xref: /linux/rust/kernel/dma.rs (revision 58809f614e0e3f4e12b489bddf680bfeb31c0a20)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Direct memory access (DMA).
4 //!
5 //! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h)
6 
7 use crate::{
8     bindings, build_assert, device,
9     device::{Bound, Core},
10     error::{to_result, Result},
11     prelude::*,
12     sync::aref::ARef,
13     transmute::{AsBytes, FromBytes},
14 };
15 
16 /// DMA address type.
17 ///
18 /// Represents a bus address used for Direct Memory Access (DMA) operations.
19 ///
20 /// This is an alias of the kernel's `dma_addr_t`, which may be `u32` or `u64` depending on
21 /// `CONFIG_ARCH_DMA_ADDR_T_64BIT`.
22 ///
23 /// Note that this may be `u64` even on 32-bit architectures.
24 pub type DmaAddress = bindings::dma_addr_t;
25 
26 /// Trait to be implemented by DMA capable bus devices.
27 ///
28 /// The [`dma::Device`](Device) trait should be implemented by bus specific device representations,
29 /// where the underlying bus is DMA capable, such as [`pci::Device`](::kernel::pci::Device) or
30 /// [`platform::Device`](::kernel::platform::Device).
31 pub trait Device: AsRef<device::Device<Core>> {
32     /// Set up the device's DMA streaming addressing capabilities.
33     ///
34     /// This method is usually called once from `probe()` as soon as the device capabilities are
35     /// known.
36     ///
37     /// # Safety
38     ///
39     /// This method must not be called concurrently with any DMA allocation or mapping primitives,
40     /// such as [`CoherentAllocation::alloc_attrs`].
41     unsafe fn dma_set_mask(&self, mask: DmaMask) -> Result {
42         // SAFETY:
43         // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
44         // - The safety requirement of this function guarantees that there are no concurrent calls
45         //   to DMA allocation and mapping primitives using this mask.
46         to_result(unsafe { bindings::dma_set_mask(self.as_ref().as_raw(), mask.value()) })
47     }
48 
49     /// Set up the device's DMA coherent addressing capabilities.
50     ///
51     /// This method is usually called once from `probe()` as soon as the device capabilities are
52     /// known.
53     ///
54     /// # Safety
55     ///
56     /// This method must not be called concurrently with any DMA allocation or mapping primitives,
57     /// such as [`CoherentAllocation::alloc_attrs`].
58     unsafe fn dma_set_coherent_mask(&self, mask: DmaMask) -> Result {
59         // SAFETY:
60         // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
61         // - The safety requirement of this function guarantees that there are no concurrent calls
62         //   to DMA allocation and mapping primitives using this mask.
63         to_result(unsafe { bindings::dma_set_coherent_mask(self.as_ref().as_raw(), mask.value()) })
64     }
65 
66     /// Set up the device's DMA addressing capabilities.
67     ///
68     /// This is a combination of [`Device::dma_set_mask`] and [`Device::dma_set_coherent_mask`].
69     ///
70     /// This method is usually called once from `probe()` as soon as the device capabilities are
71     /// known.
72     ///
73     /// # Safety
74     ///
75     /// This method must not be called concurrently with any DMA allocation or mapping primitives,
76     /// such as [`CoherentAllocation::alloc_attrs`].
77     unsafe fn dma_set_mask_and_coherent(&self, mask: DmaMask) -> Result {
78         // SAFETY:
79         // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
80         // - The safety requirement of this function guarantees that there are no concurrent calls
81         //   to DMA allocation and mapping primitives using this mask.
82         to_result(unsafe {
83             bindings::dma_set_mask_and_coherent(self.as_ref().as_raw(), mask.value())
84         })
85     }
86 }
87 
88 /// A DMA mask that holds a bitmask with the lowest `n` bits set.
89 ///
90 /// Use [`DmaMask::new`] or [`DmaMask::try_new`] to construct a value. Values
91 /// are guaranteed to never exceed the bit width of `u64`.
92 ///
93 /// This is the Rust equivalent of the C macro `DMA_BIT_MASK()`.
