1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/blkdev.h>
4 #include <linux/fscrypt.h>
5 #include <linux/iversion.h>
6 #include "ctree.h"
7 #include "fs.h"
8 #include "messages.h"
9 #include "compression.h"
10 #include "delalloc-space.h"
11 #include "disk-io.h"
12 #include "reflink.h"
13 #include "transaction.h"
14 #include "subpage.h"
15 #include "accessors.h"
16 #include "file-item.h"
17 #include "file.h"
18 #include "super.h"
19
20 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
21
clone_finish_inode_update(struct btrfs_trans_handle * trans,struct inode * inode,u64 endoff,const u64 destoff,const u64 olen,bool no_time_update)22 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
23 struct inode *inode,
24 u64 endoff,
25 const u64 destoff,
26 const u64 olen,
27 bool no_time_update)
28 {
29 int ret;
30
31 inode_inc_iversion(inode);
32 if (!no_time_update) {
33 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
34 }
35 /*
36 * We round up to the block size at eof when determining which
37 * extents to clone above, but shouldn't round up the file size.
38 */
39 if (endoff > destoff + olen)
40 endoff = destoff + olen;
41 if (endoff > inode->i_size) {
42 i_size_write(inode, endoff);
43 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
44 }
45
46 ret = btrfs_update_inode(trans, BTRFS_I(inode));
47 if (unlikely(ret)) {
48 btrfs_abort_transaction(trans, ret);
49 btrfs_end_transaction(trans);
50 return ret;
51 }
52 return btrfs_end_transaction(trans);
53 }
54
copy_inline_to_page(struct btrfs_inode * inode,const u64 file_offset,char * inline_data,const u64 size,const u64 datal,const u8 comp_type)55 static int copy_inline_to_page(struct btrfs_inode *inode,
56 const u64 file_offset,
57 char *inline_data,
58 const u64 size,
59 const u64 datal,
60 const u8 comp_type)
61 {
62 struct btrfs_fs_info *fs_info = inode->root->fs_info;
63 const u32 block_size = fs_info->sectorsize;
64 const u64 range_end = file_offset + block_size - 1;
65 const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
66 char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
67 struct extent_changeset *data_reserved = NULL;
68 struct folio *folio = NULL;
69 struct address_space *mapping = inode->vfs_inode.i_mapping;
70 int ret;
71
72 ASSERT(IS_ALIGNED(file_offset, block_size));
73
74 /*
75 * We have flushed and locked the ranges of the source and destination
76 * inodes, we also have locked the inodes, so we are safe to do a
77 * reservation here. Also we must not do the reservation while holding
78 * a transaction open, otherwise we would deadlock.
79 */
80 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
81 block_size);
82 if (ret)
83 goto out;
84
85 folio = __filemap_get_folio(mapping, file_offset >> PAGE_SHIFT,
86 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
87 btrfs_alloc_write_mask(mapping));
88 if (IS_ERR(folio)) {
89 ret = PTR_ERR(folio);
90 goto out_unlock;
91 }
92
93 ret = set_folio_extent_mapped(folio);
94 if (ret < 0)
95 goto out_unlock;
96
97 btrfs_clear_extent_bit(&inode->io_tree, file_offset, range_end,
98 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, NULL);
99 ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
100 if (ret)
101 goto out_unlock;
102
103 /*
104 * After dirtying the page our caller will need to start a transaction,
105 * and if we are low on metadata free space, that can cause flushing of
106 * delalloc for all inodes in order to get metadata space released.
107 * However we are holding the range locked for the whole duration of
108 * the clone/dedupe operation, so we may deadlock if that happens and no
109 * other task releases enough space. So mark this inode as not being
110 * possible to flush to avoid such deadlock. We will clear that flag
111 * when we finish cloning all extents, since a transaction is started
112 * after finding each extent to clone.
