
1292
1293 int file_f_owner_allocate(struct file *file);
file_f_owner(const struct file * file)1294 static inline struct fown_struct *file_f_owner(const struct file *file)
1295 {
1296 return READ_ONCE(file->f_owner);
1297 }
1298
1299 extern void send_sigio(struct fown_struct *fown, int fd, int band);
1300
file_inode(const struct file * f)1301 static inline struct inode *file_inode(const struct file *f)
1302 {
1303 return f->f_inode;
1304 }
1305
1306 /*
1307 * file_dentry() is a relic from the days that overlayfs was using files with a
1308 * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs.
1309 * In those days, file_dentry() was needed to get the underlying fs dentry that
1310 * matches f_inode.
1311 * Files with "fake" path should not exist nowadays, so use an assertion to make
1312 * sure that file_dentry() was not papering over filesystem bugs.
1313 */
file_dentry(const struct file * file)1314 static inline struct dentry *file_dentry(const struct file *file)
1315 {
1316 struct dentry *dentry = file->f_path.dentry;
1317
1318 WARN_ON_ONCE(d_inode(dentry) != file_inode(file));
1319 return dentry;
1320 }
1321
1322 struct fasync_struct {
1323 rwlock_t fa_lock;
1324 int magic;
1325 int fa_fd;
1326 struct fasync_struct *fa_next; /* singly linked list */
1327 struct file *fa_file;
1328 struct rcu_head fa_rcu;
1329 };
1330
1331 #define FASYNC_MAGIC 0x4601
1332
1333 /* SMP safe fasync helpers: */
1334 extern int fasync_helper(int, struct file *, int, struct fasync_struct **);
1335 extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *);
1336 extern int fasync_remove_entry(struct file *, struct fasync_struct **);
1337 extern struct fasync_struct *fasync_alloc(void);
1338 extern void fasync_free(struct fasync_struct *);
1339
1340 /* can be called from interrupts */
1341 extern void kill_fasync(struct fasync_struct **, int, int);
1342
1343 extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force);
1344 extern int f_setown(struct file *filp, int who, int force);
1345 extern void f_delown(struct file *filp);
1346 extern pid_t f_getown(struct file *filp);
1347 extern int send_sigurg(struct file *file);
1348
1349 /*
1350 * sb->s_flags. Note that these mirror the equivalent MS_* flags where
1351 * represented in both.
1352 */
1353 #define SB_RDONLY BIT(0) /* Mount read-only */
1354 #define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */
1355 #define SB_NODEV BIT(2) /* Disallow access to device special files */
1356 #define SB_NOEXEC BIT(3) /* Disallow program execution */
1357 #define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */
1358 #define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */
1359 #define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */
1360 #define SB_NOATIME BIT(10) /* Do not update access times. */
1361 #define SB_NODIRATIME BIT(11) /* Do not update directory access times */
1362 #define SB_SILENT BIT(15)
1363 #define SB_POSIXACL BIT(16) /* Supports POSIX ACLs */
1364 #define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */
1365 #define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */
1366 #define SB_I_VERSION BIT(23) /* Update inode I_version field */
1367 #define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */
1368
1369 /* These sb flags are internal to the kernel */
1370 #define SB_DEAD BIT(21)
1371 #define SB_DYING BIT(24)
1372 #define SB_FORCE BIT(27)
1373 #define SB_NOSEC BIT(28)
1374 #define SB_BORN BIT(29)
1375 #define SB_ACTIVE BIT(30)
1376 #define SB_NOUSER BIT(31)
1377
1378 /* These flags relate to encoding and casefolding */
1379 #define SB_ENC_STRICT_MODE_FL (1 << 0)
1380 #define SB_ENC_NO_COMPAT_FALLBACK_FL (1 << 1)
1381
1382 #define sb_has_strict_encoding(sb) \
1383 (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL)
1384
1385 #if IS_ENABLED(CONFIG_UNICODE)
1386 #define sb_no_casefold_compat_fallback(sb) \
1387 (sb->s_encoding_flags & SB_ENC_NO_COMPAT_FALLBACK_FL)
1388 #else
1389 #define sb_no_casefold_compat_fallback(sb) (1)
1390 #endif
1391
1392 /*
1393 * Umount options
1394 */
1395
1396 #define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */
1397 #define MNT_DETACH 0x00000002 /* Just detach from the tree */
1398 #define MNT_EXPIRE 0x00000004 /* Mark for expiry */
1399 #define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */
1400 #define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */
1401
1402 /* sb->s_iflags */
1403 #define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */
1404 #define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */
1405 #define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */
1406 #define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */
1407
1408 /* sb->s_iflags to limit user namespace mounts */
1409 #define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */
1410 #define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020
1411 #define SB_I_UNTRUSTED_MOUNTER 0x00000040
1412 #define SB_I_EVM_HMAC_UNSUPPORTED 0x00000080
1413
1414 #define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */
1415 #define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */
1416 #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */
1417 #define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */
1418 #define SB_I_NOUMASK 0x00001000 /* VFS does not apply umask */
1419 #define SB_I_NOIDMAP 0x00002000 /* No idmapped mounts on this superblock */
1420 #define SB_I_ALLOW_HSM 0x00004000 /* Allow HSM events on this superblock */
1421
1422 /* Possible states of 'frozen' field */
1423 enum {
1424 SB_UNFROZEN = 0, /* FS is unfrozen */
1425 SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */
1426 SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */
1427 SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop
1428 * internal threads if needed) */
1429 SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */
1430 };
1431
1432 #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1)
1433
1434 struct sb_writers {
1435 unsigned short frozen; /* Is sb frozen? */
1436 int freeze_kcount; /* How many kernel freeze requests? */
1437 int freeze_ucount; /* How many userspace freeze requests? */
1438 const void *freeze_owner; /* Owner of the freeze */
1439 struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS];
1440 };
1441
1442 struct mount;
1443
1444 struct super_block {
1445 struct list_head s_list; /* Keep this first */
1446 dev_t s_dev; /* search index; _not_ kdev_t */
1447 unsigned char s_blocksize_bits;
1448 unsigned long s_blocksize;
1449 loff_t s_maxbytes; /* Max file size */
1450 struct file_system_type *s_type;
1451 const struct super_operations *s_op;
1452 const struct dquot_operations *dq_op;
1453 const struct quotactl_ops *s_qcop;
1454 const struct export_operations *s_export_op;
1455 unsigned long s_flags;
1456 unsigned long s_iflags; /* internal SB_I_* flags */
1457 unsigned long s_magic;
1458 struct dentry *s_root;
1459 struct rw_semaphore s_umount;
1460 int s_count;
1461 atomic_t s_active;
1462 #ifdef CONFIG_SECURITY
1463 void *s_security;
1464 #endif
1465 const struct xattr_handler * const *s_xattr;
1466 #ifdef CONFIG_FS_ENCRYPTION
1467 const struct fscrypt_operations *s_cop;
1468 struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */
1469 #endif
1470 #ifdef CONFIG_FS_VERITY
1471 const struct fsverity_operations *s_vop;
1472 #endif
1473 #if IS_ENABLED(CONFIG_UNICODE)
1474 struct unicode_map *s_encoding;
1475 __u16 s_encoding_flags;
1476 #endif
1477 struct hlist_bl_head s_roots; /* alternate root dentries for NFS */
1478 struct mount *s_mounts; /* list of mounts; _not_ for fs use */
1479 struct block_device *s_bdev; /* can go away once we use an accessor for @s_bdev_file */
1480 struct file *s_bdev_file;
1481 struct backing_dev_info *s_bdi;
1482 struct mtd_info *s_mtd;
1483 struct hlist_node s_instances;
1484 unsigned int s_quota_types; /* Bitmask of supported quota types */
1485 struct quota_info s_dquot; /* Diskquota specific options */
1486
1487 struct sb_writers s_writers;
1488
1489 /*
1490 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and
1491 * s_fsnotify_info together for cache efficiency. They are frequently
1492 * accessed and rarely modified.
1493 */
1494 void *s_fs_info; /* Filesystem private info */
1495
1496 /* Granularity of c/m/atime in ns (cannot be worse than a second) */
1497 u32 s_time_gran;
1498 /* Time limits for c/m/atime in seconds */
1499 time64_t s_time_min;
1500 time64_t s_time_max;
1501 #ifdef CONFIG_FSNOTIFY
1502 u32 s_fsnotify_mask;
1503 struct fsnotify_sb_info *s_fsnotify_info;
1504 #endif
1505
1506 /*
1507 * q: why are s_id and s_sysfs_name not the same? both are human
1508 * readable strings that identify the filesystem
1509 * a: s_id is allowed to change at runtime; it's used in log messages,
1510 * and we want to when a device starts out as single device (s_id is dev
1511 * name) but then a device is hot added and we have to switch to
1512 * identifying it by UUID
1513 * but s_sysfs_name is a handle for programmatic access, and can't
1514 * change at runtime
1515 */
1516 char s_id[32]; /* Informational name */
1517 uuid_t s_uuid; /* UUID */
1518 u8 s_uuid_len; /* Default 16, possibly smaller for weird filesystems */
1519
1520 /* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */
1521 char s_sysfs_name[UUID_STRING_LEN + 1];
1522
1523 unsigned int s_max_links;
1524 unsigned int s_d_flags; /* default d_flags for dentries */
1525
1526 /*
1527 * The next field is for VFS *only*. No filesystems have any business
1528 * even looking at it. You had been warned.
1529 */
1530 struct mutex s_vfs_rename_mutex; /* Kludge */
1531
1532 /*
1533 * Filesystem subtype. If non-empty the filesystem type field
1534 * in /proc/mounts will be "type.subtype"
1535 */
1536 const char *s_subtype;
1537
1538 const struct dentry_operations *__s_d_op; /* default d_op for dentries */
1539
1540 struct shrinker *s_shrink; /* per-sb shrinker handle */
1541
1542 /* Number of inodes with nlink == 0 but still referenced */
1543 atomic_long_t s_remove_count;
1544
1545 /* Read-only state of the superblock is being changed */
1546 int s_readonly_remount;
1547
1548 /* per-sb errseq_t for reporting writeback errors via syncfs */
1549 errseq_t s_wb_err;
1550
1551 /* AIO completions deferred from interrupt context */
1552 struct workqueue_struct *s_dio_done_wq;
1553 struct hlist_head s_pins;
1554
1555 /*
1556 * Owning user namespace and default context in which to
1557 * interpret filesystem uids, gids, quotas, device nodes,
1558 * xattrs and security labels.
1559 */
1560 struct user_namespace *s_user_ns;
1561
1562 /*
1563 * The list_lru structure is essentially just a pointer to a table
1564 * of per-node lru lists, each of which has its own spinlock.
1565 * There is no need to put them into separate cachelines.
1566 */
1567 struct list_lru s_dentry_lru;
1568 struct list_lru s_inode_lru;
1569 struct rcu_head rcu;
1570 struct work_struct destroy_work;
1571
1572 struct mutex s_sync_lock; /* sync serialisation lock */
1573
1574 /*
1575 * Indicates how deep in a filesystem stack this SB is
1576 */
1577 int s_stack_depth;
1578
1579 /* s_inode_list_lock protects s_inodes */
1580 spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp;
1581 struct list_head s_inodes; /* all inodes */
1582
1583 spinlock_t s_inode_wblist_lock;
1584 struct list_head s_inodes_wb; /* writeback inodes */
1585 } __randomize_layout;
1586
i_user_ns(const struct inode * inode)1587 static inline struct user_namespace *i_user_ns(const struct inode *inode)
1588 {
1589 return inode->i_sb->s_user_ns;
1590 }
1591
1592 /* Helper functions so that in most cases filesystems will
1593 * not need to deal directly with kuid_t and kgid_t and can
1594 * instead deal with the raw numeric values that are stored
1595 * in the filesystem.
1596 */
i_uid_read(const struct inode * inode)1597 static inline uid_t i_uid_read(const struct inode *inode)
1598 {
1599 return from_kuid(i_user_ns(inode), inode->i_uid);
1600 }
1601
i_gid_read(const struct inode * inode)1602 static inline gid_t i_gid_read(const struct inode *inode)
1603 {
1604 return from_kgid(i_user_ns(inode), inode->i_gid);
1605 }
1606
i_uid_write(struct inode * inode,uid_t uid)1607 static inline void i_uid_write(struct inode *inode, uid_t uid)
1608 {
1609 inode->i_uid = make_kuid(i_user_ns(inode), uid);
1610 }
1611
i_gid_write(struct inode * inode,gid_t gid)1612 static inline void i_gid_write(struct inode *inode, gid_t gid)
1613 {
1614 inode->i_gid = make_kgid(i_user_ns(inode), gid);
1615 }
1616
1617 /**
1618 * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping
1619 * @idmap: idmap of the mount the inode was found from
1620 * @inode: inode to map
1621 *
1622 * Return: whe inode's i_uid mapped down according to @idmap.
1623 * If the inode's i_uid has no mapping INVALID_VFSUID is returned.
1624 */
i_uid_into_vfsuid(struct mnt_idmap * idmap,const struct inode * inode)1625 static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap,
1626 const struct inode *inode)
1627 {
1628 return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid);
1629 }
1630
1631 /**
1632 * i_uid_needs_update - check whether inode's i_uid needs to be updated
1633 * @idmap: idmap of the mount the inode was found from
1634 * @attr: the new attributes of @inode
1635 * @inode: the inode to update
1636 *
1637 * Check whether the $inode's i_uid field needs to be updated taking idmapped
1638 * mounts into account if the filesystem supports it.
1639 *
1640 * Return: true if @inode's i_uid field needs to be updated, false if not.