94 #[derive(Debug, Clone, Copy, PartialEq, Eq)]
95 pub struct DmaMask(u64);
96 
97 impl DmaMask {
98     /// Constructs a `DmaMask` with the lowest `n` bits set to `1`.
99     ///
100     /// For `n <= 64`, sets exactly the lowest `n` bits.
101     /// For `n > 64`, results in a build error.
102     ///
103     /// # Examples
104     ///
105     /// ```
106     /// use kernel::dma::DmaMask;
107     ///
108     /// let mask0 = DmaMask::new::<0>();
109     /// assert_eq!(mask0.value(), 0);
110     ///
111     /// let mask1 = DmaMask::new::<1>();
112     /// assert_eq!(mask1.value(), 0b1);
113     ///
114     /// let mask64 = DmaMask::new::<64>();
115     /// assert_eq!(mask64.value(), u64::MAX);
116     ///
117     /// // Build failure.
118     /// // let mask_overflow = DmaMask::new::<100>();
119     /// ```
120     #[inline]
121     pub const fn new<const N: u32>() -> Self {
122         let Ok(mask) = Self::try_new(N) else {
123             build_error!("Invalid DMA Mask.");
124         };
125 
126         mask
127     }
128 
129     /// Constructs a `DmaMask` with the lowest `n` bits set to `1`.
130     ///
131     /// For `n <= 64`, sets exactly the lowest `n` bits.
132     /// For `n > 64`, returns [`EINVAL`].
133     ///
134     /// # Examples
135     ///
136     /// ```
137     /// use kernel::dma::DmaMask;
138     ///
139     /// let mask0 = DmaMask::try_new(0)?;
140     /// assert_eq!(mask0.value(), 0);
141     ///
142     /// let mask1 = DmaMask::try_new(1)?;
143     /// assert_eq!(mask1.value(), 0b1);
144     ///
145     /// let mask64 = DmaMask::try_new(64)?;
146     /// assert_eq!(mask64.value(), u64::MAX);
147     ///
148     /// let mask_overflow = DmaMask::try_new(100);
149     /// assert!(mask_overflow.is_err());
150     /// # Ok::<(), Error>(())
151     /// ```
152     #[inline]
153     pub const fn try_new(n: u32) -> Result<Self> {
154         Ok(Self(match n {
155             0 => 0,
156             1..=64 => u64::MAX >> (64 - n),
157             _ => return Err(EINVAL),
158         }))
159     }
160 
161     /// Returns the underlying `u64` bitmask value.
162     #[inline]
163     pub const fn value(&self) -> u64 {
164         self.0
165     }
166 }
167 
168 /// Possible attributes associated with a DMA mapping.
169 ///
170 /// They can be combined with the operators `|`, `&`, and `!`.
171 ///
172 /// Values can be used from the [`attrs`] module.
173 ///
174 /// # Examples
175 ///
176 /// ```
177 /// # use kernel::device::{Bound, Device};
178 /// use kernel::dma::{attrs::*, CoherentAllocation};
179 ///
180 /// # fn test(dev: &Device<Bound>) -> Result {
181 /// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN;
182 /// let c: CoherentAllocation<u64> =
183 ///     CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?;
184 /// # Ok::<(), Error>(()) }
185 /// ```
186 #[derive(Clone, Copy, PartialEq)]
187 #[repr(transparent)]
188 pub struct Attrs(u32);
189 
190 impl Attrs {
191     /// Get the raw representation of this attribute.
192     pub(crate) fn as_raw(self) -> crate::ffi::c_ulong {
193         self.0 as crate::ffi::c_ulong
194     }
195 
196     /// Check whether `flags` is contained in `self`.
197     pub fn contains(self, flags: Attrs) -> bool {
198         (self & flags) == flags
199     }
200 }
201 
202 impl core::ops::BitOr for Attrs {
203     type Output = Self;
204     fn bitor(self, rhs: Self) -> Self::Output {
205         Self(self.0 | rhs.0)
206     }
207 }
208 
209 impl core::ops::BitAnd for Attrs {
210     type Output = Self;
211     fn bitand(self, rhs: Self) -> Self::Output {
212         Self(self.0 & rhs.0)
213     }
214 }
215 
216 impl core::ops::Not for Attrs {
217     type Output = Self;
218     fn not(self) -> Self::Output {
219         Self(!self.0)
220     }
221 }
222 
223 /// DMA mapping attributes.
