1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * Forwarding Information Database 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 * 9 * Changes: 10 * Yuji SEKIYA @USAGI: Support default route on router node; 11 * remove ip6_null_entry from the top of 12 * routing table. 13 * Ville Nuorvala: Fixed routing subtrees. 14 */ 15 16 #define pr_fmt(fmt) "IPv6: " fmt 17 18 #include <linux/bpf.h> 19 #include <linux/errno.h> 20 #include <linux/types.h> 21 #include <linux/net.h> 22 #include <linux/route.h> 23 #include <linux/netdevice.h> 24 #include <linux/in6.h> 25 #include <linux/init.h> 26 #include <linux/list.h> 27 #include <linux/slab.h> 28 29 #include <net/ip.h> 30 #include <net/ipv6.h> 31 #include <net/ndisc.h> 32 #include <net/addrconf.h> 33 #include <net/lwtunnel.h> 34 #include <net/fib_notifier.h> 35 36 #include <net/ip_fib.h> 37 #include <net/ip6_fib.h> 38 #include <net/ip6_route.h> 39 40 static struct kmem_cache *fib6_node_kmem __read_mostly; 41 42 struct fib6_cleaner { 43 struct fib6_walker w; 44 struct net *net; 45 int (*func)(struct fib6_info *, void *arg); 46 int sernum; 47 void *arg; 48 bool skip_notify; 49 }; 50 51 #ifdef CONFIG_IPV6_SUBTREES 52 #define FWS_INIT FWS_S 53 #else 54 #define FWS_INIT FWS_L 55 #endif 56 57 static struct fib6_info *fib6_find_prefix(struct net *net, 58 struct fib6_table *table, 59 struct fib6_node *fn); 60 static struct fib6_node *fib6_repair_tree(struct net *net, 61 struct fib6_table *table, 62 struct fib6_node *fn); 63 static int fib6_walk(struct net *net, struct fib6_walker *w); 64 static int fib6_walk_continue(struct fib6_walker *w); 65 66 /* 67 * A routing update causes an increase of the serial number on the 68 * affected subtree. This allows for cached routes to be asynchronously 69 * tested when modifications are made to the destination cache as a 70 * result of redirects, path MTU changes, etc. 71 */ 72 73 static void fib6_gc_timer_cb(struct timer_list *t); 74 75 #define FOR_WALKERS(net, w) \ 76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) 77 78 static void fib6_walker_link(struct net *net, struct fib6_walker *w) 79 { 80 write_lock_bh(&net->ipv6.fib6_walker_lock); 81 list_add(&w->lh, &net->ipv6.fib6_walkers); 82 write_unlock_bh(&net->ipv6.fib6_walker_lock); 83 } 84 85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) 86 { 87 write_lock_bh(&net->ipv6.fib6_walker_lock); 88 list_del(&w->lh); 89 write_unlock_bh(&net->ipv6.fib6_walker_lock); 90 } 91 92 static int fib6_new_sernum(struct net *net) 93 { 94 int new, old = atomic_read(&net->ipv6.fib6_sernum); 95 96 do { 97 new = old < INT_MAX ? old + 1 : 1; 98 } while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new)); 99 100 return new; 101 } 102 103 enum { 104 FIB6_NO_SERNUM_CHANGE = 0, 105 }; 106 107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i) 108 { 109 struct fib6_node *fn; 110 111 fn = rcu_dereference_protected(f6i->fib6_node, 112 lockdep_is_held(&f6i->fib6_table->tb6_lock)); 113 if (fn) 114 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net)); 115 } 116 117 /* 118 * Auxiliary address test functions for the radix tree. 119 * 120 * These assume a 32bit processor (although it will work on 121 * 64bit processors) 122 */ 123 124 /* 125 * test bit 126 */ 127 #if defined(__LITTLE_ENDIAN) 128 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 129 #else 130 # define BITOP_BE32_SWIZZLE 0 131 #endif 132 133 static __be32 addr_bit_set(const void *token, int fn_bit) 134 { 135 const __be32 *addr = token; 136 /* 137 * Here, 138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 139 * is optimized version of 140 * htonl(1 << ((~fn_bit)&0x1F)) 141 * See include/asm-generic/bitops/le.h. 142 */ 143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 144 addr[fn_bit >> 5]; 145 } 146 147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh) 148 { 149 struct fib6_info *f6i; 150 size_t sz = sizeof(*f6i); 151 152 if (with_fib6_nh) 153 sz += sizeof(struct fib6_nh); 154 155 f6i = kzalloc(sz, gfp_flags); 156 if (!f6i) 157 return NULL; 158 159 /* fib6_siblings is a union with nh_list, so this initializes both */ 160 INIT_LIST_HEAD(&f6i->fib6_siblings); 161 refcount_set(&f6i->fib6_ref, 1); 162 163 INIT_HLIST_NODE(&f6i->gc_link); 164 165 return f6i; 166 } 167 168 void fib6_info_destroy_rcu(struct rcu_head *head) 169 { 170 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu); 171 172 WARN_ON(f6i->fib6_node); 173 174 if (f6i->nh) 175 nexthop_put(f6i->nh); 176 else 177 fib6_nh_release(f6i->fib6_nh); 178 179 ip_fib_metrics_put(f6i->fib6_metrics); 180 kfree(f6i); 181 } 182 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu); 183 184 static struct fib6_node *node_alloc(struct net *net) 185 { 186 struct fib6_node *fn; 187 188 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 189 if (fn) 190 net->ipv6.rt6_stats->fib_nodes++; 191 192 return fn; 193 } 194 195 static void node_free_immediate(struct net *net, struct fib6_node *fn) 196 { 197 kmem_cache_free(fib6_node_kmem, fn); 198 net->ipv6.rt6_stats->fib_nodes--; 199 } 200 201 static void node_free(struct net *net, struct fib6_node *fn) 202 { 203 kfree_rcu(fn, rcu); 204 net->ipv6.rt6_stats->fib_nodes--; 205 } 206 207 static void fib6_free_table(struct fib6_table *table) 208 { 209 inetpeer_invalidate_tree(&table->tb6_peers); 210 kfree(table); 211 } 212 213 static void fib6_link_table(struct net *net, struct fib6_table *tb) 214 { 215 unsigned int h; 216 217 /* 218 * Initialize table lock at a single place to give lockdep a key, 219 * tables aren't visible prior to being linked to the list. 220 */ 221 spin_lock_init(&tb->tb6_lock); 222 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 223 224 /* 225 * No protection necessary, this is the only list mutatation 226 * operation, tables never disappear once they exist. 227 */ 228 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 229 } 230 231 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 232 233 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 234 { 235 struct fib6_table *table; 236 237 table = kzalloc(sizeof(*table), GFP_ATOMIC); 238 if (table) { 239 table->tb6_id = id; 240 rcu_assign_pointer(table->tb6_root.leaf, 241 net->ipv6.fib6_null_entry); 242 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 243 inet_peer_base_init(&table->tb6_peers); 244 INIT_HLIST_HEAD(&table->tb6_gc_hlist); 245 } 246 247 return table; 248 } 249 250 struct fib6_table *fib6_new_table(struct net *net, u32 id) 251 { 252 struct fib6_table *tb, *new_tb; 253 254 if (id == 0) 255 id = RT6_TABLE_MAIN; 256 257 tb = fib6_get_table(net, id); 258 if (tb) 259 return tb; 260 261 new_tb = fib6_alloc_table(net, id); 262 if (!new_tb) 263 return NULL; 264 265 