113 */
114 set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
115
116 if (comp_type == BTRFS_COMPRESS_NONE) {
117 memcpy_to_folio(folio, offset_in_folio(folio, file_offset), data_start,
118 datal);
119 } else {
120 ret = btrfs_decompress(comp_type, data_start, folio,
121 offset_in_folio(folio, file_offset),
122 inline_size, datal);
123 if (ret)
124 goto out_unlock;
125 flush_dcache_folio(folio);
126 }
127
128 /*
129 * If our inline data is smaller then the block/page size, then the
130 * remaining of the block/page is equivalent to zeroes. We had something
131 * like the following done:
132 *
133 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
134 * $ sync # (or fsync)
135 * $ xfs_io -c "falloc 0 4K" file
136 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
137 *
138 * So what's in the range [500, 4095] corresponds to zeroes.
139 */
140 if (datal < block_size)
141 folio_zero_range(folio, datal, block_size - datal);
142
143 btrfs_folio_set_uptodate(fs_info, folio, file_offset, block_size);
144 btrfs_folio_clear_checked(fs_info, folio, file_offset, block_size);
145 btrfs_folio_set_dirty(fs_info, folio, file_offset, block_size);
146 out_unlock:
147 if (!IS_ERR(folio)) {
148 folio_unlock(folio);
149 folio_put(folio);
150 }
151 if (ret)
152 btrfs_delalloc_release_space(inode, data_reserved, file_offset,
153 block_size, true);
154 btrfs_delalloc_release_extents(inode, block_size);
155 out:
156 extent_changeset_free(data_reserved);
157
158 return ret;
159 }
160
161 /*
162 * Deal with cloning of inline extents. We try to copy the inline extent from
163 * the source inode to destination inode when possible. When not possible we
164 * copy the inline extent's data into the respective page of the inode.
165 */
clone_copy_inline_extent(struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_key * new_key,const u64 drop_start,const u64 datal,const u64 size,const u8 comp_type,char * inline_data,struct btrfs_trans_handle ** trans_out)166 static int clone_copy_inline_extent(struct btrfs_inode *inode,
167 struct btrfs_path *path,
168 struct btrfs_key *new_key,
169 const u64 drop_start,
170 const u64 datal,
171 const u64 size,
172 const u8 comp_type,
173 char *inline_data,
174 struct btrfs_trans_handle **trans_out)
175 {
176 struct btrfs_root *root = inode->root;
177 struct btrfs_fs_info *fs_info = root->fs_info;
178 const u64 aligned_end = ALIGN(new_key->offset + datal,
179 fs_info->sectorsize);
180 struct btrfs_trans_handle *trans = NULL;
181 struct btrfs_drop_extents_args drop_args = { 0 };
182 int ret;
183 struct btrfs_key key;
184
185 if (new_key->offset > 0) {
186 ret = copy_inline_to_page(inode, new_key->offset,
187 inline_data, size, datal, comp_type);
188 goto out;
189 }
190
191 key.objectid = btrfs_ino(inode);
192 key.type = BTRFS_EXTENT_DATA_KEY;
193 key.offset = 0;
194 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
195 if (ret < 0) {
196 return ret;
197 } else if (ret > 0) {
198 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
199 ret = btrfs_next_leaf(root, path);
200 if (ret < 0)
201 return ret;
202 else if (ret > 0)
203 goto copy_inline_extent;
204 }
205 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
206 if (key.objectid == btrfs_ino(inode) &&
207 key.type == BTRFS_EXTENT_DATA_KEY) {
208 /*
209 * There's an implicit hole at file offset 0, copy the
210 * inline extent's data to the page.
211 */
212 ASSERT(key.offset > 0);
213 goto copy_to_page;
214 }
215 } else if (i_size_read(&inode->vfs_inode) <= datal) {
216 struct btrfs_file_extent_item *ei;
217
218 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
219 struct btrfs_file_extent_item);
220 /*
221 * If it's an inline extent replace it with the source inline
222 * extent, otherwise copy the source inline extent data into
223 * the respective page at the destination inode.
224 */
225 if (btrfs_file_extent_type(path->nodes[0], ei) ==
226 BTRFS_FILE_EXTENT_INLINE)
227 goto copy_inline_extent;
228
229 goto copy_to_page;
230 }
231
232 copy_inline_extent:
233 /*
234 * We have no extent items, or we have an extent at offset 0 which may
235 * or may not be inlined. All these cases are dealt the same way.