224 pub mod attrs {
225     use super::Attrs;
226 
227     /// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
228     /// and writes may pass each other.
229     pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING);
230 
231     /// Specifies that writes to the mapping may be buffered to improve performance.
232     pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE);
233 
234     /// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
235     pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING);
236 
237     /// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
238     /// that it has been already transferred to 'device' domain.
239     pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC);
240 
241     /// Forces contiguous allocation of the buffer in physical memory.
242     pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS);
243 
244     /// Hints DMA-mapping subsystem that it's probably not worth the time to try
245     /// to allocate memory to in a way that gives better TLB efficiency.
246     pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES);
247 
248     /// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
249     /// `__GFP_NOWARN`).
250     pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN);
251 
252     /// Indicates that the buffer is fully accessible at an elevated privilege level (and
253     /// ideally inaccessible or at least read-only at lesser-privileged levels).
254     pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED);
255 }
256 
257 /// DMA data direction.
258 ///
259 /// Corresponds to the C [`enum dma_data_direction`].
260 ///
261 /// [`enum dma_data_direction`]: srctree/include/linux/dma-direction.h
262 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
263 #[repr(u32)]
264 pub enum DataDirection {
265     /// The DMA mapping is for bidirectional data transfer.
266     ///
267     /// This is used when the buffer can be both read from and written to by the device.
268     /// The cache for the corresponding memory region is both flushed and invalidated.
269     Bidirectional = Self::const_cast(bindings::dma_data_direction_DMA_BIDIRECTIONAL),
270 
271     /// The DMA mapping is for data transfer from memory to the device (write).
272     ///
273     /// The CPU has prepared data in the buffer, and the device will read it.
274     /// The cache for the corresponding memory region is flushed before device access.
275     ToDevice = Self::const_cast(bindings::dma_data_direction_DMA_TO_DEVICE),
276 
277     /// The DMA mapping is for data transfer from the device to memory (read).
278     ///
279     /// The device will write data into the buffer for the CPU to read.
280     /// The cache for the corresponding memory region is invalidated before CPU access.
281     FromDevice = Self::const_cast(bindings::dma_data_direction_DMA_FROM_DEVICE),
282 
283     /// The DMA mapping is not for data transfer.
284     ///
285     /// This is primarily for debugging purposes. With this direction, the DMA mapping API
286     /// will not perform any cache coherency operations.
287     None = Self::const_cast(bindings::dma_data_direction_DMA_NONE),
288 }
289 
290 impl DataDirection {
291     /// Casts the bindgen-generated enum type to a `u32` at compile time.
292     ///
293     /// This function will cause a compile-time error if the underlying value of the
294     /// C enum is out of bounds for `u32`.
295     const fn const_cast(val: bindings::dma_data_direction) -> u32 {
296         // CAST: The C standard allows compilers to choose different integer types for enums.
297         // To safely check the value, we cast it to a wide signed integer type (`i128`)
298         // which can hold any standard C integer enum type without truncation.
299         let wide_val = val as i128;
300 
301         // Check if the value is outside the valid range for the target type `u32`.
302         // CAST: `u32::MAX` is cast to `i128` to match the type of `wide_val` for the comparison.
303         if wide_val < 0 || wide_val > u32::MAX as i128 {
304             // Trigger a compile-time error in a const context.
305             build_error!("C enum value is out of bounds for the target type `u32`.");
306         }
307 
308         // CAST: This cast is valid because the check above guarantees that `wide_val`
309         // is within the representable range of `u32`.
310         wide_val as u32
311     }
312 }
313 
314 impl From<DataDirection> for bindings::dma_data_direction {
315     /// Returns the raw representation of [`enum dma_data_direction`].
316     fn from(direction: DataDirection) -> Self {
317         // CAST: `direction as u32` gets the underlying representation of our `#[repr(u32)]` enum.
318         // The subsequent cast to `Self` (the bindgen type) assumes the C enum is compatible
319         // with the enum variants of `DataDirection`, which is a valid assumption given our
320         // compile-time checks.