spin_lock_bh(&net->ipv6.fib_table_hash_lock); 266 267 tb = fib6_get_table(net, id); 268 if (unlikely(tb)) { 269 spin_unlock_bh(&net->ipv6.fib_table_hash_lock); 270 kfree(new_tb); 271 return tb; 272 } 273 274 fib6_link_table(net, new_tb); 275 276 spin_unlock_bh(&net->ipv6.fib_table_hash_lock); 277 278 return new_tb; 279 } 280 EXPORT_SYMBOL_GPL(fib6_new_table); 281 282 struct fib6_table *fib6_get_table(struct net *net, u32 id) 283 { 284 struct hlist_head *head; 285 struct fib6_table *tb; 286 287 if (!id) 288 id = RT6_TABLE_MAIN; 289 290 head = &net->ipv6.fib_table_hash[id & (FIB6_TABLE_HASHSZ - 1)]; 291 292 /* See comment in fib6_link_table(). RCU is not required, 293 * but rcu_dereference_raw() is used to avoid data-race. 294 */ 295 hlist_for_each_entry_rcu(tb, head, tb6_hlist, true) 296 if (tb->tb6_id == id) 297 return tb; 298 299 return NULL; 300 } 301 EXPORT_SYMBOL_GPL(fib6_get_table); 302 303 static void __net_init fib6_tables_init(struct net *net) 304 { 305 fib6_link_table(net, net->ipv6.fib6_main_tbl); 306 fib6_link_table(net, net->ipv6.fib6_local_tbl); 307 } 308 #else 309 310 struct fib6_table *fib6_new_table(struct net *net, u32 id) 311 { 312 return fib6_get_table(net, id); 313 } 314 315 struct fib6_table *fib6_get_table(struct net *net, u32 id) 316 { 317 return net->ipv6.fib6_main_tbl; 318 } 319 320 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 321 const struct sk_buff *skb, 322 int flags, pol_lookup_t lookup) 323 { 324 struct rt6_info *rt; 325 326 rt = pol_lookup_func(lookup, 327 net, net->ipv6.fib6_main_tbl, fl6, skb, flags); 328 if (rt->dst.error == -EAGAIN) { 329 ip6_rt_put_flags(rt, flags); 330 rt = net->ipv6.ip6_null_entry; 331 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 332 dst_hold(&rt->dst); 333 } 334 335 return &rt->dst; 336 } 337 338 /* called with rcu lock held; no reference taken on fib6_info */ 339 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, 340 struct fib6_result *res, int flags) 341 { 342 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6, 343 res, flags); 344 } 345 346 static void __net_init fib6_tables_init(struct net *net) 347 { 348 fib6_link_table(net, net->ipv6.fib6_main_tbl); 349 } 350 351 #endif 352 353 unsigned int fib6_tables_seq_read(const struct net *net) 354 { 355 unsigned int h, fib_seq = 0; 356 357 rcu_read_lock(); 358 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 359 const struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 360 const struct fib6_table *tb; 361 362 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 363 fib_seq += READ_ONCE(tb->fib_seq); 364 } 365 rcu_read_unlock(); 366 367 return fib_seq; 368 } 369 370 static int call_fib6_entry_notifier(struct notifier_block *nb, 371 enum fib_event_type event_type, 372 struct fib6_info *rt, 373 struct netlink_ext_ack *extack) 374 { 375 struct fib6_entry_notifier_info info = { 376 .info.extack = extack, 377 .rt = rt, 378 }; 379 380 return call_fib6_notifier(nb, event_type, &info.info); 381 } 382 383 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb, 384 enum fib_event_type event_type, 385 struct fib6_info *rt, 386 unsigned int nsiblings, 387 struct netlink_ext_ack *extack) 388 { 389 struct fib6_entry_notifier_info info = { 390 .info.extack = extack, 391 .rt = rt, 392 .nsiblings = nsiblings, 393 }; 394 395 return call_fib6_notifier(nb, event_type, &info.info); 