236 */
237 if (i_size_read(&inode->vfs_inode) > datal) {
238 /*
239 * At the destination offset 0 we have either a hole, a regular
240 * extent or an inline extent larger then the one we want to
241 * clone. Deal with all these cases by copying the inline extent
242 * data into the respective page at the destination inode.
243 */
244 goto copy_to_page;
245 }
246
247 /*
248 * Release path before starting a new transaction so we don't hold locks
249 * that would confuse lockdep.
250 */
251 btrfs_release_path(path);
252 /*
253 * If we end up here it means were copy the inline extent into a leaf
254 * of the destination inode. We know we will drop or adjust at most one
255 * extent item in the destination root.
256 *
257 * 1 unit - adjusting old extent (we may have to split it)
258 * 1 unit - add new extent
259 * 1 unit - inode update
260 */
261 trans = btrfs_start_transaction(root, 3);
262 if (IS_ERR(trans)) {
263 ret = PTR_ERR(trans);
264 trans = NULL;
265 goto out;
266 }
267 drop_args.path = path;
268 drop_args.start = drop_start;
269 drop_args.end = aligned_end;
270 drop_args.drop_cache = true;
271 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
272 if (unlikely(ret)) {
273 btrfs_abort_transaction(trans, ret);
274 goto out;
275 }
276 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
277 if (unlikely(ret)) {
278 btrfs_abort_transaction(trans, ret);
279 goto out;
280 }
281
282 write_extent_buffer(path->nodes[0], inline_data,
283 btrfs_item_ptr_offset(path->nodes[0],
284 path->slots[0]),
285 size);
286 btrfs_update_inode_bytes(inode, datal, drop_args.bytes_found);
287 btrfs_set_inode_full_sync(inode);
288 ret = btrfs_inode_set_file_extent_range(inode, 0, aligned_end);
289 if (unlikely(ret))
290 btrfs_abort_transaction(trans, ret);
291 out:
292 if (!ret && !trans) {
293 /*
294 * No transaction here means we copied the inline extent into a
295 * page of the destination inode.
296 *
297 * 1 unit to update inode item
298 */
299 trans = btrfs_start_transaction(root, 1);
300 if (IS_ERR(trans)) {
301 ret = PTR_ERR(trans);
302 trans = NULL;
303 }
304 }
305 if (ret && trans)
306 btrfs_end_transaction(trans);
307 if (!ret)
308 *trans_out = trans;
309
310 return ret;
311
312 copy_to_page:
313 /*
314 * Release our path because we don't need it anymore and also because
315 * copy_inline_to_page() needs to reserve data and metadata, which may
316 * need to flush delalloc when we are low on available space and
317 * therefore cause a deadlock if writeback of an inline extent needs to
318 * write to the same leaf or an ordered extent completion needs to write
319 * to the same leaf.
320 */
321 btrfs_release_path(path);
322
323 ret = copy_inline_to_page(inode, new_key->offset,
324 inline_data, size, datal, comp_type);
325 goto out;
326 }
327
328 /*
329 * Clone a range from inode file to another.
330 *
331 * @src: Inode to clone from
332 * @inode: Inode to clone to
333 * @off: Offset within source to start clone from
334 * @olen: Original length, passed by user, of range to clone
335 * @olen_aligned: Block-aligned value of olen
336 * @destoff: Offset within @inode to start clone
337 * @no_time_update: Whether to update mtime/ctime on the target inode
338 */
btrfs_clone(struct inode * src,struct inode * inode,const u64 off,const u64 olen,const u64 olen_aligned,const u64 destoff,bool no_time_update)339 static int btrfs_clone(struct inode *src, struct inode *inode,
340 const u64 off, const u64 olen, const u64 olen_aligned,
341 const u64 destoff, bool no_time_update)
342 {
343 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
344 BTRFS_PATH_AUTO_FREE(path);
345 struct extent_buffer *leaf;
346 struct btrfs_trans_handle *trans;
347 char AUTO_KVFREE(buf);
348 struct btrfs_key key;
349 u32 nritems;
350 int slot;
351 int ret;
352 const u64 len = olen_aligned;
353 u64 last_dest_end = destoff;
354 u64 prev_extent_end = off;
355
356 ret = -ENOMEM;
357 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
358 if (!buf)
359 return ret;
360
361 path = btrfs_alloc_path();
362 if (!path)
363 return ret;
364
365 path->reada = READA_FORWARD;
366 /* Clone data */
367 key.objectid = btrfs_ino(BTRFS_I(src));
368 key.type = BTRFS_EXTENT_DATA_KEY;
369 key.offset = off;
370
371 while (1) {
372 struct btrfs_file_extent_item *extent;
373 u64 extent_gen;
374 int type;
375 u32 size;
376 struct btrfs_key new_key;
377 u64 disko = 0, diskl = 0;
378 u64 datao = 0, datal = 0;
379 u8 comp;
380 u64 drop_start;
381
382 /* Note the key will change type as we walk through the tree */
383 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
384 0, 0);
385 if (ret < 0)
386 goto out;
387 /*
388 * First search, if no extent item that starts at offset off was
389 * found but the previous item is an extent item, it's possible
390 * it might overlap our target range, therefore process it.