1641 */
i_uid_needs_update(struct mnt_idmap * idmap,const struct iattr * attr,const struct inode * inode)1642 static inline bool i_uid_needs_update(struct mnt_idmap *idmap,
1643 const struct iattr *attr,
1644 const struct inode *inode)
1645 {
1646 return ((attr->ia_valid & ATTR_UID) &&
1647 !vfsuid_eq(attr->ia_vfsuid,
1648 i_uid_into_vfsuid(idmap, inode)));
1649 }
1650
1651 /**
1652 * i_uid_update - update @inode's i_uid field
1653 * @idmap: idmap of the mount the inode was found from
1654 * @attr: the new attributes of @inode
1655 * @inode: the inode to update
1656 *
1657 * Safely update @inode's i_uid field translating the vfsuid of any idmapped
1658 * mount into the filesystem kuid.
1659 */
i_uid_update(struct mnt_idmap * idmap,const struct iattr * attr,struct inode * inode)1660 static inline void i_uid_update(struct mnt_idmap *idmap,
1661 const struct iattr *attr,
1662 struct inode *inode)
1663 {
1664 if (attr->ia_valid & ATTR_UID)
1665 inode->i_uid = from_vfsuid(idmap, i_user_ns(inode),
1666 attr->ia_vfsuid);
1667 }
1668
1669 /**
1670 * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping
1671 * @idmap: idmap of the mount the inode was found from
1672 * @inode: inode to map
1673 *
1674 * Return: the inode's i_gid mapped down according to @idmap.
1675 * If the inode's i_gid has no mapping INVALID_VFSGID is returned.
1676 */
i_gid_into_vfsgid(struct mnt_idmap * idmap,const struct inode * inode)1677 static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap,
1678 const struct inode *inode)
1679 {
1680 return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid);
1681 }
1682
1683 /**
1684 * i_gid_needs_update - check whether inode's i_gid needs to be updated
1685 * @idmap: idmap of the mount the inode was found from
1686 * @attr: the new attributes of @inode
1687 * @inode: the inode to update
1688 *
1689 * Check whether the $inode's i_gid field needs to be updated taking idmapped
1690 * mounts into account if the filesystem supports it.
1691 *
1692 * Return: true if @inode's i_gid field needs to be updated, false if not.
1693 */
i_gid_needs_update(struct mnt_idmap * idmap,const struct iattr * attr,const struct inode * inode)1694 static inline bool i_gid_needs_update(struct mnt_idmap *idmap,
1695 const struct iattr *attr,
1696 const struct inode *inode)
1697 {
1698 return ((attr->ia_valid & ATTR_GID) &&
1699 !vfsgid_eq(attr->ia_vfsgid,
1700 i_gid_into_vfsgid(idmap, inode)));
1701 }
1702
1703 /**
1704 * i_gid_update - update @inode's i_gid field
1705 * @idmap: idmap of the mount the inode was found from
1706 * @attr: the new attributes of @inode
1707 * @inode: the inode to update
1708 *
1709 * Safely update @inode's i_gid field translating the vfsgid of any idmapped
1710 * mount into the filesystem kgid.
1711 */
i_gid_update(struct mnt_idmap * idmap,const struct iattr * attr,struct inode * inode)1712 static inline void i_gid_update(struct mnt_idmap *idmap,
1713 const struct iattr *attr,
1714 struct inode *inode)
1715 {
1716 if (attr->ia_valid & ATTR_GID)
1717 inode->i_gid = from_vfsgid(idmap, i_user_ns(inode),
1718 attr->ia_vfsgid);
1719 }
1720
1721 /**
1722 * inode_fsuid_set - initialize inode's i_uid field with callers fsuid
1723 * @inode: inode to initialize
1724 * @idmap: idmap of the mount the inode was found from
1725 *
1726 * Initialize the i_uid field of @inode. If the inode was found/created via
1727 * an idmapped mount map the caller's fsuid according to @idmap.
1728 */
inode_fsuid_set(struct inode * inode,struct mnt_idmap * idmap)1729 static inline void inode_fsuid_set(struct inode *inode,
1730 struct mnt_idmap *idmap)
1731 {
1732 inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode));
1733 }
1734
1735 /**
1736 * inode_fsgid_set - initialize inode's i_gid field with callers fsgid
1737 * @inode: inode to initialize
1738 * @idmap: idmap of the mount the inode was found from
1739 *
1740 * Initialize the i_gid field of @inode. If the inode was found/created via
1741 * an idmapped mount map the caller's fsgid according to @idmap.
1742 */
inode_fsgid_set(struct inode * inode,struct mnt_idmap * idmap)1743 static inline void inode_fsgid_set(struct inode *inode,
1744 struct mnt_idmap *idmap)
1745 {
1746 inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode));
1747 }
1748
1749 /**
1750 * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped
1751 * @sb: the superblock we want a mapping in
1752 * @idmap: idmap of the relevant mount
1753 *
1754 * Check whether the caller's fsuid and fsgid have a valid mapping in the
1755 * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map
1756 * the caller's fsuid and fsgid according to the @idmap first.
1757 *
1758 * Return: true if fsuid and fsgid is mapped, false if not.
1759 */
fsuidgid_has_mapping(struct super_block * sb,struct mnt_idmap * idmap)1760 static inline bool fsuidgid_has_mapping(struct super_block *sb,
1761 struct mnt_idmap *idmap)
1762 {
1763 struct user_namespace *fs_userns = sb->s_user_ns;
1764 kuid_t kuid;
1765 kgid_t kgid;
1766
1767 kuid = mapped_fsuid(idmap, fs_userns);
1768 if (!uid_valid(kuid))
1769 return false;
1770 kgid = mapped_fsgid(idmap, fs_userns);
1771 if (!gid_valid(kgid))
1772 return false;
1773 return kuid_has_mapping(fs_userns, kuid) &&
1774 kgid_has_mapping(fs_userns, kgid);
1775 }
1776
1777 struct timespec64 current_time(struct inode *inode);
1778 struct timespec64 inode_set_ctime_current(struct inode *inode);
1779 struct timespec64 inode_set_ctime_deleg(struct inode *inode,
1780 struct timespec64 update);
1781
inode_get_atime_sec(const struct inode * inode)1782 static inline time64_t inode_get_atime_sec(const struct inode *inode)
1783 {
1784 return inode->i_atime_sec;
1785 }
1786
inode_get_atime_nsec(const struct inode * inode)1787 static inline long inode_get_atime_nsec(const struct inode *inode)
1788 {
1789 return inode->i_atime_nsec;
1790 }
1791
inode_get_atime(const struct inode * inode)1792 static inline struct timespec64 inode_get_atime(const struct inode *inode)
1793 {
1794 struct timespec64 ts = { .tv_sec = inode_get_atime_sec(inode),
1795 .tv_nsec = inode_get_atime_nsec(inode) };
1796
1797 return ts;
1798 }
1799
inode_set_atime_to_ts(struct inode * inode,struct timespec64 ts)1800 static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode,
1801 struct timespec64 ts)
1802 {
1803 inode->i_atime_sec = ts.tv_sec;
1804 inode->i_atime_nsec = ts.tv_nsec;
1805 return ts;
1806 }
1807
inode_set_atime(struct inode * inode,time64_t sec,long nsec)1808 static inline struct timespec64 inode_set_atime(struct inode *inode,
1809 time64_t sec, long nsec)
1810 {
1811 struct timespec64 ts = { .tv_sec = sec,
1812 .tv_nsec = nsec };
1813
1814 return inode_set_atime_to_ts(inode, ts);
1815 }
1816
inode_get_mtime_sec(const struct inode * inode)1817 static inline time64_t inode_get_mtime_sec(const struct inode *inode)
1818 {
1819 return inode->i_mtime_sec;
1820 }
1821
inode_get_mtime_nsec(const struct inode * inode)1822 static inline long inode_get_mtime_nsec(const struct inode *inode)
1823 {
1824 return inode->i_mtime_nsec;
1825 }
1826
inode_get_mtime(const struct inode * inode)1827 static inline struct timespec64 inode_get_mtime(const struct inode *inode)
1828 {
1829 struct timespec64 ts = { .tv_sec = inode_get_mtime_sec(inode),
1830 .tv_nsec = inode_get_mtime_nsec(inode) };
1831 return ts;
1832 }
1833
inode_set_mtime_to_ts(struct inode * inode,struct timespec64 ts)1834 static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode,
1835 struct timespec64 ts)
1836 {
1837 inode->i_mtime_sec = ts.tv_sec;
1838 inode->i_mtime_nsec = ts.tv_nsec;
1839 return ts;
1840 }
1841
inode_set_mtime(struct inode * inode,time64_t sec,long nsec)1842 static inline struct timespec64 inode_set_mtime(struct inode *inode,
1843 time64_t sec, long nsec)
1844 {
1845 struct timespec64 ts = { .tv_sec = sec,
1846 .tv_nsec = nsec };
1847 return inode_set_mtime_to_ts(inode, ts);
1848 }
1849
1850 /*
1851 * Multigrain timestamps
1852 *
1853 * Conditionally use fine-grained ctime and mtime timestamps when there
1854 * are users actively observing them via getattr. The primary use-case
1855 * for this is NFS clients that use the ctime to distinguish between
1856 * different states of the file, and that are often fooled by multiple
1857 * operations that occur in the same coarse-grained timer tick.
1858 */
1859 #define I_CTIME_QUERIED ((u32)BIT(31))
1860
inode_get_ctime_sec(const struct inode * inode)1861 static inline time64_t inode_get_ctime_sec(const struct inode *inode)
1862 {
1863 return inode->i_ctime_sec;
1864 }
1865
inode_get_ctime_nsec(const struct inode * inode)1866 static inline long inode_get_ctime_nsec(const struct inode *inode)
1867 {
1868 return inode->i_ctime_nsec & ~I_CTIME_QUERIED;
1869 }
1870
inode_get_ctime(const struct inode * inode)1871 static inline struct timespec64 inode_get_ctime(const struct inode *inode)
1872 {
1873 struct timespec64 ts = { .tv_sec = inode_get_ctime_sec(inode),
1874 .tv_nsec = inode_get_ctime_nsec(inode) };
1875
1876 return ts;
1877 }
1878
1879 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts);
1880
1881 /**
1882 * inode_set_ctime - set the ctime in the inode
1883 * @inode: inode in which to set the ctime
1884 * @sec: tv_sec value to set
1885 * @nsec: tv_nsec value to set
1886 *
1887 * Set the ctime in @inode to { @sec, @nsec }
1888 */
inode_set_ctime(struct inode * inode,time64_t sec,long nsec)1889 static inline struct timespec64 inode_set_ctime(struct inode *inode,
1890 time64_t sec, long nsec)
1891 {
1892 struct timespec64 ts = { .tv_sec = sec,
1893 .tv_nsec = nsec };
1894
1895 return inode_set_ctime_to_ts(inode, ts);
1896 }
1897
1898 struct timespec64 simple_inode_init_ts(struct inode *inode);
1899
1900 /*
1901 * Snapshotting support.
1902 */
1903
1904 /*
1905 * These are internal functions, please use sb_start_{write,pagefault,intwrite}
1906 * instead.
1907 */
__sb_end_write(struct super_block * sb,int level)1908 static inline void __sb_end_write(struct super_block *sb, int level)
1909 {
1910 percpu_up_read(sb->s_writers.rw_sem + level-1);
1911 }
1912
__sb_start_write(struct super_block * sb,int level)1913 static inline void __sb_start_write(struct super_block *sb, int level)
1914 {
1915 percpu_down_read_freezable(sb->s_writers.rw_sem + level - 1, true);
1916 }
1917
__sb_start_write_trylock(struct super_block * sb,int level)1918 static inline bool __sb_start_write_trylock(struct super_block *sb, int level)
1919 {
1920 return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1);
1921 }
1922
1923 #define __sb_writers_acquired(sb, lev) \
1924 percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_)
1925 #define __sb_writers_release(sb, lev) \
1926 percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], _THIS_IP_)
1927
1928 /**
1929 * __sb_write_started - check if sb freeze level is held
1930 * @sb: the super we write to
1931 * @level: the freeze level
1932 *
1933 * * > 0 - sb freeze level is held
1934 * * 0 - sb freeze level is not held
1935 * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN
1936 */
__sb_write_started(const struct super_block * sb,int level)1937 static inline int __sb_write_started(const struct super_block *sb, int level)
1938 {
1939 return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1);
1940 }
1941
1942 /**
1943 * sb_write_started - check if SB_FREEZE_WRITE is held
1944 * @sb: the super we write to
1945 *
1946 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1947 */
sb_write_started(const struct super_block * sb)1948 static inline bool sb_write_started(const struct super_block *sb)
1949 {
1950 return __sb_write_started(sb, SB_FREEZE_WRITE);
1951 }
1952
1953 /**
1954 * sb_write_not_started - check if SB_FREEZE_WRITE is not held
1955 * @sb: the super we write to
1956 *
1957 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1958 */
sb_write_not_started(const struct super_block * sb)1959 static inline bool sb_write_not_started(const struct super_block *sb)
1960 {
1961 return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0;
1962 }
1963
1964 /**
1965 * file_write_started - check if SB_FREEZE_WRITE is held
1966 * @file: the file we write to
1967 *
1968 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1969 * May be false positive with !S_ISREG, because file_start_write() has
1970 * no effect on !S_ISREG.
1971 */
file_write_started(const struct file * file)1972 static inline bool file_write_started(const struct file *file)
1973 {
1974 if (!S_ISREG(file_inode(file)->i_mode))
1975 return true;
1976 return sb_write_started(file_inode(file)->i_sb);
1977 }
1978
1979 /**
1980 * file_write_not_started - check if SB_FREEZE_WRITE is not held
1981 * @file: the file we write to
1982 *
1983 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1984 * May be false positive with !S_ISREG, because file_start_write() has
1985 * no effect on !S_ISREG.
1986 */
file_write_not_started(const struct file * file)1987 static inline bool file_write_not_started(const struct file *file)
1988 {
1989 if (!S_ISREG(file_inode(file)->i_mode))
1990 return true;
1991 return sb_write_not_started(file_inode(file)->i_sb);
1992 }
1993
1994 /**
1995 * sb_end_write - drop write access to a superblock
1996 * @sb: the super we wrote to
1997 *
1998 * Decrement number of writers to the filesystem. Wake up possible waiters
1999 * wanting to freeze the filesystem.
