1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/slab.h>
15 #include <linux/crc32.h>
16 #include <linux/magic.h>
17 #include <linux/kobject.h>
18 #include <linux/sched.h>
19 #include <linux/cred.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <linux/rw_hint.h>
27
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30
31 struct pagevec;
32
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition) \
37 do { \
38 if (WARN_ON(condition)) \
39 set_sbi_flag(sbi, SBI_NEED_FSCK); \
40 } while (0)
41 #endif
42
43 enum {
44 FAULT_KMALLOC,
45 FAULT_KVMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_READ_IO,
56 FAULT_CHECKPOINT,
57 FAULT_DISCARD,
58 FAULT_WRITE_IO,
59 FAULT_SLAB_ALLOC,
60 FAULT_DQUOT_INIT,
61 FAULT_LOCK_OP,
62 FAULT_BLKADDR_VALIDITY,
63 FAULT_BLKADDR_CONSISTENCE,
64 FAULT_NO_SEGMENT,
65 FAULT_INCONSISTENT_FOOTER,
66 FAULT_MAX,
67 };
68
69 #ifdef CONFIG_F2FS_FAULT_INJECTION
70 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0))
71
72 struct f2fs_fault_info {
73 atomic_t inject_ops;
74 int inject_rate;
75 unsigned int inject_type;
76 };
77
78 extern const char *f2fs_fault_name[FAULT_MAX];
79 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
80
81 /* maximum retry count for injected failure */
82 #define DEFAULT_FAILURE_RETRY_COUNT 8
83 #else
84 #define DEFAULT_FAILURE_RETRY_COUNT 1
85 #endif
86
87 /*
88 * For mount options
89 */
90 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001
91 #define F2FS_MOUNT_DISCARD 0x00000002
92 #define F2FS_MOUNT_NOHEAP 0x00000004
93 #define F2FS_MOUNT_XATTR_USER 0x00000008
94 #define F2FS_MOUNT_POSIX_ACL 0x00000010
95 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020
96 #define F2FS_MOUNT_INLINE_XATTR 0x00000040
97 #define F2FS_MOUNT_INLINE_DATA 0x00000080
98 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100
99 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200
100 #define F2FS_MOUNT_NOBARRIER 0x00000400
101 #define F2FS_MOUNT_FASTBOOT 0x00000800
102 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000
103 #define F2FS_MOUNT_DATA_FLUSH 0x00002000
104 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000
105 #define F2FS_MOUNT_USRQUOTA 0x00008000
106 #define F2FS_MOUNT_GRPQUOTA 0x00010000
107 #define F2FS_MOUNT_PRJQUOTA 0x00020000
108 #define F2FS_MOUNT_QUOTA 0x00040000
109 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000
110 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000
111 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000
112 #define F2FS_MOUNT_NORECOVERY 0x00400000
113 #define F2FS_MOUNT_ATGC 0x00800000
114 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000
115 #define F2FS_MOUNT_GC_MERGE 0x02000000
116 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000
117 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000
118 #define F2FS_MOUNT_NAT_BITS 0x10000000
119 #define F2FS_MOUNT_INLINECRYPT 0x20000000
120 /*
121 * Some f2fs environments expect to be able to pass the "lazytime" option
122 * string rather than using the MS_LAZYTIME flag, so this must remain.
123 */
124 #define F2FS_MOUNT_LAZYTIME 0x40000000
125
126 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
127 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
128 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
129 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
130
131 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
132 typecheck(unsigned long long, b) && \
133 ((long long)((a) - (b)) > 0))
134
135 typedef u32 block_t; /*
136 * should not change u32, since it is the on-disk block
137 * address format, __le32.
138 */
139 typedef u32 nid_t;
140
141 #define COMPRESS_EXT_NUM 16
142
143 enum blkzone_allocation_policy {
144 BLKZONE_ALLOC_PRIOR_SEQ, /* Prioritize writing to sequential zones */
145 BLKZONE_ALLOC_ONLY_SEQ, /* Only allow writing to sequential zones */
146 BLKZONE_ALLOC_PRIOR_CONV, /* Prioritize writing to conventional zones */
147 };
148
149 /*
150 * An implementation of an rwsem that is explicitly unfair to readers. This
151 * prevents priority inversion when a low-priority reader acquires the read lock
152 * while sleeping on the write lock but the write lock is needed by
153 * higher-priority clients.
154 */
155
156 struct f2fs_rwsem {
157 struct rw_semaphore internal_rwsem;
158 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
159 wait_queue_head_t read_waiters;
160 #endif
161 };
162
163 struct f2fs_mount_info {
164 unsigned int opt;
165 block_t root_reserved_blocks; /* root reserved blocks */
166 kuid_t s_resuid; /* reserved blocks for uid */
167 kgid_t s_resgid; /* reserved blocks for gid */
168 int active_logs; /* # of active logs */
169 int inline_xattr_size; /* inline xattr size */
170 #ifdef CONFIG_F2FS_FAULT_INJECTION
171 struct f2fs_fault_info fault_info; /* For fault injection */
172 #endif
173 #ifdef CONFIG_QUOTA
174 /* Names of quota files with journalled quota */
175 char *s_qf_names[MAXQUOTAS];
176 int s_jquota_fmt; /* Format of quota to use */
177 #endif
178 /* For which write hints are passed down to block layer */
179 int alloc_mode; /* segment allocation policy */
180 int fsync_mode; /* fsync policy */
181 int fs_mode; /* fs mode: LFS or ADAPTIVE */
182 int bggc_mode; /* bggc mode: off, on or sync */
183 int memory_mode; /* memory mode */
184 int errors; /* errors parameter */
185 int discard_unit; /*
186 * discard command's offset/size should
187 * be aligned to this unit: block,
188 * segment or section
189 */
190 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
191 block_t unusable_cap_perc; /* percentage for cap */
192 block_t unusable_cap; /* Amount of space allowed to be
193 * unusable when disabling checkpoint
194 */
195
196 /* For compression */
197 unsigned char compress_algorithm; /* algorithm type */
198 unsigned char compress_log_size; /* cluster log size */
199 unsigned char compress_level; /* compress level */
200 bool compress_chksum; /* compressed data chksum */
201 unsigned char compress_ext_cnt; /* extension count */
202 unsigned char nocompress_ext_cnt; /* nocompress extension count */
203 int compress_mode; /* compression mode */
204 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
205 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
206 };
207
208 #define F2FS_FEATURE_ENCRYPT 0x00000001
209 #define F2FS_FEATURE_BLKZONED 0x00000002
210 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004
211 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008
212 #define F2FS_FEATURE_PRJQUOTA 0x00000010
213 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020
214 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040
215 #define F2FS_FEATURE_QUOTA_INO 0x00000080
216 #define F2FS_FEATURE_INODE_CRTIME 0x00000100
217 #define F2FS_FEATURE_LOST_FOUND 0x00000200
218 #define F2FS_FEATURE_VERITY 0x00000400
219 #define F2FS_FEATURE_SB_CHKSUM 0x00000800
220 #define F2FS_FEATURE_CASEFOLD 0x00001000
221 #define F2FS_FEATURE_COMPRESSION 0x00002000
222 #define F2FS_FEATURE_RO 0x00004000
223 #define F2FS_FEATURE_DEVICE_ALIAS 0x00008000
224
225 #define __F2FS_HAS_FEATURE(raw_super, mask) \
226 ((raw_super->feature & cpu_to_le32(mask)) != 0)
227 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
228
229 /*
230 * Default values for user and/or group using reserved blocks
231 */
232 #define F2FS_DEF_RESUID 0
233 #define F2FS_DEF_RESGID 0
234
235 /*
236 * For checkpoint manager
237 */
238 enum {
239 NAT_BITMAP,
240 SIT_BITMAP
241 };
242
243 #define CP_UMOUNT 0x00000001
244 #define CP_FASTBOOT 0x00000002
245 #define CP_SYNC 0x00000004
246 #define CP_RECOVERY 0x00000008
247 #define CP_DISCARD 0x00000010
248 #define CP_TRIMMED 0x00000020
249 #define CP_PAUSE 0x00000040
250 #define CP_RESIZE 0x00000080
251
252 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
253 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
254 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
255 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
256 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
257 #define DEF_CP_INTERVAL 60 /* 60 secs */
258 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
259 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
260 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
261 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
262
263 struct cp_control {
264 int reason;
265 __u64 trim_start;
266 __u64 trim_end;
267 __u64 trim_minlen;
268 };
269
270 /*
271 * indicate meta/data type
272 */
273 enum {
274 META_CP,
275 META_NAT,
276 META_SIT,
277 META_SSA,
278 META_MAX,
279 META_POR,
280 DATA_GENERIC, /* check range only */
281 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
282 DATA_GENERIC_ENHANCE_READ, /*
283 * strong check on range and segment
284 * bitmap but no warning due to race
285 * condition of read on truncated area
286 * by extent_cache
287 */
288 DATA_GENERIC_ENHANCE_UPDATE, /*
289 * strong check on range and segment
290 * bitmap for update case
291 */
292 META_GENERIC,
293 };
294
295 /* for the list of ino */
296 enum {
297 ORPHAN_INO, /* for orphan ino list */
298 APPEND_INO, /* for append ino list */
299 UPDATE_INO, /* for update ino list */
300 TRANS_DIR_INO, /* for transactions dir ino list */
301 XATTR_DIR_INO, /* for xattr updated dir ino list */
302 FLUSH_INO, /* for multiple device flushing */
303 MAX_INO_ENTRY, /* max. list */
304 };
305
306 struct ino_entry {
307 struct list_head list; /* list head */
308 nid_t ino; /* inode number */
309 unsigned int dirty_device; /* dirty device bitmap */
310 };
311
312 /* for the list of inodes to be GCed */
313 struct inode_entry {
314 struct list_head list; /* list head */
315 struct inode *inode; /* vfs inode pointer */
316 };
317
318 struct fsync_node_entry {
319 struct list_head list; /* list head */
320 struct page *page; /* warm node page pointer */
321 unsigned int seq_id; /* sequence id */
322 };
323
324 struct ckpt_req {
325 struct completion wait; /* completion for checkpoint done */
326 struct llist_node llnode; /* llist_node to be linked in wait queue */
327 int ret; /* return code of checkpoint */
328 ktime_t queue_time; /* request queued time */
329 };
330
331 struct ckpt_req_control {
332 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
333 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
334 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
335 atomic_t issued_ckpt; /* # of actually issued ckpts */
336 atomic_t total_ckpt; /* # of total ckpts */
337 atomic_t queued_ckpt; /* # of queued ckpts */
338 struct llist_head issue_list; /* list for command issue */
339 spinlock_t stat_lock; /* lock for below checkpoint time stats */
340 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
341 unsigned int peak_time; /* peak wait time in msec until now */
342 };
343
344 /* for the bitmap indicate blocks to be discarded */
345 struct discard_entry {
346 struct list_head list; /* list head */
347 block_t start_blkaddr; /* start blockaddr of current segment */
348 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
349 };
350
351 /* minimum discard granularity, unit: block count */
352 #define MIN_DISCARD_GRANULARITY 1
353 /* default discard granularity of inner discard thread, unit: block count */
354 #define DEFAULT_DISCARD_GRANULARITY 16
355 /* default maximum discard granularity of ordered discard, unit: block count */
356 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16
357
358 /* max discard pend list number */
359 #define MAX_PLIST_NUM 512
360 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
361 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
362
363 enum {
364 D_PREP, /* initial */
365 D_PARTIAL, /* partially submitted */
366 D_SUBMIT, /* all submitted */
367 D_DONE, /* finished */
368 };
369
370 struct discard_info {
371 block_t lstart; /* logical start address */
372 block_t len; /* length */
373 block_t start; /* actual start address in dev */
374 };
375
376 struct discard_cmd {
377 struct rb_node rb_node; /* rb node located in rb-tree */
378 struct discard_info di; /* discard info */
379 struct list_head list; /* command list */
380 struct completion wait; /* compleation */
381 struct block_device *bdev; /* bdev */
382 unsigned short ref; /* reference count */
383 unsigned char state; /* state */
384 unsigned char queued; /* queued discard */
385 int error; /* bio error */
386 spinlock_t lock; /* for state/bio_ref updating */
387 unsigned short bio_ref; /* bio reference count */
388 };
389
390 enum {
391 DPOLICY_BG,
392 DPOLICY_FORCE,
393 DPOLICY_FSTRIM,
394 DPOLICY_UMOUNT,
395 MAX_DPOLICY,
396 };
397
398 enum {
399 DPOLICY_IO_AWARE_DISABLE, /* force to not be aware of IO */
400 DPOLICY_IO_AWARE_ENABLE, /* force to be aware of IO */
401 DPOLICY_IO_AWARE_MAX,
402 };
403
404 struct discard_policy {
405 int type; /* type of discard */
406 unsigned int min_interval; /* used for candidates exist */
407 unsigned int mid_interval; /* used for device busy */
408 unsigned int max_interval; /* used for candidates not exist */
409 unsigned int max_requests; /* # of discards issued per round */
410 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
411 bool io_aware; /* issue discard in idle time */
412 bool sync; /* submit discard with REQ_SYNC flag */
413 bool ordered; /* issue discard by lba order */
414 bool timeout; /* discard timeout for put_super */
415 unsigned int granularity; /* discard granularity */
416 };
417
418 struct discard_cmd_control {
419 struct task_struct *f2fs_issue_discard; /* discard thread */
420 struct list_head entry_list; /* 4KB discard entry list */
421 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
422 struct list_head wait_list; /* store on-flushing entries */
423 struct list_head fstrim_list; /* in-flight discard from fstrim */
424 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
425 struct mutex cmd_lock;
426 unsigned int nr_discards; /* # of discards in the list */
427 unsigned int max_discards; /* max. discards to be issued */
428 unsigned int max_discard_request; /* max. discard request per round */
429 unsigned int min_discard_issue_time; /* min. interval between discard issue */
430 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
431 unsigned int max_discard_issue_time; /* max. interval between discard issue */
432 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
433 unsigned int discard_urgent_util; /* utilization which issue discard proactively */
434 unsigned int discard_granularity; /* discard granularity */
435 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */
436 unsigned int discard_io_aware; /* io_aware policy */
437 unsigned int undiscard_blks; /* # of undiscard blocks */
438 unsigned int next_pos; /* next discard position */
439 atomic_t issued_discard; /* # of issued discard */
440 atomic_t queued_discard; /* # of queued discard */
441 atomic_t discard_cmd_cnt; /* # of cached cmd count */
442 struct rb_root_cached root; /* root of discard rb-tree */
443 bool rbtree_check; /* config for consistence check */
444 bool discard_wake; /* to wake up discard thread */
445 };
446
447 /* for the list of fsync inodes, used only during recovery */
448 struct fsync_inode_entry {
449 struct list_head list; /* list head */
450 struct inode *inode; /* vfs inode pointer */
451 block_t blkaddr; /* block address locating the last fsync */
452 block_t last_dentry; /* block address locating the last dentry */
453 };
454
455 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
456 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
457
458 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
459 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
460 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
461 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
462
463 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
464 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
465
update_nats_in_cursum(struct f2fs_journal * journal,int i)466 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
467 {
468 int before = nats_in_cursum(journal);
469
470 journal->n_nats = cpu_to_le16(before + i);
471 return before;
472 }
473
update_sits_in_cursum(struct f2fs_journal * journal,int i)474 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
475 {
476 int before = sits_in_cursum(journal);
477
478 journal->n_sits = cpu_to_le16(before + i);
479 return before;
480 }
481
__has_cursum_space(struct f2fs_journal * journal,int size,int type)482 static inline bool __has_cursum_space(struct f2fs_journal *journal,
483 int size, int type)
484 {
485 if (type == NAT_JOURNAL)
486 return size <= MAX_NAT_JENTRIES(journal);
487 return size <= MAX_SIT_JENTRIES(journal);
488 }
489
490 /* for inline stuff */
491 #define DEF_INLINE_RESERVED_SIZE 1
492 static inline int get_extra_isize(struct inode *inode);
493 static inline int get_inline_xattr_addrs(struct inode *inode);
494 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
495 (CUR_ADDRS_PER_INODE(inode) - \
496 get_inline_xattr_addrs(inode) - \
497 DEF_INLINE_RESERVED_SIZE))
498
499 /* for inline dir */
500 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
501 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
502 BITS_PER_BYTE + 1))
503 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
504 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
505 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
506 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
507 NR_INLINE_DENTRY(inode) + \
508 INLINE_DENTRY_BITMAP_SIZE(inode)))
509
510 /*
511 * For INODE and NODE manager
512 */
513 /* for directory operations */
514
515 struct f2fs_filename {
516 /*
517 * The filename the user specified. This is NULL for some
518 * filesystem-internal operations, e.g. converting an inline directory
519 * to a non-inline one, or roll-forward recovering an encrypted dentry.
520 */
521 const struct qstr *usr_fname;
522
523 /*
524 * The on-disk filename. For encrypted directories, this is encrypted.
525 * This may be NULL for lookups in an encrypted dir without the key.
526 */
527 struct fscrypt_str disk_name;
528
529 /* The dirhash of this filename */
530 f2fs_hash_t hash;
531
532 #ifdef CONFIG_FS_ENCRYPTION
533 /*
534 * For lookups in encrypted directories: either the buffer backing
535 * disk_name, or a buffer that holds the decoded no-key name.
536 */
537 struct fscrypt_str crypto_buf;
538 #endif
539 #if IS_ENABLED(CONFIG_UNICODE)
540 /*
541 * For casefolded directories: the casefolded name, but it's left NULL
542 * if the original name is not valid Unicode, if the original name is
543 * "." or "..", if the directory is both casefolded and encrypted and
544 * its encryption key is unavailable, or if the filesystem is doing an
545 * internal operation where usr_fname is also NULL. In all these cases
546 * we fall back to treating the name as an opaque byte sequence.
547 */
548 struct qstr cf_name;
549 #endif
550 };
551
552 struct f2fs_dentry_ptr {
553 struct inode *inode;
554 void *bitmap;
555 struct f2fs_dir_entry *dentry;
556 __u8 (*filename)[F2FS_SLOT_LEN];
557 int max;
558 int nr_bitmap;
559 };
560
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)561 static inline void make_dentry_ptr_block(struct inode *inode,
562 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
563 {
564 d->inode = inode;
565 d->max = NR_DENTRY_IN_BLOCK;
566 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
567 d->bitmap = t->dentry_bitmap;
568 d->dentry = t->dentry;
569 d->filename = t->filename;
570 }
571
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)572 static inline void make_dentry_ptr_inline(struct inode *inode,
573 struct f2fs_dentry_ptr *d, void *t)
574 {
575 int entry_cnt = NR_INLINE_DENTRY(inode);
576 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
577 int reserved_size = INLINE_RESERVED_SIZE(inode);
578
579 d->inode = inode;
580 d->max = entry_cnt;
581 d->nr_bitmap = bitmap_size;
582 d->bitmap = t;
583 d->dentry = t + bitmap_size + reserved_size;
584 d->filename = t + bitmap_size + reserved_size +
585 SIZE_OF_DIR_ENTRY * entry_cnt;
586 }
587
588 /*
589 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
590 * as its node offset to distinguish from index node blocks.
591 * But some bits are used to mark the node block.