391 */
392 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
393 btrfs_item_key_to_cpu(path->nodes[0], &key,
394 path->slots[0] - 1);
395 if (key.type == BTRFS_EXTENT_DATA_KEY)
396 path->slots[0]--;
397 }
398
399 nritems = btrfs_header_nritems(path->nodes[0]);
400 process_slot:
401 if (path->slots[0] >= nritems) {
402 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
403 if (ret < 0)
404 goto out;
405 if (ret > 0)
406 break;
407 nritems = btrfs_header_nritems(path->nodes[0]);
408 }
409 leaf = path->nodes[0];
410 slot = path->slots[0];
411
412 btrfs_item_key_to_cpu(leaf, &key, slot);
413 if (key.type > BTRFS_EXTENT_DATA_KEY ||
414 key.objectid != btrfs_ino(BTRFS_I(src)))
415 break;
416
417 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
418
419 extent = btrfs_item_ptr(leaf, slot,
420 struct btrfs_file_extent_item);
421 extent_gen = btrfs_file_extent_generation(leaf, extent);
422 comp = btrfs_file_extent_compression(leaf, extent);
423 type = btrfs_file_extent_type(leaf, extent);
424 if (type == BTRFS_FILE_EXTENT_REG ||
425 type == BTRFS_FILE_EXTENT_PREALLOC) {
426 disko = btrfs_file_extent_disk_bytenr(leaf, extent);
427 diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
428 datao = btrfs_file_extent_offset(leaf, extent);
429 datal = btrfs_file_extent_num_bytes(leaf, extent);
430 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
431 /* Take upper bound, may be compressed */
432 datal = btrfs_file_extent_ram_bytes(leaf, extent);
433 }
434
435 /*
436 * The first search might have left us at an extent item that
437 * ends before our target range's start, can happen if we have
438 * holes and NO_HOLES feature enabled.
439 *
440 * Subsequent searches may leave us on a file range we have
441 * processed before - this happens due to a race with ordered
442 * extent completion for a file range that is outside our source
443 * range, but that range was part of a file extent item that
444 * also covered a leading part of our source range.
445 */
446 if (key.offset + datal <= prev_extent_end) {
447 path->slots[0]++;
448 goto process_slot;
449 } else if (key.offset >= off + len) {
450 break;
451 }
452
453 prev_extent_end = key.offset + datal;
454 size = btrfs_item_size(leaf, slot);
455 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
456 size);
457
458 btrfs_release_path(path);
459
460 memcpy(&new_key, &key, sizeof(new_key));
461 new_key.objectid = btrfs_ino(BTRFS_I(inode));
462 if (off <= key.offset)
463 new_key.offset = key.offset + destoff - off;
464 else
465 new_key.offset = destoff;
466
467 /*
468 * Deal with a hole that doesn't have an extent item that
469 * represents it (NO_HOLES feature enabled).
470 * This hole is either in the middle of the cloning range or at
471 * the beginning (fully overlaps it or partially overlaps it).