2000 */
sb_end_write(struct super_block * sb)2001 static inline void sb_end_write(struct super_block *sb)
2002 {
2003 __sb_end_write(sb, SB_FREEZE_WRITE);
2004 }
2005
2006 /**
2007 * sb_end_pagefault - drop write access to a superblock from a page fault
2008 * @sb: the super we wrote to
2009 *
2010 * Decrement number of processes handling write page fault to the filesystem.
2011 * Wake up possible waiters wanting to freeze the filesystem.
2012 */
sb_end_pagefault(struct super_block * sb)2013 static inline void sb_end_pagefault(struct super_block *sb)
2014 {
2015 __sb_end_write(sb, SB_FREEZE_PAGEFAULT);
2016 }
2017
2018 /**
2019 * sb_end_intwrite - drop write access to a superblock for internal fs purposes
2020 * @sb: the super we wrote to
2021 *
2022 * Decrement fs-internal number of writers to the filesystem. Wake up possible
2023 * waiters wanting to freeze the filesystem.
2024 */
sb_end_intwrite(struct super_block * sb)2025 static inline void sb_end_intwrite(struct super_block *sb)
2026 {
2027 __sb_end_write(sb, SB_FREEZE_FS);
2028 }
2029
2030 /**
2031 * sb_start_write - get write access to a superblock
2032 * @sb: the super we write to
2033 *
2034 * When a process wants to write data or metadata to a file system (i.e. dirty
2035 * a page or an inode), it should embed the operation in a sb_start_write() -
2036 * sb_end_write() pair to get exclusion against file system freezing. This
2037 * function increments number of writers preventing freezing. If the file
2038 * system is already frozen, the function waits until the file system is
2039 * thawed.
2040 *
2041 * Since freeze protection behaves as a lock, users have to preserve
2042 * ordering of freeze protection and other filesystem locks. Generally,
2043 * freeze protection should be the outermost lock. In particular, we have:
2044 *
2045 * sb_start_write
2046 * -> i_rwsem (write path, truncate, directory ops, ...)
2047 * -> s_umount (freeze_super, thaw_super)
2048 */
sb_start_write(struct super_block * sb)2049 static inline void sb_start_write(struct super_block *sb)
2050 {
2051 __sb_start_write(sb, SB_FREEZE_WRITE);
2052 }
2053
sb_start_write_trylock(struct super_block * sb)2054 static inline bool sb_start_write_trylock(struct super_block *sb)
2055 {
2056 return __sb_start_write_trylock(sb, SB_FREEZE_WRITE);
2057 }
2058
2059 /**
2060 * sb_start_pagefault - get write access to a superblock from a page fault
2061 * @sb: the super we write to
2062 *
2063 * When a process starts handling write page fault, it should embed the
2064 * operation into sb_start_pagefault() - sb_end_pagefault() pair to get
2065 * exclusion against file system freezing. This is needed since the page fault
2066 * is going to dirty a page. This function increments number of running page
2067 * faults preventing freezing. If the file system is already frozen, the
2068 * function waits until the file system is thawed.
2069 *
2070 * Since page fault freeze protection behaves as a lock, users have to preserve
2071 * ordering of freeze protection and other filesystem locks. It is advised to
2072 * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault
2073 * handling code implies lock dependency:
2074 *
2075 * mmap_lock
2076 * -> sb_start_pagefault
2077 */
sb_start_pagefault(struct super_block * sb)2078 static inline void sb_start_pagefault(struct super_block *sb)
2079 {
2080 __sb_start_write(sb, SB_FREEZE_PAGEFAULT);
2081 }
2082
2083 /**
2084 * sb_start_intwrite - get write access to a superblock for internal fs purposes
2085 * @sb: the super we write to
2086 *
2087 * This is the third level of protection against filesystem freezing. It is
2088 * free for use by a filesystem. The only requirement is that it must rank
2089 * below sb_start_pagefault.
2090 *
2091 * For example filesystem can call sb_start_intwrite() when starting a
2092 * transaction which somewhat eases handling of freezing for internal sources
2093 * of filesystem changes (internal fs threads, discarding preallocation on file
2094 * close, etc.).
2095 */
sb_start_intwrite(struct super_block * sb)2096 static inline void sb_start_intwrite(struct super_block *sb)
2097 {
2098 __sb_start_write(sb, SB_FREEZE_FS);
2099 }
2100
sb_start_intwrite_trylock(struct super_block * sb)2101 static inline bool sb_start_intwrite_trylock(struct super_block *sb)
2102 {
2103 return __sb_start_write_trylock(sb, SB_FREEZE_FS);
2104 }
2105
2106 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2107 const struct inode *inode);
2108
2109 /*
2110 * VFS helper functions..
2111 */
2112 int vfs_create(struct mnt_idmap *, struct inode *,
2113 struct dentry *, umode_t, bool);
2114 struct dentry *vfs_mkdir(struct mnt_idmap *, struct inode *,
2115 struct dentry *, umode_t);
2116 int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *,
2117 umode_t, dev_t);
2118 int vfs_symlink(struct mnt_idmap *, struct inode *,
2119 struct dentry *, const char *);
2120 int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *,
2121 struct dentry *, struct inode **);
2122 int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *);
2123 int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *,
2124 struct inode **);
2125
2126 /**
2127 * struct renamedata - contains all information required for renaming
2128 * @mnt_idmap: idmap of the mount in which the rename is happening.
2129 * @old_parent: parent of source
2130 * @old_dentry: source
2131 * @new_parent: parent of destination
2132 * @new_dentry: destination
2133 * @delegated_inode: returns an inode needing a delegation break
2134 * @flags: rename flags
2135 */
2136 struct renamedata {
2137 struct mnt_idmap *mnt_idmap;
2138 struct dentry *old_parent;
2139 struct dentry *old_dentry;
2140 struct dentry *new_parent;
2141 struct dentry *new_dentry;
2142 struct inode **delegated_inode;
2143 unsigned int flags;
2144 } __randomize_layout;
2145
2146 int vfs_rename(struct renamedata *);
2147
vfs_whiteout(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry)2148 static inline int vfs_whiteout(struct mnt_idmap *idmap,
2149 struct inode *dir, struct dentry *dentry)
2150 {
2151 return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE,
2152 WHITEOUT_DEV);
2153 }
2154
2155 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
2156 const struct path *parentpath,
2157 umode_t mode, int open_flag,
2158 const struct cred *cred);
2159 struct file *kernel_file_open(const struct path *path, int flags,
2160 const struct cred *cred);
2161
2162 int vfs_mkobj(struct dentry *, umode_t,
2163 int (*f)(struct dentry *, umode_t, void *),
2164 void *);
2165
2166 int vfs_fchown(struct file *file, uid_t user, gid_t group);
2167 int vfs_fchmod(struct file *file, umode_t mode);
2168 int vfs_utimes(const struct path *path, struct timespec64 *times);
2169
2170 #ifdef CONFIG_COMPAT
2171 extern long compat_ptr_ioctl(struct file *file, unsigned int cmd,
2172 unsigned long arg);
2173 #else
2174 #define compat_ptr_ioctl NULL
2175 #endif
2176
2177 /*
2178 * VFS file helper functions.
2179 */
2180 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2181 const struct inode *dir, umode_t mode);
2182 extern bool may_open_dev(const struct path *path);
2183 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2184 const struct inode *dir, umode_t mode);
2185 bool in_group_or_capable(struct mnt_idmap *idmap,
2186 const struct inode *inode, vfsgid_t vfsgid);
2187
2188 /*
2189 * This is the "filldir" function type, used by readdir() to let
2190 * the kernel specify what kind of dirent layout it wants to have.
2191 * This allows the kernel to read directories into kernel space or
2192 * to have different dirent layouts depending on the binary type.
2193 * Return 'true' to keep going and 'false' if there are no more entries.
2194 */
2195 struct dir_context;
2196 typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64,
2197 unsigned);
2198
2199 struct dir_context {
2200 filldir_t actor;
2201 loff_t pos;
2202 /*
2203 * Filesystems MUST NOT MODIFY count, but may use as a hint:
2204 * 0 unknown
2205 * > 0 space in buffer (assume at least one entry)
2206 * INT_MAX unlimited
2207 */
2208 int count;
2209 };
2210
2211 /* If OR-ed with d_type, pending signals are not checked */
2212 #define FILLDIR_FLAG_NOINTR 0x1000
2213
2214 /*
2215 * These flags let !MMU mmap() govern direct device mapping vs immediate
2216 * copying more easily for MAP_PRIVATE, especially for ROM filesystems.
2217 *
2218 * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE)
2219 * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED)
2220 * NOMMU_MAP_READ: Can be mapped for reading
2221 * NOMMU_MAP_WRITE: Can be mapped for writing
2222 * NOMMU_MAP_EXEC: Can be mapped for execution
2223 */
2224 #define NOMMU_MAP_COPY 0x00000001
2225 #define NOMMU_MAP_DIRECT 0x00000008
2226 #define NOMMU_MAP_READ VM_MAYREAD
2227 #define NOMMU_MAP_WRITE VM_MAYWRITE
2228 #define NOMMU_MAP_EXEC VM_MAYEXEC
2229
2230 #define NOMMU_VMFLAGS \
2231 (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC)
2232
2233 /*
2234 * These flags control the behavior of the remap_file_range function pointer.
2235 * If it is called with len == 0 that means "remap to end of source file".
2236 * See Documentation/filesystems/vfs.rst for more details about this call.
2237 *
2238 * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate)
2239 * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request
2240 */
2241 #define REMAP_FILE_DEDUP (1 << 0)
2242 #define REMAP_FILE_CAN_SHORTEN (1 << 1)
2243
2244 /*
2245 * These flags signal that the caller is ok with altering various aspects of
2246 * the behavior of the remap operation. The changes must be made by the
2247 * implementation; the vfs remap helper functions can take advantage of them.
2248 * Flags in this category exist to preserve the quirky behavior of the hoisted
2249 * btrfs clone/dedupe ioctls.
2250 */
2251 #define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN)
2252
2253 /*
2254 * These flags control the behavior of vfs_copy_file_range().
2255 * They are not available to the user via syscall.