592 */
593 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
594 >> OFFSET_BIT_SHIFT)
595 enum {
596 ALLOC_NODE, /* allocate a new node page if needed */
597 LOOKUP_NODE, /* look up a node without readahead */
598 LOOKUP_NODE_RA, /*
599 * look up a node with readahead called
600 * by get_data_block.
601 */
602 };
603
604 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
605
606 /* congestion wait timeout value, default: 20ms */
607 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
608
609 /* maximum retry quota flush count */
610 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
611
612 /* maximum retry of EIO'ed page */
613 #define MAX_RETRY_PAGE_EIO 100
614
615 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
616
617 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
618
619 /* dirty segments threshold for triggering CP */
620 #define DEFAULT_DIRTY_THRESHOLD 4
621
622 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
623 #define RECOVERY_MIN_RA_BLOCKS 1
624
625 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */
626
627 /* for in-memory extent cache entry */
628 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
629
630 /* number of extent info in extent cache we try to shrink */
631 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128
632
633 /* number of age extent info in extent cache we try to shrink */
634 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128
635 #define LAST_AGE_WEIGHT 30
636 #define SAME_AGE_REGION 1024
637
638 /*
639 * Define data block with age less than 1GB as hot data
640 * define data block with age less than 10GB but more than 1GB as warm data
641 */
642 #define DEF_HOT_DATA_AGE_THRESHOLD 262144
643 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440
644
645 /* default max read extent count per inode */
646 #define DEF_MAX_READ_EXTENT_COUNT 10240
647
648 /* extent cache type */
649 enum extent_type {
650 EX_READ,
651 EX_BLOCK_AGE,
652 NR_EXTENT_CACHES,
653 };
654
655 struct extent_info {
656 unsigned int fofs; /* start offset in a file */
657 unsigned int len; /* length of the extent */
658 union {
659 /* read extent_cache */
660 struct {
661 /* start block address of the extent */
662 block_t blk;
663 #ifdef CONFIG_F2FS_FS_COMPRESSION
664 /* physical extent length of compressed blocks */
665 unsigned int c_len;
666 #endif
667 };
668 /* block age extent_cache */
669 struct {
670 /* block age of the extent */
671 unsigned long long age;
672 /* last total blocks allocated */
673 unsigned long long last_blocks;
674 };
675 };
676 };
677
678 struct extent_node {
679 struct rb_node rb_node; /* rb node located in rb-tree */
680 struct extent_info ei; /* extent info */
681 struct list_head list; /* node in global extent list of sbi */
682 struct extent_tree *et; /* extent tree pointer */
683 };
684
685 struct extent_tree {
686 nid_t ino; /* inode number */
687 enum extent_type type; /* keep the extent tree type */
688 struct rb_root_cached root; /* root of extent info rb-tree */
689 struct extent_node *cached_en; /* recently accessed extent node */
690 struct list_head list; /* to be used by sbi->zombie_list */
691 rwlock_t lock; /* protect extent info rb-tree */
692 atomic_t node_cnt; /* # of extent node in rb-tree*/
693 bool largest_updated; /* largest extent updated */
694 struct extent_info largest; /* largest cached extent for EX_READ */
695 };
696
697 struct extent_tree_info {
698 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
699 struct mutex extent_tree_lock; /* locking extent radix tree */
700 struct list_head extent_list; /* lru list for shrinker */
701 spinlock_t extent_lock; /* locking extent lru list */
702 atomic_t total_ext_tree; /* extent tree count */
703 struct list_head zombie_list; /* extent zombie tree list */
704 atomic_t total_zombie_tree; /* extent zombie tree count */
705 atomic_t total_ext_node; /* extent info count */
706 };
707
708 /*
709 * State of block returned by f2fs_map_blocks.
710 */
711 #define F2FS_MAP_NEW (1U << 0)
712 #define F2FS_MAP_MAPPED (1U << 1)
713 #define F2FS_MAP_DELALLOC (1U << 2)
714 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
715 F2FS_MAP_DELALLOC)
716
717 struct f2fs_map_blocks {
718 struct block_device *m_bdev; /* for multi-device dio */
719 block_t m_pblk;
720 block_t m_lblk;
721 unsigned int m_len;
722 unsigned int m_flags;
723 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
724 pgoff_t *m_next_extent; /* point to next possible extent */
725 int m_seg_type;
726 bool m_may_create; /* indicate it is from write path */
727 bool m_multidev_dio; /* indicate it allows multi-device dio */
728 };
729
730 /* for flag in get_data_block */
731 enum {
732 F2FS_GET_BLOCK_DEFAULT,
733 F2FS_GET_BLOCK_FIEMAP,
734 F2FS_GET_BLOCK_BMAP,
735 F2FS_GET_BLOCK_DIO,
736 F2FS_GET_BLOCK_PRE_DIO,
737 F2FS_GET_BLOCK_PRE_AIO,
738 F2FS_GET_BLOCK_PRECACHE,
739 };
740
741 /*
742 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
743 */
744 #define FADVISE_COLD_BIT 0x01
745 #define FADVISE_LOST_PINO_BIT 0x02
746 #define FADVISE_ENCRYPT_BIT 0x04
747 #define FADVISE_ENC_NAME_BIT 0x08
748 #define FADVISE_KEEP_SIZE_BIT 0x10
749 #define FADVISE_HOT_BIT 0x20
750 #define FADVISE_VERITY_BIT 0x40
751 #define FADVISE_TRUNC_BIT 0x80
752
753 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
754
755 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
756 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
757 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
758
759 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
760 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
761 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
762
763 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
764 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
765
766 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
767 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
768
769 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
770 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
771
772 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
773 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
774 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
775
776 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
777 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
778
779 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
780 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
781 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
782
783 #define DEF_DIR_LEVEL 0
784
785 /* used for f2fs_inode_info->flags */
786 enum {
787 FI_NEW_INODE, /* indicate newly allocated inode */
788 FI_DIRTY_INODE, /* indicate inode is dirty or not */
789 FI_AUTO_RECOVER, /* indicate inode is recoverable */
790 FI_DIRTY_DIR, /* indicate directory has dirty pages */
791 FI_INC_LINK, /* need to increment i_nlink */
792 FI_ACL_MODE, /* indicate acl mode */
793 FI_NO_ALLOC, /* should not allocate any blocks */
794 FI_FREE_NID, /* free allocated nide */
795 FI_NO_EXTENT, /* not to use the extent cache */
796 FI_INLINE_XATTR, /* used for inline xattr */
797 FI_INLINE_DATA, /* used for inline data*/
798 FI_INLINE_DENTRY, /* used for inline dentry */
799 FI_APPEND_WRITE, /* inode has appended data */
800 FI_UPDATE_WRITE, /* inode has in-place-update data */
801 FI_NEED_IPU, /* used for ipu per file */
802 FI_ATOMIC_FILE, /* indicate atomic file */
803 FI_DATA_EXIST, /* indicate data exists */
804 FI_SKIP_WRITES, /* should skip data page writeback */
805 FI_OPU_WRITE, /* used for opu per file */
806 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
807 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
808 FI_HOT_DATA, /* indicate file is hot */
809 FI_EXTRA_ATTR, /* indicate file has extra attribute */
810 FI_PROJ_INHERIT, /* indicate file inherits projectid */
811 FI_PIN_FILE, /* indicate file should not be gced */
812 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
813 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
814 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
815 FI_MMAP_FILE, /* indicate file was mmapped */
816 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
817 FI_COMPRESS_RELEASED, /* compressed blocks were released */
818 FI_ALIGNED_WRITE, /* enable aligned write */
819 FI_COW_FILE, /* indicate COW file */
820 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */
821 FI_ATOMIC_DIRTIED, /* indicate atomic file is dirtied */
822 FI_ATOMIC_REPLACE, /* indicate atomic replace */
823 FI_OPENED_FILE, /* indicate file has been opened */
824 FI_MAX, /* max flag, never be used */
825 };
826
827 struct f2fs_inode_info {
828 struct inode vfs_inode; /* serve a vfs inode */
829 unsigned long i_flags; /* keep an inode flags for ioctl */
830 unsigned char i_advise; /* use to give file attribute hints */
831 unsigned char i_dir_level; /* use for dentry level for large dir */
832 union {
833 unsigned int i_current_depth; /* only for directory depth */
834 unsigned short i_gc_failures; /* for gc failure statistic */
835 };
836 unsigned int i_pino; /* parent inode number */
837 umode_t i_acl_mode; /* keep file acl mode temporarily */
838
839 /* Use below internally in f2fs*/
840 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
841 unsigned int ioprio_hint; /* hint for IO priority */
842 struct f2fs_rwsem i_sem; /* protect fi info */
843 atomic_t dirty_pages; /* # of dirty pages */
844 f2fs_hash_t chash; /* hash value of given file name */
845 unsigned int clevel; /* maximum level of given file name */
846 struct task_struct *task; /* lookup and create consistency */
847 struct task_struct *cp_task; /* separate cp/wb IO stats*/
848 struct task_struct *wb_task; /* indicate inode is in context of writeback */
849 nid_t i_xattr_nid; /* node id that contains xattrs */
850 loff_t last_disk_size; /* lastly written file size */
851 spinlock_t i_size_lock; /* protect last_disk_size */
852
853 #ifdef CONFIG_QUOTA
854 struct dquot __rcu *i_dquot[MAXQUOTAS];
855
856 /* quota space reservation, managed internally by quota code */
857 qsize_t i_reserved_quota;
858 #endif
859 struct list_head dirty_list; /* dirty list for dirs and files */
860 struct list_head gdirty_list; /* linked in global dirty list */
861
862 /* linked in global inode list for cache donation */
863 struct list_head gdonate_list;
864 pgoff_t donate_start, donate_end; /* inclusive */
865
866 struct task_struct *atomic_write_task; /* store atomic write task */
867 struct extent_tree *extent_tree[NR_EXTENT_CACHES];
868 /* cached extent_tree entry */
869 union {
870 struct inode *cow_inode; /* copy-on-write inode for atomic write */
871 struct inode *atomic_inode;
872 /* point to atomic_inode, available only for cow_inode */
873 };
874
875 /* avoid racing between foreground op and gc */
876 struct f2fs_rwsem i_gc_rwsem[2];
877 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
878
879 int i_extra_isize; /* size of extra space located in i_addr */
880 kprojid_t i_projid; /* id for project quota */
881 int i_inline_xattr_size; /* inline xattr size */
882 struct timespec64 i_crtime; /* inode creation time */
883 struct timespec64 i_disk_time[3];/* inode disk times */
884
885 /* for file compress */
886 atomic_t i_compr_blocks; /* # of compressed blocks */
887 unsigned char i_compress_algorithm; /* algorithm type */
888 unsigned char i_log_cluster_size; /* log of cluster size */
889 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
890 unsigned char i_compress_flag; /* compress flag */
891 unsigned int i_cluster_size; /* cluster size */
892
893 unsigned int atomic_write_cnt;
894 loff_t original_i_size; /* original i_size before atomic write */
895 };
896
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)897 static inline void get_read_extent_info(struct extent_info *ext,
898 struct f2fs_extent *i_ext)
899 {
900 ext->fofs = le32_to_cpu(i_ext->fofs);
901 ext->blk = le32_to_cpu(i_ext->blk);
902 ext->len = le32_to_cpu(i_ext->len);
903 }
904
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)905 static inline void set_raw_read_extent(struct extent_info *ext,
906 struct f2fs_extent *i_ext)
907 {
908 i_ext->fofs = cpu_to_le32(ext->fofs);
909 i_ext->blk = cpu_to_le32(ext->blk);
910 i_ext->len = cpu_to_le32(ext->len);
911 }
912
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)913 static inline bool __is_discard_mergeable(struct discard_info *back,
914 struct discard_info *front, unsigned int max_len)
915 {
916 return (back->lstart + back->len == front->lstart) &&
917 (back->len + front->len <= max_len);
918 }
919
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)920 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
921 struct discard_info *back, unsigned int max_len)
922 {
923 return __is_discard_mergeable(back, cur, max_len);
924 }
925
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)926 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
927 struct discard_info *front, unsigned int max_len)
928 {
929 return __is_discard_mergeable(cur, front, max_len);
930 }
931
932 /*
933 * For free nid management
934 */
935 enum nid_state {
936 FREE_NID, /* newly added to free nid list */
937 PREALLOC_NID, /* it is preallocated */
938 MAX_NID_STATE,
939 };
940
941 enum nat_state {
942 TOTAL_NAT,
943 DIRTY_NAT,
944 RECLAIMABLE_NAT,
945 MAX_NAT_STATE,
946 };
947
948 struct f2fs_nm_info {
949 block_t nat_blkaddr; /* base disk address of NAT */
950 nid_t max_nid; /* maximum possible node ids */
951 nid_t available_nids; /* # of available node ids */
952 nid_t next_scan_nid; /* the next nid to be scanned */
953 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
954 unsigned int ram_thresh; /* control the memory footprint */
955 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
956 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
957
958 /* NAT cache management */
959 struct radix_tree_root nat_root;/* root of the nat entry cache */
960 struct radix_tree_root nat_set_root;/* root of the nat set cache */
961 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
962 struct list_head nat_entries; /* cached nat entry list (clean) */
963 spinlock_t nat_list_lock; /* protect clean nat entry list */
964 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
965 unsigned int nat_blocks; /* # of nat blocks */
966
967 /* free node ids management */
968 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
969 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
970 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
971 spinlock_t nid_list_lock; /* protect nid lists ops */
972 struct mutex build_lock; /* lock for build free nids */
973 unsigned char **free_nid_bitmap;
974 unsigned char *nat_block_bitmap;
975 unsigned short *free_nid_count; /* free nid count of NAT block */
976
977 /* for checkpoint */
978 char *nat_bitmap; /* NAT bitmap pointer */
979
980 unsigned int nat_bits_blocks; /* # of nat bits blocks */
981 unsigned char *nat_bits; /* NAT bits blocks */
982 unsigned char *full_nat_bits; /* full NAT pages */
983 unsigned char *empty_nat_bits; /* empty NAT pages */
984 #ifdef CONFIG_F2FS_CHECK_FS
985 char *nat_bitmap_mir; /* NAT bitmap mirror */
986 #endif
987 int bitmap_size; /* bitmap size */
988 };
989
990 /*
991 * this structure is used as one of function parameters.
992 * all the information are dedicated to a given direct node block determined
993 * by the data offset in a file.
994 */
995 struct dnode_of_data {
996 struct inode *inode; /* vfs inode pointer */
997 struct page *inode_page; /* its inode page, NULL is possible */
998 struct page *node_page; /* cached direct node page */
999 nid_t nid; /* node id of the direct node block */
1000 unsigned int ofs_in_node; /* data offset in the node page */
1001 bool inode_page_locked; /* inode page is locked or not */
1002 bool node_changed; /* is node block changed */
1003 char cur_level; /* level of hole node page */
1004 char max_level; /* level of current page located */
1005 block_t data_blkaddr; /* block address of the node block */
1006 };
1007
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)1008 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
1009 struct page *ipage, struct page *npage, nid_t nid)
1010 {
1011 memset(dn, 0, sizeof(*dn));
1012 dn->inode = inode;
1013 dn->inode_page = ipage;
1014 dn->node_page = npage;
1015 dn->nid = nid;
1016 }
1017
1018 /*
1019 * For SIT manager
1020 *
1021 * By default, there are 6 active log areas across the whole main area.
1022 * When considering hot and cold data separation to reduce cleaning overhead,
1023 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1024 * respectively.
1025 * In the current design, you should not change the numbers intentionally.
1026 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1027 * logs individually according to the underlying devices. (default: 6)
1028 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1029 * data and 8 for node logs.
1030 */
1031 #define NR_CURSEG_DATA_TYPE (3)
1032 #define NR_CURSEG_NODE_TYPE (3)
1033 #define NR_CURSEG_INMEM_TYPE (2)
1034 #define NR_CURSEG_RO_TYPE (2)
1035 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1036 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1037
1038 enum log_type {
1039 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1040 CURSEG_WARM_DATA, /* data blocks */
1041 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1042 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1043 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1044 CURSEG_COLD_NODE, /* indirect node blocks */
1045 NR_PERSISTENT_LOG, /* number of persistent log */
1046 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1047 /* pinned file that needs consecutive block address */
1048 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1049 NO_CHECK_TYPE, /* number of persistent & inmem log */
1050 };
1051
1052 struct flush_cmd {
1053 struct completion wait;
1054 struct llist_node llnode;
1055 nid_t ino;
1056 int ret;
1057 };
1058
1059 struct flush_cmd_control {
1060 struct task_struct *f2fs_issue_flush; /* flush thread */
1061 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1062 atomic_t issued_flush; /* # of issued flushes */
1063 atomic_t queued_flush; /* # of queued flushes */
1064 struct llist_head issue_list; /* list for command issue */
1065 struct llist_node *dispatch_list; /* list for command dispatch */
1066 };
1067
1068 struct f2fs_sm_info {
1069 struct sit_info *sit_info; /* whole segment information */
1070 struct free_segmap_info *free_info; /* free segment information */
1071 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1072 struct curseg_info *curseg_array; /* active segment information */
1073
1074 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1075
1076 block_t seg0_blkaddr; /* block address of 0'th segment */
1077 block_t main_blkaddr; /* start block address of main area */
1078 block_t ssa_blkaddr; /* start block address of SSA area */
1079
1080 unsigned int segment_count; /* total # of segments */
1081 unsigned int main_segments; /* # of segments in main area */
1082 unsigned int reserved_segments; /* # of reserved segments */
1083 unsigned int ovp_segments; /* # of overprovision segments */
1084
1085 /* a threshold to reclaim prefree segments */
1086 unsigned int rec_prefree_segments;
1087
1088 struct list_head sit_entry_set; /* sit entry set list */
1089
1090 unsigned int ipu_policy; /* in-place-update policy */
1091 unsigned int min_ipu_util; /* in-place-update threshold */
1092 unsigned int min_fsync_blocks; /* threshold for fsync */
1093 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1094 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1095 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1096
1097 /* for flush command control */
1098 struct flush_cmd_control *fcc_info;
1099
1100 /* for discard command control */
1101 struct discard_cmd_control *dcc_info;
1102 };
1103
1104 /*
1105 * For superblock
1106 */
1107 /*
1108 * COUNT_TYPE for monitoring
1109 *
1110 * f2fs monitors the number of several block types such as on-writeback,
1111 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1112 */
1113 #define WB_DATA_TYPE(p, f) \
1114 (f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1115 enum count_type {
1116 F2FS_DIRTY_DENTS,
1117 F2FS_DIRTY_DATA,
1118 F2FS_DIRTY_QDATA,
1119 F2FS_DIRTY_NODES,
1120 F2FS_DIRTY_META,
1121 F2FS_DIRTY_IMETA,
1122 F2FS_WB_CP_DATA,
1123 F2FS_WB_DATA,
1124 F2FS_RD_DATA,
1125 F2FS_RD_NODE,
1126 F2FS_RD_META,
1127 F2FS_DIO_WRITE,
1128 F2FS_DIO_READ,
1129 NR_COUNT_TYPE,
1130 };
1131
1132 /*
1133 * The below are the page types of bios used in submit_bio().
1134 * The available types are:
1135 * DATA User data pages. It operates as async mode.
1136 * NODE Node pages. It operates as async mode.
1137 * META FS metadata pages such as SIT, NAT, CP.