472 */
473 if (new_key.offset != last_dest_end)
474 drop_start = last_dest_end;
475 else
476 drop_start = new_key.offset;
477
478 if (type == BTRFS_FILE_EXTENT_REG ||
479 type == BTRFS_FILE_EXTENT_PREALLOC) {
480 struct btrfs_replace_extent_info clone_info;
481
482 /*
483 * a | --- range to clone ---| b
484 * | ------------- extent ------------- |
485 */
486
487 /* Subtract range b */
488 if (key.offset + datal > off + len)
489 datal = off + len - key.offset;
490
491 /* Subtract range a */
492 if (off > key.offset) {
493 datao += off - key.offset;
494 datal -= off - key.offset;
495 }
496
497 clone_info.disk_offset = disko;
498 clone_info.disk_len = diskl;
499 clone_info.data_offset = datao;
500 clone_info.data_len = datal;
501 clone_info.file_offset = new_key.offset;
502 clone_info.extent_buf = buf;
503 clone_info.is_new_extent = false;
504 clone_info.update_times = !no_time_update;
505 ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
506 drop_start, new_key.offset + datal - 1,
507 &clone_info, &trans);
508 if (ret)
509 goto out;
510 } else {
511 ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
512 /*
513 * Inline extents always have to start at file offset 0
514 * and can never be bigger then the sector size. We can
515 * never clone only parts of an inline extent, since all
516 * reflink operations must start at a sector size aligned
517 * offset, and the length must be aligned too or end at
518 * the i_size (which implies the whole inlined data).
519 */
520 ASSERT(key.offset == 0);
521 ASSERT(datal <= fs_info->sectorsize);
522 if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
523 WARN_ON(key.offset != 0) ||
524 WARN_ON(datal > fs_info->sectorsize)) {
525 ret = -EUCLEAN;
526 goto out;
527 }
528
529 ret = clone_copy_inline_extent(BTRFS_I(inode), path, &new_key,
530 drop_start, datal, size,
531 comp, buf, &trans);
532 if (ret)
533 goto out;
534 }
535
536 btrfs_release_path(path);
537
538 /*
539 * Whenever we share an extent we update the last_reflink_trans
540 * of each inode to the current transaction. This is needed to
541 * make sure fsync does not log multiple checksum items with
542 * overlapping ranges (because some extent items might refer
543 * only to sections of the original extent). For the destination
544 * inode we do this regardless of the generation of the extents
545 * or even if they are inline extents or explicit holes, to make
546 * sure a full fsync does not skip them. For the source inode,
547 * we only need to update last_reflink_trans in case it's a new
548 * extent that is not a hole or an inline extent, to deal with
549 * the checksums problem on fsync.
550 */
551 if (extent_gen == trans->transid && disko > 0)
552 BTRFS_I(src)->last_reflink_trans = trans->transid;
553
554 BTRFS_I(inode)->last_reflink_trans = trans->transid;
555
556 last_dest_end = ALIGN(new_key.offset + datal,
557 fs_info->sectorsize);
558 ret = clone_finish_inode_update(trans, inode, last_dest_end,
559 destoff, olen, no_time_update);
560 if (ret)
561 goto out;
562 if (new_key.offset + datal >= destoff + len)
563 break;
564
565 btrfs_release_path(path);
566 key.offset = prev_extent_end;
567
568 if (fatal_signal_pending(current)) {
569 ret = -EINTR;
570 goto out;
571 }
572
573 cond_resched();
574 }
575 ret = 0;
576
577 if (last_dest_end < destoff + len) {
578 /*
579 * We have an implicit hole that fully or partially overlaps our
580 * cloning range at its end. This means that we either have the
581 * NO_HOLES feature enabled or the implicit hole happened due to
582 * mixing buffered and direct IO writes against this file.
583 */
584 btrfs_release_path(path);
585
586 /*
587 * When using NO_HOLES and we are cloning a range that covers
588 * only a hole (no extents) into a range beyond the current
589 * i_size, punching a hole in the target range will not create
590 * an extent map defining a hole, because the range starts at or
591 * beyond current i_size. If the file previously had an i_size
592 * greater than the new i_size set by this clone operation, we
593 * need to make sure the next fsync is a full fsync, so that it
594 * detects and logs a hole covering a range from the current
595 * i_size to the new i_size. If the clone range covers extents,
596 * besides a hole, then we know the full sync flag was already
597 * set by previous calls to btrfs_replace_file_extents() that
598 * replaced file extent items.