2256 *
2257 * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops
2258 */
2259 #define COPY_FILE_SPLICE (1 << 0)
2260
2261 struct iov_iter;
2262 struct io_uring_cmd;
2263 struct offset_ctx;
2264
2265 typedef unsigned int __bitwise fop_flags_t;
2266
2267 struct file_operations {
2268 struct module *owner;
2269 fop_flags_t fop_flags;
2270 loff_t (*llseek) (struct file *, loff_t, int);
2271 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
2272 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
2273 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
2274 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
2275 int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *,
2276 unsigned int flags);
2277 int (*iterate_shared) (struct file *, struct dir_context *);
2278 __poll_t (*poll) (struct file *, struct poll_table_struct *);
2279 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
2280 long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
2281 int (*mmap) (struct file *, struct vm_area_struct *);
2282 int (*open) (struct inode *, struct file *);
2283 int (*flush) (struct file *, fl_owner_t id);
2284 int (*release) (struct inode *, struct file *);
2285 int (*fsync) (struct file *, loff_t, loff_t, int datasync);
2286 int (*fasync) (int, struct file *, int);
2287 int (*lock) (struct file *, int, struct file_lock *);
2288 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2289 int (*check_flags)(int);
2290 int (*flock) (struct file *, int, struct file_lock *);
2291 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
2292 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
2293 void (*splice_eof)(struct file *file);
2294 int (*setlease)(struct file *, int, struct file_lease **, void **);
2295 long (*fallocate)(struct file *file, int mode, loff_t offset,
2296 loff_t len);
2297 void (*show_fdinfo)(struct seq_file *m, struct file *f);
2298 #ifndef CONFIG_MMU
2299 unsigned (*mmap_capabilities)(struct file *);
2300 #endif
2301 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *,
2302 loff_t, size_t, unsigned int);
2303 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in,
2304 struct file *file_out, loff_t pos_out,
2305 loff_t len, unsigned int remap_flags);
2306 int (*fadvise)(struct file *, loff_t, loff_t, int);
2307 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
2308 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *,
2309 unsigned int poll_flags);
2310 int (*mmap_prepare)(struct vm_area_desc *);
2311 } __randomize_layout;
2312
2313 /* Supports async buffered reads */
2314 #define FOP_BUFFER_RASYNC ((__force fop_flags_t)(1 << 0))
2315 /* Supports async buffered writes */
2316 #define FOP_BUFFER_WASYNC ((__force fop_flags_t)(1 << 1))
2317 /* Supports synchronous page faults for mappings */
2318 #define FOP_MMAP_SYNC ((__force fop_flags_t)(1 << 2))
2319 /* Supports non-exclusive O_DIRECT writes from multiple threads */
2320 #define FOP_DIO_PARALLEL_WRITE ((__force fop_flags_t)(1 << 3))
2321 /* Contains huge pages */
2322 #define FOP_HUGE_PAGES ((__force fop_flags_t)(1 << 4))
2323 /* Treat loff_t as unsigned (e.g., /dev/mem) */
2324 #define FOP_UNSIGNED_OFFSET ((__force fop_flags_t)(1 << 5))
2325 /* Supports asynchronous lock callbacks */
2326 #define FOP_ASYNC_LOCK ((__force fop_flags_t)(1 << 6))
2327 /* File system supports uncached read/write buffered IO */
2328 #define FOP_DONTCACHE ((__force fop_flags_t)(1 << 7))
2329
2330 /* Wrap a directory iterator that needs exclusive inode access */
2331 int wrap_directory_iterator(struct file *, struct dir_context *,
2332 int (*) (struct file *, struct dir_context *));
2333 #define WRAP_DIR_ITER(x) \
2334 static int shared_##x(struct file *file , struct dir_context *ctx) \
2335 { return wrap_directory_iterator(file, ctx, x); }
2336
2337 struct inode_operations {
2338 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
2339 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *);
2340 int (*permission) (struct mnt_idmap *, struct inode *, int);
2341 struct posix_acl * (*get_inode_acl)(struct inode *, int, bool);
2342
2343 int (*readlink) (struct dentry *, char __user *,int);
2344
2345 int (*create) (struct mnt_idmap *, struct inode *,struct dentry *,
2346 umode_t, bool);
2347 int (*link) (struct dentry *,struct inode *,struct dentry *);
2348 int (*unlink) (struct inode *,struct dentry *);
2349 int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *,
2350 const char *);
2351 struct dentry *(*mkdir) (struct mnt_idmap *, struct inode *,
2352 struct dentry *, umode_t);
2353 int (*rmdir) (struct inode *,struct dentry *);
2354 int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *,
2355 umode_t,dev_t);
2356 int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *,
2357 struct inode *, struct dentry *, unsigned int);
2358 int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *);
2359 int (*getattr) (struct mnt_idmap *, const struct path *,
2360 struct kstat *, u32, unsigned int);
2361 ssize_t (*listxattr) (struct dentry *, char *, size_t);
2362 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start,
2363 u64 len);
2364 int (*update_time)(struct inode *, int);
2365 int (*atomic_open)(struct inode *, struct dentry *,
2366 struct file *, unsigned open_flag,
2367 umode_t create_mode);
2368 int (*tmpfile) (struct mnt_idmap *, struct inode *,
2369 struct file *, umode_t);
2370 struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *,
2371 int);
2372 int (*set_acl)(struct mnt_idmap *, struct dentry *,
2373 struct posix_acl *, int);
2374 int (*fileattr_set)(struct mnt_idmap *idmap,
2375 struct dentry *dentry, struct file_kattr *fa);
2376 int (*fileattr_get)(struct dentry *dentry, struct file_kattr *fa);
2377 struct offset_ctx *(*get_offset_ctx)(struct inode *inode);
2378 } ____cacheline_aligned;
2379
2380 /* Did the driver provide valid mmap hook configuration? */
can_mmap_file(struct file * file)2381 static inline bool can_mmap_file(struct file *file)
2382 {
2383 bool has_mmap = file->f_op->mmap;
2384 bool has_mmap_prepare = file->f_op->mmap_prepare;
2385
2386 /* Hooks are mutually exclusive. */
2387 if (WARN_ON_ONCE(has_mmap && has_mmap_prepare))
2388 return false;
2389 if (!has_mmap && !has_mmap_prepare)
2390 return false;
2391
2392 return true;
2393 }
2394
2395 int __compat_vma_mmap_prepare(const struct file_operations *f_op,
2396 struct file *file, struct vm_area_struct *vma);
2397 int compat_vma_mmap_prepare(struct file *file, struct vm_area_struct *vma);
2398
vfs_mmap(struct file * file,struct vm_area_struct * vma)2399 static inline int vfs_mmap(struct file *file, struct vm_area_struct *vma)
2400 {
2401 if (file->f_op->mmap_prepare)
2402 return compat_vma_mmap_prepare(file, vma);
2403
2404 return file->f_op->mmap(file, vma);
2405 }
2406
vfs_mmap_prepare(struct file * file,struct vm_area_desc * desc)2407 static inline int vfs_mmap_prepare(struct file *file, struct vm_area_desc *desc)
2408 {
2409 return file->f_op->mmap_prepare(desc);
2410 }
2411
2412 extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *);
2413 extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *);
2414 extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *,
2415 loff_t, size_t, unsigned int);
2416 int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write);
2417 int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2418 struct file *file_out, loff_t pos_out,
2419 loff_t *len, unsigned int remap_flags,
2420 const struct iomap_ops *dax_read_ops);
2421 int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2422 struct file *file_out, loff_t pos_out,
2423 loff_t *count, unsigned int remap_flags);
2424 extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in,
2425 struct file *file_out, loff_t pos_out,
2426 loff_t len, unsigned int remap_flags);
2427 extern int vfs_dedupe_file_range(struct file *file,
2428 struct file_dedupe_range *same);
2429 extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos,
2430 struct file *dst_file, loff_t dst_pos,
2431 loff_t len, unsigned int remap_flags);
2432
2433 /**
2434 * enum freeze_holder - holder of the freeze
2435 * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem
2436 * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem
2437 * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed
2438 * @FREEZE_EXCL: a freeze that can only be undone by the owner
2439 *
2440 * Indicate who the owner of the freeze or thaw request is and whether
2441 * the freeze needs to be exclusive or can nest.
2442 * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the
2443 * same holder aren't allowed. It is however allowed to hold a single
2444 * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at
2445 * the same time. This is relied upon by some filesystems during online
2446 * repair or similar.
2447 */
2448 enum freeze_holder {
2449 FREEZE_HOLDER_KERNEL = (1U << 0),
2450 FREEZE_HOLDER_USERSPACE = (1U << 1),
2451 FREEZE_MAY_NEST = (1U << 2),
2452 FREEZE_EXCL = (1U << 3),
2453 };
2454
2455 struct super_operations {
2456 struct inode *(*alloc_inode)(struct super_block *sb);
2457 void (*destroy_inode)(struct inode *);
2458 void (*free_inode)(struct inode *);
2459
2460 void (*dirty_inode) (struct inode *, int flags);
2461 int (*write_inode) (struct inode *, struct writeback_control *wbc);
2462 int (*drop_inode) (struct inode *);
2463 void (*evict_inode) (struct inode *);
2464 void (*put_super) (struct super_block *);
2465 int (*sync_fs)(struct super_block *sb, int wait);
2466 int (*freeze_super) (struct super_block *, enum freeze_holder who, const void *owner);
2467 int (*freeze_fs) (struct super_block *);
2468 int (*thaw_super) (struct super_block *, enum freeze_holder who, const void *owner);
2469 int (*unfreeze_fs) (struct super_block *);
2470 int (*statfs) (struct dentry *, struct kstatfs *);
2471 int (*remount_fs) (struct super_block *, int *, char *);
2472 void (*umount_begin) (struct super_block *);
2473
2474 int (*show_options)(struct seq_file *, struct dentry *);
2475 int (*show_devname)(struct seq_file *, struct dentry *);
2476 int (*show_path)(struct seq_file *, struct dentry *);
2477 int (*show_stats)(struct seq_file *, struct dentry *);
2478 #ifdef CONFIG_QUOTA
2479 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
2480 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
2481 struct dquot __rcu **(*get_dquots)(struct inode *);
2482 #endif
2483 long (*nr_cached_objects)(struct super_block *,
2484 struct shrink_control *);
2485 long (*free_cached_objects)(struct super_block *,
2486 struct shrink_control *);
2487 /*
2488 * If a filesystem can support graceful removal of a device and
2489 * continue read-write operations, implement this callback.
2490 *
2491 * Return 0 if the filesystem can continue read-write.
2492 * Non-zero return value or no such callback means the fs will be shutdown
2493 * as usual.
2494 */
2495 int (*remove_bdev)(struct super_block *sb, struct block_device *bdev);
2496 void (*shutdown)(struct super_block *sb);
2497 };
2498
2499 /*
2500 * Inode flags - they have no relation to superblock flags now
2501 */
2502 #define S_SYNC (1 << 0) /* Writes are synced at once */
2503 #define S_NOATIME (1 << 1) /* Do not update access times */
2504 #define S_APPEND (1 << 2) /* Append-only file */
2505 #define S_IMMUTABLE (1 << 3) /* Immutable file */
2506 #define S_DEAD (1 << 4) /* removed, but still open directory */
2507 #define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */
2508 #define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */
2509 #define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */
2510 #define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */
2511 #define S_PRIVATE (1 << 9) /* Inode is fs-internal */
2512 #define S_IMA (1 << 10) /* Inode has an associated IMA struct */
2513 #define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */
2514 #define S_NOSEC (1 << 12) /* no suid or xattr security attributes */
2515 #ifdef CONFIG_FS_DAX
2516 #define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */
2517 #else
2518 #define S_DAX 0 /* Make all the DAX code disappear */
2519 #endif
2520 #define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */
2521 #define S_CASEFOLD (1 << 15) /* Casefolded file */
2522 #define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */
2523 #define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */
2524 #define S_ANON_INODE (1 << 19) /* Inode is an anonymous inode */
2525
2526 /*
2527 * Note that nosuid etc flags are inode-specific: setting some file-system
2528 * flags just means all the inodes inherit those flags by default. It might be
2529 * possible to override it selectively if you really wanted to with some
2530 * ioctl() that is not currently implemented.
2531 *
2532 * Exception: SB_RDONLY is always applied to the entire file system.
2533 *
2534 * Unfortunately, it is possible to change a filesystems flags with it mounted
2535 * with files in use. This means that all of the inodes will not have their
2536 * i_flags updated. Hence, i_flags no longer inherit the superblock mount
2537 * flags, so these have to be checked separately. -- rmk@arm.uk.linux.org
2538 */
2539 #define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg))
2540
sb_rdonly(const struct super_block * sb)2541 static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; }
2542 #define IS_RDONLY(inode) sb_rdonly((inode)->i_sb)
2543 #define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \
2544 ((inode)->i_flags & S_SYNC))
2545 #define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \
2546 ((inode)->i_flags & (S_SYNC|S_DIRSYNC)))
2547 #define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK)
2548 #define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME)
2549 #define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION)
2550
2551 #define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA)
2552 #define IS_APPEND(inode) ((inode)->i_flags & S_APPEND)
2553 #define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE)
2554
2555 #ifdef CONFIG_FS_POSIX_ACL
2556 #define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL)
2557 #else
2558 #define IS_POSIXACL(inode) 0
2559 #endif
2560
2561 #define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD)
2562 #define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME)
2563
2564 #ifdef CONFIG_SWAP
2565 #define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE)
2566 #else
2567 #define IS_SWAPFILE(inode) ((void)(inode), 0U)
2568 #endif
2569
2570 #define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE)
2571 #define IS_IMA(inode) ((inode)->i_flags & S_IMA)
2572 #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT)
2573 #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC)
2574 #define IS_DAX(inode) ((inode)->i_flags & S_DAX)
2575 #define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED)
2576 #define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD)
2577 #define IS_VERITY(inode) ((inode)->i_flags & S_VERITY)
2578
2579 #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \
2580 (inode)->i_rdev == WHITEOUT_DEV)
2581 #define IS_ANON_FILE(inode) ((inode)->i_flags & S_ANON_INODE)
2582
HAS_UNMAPPED_ID(struct mnt_idmap * idmap,struct inode * inode)2583 static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap,
2584 struct inode *inode)
2585 {
2586 return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2587 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode));
2588 }
2589
init_sync_kiocb(struct kiocb * kiocb,struct file * filp)2590 static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp)
2591 {
2592 *kiocb = (struct kiocb) {
2593 .ki_filp = filp,
2594 .ki_flags = filp->f_iocb_flags,
2595 .ki_ioprio = get_current_ioprio(),
2596 };
2597 }
2598
kiocb_clone(struct kiocb * kiocb,struct kiocb * kiocb_src,struct file * filp)2599 static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src,
2600 struct file *filp)
2601 {
2602 *kiocb = (struct kiocb) {
2603 .ki_filp = filp,
2604 .ki_flags = kiocb_src->ki_flags,
2605 .ki_ioprio = kiocb_src->ki_ioprio,
2606 .ki_pos = kiocb_src->ki_pos,
2607 };
2608 }
2609
2610 extern void __mark_inode_dirty(struct inode *, int);
mark_inode_dirty(struct inode * inode)2611 static inline void mark_inode_dirty(struct inode *inode)
2612 {
2613 __mark_inode_dirty(inode, I_DIRTY);
2614 }
2615
mark_inode_dirty_sync(struct inode * inode)2616 static inline void mark_inode_dirty_sync(struct inode *inode)
2617 {
2618 __mark_inode_dirty(inode, I_DIRTY_SYNC);
2619 }
2620
icount_read(const struct inode * inode)2621 static inline int icount_read(const struct inode *inode)
2622 {
2623 return atomic_read(&inode->i_count);
2624 }
2625
2626 /*
2627 * Returns true if the given inode itself only has dirty timestamps (its pages
2628 * may still be dirty) and isn't currently being allocated or freed.
2629 * Filesystems should call this if when writing an inode when lazytime is
2630 * enabled, they want to opportunistically write the timestamps of other inodes
2631 * located very nearby on-disk, e.g. in the same inode block. This returns true
2632 * if the given inode is in need of such an opportunistic update. Requires
2633 * i_lock, or at least later re-checking under i_lock.
2634 */
inode_is_dirtytime_only(struct inode * inode)2635 static inline bool inode_is_dirtytime_only(struct inode *inode)
2636 {
2637 return (inode->i_state & (I_DIRTY_TIME | I_NEW |
2638 I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME;
2639 }
2640
2641 extern void inc_nlink(struct inode *inode);
2642 extern void drop_nlink(struct inode *inode);
2643 extern void clear_nlink(struct inode *inode);
2644 extern void set_nlink(struct inode *inode, unsigned int nlink);
2645
inode_inc_link_count(struct inode * inode)2646 static inline void inode_inc_link_count(struct inode *inode)
2647 {
2648 inc_nlink(inode);
2649 mark_inode_dirty(inode);
2650 }
2651
inode_dec_link_count(struct inode * inode)2652 static inline void inode_dec_link_count(struct inode *inode)
2653 {
2654 drop_nlink(inode);
2655 mark_inode_dirty(inode);
2656 }
2657
2658 enum file_time_flags {
2659 S_ATIME = 1,
2660 S_MTIME = 2,
2661 S_CTIME = 4,
2662 S_VERSION = 8,
2663 };
2664
2665 extern bool atime_needs_update(const struct path *, struct inode *);
2666 extern void touch_atime(const struct path *);
2667 int inode_update_time(struct inode *inode, int flags);
2668
file_accessed(struct file * file)2669 static inline void file_accessed(struct file *file)
2670 {
2671 if (!(file->f_flags & O_NOATIME))
2672 touch_atime(&file->f_path);
2673 }
2674
2675 extern int file_modified(struct file *file);
2676 int kiocb_modified(struct kiocb *iocb);
2677
2678 int sync_inode_metadata(struct inode *inode, int wait);
2679
2680 struct file_system_type {
2681 const char *name;
2682 int fs_flags;
2683 #define FS_REQUIRES_DEV 1
2684 #define FS_BINARY_MOUNTDATA 2
2685 #define FS_HAS_SUBTYPE 4
2686 #define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */
2687 #define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */
2688 #define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */
2689 #define FS_MGTIME 64 /* FS uses multigrain timestamps */
2690 #define FS_LBS 128 /* FS supports LBS */
2691 #define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */
2692 int (*init_fs_context)(struct fs_context *);
2693 const struct fs_parameter_spec *parameters;
2694 struct dentry *(*mount) (struct file_system_type *, int,
2695 const char *, void *);
2696 void (*kill_sb) (struct super_block *);
2697 struct module *owner;
2698 struct file_system_type * next;
2699 struct hlist_head fs_supers;
2700
2701 struct lock_class_key s_lock_key;
2702 struct lock_class_key s_umount_key;
2703 struct lock_class_key s_vfs_rename_key;
2704 struct lock_class_key s_writers_key[SB_FREEZE_LEVELS];
2705
2706 struct lock_class_key i_lock_key;
2707 struct lock_class_key i_mutex_key;
2708 struct lock_class_key invalidate_lock_key;
2709 struct lock_class_key i_mutex_dir_key;
2710 };
2711
2712 #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME)
2713
2714 /**
2715 * is_mgtime: is this inode using multigrain timestamps
2716 * @inode: inode to test for multigrain timestamps
2717 *
2718 * Return true if the inode uses multigrain timestamps, false otherwise.