1138 * NR_PAGE_TYPE The number of page types.
1139 * META_FLUSH Make sure the previous pages are written
1140 * with waiting the bio's completion
1141 * ... Only can be used with META.
1142 */
1143 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1144 #define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE)
1145 enum page_type {
1146 DATA = 0,
1147 NODE = 1, /* should not change this */
1148 META,
1149 NR_PAGE_TYPE,
1150 META_FLUSH,
1151 IPU, /* the below types are used by tracepoints only. */
1152 OPU,
1153 };
1154
1155 enum temp_type {
1156 HOT = 0, /* must be zero for meta bio */
1157 WARM,
1158 COLD,
1159 NR_TEMP_TYPE,
1160 };
1161
1162 enum need_lock_type {
1163 LOCK_REQ = 0,
1164 LOCK_DONE,
1165 LOCK_RETRY,
1166 };
1167
1168 enum cp_reason_type {
1169 CP_NO_NEEDED,
1170 CP_NON_REGULAR,
1171 CP_COMPRESSED,
1172 CP_HARDLINK,
1173 CP_SB_NEED_CP,
1174 CP_WRONG_PINO,
1175 CP_NO_SPC_ROLL,
1176 CP_NODE_NEED_CP,
1177 CP_FASTBOOT_MODE,
1178 CP_SPEC_LOG_NUM,
1179 CP_RECOVER_DIR,
1180 CP_XATTR_DIR,
1181 };
1182
1183 enum iostat_type {
1184 /* WRITE IO */
1185 APP_DIRECT_IO, /* app direct write IOs */
1186 APP_BUFFERED_IO, /* app buffered write IOs */
1187 APP_WRITE_IO, /* app write IOs */
1188 APP_MAPPED_IO, /* app mapped IOs */
1189 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */
1190 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */
1191 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1192 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */
1193 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1194 FS_META_IO, /* meta IOs from kworker/reclaimer */
1195 FS_GC_DATA_IO, /* data IOs from forground gc */
1196 FS_GC_NODE_IO, /* node IOs from forground gc */
1197 FS_CP_DATA_IO, /* data IOs from checkpoint */
1198 FS_CP_NODE_IO, /* node IOs from checkpoint */
1199 FS_CP_META_IO, /* meta IOs from checkpoint */
1200
1201 /* READ IO */
1202 APP_DIRECT_READ_IO, /* app direct read IOs */
1203 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1204 APP_READ_IO, /* app read IOs */
1205 APP_MAPPED_READ_IO, /* app mapped read IOs */
1206 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */
1207 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */
1208 FS_DATA_READ_IO, /* data read IOs */
1209 FS_GDATA_READ_IO, /* data read IOs from background gc */
1210 FS_CDATA_READ_IO, /* compressed data read IOs */
1211 FS_NODE_READ_IO, /* node read IOs */
1212 FS_META_READ_IO, /* meta read IOs */
1213
1214 /* other */
1215 FS_DISCARD_IO, /* discard */
1216 FS_FLUSH_IO, /* flush */
1217 FS_ZONE_RESET_IO, /* zone reset */
1218 NR_IO_TYPE,
1219 };
1220
1221 struct f2fs_io_info {
1222 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1223 nid_t ino; /* inode number */
1224 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1225 enum temp_type temp; /* contains HOT/WARM/COLD */
1226 enum req_op op; /* contains REQ_OP_ */
1227 blk_opf_t op_flags; /* req_flag_bits */
1228 block_t new_blkaddr; /* new block address to be written */
1229 block_t old_blkaddr; /* old block address before Cow */
1230 struct page *page; /* page to be written */
1231 struct page *encrypted_page; /* encrypted page */
1232 struct page *compressed_page; /* compressed page */
1233 struct list_head list; /* serialize IOs */
1234 unsigned int compr_blocks; /* # of compressed block addresses */
1235 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */
1236 unsigned int version:8; /* version of the node */
1237 unsigned int submitted:1; /* indicate IO submission */
1238 unsigned int in_list:1; /* indicate fio is in io_list */
1239 unsigned int is_por:1; /* indicate IO is from recovery or not */
1240 unsigned int encrypted:1; /* indicate file is encrypted */
1241 unsigned int meta_gc:1; /* require meta inode GC */
1242 enum iostat_type io_type; /* io type */
1243 struct writeback_control *io_wbc; /* writeback control */
1244 struct bio **bio; /* bio for ipu */
1245 sector_t *last_block; /* last block number in bio */
1246 };
1247
1248 struct bio_entry {
1249 struct bio *bio;
1250 struct list_head list;
1251 };
1252
1253 #define is_read_io(rw) ((rw) == READ)
1254 struct f2fs_bio_info {
1255 struct f2fs_sb_info *sbi; /* f2fs superblock */
1256 struct bio *bio; /* bios to merge */
1257 sector_t last_block_in_bio; /* last block number */
1258 struct f2fs_io_info fio; /* store buffered io info. */
1259 #ifdef CONFIG_BLK_DEV_ZONED
1260 struct completion zone_wait; /* condition value for the previous open zone to close */
1261 struct bio *zone_pending_bio; /* pending bio for the previous zone */
1262 void *bi_private; /* previous bi_private for pending bio */
1263 #endif
1264 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1265 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1266 struct list_head io_list; /* track fios */
1267 struct list_head bio_list; /* bio entry list head */
1268 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1269 };
1270
1271 #define FDEV(i) (sbi->devs[i])
1272 #define RDEV(i) (raw_super->devs[i])
1273 struct f2fs_dev_info {
1274 struct file *bdev_file;
1275 struct block_device *bdev;
1276 char path[MAX_PATH_LEN];
1277 unsigned int total_segments;
1278 block_t start_blk;
1279 block_t end_blk;
1280 #ifdef CONFIG_BLK_DEV_ZONED
1281 unsigned int nr_blkz; /* Total number of zones */
1282 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1283 #endif
1284 };
1285
1286 enum inode_type {
1287 DIR_INODE, /* for dirty dir inode */
1288 FILE_INODE, /* for dirty regular/symlink inode */
1289 DIRTY_META, /* for all dirtied inode metadata */
1290 DONATE_INODE, /* for all inode to donate pages */
1291 NR_INODE_TYPE,
1292 };
1293
1294 /* for inner inode cache management */
1295 struct inode_management {
1296 struct radix_tree_root ino_root; /* ino entry array */
1297 spinlock_t ino_lock; /* for ino entry lock */
1298 struct list_head ino_list; /* inode list head */
1299 unsigned long ino_num; /* number of entries */
1300 };
1301
1302 /* for GC_AT */
1303 struct atgc_management {
1304 bool atgc_enabled; /* ATGC is enabled or not */
1305 struct rb_root_cached root; /* root of victim rb-tree */
1306 struct list_head victim_list; /* linked with all victim entries */
1307 unsigned int victim_count; /* victim count in rb-tree */
1308 unsigned int candidate_ratio; /* candidate ratio */
1309 unsigned int max_candidate_count; /* max candidate count */
1310 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1311 unsigned long long age_threshold; /* age threshold */
1312 };
1313
1314 struct f2fs_gc_control {
1315 unsigned int victim_segno; /* target victim segment number */
1316 int init_gc_type; /* FG_GC or BG_GC */
1317 bool no_bg_gc; /* check the space and stop bg_gc */
1318 bool should_migrate_blocks; /* should migrate blocks */
1319 bool err_gc_skipped; /* return EAGAIN if GC skipped */
1320 bool one_time; /* require one time GC in one migration unit */
1321 unsigned int nr_free_secs; /* # of free sections to do GC */
1322 };
1323
1324 /*
1325 * For s_flag in struct f2fs_sb_info
1326 * Modification on enum should be synchronized with s_flag array
1327 */
1328 enum {
1329 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1330 SBI_IS_CLOSE, /* specify unmounting */
1331 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1332 SBI_POR_DOING, /* recovery is doing or not */
1333 SBI_NEED_SB_WRITE, /* need to recover superblock */
1334 SBI_NEED_CP, /* need to checkpoint */
1335 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1336 SBI_IS_RECOVERED, /* recovered orphan/data */
1337 SBI_CP_DISABLED, /* CP was disabled last mount */
1338 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1339 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1340 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1341 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1342 SBI_IS_RESIZEFS, /* resizefs is in process */
1343 SBI_IS_FREEZING, /* freezefs is in process */
1344 SBI_IS_WRITABLE, /* remove ro mountoption transiently */
1345 MAX_SBI_FLAG,
1346 };
1347
1348 enum {
1349 CP_TIME,
1350 REQ_TIME,
1351 DISCARD_TIME,
1352 GC_TIME,
1353 DISABLE_TIME,
1354 UMOUNT_DISCARD_TIMEOUT,
1355 MAX_TIME,
1356 };
1357
1358 /* Note that you need to keep synchronization with this gc_mode_names array */
1359 enum {
1360 GC_NORMAL,
1361 GC_IDLE_CB,
1362 GC_IDLE_GREEDY,
1363 GC_IDLE_AT,
1364 GC_URGENT_HIGH,
1365 GC_URGENT_LOW,
1366 GC_URGENT_MID,
1367 MAX_GC_MODE,
1368 };
1369
1370 enum {
1371 BGGC_MODE_ON, /* background gc is on */
1372 BGGC_MODE_OFF, /* background gc is off */
1373 BGGC_MODE_SYNC, /*
1374 * background gc is on, migrating blocks
1375 * like foreground gc
1376 */
1377 };
1378
1379 enum {
1380 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1381 FS_MODE_LFS, /* use lfs allocation only */
1382 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1383 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1384 };
1385
1386 enum {
1387 ALLOC_MODE_DEFAULT, /* stay default */
1388 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1389 };
1390
1391 enum fsync_mode {
1392 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1393 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1394 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1395 };
1396
1397 enum {
1398 COMPR_MODE_FS, /*
1399 * automatically compress compression
1400 * enabled files
1401 */
1402 COMPR_MODE_USER, /*
1403 * automatical compression is disabled.
1404 * user can control the file compression
1405 * using ioctls
1406 */
1407 };
1408
1409 enum {
1410 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1411 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1412 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1413 };
1414
1415 enum {
1416 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1417 MEMORY_MODE_LOW, /* memory mode for low memry devices */
1418 };
1419
1420 enum errors_option {
1421 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */
1422 MOUNT_ERRORS_CONTINUE, /* continue on errors */
1423 MOUNT_ERRORS_PANIC, /* panic on errors */
1424 };
1425
1426 enum {
1427 BACKGROUND,
1428 FOREGROUND,
1429 MAX_CALL_TYPE,
1430 TOTAL_CALL = FOREGROUND,
1431 };
1432
1433 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1434 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1435 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1436
1437 /*
1438 * Layout of f2fs page.private:
1439 *
1440 * Layout A: lowest bit should be 1
1441 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1442 * bit 0 PAGE_PRIVATE_NOT_POINTER
1443 * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION
1444 * bit 2 PAGE_PRIVATE_INLINE_INODE
1445 * bit 3 PAGE_PRIVATE_REF_RESOURCE
1446 * bit 4 PAGE_PRIVATE_ATOMIC_WRITE
1447 * bit 5- f2fs private data
1448 *
1449 * Layout B: lowest bit should be 0
1450 * page.private is a wrapped pointer.
1451 */
1452 enum {
1453 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1454 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1455 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1456 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1457 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */
1458 PAGE_PRIVATE_MAX
1459 };
1460
1461 /* For compression */
1462 enum compress_algorithm_type {
1463 COMPRESS_LZO,
1464 COMPRESS_LZ4,
1465 COMPRESS_ZSTD,
1466 COMPRESS_LZORLE,
1467 COMPRESS_MAX,
1468 };
1469
1470 enum compress_flag {
1471 COMPRESS_CHKSUM,
1472 COMPRESS_MAX_FLAG,
1473 };
1474
1475 #define COMPRESS_WATERMARK 20
1476 #define COMPRESS_PERCENT 20
1477
1478 #define COMPRESS_DATA_RESERVED_SIZE 4
1479 struct compress_data {
1480 __le32 clen; /* compressed data size */
1481 __le32 chksum; /* compressed data chksum */
1482 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1483 u8 cdata[]; /* compressed data */
1484 };
1485
1486 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1487
1488 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1489
1490 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
1491
1492 #define COMPRESS_LEVEL_OFFSET 8
1493
1494 /* compress context */
1495 struct compress_ctx {
1496 struct inode *inode; /* inode the context belong to */
1497 pgoff_t cluster_idx; /* cluster index number */
1498 unsigned int cluster_size; /* page count in cluster */
1499 unsigned int log_cluster_size; /* log of cluster size */
1500 struct page **rpages; /* pages store raw data in cluster */
1501 unsigned int nr_rpages; /* total page number in rpages */
1502 struct page **cpages; /* pages store compressed data in cluster */
1503 unsigned int nr_cpages; /* total page number in cpages */
1504 unsigned int valid_nr_cpages; /* valid page number in cpages */
1505 void *rbuf; /* virtual mapped address on rpages */
1506 struct compress_data *cbuf; /* virtual mapped address on cpages */
1507 size_t rlen; /* valid data length in rbuf */
1508 size_t clen; /* valid data length in cbuf */
1509 void *private; /* payload buffer for specified compression algorithm */
1510 void *private2; /* extra payload buffer */
1511 };
1512
1513 /* compress context for write IO path */
1514 struct compress_io_ctx {
1515 u32 magic; /* magic number to indicate page is compressed */
1516 struct inode *inode; /* inode the context belong to */
1517 struct page **rpages; /* pages store raw data in cluster */
1518 unsigned int nr_rpages; /* total page number in rpages */
1519 atomic_t pending_pages; /* in-flight compressed page count */
1520 };
1521
1522 /* Context for decompressing one cluster on the read IO path */
1523 struct decompress_io_ctx {
1524 u32 magic; /* magic number to indicate page is compressed */
1525 struct inode *inode; /* inode the context belong to */
1526 pgoff_t cluster_idx; /* cluster index number */
1527 unsigned int cluster_size; /* page count in cluster */
1528 unsigned int log_cluster_size; /* log of cluster size */
1529 struct page **rpages; /* pages store raw data in cluster */
1530 unsigned int nr_rpages; /* total page number in rpages */
1531 struct page **cpages; /* pages store compressed data in cluster */
1532 unsigned int nr_cpages; /* total page number in cpages */
1533 struct page **tpages; /* temp pages to pad holes in cluster */
1534 void *rbuf; /* virtual mapped address on rpages */
1535 struct compress_data *cbuf; /* virtual mapped address on cpages */
1536 size_t rlen; /* valid data length in rbuf */
1537 size_t clen; /* valid data length in cbuf */
1538
1539 /*
1540 * The number of compressed pages remaining to be read in this cluster.
1541 * This is initially nr_cpages. It is decremented by 1 each time a page
1542 * has been read (or failed to be read). When it reaches 0, the cluster
1543 * is decompressed (or an error is reported).
1544 *
1545 * If an error occurs before all the pages have been submitted for I/O,
1546 * then this will never reach 0. In this case the I/O submitter is
1547 * responsible for calling f2fs_decompress_end_io() instead.
1548 */
1549 atomic_t remaining_pages;
1550
1551 /*
1552 * Number of references to this decompress_io_ctx.
1553 *
1554 * One reference is held for I/O completion. This reference is dropped
1555 * after the pagecache pages are updated and unlocked -- either after
1556 * decompression (and verity if enabled), or after an error.
1557 *
1558 * In addition, each compressed page holds a reference while it is in a
1559 * bio. These references are necessary prevent compressed pages from
1560 * being freed while they are still in a bio.
1561 */
1562 refcount_t refcnt;
1563
1564 bool failed; /* IO error occurred before decompression? */
1565 bool need_verity; /* need fs-verity verification after decompression? */
1566 void *private; /* payload buffer for specified decompression algorithm */
1567 void *private2; /* extra payload buffer */
1568 struct work_struct verity_work; /* work to verify the decompressed pages */
1569 struct work_struct free_work; /* work for late free this structure itself */
1570 };
1571
1572 #define NULL_CLUSTER ((unsigned int)(~0))
1573 #define MIN_COMPRESS_LOG_SIZE 2
1574 #define MAX_COMPRESS_LOG_SIZE 8
1575 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1576
1577 struct f2fs_sb_info {
1578 struct super_block *sb; /* pointer to VFS super block */
1579 struct proc_dir_entry *s_proc; /* proc entry */
1580 struct f2fs_super_block *raw_super; /* raw super block pointer */
1581 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1582 int valid_super_block; /* valid super block no */
1583 unsigned long s_flag; /* flags for sbi */
1584 struct mutex writepages; /* mutex for writepages() */
1585
1586 #ifdef CONFIG_BLK_DEV_ZONED
1587 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1588 unsigned int max_open_zones; /* max open zone resources of the zoned device */
1589 /* For adjust the priority writing position of data in zone UFS */
1590 unsigned int blkzone_alloc_policy;
1591 #endif
1592
1593 /* for node-related operations */
1594 struct f2fs_nm_info *nm_info; /* node manager */
1595 struct inode *node_inode; /* cache node blocks */
1596
1597 /* for segment-related operations */
1598 struct f2fs_sm_info *sm_info; /* segment manager */
1599
1600 /* for bio operations */
1601 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1602 /* keep migration IO order for LFS mode */
1603 struct f2fs_rwsem io_order_lock;
1604 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1605 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1606
1607 /* for checkpoint */
1608 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1609 int cur_cp_pack; /* remain current cp pack */
1610 spinlock_t cp_lock; /* for flag in ckpt */
1611 struct inode *meta_inode; /* cache meta blocks */
1612 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1613 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1614 struct f2fs_rwsem node_write; /* locking node writes */
1615 struct f2fs_rwsem node_change; /* locking node change */
1616 wait_queue_head_t cp_wait;
1617 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1618 long interval_time[MAX_TIME]; /* to store thresholds */
1619 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1620
1621 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1622
1623 spinlock_t fsync_node_lock; /* for node entry lock */
1624 struct list_head fsync_node_list; /* node list head */
1625 unsigned int fsync_seg_id; /* sequence id */
1626 unsigned int fsync_node_num; /* number of node entries */
1627
1628 /* for orphan inode, use 0'th array */
1629 unsigned int max_orphans; /* max orphan inodes */
1630
1631 /* for inode management */
1632 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1633 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1634 struct mutex flush_lock; /* for flush exclusion */
1635
1636 /* for extent tree cache */
1637 struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1638 atomic64_t allocated_data_blocks; /* for block age extent_cache */
1639 unsigned int max_read_extent_count; /* max read extent count per inode */
1640
1641 /* The threshold used for hot and warm data seperation*/
1642 unsigned int hot_data_age_threshold;
1643 unsigned int warm_data_age_threshold;
1644 unsigned int last_age_weight;
1645
1646 /* control donate caches */
1647 unsigned int donate_files;
1648
1649 /* basic filesystem units */
1650 unsigned int log_sectors_per_block; /* log2 sectors per block */
1651 unsigned int log_blocksize; /* log2 block size */
1652 unsigned int blocksize; /* block size */
1653 unsigned int root_ino_num; /* root inode number*/
1654 unsigned int node_ino_num; /* node inode number*/
1655 unsigned int meta_ino_num; /* meta inode number*/
1656 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1657 unsigned int blocks_per_seg; /* blocks per segment */
1658 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1659 unsigned int segs_per_sec; /* segments per section */
1660 unsigned int secs_per_zone; /* sections per zone */
1661 unsigned int total_sections; /* total section count */
1662 unsigned int total_node_count; /* total node block count */
1663 unsigned int total_valid_node_count; /* valid node block count */
1664 int dir_level; /* directory level */
1665 bool readdir_ra; /* readahead inode in readdir */
1666 u64 max_io_bytes; /* max io bytes to merge IOs */
1667
1668 block_t user_block_count; /* # of user blocks */
1669 block_t total_valid_block_count; /* # of valid blocks */
1670 block_t discard_blks; /* discard command candidats */
1671 block_t last_valid_block_count; /* for recovery */
1672 block_t reserved_blocks; /* configurable reserved blocks */
1673 block_t current_reserved_blocks; /* current reserved blocks */
1674
1675 /* Additional tracking for no checkpoint mode */
1676 block_t unusable_block_count; /* # of blocks saved by last cp */
1677
1678 unsigned int nquota_files; /* # of quota sysfile */
1679 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1680 struct task_struct *umount_lock_holder; /* s_umount lock holder */
1681
1682 /* # of pages, see count_type */
1683 atomic_t nr_pages[NR_COUNT_TYPE];
1684 /* # of allocated blocks */
1685 struct percpu_counter alloc_valid_block_count;
1686 /* # of node block writes as roll forward recovery */
1687 struct percpu_counter rf_node_block_count;
1688
1689 /* writeback control */
1690 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1691
1692 /* valid inode count */
1693 struct percpu_counter total_valid_inode_count;
1694
1695 struct f2fs_mount_info mount_opt; /* mount options */
1696
1697 /* for cleaning operations */
1698 struct f2fs_rwsem gc_lock; /*
1699 * semaphore for GC, avoid
1700 * race between GC and GC or CP
1701 */
1702 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1703 struct atgc_management am; /* atgc management */
1704 unsigned int cur_victim_sec; /* current victim section num */
1705 unsigned int gc_mode; /* current GC state */
1706 unsigned int next_victim_seg[2]; /* next segment in victim section */
1707 spinlock_t gc_remaining_trials_lock;
1708 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1709 unsigned int gc_remaining_trials;
1710
1711 /* for skip statistic */
1712 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1713
1714 /* threshold for gc trials on pinned files */
1715 unsigned short gc_pin_file_threshold;
1716 struct f2fs_rwsem pin_sem;
1717
1718 /* maximum # of trials to find a victim segment for SSR and GC */
1719 unsigned int max_victim_search;
1720 /* migration granularity of garbage collection, unit: segment */
1721 unsigned int migration_granularity;
1722 /* migration window granularity of garbage collection, unit: segment */
1723 unsigned int migration_window_granularity;
1724
1725 /*
1726 * for stat information.
