xref: /linux/net/ipv4/fib_trie.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   *
4   *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5   *     & Swedish University of Agricultural Sciences.
6   *
7   *   Jens Laas <jens.laas@data.slu.se> Swedish University of
8   *     Agricultural Sciences.
9   *
10   *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
11   *
12   * This work is based on the LPC-trie which is originally described in:
13   *
14   * An experimental study of compression methods for dynamic tries
15   * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16   * https://www.csc.kth.se/~snilsson/software/dyntrie2/
17   *
18   * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19   * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20   *
21   * Code from fib_hash has been reused which includes the following header:
22   *
23   * INET		An implementation of the TCP/IP protocol suite for the LINUX
24   *		operating system.  INET is implemented using the  BSD Socket
25   *		interface as the means of communication with the user level.
26   *
27   *		IPv4 FIB: lookup engine and maintenance routines.
28   *
29   * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30   *
31   * Substantial contributions to this work comes from:
32   *
33   *		David S. Miller, <davem@davemloft.net>
34   *		Stephen Hemminger <shemminger@osdl.org>
35   *		Paul E. McKenney <paulmck@us.ibm.com>
36   *		Patrick McHardy <kaber@trash.net>
37   */
38  #include <linux/cache.h>
39  #include <linux/uaccess.h>
40  #include <linux/bitops.h>
41  #include <linux/types.h>
42  #include <linux/kernel.h>
43  #include <linux/mm.h>
44  #include <linux/string.h>
45  #include <linux/socket.h>
46  #include <linux/sockios.h>
47  #include <linux/errno.h>
48  #include <linux/in.h>
49  #include <linux/inet.h>
50  #include <linux/inetdevice.h>
51  #include <linux/netdevice.h>
52  #include <linux/if_arp.h>
53  #include <linux/proc_fs.h>
54  #include <linux/rcupdate.h>
55  #include <linux/rcupdate_wait.h>
56  #include <linux/skbuff.h>
57  #include <linux/netlink.h>
58  #include <linux/init.h>
59  #include <linux/list.h>
60  #include <linux/slab.h>
61  #include <linux/export.h>
62  #include <linux/vmalloc.h>
63  #include <linux/notifier.h>
64  #include <net/net_namespace.h>
65  #include <net/inet_dscp.h>
66  #include <net/ip.h>
67  #include <net/protocol.h>
68  #include <net/route.h>
69  #include <net/tcp.h>
70  #include <net/sock.h>
71  #include <net/ip_fib.h>
72  #include <net/fib_notifier.h>
73  #include <trace/events/fib.h>
74  #include "fib_lookup.h"
75  
call_fib_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa,struct netlink_ext_ack * extack)76  static int call_fib_entry_notifier(struct notifier_block *nb,
77  				   enum fib_event_type event_type, u32 dst,
78  				   int dst_len, struct fib_alias *fa,
79  				   struct netlink_ext_ack *extack)
80  {
81  	struct fib_entry_notifier_info info = {
82  		.info.extack = extack,
83  		.dst = dst,
84  		.dst_len = dst_len,
85  		.fi = fa->fa_info,
86  		.dscp = fa->fa_dscp,
87  		.type = fa->fa_type,
88  		.tb_id = fa->tb_id,
89  	};
90  	return call_fib4_notifier(nb, event_type, &info.info);
91  }
92  
call_fib_entry_notifiers(struct net * net,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa,struct netlink_ext_ack * extack)93  static int call_fib_entry_notifiers(struct net *net,
94  				    enum fib_event_type event_type, u32 dst,
95  				    int dst_len, struct fib_alias *fa,
96  				    struct netlink_ext_ack *extack)
97  {
98  	struct fib_entry_notifier_info info = {
99  		.info.extack = extack,
100  		.dst = dst,
101  		.dst_len = dst_len,
102  		.fi = fa->fa_info,
103  		.dscp = fa->fa_dscp,
104  		.type = fa->fa_type,
105  		.tb_id = fa->tb_id,
106  	};
107  	return call_fib4_notifiers(net, event_type, &info.info);
108  }
109  
110  #define MAX_STAT_DEPTH 32
111  
112  #define KEYLENGTH	(8*sizeof(t_key))
113  #define KEY_MAX		((t_key)~0)
114  
115  typedef unsigned int t_key;
116  
117  #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
118  #define IS_TNODE(n)	((n)->bits)
119  #define IS_LEAF(n)	(!(n)->bits)
120  
121  struct key_vector {
122  	t_key key;
123  	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
124  	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
125  	unsigned char slen;
126  	union {
127  		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
128  		struct hlist_head leaf;
129  		/* This array is valid if (pos | bits) > 0 (TNODE) */
130  		DECLARE_FLEX_ARRAY(struct key_vector __rcu *, tnode);
131  	};
132  };
133  
134  struct tnode {
135  	struct rcu_head rcu;
136  	t_key empty_children;		/* KEYLENGTH bits needed */
137  	t_key full_children;		/* KEYLENGTH bits needed */
138  	struct key_vector __rcu *parent;
139  	struct key_vector kv[1];
140  #define tn_bits kv[0].bits
141  };
142  
143  #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
144  #define LEAF_SIZE	TNODE_SIZE(1)
145  
146  #ifdef CONFIG_IP_FIB_TRIE_STATS
147  struct trie_use_stats {
148  	unsigned int gets;
149  	unsigned int backtrack;
150  	unsigned int semantic_match_passed;
151  	unsigned int semantic_match_miss;
152  	unsigned int null_node_hit;
153  	unsigned int resize_node_skipped;
154  };
155  #endif
156  
157  struct trie_stat {
158  	unsigned int totdepth;
159  	unsigned int maxdepth;
160  	unsigned int tnodes;
161  	unsigned int leaves;
162  	unsigned int nullpointers;
163  	unsigned int prefixes;
164  	unsigned int nodesizes[MAX_STAT_DEPTH];
165  };
166  
167  struct trie {
168  	struct key_vector kv[1];
169  #ifdef CONFIG_IP_FIB_TRIE_STATS
170  	struct trie_use_stats __percpu *stats;
171  #endif
172  };
173  
174  static struct key_vector *resize(struct trie *t, struct key_vector *tn);
175  static unsigned int tnode_free_size;
176  
177  /*
178   * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
179   * especially useful before resizing the root node with PREEMPT_NONE configs;
180   * the value was obtained experimentally, aiming to avoid visible slowdown.
181   */
182  unsigned int sysctl_fib_sync_mem = 512 * 1024;
183  unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
184  unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
185  
186  static struct kmem_cache *fn_alias_kmem __ro_after_init;
187  static struct kmem_cache *trie_leaf_kmem __ro_after_init;
188  
tn_info(struct key_vector * kv)189  static inline struct tnode *tn_info(struct key_vector *kv)
190  {
191  	return container_of(kv, struct tnode, kv[0]);
192  }
193  
194  /* caller must hold RTNL */
195  #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
196  #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
197  
198  /* caller must hold RCU read lock or RTNL */
199  #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
200  #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
201  
202  /* wrapper for rcu_assign_pointer */
node_set_parent(struct key_vector * n,struct key_vector * tp)203  static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
204  {
205  	if (n)
206  		rcu_assign_pointer(tn_info(n)->parent, tp);
207  }
208  
209  #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
210  
211  /* This provides us with the number of children in this node, in the case of a
212   * leaf this will return 0 meaning none of the children are accessible.
213   */
child_length(const struct key_vector * tn)214  static inline unsigned long child_length(const struct key_vector *tn)
215  {
216  	return (1ul << tn->bits) & ~(1ul);
217  }
218  
219  #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
220  
get_index(t_key key,struct key_vector * kv)221  static inline unsigned long get_index(t_key key, struct key_vector *kv)
222  {
223  	unsigned long index = key ^ kv->key;
224  
225  	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
226  		return 0;
227  
228  	return index >> kv->pos;
229  }
230  
231  /* To understand this stuff, an understanding of keys and all their bits is
232   * necessary. Every node in the trie has a key associated with it, but not
233   * all of the bits in that key are significant.
234   *
235   * Consider a node 'n' and its parent 'tp'.
236   *
237   * If n is a leaf, every bit in its key is significant. Its presence is
238   * necessitated by path compression, since during a tree traversal (when
239   * searching for a leaf - unless we are doing an insertion) we will completely
240   * ignore all skipped bits we encounter. Thus we need to verify, at the end of
241   * a potentially successful search, that we have indeed been walking the
242   * correct key path.
243   *
244   * Note that we can never "miss" the correct key in the tree if present by
245   * following the wrong path. Path compression ensures that segments of the key
246   * that are the same for all keys with a given prefix are skipped, but the
247   * skipped part *is* identical for each node in the subtrie below the skipped
248   * bit! trie_insert() in this implementation takes care of that.
249   *
250   * if n is an internal node - a 'tnode' here, the various parts of its key
251   * have many different meanings.
252   *
253   * Example:
254   * _________________________________________________________________
255   * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
256   * -----------------------------------------------------------------
257   *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
258   *
259   * _________________________________________________________________
260   * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
261   * -----------------------------------------------------------------
262   *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
263   *
264   * tp->pos = 22
265   * tp->bits = 3
266   * n->pos = 13
267   * n->bits = 4
268   *
269   * First, let's just ignore the bits that come before the parent tp, that is
270   * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
271   * point we do not use them for anything.
272   *
273   * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
274   * index into the parent's child array. That is, they will be used to find
275   * 'n' among tp's children.
276   *
277   * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
278   * for the node n.
279   *
280   * All the bits we have seen so far are significant to the node n. The rest
281   * of the bits are really not needed or indeed known in n->key.
282   *
283   * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
284   * n's child array, and will of course be different for each child.
285   *
286   * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
287   * at this point.
288   */
289  
290  static const int halve_threshold = 25;
291  static const int inflate_threshold = 50;
292  static const int halve_threshold_root = 15;
293  static const int inflate_threshold_root = 30;
294  
alias_free_mem_rcu(struct fib_alias * fa)295  static inline void alias_free_mem_rcu(struct fib_alias *fa)
296  {
297  	kfree_rcu(fa, rcu);
298  }
299  
300  #define TNODE_VMALLOC_MAX \
301  	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
302  
__node_free_rcu(struct rcu_head * head)303  static void __node_free_rcu(struct rcu_head *head)
304  {
305  	struct tnode *n = container_of(head, struct tnode, rcu);
306  
307  	if (!n->tn_bits)
308  		kmem_cache_free(trie_leaf_kmem, n);
309  	else
310  		kvfree(n);
311  }
312  
313  #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
314  
tnode_alloc(int bits)315  static struct tnode *tnode_alloc(int bits)
316  {
317  	size_t size;
318  
319  	/* verify bits is within bounds */
320  	if (bits > TNODE_VMALLOC_MAX)
321  		return NULL;
322  
323  	/* determine size and verify it is non-zero and didn't overflow */
324  	size = TNODE_SIZE(1ul << bits);
325  
326  	if (size <= PAGE_SIZE)
327  		return kzalloc(size, GFP_KERNEL);
328  	else
329  		return vzalloc(size);
330  }
331  
empty_child_inc(struct key_vector * n)332  static inline void empty_child_inc(struct key_vector *n)
333  {
334  	tn_info(n)->empty_children++;
335  
336  	if (!tn_info(n)->empty_children)
337  		tn_info(n)->full_children++;
338  }
339  
empty_child_dec(struct key_vector * n)340  static inline void empty_child_dec(struct key_vector *n)
341  {
342  	if (!tn_info(n)->empty_children)
343  		tn_info(n)->full_children--;
344  
345  	tn_info(n)->empty_children--;
346  }
347  
leaf_new(t_key key,struct fib_alias * fa)348  static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
349  {
350  	struct key_vector *l;
351  	struct tnode *kv;
352  
353  	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
354  	if (!kv)
355  		return NULL;
356  
357  	/* initialize key vector */
358  	l = kv->kv;
359  	l->key = key;
360  	l->pos = 0;
361  	l->bits = 0;
362  	l->slen = fa->fa_slen;
363  
364  	/* link leaf to fib alias */
365  	INIT_HLIST_HEAD(&l->leaf);
366  	hlist_add_head(&fa->fa_list, &l->leaf);
367  
368  	return l;
369  }
370  
tnode_new(t_key key,int pos,int bits)371  static struct key_vector *tnode_new(t_key key, int pos, int bits)
372  {
373  	unsigned int shift = pos + bits;
374  	struct key_vector *tn;
375  	struct tnode *tnode;
376  
377  	/* verify bits and pos their msb bits clear and values are valid */
378  	BUG_ON(!bits || (shift > KEYLENGTH));
379  
380  	tnode = tnode_alloc(bits);
381  	if (!tnode)
382  		return NULL;
383  
384  	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
385  		 sizeof(struct key_vector *) << bits);
386  
387  	if (bits == KEYLENGTH)
388  		tnode->full_children = 1;
389  	else
390  		tnode->empty_children = 1ul << bits;
391  
392  	tn = tnode->kv;
393  	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
394  	tn->pos = pos;
395  	tn->bits = bits;
396  	tn->slen = pos;
397  
398  	return tn;
399  }
400  
401  /* Check whether a tnode 'n' is "full", i.e. it is an internal node
402   * and no bits are skipped. See discussion in dyntree paper p. 6
403   */
tnode_full(struct key_vector * tn,struct key_vector * n)404  static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
405  {
406  	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
407  }
408  
409  /* Add a child at position i overwriting the old value.