2719 */
is_mgtime(const struct inode * inode)2720 static inline bool is_mgtime(const struct inode *inode)
2721 {
2722 return inode->i_opflags & IOP_MGTIME;
2723 }
2724
2725 extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path);
2726 void retire_super(struct super_block *sb);
2727 void generic_shutdown_super(struct super_block *sb);
2728 void kill_block_super(struct super_block *sb);
2729 void kill_anon_super(struct super_block *sb);
2730 void kill_litter_super(struct super_block *sb);
2731 void deactivate_super(struct super_block *sb);
2732 void deactivate_locked_super(struct super_block *sb);
2733 int set_anon_super(struct super_block *s, void *data);
2734 int set_anon_super_fc(struct super_block *s, struct fs_context *fc);
2735 int get_anon_bdev(dev_t *);
2736 void free_anon_bdev(dev_t);
2737 struct super_block *sget_fc(struct fs_context *fc,
2738 int (*test)(struct super_block *, struct fs_context *),
2739 int (*set)(struct super_block *, struct fs_context *));
2740 struct super_block *sget(struct file_system_type *type,
2741 int (*test)(struct super_block *,void *),
2742 int (*set)(struct super_block *,void *),
2743 int flags, void *data);
2744 struct super_block *sget_dev(struct fs_context *fc, dev_t dev);
2745
2746 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */
2747 #define fops_get(fops) ({ \
2748 const struct file_operations *_fops = (fops); \
2749 (((_fops) && try_module_get((_fops)->owner) ? (_fops) : NULL)); \
2750 })
2751
2752 #define fops_put(fops) ({ \
2753 const struct file_operations *_fops = (fops); \
2754 if (_fops) \
2755 module_put((_fops)->owner); \
2756 })
2757
2758 /*
2759 * This one is to be used *ONLY* from ->open() instances.
2760 * fops must be non-NULL, pinned down *and* module dependencies
2761 * should be sufficient to pin the caller down as well.
2762 */
2763 #define replace_fops(f, fops) \
2764 do { \
2765 struct file *__file = (f); \
2766 fops_put(__file->f_op); \
2767 BUG_ON(!(__file->f_op = (fops))); \
2768 } while(0)
2769
2770 extern int register_filesystem(struct file_system_type *);
2771 extern int unregister_filesystem(struct file_system_type *);
2772 extern int vfs_statfs(const struct path *, struct kstatfs *);
2773 extern int user_statfs(const char __user *, struct kstatfs *);
2774 extern int fd_statfs(int, struct kstatfs *);
2775 int freeze_super(struct super_block *super, enum freeze_holder who,
2776 const void *freeze_owner);
2777 int thaw_super(struct super_block *super, enum freeze_holder who,
2778 const void *freeze_owner);
2779 extern __printf(2, 3)
2780 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...);
2781 extern int super_setup_bdi(struct super_block *sb);
2782
super_set_uuid(struct super_block * sb,const u8 * uuid,unsigned len)2783 static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len)
2784 {
2785 if (WARN_ON(len > sizeof(sb->s_uuid)))
2786 len = sizeof(sb->s_uuid);
2787 sb->s_uuid_len = len;
2788 memcpy(&sb->s_uuid, uuid, len);
2789 }
2790
2791 /* set sb sysfs name based on sb->s_bdev */
super_set_sysfs_name_bdev(struct super_block * sb)2792 static inline void super_set_sysfs_name_bdev(struct super_block *sb)
2793 {
2794 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev);
2795 }
2796
2797 /* set sb sysfs name based on sb->s_uuid */
super_set_sysfs_name_uuid(struct super_block * sb)2798 static inline void super_set_sysfs_name_uuid(struct super_block *sb)
2799 {
2800 WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid));
2801 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b);
2802 }
2803
2804 /* set sb sysfs name based on sb->s_id */
super_set_sysfs_name_id(struct super_block * sb)2805 static inline void super_set_sysfs_name_id(struct super_block *sb)
2806 {
2807 strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name));
2808 }
2809
2810 /* try to use something standard before you use this */
2811 __printf(2, 3)
super_set_sysfs_name_generic(struct super_block * sb,const char * fmt,...)2812 static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...)
2813 {
2814 va_list args;
2815
2816 va_start(args, fmt);
2817 vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args);
2818 va_end(args);
2819 }
2820
2821 extern int current_umask(void);
2822
2823 extern void ihold(struct inode * inode);
2824 extern void iput(struct inode *);
2825 int inode_update_timestamps(struct inode *inode, int flags);
2826 int generic_update_time(struct inode *, int);
2827
2828 /* /sys/fs */
2829 extern struct kobject *fs_kobj;
2830
2831 #define MAX_RW_COUNT (INT_MAX & PAGE_MASK)
2832
2833 /* fs/open.c */
2834 struct audit_names;
2835 struct filename {
2836 const char *name; /* pointer to actual string */
2837 const __user char *uptr; /* original userland pointer */
2838 atomic_t refcnt;
2839 struct audit_names *aname;
2840 const char iname[];
2841 };
2842 static_assert(offsetof(struct filename, iname) % sizeof(long) == 0);
2843
file_mnt_idmap(const struct file * file)2844 static inline struct mnt_idmap *file_mnt_idmap(const struct file *file)
2845 {
2846 return mnt_idmap(file->f_path.mnt);
2847 }
2848
2849 /**
2850 * is_idmapped_mnt - check whether a mount is mapped
2851 * @mnt: the mount to check
2852 *
2853 * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped.
2854 *
2855 * Return: true if mount is mapped, false if not.
2856 */
is_idmapped_mnt(const struct vfsmount * mnt)2857 static inline bool is_idmapped_mnt(const struct vfsmount *mnt)
2858 {
2859 return mnt_idmap(mnt) != &nop_mnt_idmap;
2860 }
2861
2862 int vfs_truncate(const struct path *, loff_t);
2863 int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start,
2864 unsigned int time_attrs, struct file *filp);
2865 extern int vfs_fallocate(struct file *file, int mode, loff_t offset,
2866 loff_t len);
2867 int do_sys_open(int dfd, const char __user *filename, int flags,
2868 umode_t mode);
2869 extern struct file *file_open_name(struct filename *, int, umode_t);
2870 extern struct file *filp_open(const char *, int, umode_t);
2871 extern struct file *file_open_root(const struct path *,
2872 const char *, int, umode_t);
file_open_root_mnt(struct vfsmount * mnt,const char * name,int flags,umode_t mode)2873 static inline struct file *file_open_root_mnt(struct vfsmount *mnt,
2874 const char *name, int flags, umode_t mode)
2875 {
2876 return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root},
2877 name, flags, mode);
2878 }
2879 struct file *dentry_open(const struct path *path, int flags,
2880 const struct cred *creds);
2881 struct file *dentry_open_nonotify(const struct path *path, int flags,
2882 const struct cred *cred);
2883 struct file *dentry_create(const struct path *path, int flags, umode_t mode,
2884 const struct cred *cred);
2885 const struct path *backing_file_user_path(const struct file *f);
2886
2887 /*
2888 * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file
2889 * stored in ->vm_file is a backing file whose f_inode is on the underlying
2890 * filesystem. When the mapped file path and inode number are displayed to
2891 * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the
2892 * path and inode number to display to the user, which is the path of the fd
2893 * that user has requested to map and the inode number that would be returned
2894 * by fstat() on that same fd.
2895 */
2896 /* Get the path to display in /proc/<pid>/maps */
file_user_path(const struct file * f)2897 static inline const struct path *file_user_path(const struct file *f)
2898 {
2899 if (unlikely(f->f_mode & FMODE_BACKING))
2900 return backing_file_user_path(f);
2901 return &f->f_path;
2902 }
2903 /* Get the inode whose inode number to display in /proc/<pid>/maps */
file_user_inode(const struct file * f)2904 static inline const struct inode *file_user_inode(const struct file *f)
2905 {
2906 if (unlikely(f->f_mode & FMODE_BACKING))
2907 return d_inode(backing_file_user_path(f)->dentry);
2908 return file_inode(f);
2909 }
2910
file_clone_open(struct file * file)2911 static inline struct file *file_clone_open(struct file *file)
2912 {
2913 return dentry_open(&file->f_path, file->f_flags, file->f_cred);
2914 }
2915 extern int filp_close(struct file *, fl_owner_t id);
2916
2917 extern struct filename *getname_flags(const char __user *, int);
2918 extern struct filename *getname_uflags(const char __user *, int);
getname(const char __user * name)2919 static inline struct filename *getname(const char __user *name)
2920 {
2921 return getname_flags(name, 0);
2922 }
2923 extern struct filename *getname_kernel(const char *);
2924 extern struct filename *__getname_maybe_null(const char __user *);
getname_maybe_null(const char __user * name,int flags)2925 static inline struct filename *getname_maybe_null(const char __user *name, int flags)
2926 {
2927 if (!(flags & AT_EMPTY_PATH))
2928 return getname(name);
2929
2930 if (!name)
2931 return NULL;
2932 return __getname_maybe_null(name);
2933 }
2934 extern void putname(struct filename *name);
2935 DEFINE_FREE(putname, struct filename *, if (!IS_ERR_OR_NULL(_T)) putname(_T))
2936
refname(struct filename * name)2937 static inline struct filename *refname(struct filename *name)
2938 {
2939 atomic_inc(&name->refcnt);
2940 return name;
2941 }
2942
2943 extern int finish_open(struct file *file, struct dentry *dentry,
2944 int (*open)(struct inode *, struct file *));
2945 extern int finish_no_open(struct file *file, struct dentry *dentry);
2946
2947 /* Helper for the simple case when original dentry is used */
finish_open_simple(struct file * file,int error)2948 static inline int finish_open_simple(struct file *file, int error)
2949 {
2950 if (error)
2951 return error;
2952
2953 return finish_open(file, file->f_path.dentry, NULL);
2954 }
2955
2956 /* fs/dcache.c */
2957 extern void __init vfs_caches_init_early(void);
2958 extern void __init vfs_caches_init(void);
2959
2960 extern struct kmem_cache *names_cachep;
2961
2962 #define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL)
2963 #define __putname(name) kmem_cache_free(names_cachep, (void *)(name))
2964
2965 extern struct super_block *blockdev_superblock;
sb_is_blkdev_sb(struct super_block * sb)2966 static inline bool sb_is_blkdev_sb(struct super_block *sb)
2967 {
2968 return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock;
2969 }
2970
2971 void emergency_thaw_all(void);
2972 extern int sync_filesystem(struct super_block *);
2973 extern const struct file_operations def_blk_fops;
2974 extern const struct file_operations def_chr_fops;
2975
2976 /* fs/char_dev.c */
2977 #define CHRDEV_MAJOR_MAX 512
2978 /* Marks the bottom of the first segment of free char majors */
2979 #define CHRDEV_MAJOR_DYN_END 234
2980 /* Marks the top and bottom of the second segment of free char majors */
2981 #define CHRDEV_MAJOR_DYN_EXT_START 511
2982 #define CHRDEV_MAJOR_DYN_EXT_END 384
2983
2984 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *);
2985 extern int register_chrdev_region(dev_t, unsigned, const char *);
2986 extern int __register_chrdev(unsigned int major, unsigned int baseminor,
2987 unsigned int count, const char *name,
2988 const struct file_operations *fops);
2989 extern void __unregister_chrdev(unsigned int major, unsigned int baseminor,
2990 unsigned int count, const char *name);
2991 extern void unregister_chrdev_region(dev_t, unsigned);
2992 extern void chrdev_show(struct seq_file *,off_t);
2993
register_chrdev(unsigned int major,const char * name,const struct file_operations * fops)2994 static inline int register_chrdev(unsigned int major, const char *name,
2995 const struct file_operations *fops)
2996 {
2997 return __register_chrdev(major, 0, 256, name, fops);
2998 }
2999
unregister_chrdev(unsigned int major,const char * name)3000 static inline void unregister_chrdev(unsigned int major, const char *name)
3001 {
3002 __unregister_chrdev(major, 0, 256, name);
3003 }
3004
3005 extern void init_special_inode(struct inode *, umode_t, dev_t);
3006
3007 /* Invalid inode operations -- fs/bad_inode.c */
3008 extern void make_bad_inode(struct inode *);
3009 extern bool is_bad_inode(struct inode *);
3010
3011 extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart,
3012 loff_t lend);
3013 extern int __must_check file_check_and_advance_wb_err(struct file *file);
3014 extern int __must_check file_write_and_wait_range(struct file *file,
3015 loff_t start, loff_t end);
3016 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start,
3017 loff_t end);
3018
file_write_and_wait(struct file * file)3019 static inline int file_write_and_wait(struct file *file)
3020 {
3021 return file_write_and_wait_range(file, 0, LLONG_MAX);
3022 }
3023
3024 extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end,
3025 int datasync);
3026 extern int vfs_fsync(struct file *file, int datasync);
3027
3028 extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes,
3029 unsigned int flags);
3030
iocb_is_dsync(const struct kiocb * iocb)3031 static inline bool iocb_is_dsync(const struct kiocb *iocb)
3032 {
3033 return (iocb->ki_flags & IOCB_DSYNC) ||
3034 IS_SYNC(iocb->ki_filp->f_mapping->host);
3035 }
3036
3037 /*
3038 * Sync the bytes written if this was a synchronous write. Expect ki_pos
3039 * to already be updated for the write, and will return either the amount
3040 * of bytes passed in, or an error if syncing the file failed.