321         direction as u32 as Self
322     }
323 }
324 
325 /// An abstraction of the `dma_alloc_coherent` API.
326 ///
327 /// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
328 /// large coherent DMA regions.
329 ///
330 /// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
331 /// processor's virtual address space) and the device address which can be given to the device
332 /// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
333 /// is dropped.
334 ///
335 /// # Invariants
336 ///
337 /// - For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
338 ///   to an allocated region of coherent memory and `dma_handle` is the DMA address base of the
339 ///   region.
340 /// - The size in bytes of the allocation is equal to `size_of::<T> * count`.
341 /// - `size_of::<T> * count` fits into a `usize`.
342 // TODO
343 //
344 // DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness
345 // reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure
346 // that device resources can never survive device unbind.
347 //
348 // However, it is neither desirable nor necessary to protect the allocated memory of the DMA
349 // allocation from surviving device unbind; it would require RCU read side critical sections to
350 // access the memory, which may require subsequent unnecessary copies.
351 //
352 // Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the
353 // entire `CoherentAllocation` including the allocated memory itself.
354 pub struct CoherentAllocation<T: AsBytes + FromBytes> {
355     dev: ARef<device::Device>,
356     dma_handle: DmaAddress,
357     count: usize,
358     cpu_addr: *mut T,
359     dma_attrs: Attrs,
360 }
361 
362 impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
363     /// Allocates a region of `size_of::<T> * count` of coherent memory.
364     ///
365     /// # Examples
366     ///
367     /// ```
368     /// # use kernel::device::{Bound, Device};
369     /// use kernel::dma::{attrs::*, CoherentAllocation};
370     ///
371     /// # fn test(dev: &Device<Bound>) -> Result {
372     /// let c: CoherentAllocation<u64> =
373     ///     CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, DMA_ATTR_NO_WARN)?;
374     /// # Ok::<(), Error>(()) }
375     /// ```
376     pub fn alloc_attrs(
377         dev: &device::Device<Bound>,
378         count: usize,
379         gfp_flags: kernel::alloc::Flags,
380         dma_attrs: Attrs,
381     ) -> Result<CoherentAllocation<T>> {
382         build_assert!(
383             core::mem::size_of::<T>() > 0,
384             "It doesn't make sense for the allocated type to be a ZST"
385         );
386 
387         let size = count
388             .checked_mul(core::mem::size_of::<T>())
389             .ok_or(EOVERFLOW)?;
390         let mut dma_handle = 0;
391         // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
392         let ret = unsafe {
393             bindings::dma_alloc_attrs(
394                 dev.as_raw(),
395                 size,
396                 &mut dma_handle,
397                 gfp_flags.as_raw(),
398                 dma_attrs.as_raw(),
399             )
400         };
401         if ret.is_null() {
402             return Err(ENOMEM);
403         }
404         // INVARIANT:
405         // - We just successfully allocated a coherent region which is accessible for
406         //   `count` elements, hence the cpu address is valid. We also hold a refcounted reference
407         //   to the device.
408         // - The allocated `size` is equal to `size_of::<T> * count`.
409         // - The allocated `size` fits into a `usize`.
410         Ok(Self {
411             dev: dev.into(),
412             dma_handle,
413             count,
414             cpu_addr: ret.cast::<T>(),
415             dma_attrs,
416         })
417     }
418 
419     /// Performs the same functionality as [`CoherentAllocation::alloc_attrs`], except the
420     /// `dma_attrs` is 0 by default.
421     pub fn alloc_coherent(
422         dev: &device::Device<Bound>,
423         count: usize,
424         gfp_flags: kernel::alloc::Flags,
425     ) -> Result<CoherentAllocation<T>> {
426         CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0))
427     }
428 
429     /// Returns the number of elements `T` in this allocation.
430     ///
431     /// Note that this is not the size of the allocation in bytes, which is provided by
432     /// [`Self::size`].
433     pub fn count(&self) -> usize {
434         self.count
435     }
436 
437     /// Returns the size in bytes of this allocation.
438     pub fn size(&self) -> usize {
439         // INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits into
440         // a `usize`.