396 } 397 398 int call_fib6_entry_notifiers(struct net *net, 399 enum fib_event_type event_type, 400 struct fib6_info *rt, 401 struct netlink_ext_ack *extack) 402 { 403 struct fib6_entry_notifier_info info = { 404 .info.extack = extack, 405 .rt = rt, 406 }; 407 408 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1); 409 return call_fib6_notifiers(net, event_type, &info.info); 410 } 411 412 int call_fib6_multipath_entry_notifiers(struct net *net, 413 enum fib_event_type event_type, 414 struct fib6_info *rt, 415 unsigned int nsiblings, 416 struct netlink_ext_ack *extack) 417 { 418 struct fib6_entry_notifier_info info = { 419 .info.extack = extack, 420 .rt = rt, 421 .nsiblings = nsiblings, 422 }; 423 424 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1); 425 return call_fib6_notifiers(net, event_type, &info.info); 426 } 427 428 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt) 429 { 430 struct fib6_entry_notifier_info info = { 431 .rt = rt, 432 .nsiblings = rt->fib6_nsiblings, 433 }; 434 435 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1); 436 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info); 437 } 438 439 struct fib6_dump_arg { 440 struct net *net; 441 struct notifier_block *nb; 442 struct netlink_ext_ack *extack; 443 }; 444 445 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg) 446 { 447 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE; 448 unsigned int nsiblings; 449 int err; 450 451 if (!rt || rt == arg->net->ipv6.fib6_null_entry) 452 return 0; 453 454 nsiblings = READ_ONCE(rt->fib6_nsiblings); 455 if (nsiblings) 456 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event, 457 rt, 458 nsiblings, 459 arg->extack); 460 else 461 err = call_fib6_entry_notifier(arg->nb, fib_event, rt, 462 arg->extack); 463 464 return err; 465 } 466 467 static int fib6_node_dump(struct fib6_walker *w) 468 { 469 int err; 470 471 err = fib6_rt_dump(w->leaf, w->args); 472 w->leaf = NULL; 473 return err; 474 } 475 476 static int fib6_table_dump(struct net *net, struct fib6_table *tb, 477 struct fib6_walker *w) 478 { 479 int err; 480 481 w->root = &tb->tb6_root; 482 spin_lock_bh(&tb->tb6_lock); 483 err = fib6_walk(net, w); 484 spin_unlock_bh(&tb->tb6_lock); 485 return err; 486 } 487 488 /* Called with rcu_read_lock() */ 489 int fib6_tables_dump(struct net *net, struct notifier_block *nb, 490 struct netlink_ext_ack *extack) 491 { 492 struct fib6_dump_arg arg; 493 struct fib6_walker *w; 494 unsigned int h; 495 int err = 0; 496 497 w = kzalloc(sizeof(*w), GFP_ATOMIC); 498 if (!w) 499 return -ENOMEM; 500 501 w->func = fib6_node_dump; 502 arg.net = net; 503 arg.nb = nb; 504 arg.extack = extack; 505 w->args = &arg; 506 507 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 508 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 509 struct fib6_table *tb; 510 511 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 512 err = fib6_table_dump(net, tb, w); 513 if (err) 514 goto out; 515 } 516 } 517 518 out: 519 kfree(w); 520 521 /* The tree traversal function should never return a positive value. */ 522 return err > 0 ? -EINVAL : err; 523 } 524 525 static int fib6_dump_node(struct fib6_walker *w) 526 { 527 int res; 528 struct fib6_info *rt; 529 530 for_each_fib6_walker_rt(w) { 531 res = rt6_dump_route(rt, w->args, w->skip_in_node); 532 if (res >= 