410   * Update the value of full_children and empty_children.
411   */
put_child(struct key_vector * tn,unsigned long i,struct key_vector * n)412  static void put_child(struct key_vector *tn, unsigned long i,
413  		      struct key_vector *n)
414  {
415  	struct key_vector *chi = get_child(tn, i);
416  	int isfull, wasfull;
417  
418  	BUG_ON(i >= child_length(tn));
419  
420  	/* update emptyChildren, overflow into fullChildren */
421  	if (!n && chi)
422  		empty_child_inc(tn);
423  	if (n && !chi)
424  		empty_child_dec(tn);
425  
426  	/* update fullChildren */
427  	wasfull = tnode_full(tn, chi);
428  	isfull = tnode_full(tn, n);
429  
430  	if (wasfull && !isfull)
431  		tn_info(tn)->full_children--;
432  	else if (!wasfull && isfull)
433  		tn_info(tn)->full_children++;
434  
435  	if (n && (tn->slen < n->slen))
436  		tn->slen = n->slen;
437  
438  	rcu_assign_pointer(tn->tnode[i], n);
439  }
440  
update_children(struct key_vector * tn)441  static void update_children(struct key_vector *tn)
442  {
443  	unsigned long i;
444  
445  	/* update all of the child parent pointers */
446  	for (i = child_length(tn); i;) {
447  		struct key_vector *inode = get_child(tn, --i);
448  
449  		if (!inode)
450  			continue;
451  
452  		/* Either update the children of a tnode that
453  		 * already belongs to us or update the child
454  		 * to point to ourselves.
455  		 */
456  		if (node_parent(inode) == tn)
457  			update_children(inode);
458  		else
459  			node_set_parent(inode, tn);
460  	}
461  }
462  
put_child_root(struct key_vector * tp,t_key key,struct key_vector * n)463  static inline void put_child_root(struct key_vector *tp, t_key key,
464  				  struct key_vector *n)
465  {
466  	if (IS_TRIE(tp))
467  		rcu_assign_pointer(tp->tnode[0], n);
468  	else
469  		put_child(tp, get_index(key, tp), n);
470  }
471  
tnode_free_init(struct key_vector * tn)472  static inline void tnode_free_init(struct key_vector *tn)
473  {
474  	tn_info(tn)->rcu.next = NULL;
475  }
476  
tnode_free_append(struct key_vector * tn,struct key_vector * n)477  static inline void tnode_free_append(struct key_vector *tn,
478  				     struct key_vector *n)
479  {
480  	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
481  	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
482  }
483  
tnode_free(struct key_vector * tn)484  static void tnode_free(struct key_vector *tn)
485  {
486  	struct callback_head *head = &tn_info(tn)->rcu;
487  
488  	while (head) {
489  		head = head->next;
490  		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
491  		node_free(tn);
492  
493  		tn = container_of(head, struct tnode, rcu)->kv;
494  	}
495  
496  	if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
497  		tnode_free_size = 0;
498  		synchronize_net();
499  	}
500  }
501  
replace(struct trie * t,struct key_vector * oldtnode,struct key_vector * tn)502  static struct key_vector *replace(struct trie *t,
503  				  struct key_vector *oldtnode,
504  				  struct key_vector *tn)
505  {
506  	struct key_vector *tp = node_parent(oldtnode);
507  	unsigned long i;
508  
509  	/* setup the parent pointer out of and back into this node */
510  	NODE_INIT_PARENT(tn, tp);
511  	put_child_root(tp, tn->key, tn);
512  
513  	/* update all of the child parent pointers */
514  	update_children(tn);
515  
516  	/* all pointers should be clean so we are done */
517  	tnode_free(oldtnode);
518  
519  	/* resize children now that oldtnode is freed */
520  	for (i = child_length(tn); i;) {
521  		struct key_vector *inode = get_child(tn, --i);
522  
523  		/* resize child node */
524  		if (tnode_full(tn, inode))
525  			tn = resize(t, inode);
526  	}
527  
528  	return tp;
529  }
530  
inflate(struct trie * t,struct key_vector * oldtnode)531  static struct key_vector *inflate(struct trie *t,
532  				  struct key_vector *oldtnode)
533  {
534  	struct key_vector *tn;
535  	unsigned long i;
536  	t_key m;
537  
538  	pr_debug("In inflate\n");
539  
540  	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
541  	if (!tn)
542  		goto notnode;
543  
544  	/* prepare oldtnode to be freed */
545  	tnode_free_init(oldtnode);
546  
547  	/* Assemble all of the pointers in our cluster, in this case that
548  	 * represents all of the pointers out of our allocated nodes that
549  	 * point to existing tnodes and the links between our allocated
550  	 * nodes.
551  	 */
552  	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
553  		struct key_vector *inode = get_child(oldtnode, --i);
554  		struct key_vector *node0, *node1;
555  		unsigned long j, k;
556  
557  		/* An empty child */
558  		if (!inode)
559  			continue;
560  
561  		/* A leaf or an internal node with skipped bits */
562  		if (!tnode_full(oldtnode, inode)) {
563  			put_child(tn, get_index(inode->key, tn), inode);
564  			continue;
565  		}
566  
567  		/* drop the node in the old tnode free list */
568  		tnode_free_append(oldtnode, inode);
569  
570  		/* An internal node with two children */
571  		if (inode->bits == 1) {
572  			put_child(tn, 2 * i + 1, get_child(inode, 1));
573  			put_child(tn, 2 * i, get_child(inode, 0));
574  			continue;
575  		}
576  
577  		/* We will replace this node 'inode' with two new
578  		 * ones, 'node0' and 'node1', each with half of the
579  		 * original children. The two new nodes will have
580  		 * a position one bit further down the key and this
581  		 * means that the "significant" part of their keys
582  		 * (see the discussion near the top of this file)
583  		 * will differ by one bit, which will be "0" in
584  		 * node0's key and "1" in node1's key. Since we are
585  		 * moving the key position by one step, the bit that
586  		 * we are moving away from - the bit at position
587  		 * (tn->pos) - is the one that will differ between
588  		 * node0 and node1. So... we synthesize that bit in the
589  		 * two new keys.
590  		 */
591  		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
592  		if (!node1)
593  			goto nomem;
594  		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
595  
596  		tnode_free_append(tn, node1);
597  		if (!node0)
598  			goto nomem;
599  		tnode_free_append(tn, node0);
600  
601  		/* populate child pointers in new nodes */
602  		for (k = child_length(inode), j = k / 2; j;) {
603  			put_child(node1, --j, get_child(inode, --k));
604  			put_child(node0, j, get_child(inode, j));
605  			put_child(node1, --j, get_child(inode, --k));
606  			put_child(node0, j, get_child(inode, j));
607  		}
608  
609  		/* link new nodes to parent */
610  		NODE_INIT_PARENT(node1, tn);
611  		NODE_INIT_PARENT(node0, tn);
612  
613  		/* link parent to nodes */
614  		put_child(tn, 2 * i + 1, node1);
615  		put_child(tn, 2 * i, node0);
616  	}
617  
618  	/* setup the parent pointers into and out of this node */
619  	return replace(t, oldtnode, tn);
620  nomem:
621  	/* all pointers should be clean so we are done */
622  	tnode_free(tn);
623  notnode:
624  	return NULL;
625  }
626  
halve(struct trie * t,struct key_vector * oldtnode)627  static struct key_vector *halve(struct trie *t,
628  				struct key_vector *oldtnode)
629  {
630  	struct key_vector *tn;
631  	unsigned long i;
632  
633  	pr_debug("In halve\n");
634  
635  	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
636  	if (!tn)
637  		goto notnode;
638  
639  	/* prepare oldtnode to be freed */
640  	tnode_free_init(oldtnode);
641  
642  	/* Assemble all of the pointers in our cluster, in this case that
643  	 * represents all of the pointers out of our allocated nodes that
644  	 * point to existing tnodes and the links between our allocated
645  	 * nodes.
646  	 */
647  	for (i = child_length(oldtnode); i;) {
648  		struct key_vector *node1 = get_child(oldtnode, --i);
649  		struct key_vector *node0 = get_child(oldtnode, --i);
650  		struct key_vector *inode;
651  
652  		/* At least one of the children is empty */
653  		if (!node1 || !node0) {
654  			put_child(tn, i / 2, node1 ? : node0);
655  			continue;
656  		}
657  
658  		/* Two nonempty children */
659  		inode = tnode_new(node0->key, oldtnode->pos, 1);
660  		if (!inode)
661  			goto nomem;
662  		tnode_free_append(tn, inode);
663  
664  		/* initialize pointers out of node */
665  		put_child(inode, 1, node1);
666  		put_child(inode, 0, node0);
667  		NODE_INIT_PARENT(inode, tn);
668  
669  		/* link parent to node */
670  		put_child(tn, i / 2, inode);
671  	}
672  
673  	/* setup the parent pointers into and out of this node */
674  	return replace(t, oldtnode, tn);
675  nomem:
676  	/* all pointers should be clean so we are done */
677  	tnode_free(tn);
678  notnode:
679  	return NULL;
680  }
681  
collapse(struct trie * t,struct key_vector * oldtnode)682  static struct key_vector *collapse(struct trie *t,
683  				   struct key_vector *oldtnode)
684  {
685  	struct key_vector *n, *tp;
686  	unsigned long i;
687  
688  	/* scan the tnode looking for that one child that might still exist */
689  	for (n = NULL, i = child_length(oldtnode); !n && i;)
690  		n = get_child(oldtnode, --i);
691  
692  	/* compress one level */
693  	tp = node_parent(oldtnode);
694  	put_child_root(tp, oldtnode->key, n);
695  	node_set_parent(n, tp);
696  
697  	/* drop dead node */
698  	node_free(oldtnode);
699  
700  	return tp;
701  }
702  
update_suffix(struct key_vector * tn)703  static unsigned char update_suffix(struct key_vector *tn)
704  {
705  	unsigned char slen = tn->pos;
706  	unsigned long stride, i;
707  	unsigned char slen_max;
708  
709  	/* only vector 0 can have a suffix length greater than or equal to
710  	 * tn->pos + tn->bits, the second highest node will have a suffix
711  	 * length at most of tn->pos + tn->bits - 1
712  	 */
713  	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
714  
715  	/* search though the list of children looking for nodes that might
716  	 * have a suffix greater than the one we currently have.  This is
717  	 * why we start with a stride of 2 since a stride of 1 would
718  	 * represent the nodes with suffix length equal to tn->pos
719  	 */
720  	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
721  		struct key_vector *n = get_child(tn, i);
722  
723  		if (!n || (n->slen <= slen))
724  			continue;
725  
726  		/* update stride and slen based on new value */
727  		stride <<= (n->slen - slen);
728  		slen = n->slen;
729  		i &= ~(stride - 1);
730  
731  		/* stop searching if we have hit the maximum possible value */
732  		if (slen >= slen_max)
733  			break;
734  	}
735  
736  	tn->slen = slen;
737  
738  	return slen;
739  }
740  
741  /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
742   * the Helsinki University of Technology and Matti Tikkanen of Nokia
743   * Telecommunications, page 6:
744   * "A node is doubled if the ratio of non-empty children to all
745   * children in the *doubled* node is at least 'high'."
746   *
747   * 'high' in this instance is the variable 'inflate_threshold'. It
748   * is expressed as a percentage, so we multiply it with
749   * child_length() and instead of multiplying by 2 (since the
750   * child array will be doubled by inflate()) and multiplying
751   * the left-hand side by 100 (to handle the percentage thing) we
752   * multiply the left-hand side by 50.
753   *
754   * The left-hand side may look a bit weird: child_length(tn)
755   * - tn->empty_children is of course the number of non-null children
756   * in the current node. tn->full_children is the number of "full"
757   * children, that is non-null tnodes with a skip value of 0.