441         self.count * core::mem::size_of::<T>()
442     }
443 
444     /// Returns the base address to the allocated region in the CPU's virtual address space.
445     pub fn start_ptr(&self) -> *const T {
446         self.cpu_addr
447     }
448 
449     /// Returns the base address to the allocated region in the CPU's virtual address space as
450     /// a mutable pointer.
451     pub fn start_ptr_mut(&mut self) -> *mut T {
452         self.cpu_addr
453     }
454 
455     /// Returns a DMA handle which may be given to the device as the DMA address base of
456     /// the region.
457     pub fn dma_handle(&self) -> DmaAddress {
458         self.dma_handle
459     }
460 
461     /// Returns a DMA handle starting at `offset` (in units of `T`) which may be given to the
462     /// device as the DMA address base of the region.
463     ///
464     /// Returns `EINVAL` if `offset` is not within the bounds of the allocation.
465     pub fn dma_handle_with_offset(&self, offset: usize) -> Result<DmaAddress> {
466         if offset >= self.count {
467             Err(EINVAL)
468         } else {
469             // INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits
470             // into a `usize`, and `offset` is inferior to `count`.
471             Ok(self.dma_handle + (offset * core::mem::size_of::<T>()) as DmaAddress)
472         }
473     }
474 
475     /// Common helper to validate a range applied from the allocated region in the CPU's virtual
476     /// address space.
477     fn validate_range(&self, offset: usize, count: usize) -> Result {
478         if offset.checked_add(count).ok_or(EOVERFLOW)? > self.count {
479             return Err(EINVAL);
480         }
481         Ok(())
482     }
483 
484     /// Returns the data from the region starting from `offset` as a slice.
485     /// `offset` and `count` are in units of `T`, not the number of bytes.
486     ///
487     /// For ringbuffer type of r/w access or use-cases where the pointer to the live data is needed,
488     /// [`CoherentAllocation::start_ptr`] or [`CoherentAllocation::start_ptr_mut`] could be used
489     /// instead.
490     ///
491     /// # Safety
492     ///
493     /// * Callers must ensure that the device does not read/write to/from memory while the returned
494     ///   slice is live.
495     /// * Callers must ensure that this call does not race with a write to the same region while
496     ///   the returned slice is live.
497     pub unsafe fn as_slice(&self, offset: usize, count: usize) -> Result<&[T]> {
498         self.validate_range(offset, count)?;
499         // SAFETY:
500         // - The pointer is valid due to type invariant on `CoherentAllocation`,
501         //   we've just checked that the range and index is within bounds. The immutability of the
502         //   data is also guaranteed by the safety requirements of the function.
503         // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
504         //   that `self.count` won't overflow early in the constructor.
505         Ok(unsafe { core::slice::from_raw_parts(self.cpu_addr.add(offset), count) })
506     }
507 
508     /// Performs the same functionality as [`CoherentAllocation::as_slice`], except that a mutable
509     /// slice is returned.
510     ///
511     /// # Safety
512     ///
513     /// * Callers must ensure that the device does not read/write to/from memory while the returned
514     ///   slice is live.
515     /// * Callers must ensure that this call does not race with a read or write to the same region
516     ///   while the returned slice is live.
517     pub unsafe fn as_slice_mut(&mut self, offset: usize, count: usize) -> Result<&mut [T]> {
518         self.validate_range(offset, count)?;
519         // SAFETY:
520         // - The pointer is valid due to type invariant on `CoherentAllocation`,
521         //   we've just checked that the range and index is within bounds. The immutability of the
522         //   data is also guaranteed by the safety requirements of the function.
523         // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
524         //   that `self.count` won't overflow early in the constructor.
525         Ok(unsafe { core::slice::from_raw_parts_mut(self.cpu_addr.add(offset), count) })
526     }
527 
528     /// Writes data to the region starting from `offset`. `offset` is in units of `T`, not the
529     /// number of bytes.
530     ///
531     /// # Safety
532     ///
533     /// * Callers must ensure that the device does not read/write to/from memory while the returned
534     ///   slice is live.
535     /// * Callers must ensure that this call does not race with a read or write to the same region
536     ///   that overlaps with this write.