599 */
600 if (last_dest_end >= i_size_read(inode))
601 btrfs_set_inode_full_sync(BTRFS_I(inode));
602
603 ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
604 last_dest_end, destoff + len - 1, NULL, &trans);
605 if (ret)
606 goto out;
607
608 ret = clone_finish_inode_update(trans, inode, destoff + len,
609 destoff, olen, no_time_update);
610 }
611
612 out:
613 clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
614
615 return ret;
616 }
617
btrfs_double_mmap_lock(struct btrfs_inode * inode1,struct btrfs_inode * inode2)618 static void btrfs_double_mmap_lock(struct btrfs_inode *inode1, struct btrfs_inode *inode2)
619 {
620 if (inode1 < inode2)
621 swap(inode1, inode2);
622 down_write(&inode1->i_mmap_lock);
623 down_write_nested(&inode2->i_mmap_lock, SINGLE_DEPTH_NESTING);
624 }
625
btrfs_double_mmap_unlock(struct btrfs_inode * inode1,struct btrfs_inode * inode2)626 static void btrfs_double_mmap_unlock(struct btrfs_inode *inode1, struct btrfs_inode *inode2)
627 {
628 up_write(&inode1->i_mmap_lock);
629 up_write(&inode2->i_mmap_lock);
630 }
631
btrfs_extent_same_range(struct btrfs_inode * src,u64 loff,u64 len,struct btrfs_inode * dst,u64 dst_loff)632 static int btrfs_extent_same_range(struct btrfs_inode *src, u64 loff, u64 len,
633 struct btrfs_inode *dst, u64 dst_loff)
634 {
635 const u64 end = dst_loff + len - 1;
636 struct extent_state *cached_state = NULL;
637 struct btrfs_fs_info *fs_info = src->root->fs_info;
638 const u64 bs = fs_info->sectorsize;
639 int ret;
640
641 /*
642 * Lock destination range to serialize with concurrent readahead(), and
643 * we are safe from concurrency with relocation of source extents
644 * because we have already locked the inode's i_mmap_lock in exclusive
645 * mode.
646 */
647 btrfs_lock_extent(&dst->io_tree, dst_loff, end, &cached_state);
648 ret = btrfs_clone(&src->vfs_inode, &dst->vfs_inode, loff, len,
649 ALIGN(len, bs), dst_loff, 1);
650 btrfs_unlock_extent(&dst->io_tree, dst_loff, end, &cached_state);
651
652 btrfs_btree_balance_dirty(fs_info);
653
654 return ret;
655 }
656
btrfs_extent_same(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff)657 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
658 struct inode *dst, u64 dst_loff)
659 {
660 int ret = 0;
661 u64 i, tail_len, chunk_count;
662 struct btrfs_root *root_dst = BTRFS_I(dst)->root;
663
664 spin_lock(&root_dst->root_item_lock);
665 if (root_dst->send_in_progress) {
666 btrfs_warn_rl(root_dst->fs_info,
667 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
668 btrfs_root_id(root_dst),
669 root_dst->send_in_progress);
670 spin_unlock(&root_dst->root_item_lock);
671 return -EAGAIN;
672 }
673 root_dst->dedupe_in_progress++;
674 spin_unlock(&root_dst->root_item_lock);
675
676 tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
677 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
678
679 for (i = 0; i < chunk_count; i++) {
680 ret = btrfs_extent_same_range(BTRFS_I(src), loff, BTRFS_MAX_DEDUPE_LEN,
681 BTRFS_I(dst), dst_loff);
682 if (ret)
683 goto out;
684
685 loff += BTRFS_MAX_DEDUPE_LEN;
686 dst_loff += BTRFS_MAX_DEDUPE_LEN;
687 }
688
689 if (tail_len > 0)
690 ret = btrfs_extent_same_range(BTRFS_I(src), loff, tail_len,
691 BTRFS_I(dst), dst_loff);
692 out:
693 spin_lock(&root_dst->root_item_lock);
694 root_dst->dedupe_in_progress--;
695 spin_unlock(&root_dst->root_item_lock);
696
697 return ret;
698 }
699
btrfs_clone_files(struct file * file,struct file * file_src,u64 off,u64 olen,u64 destoff)700 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
701 u64 off, u64 olen, u64 destoff)
702 {
703 struct extent_state *cached_state = NULL;
704 struct inode *inode = file_inode(file);
705 struct inode *src = file_inode(file_src);
706 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
707 int ret;
708 u64 len = olen;
709 u64 bs = fs_info->sectorsize;
710 u64 end;
711
712 /*
713 * VFS's generic_remap_file_range_prep() protects us from cloning the
714 * eof block into the middle of a file, which would result in corruption
715 * if the file size is not blocksize aligned. So we don't need to check
716 * for that case here.