0) { 533 /* Frame is full, suspend walking */ 534 w->leaf = rt; 535 536 /* We'll restart from this node, so if some routes were 537 * already dumped, skip them next time. 538 */ 539 w->skip_in_node += res; 540 541 return 1; 542 } 543 w->skip_in_node = 0; 544 545 /* Multipath routes are dumped in one route with the 546 * RTA_MULTIPATH attribute. Jump 'rt' to point to the 547 * last sibling of this route (no need to dump the 548 * sibling routes again) 549 */ 550 if (rt->fib6_nsiblings) 551 rt = list_last_entry(&rt->fib6_siblings, 552 struct fib6_info, 553 fib6_siblings); 554 } 555 w->leaf = NULL; 556 return 0; 557 } 558 559 static void fib6_dump_end(struct netlink_callback *cb) 560 { 561 struct net *net = sock_net(cb->skb->sk); 562 struct fib6_walker *w = (void *)cb->args[2]; 563 564 if (w) { 565 if (cb->args[4]) { 566 cb->args[4] = 0; 567 fib6_walker_unlink(net, w); 568 } 569 cb->args[2] = 0; 570 kfree(w); 571 } 572 cb->done = (void *)cb->args[3]; 573 cb->args[1] = 3; 574 } 575 576 static int fib6_dump_done(struct netlink_callback *cb) 577 { 578 fib6_dump_end(cb); 579 return cb->done ? cb->done(cb) : 0; 580 } 581 582 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 583 struct netlink_callback *cb) 584 { 585 struct net *net = sock_net(skb->sk); 586 struct fib6_walker *w; 587 int res; 588 589 w = (void *)cb->args[2]; 590 w->root = &table->tb6_root; 591 592 if (cb->args[4] == 0) { 593 w->count = 0; 594 w->skip = 0; 595 w->skip_in_node = 0; 596 597 spin_lock_bh(&table->tb6_lock); 598 res = fib6_walk(net, w); 599 spin_unlock_bh(&table->tb6_lock); 600 if (res > 0) { 601 cb->args[4] = 1; 602 cb->args[5] = READ_ONCE(w->root->fn_sernum); 603 } 604 } else { 605 int sernum = READ_ONCE(w->root->fn_sernum); 606 if (cb->args[5] != sernum) { 607 /* Begin at the root if the tree changed */ 608 cb->args[5] = sernum; 609 w->state = FWS_INIT; 610 w->node = w->root; 611 w->skip = w->count; 612 w->skip_in_node = 0; 613 } else 614 w->skip = 0; 615 616 spin_lock_bh(&table->tb6_lock); 617 res = fib6_walk_continue(w); 618 spin_unlock_bh(&table->tb6_lock); 619 if (res <= 0) { 620 fib6_walker_unlink(net, w); 621 cb->args[4] = 0; 622 } 623 } 624 625 return res; 626 } 627 628 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 629 { 630 struct rt6_rtnl_dump_arg arg = { 631 .filter.dump_exceptions = true, 632 .filter.dump_routes = true, 633 .filter.rtnl_held = false, 634 }; 635 const struct nlmsghdr *nlh = cb->nlh; 636 struct net *net = sock_net(skb->sk); 637 unsigned int e = 0, s_e; 638 struct hlist_head *head; 639 struct fib6_walker *w; 640 struct fib6_table *tb; 641 unsigned int h, s_h; 642 int err = 0; 643 644 rcu_read_lock(); 645 if (cb->strict_check) { 646 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb); 647 if (err < 0) 648 goto unlock; 649 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) { 650 struct rtmsg *rtm = nlmsg_data(nlh); 651 652 if (rtm->rtm_flags & RTM_F_PREFIX) 653 arg.filter.flags = RTM_F_PREFIX; 654 } 655 656 w = (void *)cb->args[2]; 657 if (!w) { 658 /* New dump: 659 * 660 * 1. allocate and initialize walker. 661 */ 662 w = kzalloc(sizeof(*w), GFP_ATOMIC); 663 if (!w) { 664 err = -ENOMEM; 665 goto unlock; 666 } 667 w->func = fib6_dump_node; 668 cb->args[2] = (long)w; 669 670 /* 2. hook callback destructor. 