758   * All of those will be doubled in the resulting inflated tnode, so
759   * we just count them one extra time here.
760   *
761   * A clearer way to write this would be:
762   *
763   * to_be_doubled = tn->full_children;
764   * not_to_be_doubled = child_length(tn) - tn->empty_children -
765   *     tn->full_children;
766   *
767   * new_child_length = child_length(tn) * 2;
768   *
769   * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
770   *      new_child_length;
771   * if (new_fill_factor >= inflate_threshold)
772   *
773   * ...and so on, tho it would mess up the while () loop.
774   *
775   * anyway,
776   * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
777   *      inflate_threshold
778   *
779   * avoid a division:
780   * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
781   *      inflate_threshold * new_child_length
782   *
783   * expand not_to_be_doubled and to_be_doubled, and shorten:
784   * 100 * (child_length(tn) - tn->empty_children +
785   *    tn->full_children) >= inflate_threshold * new_child_length
786   *
787   * expand new_child_length:
788   * 100 * (child_length(tn) - tn->empty_children +
789   *    tn->full_children) >=
790   *      inflate_threshold * child_length(tn) * 2
791   *
792   * shorten again:
793   * 50 * (tn->full_children + child_length(tn) -
794   *    tn->empty_children) >= inflate_threshold *
795   *    child_length(tn)
796   *
797   */
should_inflate(struct key_vector * tp,struct key_vector * tn)798  static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
799  {
800  	unsigned long used = child_length(tn);
801  	unsigned long threshold = used;
802  
803  	/* Keep root node larger */
804  	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
805  	used -= tn_info(tn)->empty_children;
806  	used += tn_info(tn)->full_children;
807  
808  	/* if bits == KEYLENGTH then pos = 0, and will fail below */
809  
810  	return (used > 1) && tn->pos && ((50 * used) >= threshold);
811  }
812  
should_halve(struct key_vector * tp,struct key_vector * tn)813  static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
814  {
815  	unsigned long used = child_length(tn);
816  	unsigned long threshold = used;
817  
818  	/* Keep root node larger */
819  	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
820  	used -= tn_info(tn)->empty_children;
821  
822  	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
823  
824  	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
825  }
826  
should_collapse(struct key_vector * tn)827  static inline bool should_collapse(struct key_vector *tn)
828  {
829  	unsigned long used = child_length(tn);
830  
831  	used -= tn_info(tn)->empty_children;
832  
833  	/* account for bits == KEYLENGTH case */
834  	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
835  		used -= KEY_MAX;
836  
837  	/* One child or none, time to drop us from the trie */
838  	return used < 2;
839  }
840  
841  #define MAX_WORK 10
resize(struct trie * t,struct key_vector * tn)842  static struct key_vector *resize(struct trie *t, struct key_vector *tn)
843  {
844  #ifdef CONFIG_IP_FIB_TRIE_STATS
845  	struct trie_use_stats __percpu *stats = t->stats;
846  #endif
847  	struct key_vector *tp = node_parent(tn);
848  	unsigned long cindex = get_index(tn->key, tp);
849  	int max_work = MAX_WORK;
850  
851  	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
852  		 tn, inflate_threshold, halve_threshold);
853  
854  	/* track the tnode via the pointer from the parent instead of
855  	 * doing it ourselves.  This way we can let RCU fully do its
856  	 * thing without us interfering
857  	 */
858  	BUG_ON(tn != get_child(tp, cindex));
859  
860  	/* Double as long as the resulting node has a number of
861  	 * nonempty nodes that are above the threshold.
862  	 */
863  	while (should_inflate(tp, tn) && max_work) {
864  		tp = inflate(t, tn);
865  		if (!tp) {
866  #ifdef CONFIG_IP_FIB_TRIE_STATS
867  			this_cpu_inc(stats->resize_node_skipped);
868  #endif
869  			break;
870  		}
871  
872  		max_work--;
873  		tn = get_child(tp, cindex);
874  	}
875  
876  	/* update parent in case inflate failed */
877  	tp = node_parent(tn);
878  
879  	/* Return if at least one inflate is run */
880  	if (max_work != MAX_WORK)
881  		return tp;
882  
883  	/* Halve as long as the number of empty children in this
884  	 * node is above threshold.
885  	 */
886  	while (should_halve(tp, tn) && max_work) {
887  		tp = halve(t, tn);
888  		if (!tp) {
889  #ifdef CONFIG_IP_FIB_TRIE_STATS
890  			this_cpu_inc(stats->resize_node_skipped);
891  #endif
892  			break;
893  		}
894  
895  		max_work--;
896  		tn = get_child(tp, cindex);
897  	}
898  
899  	/* Only one child remains */
900  	if (should_collapse(tn))
901  		return collapse(t, tn);
902  
903  	/* update parent in case halve failed */
904  	return node_parent(tn);
905  }
906  
node_pull_suffix(struct key_vector * tn,unsigned char slen)907  static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
908  {
909  	unsigned char node_slen = tn->slen;
910  
911  	while ((node_slen > tn->pos) && (node_slen > slen)) {
912  		slen = update_suffix(tn);
913  		if (node_slen == slen)
914  			break;
915  
916  		tn = node_parent(tn);
917  		node_slen = tn->slen;
918  	}
919  }
920  
node_push_suffix(struct key_vector * tn,unsigned char slen)921  static void node_push_suffix(struct key_vector *tn, unsigned char slen)
922  {
923  	while (tn->slen < slen) {
924  		tn->slen = slen;
925  		tn = node_parent(tn);
926  	}
927  }
928  
929  /* rcu_read_lock needs to be hold by caller from readside */
fib_find_node(struct trie * t,struct key_vector ** tp,u32 key)930  static struct key_vector *fib_find_node(struct trie *t,
931  					struct key_vector **tp, u32 key)
932  {
933  	struct key_vector *pn, *n = t->kv;
934  	unsigned long index = 0;
935  
936  	do {
937  		pn = n;
938  		n = get_child_rcu(n, index);
939  
940  		if (!n)
941  			break;
942  
943  		index = get_cindex(key, n);
944  
945  		/* This bit of code is a bit tricky but it combines multiple
946  		 * checks into a single check.  The prefix consists of the
947  		 * prefix plus zeros for the bits in the cindex. The index
948  		 * is the difference between the key and this value.  From
949  		 * this we can actually derive several pieces of data.
950  		 *   if (index >= (1ul << bits))
951  		 *     we have a mismatch in skip bits and failed
952  		 *   else
953  		 *     we know the value is cindex
954  		 *
955  		 * This check is safe even if bits == KEYLENGTH due to the
956  		 * fact that we can only allocate a node with 32 bits if a
957  		 * long is greater than 32 bits.
958  		 */
959  		if (index >= (1ul << n->bits)) {
960  			n = NULL;
961  			break;
962  		}
963  
964  		/* keep searching until we find a perfect match leaf or NULL */
965  	} while (IS_TNODE(n));
966  
967  	*tp = pn;
968  
969  	return n;
970  }
971  
972  /* Return the first fib alias matching DSCP with
973   * priority less than or equal to PRIO.
974   * If 'find_first' is set, return the first matching
975   * fib alias, regardless of DSCP and priority.
976   */
fib_find_alias(struct hlist_head * fah,u8 slen,dscp_t dscp,u32 prio,u32 tb_id,bool find_first)977  static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
978  					dscp_t dscp, u32 prio, u32 tb_id,
979  					bool find_first)
980  {
981  	struct fib_alias *fa;
982  
983  	if (!fah)
984  		return NULL;
985  
986  	hlist_for_each_entry(fa, fah, fa_list) {
987  		/* Avoid Sparse warning when using dscp_t in inequalities */
988  		u8 __fa_dscp = inet_dscp_to_dsfield(fa->fa_dscp);
989  		u8 __dscp = inet_dscp_to_dsfield(dscp);
990  
991  		if (fa->fa_slen < slen)
992  			continue;
993  		if (fa->fa_slen != slen)
994  			break;
995  		if (fa->tb_id > tb_id)
996  			continue;
997  		if (fa->tb_id != tb_id)
998  			break;
999  		if (find_first)
1000  			return fa;
1001  		if (__fa_dscp > __dscp)
1002  			continue;
1003  		if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp)
1004  			return fa;
1005  	}
1006  
1007  	return NULL;
1008  }
1009  
1010  static struct fib_alias *
fib_find_matching_alias(struct net * net,const struct fib_rt_info * fri)1011  fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012  {
1013  	u8 slen = KEYLENGTH - fri->dst_len;
1014  	struct key_vector *l, *tp;
1015  	struct fib_table *tb;
1016  	struct fib_alias *fa;
1017  	struct trie *t;
1018  
1019  	tb = fib_get_table(net, fri->tb_id);
1020  	if (!tb)
1021  		return NULL;
1022  
1023  	t = (struct trie *)tb->tb_data;
1024  	l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025  	if (!l)
1026  		return NULL;
1027  
1028  	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029  		if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030  		    fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi &&
1031  		    fa->fa_type == fri->type)
1032  			return fa;
1033  	}
1034  
1035  	return NULL;
1036  }
1037  
fib_alias_hw_flags_set(struct net * net,const struct fib_rt_info * fri)1038  void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039  {
1040  	u8 fib_notify_on_flag_change;
1041  	struct fib_alias *fa_match;
1042  	struct sk_buff *skb;
1043  	int err;
1044  
1045  	rcu_read_lock();
1046  
1047  	fa_match = fib_find_matching_alias(net, fri);
1048  	if (!fa_match)
1049  		goto out;
1050  
1051  	/* These are paired with the WRITE_ONCE() happening in this function.
1052  	 * The reason is that we are only protected by RCU at this point.
1053  	 */
1054  	if (READ_ONCE(fa_match->offload) == fri->offload &&
1055  	    READ_ONCE(fa_match->trap) == fri->trap &&
1056  	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1057  		goto out;
1058  
1059  	WRITE_ONCE(fa_match->offload, fri->offload);
1060  	WRITE_ONCE(fa_match->trap, fri->trap);
1061  
1062  	fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change);
1063  
1064  	/* 2 means send notifications only if offload_failed was changed. */
1065  	if (fib_notify_on_flag_change == 2 &&
1066  	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1067  		goto out;
1068  
1069  	WRITE_ONCE(fa_match->offload_failed, fri->offload_failed);
1070  
1071  	if (!fib_notify_on_flag_change)
1072  		goto out;
1073  
1074  	skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1075  	if (!skb) {
1076  		err = -ENOBUFS;
1077  		goto errout;
1078  	}
1079  
1080  	err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1081  	if (err < 0) {
1082  		/* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1083  		WARN_ON(err == -EMSGSIZE);
1084  		kfree_skb(skb);
1085  		goto errout;
1086  	}
1087  
1088  	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1089  	goto out;
1090  
1091  errout:
1092  	rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1093  out:
1094  	rcu_read_unlock();
1095  }
1096  EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1097  
trie_rebalance(struct trie * t,struct key_vector * tn)1098  static void trie_rebalance(struct trie *t, struct key_vector *tn)
1099  {
1100  	while (!IS_TRIE(tn))
1101  		tn = resize(t, tn);
1102  }
1103  
fib_insert_node(struct trie * t,struct key_vector * tp,struct fib_alias * new,t_key key)1104  static int fib_insert_node(struct trie *t, struct key_vector *tp,
1105  			   struct fib_alias *new, t_key key)
1106  {
1107  	struct key_vector *n, *l;
1108  
1109  	l = leaf_new(key, new);
1110  	if (!l)
1111  		goto noleaf;
1112  
1113  	/* retrieve child from parent node */
1114  	n = get_child(tp, get_index(key, tp));
1115  
1116  	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1117  	 *
1118  	 *  Add a new tnode here
1119  	 *  first tnode need some special handling
1120  	 *  leaves us in position for handling as case 3
1121  	 */
1122  	if (n) {
1123  		struct key_vector *tn;
1124  
1125  		tn = tnode_new(key, __fls(key ^ n->key), 1);
1126  		if (!tn)
1127  			goto notnode;
1128  
1129  		/* initialize routes out of node */
1130  		NODE_INIT_PARENT(tn, tp);
1131  		put_child(tn, get_index(key, tn) ^ 1, n);
1132  
1133  		/* start adding routes into the node */
1134  		put_child_root(tp, key, tn);
1135  		node_set_parent(n, tn);
1136  
1137  		/* parent now has a NULL spot where the leaf can go */
1138  		tp = tn;
1139  	}
1140  
1141  	/* Case 3: n is NULL, and will just insert a new leaf */
1142  	node_push_suffix(tp, new->fa_slen);
1143  	NODE_INIT_PARENT(l, tp);
1144  	put_child_root(tp, key, l);
1145  	trie_rebalance(t, tp);
1146  
1147  	return 0;
1148  notnode:
1149  	node_free(l);
1150  noleaf:
1151  	return -ENOMEM;
1152  }
1153  
fib_insert_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * new,struct fib_alias * fa,t_key key)1154  static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1155  			    struct key_vector *l, struct fib_alias *new,
1156  			    struct fib_alias *fa, t_key key)
1157  {
1158  	if (!l)
1159  		return fib_insert_node(t, tp, new, key);
1160  
1161  	if (fa) {
1162  		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1163  	} else {
1164  		struct fib_alias *last;
1165  
1166  		hlist_for_each_entry(last, &l->leaf, fa_list) {
1167  			if (new->fa_slen < last->fa_slen)
1168  				break;
1169  			if ((new->fa_slen == last->fa_slen) &&
1170  			    (new->tb_id > last->tb_id))
1171  				break;
1172  			fa = last;
1173  		}
1174  
1175  		if (fa)
1176  			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1177  		else
1178  			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1179  	}
1180  
1181  	/* if we added to the tail node then we need to update slen */
1182  	if (l->slen < new->fa_slen) {
1183  		l->slen = new->fa_slen;
1184  		node_push_suffix(tp, new->fa_slen);
1185  	}
1186  
1187  	return 0;
1188  }
1189  
1190  static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1191  			     struct key_vector *l, struct fib_alias *old);
1192  
1193  /* Caller must hold RTNL. */
fib_table_insert(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1194  int fib_table_insert(struct net *net, struct fib_table *tb,
1195  		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1196  {
1197  	struct trie *t = (struct trie *)tb->tb_data;
1198  	struct fib_alias *fa, *new_fa;
1199  	struct key_vector *l, *tp;
1200  	u16 nlflags = NLM_F_EXCL;
1201  	struct fib_info *fi;
1202  	u8 plen = cfg->fc_dst_len;
1203  	u8 slen = KEYLENGTH - plen;
1204  	dscp_t dscp;
1205  	u32 key;
1206  	int err;
1207  
1208  	key = ntohl(cfg->fc_dst);
1209  
1210  	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1211  
1212  	fi = fib_create_info(cfg, extack);
1213  	if (IS_ERR(fi)) {
1214  		err = PTR_ERR(fi);
1215  		goto err;
1216  	}
1217  
1218  	dscp = cfg->fc_dscp;
1219  	l = fib_find_node(t, &tp, key);
1220  	fa = l ? fib_find_alias(&l->leaf, slen, dscp, fi->fib_priority,
1221  				tb->tb_id, false) : NULL;
1222  
1223  	/* Now fa, if non-NULL, points to the first fib alias
1224  	 * with the same keys [prefix,dscp,priority], if such key already
1225  	 * exists or to the node before which we will insert new one.