3041 */
generic_write_sync(struct kiocb * iocb,ssize_t count)3042 static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count)
3043 {
3044 if (iocb_is_dsync(iocb)) {
3045 int ret = vfs_fsync_range(iocb->ki_filp,
3046 iocb->ki_pos - count, iocb->ki_pos - 1,
3047 (iocb->ki_flags & IOCB_SYNC) ? 0 : 1);
3048 if (ret)
3049 return ret;
3050 } else if (iocb->ki_flags & IOCB_DONTCACHE) {
3051 struct address_space *mapping = iocb->ki_filp->f_mapping;
3052
3053 filemap_fdatawrite_range_kick(mapping, iocb->ki_pos - count,
3054 iocb->ki_pos - 1);
3055 }
3056
3057 return count;
3058 }
3059
3060 extern void emergency_sync(void);
3061 extern void emergency_remount(void);
3062
3063 #ifdef CONFIG_BLOCK
3064 extern int bmap(struct inode *inode, sector_t *block);
3065 #else
bmap(struct inode * inode,sector_t * block)3066 static inline int bmap(struct inode *inode, sector_t *block)
3067 {
3068 return -EINVAL;
3069 }
3070 #endif
3071
3072 int notify_change(struct mnt_idmap *, struct dentry *,
3073 struct iattr *, struct inode **);
3074 int inode_permission(struct mnt_idmap *, struct inode *, int);
3075 int generic_permission(struct mnt_idmap *, struct inode *, int);
file_permission(struct file * file,int mask)3076 static inline int file_permission(struct file *file, int mask)
3077 {
3078 return inode_permission(file_mnt_idmap(file),
3079 file_inode(file), mask);
3080 }
path_permission(const struct path * path,int mask)3081 static inline int path_permission(const struct path *path, int mask)
3082 {
3083 return inode_permission(mnt_idmap(path->mnt),
3084 d_inode(path->dentry), mask);
3085 }
3086 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3087 struct inode *inode);
3088
execute_ok(struct inode * inode)3089 static inline bool execute_ok(struct inode *inode)
3090 {
3091 return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode);
3092 }
3093
inode_wrong_type(const struct inode * inode,umode_t mode)3094 static inline bool inode_wrong_type(const struct inode *inode, umode_t mode)
3095 {
3096 return (inode->i_mode ^ mode) & S_IFMT;
3097 }
3098
3099 /**
3100 * file_start_write - get write access to a superblock for regular file io
3101 * @file: the file we want to write to
3102 *
3103 * This is a variant of sb_start_write() which is a noop on non-regualr file.
3104 * Should be matched with a call to file_end_write().
3105 */
file_start_write(struct file * file)3106 static inline void file_start_write(struct file *file)
3107 {
3108 if (!S_ISREG(file_inode(file)->i_mode))
3109 return;
3110 sb_start_write(file_inode(file)->i_sb);
3111 }
3112
file_start_write_trylock(struct file * file)3113 static inline bool file_start_write_trylock(struct file *file)
3114 {
3115 if (!S_ISREG(file_inode(file)->i_mode))
3116 return true;
3117 return sb_start_write_trylock(file_inode(file)->i_sb);
3118 }
3119
3120 /**
3121 * file_end_write - drop write access to a superblock of a regular file
3122 * @file: the file we wrote to
3123 *
3124 * Should be matched with a call to file_start_write().
3125 */
file_end_write(struct file * file)3126 static inline void file_end_write(struct file *file)
3127 {
3128 if (!S_ISREG(file_inode(file)->i_mode))
3129 return;
3130 sb_end_write(file_inode(file)->i_sb);
3131 }
3132
3133 /**
3134 * kiocb_start_write - get write access to a superblock for async file io
3135 * @iocb: the io context we want to submit the write with
3136 *
3137 * This is a variant of sb_start_write() for async io submission.
3138 * Should be matched with a call to kiocb_end_write().
3139 */
kiocb_start_write(struct kiocb * iocb)3140 static inline void kiocb_start_write(struct kiocb *iocb)
3141 {
3142 struct inode *inode = file_inode(iocb->ki_filp);
3143
3144 sb_start_write(inode->i_sb);
3145 /*
3146 * Fool lockdep by telling it the lock got released so that it
3147 * doesn't complain about the held lock when we return to userspace.
3148 */
3149 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
3150 }
3151
3152 /**
3153 * kiocb_end_write - drop write access to a superblock after async file io
3154 * @iocb: the io context we sumbitted the write with
3155 *
3156 * Should be matched with a call to kiocb_start_write().
3157 */
kiocb_end_write(struct kiocb * iocb)3158 static inline void kiocb_end_write(struct kiocb *iocb)
3159 {
3160 struct inode *inode = file_inode(iocb->ki_filp);
3161
3162 /*
3163 * Tell lockdep we inherited freeze protection from submission thread.
3164 */
3165 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
3166 sb_end_write(inode->i_sb);
3167 }
3168
3169 /*
3170 * This is used for regular files where some users -- especially the
3171 * currently executed binary in a process, previously handled via
3172 * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap
3173 * read-write shared) accesses.
3174 *
3175 * get_write_access() gets write permission for a file.
3176 * put_write_access() releases this write permission.
3177 * deny_write_access() denies write access to a file.
3178 * allow_write_access() re-enables write access to a file.
3179 *
3180 * The i_writecount field of an inode can have the following values:
3181 * 0: no write access, no denied write access
3182 * < 0: (-i_writecount) users that denied write access to the file.
3183 * > 0: (i_writecount) users that have write access to the file.
3184 *
3185 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
3186 * except for the cases where we don't hold i_writecount yet. Then we need to
3187 * use {get,deny}_write_access() - these functions check the sign and refuse
3188 * to do the change if sign is wrong.
3189 */
get_write_access(struct inode * inode)3190 static inline int get_write_access(struct inode *inode)
3191 {
3192 return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY;
3193 }
deny_write_access(struct file * file)3194 static inline int deny_write_access(struct file *file)
3195 {
3196 struct inode *inode = file_inode(file);
3197 return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY;
3198 }
put_write_access(struct inode * inode)3199 static inline void put_write_access(struct inode * inode)
3200 {
3201 atomic_dec(&inode->i_writecount);
3202 }
allow_write_access(struct file * file)3203 static inline void allow_write_access(struct file *file)
3204 {
3205 if (file)
3206 atomic_inc(&file_inode(file)->i_writecount);
3207 }
3208
3209 /*
3210 * Do not prevent write to executable file when watched by pre-content events.
3211 *
3212 * Note that FMODE_FSNOTIFY_HSM mode is set depending on pre-content watches at
3213 * the time of file open and remains constant for entire lifetime of the file,
3214 * so if pre-content watches are added post execution or removed before the end
3215 * of the execution, it will not cause i_writecount reference leak.
3216 */
exe_file_deny_write_access(struct file * exe_file)3217 static inline int exe_file_deny_write_access(struct file *exe_file)
3218 {
3219 if (unlikely(FMODE_FSNOTIFY_HSM(exe_file->f_mode)))
3220 return 0;
3221 return deny_write_access(exe_file);
3222 }
exe_file_allow_write_access(struct file * exe_file)3223 static inline void exe_file_allow_write_access(struct file *exe_file)
3224 {
3225 if (unlikely(!exe_file || FMODE_FSNOTIFY_HSM(exe_file->f_mode)))
3226 return;
3227 allow_write_access(exe_file);
3228 }
3229
file_set_fsnotify_mode(struct file * file,fmode_t mode)3230 static inline void file_set_fsnotify_mode(struct file *file, fmode_t mode)
3231 {
3232 file->f_mode &= ~FMODE_FSNOTIFY_MASK;
3233 file->f_mode |= mode;
3234 }
3235
inode_is_open_for_write(const struct inode * inode)3236 static inline bool inode_is_open_for_write(const struct inode *inode)
3237 {
3238 return atomic_read(&inode->i_writecount) > 0;
3239 }
3240
3241 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
i_readcount_dec(struct inode * inode)3242 static inline void i_readcount_dec(struct inode *inode)
3243 {
3244 BUG_ON(atomic_dec_return(&inode->i_readcount) < 0);
3245 }
i_readcount_inc(struct inode * inode)3246 static inline void i_readcount_inc(struct inode *inode)
3247 {
3248 atomic_inc(&inode->i_readcount);
3249 }
3250 #else
i_readcount_dec(struct inode * inode)3251 static inline void i_readcount_dec(struct inode *inode)
3252 {
3253 return;
3254 }
i_readcount_inc(struct inode * inode)3255 static inline void i_readcount_inc(struct inode *inode)
3256 {
3257 return;
3258 }
3259 #endif
3260 extern int do_pipe_flags(int *, int);
3261
3262 extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *);
3263 ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos);
3264 extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *);
3265 extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *);
3266 extern struct file * open_exec(const char *);
3267
3268 /* fs/dcache.c -- generic fs support functions */
3269 extern bool is_subdir(struct dentry *, struct dentry *);
3270 extern bool path_is_under(const struct path *, const struct path *);
3271
3272 extern char *file_path(struct file *, char *, int);
3273
3274 /**
3275 * is_dot_dotdot - returns true only if @name is "." or ".."
3276 * @name: file name to check
3277 * @len: length of file name, in bytes
3278 */
is_dot_dotdot(const char * name,size_t len)3279 static inline bool is_dot_dotdot(const char *name, size_t len)
3280 {
3281 return len && unlikely(name[0] == '.') &&
3282 (len == 1 || (len == 2 && name[1] == '.'));
3283 }
3284
3285 /**
3286 * name_contains_dotdot - check if a file name contains ".." path components
3287 * @name: File path string to check
3288 * Search for ".." surrounded by either '/' or start/end of string.
3289 */
name_contains_dotdot(const char * name)3290 static inline bool name_contains_dotdot(const char *name)
3291 {
3292 size_t name_len;
3293
3294 name_len = strlen(name);
3295 return strcmp(name, "..") == 0 ||
3296 strncmp(name, "../", 3) == 0 ||
3297 strstr(name, "/../") != NULL ||
3298 (name_len >= 3 && strcmp(name + name_len - 3, "/..") == 0);
3299 }
3300
3301 #include <linux/err.h>
3302
3303 /* needed for stackable file system support */
3304 extern loff_t default_llseek(struct file *file, loff_t offset, int whence);
3305
3306 extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence);
3307
3308 extern int inode_init_always_gfp(struct super_block *, struct inode *, gfp_t);
inode_init_always(struct super_block * sb,struct inode * inode)3309 static inline int inode_init_always(struct super_block *sb, struct inode *inode)
3310 {
3311 return inode_init_always_gfp(sb, inode, GFP_NOFS);
3312 }
3313
3314 extern void inode_init_once(struct inode *);
3315 extern void address_space_init_once(struct address_space *mapping);
3316 extern struct inode * igrab(struct inode *);
3317 extern ino_t iunique(struct super_block *, ino_t);
3318 extern int inode_needs_sync(struct inode *inode);
3319 extern int inode_just_drop(struct inode *inode);
inode_generic_drop(struct inode * inode)3320 static inline int inode_generic_drop(struct inode *inode)
3321 {
3322 return !inode->i_nlink || inode_unhashed(inode);
3323 }
3324 extern void d_mark_dontcache(struct inode *inode);
3325
3326 extern struct inode *ilookup5_nowait(struct super_block *sb,
3327 unsigned long hashval, int (*test)(struct inode *, void *),
3328 void *data);
3329 extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
3330 int (*test)(struct inode *, void *), void *data);
3331 extern struct inode *ilookup(struct super_block *sb, unsigned long ino);
3332
3333 extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
3334 int (*test)(struct inode *, void *),
3335 int (*set)(struct inode *, void *),
3336 void *data);
3337 struct inode *iget5_locked(struct super_block *, unsigned long,
3338 int (*test)(struct inode *, void *),
3339 int (*set)(struct inode *, void *), void *);
3340 struct inode *iget5_locked_rcu(struct super_block *, unsigned long,
3341 int (*test)(struct inode *, void *),
3342 int (*set)(struct inode *, void *), void *);
3343 extern struct inode * iget_locked(struct super_block *, unsigned long);
3344 extern struct inode *find_inode_nowait(struct super_block *,
3345 unsigned long,
3346 int (*match)(struct inode *,
3347 unsigned long, void *),
3348 void *data);
3349 extern struct inode *find_inode_rcu(struct super_block *, unsigned long,
3350 int (*)(struct inode *, void *), void *);
3351 extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long);
3352 extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *);
3353 extern int insert_inode_locked(struct inode *);
3354 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3355 extern void lockdep_annotate_inode_mutex_key(struct inode *inode);
3356 #else
lockdep_annotate_inode_mutex_key(struct inode * inode)3357 static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { };
3358 #endif
3359 extern void unlock_new_inode(struct inode *);
3360 extern void discard_new_inode(struct inode *);
3361 extern unsigned int get_next_ino(void);
3362 extern void evict_inodes(struct super_block *sb);
3363 void dump_mapping(const struct address_space *);
3364
3365 /*
3366 * Userspace may rely on the inode number being non-zero. For example, glibc
3367 * simply ignores files with zero i_ino in unlink() and other places.