537     ///
538     /// # Examples
539     ///
540     /// ```
541     /// # fn test(alloc: &mut kernel::dma::CoherentAllocation<u8>) -> Result {
542     /// let somedata: [u8; 4] = [0xf; 4];
543     /// let buf: &[u8] = &somedata;
544     /// // SAFETY: There is no concurrent HW operation on the device and no other R/W access to the
545     /// // region.
546     /// unsafe { alloc.write(buf, 0)?; }
547     /// # Ok::<(), Error>(()) }
548     /// ```
549     pub unsafe fn write(&mut self, src: &[T], offset: usize) -> Result {
550         self.validate_range(offset, src.len())?;
551         // SAFETY:
552         // - The pointer is valid due to type invariant on `CoherentAllocation`
553         //   and we've just checked that the range and index is within bounds.
554         // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
555         //   that `self.count` won't overflow early in the constructor.
556         unsafe {
557             core::ptr::copy_nonoverlapping(src.as_ptr(), self.cpu_addr.add(offset), src.len())
558         };
559         Ok(())
560     }
561 
562     /// Returns a pointer to an element from the region with bounds checking. `offset` is in
563     /// units of `T`, not the number of bytes.
564     ///
565     /// Public but hidden since it should only be used from [`dma_read`] and [`dma_write`] macros.
566     #[doc(hidden)]
567     pub fn item_from_index(&self, offset: usize) -> Result<*mut T> {
568         if offset >= self.count {
569             return Err(EINVAL);
570         }
571         // SAFETY:
572         // - The pointer is valid due to type invariant on `CoherentAllocation`
573         // and we've just checked that the range and index is within bounds.
574         // - `offset` can't overflow since it is smaller than `self.count` and we've checked
575         // that `self.count` won't overflow early in the constructor.
576         Ok(unsafe { self.cpu_addr.add(offset) })
577     }
578 
579     /// Reads the value of `field` and ensures that its type is [`FromBytes`].
580     ///
581     /// # Safety
582     ///
583     /// This must be called from the [`dma_read`] macro which ensures that the `field` pointer is
584     /// validated beforehand.
585     ///
586     /// Public but hidden since it should only be used from [`dma_read`] macro.
587     #[doc(hidden)]
588     pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F {
589         // SAFETY:
590         // - By the safety requirements field is valid.
591         // - Using read_volatile() here is not sound as per the usual rules, the usage here is
592         // a special exception with the following notes in place. When dealing with a potential
593         // race from a hardware or code outside kernel (e.g. user-space program), we need that
594         // read on a valid memory is not UB. Currently read_volatile() is used for this, and the
595         // rationale behind is that it should generate the same code as READ_ONCE() which the
596         // kernel already relies on to avoid UB on data races. Note that the usage of
597         // read_volatile() is limited to this particular case, it cannot be used to prevent
598         // the UB caused by racing between two kernel functions nor do they provide atomicity.
599         unsafe { field.read_volatile() }
600     }
601 
602     /// Writes a value to `field` and ensures that its type is [`AsBytes`].
603     ///
604     /// # Safety
605     ///
606     /// This must be called from the [`dma_write`] macro which ensures that the `field` pointer is
607     /// validated beforehand.
608     ///
609     /// Public but hidden since it should only be used from [`dma_write`] macro.
610     #[doc(hidden)]
611     pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) {
612         // SAFETY:
613         // - By the safety requirements field is valid.
614         // - Using write_volatile() here is not sound as per the usual rules, the usage here is
615         // a special exception with the following notes in place. When dealing with a potential
616         // race from a hardware or code outside kernel (e.g. user-space program), we need that
617         // write on a valid memory is not UB. Currently write_volatile() is used for this, and the
618         // rationale behind is that it should generate the same code as WRITE_ONCE() which the
619         // kernel already relies on to avoid UB on data races. Note that the usage of
620         // write_volatile() is limited to this particular case, it cannot be used to prevent
621         // the UB caused by racing between two kernel functions nor do they provide atomicity.
622         unsafe { field.write_volatile(val) }
623     }
624 }
625 
626 /// Note that the device configured to do DMA must be halted before this object is dropped.