1226  	 *
1227  	 * If fa is NULL, we will need to allocate a new one and
1228  	 * insert to the tail of the section matching the suffix length
1229  	 * of the new alias.
1230  	 */
1231  
1232  	if (fa && fa->fa_dscp == dscp &&
1233  	    fa->fa_info->fib_priority == fi->fib_priority) {
1234  		struct fib_alias *fa_first, *fa_match;
1235  
1236  		err = -EEXIST;
1237  		if (cfg->fc_nlflags & NLM_F_EXCL)
1238  			goto out;
1239  
1240  		nlflags &= ~NLM_F_EXCL;
1241  
1242  		/* We have 2 goals:
1243  		 * 1. Find exact match for type, scope, fib_info to avoid
1244  		 * duplicate routes
1245  		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1246  		 */
1247  		fa_match = NULL;
1248  		fa_first = fa;
1249  		hlist_for_each_entry_from(fa, fa_list) {
1250  			if ((fa->fa_slen != slen) ||
1251  			    (fa->tb_id != tb->tb_id) ||
1252  			    (fa->fa_dscp != dscp))
1253  				break;
1254  			if (fa->fa_info->fib_priority != fi->fib_priority)
1255  				break;
1256  			if (fa->fa_type == cfg->fc_type &&
1257  			    fa->fa_info == fi) {
1258  				fa_match = fa;
1259  				break;
1260  			}
1261  		}
1262  
1263  		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1264  			struct fib_info *fi_drop;
1265  			u8 state;
1266  
1267  			nlflags |= NLM_F_REPLACE;
1268  			fa = fa_first;
1269  			if (fa_match) {
1270  				if (fa == fa_match)
1271  					err = 0;
1272  				goto out;
1273  			}
1274  			err = -ENOBUFS;
1275  			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1276  			if (!new_fa)
1277  				goto out;
1278  
1279  			fi_drop = fa->fa_info;
1280  			new_fa->fa_dscp = fa->fa_dscp;
1281  			new_fa->fa_info = fi;
1282  			new_fa->fa_type = cfg->fc_type;
1283  			state = fa->fa_state;
1284  			new_fa->fa_state = state & ~FA_S_ACCESSED;
1285  			new_fa->fa_slen = fa->fa_slen;
1286  			new_fa->tb_id = tb->tb_id;
1287  			new_fa->fa_default = -1;
1288  			new_fa->offload = 0;
1289  			new_fa->trap = 0;
1290  			new_fa->offload_failed = 0;
1291  
1292  			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1293  
1294  			if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1295  					   tb->tb_id, true) == new_fa) {
1296  				enum fib_event_type fib_event;
1297  
1298  				fib_event = FIB_EVENT_ENTRY_REPLACE;
1299  				err = call_fib_entry_notifiers(net, fib_event,
1300  							       key, plen,
1301  							       new_fa, extack);
1302  				if (err) {
1303  					hlist_replace_rcu(&new_fa->fa_list,
1304  							  &fa->fa_list);
1305  					goto out_free_new_fa;
1306  				}
1307  			}
1308  
1309  			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1310  				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1311  
1312  			alias_free_mem_rcu(fa);
1313  
1314  			fib_release_info(fi_drop);
1315  			if (state & FA_S_ACCESSED)
1316  				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1317  
1318  			goto succeeded;
1319  		}
1320  		/* Error if we find a perfect match which
1321  		 * uses the same scope, type, and nexthop
1322  		 * information.
1323  		 */
1324  		if (fa_match)
1325  			goto out;
1326  
1327  		if (cfg->fc_nlflags & NLM_F_APPEND)
1328  			nlflags |= NLM_F_APPEND;
1329  		else
1330  			fa = fa_first;
1331  	}
1332  	err = -ENOENT;
1333  	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1334  		goto out;
1335  
1336  	nlflags |= NLM_F_CREATE;
1337  	err = -ENOBUFS;
1338  	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1339  	if (!new_fa)
1340  		goto out;
1341  
1342  	new_fa->fa_info = fi;
1343  	new_fa->fa_dscp = dscp;
1344  	new_fa->fa_type = cfg->fc_type;
1345  	new_fa->fa_state = 0;
1346  	new_fa->fa_slen = slen;
1347  	new_fa->tb_id = tb->tb_id;
1348  	new_fa->fa_default = -1;
1349  	new_fa->offload = 0;
1350  	new_fa->trap = 0;
1351  	new_fa->offload_failed = 0;
1352  
1353  	/* Insert new entry to the list. */
1354  	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1355  	if (err)
1356  		goto out_free_new_fa;
1357  
1358  	/* The alias was already inserted, so the node must exist. */
1359  	l = l ? l : fib_find_node(t, &tp, key);
1360  	if (WARN_ON_ONCE(!l)) {
1361  		err = -ENOENT;
1362  		goto out_free_new_fa;
1363  	}
1364  
1365  	if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1366  	    new_fa) {
1367  		enum fib_event_type fib_event;
1368  
1369  		fib_event = FIB_EVENT_ENTRY_REPLACE;
1370  		err = call_fib_entry_notifiers(net, fib_event, key, plen,
1371  					       new_fa, extack);
1372  		if (err)
1373  			goto out_remove_new_fa;
1374  	}
1375  
1376  	if (!plen)
1377  		tb->tb_num_default++;
1378  
1379  	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1380  	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1381  		  &cfg->fc_nlinfo, nlflags);
1382  succeeded:
1383  	return 0;
1384  
1385  out_remove_new_fa:
1386  	fib_remove_alias(t, tp, l, new_fa);
1387  out_free_new_fa:
1388  	kmem_cache_free(fn_alias_kmem, new_fa);
1389  out:
1390  	fib_release_info(fi);
1391  err:
1392  	return err;
1393  }
1394  
prefix_mismatch(t_key key,struct key_vector * n)1395  static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1396  {
1397  	t_key prefix = n->key;
1398  
1399  	return (key ^ prefix) & (prefix | -prefix);
1400  }
1401  
fib_lookup_good_nhc(const struct fib_nh_common * nhc,int fib_flags,const struct flowi4 * flp)1402  bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1403  			 const struct flowi4 *flp)
1404  {
1405  	if (nhc->nhc_flags & RTNH_F_DEAD)
1406  		return false;
1407  
1408  	if (ip_ignore_linkdown(nhc->nhc_dev) &&
1409  	    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1410  	    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1411  		return false;
1412  
1413  	if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif)
1414  		return false;
1415  
1416  	return true;
1417  }
1418  
1419  /* should be called with rcu_read_lock */
fib_table_lookup(struct fib_table * tb,const struct flowi4 * flp,struct fib_result * res,int fib_flags)1420  int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1421  		     struct fib_result *res, int fib_flags)
1422  {
1423  	struct trie *t = (struct trie *) tb->tb_data;
1424  #ifdef CONFIG_IP_FIB_TRIE_STATS
1425  	struct trie_use_stats __percpu *stats = t->stats;
1426  #endif
1427  	const t_key key = ntohl(flp->daddr);
1428  	struct key_vector *n, *pn;
1429  	struct fib_alias *fa;
1430  	unsigned long index;
1431  	t_key cindex;
1432  
1433  	pn = t->kv;
1434  	cindex = 0;
1435  
1436  	n = get_child_rcu(pn, cindex);
1437  	if (!n) {
1438  		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1439  		return -EAGAIN;
1440  	}
1441  
1442  #ifdef CONFIG_IP_FIB_TRIE_STATS
1443  	this_cpu_inc(stats->gets);
1444  #endif
1445  
1446  	/* Step 1: Travel to the longest prefix match in the trie */
1447  	for (;;) {
1448  		index = get_cindex(key, n);
1449  
1450  		/* This bit of code is a bit tricky but it combines multiple
1451  		 * checks into a single check.  The prefix consists of the
1452  		 * prefix plus zeros for the "bits" in the prefix. The index
1453  		 * is the difference between the key and this value.  From
1454  		 * this we can actually derive several pieces of data.
1455  		 *   if (index >= (1ul << bits))
1456  		 *     we have a mismatch in skip bits and failed
1457  		 *   else
1458  		 *     we know the value is cindex
1459  		 *
1460  		 * This check is safe even if bits == KEYLENGTH due to the
1461  		 * fact that we can only allocate a node with 32 bits if a
1462  		 * long is greater than 32 bits.
1463  		 */
1464  		if (index >= (1ul << n->bits))
1465  			break;
1466  
1467  		/* we have found a leaf. Prefixes have already been compared */
1468  		if (IS_LEAF(n))
1469  			goto found;
1470  
1471  		/* only record pn and cindex if we are going to be chopping
1472  		 * bits later.  Otherwise we are just wasting cycles.
1473  		 */
1474  		if (n->slen > n->pos) {
1475  			pn = n;
1476  			cindex = index;
1477  		}
1478  
1479  		n = get_child_rcu(n, index);
1480  		if (unlikely(!n))
1481  			goto backtrace;
1482  	}
1483  
1484  	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1485  	for (;;) {
1486  		/* record the pointer where our next node pointer is stored */
1487  		struct key_vector __rcu **cptr = n->tnode;
1488  
1489  		/* This test verifies that none of the bits that differ
1490  		 * between the key and the prefix exist in the region of
1491  		 * the lsb and higher in the prefix.
1492  		 */
1493  		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1494  			goto backtrace;
1495  
1496  		/* exit out and process leaf */
1497  		if (unlikely(IS_LEAF(n)))
1498  			break;
1499  
1500  		/* Don't bother recording parent info.  Since we are in
1501  		 * prefix match mode we will have to come back to wherever
1502  		 * we started this traversal anyway
1503  		 */
1504  
1505  		while ((n = rcu_dereference(*cptr)) == NULL) {
1506  backtrace:
1507  #ifdef CONFIG_IP_FIB_TRIE_STATS
1508  			if (!n)
1509  				this_cpu_inc(stats->null_node_hit);
1510  #endif
1511  			/* If we are at cindex 0 there are no more bits for
1512  			 * us to strip at this level so we must ascend back
1513  			 * up one level to see if there are any more bits to
1514  			 * be stripped there.