3368 *
3369 * As an additional complication, if userspace was compiled with
3370 * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the
3371 * lower 32 bits, so we need to check that those aren't zero explicitly. With
3372 * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but
3373 * better safe than sorry.
3374 */
is_zero_ino(ino_t ino)3375 static inline bool is_zero_ino(ino_t ino)
3376 {
3377 return (u32)ino == 0;
3378 }
3379
3380 /*
3381 * inode->i_lock must be held
3382 */
__iget(struct inode * inode)3383 static inline void __iget(struct inode *inode)
3384 {
3385 atomic_inc(&inode->i_count);
3386 }
3387
3388 extern void iget_failed(struct inode *);
3389 extern void clear_inode(struct inode *);
3390 extern void __destroy_inode(struct inode *);
3391 struct inode *alloc_inode(struct super_block *sb);
new_inode_pseudo(struct super_block * sb)3392 static inline struct inode *new_inode_pseudo(struct super_block *sb)
3393 {
3394 return alloc_inode(sb);
3395 }
3396 extern struct inode *new_inode(struct super_block *sb);
3397 extern void free_inode_nonrcu(struct inode *inode);
3398 extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *);
3399 extern int file_remove_privs(struct file *);
3400 int setattr_should_drop_sgid(struct mnt_idmap *idmap,
3401 const struct inode *inode);
3402
3403 /*
3404 * This must be used for allocating filesystems specific inodes to set
3405 * up the inode reclaim context correctly.
3406 */
3407 #define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp)
3408
3409 extern void __insert_inode_hash(struct inode *, unsigned long hashval);
insert_inode_hash(struct inode * inode)3410 static inline void insert_inode_hash(struct inode *inode)
3411 {
3412 __insert_inode_hash(inode, inode->i_ino);
3413 }
3414
3415 extern void __remove_inode_hash(struct inode *);
remove_inode_hash(struct inode * inode)3416 static inline void remove_inode_hash(struct inode *inode)
3417 {
3418 if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash))
3419 __remove_inode_hash(inode);
3420 }
3421
3422 extern void inode_sb_list_add(struct inode *inode);
3423 extern void inode_add_lru(struct inode *inode);
3424
3425 extern int sb_set_blocksize(struct super_block *, int);
3426 extern int sb_min_blocksize(struct super_block *, int);
3427
3428 int generic_file_mmap(struct file *, struct vm_area_struct *);
3429 int generic_file_mmap_prepare(struct vm_area_desc *desc);
3430 int generic_file_readonly_mmap(struct file *, struct vm_area_struct *);
3431 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc);
3432 extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *);
3433 int generic_write_checks_count(struct kiocb *iocb, loff_t *count);
3434 extern int generic_write_check_limits(struct file *file, loff_t pos,
3435 loff_t *count);
3436 extern int generic_file_rw_checks(struct file *file_in, struct file *file_out);
3437 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to,
3438 ssize_t already_read);
3439 extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *);
3440 extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *);
3441 extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *);
3442 extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *);
3443 ssize_t generic_perform_write(struct kiocb *, struct iov_iter *);
3444 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
3445 ssize_t direct_written, ssize_t buffered_written);
3446
3447 ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos,
3448 rwf_t flags);
3449 ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos,
3450 rwf_t flags);
3451 ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb,
3452 struct iov_iter *iter);
3453 ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb,
3454 struct iov_iter *iter);
3455
3456 /* fs/splice.c */
3457 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
3458 struct pipe_inode_info *pipe,
3459 size_t len, unsigned int flags);
3460 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
3461 struct pipe_inode_info *pipe,
3462 size_t len, unsigned int flags);
3463 extern ssize_t iter_file_splice_write(struct pipe_inode_info *,
3464 struct file *, loff_t *, size_t, unsigned int);
3465
3466
3467 extern void
3468 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping);
3469 extern loff_t noop_llseek(struct file *file, loff_t offset, int whence);
3470 extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize);
3471 extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence);
3472 extern loff_t generic_file_llseek_size(struct file *file, loff_t offset,
3473 int whence, loff_t maxsize, loff_t eof);
3474 loff_t generic_llseek_cookie(struct file *file, loff_t offset, int whence,
3475 u64 *cookie);
3476 extern loff_t fixed_size_llseek(struct file *file, loff_t offset,
3477 int whence, loff_t size);
3478 extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t);
3479 extern loff_t no_seek_end_llseek(struct file *, loff_t, int);
3480 int rw_verify_area(int, struct file *, const loff_t *, size_t);
3481 extern int generic_file_open(struct inode * inode, struct file * filp);
3482 extern int nonseekable_open(struct inode * inode, struct file * filp);
3483 extern int stream_open(struct inode * inode, struct file * filp);
3484
3485 #ifdef CONFIG_BLOCK
3486 typedef void (dio_submit_t)(struct bio *bio, struct inode *inode,
3487 loff_t file_offset);
3488
3489 enum {
3490 /* need locking between buffered and direct access */
3491 DIO_LOCKING = 0x01,
3492
3493 /* filesystem does not support filling holes */
3494 DIO_SKIP_HOLES = 0x02,
3495 };
3496
3497 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
3498 struct block_device *bdev, struct iov_iter *iter,
3499 get_block_t get_block,
3500 dio_iodone_t end_io,
3501 int flags);
3502
blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct iov_iter * iter,get_block_t get_block)3503 static inline ssize_t blockdev_direct_IO(struct kiocb *iocb,
3504 struct inode *inode,
3505 struct iov_iter *iter,
3506 get_block_t get_block)
3507 {
3508 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3509 get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES);
3510 }
3511 #endif
3512
3513 bool inode_dio_finished(const struct inode *inode);
3514 void inode_dio_wait(struct inode *inode);
3515 void inode_dio_wait_interruptible(struct inode *inode);
3516
3517 /**
3518 * inode_dio_begin - signal start of a direct I/O requests
3519 * @inode: inode the direct I/O happens on
3520 *
3521 * This is called once we've finished processing a direct I/O request,
3522 * and is used to wake up callers waiting for direct I/O to be quiesced.
3523 */
inode_dio_begin(struct inode * inode)3524 static inline void inode_dio_begin(struct inode *inode)
3525 {
3526 atomic_inc(&inode->i_dio_count);
3527 }
3528
3529 /**
3530 * inode_dio_end - signal finish of a direct I/O requests
3531 * @inode: inode the direct I/O happens on
3532 *
3533 * This is called once we've finished processing a direct I/O request,
3534 * and is used to wake up callers waiting for direct I/O to be quiesced.
3535 */
inode_dio_end(struct inode * inode)3536 static inline void inode_dio_end(struct inode *inode)
3537 {
3538 if (atomic_dec_and_test(&inode->i_dio_count))
3539 wake_up_var(&inode->i_dio_count);
3540 }
3541
3542 extern void inode_set_flags(struct inode *inode, unsigned int flags,
3543 unsigned int mask);
3544
3545 extern const struct file_operations generic_ro_fops;
3546
3547 #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m))
3548
3549 extern int readlink_copy(char __user *, int, const char *, int);
3550 extern int page_readlink(struct dentry *, char __user *, int);
3551 extern const char *page_get_link_raw(struct dentry *, struct inode *,
3552 struct delayed_call *);
3553 extern const char *page_get_link(struct dentry *, struct inode *,
3554 struct delayed_call *);
3555 extern void page_put_link(void *);
3556 extern int page_symlink(struct inode *inode, const char *symname, int len);
3557 extern const struct inode_operations page_symlink_inode_operations;
3558 extern void kfree_link(void *);
3559 void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode);
3560 void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *);
3561 void generic_fill_statx_attr(struct inode *inode, struct kstat *stat);
3562 void generic_fill_statx_atomic_writes(struct kstat *stat,
3563 unsigned int unit_min,
3564 unsigned int unit_max,
3565 unsigned int unit_max_opt);
3566 extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int);
3567 extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int);
3568 void __inode_add_bytes(struct inode *inode, loff_t bytes);
3569 void inode_add_bytes(struct inode *inode, loff_t bytes);
3570 void __inode_sub_bytes(struct inode *inode, loff_t bytes);
3571 void inode_sub_bytes(struct inode *inode, loff_t bytes);
__inode_get_bytes(struct inode * inode)3572 static inline loff_t __inode_get_bytes(struct inode *inode)
3573 {
3574 return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes;
3575 }
3576 loff_t inode_get_bytes(struct inode *inode);
3577 void inode_set_bytes(struct inode *inode, loff_t bytes);
3578 const char *simple_get_link(struct dentry *, struct inode *,
3579 struct delayed_call *);
3580 extern const struct inode_operations simple_symlink_inode_operations;
3581
3582 extern int iterate_dir(struct file *, struct dir_context *);
3583
3584 int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat,
3585 int flags);
3586 int vfs_fstat(int fd, struct kstat *stat);
3587
vfs_stat(const char __user * filename,struct kstat * stat)3588 static inline int vfs_stat(const char __user *filename, struct kstat *stat)
3589 {
3590 return vfs_fstatat(AT_FDCWD, filename, stat, 0);
3591 }
vfs_lstat(const char __user * name,struct kstat * stat)3592 static inline int vfs_lstat(const char __user *name, struct kstat *stat)
3593 {
3594 return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW);
3595 }
3596
3597 extern const char *vfs_get_link(struct dentry *, struct delayed_call *);
3598 extern int vfs_readlink(struct dentry *, char __user *, int);
3599
3600 extern struct file_system_type *get_filesystem(struct file_system_type *fs);
3601 extern void put_filesystem(struct file_system_type *fs);
3602 extern struct file_system_type *get_fs_type(const char *name);
3603 extern void drop_super(struct super_block *sb);
3604 extern void drop_super_exclusive(struct super_block *sb);
3605 extern void iterate_supers(void (*f)(struct super_block *, void *), void *arg);
3606 extern void iterate_supers_type(struct file_system_type *,
3607 void (*)(struct super_block *, void *), void *);
3608 void filesystems_freeze(void);
3609 void filesystems_thaw(void);
3610
3611 extern int dcache_dir_open(struct inode *, struct file *);
3612 extern int dcache_dir_close(struct inode *, struct file *);
3613 extern loff_t dcache_dir_lseek(struct file *, loff_t, int);
3614 extern int dcache_readdir(struct file *, struct dir_context *);
3615 extern int simple_setattr(struct mnt_idmap *, struct dentry *,
3616 struct iattr *);
3617 extern int simple_getattr(struct mnt_idmap *, const struct path *,
3618 struct kstat *, u32, unsigned int);
3619 extern int simple_statfs(struct dentry *, struct kstatfs *);
3620 extern int simple_open(struct inode *inode, struct file *file);
3621 extern int simple_link(struct dentry *, struct inode *, struct dentry *);
3622 extern int simple_unlink(struct inode *, struct dentry *);
3623 extern int simple_rmdir(struct inode *, struct dentry *);
3624 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
3625 struct inode *new_dir, struct dentry *new_dentry);
3626 extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
3627 struct inode *new_dir, struct dentry *new_dentry);
3628 extern int simple_rename(struct mnt_idmap *, struct inode *,
3629 struct dentry *, struct inode *, struct dentry *,
3630 unsigned int);
3631 extern void simple_recursive_removal(struct dentry *,
3632 void (*callback)(struct dentry *));
3633 extern void locked_recursive_removal(struct dentry *,
3634 void (*callback)(struct dentry *));
3635 extern int noop_fsync(struct file *, loff_t, loff_t, int);
3636 extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
3637 extern int simple_empty(struct dentry *);
3638 extern int simple_write_begin(const struct kiocb *iocb,
3639 struct address_space *mapping,
3640 loff_t pos, unsigned len,
3641 struct folio **foliop, void **fsdata);
3642 extern const struct address_space_operations ram_aops;
3643 extern int always_delete_dentry(const struct dentry *);
3644 extern struct inode *alloc_anon_inode(struct super_block *);
3645 struct inode *anon_inode_make_secure_inode(struct super_block *sb, const char *name,
3646 const struct inode *context_inode);
3647 extern int simple_nosetlease(struct file *, int, struct file_lease **, void **);
3648
3649 extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags);
3650 extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *);
3651 extern const struct file_operations simple_dir_operations;
3652 extern const struct inode_operations simple_dir_inode_operations;
3653 extern void make_empty_dir_inode(struct inode *inode);
3654 extern bool is_empty_dir_inode(struct inode *inode);
3655 struct tree_descr { const char *name; const struct file_operations *ops; int mode; };
3656 struct dentry *d_alloc_name(struct dentry *, const char *);
3657 extern int simple_fill_super(struct super_block *, unsigned long,
3658 const struct tree_descr *);
3659 extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count);
3660 extern void simple_release_fs(struct vfsmount **mount, int *count);
3661 struct dentry *simple_start_creating(struct dentry *, const char *);
3662
3663 extern ssize_t simple_read_from_buffer(void __user *to, size_t count,
3664 loff_t *ppos, const void *from, size_t available);
3665 extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
3666 const void __user *from, size_t count);
3667
3668 struct offset_ctx {
3669 struct maple_tree mt;
3670 unsigned long next_offset;
3671 };
3672
3673 void simple_offset_init(struct offset_ctx *octx);
3674 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry);
3675 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry);
3676 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
3677 struct inode *new_dir, struct dentry *new_dentry);
3678 int simple_offset_rename_exchange(struct inode *old_dir,
3679 struct dentry *old_dentry,
3680 struct inode *new_dir,
3681 struct dentry *new_dentry);
3682 void simple_offset_destroy(struct offset_ctx *octx);
3683
3684 extern const struct file_operations simple_offset_dir_operations;
3685
3686 extern int __generic_file_fsync(struct file *, loff_t, loff_t, int);
3687 extern int generic_file_fsync(struct file *, loff_t, loff_t, int);
3688
3689 extern int generic_check_addressable(unsigned, u64);
3690
3691 extern void generic_set_sb_d_ops(struct super_block *sb);
3692 extern int generic_ci_match(const struct inode *parent,
3693 const struct qstr *name,
3694 const struct qstr *folded_name,
3695 const u8 *de_name, u32 de_name_len);
3696
3697 #if IS_ENABLED(CONFIG_UNICODE)
3698 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str);
3699 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
3700 const char *str, const struct qstr *name);
3701
3702 /**
3703 * generic_ci_validate_strict_name - Check if a given name is suitable
3704 * for a directory
3705 *
3706 * This functions checks if the proposed filename is valid for the
3707 * parent directory. That means that only valid UTF-8 filenames will be
3708 * accepted for casefold directories from filesystems created with the
3709 * strict encoding flag. That also means that any name will be
3710 * accepted for directories that doesn't have casefold enabled, or
3711 * aren't being strict with the encoding.