1727 * one is for the LFS mode, and the other is for the SSR mode.
1728 */
1729 #ifdef CONFIG_F2FS_STAT_FS
1730 struct f2fs_stat_info *stat_info; /* FS status information */
1731 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1732 unsigned int segment_count[2]; /* # of allocated segments */
1733 unsigned int block_count[2]; /* # of allocated blocks */
1734 atomic_t inplace_count; /* # of inplace update */
1735 /* # of lookup extent cache */
1736 atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1737 /* # of hit rbtree extent node */
1738 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1739 /* # of hit cached extent node */
1740 atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1741 /* # of hit largest extent node in read extent cache */
1742 atomic64_t read_hit_largest;
1743 atomic_t inline_xattr; /* # of inline_xattr inodes */
1744 atomic_t inline_inode; /* # of inline_data inodes */
1745 atomic_t inline_dir; /* # of inline_dentry inodes */
1746 atomic_t compr_inode; /* # of compressed inodes */
1747 atomic64_t compr_blocks; /* # of compressed blocks */
1748 atomic_t swapfile_inode; /* # of swapfile inodes */
1749 atomic_t atomic_files; /* # of opened atomic file */
1750 atomic_t max_aw_cnt; /* max # of atomic writes */
1751 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1752 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1753 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1754 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */
1755 #endif
1756 spinlock_t stat_lock; /* lock for stat operations */
1757
1758 /* to attach REQ_META|REQ_FUA flags */
1759 unsigned int data_io_flag;
1760 unsigned int node_io_flag;
1761
1762 /* For sysfs support */
1763 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1764 struct completion s_kobj_unregister;
1765
1766 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1767 struct completion s_stat_kobj_unregister;
1768
1769 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1770 struct completion s_feature_list_kobj_unregister;
1771
1772 /* For shrinker support */
1773 struct list_head s_list;
1774 struct mutex umount_mutex;
1775 unsigned int shrinker_run_no;
1776
1777 /* For multi devices */
1778 int s_ndevs; /* number of devices */
1779 struct f2fs_dev_info *devs; /* for device list */
1780 unsigned int dirty_device; /* for checkpoint data flush */
1781 spinlock_t dev_lock; /* protect dirty_device */
1782 bool aligned_blksize; /* all devices has the same logical blksize */
1783 unsigned int first_zoned_segno; /* first zoned segno */
1784
1785 /* For write statistics */
1786 u64 sectors_written_start;
1787 u64 kbytes_written;
1788
1789 /* Precomputed FS UUID checksum for seeding other checksums */
1790 __u32 s_chksum_seed;
1791
1792 struct workqueue_struct *post_read_wq; /* post read workqueue */
1793
1794 /*
1795 * If we are in irq context, let's update error information into
1796 * on-disk superblock in the work.
1797 */
1798 struct work_struct s_error_work;
1799 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */
1800 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */
1801 spinlock_t error_lock; /* protect errors/stop_reason array */
1802 bool error_dirty; /* errors of sb is dirty */
1803
1804 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1805 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1806
1807 /* For reclaimed segs statistics per each GC mode */
1808 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1809 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1810
1811 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1812
1813 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1814 int max_fragment_hole; /* max hole size for block fragmentation mode */
1815
1816 /* For atomic write statistics */
1817 atomic64_t current_atomic_write;
1818 s64 peak_atomic_write;
1819 u64 committed_atomic_block;
1820 u64 revoked_atomic_block;
1821
1822 /* carve out reserved_blocks from total blocks */
1823 bool carve_out;
1824
1825 #ifdef CONFIG_F2FS_FS_COMPRESSION
1826 struct kmem_cache *page_array_slab; /* page array entry */
1827 unsigned int page_array_slab_size; /* default page array slab size */
1828
1829 /* For runtime compression statistics */
1830 u64 compr_written_block;
1831 u64 compr_saved_block;
1832 u32 compr_new_inode;
1833
1834 /* For compressed block cache */
1835 struct inode *compress_inode; /* cache compressed blocks */
1836 unsigned int compress_percent; /* cache page percentage */
1837 unsigned int compress_watermark; /* cache page watermark */
1838 atomic_t compress_page_hit; /* cache hit count */
1839 #endif
1840
1841 #ifdef CONFIG_F2FS_IOSTAT
1842 /* For app/fs IO statistics */
1843 spinlock_t iostat_lock;
1844 unsigned long long iostat_count[NR_IO_TYPE];
1845 unsigned long long iostat_bytes[NR_IO_TYPE];
1846 unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1847 bool iostat_enable;
1848 unsigned long iostat_next_period;
1849 unsigned int iostat_period_ms;
1850
1851 /* For io latency related statistics info in one iostat period */
1852 spinlock_t iostat_lat_lock;
1853 struct iostat_lat_info *iostat_io_lat;
1854 #endif
1855 };
1856
1857 /* Definitions to access f2fs_sb_info */
1858 #define SEGS_TO_BLKS(sbi, segs) \
1859 ((segs) << (sbi)->log_blocks_per_seg)
1860 #define BLKS_TO_SEGS(sbi, blks) \
1861 ((blks) >> (sbi)->log_blocks_per_seg)
1862
1863 #define BLKS_PER_SEG(sbi) ((sbi)->blocks_per_seg)
1864 #define BLKS_PER_SEC(sbi) (SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1865 #define SEGS_PER_SEC(sbi) ((sbi)->segs_per_sec)
1866
1867 __printf(3, 4)
1868 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1869
1870 #define f2fs_err(sbi, fmt, ...) \
1871 f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1872 #define f2fs_warn(sbi, fmt, ...) \
1873 f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1874 #define f2fs_notice(sbi, fmt, ...) \
1875 f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1876 #define f2fs_info(sbi, fmt, ...) \
1877 f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1878 #define f2fs_debug(sbi, fmt, ...) \
1879 f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1880
1881 #define f2fs_err_ratelimited(sbi, fmt, ...) \
1882 f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1883 #define f2fs_warn_ratelimited(sbi, fmt, ...) \
1884 f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1885 #define f2fs_info_ratelimited(sbi, fmt, ...) \
1886 f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1887
1888 #ifdef CONFIG_F2FS_FAULT_INJECTION
1889 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \
1890 __builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1891 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1892 const char *func, const char *parent_func)
1893 {
1894 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1895
1896 if (!ffi->inject_rate)
1897 return false;
1898
1899 if (!IS_FAULT_SET(ffi, type))
1900 return false;
1901
1902 atomic_inc(&ffi->inject_ops);
1903 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1904 atomic_set(&ffi->inject_ops, 0);
1905 f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1906 f2fs_fault_name[type], func, parent_func);
1907 return true;
1908 }
1909 return false;
1910 }
1911 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1912 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1913 {
1914 return false;
1915 }
1916 #endif
1917
1918 /*
1919 * Test if the mounted volume is a multi-device volume.
1920 * - For a single regular disk volume, sbi->s_ndevs is 0.
1921 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1922 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1923 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1924 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1925 {
1926 return sbi->s_ndevs > 1;
1927 }
1928
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1929 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1930 {
1931 unsigned long now = jiffies;
1932
1933 sbi->last_time[type] = now;
1934
1935 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1936 if (type == REQ_TIME) {
1937 sbi->last_time[DISCARD_TIME] = now;
1938 sbi->last_time[GC_TIME] = now;
1939 }
1940 }
1941
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1942 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1943 {
1944 unsigned long interval = sbi->interval_time[type] * HZ;
1945
1946 return time_after(jiffies, sbi->last_time[type] + interval);
1947 }
1948
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1949 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1950 int type)
1951 {
1952 unsigned long interval = sbi->interval_time[type] * HZ;
1953 unsigned int wait_ms = 0;
1954 long delta;
1955
1956 delta = (sbi->last_time[type] + interval) - jiffies;
1957 if (delta > 0)
1958 wait_ms = jiffies_to_msecs(delta);
1959
1960 return wait_ms;
1961 }
1962
1963 /*
1964 * Inline functions
1965 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1966 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1967 const void *address, unsigned int length)
1968 {
1969 return crc32(crc, address, length);
1970 }
1971
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1972 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1973 unsigned int length)
1974 {
1975 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1976 }
1977
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1978 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1979 void *buf, size_t buf_size)
1980 {
1981 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1982 }
1983
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1984 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1985 const void *address, unsigned int length)
1986 {
1987 return __f2fs_crc32(sbi, crc, address, length);
1988 }
1989
F2FS_I(struct inode * inode)1990 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1991 {
1992 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1993 }
1994
F2FS_SB(struct super_block * sb)1995 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1996 {
1997 return sb->s_fs_info;
1998 }
1999
F2FS_I_SB(struct inode * inode)2000 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
2001 {
2002 return F2FS_SB(inode->i_sb);
2003 }
2004
F2FS_M_SB(struct address_space * mapping)2005 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2006 {
2007 return F2FS_I_SB(mapping->host);
2008 }
2009
F2FS_F_SB(struct folio * folio)2010 static inline struct f2fs_sb_info *F2FS_F_SB(struct folio *folio)
2011 {
2012 return F2FS_M_SB(folio->mapping);
2013 }
2014
F2FS_P_SB(struct page * page)2015 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
2016 {
2017 return F2FS_F_SB(page_folio(page));
2018 }
2019
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)2020 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2021 {
2022 return (struct f2fs_super_block *)(sbi->raw_super);
2023 }
2024
F2FS_SUPER_BLOCK(struct folio * folio,pgoff_t index)2025 static inline struct f2fs_super_block *F2FS_SUPER_BLOCK(struct folio *folio,
2026 pgoff_t index)
2027 {
2028 pgoff_t idx_in_folio = index % (1 << folio_order(folio));
2029
2030 return (struct f2fs_super_block *)
2031 (page_address(folio_page(folio, idx_in_folio)) +
2032 F2FS_SUPER_OFFSET);
2033 }
2034
F2FS_CKPT(struct f2fs_sb_info * sbi)2035 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2036 {
2037 return (struct f2fs_checkpoint *)(sbi->ckpt);
2038 }
2039
F2FS_NODE(const struct page * page)2040 static inline struct f2fs_node *F2FS_NODE(const struct page *page)
2041 {
2042 return (struct f2fs_node *)page_address(page);
2043 }
2044
F2FS_INODE(struct page * page)2045 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2046 {
2047 return &((struct f2fs_node *)page_address(page))->i;
2048 }
2049
NM_I(struct f2fs_sb_info * sbi)2050 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2051 {
2052 return (struct f2fs_nm_info *)(sbi->nm_info);
2053 }
2054
SM_I(struct f2fs_sb_info * sbi)2055 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2056 {
2057 return (struct f2fs_sm_info *)(sbi->sm_info);
2058 }
2059
SIT_I(struct f2fs_sb_info * sbi)2060 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2061 {
2062 return (struct sit_info *)(SM_I(sbi)->sit_info);
2063 }
2064
FREE_I(struct f2fs_sb_info * sbi)2065 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2066 {
2067 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2068 }
2069
DIRTY_I(struct f2fs_sb_info * sbi)2070 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2071 {
2072 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2073 }
2074
META_MAPPING(struct f2fs_sb_info * sbi)2075 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2076 {
2077 return sbi->meta_inode->i_mapping;
2078 }
2079
NODE_MAPPING(struct f2fs_sb_info * sbi)2080 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2081 {
2082 return sbi->node_inode->i_mapping;
2083 }
2084
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2085 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2086 {
2087 return test_bit(type, &sbi->s_flag);
2088 }
2089
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2090 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2091 {
2092 set_bit(type, &sbi->s_flag);
2093 }
2094
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2095 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2096 {
2097 clear_bit(type, &sbi->s_flag);
2098 }
2099
cur_cp_version(struct f2fs_checkpoint * cp)2100 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2101 {
2102 return le64_to_cpu(cp->checkpoint_ver);
2103 }
2104
f2fs_qf_ino(struct super_block * sb,int type)2105 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2106 {
2107 if (type < F2FS_MAX_QUOTAS)
2108 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2109 return 0;
2110 }
2111
cur_cp_crc(struct f2fs_checkpoint * cp)2112 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2113 {
2114 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2115 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2116 }
2117
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2118 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2119 {
2120 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2121
2122 return ckpt_flags & f;
2123 }
2124
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2125 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2126 {
2127 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2128 }
2129
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2130 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2131 {
2132 unsigned int ckpt_flags;
2133
2134 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2135 ckpt_flags |= f;
2136 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2137 }
2138
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2139 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2140 {
2141 unsigned long flags;
2142
2143 spin_lock_irqsave(&sbi->cp_lock, flags);
2144 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2145 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2146 }
2147
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2148 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2149 {
2150 unsigned int ckpt_flags;
2151
2152 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2153 ckpt_flags &= (~f);
2154 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2155 }
2156
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2157 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2158 {
2159 unsigned long flags;
2160
2161 spin_lock_irqsave(&sbi->cp_lock, flags);
2162 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2163 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2164 }
2165
2166 #define init_f2fs_rwsem(sem) \
2167 do { \
2168 static struct lock_class_key __key; \
2169 \
2170 __init_f2fs_rwsem((sem), #sem, &__key); \
2171 } while (0)
2172
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2173 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2174 const char *sem_name, struct lock_class_key *key)
2175 {
2176 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2177 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2178 init_waitqueue_head(&sem->read_waiters);
2179 #endif
2180 }
2181
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2182 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2183 {
2184 return rwsem_is_locked(&sem->internal_rwsem);
2185 }
2186
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2187 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2188 {
2189 return rwsem_is_contended(&sem->internal_rwsem);
2190 }
2191
f2fs_down_read(struct f2fs_rwsem * sem)2192 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2193 {
2194 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2195 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2196 #else
2197 down_read(&sem->internal_rwsem);
2198 #endif
2199 }
2200
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2201 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2202 {
2203 return down_read_trylock(&sem->internal_rwsem);
2204 }
2205
f2fs_up_read(struct f2fs_rwsem * sem)2206 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2207 {
2208 up_read(&sem->internal_rwsem);
2209 }
2210
f2fs_down_write(struct f2fs_rwsem * sem)2211 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2212 {
2213 down_write(&sem->internal_rwsem);
2214 }
2215
2216 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2217 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2218 {
2219 down_read_nested(&sem->internal_rwsem, subclass);
2220 }
2221
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2222 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2223 {
2224 down_write_nested(&sem->internal_rwsem, subclass);
2225 }
2226 #else
2227 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2228 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2229 #endif
2230
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2231 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2232 {
2233 return down_write_trylock(&sem->internal_rwsem);
2234 }
2235
f2fs_up_write(struct f2fs_rwsem * sem)2236 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2237 {
2238 up_write(&sem->internal_rwsem);
2239 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2240 wake_up_all(&sem->read_waiters);
2241 #endif
2242 }
2243
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)2244 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
2245 {
2246 unsigned long flags;
2247 unsigned char *nat_bits;
2248
2249 /*
2250 * In order to re-enable nat_bits we need to call fsck.f2fs by
2251 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
2252 * so let's rely on regular fsck or unclean shutdown.