1515  			 */
1516  			while (!cindex) {
1517  				t_key pkey = pn->key;
1518  
1519  				/* If we don't have a parent then there is
1520  				 * nothing for us to do as we do not have any
1521  				 * further nodes to parse.
1522  				 */
1523  				if (IS_TRIE(pn)) {
1524  					trace_fib_table_lookup(tb->tb_id, flp,
1525  							       NULL, -EAGAIN);
1526  					return -EAGAIN;
1527  				}
1528  #ifdef CONFIG_IP_FIB_TRIE_STATS
1529  				this_cpu_inc(stats->backtrack);
1530  #endif
1531  				/* Get Child's index */
1532  				pn = node_parent_rcu(pn);
1533  				cindex = get_index(pkey, pn);
1534  			}
1535  
1536  			/* strip the least significant bit from the cindex */
1537  			cindex &= cindex - 1;
1538  
1539  			/* grab pointer for next child node */
1540  			cptr = &pn->tnode[cindex];
1541  		}
1542  	}
1543  
1544  found:
1545  	/* this line carries forward the xor from earlier in the function */
1546  	index = key ^ n->key;
1547  
1548  	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1549  	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1550  		struct fib_info *fi = fa->fa_info;
1551  		struct fib_nh_common *nhc;
1552  		int nhsel, err;
1553  
1554  		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1555  			if (index >= (1ul << fa->fa_slen))
1556  				continue;
1557  		}
1558  		if (fa->fa_dscp && !fib_dscp_masked_match(fa->fa_dscp, flp))
1559  			continue;
1560  		/* Paired with WRITE_ONCE() in fib_release_info() */
1561  		if (READ_ONCE(fi->fib_dead))
1562  			continue;
1563  		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1564  			continue;
1565  		fib_alias_accessed(fa);
1566  		err = fib_props[fa->fa_type].error;
1567  		if (unlikely(err < 0)) {
1568  out_reject:
1569  #ifdef CONFIG_IP_FIB_TRIE_STATS
1570  			this_cpu_inc(stats->semantic_match_passed);
1571  #endif
1572  			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1573  			return err;
1574  		}
1575  		if (fi->fib_flags & RTNH_F_DEAD)
1576  			continue;
1577  
1578  		if (unlikely(fi->nh)) {
1579  			if (nexthop_is_blackhole(fi->nh)) {
1580  				err = fib_props[RTN_BLACKHOLE].error;
1581  				goto out_reject;
1582  			}
1583  
1584  			nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1585  						     &nhsel);
1586  			if (nhc)
1587  				goto set_result;
1588  			goto miss;
1589  		}
1590  
1591  		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1592  			nhc = fib_info_nhc(fi, nhsel);
1593  
1594  			if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1595  				continue;
1596  set_result:
1597  			if (!(fib_flags & FIB_LOOKUP_NOREF))
1598  				refcount_inc(&fi->fib_clntref);
1599  
1600  			res->prefix = htonl(n->key);
1601  			res->prefixlen = KEYLENGTH - fa->fa_slen;
1602  			res->nh_sel = nhsel;
1603  			res->nhc = nhc;
1604  			res->type = fa->fa_type;
1605  			res->scope = fi->fib_scope;
1606  			res->dscp = fa->fa_dscp;
1607  			res->fi = fi;
1608  			res->table = tb;
1609  			res->fa_head = &n->leaf;
1610  #ifdef CONFIG_IP_FIB_TRIE_STATS
1611  			this_cpu_inc(stats->semantic_match_passed);
1612  #endif
1613  			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1614  
1615  			return err;
1616  		}
1617  	}
1618  miss:
1619  #ifdef CONFIG_IP_FIB_TRIE_STATS
1620  	this_cpu_inc(stats->semantic_match_miss);
1621  #endif
1622  	goto backtrace;
1623  }
1624  EXPORT_SYMBOL_GPL(fib_table_lookup);
1625  
fib_remove_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * old)1626  static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1627  			     struct key_vector *l, struct fib_alias *old)
1628  {
1629  	/* record the location of the previous list_info entry */
1630  	struct hlist_node **pprev = old->fa_list.pprev;
1631  	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1632  
1633  	/* remove the fib_alias from the list */
1634  	hlist_del_rcu(&old->fa_list);
1635  
1636  	/* if we emptied the list this leaf will be freed and we can sort
1637  	 * out parent suffix lengths as a part of trie_rebalance
1638  	 */
1639  	if (hlist_empty(&l->leaf)) {
1640  		if (tp->slen == l->slen)
1641  			node_pull_suffix(tp, tp->pos);
1642  		put_child_root(tp, l->key, NULL);
1643  		node_free(l);
1644  		trie_rebalance(t, tp);
1645  		return;
1646  	}
1647  
1648  	/* only access fa if it is pointing at the last valid hlist_node */
1649  	if (*pprev)
1650  		return;
1651  
1652  	/* update the trie with the latest suffix length */
1653  	l->slen = fa->fa_slen;
1654  	node_pull_suffix(tp, fa->fa_slen);
1655  }
1656  
fib_notify_alias_delete(struct net * net,u32 key,struct hlist_head * fah,struct fib_alias * fa_to_delete,struct netlink_ext_ack * extack)1657  static void fib_notify_alias_delete(struct net *net, u32 key,
1658  				    struct hlist_head *fah,
1659  				    struct fib_alias *fa_to_delete,
1660  				    struct netlink_ext_ack *extack)
1661  {
1662  	struct fib_alias *fa_next, *fa_to_notify;
1663  	u32 tb_id = fa_to_delete->tb_id;
1664  	u8 slen = fa_to_delete->fa_slen;
1665  	enum fib_event_type fib_event;
1666  
1667  	/* Do not notify if we do not care about the route. */
1668  	if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1669  		return;
1670  
1671  	/* Determine if the route should be replaced by the next route in the
1672  	 * list.
1673  	 */
1674  	fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1675  				   struct fib_alias, fa_list);
1676  	if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1677  		fib_event = FIB_EVENT_ENTRY_REPLACE;
1678  		fa_to_notify = fa_next;
1679  	} else {
1680  		fib_event = FIB_EVENT_ENTRY_DEL;
1681  		fa_to_notify = fa_to_delete;
1682  	}
1683  	call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1684  				 fa_to_notify, extack);
1685  }
1686  
1687  /* Caller must hold RTNL. */
fib_table_delete(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1688  int fib_table_delete(struct net *net, struct fib_table *tb,
1689  		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1690  {
1691  	struct trie *t = (struct trie *) tb->tb_data;
1692  	struct fib_alias *fa, *fa_to_delete;
1693  	struct key_vector *l, *tp;
1694  	u8 plen = cfg->fc_dst_len;
1695  	u8 slen = KEYLENGTH - plen;
1696  	dscp_t dscp;
1697  	u32 key;
1698  
1699  	key = ntohl(cfg->fc_dst);
1700  
1701  	l = fib_find_node(t, &tp, key);
1702  	if (!l)
1703  		return -ESRCH;
1704  
1705  	dscp = cfg->fc_dscp;
1706  	fa = fib_find_alias(&l->leaf, slen, dscp, 0, tb->tb_id, false);
1707  	if (!fa)
1708  		return -ESRCH;
1709  
1710  	pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen,
1711  		 inet_dscp_to_dsfield(dscp), t);
1712  
1713  	fa_to_delete = NULL;
1714  	hlist_for_each_entry_from(fa, fa_list) {
1715  		struct fib_info *fi = fa->fa_info;
1716  
1717  		if ((fa->fa_slen != slen) ||
1718  		    (fa->tb_id != tb->tb_id) ||
1719  		    (fa->fa_dscp != dscp))
1720  			break;
1721  
1722  		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1723  		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1724  		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1725  		    (!cfg->fc_prefsrc ||
1726  		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1727  		    (!cfg->fc_protocol ||
1728  		     fi->fib_protocol == cfg->fc_protocol) &&
1729  		    fib_nh_match(net, cfg, fi, extack) == 0 &&
1730  		    fib_metrics_match(cfg, fi)) {
1731  			fa_to_delete = fa;
1732  			break;
1733  		}
1734  	}
1735  
1736  	if (!fa_to_delete)
1737  		return -ESRCH;
1738  
1739  	fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1740  	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1741  		  &cfg->fc_nlinfo, 0);
1742  
1743  	if (!plen)
1744  		tb->tb_num_default--;
1745  
1746  	fib_remove_alias(t, tp, l, fa_to_delete);
1747  
1748  	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1749  		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1750  
1751  	fib_release_info(fa_to_delete->fa_info);
1752  	alias_free_mem_rcu(fa_to_delete);
1753  	return 0;
1754  }
1755  
1756  /* Scan for the next leaf starting at the provided key value */
leaf_walk_rcu(struct key_vector ** tn,t_key key)1757  static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1758  {
1759  	struct key_vector *pn, *n = *tn;
1760  	unsigned long cindex;
1761  
1762  	/* this loop is meant to try and find the key in the trie */
1763  	do {
1764  		/* record parent and next child index */
1765  		pn = n;
1766  		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1767  
1768  		if (cindex >> pn->bits)
1769  			break;
1770  
1771  		/* descend into the next child */
1772  		n = get_child_rcu(pn, cindex++);
1773  		if (!n)
1774  			break;
1775  
1776  		/* guarantee forward progress on the keys */
1777  		if (IS_LEAF(n) && (n->key >= key))
1778  			goto found;
1779  	} while (IS_TNODE(n));
1780  
1781  	/* this loop will search for the next leaf with a greater key */
1782  	while (!IS_TRIE(pn)) {
1783  		/* if we exhausted the parent node we will need to climb */
1784  		if (cindex >= (1ul << pn->bits)) {
1785  			t_key pkey = pn->key;
1786  
1787  			pn = node_parent_rcu(pn);
1788  			cindex = get_index(pkey, pn) + 1;
1789  			continue;
1790  		}
1791  
1792  		/* grab the next available node */
1793  		n = get_child_rcu(pn, cindex++);
1794  		if (!n)
1795  			continue;
1796  
1797  		/* no need to compare keys since we bumped the index */
1798  		if (IS_LEAF(n))
1799  			goto found;
1800  
1801  		/* Rescan start scanning in new node */
1802  		pn = n;
1803  		cindex = 0;
1804  	}
1805  
1806  	*tn = pn;
1807  	return NULL; /* Root of trie */
1808  found:
1809  	/* if we are at the limit for keys just return NULL for the tnode */
1810  	*tn = pn;
1811  	return n;
1812  }
1813  
fib_trie_free(struct fib_table * tb)1814  static void fib_trie_free(struct fib_table *tb)
1815  {
1816  	struct trie *t = (struct trie *)tb->tb_data;
1817  	struct key_vector *pn = t->kv;
1818  	unsigned long cindex = 1;
1819  	struct hlist_node *tmp;
1820  	struct fib_alias *fa;
1821  
1822  	/* walk trie in reverse order and free everything */
1823  	for (;;) {
1824  		struct key_vector *n;
1825  
1826  		if (!(cindex--)) {
1827  			t_key pkey = pn->key;
1828  
1829  			if (IS_TRIE(pn))
1830  				break;
1831  
1832  			n = pn;
1833  			pn = node_parent(pn);
1834  
1835  			/* drop emptied tnode */
1836  			put_child_root(pn, n->key, NULL);
1837  			node_free(n);
1838  
1839  			cindex = get_index(pkey, pn);
1840  
1841  			continue;
1842  		}
1843  
1844  		/* grab the next available node */
1845  		n = get_child(pn, cindex);
1846  		if (!n)
1847  			continue;
1848  
1849  		if (IS_TNODE(n)) {
1850  			/* record pn and cindex for leaf walking */
1851  			pn = n;
1852  			cindex = 1ul << n->bits;
1853  
1854  			continue;
1855  		}
1856  
1857  		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1858  			hlist_del_rcu(&fa->fa_list);
1859  			alias_free_mem_rcu(fa);
1860  		}
1861  
1862  		put_child_root(pn, n->key, NULL);
1863  		node_free(n);
1864  	}
1865  
1866  #ifdef CONFIG_IP_FIB_TRIE_STATS
1867  	free_percpu(t->stats);
1868  #endif
1869  	kfree(tb);
1870  }
1871  
fib_trie_unmerge(struct fib_table * oldtb)1872  struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1873  {
1874  	struct trie *ot = (struct trie *)oldtb->tb_data;
1875  	struct key_vector *l, *tp = ot->kv;
1876  	struct fib_table *local_tb;
1877  	struct fib_alias *fa;
1878  	struct trie *lt;
1879  	t_key key = 0;
1880  
1881  	if (oldtb->tb_data == oldtb->__data)
1882  		return oldtb;
1883  
1884  	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1885  	if (!local_tb)
1886  		return NULL;
1887  
1888  	lt = (struct trie *)local_tb->tb_data;
1889  
1890  	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1891  		struct key_vector *local_l = NULL, *local_tp;
1892  
1893  		hlist_for_each_entry(fa, &l->leaf, fa_list) {
1894  			struct fib_alias *new_fa;
1895  
1896  			if (local_tb->tb_id != fa->tb_id)
1897  				continue;
1898  
1899  			/* clone fa for new local table */
1900  			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1901  			if (!new_fa)
1902  				goto out;
1903  
1904  			memcpy(new_fa, fa, sizeof(*fa));
1905  
1906  			/* insert clone into table */
1907  			if (!local_l)