627 impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> {
628     fn drop(&mut self) {
629         let size = self.count * core::mem::size_of::<T>();
630         // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
631         // The cpu address, and the dma handle are valid due to the type invariants on
632         // `CoherentAllocation`.
633         unsafe {
634             bindings::dma_free_attrs(
635                 self.dev.as_raw(),
636                 size,
637                 self.cpu_addr.cast(),
638                 self.dma_handle,
639                 self.dma_attrs.as_raw(),
640             )
641         }
642     }
643 }
644 
645 // SAFETY: It is safe to send a `CoherentAllocation` to another thread if `T`
646 // can be sent to another thread.
647 unsafe impl<T: AsBytes + FromBytes + Send> Send for CoherentAllocation<T> {}
648 
649 /// Reads a field of an item from an allocated region of structs.
650 ///
651 /// # Examples
652 ///
653 /// ```
654 /// use kernel::device::Device;
655 /// use kernel::dma::{attrs::*, CoherentAllocation};
656 ///
657 /// struct MyStruct { field: u32, }
658 ///
659 /// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
660 /// unsafe impl kernel::transmute::FromBytes for MyStruct{};
661 /// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
662 /// unsafe impl kernel::transmute::AsBytes for MyStruct{};
663 ///
664 /// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
665 /// let whole = kernel::dma_read!(alloc[2]);
666 /// let field = kernel::dma_read!(alloc[1].field);
667 /// # Ok::<(), Error>(()) }
668 /// ```
669 #[macro_export]
670 macro_rules! dma_read {
671     ($dma:expr, $idx: expr, $($field:tt)*) => {{
672         (|| -> ::core::result::Result<_, $crate::error::Error> {
673             let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
674             // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
675             // dereferenced. The compiler also further validates the expression on whether `field`
676             // is a member of `item` when expanded by the macro.
677             unsafe {
678                 let ptr_field = ::core::ptr::addr_of!((*item) $($field)*);
679                 ::core::result::Result::Ok(
680                     $crate::dma::CoherentAllocation::field_read(&$dma, ptr_field)
681                 )
682             }
683         })()
684     }};
685     ($dma:ident [ $idx:expr ] $($field:tt)* ) => {
686         $crate::dma_read!($dma, $idx, $($field)*)
687     };
688     ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {
689         $crate::dma_read!($($dma).*, $idx, $($field)*)
690     };
691 }
692 
693 /// Writes to a field of an item from an allocated region of structs.
694 ///
695 /// # Examples
696 ///
697 /// ```
698 /// use kernel::device::Device;
699 /// use kernel::dma::{attrs::*, CoherentAllocation};
700 ///
701 /// struct MyStruct { member: u32, }
702 ///
703 /// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
704 /// unsafe impl kernel::transmute::FromBytes for MyStruct{};
705 /// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
706 /// unsafe impl kernel::transmute::AsBytes for MyStruct{};
707 ///
708 /// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
709 /// kernel::dma_write!(alloc[2].member = 0xf);
710 /// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf });
711 /// # Ok::<(), Error>(()) }
712 /// ```
713 #[macro_export]
714 macro_rules! dma_write {
715     ($dma:ident [ $idx:expr ] $($field:tt)*) => {{
716         $crate::dma_write!($dma, $idx, $($field)*)
717     }};
718     ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{
719         $crate::dma_write!($($dma).*, $idx, $($field)*)
720     }};
721     ($dma:expr, $idx: expr, = $val:expr) => {
722         (|| -> ::core::result::Result<_, $crate::error::Error> {
723             let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
724             // SAFETY: `item_from_index` ensures that `item` is always a valid item.
725             unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) }
726             ::core::result::Result::Ok(())
727         })()
728     };
729     ($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => {
730         (|| -> ::core::result::Result<_, $crate::error::Error> {
731             let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
732             // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
733             // dereferenced. The compiler also further validates the expression on whether `field`
734             // is a member of `item` when expanded by the macro.
735             unsafe {
736                 let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*);
737                 $crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val)
738             }
739             ::core::result::Result::Ok(())
740         })()
741     };
742 }
743