2253 */
2254
2255 if (lock)
2256 spin_lock_irqsave(&sbi->cp_lock, flags);
2257 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
2258 nat_bits = NM_I(sbi)->nat_bits;
2259 NM_I(sbi)->nat_bits = NULL;
2260 if (lock)
2261 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2262
2263 kvfree(nat_bits);
2264 }
2265
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)2266 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
2267 struct cp_control *cpc)
2268 {
2269 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
2270
2271 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
2272 }
2273
f2fs_lock_op(struct f2fs_sb_info * sbi)2274 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2275 {
2276 f2fs_down_read(&sbi->cp_rwsem);
2277 }
2278
f2fs_trylock_op(struct f2fs_sb_info * sbi)2279 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2280 {
2281 if (time_to_inject(sbi, FAULT_LOCK_OP))
2282 return 0;
2283 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2284 }
2285
f2fs_unlock_op(struct f2fs_sb_info * sbi)2286 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2287 {
2288 f2fs_up_read(&sbi->cp_rwsem);
2289 }
2290
f2fs_lock_all(struct f2fs_sb_info * sbi)2291 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2292 {
2293 f2fs_down_write(&sbi->cp_rwsem);
2294 }
2295
f2fs_unlock_all(struct f2fs_sb_info * sbi)2296 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2297 {
2298 f2fs_up_write(&sbi->cp_rwsem);
2299 }
2300
__get_cp_reason(struct f2fs_sb_info * sbi)2301 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2302 {
2303 int reason = CP_SYNC;
2304
2305 if (test_opt(sbi, FASTBOOT))
2306 reason = CP_FASTBOOT;
2307 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2308 reason = CP_UMOUNT;
2309 return reason;
2310 }
2311
__remain_node_summaries(int reason)2312 static inline bool __remain_node_summaries(int reason)
2313 {
2314 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2315 }
2316
__exist_node_summaries(struct f2fs_sb_info * sbi)2317 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2318 {
2319 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2320 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2321 }
2322
2323 /*
2324 * Check whether the inode has blocks or not
2325 */
F2FS_HAS_BLOCKS(struct inode * inode)2326 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2327 {
2328 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2329
2330 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2331 }
2332
f2fs_has_xattr_block(unsigned int ofs)2333 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2334 {
2335 return ofs == XATTR_NODE_OFFSET;
2336 }
2337
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2338 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2339 struct inode *inode, bool cap)
2340 {
2341 if (!inode)
2342 return true;
2343 if (!test_opt(sbi, RESERVE_ROOT))
2344 return false;
2345 if (IS_NOQUOTA(inode))
2346 return true;
2347 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2348 return true;
2349 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2350 in_group_p(F2FS_OPTION(sbi).s_resgid))
2351 return true;
2352 if (cap && capable(CAP_SYS_RESOURCE))
2353 return true;
2354 return false;
2355 }
2356
get_available_block_count(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2357 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2358 struct inode *inode, bool cap)
2359 {
2360 block_t avail_user_block_count;
2361
2362 avail_user_block_count = sbi->user_block_count -
2363 sbi->current_reserved_blocks;
2364
2365 if (!__allow_reserved_blocks(sbi, inode, cap))
2366 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2367
2368 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2369 if (avail_user_block_count > sbi->unusable_block_count)
2370 avail_user_block_count -= sbi->unusable_block_count;
2371 else
2372 avail_user_block_count = 0;
2373 }
2374
2375 return avail_user_block_count;
2376 }
2377
2378 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count,bool partial)2379 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2380 struct inode *inode, blkcnt_t *count, bool partial)
2381 {
2382 long long diff = 0, release = 0;
2383 block_t avail_user_block_count;
2384 int ret;
2385
2386 ret = dquot_reserve_block(inode, *count);
2387 if (ret)
2388 return ret;
2389
2390 if (time_to_inject(sbi, FAULT_BLOCK)) {
2391 release = *count;
2392 goto release_quota;
2393 }
2394
2395 /*
2396 * let's increase this in prior to actual block count change in order
2397 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2398 */
2399 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2400
2401 spin_lock(&sbi->stat_lock);
2402
2403 avail_user_block_count = get_available_block_count(sbi, inode, true);
2404 diff = (long long)sbi->total_valid_block_count + *count -
2405 avail_user_block_count;
2406 if (unlikely(diff > 0)) {
2407 if (!partial) {
2408 spin_unlock(&sbi->stat_lock);
2409 release = *count;
2410 goto enospc;
2411 }
2412 if (diff > *count)
2413 diff = *count;
2414 *count -= diff;
2415 release = diff;
2416 if (!*count) {
2417 spin_unlock(&sbi->stat_lock);
2418 goto enospc;
2419 }
2420 }
2421 sbi->total_valid_block_count += (block_t)(*count);
2422
2423 spin_unlock(&sbi->stat_lock);
2424
2425 if (unlikely(release)) {
2426 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2427 dquot_release_reservation_block(inode, release);
2428 }
2429 f2fs_i_blocks_write(inode, *count, true, true);
2430 return 0;
2431
2432 enospc:
2433 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2434 release_quota:
2435 dquot_release_reservation_block(inode, release);
2436 return -ENOSPC;
2437 }
2438
2439 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2440 static inline bool page_private_##name(struct page *page) \
2441 { \
2442 return PagePrivate(page) && \
2443 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2444 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2445 }
2446
2447 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2448 static inline void set_page_private_##name(struct page *page) \
2449 { \
2450 if (!PagePrivate(page)) \
2451 attach_page_private(page, (void *)0); \
2452 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2453 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2454 }
2455
2456 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2457 static inline void clear_page_private_##name(struct page *page) \
2458 { \
2459 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2460 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2461 detach_page_private(page); \
2462 }
2463
2464 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2465 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2466 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2467 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
2468
2469 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2470 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2471 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2472 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
2473
2474 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2475 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2476 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2477 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
2478
get_page_private_data(struct page * page)2479 static inline unsigned long get_page_private_data(struct page *page)
2480 {
2481 unsigned long data = page_private(page);
2482
2483 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2484 return 0;
2485 return data >> PAGE_PRIVATE_MAX;
2486 }
2487
set_page_private_data(struct page * page,unsigned long data)2488 static inline void set_page_private_data(struct page *page, unsigned long data)
2489 {
2490 if (!PagePrivate(page))
2491 attach_page_private(page, (void *)0);
2492 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2493 page_private(page) |= data << PAGE_PRIVATE_MAX;
2494 }
2495
clear_page_private_data(struct page * page)2496 static inline void clear_page_private_data(struct page *page)
2497 {
2498 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2499 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2500 detach_page_private(page);
2501 }
2502
clear_page_private_all(struct page * page)2503 static inline void clear_page_private_all(struct page *page)
2504 {
2505 clear_page_private_data(page);
2506 clear_page_private_reference(page);
2507 clear_page_private_gcing(page);
2508 clear_page_private_inline(page);
2509 clear_page_private_atomic(page);
2510
2511 f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2512 }
2513
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2514 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2515 struct inode *inode,
2516 block_t count)
2517 {
2518 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2519
2520 spin_lock(&sbi->stat_lock);
2521 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2522 sbi->total_valid_block_count -= (block_t)count;
2523 if (sbi->reserved_blocks &&
2524 sbi->current_reserved_blocks < sbi->reserved_blocks)
2525 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2526 sbi->current_reserved_blocks + count);
2527 spin_unlock(&sbi->stat_lock);
2528 if (unlikely(inode->i_blocks < sectors)) {
2529 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2530 inode->i_ino,
2531 (unsigned long long)inode->i_blocks,
2532 (unsigned long long)sectors);
2533 set_sbi_flag(sbi, SBI_NEED_FSCK);
2534 return;
2535 }
2536 f2fs_i_blocks_write(inode, count, false, true);
2537 }
2538
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2539 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2540 {
2541 atomic_inc(&sbi->nr_pages[count_type]);
2542
2543 if (count_type == F2FS_DIRTY_DENTS ||
2544 count_type == F2FS_DIRTY_NODES ||
2545 count_type == F2FS_DIRTY_META ||
2546 count_type == F2FS_DIRTY_QDATA ||
2547 count_type == F2FS_DIRTY_IMETA)
2548 set_sbi_flag(sbi, SBI_IS_DIRTY);
2549 }
2550
inode_inc_dirty_pages(struct inode * inode)2551 static inline void inode_inc_dirty_pages(struct inode *inode)
2552 {
2553 atomic_inc(&F2FS_I(inode)->dirty_pages);
2554 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2555 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2556 if (IS_NOQUOTA(inode))
2557 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2558 }
2559
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2560 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2561 {
2562 atomic_dec(&sbi->nr_pages[count_type]);
2563 }
2564
inode_dec_dirty_pages(struct inode * inode)2565 static inline void inode_dec_dirty_pages(struct inode *inode)
2566 {
2567 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2568 !S_ISLNK(inode->i_mode))
2569 return;
2570
2571 atomic_dec(&F2FS_I(inode)->dirty_pages);
2572 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2573 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2574 if (IS_NOQUOTA(inode))
2575 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2576 }
2577
inc_atomic_write_cnt(struct inode * inode)2578 static inline void inc_atomic_write_cnt(struct inode *inode)
2579 {
2580 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2581 struct f2fs_inode_info *fi = F2FS_I(inode);
2582 u64 current_write;
2583
2584 fi->atomic_write_cnt++;
2585 atomic64_inc(&sbi->current_atomic_write);
2586 current_write = atomic64_read(&sbi->current_atomic_write);
2587 if (current_write > sbi->peak_atomic_write)
2588 sbi->peak_atomic_write = current_write;
2589 }
2590
release_atomic_write_cnt(struct inode * inode)2591 static inline void release_atomic_write_cnt(struct inode *inode)
2592 {
2593 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2594 struct f2fs_inode_info *fi = F2FS_I(inode);
2595
2596 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2597 fi->atomic_write_cnt = 0;
2598 }
2599
get_pages(struct f2fs_sb_info * sbi,int count_type)2600 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2601 {
2602 return atomic_read(&sbi->nr_pages[count_type]);
2603 }
2604
get_dirty_pages(struct inode * inode)2605 static inline int get_dirty_pages(struct inode *inode)
2606 {
2607 return atomic_read(&F2FS_I(inode)->dirty_pages);
2608 }
2609
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2610 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2611 {
2612 return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2613 BLKS_PER_SEC(sbi));
2614 }
2615
valid_user_blocks(struct f2fs_sb_info * sbi)2616 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2617 {
2618 return sbi->total_valid_block_count;
2619 }
2620
discard_blocks(struct f2fs_sb_info * sbi)2621 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2622 {
2623 return sbi->discard_blks;
2624 }
2625
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2626 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2627 {
2628 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2629
2630 /* return NAT or SIT bitmap */
2631 if (flag == NAT_BITMAP)
2632 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2633 else if (flag == SIT_BITMAP)
2634 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2635
2636 return 0;
2637 }
2638
__cp_payload(struct f2fs_sb_info * sbi)2639 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2640 {
2641 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2642 }
2643
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2644 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2645 {
2646 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2647 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2648 int offset;
2649
2650 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2651 offset = (flag == SIT_BITMAP) ?
2652 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2653 /*
2654 * if large_nat_bitmap feature is enabled, leave checksum
2655 * protection for all nat/sit bitmaps.
2656 */
2657 return tmp_ptr + offset + sizeof(__le32);
2658 }
2659
2660 if (__cp_payload(sbi) > 0) {
2661 if (flag == NAT_BITMAP)
2662 return tmp_ptr;
2663 else
2664 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2665 } else {
2666 offset = (flag == NAT_BITMAP) ?
2667 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2668 return tmp_ptr + offset;
2669 }
2670 }
2671
__start_cp_addr(struct f2fs_sb_info * sbi)2672 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2673 {
2674 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2675
2676 if (sbi->cur_cp_pack == 2)
2677 start_addr += BLKS_PER_SEG(sbi);
2678 return start_addr;
2679 }
2680
__start_cp_next_addr(struct f2fs_sb_info * sbi)2681 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2682 {
2683 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2684
2685 if (sbi->cur_cp_pack == 1)
2686 start_addr += BLKS_PER_SEG(sbi);
2687 return start_addr;
2688 }
2689
__set_cp_next_pack(struct f2fs_sb_info * sbi)2690 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2691 {
2692 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2693 }
2694
__start_sum_addr(struct f2fs_sb_info * sbi)2695 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2696 {
2697 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2698 }
2699
2700 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2701 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2702 struct inode *inode, bool is_inode)
2703 {
2704 block_t valid_block_count;
2705 unsigned int valid_node_count;
2706 unsigned int avail_user_block_count;
2707 int err;
2708
2709 if (is_inode) {
2710 if (inode) {
2711 err = dquot_alloc_inode(inode);
2712 if (err)
2713 return err;
2714 }
2715 } else {
2716 err = dquot_reserve_block(inode, 1);
2717 if (err)
2718 return err;
2719 }
2720
2721 if (time_to_inject(sbi, FAULT_BLOCK))
2722 goto enospc;
2723
2724 spin_lock(&sbi->stat_lock);
2725
2726 valid_block_count = sbi->total_valid_block_count + 1;
2727 avail_user_block_count = get_available_block_count(sbi, inode, false);
2728
2729 if (unlikely(valid_block_count > avail_user_block_count)) {
2730 spin_unlock(&sbi->stat_lock);
2731 goto enospc;
2732 }
2733
2734 valid_node_count = sbi->total_valid_node_count + 1;
2735 if (unlikely(valid_node_count > sbi->total_node_count)) {
2736 spin_unlock(&sbi->stat_lock);
2737 goto enospc;
2738 }
2739
2740 sbi->total_valid_node_count++;
2741 sbi->total_valid_block_count++;
2742 spin_unlock(&sbi->stat_lock);
2743
2744 if (inode) {
2745 if (is_inode)
2746 f2fs_mark_inode_dirty_sync(inode, true);
2747 else
2748 f2fs_i_blocks_write(inode, 1, true, true);
2749 }
2750
2751 percpu_counter_inc(&sbi->alloc_valid_block_count);
2752 return 0;
2753
2754 enospc:
2755 if (is_inode) {
2756 if (inode)
2757 dquot_free_inode(inode);
2758 } else {
2759 dquot_release_reservation_block(inode, 1);
2760 }
2761 return -ENOSPC;
2762 }
2763
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2764 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2765 struct inode *inode, bool is_inode)
2766 {
2767 spin_lock(&sbi->stat_lock);
2768
2769 if (unlikely(!sbi->total_valid_block_count ||
2770 !sbi->total_valid_node_count)) {
2771 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2772 sbi->total_valid_block_count,
2773 sbi->total_valid_node_count);
2774 set_sbi_flag(sbi, SBI_NEED_FSCK);
2775 } else {
2776 sbi->total_valid_block_count--;
2777 sbi->total_valid_node_count--;
2778 }
2779
2780 if (sbi->reserved_blocks &&
2781 sbi->current_reserved_blocks < sbi->reserved_blocks)
2782 sbi->current_reserved_blocks++;
2783
2784 spin_unlock(&sbi->stat_lock);
2785
2786 if (is_inode) {
2787 dquot_free_inode(inode);
2788 } else {
2789 if (unlikely(inode->i_blocks == 0)) {
2790 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2791 inode->i_ino,
2792 (unsigned long long)inode->i_blocks);
2793 set_sbi_flag(sbi, SBI_NEED_FSCK);
2794 return;
2795 }
2796 f2fs_i_blocks_write(inode, 1, false, true);
2797 }
2798 }
2799
valid_node_count(struct f2fs_sb_info * sbi)2800 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2801 {
2802 return sbi->total_valid_node_count;
2803 }
2804
inc_valid_inode_count(struct f2fs_sb_info * sbi)2805 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2806 {
2807 percpu_counter_inc(&sbi->total_valid_inode_count);
2808 }
2809
dec_valid_inode_count(struct f2fs_sb_info * sbi)2810 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2811 {
2812 percpu_counter_dec(&sbi->total_valid_inode_count);
2813 }
2814
valid_inode_count(struct f2fs_sb_info * sbi)2815 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2816 {
2817 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2818 }
2819
f2fs_grab_cache_folio(struct address_space * mapping,pgoff_t index,bool for_write)2820 static inline struct folio *f2fs_grab_cache_folio(struct address_space *mapping,
2821 pgoff_t index, bool for_write)
2822 {
2823 struct folio *folio;
2824 unsigned int flags;
2825
2826 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2827 fgf_t fgf_flags;
2828
2829 if (!for_write)
2830 fgf_flags = FGP_LOCK | FGP_ACCESSED;
2831 else
2832 fgf_flags = FGP_LOCK;
2833 folio = __filemap_get_folio(mapping, index, fgf_flags, 0);
2834 if (!IS_ERR(folio))
2835 return folio;
2836
2837 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2838 return ERR_PTR(-ENOMEM);
2839 }
2840
2841 if (!for_write)
2842 return filemap_grab_folio(mapping, index);
2843
2844 flags = memalloc_nofs_save();
2845 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2846 mapping_gfp_mask(mapping));
2847 memalloc_nofs_restore(flags);
2848
2849 return folio;
2850 }
2851
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2852 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2853 pgoff_t index, bool for_write)
2854 {
2855 struct folio *folio = f2fs_grab_cache_folio(mapping, index, for_write);
2856
2857 if (IS_ERR(folio))
2858 return NULL;
2859 return &folio->page;
2860 }
2861
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2862 static inline struct page *f2fs_pagecache_get_page(
2863 struct address_space *mapping, pgoff_t index,
2864 fgf_t fgp_flags, gfp_t gfp_mask)
2865 {
2866 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2867 return NULL;
2868
2869 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2870 }
2871
f2fs_folio_put(struct folio * folio,bool unlock)2872 static inline void f2fs_folio_put(struct folio *folio, bool unlock)
2873 {
2874 if (!folio)
2875 return;
2876
2877 if (unlock) {
2878 f2fs_bug_on(F2FS_F_SB(folio), !folio_test_locked(folio));
2879 folio_unlock(folio);
2880 }
2881 folio_put(folio);
2882 }
2883
f2fs_put_page(struct page * page,int unlock)2884 static inline void f2fs_put_page(struct page *page, int unlock)
2885 {
2886 if (!page)
2887 return;
2888 f2fs_folio_put(page_folio(page), unlock);
2889 }
2890
f2fs_put_dnode(struct dnode_of_data * dn)2891 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2892 {
2893 if (dn->node_page)
2894 f2fs_put_page(dn->node_page, 1);
2895 if (dn->inode_page && dn->node_page != dn->inode_page)
2896 f2fs_put_page(dn->inode_page, 0);
2897 dn->node_page = NULL;
2898 dn->inode_page = NULL;
2899 }
2900
f2fs_kmem_cache_create(const char * name,size_t size)2901 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2902 size_t size)
2903 {
2904 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2905 }
2906
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2907 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2908 gfp_t flags)
2909 {
2910 void *entry;
2911
2912 entry = kmem_cache_alloc(cachep, flags);
2913 if (!entry)
2914 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2915 return entry;
2916 }
2917
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2918 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2919 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2920 {
2921 if (nofail)
2922 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2923
2924 if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2925 return NULL;
2926
2927 return kmem_cache_alloc(cachep, flags);
2928 }
2929
is_inflight_io(struct f2fs_sb_info * sbi,int type)2930 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2931 {
2932 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2933 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2934 get_pages(sbi, F2FS_WB_CP_DATA) ||
2935 get_pages(sbi, F2FS_DIO_READ) ||
2936 get_pages(sbi, F2FS_DIO_WRITE))
2937 return true;
2938
2939 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2940 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2941 return true;
2942
2943 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2944 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2945 return true;
2946 return false;
2947 }
2948
is_inflight_read_io(struct f2fs_sb_info * sbi)2949 static inline bool is_inflight_read_io(struct f2fs_sb_info *sbi)
2950 {
2951 return get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_DIO_READ);
2952 }
2953
is_idle(struct f2fs_sb_info * sbi,int type)2954 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2955 {
2956 bool zoned_gc = (type == GC_TIME &&
2957 F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_BLKZONED));
2958
2959 if (sbi->gc_mode == GC_URGENT_HIGH)
2960 return true;
2961
2962 if (zoned_gc) {
2963 if (is_inflight_read_io(sbi))
2964 return false;
2965 } else {
2966 if (is_inflight_io(sbi, type))
2967 return false;
2968 }
2969
2970 if (sbi->gc_mode == GC_URGENT_MID)
2971 return true;
2972
2973 if (sbi->gc_mode == GC_URGENT_LOW &&
2974 (type == DISCARD_TIME || type == GC_TIME))
2975 return true;
2976
2977 if (zoned_gc)
2978 return true;
2979
2980 return f2fs_time_over(sbi, type);
2981 }
2982
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2983 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2984 unsigned long index, void *item)
2985 {
2986 while (radix_tree_insert(root, index, item))
2987 cond_resched();
2988 }
2989
2990 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2991
IS_INODE(struct page * page)2992 static inline bool IS_INODE(struct page *page)
2993 {
2994 struct f2fs_node *p = F2FS_NODE(page);
2995
2996 return RAW_IS_INODE(p);
2997 }
2998
offset_in_addr(struct f2fs_inode * i)2999 static inline int offset_in_addr(struct f2fs_inode *i)
3000 {
3001 return (i->i_inline & F2FS_EXTRA_ATTR) ?