1908  				local_l = fib_find_node(lt, &local_tp, l->key);
1909  
1910  			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1911  					     NULL, l->key)) {
1912  				kmem_cache_free(fn_alias_kmem, new_fa);
1913  				goto out;
1914  			}
1915  		}
1916  
1917  		/* stop loop if key wrapped back to 0 */
1918  		key = l->key + 1;
1919  		if (key < l->key)
1920  			break;
1921  	}
1922  
1923  	return local_tb;
1924  out:
1925  	fib_trie_free(local_tb);
1926  
1927  	return NULL;
1928  }
1929  
1930  /* Caller must hold RTNL */
fib_table_flush_external(struct fib_table * tb)1931  void fib_table_flush_external(struct fib_table *tb)
1932  {
1933  	struct trie *t = (struct trie *)tb->tb_data;
1934  	struct key_vector *pn = t->kv;
1935  	unsigned long cindex = 1;
1936  	struct hlist_node *tmp;
1937  	struct fib_alias *fa;
1938  
1939  	/* walk trie in reverse order */
1940  	for (;;) {
1941  		unsigned char slen = 0;
1942  		struct key_vector *n;
1943  
1944  		if (!(cindex--)) {
1945  			t_key pkey = pn->key;
1946  
1947  			/* cannot resize the trie vector */
1948  			if (IS_TRIE(pn))
1949  				break;
1950  
1951  			/* update the suffix to address pulled leaves */
1952  			if (pn->slen > pn->pos)
1953  				update_suffix(pn);
1954  
1955  			/* resize completed node */
1956  			pn = resize(t, pn);
1957  			cindex = get_index(pkey, pn);
1958  
1959  			continue;
1960  		}
1961  
1962  		/* grab the next available node */
1963  		n = get_child(pn, cindex);
1964  		if (!n)
1965  			continue;
1966  
1967  		if (IS_TNODE(n)) {
1968  			/* record pn and cindex for leaf walking */
1969  			pn = n;
1970  			cindex = 1ul << n->bits;
1971  
1972  			continue;
1973  		}
1974  
1975  		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1976  			/* if alias was cloned to local then we just
1977  			 * need to remove the local copy from main
1978  			 */
1979  			if (tb->tb_id != fa->tb_id) {
1980  				hlist_del_rcu(&fa->fa_list);
1981  				alias_free_mem_rcu(fa);
1982  				continue;
1983  			}
1984  
1985  			/* record local slen */
1986  			slen = fa->fa_slen;
1987  		}
1988  
1989  		/* update leaf slen */
1990  		n->slen = slen;
1991  
1992  		if (hlist_empty(&n->leaf)) {
1993  			put_child_root(pn, n->key, NULL);
1994  			node_free(n);
1995  		}
1996  	}
1997  }
1998  
1999  /* Caller must hold RTNL. */
fib_table_flush(struct net * net,struct fib_table * tb,bool flush_all)2000  int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2001  {
2002  	struct trie *t = (struct trie *)tb->tb_data;
2003  	struct nl_info info = { .nl_net = net };
2004  	struct key_vector *pn = t->kv;
2005  	unsigned long cindex = 1;
2006  	struct hlist_node *tmp;
2007  	struct fib_alias *fa;
2008  	int found = 0;
2009  
2010  	/* walk trie in reverse order */
2011  	for (;;) {
2012  		unsigned char slen = 0;
2013  		struct key_vector *n;
2014  
2015  		if (!(cindex--)) {
2016  			t_key pkey = pn->key;
2017  
2018  			/* cannot resize the trie vector */
2019  			if (IS_TRIE(pn))
2020  				break;
2021  
2022  			/* update the suffix to address pulled leaves */
2023  			if (pn->slen > pn->pos)
2024  				update_suffix(pn);
2025  
2026  			/* resize completed node */
2027  			pn = resize(t, pn);
2028  			cindex = get_index(pkey, pn);
2029  
2030  			continue;
2031  		}
2032  
2033  		/* grab the next available node */
2034  		n = get_child(pn, cindex);
2035  		if (!n)
2036  			continue;
2037  
2038  		if (IS_TNODE(n)) {
2039  			/* record pn and cindex for leaf walking */
2040  			pn = n;
2041  			cindex = 1ul << n->bits;
2042  
2043  			continue;
2044  		}
2045  
2046  		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2047  			struct fib_info *fi = fa->fa_info;
2048  
2049  			if (!fi || tb->tb_id != fa->tb_id ||
2050  			    (!(fi->fib_flags & RTNH_F_DEAD) &&
2051  			     !fib_props[fa->fa_type].error)) {
2052  				slen = fa->fa_slen;
2053  				continue;
2054  			}
2055  
2056  			/* Do not flush error routes if network namespace is
2057  			 * not being dismantled
2058  			 */
2059  			if (!flush_all && fib_props[fa->fa_type].error) {
2060  				slen = fa->fa_slen;
2061  				continue;
2062  			}
2063  
2064  			fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2065  						NULL);
2066  			if (fi->pfsrc_removed)
2067  				rtmsg_fib(RTM_DELROUTE, htonl(n->key), fa,
2068  					  KEYLENGTH - fa->fa_slen, tb->tb_id, &info, 0);
2069  			hlist_del_rcu(&fa->fa_list);
2070  			fib_release_info(fa->fa_info);
2071  			alias_free_mem_rcu(fa);
2072  			found++;
2073  		}
2074  
2075  		/* update leaf slen */
2076  		n->slen = slen;
2077  
2078  		if (hlist_empty(&n->leaf)) {
2079  			put_child_root(pn, n->key, NULL);
2080  			node_free(n);
2081  		}
2082  	}
2083  
2084  	pr_debug("trie_flush found=%d\n", found);
2085  	return found;
2086  }
2087  
2088  /* derived from fib_trie_free */
__fib_info_notify_update(struct net * net,struct fib_table * tb,struct nl_info * info)2089  static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2090  				     struct nl_info *info)
2091  {
2092  	struct trie *t = (struct trie *)tb->tb_data;
2093  	struct key_vector *pn = t->kv;
2094  	unsigned long cindex = 1;
2095  	struct fib_alias *fa;
2096  
2097  	for (;;) {
2098  		struct key_vector *n;
2099  
2100  		if (!(cindex--)) {
2101  			t_key pkey = pn->key;
2102  
2103  			if (IS_TRIE(pn))
2104  				break;
2105  
2106  			pn = node_parent(pn);
2107  			cindex = get_index(pkey, pn);
2108  			continue;
2109  		}
2110  
2111  		/* grab the next available node */
2112  		n = get_child(pn, cindex);
2113  		if (!n)
2114  			continue;
2115  
2116  		if (IS_TNODE(n)) {
2117  			/* record pn and cindex for leaf walking */
2118  			pn = n;
2119  			cindex = 1ul << n->bits;
2120  
2121  			continue;
2122  		}
2123  
2124  		hlist_for_each_entry(fa, &n->leaf, fa_list) {
2125  			struct fib_info *fi = fa->fa_info;
2126  
2127  			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2128  				continue;
2129  
2130  			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2131  				  KEYLENGTH - fa->fa_slen, tb->tb_id,
2132  				  info, NLM_F_REPLACE);
2133  		}
2134  	}
2135  }
2136  
fib_info_notify_update(struct net * net,struct nl_info * info)2137  void fib_info_notify_update(struct net *net, struct nl_info *info)
2138  {
2139  	unsigned int h;
2140  
2141  	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2142  		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2143  		struct fib_table *tb;
2144  
2145  		hlist_for_each_entry_rcu(tb, head, tb_hlist,
2146  					 lockdep_rtnl_is_held())
2147  			__fib_info_notify_update(net, tb, info);
2148  	}
2149  }
2150  
fib_leaf_notify(struct key_vector * l,struct fib_table * tb,struct notifier_block * nb,struct netlink_ext_ack * extack)2151  static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2152  			   struct notifier_block *nb,
2153  			   struct netlink_ext_ack *extack)
2154  {
2155  	struct fib_alias *fa;
2156  	int last_slen = -1;
2157  	int err;
2158  
2159  	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2160  		struct fib_info *fi = fa->fa_info;
2161  
2162  		if (!fi)
2163  			continue;
2164  
2165  		/* local and main table can share the same trie,
2166  		 * so don't notify twice for the same entry.
2167  		 */
2168  		if (tb->tb_id != fa->tb_id)
2169  			continue;
2170  
2171  		if (fa->fa_slen == last_slen)
2172  			continue;
2173  
2174  		last_slen = fa->fa_slen;
2175  		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2176  					      l->key, KEYLENGTH - fa->fa_slen,
2177  					      fa, extack);
2178  		if (err)
2179  			return err;
2180  	}
2181  	return 0;
2182  }
2183  
fib_table_notify(struct fib_table * tb,struct notifier_block * nb,struct netlink_ext_ack * extack)2184  static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2185  			    struct netlink_ext_ack *extack)
2186  {
2187  	struct trie *t = (struct trie *)tb->tb_data;
2188  	struct key_vector *l, *tp = t->kv;
2189  	t_key key = 0;
2190  	int err;
2191  
2192  	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2193  		err = fib_leaf_notify(l, tb, nb, extack);
2194  		if (err)
2195  			return err;
2196  
2197  		key = l->key + 1;
2198  		/* stop in case of wrap around */
2199  		if (key < l->key)
2200  			break;
2201  	}
2202  	return 0;
2203  }
2204  
fib_notify(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)2205  int fib_notify(struct net *net, struct notifier_block *nb,
2206  	       struct netlink_ext_ack *extack)
2207  {
2208  	unsigned int h;
2209  	int err;
2210  
2211  	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2212  		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2213  		struct fib_table *tb;
2214  
2215  		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2216  			err = fib_table_notify(tb, nb, extack);
2217  			if (err)
2218  				return err;
2219  		}
2220  	}
2221  	return 0;
2222  }
2223  
__trie_free_rcu(struct rcu_head * head)2224  static void __trie_free_rcu(struct rcu_head *head)
2225  {
2226  	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2227  #ifdef CONFIG_IP_FIB_TRIE_STATS
2228  	struct trie *t = (struct trie *)tb->tb_data;
2229  
2230  	if (tb->tb_data == tb->__data)
2231  		free_percpu(t->stats);
2232  #endif /* CONFIG_IP_FIB_TRIE_STATS */
2233  	kfree(tb);
2234  }
2235  
fib_free_table(struct fib_table * tb)2236  void fib_free_table(struct fib_table *tb)
2237  {
2238  	call_rcu(&tb->rcu, __trie_free_rcu);
2239  }
2240  
fn_trie_dump_leaf(struct key_vector * l,struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2241  static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2242  			     struct sk_buff *skb, struct netlink_callback *cb,
2243  			     struct fib_dump_filter *filter)
2244  {
2245  	unsigned int flags = NLM_F_MULTI;
2246  	__be32 xkey = htonl(l->key);
2247  	int i, s_i, i_fa, s_fa, err;
2248  	struct fib_alias *fa;
2249  
2250  	if (filter->filter_set ||
2251  	    !filter->dump_exceptions || !filter->dump_routes)
2252  		flags |= NLM_F_DUMP_FILTERED;
2253  
2254  	s_i = cb->args[4];
2255  	s_fa = cb->args[5];
2256  	i = 0;
2257  
2258  	/* rcu_read_lock is hold by caller */
2259  	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2260  		struct fib_info *fi = fa->fa_info;
2261  
2262  		if (i < s_i)
2263  			goto next;
2264  
2265  		i_fa = 0;
2266  
2267  		if (tb->tb_id != fa->tb_id)
2268  			goto next;
2269  
2270  		if (filter->filter_set) {
2271  			if (filter->rt_type && fa->fa_type != filter->rt_type)
2272  				goto next;
2273  
2274  			if ((filter->protocol &&
2275  			     fi->fib_protocol != filter->protocol))
2276  				goto next;
2277  
2278  			if (filter->dev &&
2279  			    !fib_info_nh_uses_dev(fi, filter->dev))
2280  				goto next;
2281  		}
2282  
2283  		if (filter->dump_routes) {
2284  			if (!s_fa) {
2285  				struct fib_rt_info fri;
2286  
2287  				fri.fi = fi;
2288  				fri.tb_id = tb->tb_id;
2289  				fri.dst = xkey;
2290  				fri.dst_len = KEYLENGTH - fa->fa_slen;
2291  				fri.dscp = fa->fa_dscp;
2292  				fri.type = fa->fa_type;
2293  				fri.offload = READ_ONCE(fa->offload);
2294  				fri.trap = READ_ONCE(fa->trap);
2295  				fri.offload_failed = READ_ONCE(fa->offload_failed);
2296  				err = fib_dump_info(skb,
2297  						    NETLINK_CB(cb->skb).portid,
2298  						    cb->nlh->nlmsg_seq,
2299  						    RTM_NEWROUTE, &fri, flags);
2300  				if (err < 0)
2301  					goto stop;
2302  			}
2303  
2304  			i_fa++;
2305  		}
2306  
2307  		if (filter->dump_exceptions) {
2308  			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2309  						 &i_fa, s_fa, flags);
2310  			if (err < 0)
2311  				goto stop;
2312  		}
2313  
2314  next:
2315  		i++;
2316  	}
2317  
2318  	cb->args[4] = i;
2319  	return skb->len;
2320  
2321  stop:
2322  	cb->args[4] = i;
2323  	cb->args[5] = i_fa;
2324  	return err;
2325  }
2326  
2327  /* rcu_read_lock needs to be hold by caller from readside */
fib_table_dump(struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2328  int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2329  		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2330  {
2331  	struct trie *t = (struct trie *)tb->tb_data;
2332  	struct key_vector *l, *tp = t->kv;
2333  	/* Dump starting at last key.