717 */
718 if (off + len == src->i_size)
719 len = ALIGN(src->i_size, bs) - off;
720
721 if (destoff > inode->i_size) {
722 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
723
724 ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
725 if (ret)
726 return ret;
727 /*
728 * We may have truncated the last block if the inode's size is
729 * not sector size aligned, so we need to wait for writeback to
730 * complete before proceeding further, otherwise we can race
731 * with cloning and attempt to increment a reference to an
732 * extent that no longer exists (writeback completed right after
733 * we found the previous extent covering eof and before we
734 * attempted to increment its reference count).
735 */
736 ret = btrfs_wait_ordered_range(BTRFS_I(inode), wb_start,
737 destoff - wb_start);
738 if (ret)
739 return ret;
740 }
741
742 /*
743 * Lock destination range to serialize with concurrent readahead(), and
744 * we are safe from concurrency with relocation of source extents
745 * because we have already locked the inode's i_mmap_lock in exclusive
746 * mode.
747 */
748 end = destoff + len - 1;
749 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, destoff, end, &cached_state);
750 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
751 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, destoff, end, &cached_state);
752 if (ret < 0)
753 return ret;
754
755 /*
756 * We may have copied an inline extent into a page of the destination
757 * range, so wait for writeback to complete before invalidating pages
758 * from the page cache. This is a rare case.
759 */
760 ret = btrfs_wait_ordered_range(BTRFS_I(inode), destoff, len);
761 if (ret < 0)
762 return ret;
763
764 /*
765 * Invalidate page cache so that future reads will see the cloned data
766 * immediately and not the previous data.
767 */
768 ret = filemap_invalidate_inode(inode, false, destoff, end);
769 if (ret < 0)
770 return ret;
771
772 btrfs_btree_balance_dirty(fs_info);
773
774 return 0;
775 }
776
btrfs_remap_file_range_prep(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t * len,unsigned int remap_flags)777 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
778 struct file *file_out, loff_t pos_out,
779 loff_t *len, unsigned int remap_flags)
780 {
781 struct btrfs_inode *inode_in = BTRFS_I(file_inode(file_in));
782 struct btrfs_inode *inode_out = BTRFS_I(file_inode(file_out));
783 u64 bs = inode_out->root->fs_info->sectorsize;
784 u64 wb_len;
785 int ret;
786
787 if (!(remap_flags & REMAP_FILE_DEDUP)) {
788 struct btrfs_root *root_out = inode_out->root;
789
790 if (btrfs_root_readonly(root_out))
791 return -EROFS;
792
793 ASSERT(inode_in->vfs_inode.i_sb == inode_out->vfs_inode.i_sb);
794 }
795
796 /* Can only reflink encrypted files if both files are encrypted. */
797 if (IS_ENCRYPTED(&inode_in->vfs_inode) != IS_ENCRYPTED(&inode_out->vfs_inode))
798 return -EINVAL;
799
800 /* Don't make the dst file partly checksummed */
801 if ((inode_in->flags & BTRFS_INODE_NODATASUM) !=
802 (inode_out->flags & BTRFS_INODE_NODATASUM)) {
803 return -EINVAL;
804 }
805
806 /*
807 * Now that the inodes are locked, we need to start writeback ourselves
808 * and can not rely on the writeback from the VFS's generic helper
809 * generic_remap_file_range_prep() because:
810 *
811 * 1) For compression we must call filemap_fdatawrite_range() range
812 * twice (btrfs_fdatawrite_range() does it for us), and the generic
813 * helper only calls it once;
814 *
815 * 2) filemap_fdatawrite_range(), called by the generic helper only
816 * waits for the writeback to complete, i.e. for IO to be done, and
817 * not for the ordered extents to complete. We need to wait for them
818 * to complete so that new file extent items are in the fs tree.