3002 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
3003 }
3004
blkaddr_in_node(struct f2fs_node * node)3005 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
3006 {
3007 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
3008 }
3009
3010 static inline int f2fs_has_extra_attr(struct inode *inode);
get_dnode_base(struct inode * inode,struct page * node_page)3011 static inline unsigned int get_dnode_base(struct inode *inode,
3012 struct page *node_page)
3013 {
3014 if (!IS_INODE(node_page))
3015 return 0;
3016
3017 return inode ? get_extra_isize(inode) :
3018 offset_in_addr(&F2FS_NODE(node_page)->i);
3019 }
3020
get_dnode_addr(struct inode * inode,struct page * node_page)3021 static inline __le32 *get_dnode_addr(struct inode *inode,
3022 struct page *node_page)
3023 {
3024 return blkaddr_in_node(F2FS_NODE(node_page)) +
3025 get_dnode_base(inode, node_page);
3026 }
3027
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)3028 static inline block_t data_blkaddr(struct inode *inode,
3029 struct page *node_page, unsigned int offset)
3030 {
3031 return le32_to_cpu(*(get_dnode_addr(inode, node_page) + offset));
3032 }
3033
f2fs_data_blkaddr(struct dnode_of_data * dn)3034 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
3035 {
3036 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
3037 }
3038
f2fs_test_bit(unsigned int nr,char * addr)3039 static inline int f2fs_test_bit(unsigned int nr, char *addr)
3040 {
3041 int mask;
3042
3043 addr += (nr >> 3);
3044 mask = BIT(7 - (nr & 0x07));
3045 return mask & *addr;
3046 }
3047
f2fs_set_bit(unsigned int nr,char * addr)3048 static inline void f2fs_set_bit(unsigned int nr, char *addr)
3049 {
3050 int mask;
3051
3052 addr += (nr >> 3);
3053 mask = BIT(7 - (nr & 0x07));
3054 *addr |= mask;
3055 }
3056
f2fs_clear_bit(unsigned int nr,char * addr)3057 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
3058 {
3059 int mask;
3060
3061 addr += (nr >> 3);
3062 mask = BIT(7 - (nr & 0x07));
3063 *addr &= ~mask;
3064 }
3065
f2fs_test_and_set_bit(unsigned int nr,char * addr)3066 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
3067 {
3068 int mask;
3069 int ret;
3070
3071 addr += (nr >> 3);
3072 mask = BIT(7 - (nr & 0x07));
3073 ret = mask & *addr;
3074 *addr |= mask;
3075 return ret;
3076 }
3077
f2fs_test_and_clear_bit(unsigned int nr,char * addr)3078 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
3079 {
3080 int mask;
3081 int ret;
3082
3083 addr += (nr >> 3);
3084 mask = BIT(7 - (nr & 0x07));
3085 ret = mask & *addr;
3086 *addr &= ~mask;
3087 return ret;
3088 }
3089
f2fs_change_bit(unsigned int nr,char * addr)3090 static inline void f2fs_change_bit(unsigned int nr, char *addr)
3091 {
3092 int mask;
3093
3094 addr += (nr >> 3);
3095 mask = BIT(7 - (nr & 0x07));
3096 *addr ^= mask;
3097 }
3098
3099 /*
3100 * On-disk inode flags (f2fs_inode::i_flags)
3101 */
3102 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
3103 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
3104 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
3105 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
3106 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
3107 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
3108 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
3109 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
3110 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
3111 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
3112 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
3113 #define F2FS_DEVICE_ALIAS_FL 0x80000000 /* File for aliasing a device */
3114
3115 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3116
3117 /* Flags that should be inherited by new inodes from their parent. */
3118 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3119 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3120 F2FS_CASEFOLD_FL)
3121
3122 /* Flags that are appropriate for regular files (all but dir-specific ones). */
3123 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3124 F2FS_CASEFOLD_FL))
3125
3126 /* Flags that are appropriate for non-directories/regular files. */
3127 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3128
3129 #define IS_DEVICE_ALIASING(inode) (F2FS_I(inode)->i_flags & F2FS_DEVICE_ALIAS_FL)
3130
f2fs_mask_flags(umode_t mode,__u32 flags)3131 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3132 {
3133 if (S_ISDIR(mode))
3134 return flags;
3135 else if (S_ISREG(mode))
3136 return flags & F2FS_REG_FLMASK;
3137 else
3138 return flags & F2FS_OTHER_FLMASK;
3139 }
3140
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)3141 static inline void __mark_inode_dirty_flag(struct inode *inode,
3142 int flag, bool set)
3143 {
3144 switch (flag) {
3145 case FI_INLINE_XATTR:
3146 case FI_INLINE_DATA:
3147 case FI_INLINE_DENTRY:
3148 case FI_NEW_INODE:
3149 if (set)
3150 return;
3151 fallthrough;
3152 case FI_DATA_EXIST:
3153 case FI_PIN_FILE:
3154 case FI_COMPRESS_RELEASED:
3155 f2fs_mark_inode_dirty_sync(inode, true);
3156 }
3157 }
3158
set_inode_flag(struct inode * inode,int flag)3159 static inline void set_inode_flag(struct inode *inode, int flag)
3160 {
3161 set_bit(flag, F2FS_I(inode)->flags);
3162 __mark_inode_dirty_flag(inode, flag, true);
3163 }
3164
is_inode_flag_set(struct inode * inode,int flag)3165 static inline int is_inode_flag_set(struct inode *inode, int flag)
3166 {
3167 return test_bit(flag, F2FS_I(inode)->flags);
3168 }
3169
clear_inode_flag(struct inode * inode,int flag)3170 static inline void clear_inode_flag(struct inode *inode, int flag)
3171 {
3172 clear_bit(flag, F2FS_I(inode)->flags);
3173 __mark_inode_dirty_flag(inode, flag, false);
3174 }
3175
f2fs_verity_in_progress(struct inode * inode)3176 static inline bool f2fs_verity_in_progress(struct inode *inode)
3177 {
3178 return IS_ENABLED(CONFIG_FS_VERITY) &&
3179 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3180 }
3181
set_acl_inode(struct inode * inode,umode_t mode)3182 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3183 {
3184 F2FS_I(inode)->i_acl_mode = mode;
3185 set_inode_flag(inode, FI_ACL_MODE);
3186 f2fs_mark_inode_dirty_sync(inode, false);
3187 }
3188
f2fs_i_links_write(struct inode * inode,bool inc)3189 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3190 {
3191 if (inc)
3192 inc_nlink(inode);
3193 else
3194 drop_nlink(inode);
3195 f2fs_mark_inode_dirty_sync(inode, true);
3196 }
3197
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3198 static inline void f2fs_i_blocks_write(struct inode *inode,
3199 block_t diff, bool add, bool claim)
3200 {
3201 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3202 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3203
3204 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3205 if (add) {
3206 if (claim)
3207 dquot_claim_block(inode, diff);
3208 else
3209 dquot_alloc_block_nofail(inode, diff);
3210 } else {
3211 dquot_free_block(inode, diff);
3212 }
3213
3214 f2fs_mark_inode_dirty_sync(inode, true);
3215 if (clean || recover)
3216 set_inode_flag(inode, FI_AUTO_RECOVER);
3217 }
3218
3219 static inline bool f2fs_is_atomic_file(struct inode *inode);
3220
f2fs_i_size_write(struct inode * inode,loff_t i_size)3221 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3222 {
3223 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3224 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3225
3226 if (i_size_read(inode) == i_size)
3227 return;
3228
3229 i_size_write(inode, i_size);
3230
3231 if (f2fs_is_atomic_file(inode))
3232 return;
3233
3234 f2fs_mark_inode_dirty_sync(inode, true);
3235 if (clean || recover)
3236 set_inode_flag(inode, FI_AUTO_RECOVER);
3237 }
3238
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3239 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3240 {
3241 F2FS_I(inode)->i_current_depth = depth;
3242 f2fs_mark_inode_dirty_sync(inode, true);
3243 }
3244
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3245 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3246 unsigned int count)
3247 {
3248 F2FS_I(inode)->i_gc_failures = count;
3249 f2fs_mark_inode_dirty_sync(inode, true);
3250 }
3251
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3252 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3253 {
3254 F2FS_I(inode)->i_xattr_nid = xnid;
3255 f2fs_mark_inode_dirty_sync(inode, true);
3256 }
3257
f2fs_i_pino_write(struct inode * inode,nid_t pino)3258 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3259 {
3260 F2FS_I(inode)->i_pino = pino;
3261 f2fs_mark_inode_dirty_sync(inode, true);
3262 }
3263
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3264 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3265 {
3266 struct f2fs_inode_info *fi = F2FS_I(inode);
3267
3268 if (ri->i_inline & F2FS_INLINE_XATTR)
3269 set_bit(FI_INLINE_XATTR, fi->flags);
3270 if (ri->i_inline & F2FS_INLINE_DATA)
3271 set_bit(FI_INLINE_DATA, fi->flags);
3272 if (ri->i_inline & F2FS_INLINE_DENTRY)
3273 set_bit(FI_INLINE_DENTRY, fi->flags);
3274 if (ri->i_inline & F2FS_DATA_EXIST)
3275 set_bit(FI_DATA_EXIST, fi->flags);
3276 if (ri->i_inline & F2FS_EXTRA_ATTR)
3277 set_bit(FI_EXTRA_ATTR, fi->flags);
3278 if (ri->i_inline & F2FS_PIN_FILE)
3279 set_bit(FI_PIN_FILE, fi->flags);
3280 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3281 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3282 }
3283
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3284 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3285 {
3286 ri->i_inline = 0;
3287
3288 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3289 ri->i_inline |= F2FS_INLINE_XATTR;
3290 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3291 ri->i_inline |= F2FS_INLINE_DATA;
3292 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3293 ri->i_inline |= F2FS_INLINE_DENTRY;
3294 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3295 ri->i_inline |= F2FS_DATA_EXIST;
3296 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3297 ri->i_inline |= F2FS_EXTRA_ATTR;
3298 if (is_inode_flag_set(inode, FI_PIN_FILE))
3299 ri->i_inline |= F2FS_PIN_FILE;
3300 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3301 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3302 }
3303
f2fs_has_extra_attr(struct inode * inode)3304 static inline int f2fs_has_extra_attr(struct inode *inode)
3305 {
3306 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3307 }
3308
f2fs_has_inline_xattr(struct inode * inode)3309 static inline int f2fs_has_inline_xattr(struct inode *inode)
3310 {
3311 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3312 }
3313
f2fs_compressed_file(struct inode * inode)3314 static inline int f2fs_compressed_file(struct inode *inode)
3315 {
3316 return S_ISREG(inode->i_mode) &&
3317 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3318 }
3319
f2fs_need_compress_data(struct inode * inode)3320 static inline bool f2fs_need_compress_data(struct inode *inode)
3321 {
3322 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3323
3324 if (!f2fs_compressed_file(inode))
3325 return false;
3326
3327 if (compress_mode == COMPR_MODE_FS)
3328 return true;
3329 else if (compress_mode == COMPR_MODE_USER &&
3330 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3331 return true;
3332
3333 return false;
3334 }
3335
addrs_per_page(struct inode * inode,bool is_inode)3336 static inline unsigned int addrs_per_page(struct inode *inode,
3337 bool is_inode)
3338 {
3339 unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) -
3340 get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK;
3341
3342 if (f2fs_compressed_file(inode))
3343 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3344 return addrs;
3345 }
3346
inline_xattr_addr(struct inode * inode,struct page * page)3347 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3348 {
3349 struct f2fs_inode *ri = F2FS_INODE(page);
3350
3351 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3352 get_inline_xattr_addrs(inode)]);
3353 }
3354
inline_xattr_size(struct inode * inode)3355 static inline int inline_xattr_size(struct inode *inode)
3356 {
3357 if (f2fs_has_inline_xattr(inode))
3358 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3359 return 0;
3360 }
3361
3362 /*
3363 * Notice: check inline_data flag without inode page lock is unsafe.
3364 * It could change at any time by f2fs_convert_inline_page().
3365 */
f2fs_has_inline_data(struct inode * inode)3366 static inline int f2fs_has_inline_data(struct inode *inode)
3367 {
3368 return is_inode_flag_set(inode, FI_INLINE_DATA);
3369 }
3370
f2fs_exist_data(struct inode * inode)3371 static inline int f2fs_exist_data(struct inode *inode)
3372 {
3373 return is_inode_flag_set(inode, FI_DATA_EXIST);
3374 }
3375
f2fs_is_mmap_file(struct inode * inode)3376 static inline int f2fs_is_mmap_file(struct inode *inode)
3377 {
3378 return is_inode_flag_set(inode, FI_MMAP_FILE);
3379 }
3380
f2fs_is_pinned_file(struct inode * inode)3381 static inline bool f2fs_is_pinned_file(struct inode *inode)
3382 {
3383 return is_inode_flag_set(inode, FI_PIN_FILE);
3384 }
3385
f2fs_is_atomic_file(struct inode * inode)3386 static inline bool f2fs_is_atomic_file(struct inode *inode)
3387 {
3388 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3389 }
3390
f2fs_is_cow_file(struct inode * inode)3391 static inline bool f2fs_is_cow_file(struct inode *inode)
3392 {
3393 return is_inode_flag_set(inode, FI_COW_FILE);
3394 }
3395
inline_data_addr(struct inode * inode,struct page * page)3396 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3397 {
3398 __le32 *addr = get_dnode_addr(inode, page);
3399
3400 return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3401 }
3402
f2fs_has_inline_dentry(struct inode * inode)3403 static inline int f2fs_has_inline_dentry(struct inode *inode)
3404 {
3405 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3406 }
3407
is_file(struct inode * inode,int type)3408 static inline int is_file(struct inode *inode, int type)
3409 {
3410 return F2FS_I(inode)->i_advise & type;
3411 }
3412
set_file(struct inode * inode,int type)3413 static inline void set_file(struct inode *inode, int type)
3414 {
3415 if (is_file(inode, type))
3416 return;
3417 F2FS_I(inode)->i_advise |= type;
3418 f2fs_mark_inode_dirty_sync(inode, true);
3419 }
3420
clear_file(struct inode * inode,int type)3421 static inline void clear_file(struct inode *inode, int type)
3422 {
3423 if (!is_file(inode, type))
3424 return;
3425 F2FS_I(inode)->i_advise &= ~type;
3426 f2fs_mark_inode_dirty_sync(inode, true);
3427 }
3428
f2fs_is_time_consistent(struct inode * inode)3429 static inline bool f2fs_is_time_consistent(struct inode *inode)
3430 {
3431 struct timespec64 ts = inode_get_atime(inode);
3432
3433 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3434 return false;
3435 ts = inode_get_ctime(inode);
3436 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3437 return false;
3438 ts = inode_get_mtime(inode);
3439 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3440 return false;
3441 return true;
3442 }
3443
f2fs_skip_inode_update(struct inode * inode,int dsync)3444 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3445 {
3446 bool ret;
3447
3448 if (dsync) {
3449 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3450
3451 spin_lock(&sbi->inode_lock[DIRTY_META]);
3452 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3453 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3454 return ret;
3455 }
3456 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3457 file_keep_isize(inode) ||
3458 i_size_read(inode) & ~PAGE_MASK)
3459 return false;
3460
3461 if (!f2fs_is_time_consistent(inode))
3462 return false;
3463
3464 spin_lock(&F2FS_I(inode)->i_size_lock);
3465 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3466 spin_unlock(&F2FS_I(inode)->i_size_lock);
3467
3468 return ret;
3469 }
3470
f2fs_readonly(struct super_block * sb)3471 static inline bool f2fs_readonly(struct super_block *sb)
3472 {
3473 return sb_rdonly(sb);
3474 }
3475
f2fs_cp_error(struct f2fs_sb_info * sbi)3476 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3477 {
3478 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3479 }
3480
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3481 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3482 size_t size, gfp_t flags)
3483 {
3484 if (time_to_inject(sbi, FAULT_KMALLOC))
3485 return NULL;
3486
3487 return kmalloc(size, flags);
3488 }
3489
f2fs_getname(struct f2fs_sb_info * sbi)3490 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3491 {
3492 if (time_to_inject(sbi, FAULT_KMALLOC))
3493 return NULL;
3494
3495 return __getname();
3496 }
3497
f2fs_putname(char * buf)3498 static inline void f2fs_putname(char *buf)
3499 {
3500 __putname(buf);
3501 }
3502
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3503 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3504 size_t size, gfp_t flags)
3505 {
3506 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3507 }
3508
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3509 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3510 size_t size, gfp_t flags)
3511 {
3512 if (time_to_inject(sbi, FAULT_KVMALLOC))
3513 return NULL;
3514
3515 return kvmalloc(size, flags);
3516 }
3517
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3518 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3519 size_t size, gfp_t flags)
3520 {
3521 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3522 }
3523
get_extra_isize(struct inode * inode)3524 static inline int get_extra_isize(struct inode *inode)
3525 {
3526 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3527 }
3528
get_inline_xattr_addrs(struct inode * inode)3529 static inline int get_inline_xattr_addrs(struct inode *inode)
3530 {
3531 return F2FS_I(inode)->i_inline_xattr_size;
3532 }
3533
3534 #define f2fs_get_inode_mode(i) \
3535 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3536 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3537
3538 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32))
3539
3540 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3541 (offsetof(struct f2fs_inode, i_extra_end) - \
3542 offsetof(struct f2fs_inode, i_extra_isize)) \
3543
3544 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3545 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3546 ((offsetof(typeof(*(f2fs_inode)), field) + \
3547 sizeof((f2fs_inode)->field)) \
3548 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3549
3550 #define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1)
3551
3552 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3553
3554 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3555 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3556 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3557 block_t blkaddr, int type)
3558 {
3559 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3560 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3561 blkaddr, type);
3562 }
3563
__is_valid_data_blkaddr(block_t blkaddr)3564 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3565 {
3566 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3567 blkaddr == COMPRESS_ADDR)
3568 return false;
3569 return true;
3570 }
3571
3572 /*
3573 * file.c
3574 */
3575 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3576 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3577 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3578 int f2fs_truncate(struct inode *inode);
3579 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3580 struct kstat *stat, u32 request_mask, unsigned int flags);
3581 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3582 struct iattr *attr);
3583 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3584 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3585 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3586 bool readonly, bool need_lock);
3587 int f2fs_precache_extents(struct inode *inode);
3588 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3589 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3590 struct dentry *dentry, struct fileattr *fa);
3591 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3592 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3593 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3594 int f2fs_pin_file_control(struct inode *inode, bool inc);
3595
3596 /*
3597 * inode.c
3598 */
3599 void f2fs_set_inode_flags(struct inode *inode);
3600 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3601 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3602 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3603 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3604 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3605 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3606 void f2fs_update_inode_page(struct inode *inode);
3607 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3608 void f2fs_evict_inode(struct inode *inode);
3609 void f2fs_handle_failed_inode(struct inode *inode);
3610
3611 /*
3612 * namei.c
3613 */
3614 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3615 bool hot, bool set);
3616 struct dentry *f2fs_get_parent(struct dentry *child);
3617 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3618 struct inode **new_inode);
3619
3620 /*
3621 * dir.c
3622 */
3623 #if IS_ENABLED(CONFIG_UNICODE)
3624 int f2fs_init_casefolded_name(const struct inode *dir,
3625 struct f2fs_filename *fname);
3626 void f2fs_free_casefolded_name(struct f2fs_filename *fname);
3627 #else
f2fs_init_casefolded_name(const struct inode * dir,struct f2fs_filename * fname)3628 static inline int f2fs_init_casefolded_name(const struct inode *dir,
3629 struct f2fs_filename *fname)
3630 {
3631 return 0;
3632 }
3633
f2fs_free_casefolded_name(struct f2fs_filename * fname)3634 static inline void f2fs_free_casefolded_name(struct f2fs_filename *fname)
3635 {
3636 }
3637 #endif /* CONFIG_UNICODE */
3638
3639 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3640 int lookup, struct f2fs_filename *fname);
3641 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3642 struct f2fs_filename *fname);
3643 void f2fs_free_filename(struct f2fs_filename *fname);
3644 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3645 const struct f2fs_filename *fname, int *max_slots,
3646 bool use_hash);
3647 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3648 unsigned int start_pos, struct fscrypt_str *fstr);
3649 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3650 struct f2fs_dentry_ptr *d);
3651 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3652 const struct f2fs_filename *fname, struct page *dpage);
3653 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3654 unsigned int current_depth);
3655 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3656 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3657 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3658 const struct f2fs_filename *fname,
3659 struct page **res_page);
3660 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3661 const struct qstr *child, struct page **res_page);
3662 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3663 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3664 struct page **page);
3665 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3666 struct page *page, struct inode *inode);
3667 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3668 const struct f2fs_filename *fname);
3669 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3670 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3671 unsigned int bit_pos);
3672 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3673 struct inode *inode, nid_t ino, umode_t mode);
3674 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3675 struct inode *inode, nid_t ino, umode_t mode);
3676 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3677 struct inode *inode, nid_t ino, umode_t mode);
3678 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3679 struct inode *dir, struct inode *inode);
3680 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3681 struct f2fs_filename *fname);
3682 bool f2fs_empty_dir(struct inode *dir);
3683
f2fs_add_link(struct dentry * dentry,struct inode * inode)3684 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3685 {
3686 if (fscrypt_is_nokey_name(dentry))
3687 return -ENOKEY;
3688 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3689 inode, inode->i_ino, inode->i_mode);
3690 }
3691
3692 /*
3693 * super.c
3694 */
3695 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3696 void f2fs_inode_synced(struct inode *inode);