671 */ 672 cb->args[3] = (long)cb->done; 673 cb->done = fib6_dump_done; 674 675 } 676 677 arg.skb = skb; 678 arg.cb = cb; 679 arg.net = net; 680 w->args = &arg; 681 682 if (arg.filter.table_id) { 683 tb = fib6_get_table(net, arg.filter.table_id); 684 if (!tb) { 685 if (rtnl_msg_family(cb->nlh) != PF_INET6) 686 goto unlock; 687 688 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist"); 689 err = -ENOENT; 690 goto unlock; 691 } 692 693 if (!cb->args[0]) { 694 err = fib6_dump_table(tb, skb, cb); 695 if (!err) 696 cb->args[0] = 1; 697 } 698 goto unlock; 699 } 700 701 s_h = cb->args[0]; 702 s_e = cb->args[1]; 703 704 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 705 e = 0; 706 head = &net->ipv6.fib_table_hash[h]; 707 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 708 if (e < s_e) 709 goto next; 710 err = fib6_dump_table(tb, skb, cb); 711 if (err != 0) 712 goto out; 713 next: 714 e++; 715 } 716 } 717 out: 718 cb->args[1] = e; 719 cb->args[0] = h; 720 721 unlock: 722 rcu_read_unlock(); 723 if (err <= 0) 724 fib6_dump_end(cb); 725 return err; 726 } 727 728 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val) 729 { 730 if (!f6i) 731 return; 732 733 if (f6i->fib6_metrics == &dst_default_metrics) { 734 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC); 735 736 if (!p) 737 return; 738 739 refcount_set(&p->refcnt, 1); 740 f6i->fib6_metrics = p; 741 } 742 743 f6i->fib6_metrics->metrics[metric - 1] = val; 744 } 745 746 /* 747 * Routing Table 748 * 749 * return the appropriate node for a routing tree "add" operation 750 * by either creating and inserting or by returning an existing 751 * node. 752 */ 753 754 static struct fib6_node *fib6_add_1(struct net *net, 755 struct fib6_table *table, 756 struct fib6_node *root, 757 struct in6_addr *addr, int plen, 758 int offset, int allow_create, 759 int replace_required, 760 struct netlink_ext_ack *extack) 761 { 762 struct fib6_node *fn, *in, *ln; 763 struct fib6_node *pn = NULL; 764 struct rt6key *key; 765 int bit; 766 __be32 dir = 0; 767 768 /* insert node in tree */ 769 770 fn = root; 771 772 do { 773 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 774 lockdep_is_held(&table->tb6_lock)); 775 key = (struct rt6key *)((u8 *)leaf + offset); 776 777 /* 778 * Prefix match 779 */ 780 if (plen < fn->fn_bit || 781 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 782 if (!allow_create) { 783 if (replace_required) { 784 NL_SET_ERR_MSG(extack, 785 "Can not replace route - no match found"); 786 pr_warn("Can't replace route, no match found\n"); 787 return ERR_PTR(-ENOENT); 788 } 789 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 790 } 791 goto insert_above; 792 } 793 794 /* 795 * Exact match ? 796 */ 797 798 if (plen == fn->fn_bit) { 799 /* clean up an intermediate node */ 800 if (!(fn->fn_flags & RTN_RTINFO)) { 801 RCU_INIT_POINTER(fn->leaf, NULL); 802 fib6_info_release(leaf); 803 /* remove null_entry in the root node */ 804 } else if (fn->fn_flags & RTN_TL_ROOT && 805 rcu_access_pointer(fn->leaf) == 806 net->ipv6.fib6_null_entry) { 807 RCU_INIT_POINTER(fn->leaf, NULL); 808 } 809 810 return fn; 811 } 812 813 /* 814 * We have more bits to go 815 */ 816 817 /* Try to walk down on tree. */ 818 dir = addr_bit_set(addr, fn->fn_bit); 819 pn = fn; 820 fn = dir ? 