819 */
820 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
821 wb_len = ALIGN(inode_in->vfs_inode.i_size, bs) - ALIGN_DOWN(pos_in, bs);
822 else
823 wb_len = ALIGN(*len, bs);
824
825 /*
826 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
827 *
828 * Btrfs' back references do not have a block level granularity, they
829 * work at the whole extent level.
830 * NOCOW buffered write without data space reserved may not be able
831 * to fall back to CoW due to lack of data space, thus could cause
832 * data loss.
833 *
834 * Here we take a shortcut by flushing the whole inode, so that all
835 * nocow write should reach disk as nocow before we increase the
836 * reference of the extent. We could do better by only flushing NOCOW
837 * data, but that needs extra accounting.
838 *
839 * Also we don't need to check ASYNC_EXTENT, as async extent will be
840 * CoWed anyway, not affecting nocow part.
841 */
842 ret = filemap_flush(inode_in->vfs_inode.i_mapping);
843 if (ret < 0)
844 return ret;
845
846 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), wb_len);
847 if (ret < 0)
848 return ret;
849 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), wb_len);
850 if (ret < 0)
851 return ret;
852
853 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
854 len, remap_flags);
855 }
856
file_sync_write(const struct file * file)857 static bool file_sync_write(const struct file *file)
858 {
859 if (file->f_flags & (__O_SYNC | O_DSYNC))
860 return true;
861 if (IS_SYNC(file_inode(file)))
862 return true;
863
864 return false;
865 }
866
btrfs_remap_file_range(struct file * src_file,loff_t off,struct file * dst_file,loff_t destoff,loff_t len,unsigned int remap_flags)867 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
868 struct file *dst_file, loff_t destoff, loff_t len,
869 unsigned int remap_flags)
870 {
871 struct btrfs_inode *src_inode = BTRFS_I(file_inode(src_file));
872 struct btrfs_inode *dst_inode = BTRFS_I(file_inode(dst_file));
873 bool same_inode = dst_inode == src_inode;
874 int ret;
875
876 if (unlikely(btrfs_is_shutdown(inode_to_fs_info(file_inode(src_file)))))
877 return -EIO;
878
879 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
880 return -EINVAL;
881
882 if (same_inode) {
883 btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP);
884 } else {
885 lock_two_nondirectories(&src_inode->vfs_inode, &dst_inode->vfs_inode);
886 btrfs_double_mmap_lock(src_inode, dst_inode);
887 }
888
889 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
890 &len, remap_flags);
891 if (ret < 0 || len == 0)
892 goto out_unlock;
893
894 if (remap_flags & REMAP_FILE_DEDUP)
895 ret = btrfs_extent_same(&src_inode->vfs_inode, off, len,
896 &dst_inode->vfs_inode, destoff);
897 else
898 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
899
900 out_unlock:
901 if (same_inode) {
902 btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP);
903 } else {
904 btrfs_double_mmap_unlock(src_inode, dst_inode);
905 unlock_two_nondirectories(&src_inode->vfs_inode,
906 &dst_inode->vfs_inode);
907 }
908
909 /*
910 * If either the source or the destination file was opened with O_SYNC,
911 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
912 * source files/ranges, so that after a successful return (0) followed
913 * by a power failure results in the reflinked data to be readable from
914 * both files/ranges.
915 */
916 if (ret == 0 && len > 0 &&
917 (file_sync_write(src_file) || file_sync_write(dst_file))) {
918 ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
919 if (ret == 0)
920 ret = btrfs_sync_file(dst_file, destoff,
921 destoff + len - 1, 0);
922 }
923
924 return ret < 0 ? ret : len;
925 }
926