3697 int f2fs_dquot_initialize(struct inode *inode);
3698 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3699 int f2fs_do_quota_sync(struct super_block *sb, int type);
3700 loff_t max_file_blocks(struct inode *inode);
3701 void f2fs_quota_off_umount(struct super_block *sb);
3702 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3703 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason);
3704 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3705 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3706 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3707 int f2fs_sync_fs(struct super_block *sb, int sync);
3708 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3709
3710 /*
3711 * hash.c
3712 */
3713 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3714
3715 /*
3716 * node.c
3717 */
3718 struct node_info;
3719
3720 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3721 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3722 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi,
3723 const struct folio *folio);
3724 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3725 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3726 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3727 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3728 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3729 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3730 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3731 struct node_info *ni, bool checkpoint_context);
3732 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3733 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3734 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3735 int f2fs_truncate_xattr_node(struct inode *inode);
3736 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3737 unsigned int seq_id);
3738 int f2fs_remove_inode_page(struct inode *inode);
3739 struct page *f2fs_new_inode_page(struct inode *inode);
3740 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3741 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3742 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3743 struct folio *f2fs_get_inode_folio(struct f2fs_sb_info *sbi, pgoff_t ino);
3744 struct page *f2fs_get_inode_page(struct f2fs_sb_info *sbi, pgoff_t ino);
3745 struct page *f2fs_get_xnode_page(struct f2fs_sb_info *sbi, pgoff_t xnid);
3746 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3747 int f2fs_move_node_page(struct page *node_page, int gc_type);
3748 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3749 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3750 struct writeback_control *wbc, bool atomic,
3751 unsigned int *seq_id);
3752 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3753 struct writeback_control *wbc,
3754 bool do_balance, enum iostat_type io_type);
3755 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3756 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3757 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3758 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3759 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3760 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3761 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3762 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3763 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3764 unsigned int segno, struct f2fs_summary_block *sum);
3765 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3766 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3767 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3768 int __init f2fs_create_node_manager_caches(void);
3769 void f2fs_destroy_node_manager_caches(void);
3770
3771 /*
3772 * segment.c
3773 */
3774 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3775 int f2fs_commit_atomic_write(struct inode *inode);
3776 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3777 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3778 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3779 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3780 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3781 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3782 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3783 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
3784 unsigned int len);
3785 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3786 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3787 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3788 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3789 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3790 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3791 struct cp_control *cpc);
3792 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3793 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3794 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3795 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3796 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3797 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3798 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3799 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi);
3800 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3801 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3802 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3803 unsigned int start, unsigned int end);
3804 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3805 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3806 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3807 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3808 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3809 struct cp_control *cpc);
3810 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3811 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3812 block_t blk_addr);
3813 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3814 enum iostat_type io_type);
3815 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3816 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3817 struct f2fs_io_info *fio);
3818 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3819 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3820 block_t old_blkaddr, block_t new_blkaddr,
3821 bool recover_curseg, bool recover_newaddr,
3822 bool from_gc);
3823 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3824 block_t old_addr, block_t new_addr,
3825 unsigned char version, bool recover_curseg,
3826 bool recover_newaddr);
3827 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3828 enum log_type seg_type);
3829 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3830 block_t old_blkaddr, block_t *new_blkaddr,
3831 struct f2fs_summary *sum, int type,
3832 struct f2fs_io_info *fio);
3833 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3834 block_t blkaddr, unsigned int blkcnt);
3835 void f2fs_folio_wait_writeback(struct folio *folio, enum page_type type,
3836 bool ordered, bool locked);
3837 #define f2fs_wait_on_page_writeback(page, type, ordered, locked) \
3838 f2fs_folio_wait_writeback(page_folio(page), type, ordered, locked)
3839 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3840 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3841 block_t len);
3842 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3843 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3844 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3845 unsigned int val, int alloc);
3846 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3847 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi);
3848 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3849 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3850 int __init f2fs_create_segment_manager_caches(void);
3851 void f2fs_destroy_segment_manager_caches(void);
3852 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint);
3853 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3854 enum page_type type, enum temp_type temp);
3855 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi);
3856 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3857 unsigned int segno);
3858 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
3859 unsigned int segno);
3860
3861 #define DEF_FRAGMENT_SIZE 4
3862 #define MIN_FRAGMENT_SIZE 1
3863 #define MAX_FRAGMENT_SIZE 512
3864
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3865 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3866 {
3867 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3868 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3869 }
3870
3871 /*
3872 * checkpoint.c
3873 */
3874 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3875 unsigned char reason);
3876 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3877 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3878 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3879 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3880 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3881 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3882 block_t blkaddr, int type);
3883 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3884 block_t blkaddr, int type);
3885 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3886 int type, bool sync);
3887 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3888 unsigned int ra_blocks);
3889 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3890 long nr_to_write, enum iostat_type io_type);
3891 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3892 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3893 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3894 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3895 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3896 unsigned int devidx, int type);
3897 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3898 unsigned int devidx, int type);
3899 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3900 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3901 void f2fs_add_orphan_inode(struct inode *inode);
3902 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3903 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3904 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3905 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3906 void f2fs_remove_dirty_inode(struct inode *inode);
3907 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3908 bool from_cp);
3909 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3910 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3911 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3912 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3913 int __init f2fs_create_checkpoint_caches(void);
3914 void f2fs_destroy_checkpoint_caches(void);
3915 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3916 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3917 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3918 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3919
3920 /*
3921 * data.c
3922 */
3923 int __init f2fs_init_bioset(void);
3924 void f2fs_destroy_bioset(void);
3925 bool f2fs_is_cp_guaranteed(struct page *page);
3926 int f2fs_init_bio_entry_cache(void);
3927 void f2fs_destroy_bio_entry_cache(void);
3928 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3929 enum page_type type);
3930 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3931 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3932 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3933 struct inode *inode, struct page *page,
3934 nid_t ino, enum page_type type);
3935 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3936 struct bio **bio, struct page *page);
3937 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3938 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3939 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3940 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3941 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3942 block_t blk_addr, sector_t *sector);
3943 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3944 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3945 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3946 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3947 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3948 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3949 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3950 struct folio *f2fs_get_read_data_folio(struct inode *inode, pgoff_t index,
3951 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3952 struct folio *f2fs_find_data_folio(struct inode *inode, pgoff_t index,
3953 pgoff_t *next_pgofs);
3954 struct folio *f2fs_get_lock_data_folio(struct inode *inode, pgoff_t index,
3955 bool for_write);
3956 struct page *f2fs_get_new_data_page(struct inode *inode,
3957 struct page *ipage, pgoff_t index, bool new_i_size);
3958 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3959 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3960 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3961 u64 start, u64 len);
3962 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3963 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3964 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3965 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
3966 struct bio **bio, sector_t *last_block,
3967 struct writeback_control *wbc,
3968 enum iostat_type io_type,
3969 int compr_blocks, bool allow_balance);
3970 void f2fs_write_failed(struct inode *inode, loff_t to);
3971 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3972 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3973 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3974 void f2fs_clear_page_cache_dirty_tag(struct folio *folio);
3975 int f2fs_init_post_read_processing(void);
3976 void f2fs_destroy_post_read_processing(void);
3977 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3978 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3979 extern const struct iomap_ops f2fs_iomap_ops;
3980
f2fs_find_data_page(struct inode * inode,pgoff_t index,pgoff_t * next_pgofs)3981 static inline struct page *f2fs_find_data_page(struct inode *inode,
3982 pgoff_t index, pgoff_t *next_pgofs)
3983 {
3984 struct folio *folio = f2fs_find_data_folio(inode, index, next_pgofs);
3985
3986 return &folio->page;
3987 }
3988
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)3989 static inline struct page *f2fs_get_lock_data_page(struct inode *inode,
3990 pgoff_t index, bool for_write)
3991 {
3992 struct folio *folio = f2fs_get_lock_data_folio(inode, index, for_write);
3993
3994 return &folio->page;
3995 }
3996
3997 /*
3998 * gc.c
3999 */
4000 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
4001 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
4002 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
4003 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
4004 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
4005 int f2fs_gc_range(struct f2fs_sb_info *sbi,
4006 unsigned int start_seg, unsigned int end_seg,
4007 bool dry_run, unsigned int dry_run_sections);
4008 int f2fs_resize_fs(struct file *filp, __u64 block_count);
4009 int __init f2fs_create_garbage_collection_cache(void);
4010 void f2fs_destroy_garbage_collection_cache(void);
4011 /* victim selection function for cleaning and SSR */
4012 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
4013 int gc_type, int type, char alloc_mode,
4014 unsigned long long age, bool one_time);
4015
4016 /*
4017 * recovery.c
4018 */
4019 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
4020 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
4021 int __init f2fs_create_recovery_cache(void);
4022 void f2fs_destroy_recovery_cache(void);
4023
4024 /*
4025 * debug.c
4026 */
4027 #ifdef CONFIG_F2FS_STAT_FS
4028 enum {
4029 DEVSTAT_INUSE,
4030 DEVSTAT_DIRTY,
4031 DEVSTAT_FULL,
4032 DEVSTAT_FREE,
4033 DEVSTAT_PREFREE,
4034 DEVSTAT_MAX,
4035 };
4036
4037 struct f2fs_dev_stats {
4038 unsigned int devstats[2][DEVSTAT_MAX]; /* 0: segs, 1: secs */
4039 };
4040
4041 struct f2fs_stat_info {
4042 struct list_head stat_list;
4043 struct f2fs_sb_info *sbi;
4044 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
4045 int main_area_segs, main_area_sections, main_area_zones;
4046 unsigned long long hit_cached[NR_EXTENT_CACHES];
4047 unsigned long long hit_rbtree[NR_EXTENT_CACHES];
4048 unsigned long long total_ext[NR_EXTENT_CACHES];
4049 unsigned long long hit_total[NR_EXTENT_CACHES];
4050 int ext_tree[NR_EXTENT_CACHES];
4051 int zombie_tree[NR_EXTENT_CACHES];
4052 int ext_node[NR_EXTENT_CACHES];
4053 /* to count memory footprint */
4054 unsigned long long ext_mem[NR_EXTENT_CACHES];
4055 /* for read extent cache */
4056 unsigned long long hit_largest;
4057 /* for block age extent cache */
4058 unsigned long long allocated_data_blocks;
4059 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
4060 int ndirty_data, ndirty_qdata;
4061 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
4062 unsigned int nquota_files, ndonate_files;
4063 int nats, dirty_nats, sits, dirty_sits;
4064 int free_nids, avail_nids, alloc_nids;
4065 int total_count, utilization;
4066 int nr_wb_cp_data, nr_wb_data;
4067 int nr_rd_data, nr_rd_node, nr_rd_meta;
4068 int nr_dio_read, nr_dio_write;
4069 unsigned int io_skip_bggc, other_skip_bggc;
4070 int nr_flushing, nr_flushed, flush_list_empty;
4071 int nr_discarding, nr_discarded;
4072 int nr_discard_cmd;
4073 unsigned int undiscard_blks;
4074 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
4075 unsigned int cur_ckpt_time, peak_ckpt_time;
4076 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
4077 int compr_inode, swapfile_inode;
4078 unsigned long long compr_blocks;
4079 int aw_cnt, max_aw_cnt;
4080 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
4081 unsigned int bimodal, avg_vblocks;
4082 int util_free, util_valid, util_invalid;
4083 int rsvd_segs, overp_segs;
4084 int dirty_count, node_pages, meta_pages, compress_pages;
4085 int compress_page_hit;
4086 int prefree_count, free_segs, free_secs;
4087 int cp_call_count[MAX_CALL_TYPE], cp_count;
4088 int gc_call_count[MAX_CALL_TYPE];
4089 int gc_segs[2][2];
4090 int gc_secs[2][2];
4091 int tot_blks, data_blks, node_blks;
4092 int bg_data_blks, bg_node_blks;
4093 int curseg[NR_CURSEG_TYPE];
4094 int cursec[NR_CURSEG_TYPE];
4095 int curzone[NR_CURSEG_TYPE];
4096 unsigned int dirty_seg[NR_CURSEG_TYPE];
4097 unsigned int full_seg[NR_CURSEG_TYPE];
4098 unsigned int valid_blks[NR_CURSEG_TYPE];
4099
4100 unsigned int meta_count[META_MAX];
4101 unsigned int segment_count[2];
4102 unsigned int block_count[2];
4103 unsigned int inplace_count;
4104 unsigned long long base_mem, cache_mem, page_mem;
4105 struct f2fs_dev_stats *dev_stats;
4106 };
4107
F2FS_STAT(struct f2fs_sb_info * sbi)4108 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
4109 {
4110 return (struct f2fs_stat_info *)sbi->stat_info;
4111 }
4112
4113 #define stat_inc_cp_call_count(sbi, foreground) \
4114 atomic_inc(&sbi->cp_call_count[(foreground)])
4115 #define stat_inc_cp_count(sbi) (F2FS_STAT(sbi)->cp_count++)
4116 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
4117 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
4118 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
4119 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
4120 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type]))
4121 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type]))
4122 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
4123 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type]))
4124 #define stat_inc_inline_xattr(inode) \
4125 do { \
4126 if (f2fs_has_inline_xattr(inode)) \
4127 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
4128 } while (0)
4129 #define stat_dec_inline_xattr(inode) \
4130 do { \
4131 if (f2fs_has_inline_xattr(inode)) \
4132 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
4133 } while (0)
4134 #define stat_inc_inline_inode(inode) \
4135 do { \
4136 if (f2fs_has_inline_data(inode)) \
4137 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
4138 } while (0)
4139 #define stat_dec_inline_inode(inode) \
4140 do { \
4141 if (f2fs_has_inline_data(inode)) \
4142 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
4143 } while (0)
4144 #define stat_inc_inline_dir(inode) \
4145 do { \
4146 if (f2fs_has_inline_dentry(inode)) \
4147 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
4148 } while (0)
4149 #define stat_dec_inline_dir(inode) \
4150 do { \
4151 if (f2fs_has_inline_dentry(inode)) \
4152 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
4153 } while (0)
4154 #define stat_inc_compr_inode(inode) \
4155 do { \
4156 if (f2fs_compressed_file(inode)) \
4157 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
4158 } while (0)
4159 #define stat_dec_compr_inode(inode) \
4160 do { \
4161 if (f2fs_compressed_file(inode)) \
4162 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
4163 } while (0)
4164 #define stat_add_compr_blocks(inode, blocks) \
4165 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4166 #define stat_sub_compr_blocks(inode, blocks) \
4167 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4168 #define stat_inc_swapfile_inode(inode) \
4169 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4170 #define stat_dec_swapfile_inode(inode) \
4171 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4172 #define stat_inc_atomic_inode(inode) \
4173 (atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4174 #define stat_dec_atomic_inode(inode) \
4175 (atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4176 #define stat_inc_meta_count(sbi, blkaddr) \
4177 do { \
4178 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
4179 atomic_inc(&(sbi)->meta_count[META_CP]); \
4180 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
4181 atomic_inc(&(sbi)->meta_count[META_SIT]); \
4182 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
4183 atomic_inc(&(sbi)->meta_count[META_NAT]); \
4184 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
4185 atomic_inc(&(sbi)->meta_count[META_SSA]); \
4186 } while (0)
4187 #define stat_inc_seg_type(sbi, curseg) \
4188 ((sbi)->segment_count[(curseg)->alloc_type]++)
4189 #define stat_inc_block_count(sbi, curseg) \
4190 ((sbi)->block_count[(curseg)->alloc_type]++)
4191 #define stat_inc_inplace_blocks(sbi) \
4192 (atomic_inc(&(sbi)->inplace_count))
4193 #define stat_update_max_atomic_write(inode) \
4194 do { \
4195 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
4196 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
4197 if (cur > max) \
4198 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
4199 } while (0)
4200 #define stat_inc_gc_call_count(sbi, foreground) \
4201 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4202 #define stat_inc_gc_sec_count(sbi, type, gc_type) \
4203 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4204 #define stat_inc_gc_seg_count(sbi, type, gc_type) \
4205 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4206
4207 #define stat_inc_tot_blk_count(si, blks) \
4208 ((si)->tot_blks += (blks))
4209
4210 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
4211 do { \
4212 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4213 stat_inc_tot_blk_count(si, blks); \
4214 si->data_blks += (blks); \
4215 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4216 } while (0)
4217
4218 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
4219 do { \
4220 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4221 stat_inc_tot_blk_count(si, blks); \
4222 si->node_blks += (blks); \
4223 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4224 } while (0)
4225
4226 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4227 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4228 void __init f2fs_create_root_stats(void);
4229 void f2fs_destroy_root_stats(void);
4230 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4231 #else
4232 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0)
4233 #define stat_inc_cp_count(sbi) do { } while (0)
4234 #define stat_io_skip_bggc_count(sbi) do { } while (0)
4235 #define stat_other_skip_bggc_count(sbi) do { } while (0)
4236 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
4237 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
4238 #define stat_inc_total_hit(sbi, type) do { } while (0)
4239 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0)
4240 #define stat_inc_largest_node_hit(sbi) do { } while (0)