3712 *
3713 * @dir: inode of the directory where the new file will be created
3714 * @name: name of the new file
3715 *
3716 * Return:
3717 * * True: if the filename is suitable for this directory. It can be
3718 * true if a given name is not suitable for a strict encoding
3719 * directory, but the directory being used isn't strict
3720 * * False if the filename isn't suitable for this directory. This only
3721 * happens when a directory is casefolded and the filesystem is strict
3722 * about its encoding.
3723 */
generic_ci_validate_strict_name(struct inode * dir,const struct qstr * name)3724 static inline bool generic_ci_validate_strict_name(struct inode *dir,
3725 const struct qstr *name)
3726 {
3727 if (!IS_CASEFOLDED(dir) || !sb_has_strict_encoding(dir->i_sb))
3728 return true;
3729
3730 /*
3731 * A casefold dir must have a encoding set, unless the filesystem
3732 * is corrupted
3733 */
3734 if (WARN_ON_ONCE(!dir->i_sb->s_encoding))
3735 return true;
3736
3737 return !utf8_validate(dir->i_sb->s_encoding, name);
3738 }
3739 #else
generic_ci_validate_strict_name(struct inode * dir,const struct qstr * name)3740 static inline bool generic_ci_validate_strict_name(struct inode *dir,
3741 const struct qstr *name)
3742 {
3743 return true;
3744 }
3745 #endif
3746
sb_encoding(const struct super_block * sb)3747 static inline struct unicode_map *sb_encoding(const struct super_block *sb)
3748 {
3749 #if IS_ENABLED(CONFIG_UNICODE)
3750 return sb->s_encoding;
3751 #else
3752 return NULL;
3753 #endif
3754 }
3755
sb_has_encoding(const struct super_block * sb)3756 static inline bool sb_has_encoding(const struct super_block *sb)
3757 {
3758 return !!sb_encoding(sb);
3759 }
3760
3761 /*
3762 * Compare if two super blocks have the same encoding and flags
3763 */
sb_same_encoding(const struct super_block * sb1,const struct super_block * sb2)3764 static inline bool sb_same_encoding(const struct super_block *sb1,
3765 const struct super_block *sb2)
3766 {
3767 #if IS_ENABLED(CONFIG_UNICODE)
3768 if (sb1->s_encoding == sb2->s_encoding)
3769 return true;
3770
3771 return (sb1->s_encoding && sb2->s_encoding &&
3772 (sb1->s_encoding->version == sb2->s_encoding->version) &&
3773 (sb1->s_encoding_flags == sb2->s_encoding_flags));
3774 #else
3775 return true;
3776 #endif
3777 }
3778
3779 int may_setattr(struct mnt_idmap *idmap, struct inode *inode,
3780 unsigned int ia_valid);
3781 int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *);
3782 extern int inode_newsize_ok(const struct inode *, loff_t offset);
3783 void setattr_copy(struct mnt_idmap *, struct inode *inode,
3784 const struct iattr *attr);
3785
3786 extern int file_update_time(struct file *file);
3787
file_is_dax(const struct file * file)3788 static inline bool file_is_dax(const struct file *file)
3789 {
3790 return file && IS_DAX(file->f_mapping->host);
3791 }
3792
vma_is_dax(const struct vm_area_struct * vma)3793 static inline bool vma_is_dax(const struct vm_area_struct *vma)
3794 {
3795 return file_is_dax(vma->vm_file);
3796 }
3797
vma_is_fsdax(struct vm_area_struct * vma)3798 static inline bool vma_is_fsdax(struct vm_area_struct *vma)
3799 {
3800 struct inode *inode;
3801
3802 if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file)
3803 return false;
3804 if (!vma_is_dax(vma))
3805 return false;
3806 inode = file_inode(vma->vm_file);
3807 if (S_ISCHR(inode->i_mode))
3808 return false; /* device-dax */
3809 return true;
3810 }
3811
iocb_flags(struct file * file)3812 static inline int iocb_flags(struct file *file)
3813 {
3814 int res = 0;
3815 if (file->f_flags & O_APPEND)
3816 res |= IOCB_APPEND;
3817 if (file->f_flags & O_DIRECT)
3818 res |= IOCB_DIRECT;
3819 if (file->f_flags & O_DSYNC)
3820 res |= IOCB_DSYNC;
3821 if (file->f_flags & __O_SYNC)
3822 res |= IOCB_SYNC;
3823 return res;
3824 }
3825
kiocb_set_rw_flags(struct kiocb * ki,rwf_t flags,int rw_type)3826 static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags,
3827 int rw_type)
3828 {
3829 int kiocb_flags = 0;
3830
3831 /* make sure there's no overlap between RWF and private IOCB flags */
3832 BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD);
3833
3834 if (!flags)
3835 return 0;
3836 if (unlikely(flags & ~RWF_SUPPORTED))
3837 return -EOPNOTSUPP;
3838 if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND)))
3839 return -EINVAL;
3840
3841 if (flags & RWF_NOWAIT) {
3842 if (!(ki->ki_filp->f_mode & FMODE_NOWAIT))
3843 return -EOPNOTSUPP;
3844 }
3845 if (flags & RWF_ATOMIC) {
3846 if (rw_type != WRITE)
3847 return -EOPNOTSUPP;
3848 if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE))
3849 return -EOPNOTSUPP;
3850 }
3851 if (flags & RWF_DONTCACHE) {
3852 /* file system must support it */
3853 if (!(ki->ki_filp->f_op->fop_flags & FOP_DONTCACHE))
3854 return -EOPNOTSUPP;
3855 /* DAX mappings not supported */
3856 if (IS_DAX(ki->ki_filp->f_mapping->host))
3857 return -EOPNOTSUPP;
3858 }
3859 kiocb_flags |= (__force int) (flags & RWF_SUPPORTED);
3860 if (flags & RWF_SYNC)
3861 kiocb_flags |= IOCB_DSYNC;
3862
3863 if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) {
3864 if (IS_APPEND(file_inode(ki->ki_filp)))
3865 return -EPERM;
3866 ki->ki_flags &= ~IOCB_APPEND;
3867 }
3868
3869 ki->ki_flags |= kiocb_flags;
3870 return 0;
3871 }
3872
3873 /* Transaction based IO helpers */
3874
3875 /*
3876 * An argresp is stored in an allocated page and holds the
3877 * size of the argument or response, along with its content
3878 */
3879 struct simple_transaction_argresp {
3880 ssize_t size;
3881 char data[];
3882 };
3883
3884 #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp))
3885
3886 char *simple_transaction_get(struct file *file, const char __user *buf,
3887 size_t size);
3888 ssize_t simple_transaction_read(struct file *file, char __user *buf,
3889 size_t size, loff_t *pos);
3890 int simple_transaction_release(struct inode *inode, struct file *file);
3891
3892 void simple_transaction_set(struct file *file, size_t n);
3893
3894 /*
3895 * simple attribute files
3896 *
3897 * These attributes behave similar to those in sysfs:
3898 *
3899 * Writing to an attribute immediately sets a value, an open file can be
3900 * written to multiple times.
3901 *
3902 * Reading from an attribute creates a buffer from the value that might get
3903 * read with multiple read calls. When the attribute has been read
3904 * completely, no further read calls are possible until the file is opened
3905 * again.
3906 *
3907 * All attributes contain a text representation of a numeric value
3908 * that are accessed with the get() and set() functions.
3909 */
3910 #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \
3911 static int __fops ## _open(struct inode *inode, struct file *file) \
3912 { \
3913 __simple_attr_check_format(__fmt, 0ull); \
3914 return simple_attr_open(inode, file, __get, __set, __fmt); \
3915 } \
3916 static const struct file_operations __fops = { \
3917 .owner = THIS_MODULE, \
3918 .open = __fops ## _open, \
3919 .release = simple_attr_release, \
3920 .read = simple_attr_read, \
3921 .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \
3922 .llseek = generic_file_llseek, \
3923 }
3924
3925 #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
3926 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false)
3927
3928 #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \
3929 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true)
3930
3931 static inline __printf(1, 2)
__simple_attr_check_format(const char * fmt,...)3932 void __simple_attr_check_format(const char *fmt, ...)
3933 {
3934 /* don't do anything, just let the compiler check the arguments; */
3935 }
3936
3937 int simple_attr_open(struct inode *inode, struct file *file,
3938 int (*get)(void *, u64 *), int (*set)(void *, u64),
3939 const char *fmt);
3940 int simple_attr_release(struct inode *inode, struct file *file);
3941 ssize_t simple_attr_read(struct file *file, char __user *buf,
3942 size_t len, loff_t *ppos);
3943 ssize_t simple_attr_write(struct file *file, const char __user *buf,
3944 size_t len, loff_t *ppos);
3945 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
3946 size_t len, loff_t *ppos);
3947
3948 struct ctl_table;
3949 int __init list_bdev_fs_names(char *buf, size_t size);
3950
3951 #define __FMODE_EXEC ((__force int) FMODE_EXEC)
3952
3953 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
3954 #define OPEN_FMODE(flag) ((__force fmode_t)((flag + 1) & O_ACCMODE))
3955
is_sxid(umode_t mode)3956 static inline bool is_sxid(umode_t mode)
3957 {
3958 return mode & (S_ISUID | S_ISGID);
3959 }
3960
check_sticky(struct mnt_idmap * idmap,struct inode * dir,struct inode * inode)3961 static inline int check_sticky(struct mnt_idmap *idmap,
3962 struct inode *dir, struct inode *inode)
3963 {
3964 if (!(dir->i_mode & S_ISVTX))
3965 return 0;
3966
3967 return __check_sticky(idmap, dir, inode);
3968 }
3969
inode_has_no_xattr(struct inode * inode)3970 static inline void inode_has_no_xattr(struct inode *inode)
3971 {
3972 if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC))
3973 inode->i_flags |= S_NOSEC;
3974 }
3975
is_root_inode(struct inode * inode)3976 static inline bool is_root_inode(struct inode *inode)
3977 {
3978 return inode == inode->i_sb->s_root->d_inode;
3979 }
3980
dir_emit(struct dir_context * ctx,const char * name,int namelen,u64 ino,unsigned type)3981 static inline bool dir_emit(struct dir_context *ctx,
3982 const char *name, int namelen,
3983 u64 ino, unsigned type)
3984 {
3985 return ctx->actor(ctx, name, namelen, ctx->pos, ino, type);
3986 }
dir_emit_dot(struct file * file,struct dir_context * ctx)3987 static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx)
3988 {
3989 return ctx->actor(ctx, ".", 1, ctx->pos,
3990 file->f_path.dentry->d_inode->i_ino, DT_DIR);
3991 }
dir_emit_dotdot(struct file * file,struct dir_context * ctx)3992 static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx)
3993 {
3994 return ctx->actor(ctx, "..", 2, ctx->pos,
3995 d_parent_ino(file->f_path.dentry), DT_DIR);
3996 }
dir_emit_dots(struct file * file,struct dir_context * ctx)3997 static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx)
3998 {
3999 if (ctx->pos == 0) {
4000 if (!dir_emit_dot(file, ctx))
4001 return false;
4002 ctx->pos = 1;
4003 }
4004 if (ctx->pos == 1) {
4005 if (!dir_emit_dotdot(file, ctx))
4006 return false;
4007 ctx->pos = 2;
4008 }
4009 return true;
4010 }
dir_relax(struct inode * inode)4011 static inline bool dir_relax(struct inode *inode)
4012 {
4013 inode_unlock(inode);
4014 inode_lock(inode);
4015 return !IS_DEADDIR(inode);
4016 }
4017
dir_relax_shared(struct inode * inode)4018 static inline bool dir_relax_shared(struct inode *inode)
4019 {
4020 inode_unlock_shared(inode);
4021 inode_lock_shared(inode);
4022 return !IS_DEADDIR(inode);
4023 }
4024
4025 extern bool path_noexec(const struct path *path);
4026 extern void inode_nohighmem(struct inode *inode);
4027
4028 /* mm/fadvise.c */
4029 extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len,
4030 int advice);
4031 extern int generic_fadvise(struct file *file, loff_t offset, loff_t len,
4032 int advice);
4033
vfs_empty_path(int dfd,const char __user * path)4034 static inline bool vfs_empty_path(int dfd, const char __user *path)
4035 {
4036 char c;
4037
4038 if (dfd < 0)
4039 return false;
4040
4041 /* We now allow NULL to be used for empty path. */
4042 if (!path)
4043 return true;
4044
4045 if (unlikely(get_user(c, path)))
4046 return false;
4047
4048 return !c;
4049 }
4050
4051 int generic_atomic_write_valid(struct kiocb *iocb, struct iov_iter *iter);
4052
extensible_ioctl_valid(unsigned int cmd_a,unsigned int cmd_b,size_t min_size)4053 static inline bool extensible_ioctl_valid(unsigned int cmd_a,
4054 unsigned int cmd_b, size_t min_size)
4055 {
4056 if (_IOC_DIR(cmd_a) != _IOC_DIR(cmd_b))
4057 return false;
4058 if (_IOC_TYPE(cmd_a) != _IOC_TYPE(cmd_b))
4059 return false;
4060 if (_IOC_NR(cmd_a) != _IOC_NR(cmd_b))
4061 return false;
4062 if (_IOC_SIZE(cmd_a) < min_size)
4063 return false;
4064 return true;
4065 }
4066
4067 #endif /* _LINUX_FS_H */
4068