2334  	 * Note: 0.0.0.0/0 (ie default) is first key.
2335  	 */
2336  	int count = cb->args[2];
2337  	t_key key = cb->args[3];
2338  
2339  	/* First time here, count and key are both always 0. Count > 0
2340  	 * and key == 0 means the dump has wrapped around and we are done.
2341  	 */
2342  	if (count && !key)
2343  		return 0;
2344  
2345  	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2346  		int err;
2347  
2348  		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2349  		if (err < 0) {
2350  			cb->args[3] = key;
2351  			cb->args[2] = count;
2352  			return err;
2353  		}
2354  
2355  		++count;
2356  		key = l->key + 1;
2357  
2358  		memset(&cb->args[4], 0,
2359  		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2360  
2361  		/* stop loop if key wrapped back to 0 */
2362  		if (key < l->key)
2363  			break;
2364  	}
2365  
2366  	cb->args[3] = key;
2367  	cb->args[2] = count;
2368  
2369  	return 0;
2370  }
2371  
fib_trie_init(void)2372  void __init fib_trie_init(void)
2373  {
2374  	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2375  					  sizeof(struct fib_alias),
2376  					  0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2377  
2378  	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2379  					   LEAF_SIZE,
2380  					   0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2381  }
2382  
fib_trie_table(u32 id,struct fib_table * alias)2383  struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2384  {
2385  	struct fib_table *tb;
2386  	struct trie *t;
2387  	size_t sz = sizeof(*tb);
2388  
2389  	if (!alias)
2390  		sz += sizeof(struct trie);
2391  
2392  	tb = kzalloc(sz, GFP_KERNEL);
2393  	if (!tb)
2394  		return NULL;
2395  
2396  	tb->tb_id = id;
2397  	tb->tb_num_default = 0;
2398  	tb->tb_data = (alias ? alias->__data : tb->__data);
2399  
2400  	if (alias)
2401  		return tb;
2402  
2403  	t = (struct trie *) tb->tb_data;
2404  	t->kv[0].pos = KEYLENGTH;
2405  	t->kv[0].slen = KEYLENGTH;
2406  #ifdef CONFIG_IP_FIB_TRIE_STATS
2407  	t->stats = alloc_percpu(struct trie_use_stats);
2408  	if (!t->stats) {
2409  		kfree(tb);
2410  		tb = NULL;
2411  	}
2412  #endif
2413  
2414  	return tb;
2415  }
2416  
2417  #ifdef CONFIG_PROC_FS
2418  /* Depth first Trie walk iterator */
2419  struct fib_trie_iter {
2420  	struct seq_net_private p;
2421  	struct fib_table *tb;
2422  	struct key_vector *tnode;
2423  	unsigned int index;
2424  	unsigned int depth;
2425  };
2426  
fib_trie_get_next(struct fib_trie_iter * iter)2427  static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2428  {
2429  	unsigned long cindex = iter->index;
2430  	struct key_vector *pn = iter->tnode;
2431  	t_key pkey;
2432  
2433  	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2434  		 iter->tnode, iter->index, iter->depth);
2435  
2436  	while (!IS_TRIE(pn)) {
2437  		while (cindex < child_length(pn)) {
2438  			struct key_vector *n = get_child_rcu(pn, cindex++);
2439  
2440  			if (!n)
2441  				continue;
2442  
2443  			if (IS_LEAF(n)) {
2444  				iter->tnode = pn;
2445  				iter->index = cindex;
2446  			} else {
2447  				/* push down one level */
2448  				iter->tnode = n;
2449  				iter->index = 0;
2450  				++iter->depth;
2451  			}
2452  
2453  			return n;
2454  		}
2455  
2456  		/* Current node exhausted, pop back up */
2457  		pkey = pn->key;
2458  		pn = node_parent_rcu(pn);
2459  		cindex = get_index(pkey, pn) + 1;
2460  		--iter->depth;
2461  	}
2462  
2463  	/* record root node so further searches know we are done */
2464  	iter->tnode = pn;
2465  	iter->index = 0;
2466  
2467  	return NULL;
2468  }
2469  
fib_trie_get_first(struct fib_trie_iter * iter,struct trie * t)2470  static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2471  					     struct trie *t)
2472  {
2473  	struct key_vector *n, *pn;
2474  
2475  	if (!t)
2476  		return NULL;
2477  
2478  	pn = t->kv;
2479  	n = rcu_dereference(pn->tnode[0]);
2480  	if (!n)
2481  		return NULL;
2482  
2483  	if (IS_TNODE(n)) {
2484  		iter->tnode = n;
2485  		iter->index = 0;
2486  		iter->depth = 1;
2487  	} else {
2488  		iter->tnode = pn;
2489  		iter->index = 0;
2490  		iter->depth = 0;
2491  	}
2492  
2493  	return n;
2494  }
2495  
trie_collect_stats(struct trie * t,struct trie_stat * s)2496  static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2497  {
2498  	struct key_vector *n;
2499  	struct fib_trie_iter iter;
2500  
2501  	memset(s, 0, sizeof(*s));
2502  
2503  	rcu_read_lock();
2504  	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2505  		if (IS_LEAF(n)) {
2506  			struct fib_alias *fa;
2507  
2508  			s->leaves++;
2509  			s->totdepth += iter.depth;
2510  			if (iter.depth > s->maxdepth)
2511  				s->maxdepth = iter.depth;
2512  
2513  			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2514  				++s->prefixes;
2515  		} else {
2516  			s->tnodes++;
2517  			if (n->bits < MAX_STAT_DEPTH)
2518  				s->nodesizes[n->bits]++;
2519  			s->nullpointers += tn_info(n)->empty_children;
2520  		}
2521  	}
2522  	rcu_read_unlock();
2523  }
2524  
2525  /*
2526   *	This outputs /proc/net/fib_triestats
2527   */
trie_show_stats(struct seq_file * seq,struct trie_stat * stat)2528  static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2529  {
2530  	unsigned int i, max, pointers, bytes, avdepth;
2531  
2532  	if (stat->leaves)
2533  		avdepth = stat->totdepth*100 / stat->leaves;
2534  	else
2535  		avdepth = 0;
2536  
2537  	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2538  		   avdepth / 100, avdepth % 100);
2539  	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2540  
2541  	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2542  	bytes = LEAF_SIZE * stat->leaves;
2543  
2544  	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2545  	bytes += sizeof(struct fib_alias) * stat->prefixes;
2546  
2547  	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2548  	bytes += TNODE_SIZE(0) * stat->tnodes;
2549  
2550  	max = MAX_STAT_DEPTH;
2551  	while (max > 0 && stat->nodesizes[max-1] == 0)
2552  		max--;
2553  
2554  	pointers = 0;
2555  	for (i = 1; i < max; i++)
2556  		if (stat->nodesizes[i] != 0) {
2557  			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2558  			pointers += (1<<i) * stat->nodesizes[i];
2559  		}
2560  	seq_putc(seq, '\n');
2561  	seq_printf(seq, "\tPointers: %u\n", pointers);
2562  
2563  	bytes += sizeof(struct key_vector *) * pointers;
2564  	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2565  	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2566  }
2567  
2568  #ifdef CONFIG_IP_FIB_TRIE_STATS
trie_show_usage(struct seq_file * seq,const struct trie_use_stats __percpu * stats)2569  static void trie_show_usage(struct seq_file *seq,
2570  			    const struct trie_use_stats __percpu *stats)
2571  {
2572  	struct trie_use_stats s = { 0 };
2573  	int cpu;
2574  
2575  	/* loop through all of the CPUs and gather up the stats */
2576  	for_each_possible_cpu(cpu) {
2577  		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2578  
2579  		s.gets += pcpu->gets;
2580  		s.backtrack += pcpu->backtrack;
2581  		s.semantic_match_passed += pcpu->semantic_match_passed;
2582  		s.semantic_match_miss += pcpu->semantic_match_miss;
2583  		s.null_node_hit += pcpu->null_node_hit;
2584  		s.resize_node_skipped += pcpu->resize_node_skipped;
2585  	}
2586  
2587  	seq_printf(seq, "\nCounters:\n---------\n");
2588  	seq_printf(seq, "gets = %u\n", s.gets);
2589  	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2590  	seq_printf(seq, "semantic match passed = %u\n",
2591  		   s.semantic_match_passed);
2592  	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2593  	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2594  	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2595  }
2596  #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2597  
fib_table_print(struct seq_file * seq,struct fib_table * tb)2598  static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2599  {
2600  	if (tb->tb_id == RT_TABLE_LOCAL)
2601  		seq_puts(seq, "Local:\n");
2602  	else if (tb->tb_id == RT_TABLE_MAIN)
2603  		seq_puts(seq, "Main:\n");
2604  	else
2605  		seq_printf(seq, "Id %d:\n", tb->tb_id);
2606  }
2607  
2608  
fib_triestat_seq_show(struct seq_file * seq,void * v)2609  static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2610  {
2611  	struct net *net = seq->private;
2612  	unsigned int h;
2613  
2614  	seq_printf(seq,
2615  		   "Basic info: size of leaf:"
2616  		   " %zd bytes, size of tnode: %zd bytes.\n",
2617  		   LEAF_SIZE, TNODE_SIZE(0));
2618  
2619  	rcu_read_lock();
2620  	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2621  		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2622  		struct fib_table *tb;
2623  
2624  		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2625  			struct trie *t = (struct trie *) tb->tb_data;
2626  			struct trie_stat stat;
2627  
2628  			if (!t)
2629  				continue;
2630  
2631  			fib_table_print(seq, tb);
2632  
2633  			trie_collect_stats(t, &stat);
2634  			trie_show_stats(seq, &stat);
2635  #ifdef CONFIG_IP_FIB_TRIE_STATS
2636  			trie_show_usage(seq, t->stats);
2637  #endif
2638  		}
2639  		cond_resched_rcu();
2640  	}
2641  	rcu_read_unlock();
2642  
2643  	return 0;
2644  }
2645  
fib_trie_get_idx(struct seq_file * seq,loff_t pos)2646  static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2647  {
2648  	struct fib_trie_iter *iter = seq->private;
2649  	struct net *net = seq_file_net(seq);
2650  	loff_t idx = 0;
2651  	unsigned int h;
2652  
2653  	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2654  		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2655  		struct fib_table *tb;
2656  
2657  		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2658  			struct key_vector *n;
2659  
2660  			for (n = fib_trie_get_first(iter,
2661  						    (struct trie *) tb->tb_data);
2662  			     n; n = fib_trie_get_next(iter))
2663  				if (pos == idx++) {
2664  					iter->tb = tb;
2665  					return n;
2666  				}
2667  		}
2668  	}
2669  
2670  	return NULL;
2671  }
2672  
fib_trie_seq_start(struct seq_file * seq,loff_t * pos)2673  static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2674  	__acquires(RCU)
2675  {
2676  	rcu_read_lock();
2677  	return fib_trie_get_idx(seq, *pos);
2678  }
2679  
fib_trie_seq_next(struct seq_file * seq,void * v,loff_t * pos)2680  static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2681  {
2682  	struct fib_trie_iter *iter = seq->private;
2683  	struct net *net = seq_file_net(seq);