4241 #define stat_inc_cached_node_hit(sbi, type) do { } while (0)
4242 #define stat_inc_inline_xattr(inode) do { } while (0)
4243 #define stat_dec_inline_xattr(inode) do { } while (0)
4244 #define stat_inc_inline_inode(inode) do { } while (0)
4245 #define stat_dec_inline_inode(inode) do { } while (0)
4246 #define stat_inc_inline_dir(inode) do { } while (0)
4247 #define stat_dec_inline_dir(inode) do { } while (0)
4248 #define stat_inc_compr_inode(inode) do { } while (0)
4249 #define stat_dec_compr_inode(inode) do { } while (0)
4250 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
4251 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4252 #define stat_inc_swapfile_inode(inode) do { } while (0)
4253 #define stat_dec_swapfile_inode(inode) do { } while (0)
4254 #define stat_inc_atomic_inode(inode) do { } while (0)
4255 #define stat_dec_atomic_inode(inode) do { } while (0)
4256 #define stat_update_max_atomic_write(inode) do { } while (0)
4257 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4258 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
4259 #define stat_inc_block_count(sbi, curseg) do { } while (0)
4260 #define stat_inc_inplace_blocks(sbi) do { } while (0)
4261 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0)
4262 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0)
4263 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0)
4264 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
4265 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4266 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4267
f2fs_build_stats(struct f2fs_sb_info * sbi)4268 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4269 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4270 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4271 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4272 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4273 #endif
4274
4275 extern const struct file_operations f2fs_dir_operations;
4276 extern const struct file_operations f2fs_file_operations;
4277 extern const struct inode_operations f2fs_file_inode_operations;
4278 extern const struct address_space_operations f2fs_dblock_aops;
4279 extern const struct address_space_operations f2fs_node_aops;
4280 extern const struct address_space_operations f2fs_meta_aops;
4281 extern const struct inode_operations f2fs_dir_inode_operations;
4282 extern const struct inode_operations f2fs_symlink_inode_operations;
4283 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4284 extern const struct inode_operations f2fs_special_inode_operations;
4285 extern struct kmem_cache *f2fs_inode_entry_slab;
4286
4287 /*
4288 * inline.c
4289 */
4290 bool f2fs_may_inline_data(struct inode *inode);
4291 bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage);
4292 bool f2fs_may_inline_dentry(struct inode *inode);
4293 void f2fs_do_read_inline_data(struct folio *folio, struct page *ipage);
4294 void f2fs_truncate_inline_inode(struct inode *inode,
4295 struct page *ipage, u64 from);
4296 int f2fs_read_inline_data(struct inode *inode, struct folio *folio);
4297 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4298 int f2fs_convert_inline_inode(struct inode *inode);
4299 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4300 int f2fs_write_inline_data(struct inode *inode, struct folio *folio);
4301 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4302 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4303 const struct f2fs_filename *fname,
4304 struct page **res_page,
4305 bool use_hash);
4306 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4307 struct page *ipage);
4308 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4309 struct inode *inode, nid_t ino, umode_t mode);
4310 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4311 struct page *page, struct inode *dir,
4312 struct inode *inode);
4313 bool f2fs_empty_inline_dir(struct inode *dir);
4314 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4315 struct fscrypt_str *fstr);
4316 int f2fs_inline_data_fiemap(struct inode *inode,
4317 struct fiemap_extent_info *fieinfo,
4318 __u64 start, __u64 len);
4319
4320 /*
4321 * shrinker.c
4322 */
4323 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4324 struct shrink_control *sc);
4325 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4326 struct shrink_control *sc);
4327 unsigned int f2fs_donate_files(void);
4328 void f2fs_reclaim_caches(unsigned int reclaim_caches_kb);
4329 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4330 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4331
4332 /*
4333 * extent_cache.c
4334 */
4335 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage);
4336 void f2fs_init_extent_tree(struct inode *inode);
4337 void f2fs_drop_extent_tree(struct inode *inode);
4338 void f2fs_destroy_extent_node(struct inode *inode);
4339 void f2fs_destroy_extent_tree(struct inode *inode);
4340 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4341 int __init f2fs_create_extent_cache(void);
4342 void f2fs_destroy_extent_cache(void);
4343
4344 /* read extent cache ops */
4345 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4346 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4347 struct extent_info *ei);
4348 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4349 block_t *blkaddr);
4350 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4351 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4352 pgoff_t fofs, block_t blkaddr, unsigned int len);
4353 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4354 int nr_shrink);
4355
4356 /* block age extent cache ops */
4357 void f2fs_init_age_extent_tree(struct inode *inode);
4358 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4359 struct extent_info *ei);
4360 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4361 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4362 pgoff_t fofs, unsigned int len);
4363 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4364 int nr_shrink);
4365
4366 /*
4367 * sysfs.c
4368 */
4369 #define MIN_RA_MUL 2
4370 #define MAX_RA_MUL 256
4371
4372 int __init f2fs_init_sysfs(void);
4373 void f2fs_exit_sysfs(void);
4374 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4375 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4376
4377 /* verity.c */
4378 extern const struct fsverity_operations f2fs_verityops;
4379
4380 /*
4381 * crypto support
4382 */
f2fs_encrypted_file(struct inode * inode)4383 static inline bool f2fs_encrypted_file(struct inode *inode)
4384 {
4385 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4386 }
4387
f2fs_set_encrypted_inode(struct inode * inode)4388 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4389 {
4390 #ifdef CONFIG_FS_ENCRYPTION
4391 file_set_encrypt(inode);
4392 f2fs_set_inode_flags(inode);
4393 #endif
4394 }
4395
4396 /*
4397 * Returns true if the reads of the inode's data need to undergo some
4398 * postprocessing step, like decryption or authenticity verification.
4399 */
f2fs_post_read_required(struct inode * inode)4400 static inline bool f2fs_post_read_required(struct inode *inode)
4401 {
4402 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4403 f2fs_compressed_file(inode);
4404 }
4405
f2fs_used_in_atomic_write(struct inode * inode)4406 static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4407 {
4408 return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4409 }
4410
f2fs_meta_inode_gc_required(struct inode * inode)4411 static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4412 {
4413 return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4414 }
4415
4416 /*
4417 * compress.c
4418 */
4419 #ifdef CONFIG_F2FS_FS_COMPRESSION
4420 enum cluster_check_type {
4421 CLUSTER_IS_COMPR, /* check only if compressed cluster */
4422 CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */
4423 CLUSTER_RAW_BLKS /* return # of raw blocks in a cluster */
4424 };
4425 bool f2fs_is_compressed_page(struct page *page);
4426 struct page *f2fs_compress_control_page(struct page *page);
4427 int f2fs_prepare_compress_overwrite(struct inode *inode,
4428 struct page **pagep, pgoff_t index, void **fsdata);
4429 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4430 pgoff_t index, unsigned copied);
4431 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4432 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4433 bool f2fs_is_compress_backend_ready(struct inode *inode);
4434 bool f2fs_is_compress_level_valid(int alg, int lvl);
4435 int __init f2fs_init_compress_mempool(void);
4436 void f2fs_destroy_compress_mempool(void);
4437 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4438 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4439 block_t blkaddr, bool in_task);
4440 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4441 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4442 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4443 int index, int nr_pages, bool uptodate);
4444 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4445 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio);
4446 int f2fs_write_multi_pages(struct compress_ctx *cc,
4447 int *submitted,
4448 struct writeback_control *wbc,
4449 enum iostat_type io_type);
4450 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4451 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index);
4452 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4453 pgoff_t fofs, block_t blkaddr,
4454 unsigned int llen, unsigned int c_len);
4455 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4456 unsigned nr_pages, sector_t *last_block_in_bio,
4457 struct readahead_control *rac, bool for_write);
4458 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4459 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4460 bool in_task);
4461 void f2fs_put_page_dic(struct page *page, bool in_task);
4462 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4463 unsigned int ofs_in_node);
4464 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4465 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4466 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4467 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4468 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4469 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4470 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4471 int __init f2fs_init_compress_cache(void);
4472 void f2fs_destroy_compress_cache(void);
4473 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4474 void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
4475 block_t blkaddr, unsigned int len);
4476 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4477 nid_t ino, block_t blkaddr);
4478 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4479 block_t blkaddr);
4480 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4481 #define inc_compr_inode_stat(inode) \
4482 do { \
4483 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4484 sbi->compr_new_inode++; \
4485 } while (0)
4486 #define add_compr_block_stat(inode, blocks) \
4487 do { \
4488 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4489 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4490 sbi->compr_written_block += blocks; \
4491 sbi->compr_saved_block += diff; \
4492 } while (0)
4493 #else
f2fs_is_compressed_page(struct page * page)4494 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4495 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4496 {
4497 if (!f2fs_compressed_file(inode))
4498 return true;
4499 /* not support compression */
4500 return false;
4501 }
f2fs_is_compress_level_valid(int alg,int lvl)4502 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_page(struct page * page)4503 static inline struct page *f2fs_compress_control_page(struct page *page)
4504 {
4505 WARN_ON_ONCE(1);
4506 return ERR_PTR(-EINVAL);
4507 }
f2fs_init_compress_mempool(void)4508 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4509 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4510 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4511 bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4512 static inline void f2fs_end_read_compressed_page(struct page *page,
4513 bool failed, block_t blkaddr, bool in_task)
4514 {
4515 WARN_ON_ONCE(1);
4516 }
f2fs_put_page_dic(struct page * page,bool in_task)4517 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4518 {
4519 WARN_ON_ONCE(1);
4520 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)4521 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4522 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4523 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4524 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4525 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4526 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4527 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4528 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4529 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_pages_range(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)4530 static inline void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
4531 block_t blkaddr, unsigned int len) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4532 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4533 struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4534 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4535 struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4536 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4537 nid_t ino) { }
4538 #define inc_compr_inode_stat(inode) do { } while (0)
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)4539 static inline int f2fs_is_compressed_cluster(
4540 struct inode *inode,
4541 pgoff_t index) { return 0; }
f2fs_is_sparse_cluster(struct inode * inode,pgoff_t index)4542 static inline bool f2fs_is_sparse_cluster(
4543 struct inode *inode,
4544 pgoff_t index) { return true; }
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4545 static inline void f2fs_update_read_extent_tree_range_compressed(
4546 struct inode *inode,
4547 pgoff_t fofs, block_t blkaddr,
4548 unsigned int llen, unsigned int c_len) { }
4549 #endif
4550
set_compress_context(struct inode * inode)4551 static inline int set_compress_context(struct inode *inode)
4552 {
4553 #ifdef CONFIG_F2FS_FS_COMPRESSION
4554 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4555 struct f2fs_inode_info *fi = F2FS_I(inode);
4556
4557 fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm;
4558 fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size;
4559 fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ?
4560 BIT(COMPRESS_CHKSUM) : 0;
4561 fi->i_cluster_size = BIT(fi->i_log_cluster_size);
4562 if ((fi->i_compress_algorithm == COMPRESS_LZ4 ||
4563 fi->i_compress_algorithm == COMPRESS_ZSTD) &&
4564 F2FS_OPTION(sbi).compress_level)
4565 fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4566 fi->i_flags |= F2FS_COMPR_FL;
4567 set_inode_flag(inode, FI_COMPRESSED_FILE);
4568 stat_inc_compr_inode(inode);
4569 inc_compr_inode_stat(inode);
4570 f2fs_mark_inode_dirty_sync(inode, true);
4571 return 0;
4572 #else
4573 return -EOPNOTSUPP;
4574 #endif
4575 }
4576
f2fs_disable_compressed_file(struct inode * inode)4577 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4578 {
4579 struct f2fs_inode_info *fi = F2FS_I(inode);
4580
4581 f2fs_down_write(&fi->i_sem);
4582
4583 if (!f2fs_compressed_file(inode)) {
4584 f2fs_up_write(&fi->i_sem);
4585 return true;
4586 }
4587 if (f2fs_is_mmap_file(inode) ||
4588 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4589 f2fs_up_write(&fi->i_sem);
4590 return false;
4591 }
4592
4593 fi->i_flags &= ~F2FS_COMPR_FL;
4594 stat_dec_compr_inode(inode);
4595 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4596 f2fs_mark_inode_dirty_sync(inode, true);
4597
4598 f2fs_up_write(&fi->i_sem);
4599 return true;
4600 }
4601
4602 #define F2FS_FEATURE_FUNCS(name, flagname) \
4603 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4604 { \
4605 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4606 }
4607
4608 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4609 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4610 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4611 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4612 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4613 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4614 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4615 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4616 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4617 F2FS_FEATURE_FUNCS(verity, VERITY);
4618 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4619 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4620 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4621 F2FS_FEATURE_FUNCS(readonly, RO);
4622 F2FS_FEATURE_FUNCS(device_alias, DEVICE_ALIAS);
4623
4624 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4625 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4626 block_t blkaddr)
4627 {
4628 unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4629
4630 return test_bit(zno, FDEV(devi).blkz_seq);
4631 }
4632 #endif
4633
f2fs_bdev_index(struct f2fs_sb_info * sbi,struct block_device * bdev)4634 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4635 struct block_device *bdev)
4636 {
4637 int i;
4638
4639 if (!f2fs_is_multi_device(sbi))
4640 return 0;
4641
4642 for (i = 0; i < sbi->s_ndevs; i++)
4643 if (FDEV(i).bdev == bdev)
4644 return i;
4645
4646 WARN_ON(1);
4647 return -1;
4648 }
4649
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4650 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4651 {
4652 return f2fs_sb_has_blkzoned(sbi);
4653 }
4654
f2fs_bdev_support_discard(struct block_device * bdev)4655 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4656 {
4657 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4658 }
4659
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4660 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4661 {
4662 int i;
4663
4664 if (!f2fs_is_multi_device(sbi))
4665 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4666
4667 for (i = 0; i < sbi->s_ndevs; i++)
4668 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4669 return true;
4670 return false;
4671 }
4672
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4673 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4674 {
4675 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4676 f2fs_hw_should_discard(sbi);
4677 }
4678
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4679 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4680 {
4681 int i;
4682
4683 if (!f2fs_is_multi_device(sbi))
4684 return bdev_read_only(sbi->sb->s_bdev);
4685
4686 for (i = 0; i < sbi->s_ndevs; i++)
4687 if (bdev_read_only(FDEV(i).bdev))
4688 return true;
4689 return false;
4690 }
4691
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4692 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4693 {
4694 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4695 }
4696
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4697 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4698 {
4699 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4700 }
4701
f2fs_valid_pinned_area(struct f2fs_sb_info * sbi,block_t blkaddr)4702 static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4703 block_t blkaddr)
4704 {
4705 if (f2fs_sb_has_blkzoned(sbi)) {
4706 int devi = f2fs_target_device_index(sbi, blkaddr);
4707
4708 return !bdev_is_zoned(FDEV(devi).bdev);
4709 }
4710 return true;
4711 }
4712
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4713 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4714 {
4715 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4716 }
4717
f2fs_may_compress(struct inode * inode)4718 static inline bool f2fs_may_compress(struct inode *inode)
4719 {
4720 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4721 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4722 f2fs_is_mmap_file(inode))
4723 return false;
4724 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4725 }
4726
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4727 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4728 u64 blocks, bool add)
4729 {
4730 struct f2fs_inode_info *fi = F2FS_I(inode);
4731 int diff = fi->i_cluster_size - blocks;
4732
4733 /* don't update i_compr_blocks if saved blocks were released */
4734 if (!add && !atomic_read(&fi->i_compr_blocks))
4735 return;
4736
4737 if (add) {
4738 atomic_add(diff, &fi->i_compr_blocks);
4739 stat_add_compr_blocks(inode, diff);
4740 } else {
4741 atomic_sub(diff, &fi->i_compr_blocks);
4742 stat_sub_compr_blocks(inode, diff);
4743 }
4744 f2fs_mark_inode_dirty_sync(inode, true);
4745 }
4746
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4747 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4748 int flag)
4749 {
4750 if (!f2fs_is_multi_device(sbi))
4751 return false;
4752 if (flag != F2FS_GET_BLOCK_DIO)
4753 return false;
4754 return sbi->aligned_blksize;
4755 }
4756
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4757 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4758 {
4759 return fsverity_active(inode) &&
4760 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4761 }
4762
4763 #ifdef CONFIG_F2FS_FAULT_INJECTION
4764 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4765 unsigned long type);
4766 #else
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type)4767 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4768 unsigned long rate, unsigned long type)
4769 {
4770 return 0;
4771 }
4772 #endif
4773
is_journalled_quota(struct f2fs_sb_info * sbi)4774 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4775 {
4776 #ifdef CONFIG_QUOTA
4777 if (f2fs_sb_has_quota_ino(sbi))
4778 return true;
4779 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4780 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4781 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4782 return true;
4783 #endif
4784 return false;
4785 }
4786
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4787 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4788 {
4789 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4790 }
4791
f2fs_io_schedule_timeout(long timeout)4792 static inline void f2fs_io_schedule_timeout(long timeout)
4793 {
4794 set_current_state(TASK_UNINTERRUPTIBLE);
4795 io_schedule_timeout(timeout);
4796 }
4797
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,struct folio * folio,enum page_type type)4798 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi,
4799 struct folio *folio, enum page_type type)
4800 {
4801 pgoff_t ofs = folio->index;
4802
4803 if (unlikely(f2fs_cp_error(sbi)))
4804 return;
4805
4806 if (ofs == sbi->page_eio_ofs[type]) {
4807 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4808 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4809 } else {
4810 sbi->page_eio_ofs[type] = ofs;
4811 sbi->page_eio_cnt[type] = 0;
4812 }
4813 }
4814
f2fs_is_readonly(struct f2fs_sb_info * sbi)4815 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4816 {
4817 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4818 }
4819
f2fs_truncate_meta_inode_pages(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int cnt)4820 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4821 block_t blkaddr, unsigned int cnt)
4822 {
4823 bool need_submit = false;
4824 int i = 0;
4825
4826 do {
4827 struct page *page;
4828
4829 page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4830 if (page) {
4831 if (folio_test_writeback(page_folio(page)))
4832 need_submit = true;
4833 f2fs_put_page(page, 0);
4834 }
4835 } while (++i < cnt && !need_submit);
4836
4837 if (need_submit)
4838 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4839 NULL, 0, DATA);
4840
4841 truncate_inode_pages_range(META_MAPPING(sbi),
4842 F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4843 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4844 }
4845
f2fs_invalidate_internal_cache(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)4846 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4847 block_t blkaddr, unsigned int len)
4848 {
4849 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4850 f2fs_invalidate_compress_pages_range(sbi, blkaddr, len);
4851 }
4852
4853 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4854 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4855
4856 #endif /* _LINUX_F2FS_H */
4857