2684  	struct fib_table *tb = iter->tb;
2685  	struct hlist_node *tb_node;
2686  	unsigned int h;
2687  	struct key_vector *n;
2688  
2689  	++*pos;
2690  	/* next node in same table */
2691  	n = fib_trie_get_next(iter);
2692  	if (n)
2693  		return n;
2694  
2695  	/* walk rest of this hash chain */
2696  	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2697  	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2698  		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2699  		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2700  		if (n)
2701  			goto found;
2702  	}
2703  
2704  	/* new hash chain */
2705  	while (++h < FIB_TABLE_HASHSZ) {
2706  		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2707  		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2708  			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2709  			if (n)
2710  				goto found;
2711  		}
2712  	}
2713  	return NULL;
2714  
2715  found:
2716  	iter->tb = tb;
2717  	return n;
2718  }
2719  
fib_trie_seq_stop(struct seq_file * seq,void * v)2720  static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2721  	__releases(RCU)
2722  {
2723  	rcu_read_unlock();
2724  }
2725  
seq_indent(struct seq_file * seq,int n)2726  static void seq_indent(struct seq_file *seq, int n)
2727  {
2728  	while (n-- > 0)
2729  		seq_puts(seq, "   ");
2730  }
2731  
rtn_scope(char * buf,size_t len,enum rt_scope_t s)2732  static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2733  {
2734  	switch (s) {
2735  	case RT_SCOPE_UNIVERSE: return "universe";
2736  	case RT_SCOPE_SITE:	return "site";
2737  	case RT_SCOPE_LINK:	return "link";
2738  	case RT_SCOPE_HOST:	return "host";
2739  	case RT_SCOPE_NOWHERE:	return "nowhere";
2740  	default:
2741  		snprintf(buf, len, "scope=%d", s);
2742  		return buf;
2743  	}
2744  }
2745  
2746  static const char *const rtn_type_names[__RTN_MAX] = {
2747  	[RTN_UNSPEC] = "UNSPEC",
2748  	[RTN_UNICAST] = "UNICAST",
2749  	[RTN_LOCAL] = "LOCAL",
2750  	[RTN_BROADCAST] = "BROADCAST",
2751  	[RTN_ANYCAST] = "ANYCAST",
2752  	[RTN_MULTICAST] = "MULTICAST",
2753  	[RTN_BLACKHOLE] = "BLACKHOLE",
2754  	[RTN_UNREACHABLE] = "UNREACHABLE",
2755  	[RTN_PROHIBIT] = "PROHIBIT",
2756  	[RTN_THROW] = "THROW",
2757  	[RTN_NAT] = "NAT",
2758  	[RTN_XRESOLVE] = "XRESOLVE",
2759  };
2760  
rtn_type(char * buf,size_t len,unsigned int t)2761  static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2762  {
2763  	if (t < __RTN_MAX && rtn_type_names[t])
2764  		return rtn_type_names[t];
2765  	snprintf(buf, len, "type %u", t);
2766  	return buf;
2767  }
2768  
2769  /* Pretty print the trie */
fib_trie_seq_show(struct seq_file * seq,void * v)2770  static int fib_trie_seq_show(struct seq_file *seq, void *v)
2771  {
2772  	const struct fib_trie_iter *iter = seq->private;
2773  	struct key_vector *n = v;
2774  
2775  	if (IS_TRIE(node_parent_rcu(n)))
2776  		fib_table_print(seq, iter->tb);
2777  
2778  	if (IS_TNODE(n)) {
2779  		__be32 prf = htonl(n->key);
2780  
2781  		seq_indent(seq, iter->depth-1);
2782  		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2783  			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2784  			   tn_info(n)->full_children,
2785  			   tn_info(n)->empty_children);
2786  	} else {
2787  		__be32 val = htonl(n->key);
2788  		struct fib_alias *fa;
2789  
2790  		seq_indent(seq, iter->depth);
2791  		seq_printf(seq, "  |-- %pI4\n", &val);
2792  
2793  		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2794  			char buf1[32], buf2[32];
2795  
2796  			seq_indent(seq, iter->depth + 1);
2797  			seq_printf(seq, "  /%zu %s %s",
2798  				   KEYLENGTH - fa->fa_slen,
2799  				   rtn_scope(buf1, sizeof(buf1),
2800  					     fa->fa_info->fib_scope),
2801  				   rtn_type(buf2, sizeof(buf2),
2802  					    fa->fa_type));
2803  			if (fa->fa_dscp)
2804  				seq_printf(seq, " tos=%d",
2805  					   inet_dscp_to_dsfield(fa->fa_dscp));
2806  			seq_putc(seq, '\n');
2807  		}
2808  	}
2809  
2810  	return 0;
2811  }
2812  
2813  static const struct seq_operations fib_trie_seq_ops = {
2814  	.start  = fib_trie_seq_start,
2815  	.next   = fib_trie_seq_next,
2816  	.stop   = fib_trie_seq_stop,
2817  	.show   = fib_trie_seq_show,
2818  };
2819  
2820  struct fib_route_iter {
2821  	struct seq_net_private p;
2822  	struct fib_table *main_tb;
2823  	struct key_vector *tnode;
2824  	loff_t	pos;
2825  	t_key	key;
2826  };
2827  
fib_route_get_idx(struct fib_route_iter * iter,loff_t pos)2828  static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2829  					    loff_t pos)
2830  {
2831  	struct key_vector *l, **tp = &iter->tnode;
2832  	t_key key;
2833  
2834  	/* use cached location of previously found key */
2835  	if (iter->pos > 0 && pos >= iter->pos) {
2836  		key = iter->key;
2837  	} else {
2838  		iter->pos = 1;
2839  		key = 0;
2840  	}
2841  
2842  	pos -= iter->pos;
2843  
2844  	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2845  		key = l->key + 1;
2846  		iter->pos++;
2847  		l = NULL;
2848  
2849  		/* handle unlikely case of a key wrap */
2850  		if (!key)
2851  			break;
2852  	}
2853  
2854  	if (l)
2855  		iter->key = l->key;	/* remember it */
2856  	else
2857  		iter->pos = 0;		/* forget it */
2858  
2859  	return l;
2860  }
2861  
fib_route_seq_start(struct seq_file * seq,loff_t * pos)2862  static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2863  	__acquires(RCU)
2864  {
2865  	struct fib_route_iter *iter = seq->private;
2866  	struct fib_table *tb;
2867  	struct trie *t;
2868  
2869  	rcu_read_lock();
2870  
2871  	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2872  	if (!tb)
2873  		return NULL;
2874  
2875  	iter->main_tb = tb;
2876  	t = (struct trie *)tb->tb_data;
2877  	iter->tnode = t->kv;
2878  
2879  	if (*pos != 0)
2880  		return fib_route_get_idx(iter, *pos);
2881  
2882  	iter->pos = 0;
2883  	iter->key = KEY_MAX;
2884  
2885  	return SEQ_START_TOKEN;
2886  }
2887  
fib_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2888  static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2889  {
2890  	struct fib_route_iter *iter = seq->private;
2891  	struct key_vector *l = NULL;
2892  	t_key key = iter->key + 1;
2893  
2894  	++*pos;
2895  
2896  	/* only allow key of 0 for start of sequence */
2897  	if ((v == SEQ_START_TOKEN) || key)
2898  		l = leaf_walk_rcu(&iter->tnode, key);
2899  
2900  	if (l) {
2901  		iter->key = l->key;
2902  		iter->pos++;
2903  	} else {
2904  		iter->pos = 0;
2905  	}
2906  
2907  	return l;
2908  }
2909  
fib_route_seq_stop(struct seq_file * seq,void * v)2910  static void fib_route_seq_stop(struct seq_file *seq, void *v)
2911  	__releases(RCU)
2912  {
2913  	rcu_read_unlock();
2914  }
2915  
fib_flag_trans(int type,__be32 mask,struct fib_info * fi)2916  static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2917  {
2918  	unsigned int flags = 0;
2919  
2920  	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2921  		flags = RTF_REJECT;
2922  	if (fi) {
2923  		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2924  
2925  		if (nhc->nhc_gw.ipv4)
2926  			flags |= RTF_GATEWAY;
2927  	}
2928  	if (mask == htonl(0xFFFFFFFF))
2929  		flags |= RTF_HOST;
2930  	flags |= RTF_UP;
2931  	return flags;
2932  }
2933  
2934  /*
2935   *	This outputs /proc/net/route.
2936   *	The format of the file is not supposed to be changed
2937   *	and needs to be same as fib_hash output to avoid breaking
2938   *	legacy utilities
2939   */
fib_route_seq_show(struct seq_file * seq,void * v)2940  static int fib_route_seq_show(struct seq_file *seq, void *v)
2941  {
2942  	struct fib_route_iter *iter = seq->private;
2943  	struct fib_table *tb = iter->main_tb;
2944  	struct fib_alias *fa;
2945  	struct key_vector *l = v;
2946  	__be32 prefix;
2947  
2948  	if (v == SEQ_START_TOKEN) {
2949  		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2950  			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2951  			   "\tWindow\tIRTT");
2952  		return 0;
2953  	}
2954  
2955  	prefix = htonl(l->key);
2956  
2957  	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2958  		struct fib_info *fi = fa->fa_info;
2959  		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2960  		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2961  
2962  		if ((fa->fa_type == RTN_BROADCAST) ||
2963  		    (fa->fa_type == RTN_MULTICAST))
2964  			continue;
2965  
2966  		if (fa->tb_id != tb->tb_id)
2967  			continue;
2968  
2969  		seq_setwidth(seq, 127);
2970  
2971  		if (fi) {
2972  			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2973  			__be32 gw = 0;
2974  
2975  			if (nhc->nhc_gw_family == AF_INET)
2976  				gw = nhc->nhc_gw.ipv4;
2977  
2978  			seq_printf(seq,
2979  				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2980  				   "%u\t%08X\t%d\t%u\t%u",
2981  				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2982  				   prefix, gw, flags, 0, 0,
2983  				   fi->fib_priority,
2984  				   mask,
2985  				   (fi->fib_advmss ?
2986  				    fi->fib_advmss + 40 : 0),
2987  				   fi->fib_window,
2988  				   fi->fib_rtt >> 3);
2989  		} else {
2990  			seq_printf(seq,
2991  				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2992  				   "%u\t%08X\t%d\t%u\t%u",
2993  				   prefix, 0, flags, 0, 0, 0,
2994  				   mask, 0, 0, 0);
2995  		}
2996  		seq_pad(seq, '\n');
2997  	}
2998  
2999  	return 0;
3000  }
3001  
3002  static const struct seq_operations fib_route_seq_ops = {
3003  	.start  = fib_route_seq_start,
3004  	.next   = fib_route_seq_next,
3005  	.stop   = fib_route_seq_stop,
3006  	.show   = fib_route_seq_show,
3007  };
3008  
fib_proc_init(struct net * net)3009  int __net_init fib_proc_init(struct net *net)
3010  {
3011  	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3012  			sizeof(struct fib_trie_iter)))
3013  		goto out1;
3014  
3015  	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3016  			fib_triestat_seq_show, NULL))
3017  		goto out2;
3018  
3019  	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3020  			sizeof(struct fib_route_iter)))
3021  		goto out3;
3022  
3023  	return 0;
3024  
3025  out3:
3026  	remove_proc_entry("fib_triestat", net->proc_net);
3027  out2:
3028  	remove_proc_entry("fib_trie", net->proc_net);
3029  out1:
3030  	return -ENOMEM;
3031  }
3032  
fib_proc_exit(struct net * net)3033  void __net_exit fib_proc_exit(struct net *net)
3034  {
3035  	remove_proc_entry("fib_trie", net->proc_net);
3036  	remove_proc_entry("fib_triestat", net->proc_net);
3037  	remove_proc_entry("route", net->proc_net);
3038  }
3039  
3040  #endif /* CONFIG_PROC_FS */
3041