821 rcu_dereference_protected(fn->right, 822 lockdep_is_held(&table->tb6_lock)) : 823 rcu_dereference_protected(fn->left, 824 lockdep_is_held(&table->tb6_lock)); 825 } while (fn); 826 827 if (!allow_create) { 828 /* We should not create new node because 829 * NLM_F_REPLACE was specified without NLM_F_CREATE 830 * I assume it is safe to require NLM_F_CREATE when 831 * REPLACE flag is used! Later we may want to remove the 832 * check for replace_required, because according 833 * to netlink specification, NLM_F_CREATE 834 * MUST be specified if new route is created. 835 * That would keep IPv6 consistent with IPv4 836 */ 837 if (replace_required) { 838 NL_SET_ERR_MSG(extack, 839 "Can not replace route - no match found"); 840 pr_warn("Can't replace route, no match found\n"); 841 return ERR_PTR(-ENOENT); 842 } 843 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 844 } 845 /* 846 * We walked to the bottom of tree. 847 * Create new leaf node without children. 848 */ 849 850 ln = node_alloc(net); 851 852 if (!ln) 853 return ERR_PTR(-ENOMEM); 854 ln->fn_bit = plen; 855 RCU_INIT_POINTER(ln->parent, pn); 856 857 if (dir) 858 rcu_assign_pointer(pn->right, ln); 859 else 860 rcu_assign_pointer(pn->left, ln); 861 862 return ln; 863 864 865 insert_above: 866 /* 867 * split since we don't have a common prefix anymore or 868 * we have a less significant route. 869 * we've to insert an intermediate node on the list 870 * this new node will point to the one we need to create 871 * and the current 872 */ 873 874 pn = rcu_dereference_protected(fn->parent, 875 lockdep_is_held(&table->tb6_lock)); 876 877 /* find 1st bit in difference between the 2 addrs. 878 879 See comment in __ipv6_addr_diff: bit may be an invalid value, 880 but if it is >= plen, the value is ignored in any case. 881 */ 882 883 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 884 885 /* 886 * (intermediate)[in] 887 * / \ 888 * (new leaf node)[ln] (old node)[fn] 889 */ 890 if (plen > bit) { 891 in = node_alloc(net); 892 ln = node_alloc(net); 893 894 if (!in || !ln) { 895 if (in) 896 node_free_immediate(net, in); 897 if (ln) 898 node_free_immediate(net, ln); 899 return ERR_PTR(-ENOMEM); 900 } 901 902 /* 903 * new intermediate node. 904 * RTN_RTINFO will 905 * be off since that an address that chooses one of 906 * the branches would not match less specific routes 907 * in the other branch 908 */ 909 910 in->fn_bit = bit; 911 912 RCU_INIT_POINTER(in->parent, pn); 913 in->leaf = fn->leaf; 914 fib6_info_hold(rcu_dereference_protected(in->leaf, 915 lockdep_is_held(&table->tb6_lock))); 916 917 /* update parent pointer */ 918 if (dir) 919 rcu_assign_pointer(pn->right, in); 920 else 921 rcu_assign_pointer(pn->left, in); 922 923 ln->fn_bit = plen; 924 925 RCU_INIT_POINTER(ln->parent, in); 926 rcu_assign_pointer(fn->parent, in); 927 928 if (addr_bit_set(addr, bit)) { 929 rcu_assign_pointer(in->right, ln); 930 rcu_assign_pointer(in->left, fn); 931 } else { 932 rcu_assign_pointer(in->left, ln); 933 rcu_assign_pointer(in->right, fn); 934 } 935 } else { /* plen <= bit */ 936 937 /* 938 * (new leaf node)[ln] 939 * / \ 940 * (old node)[fn] NULL 941 */ 942 943 ln = node_alloc(net); 944 945 if (!ln) 946 return ERR_PTR(-ENOMEM); 947 948 ln->fn_bit = plen; 949 950 RCU_INIT_POINTER(ln->parent, pn); 951 952 if (addr_bit_set(&key->addr, plen)) 953 RCU_INIT_POINTER(ln->right, fn); 954 else 955 RCU_INIT_POINTER(ln->left, fn); 956 957 rcu_assign_pointer(fn->parent, ln); 958 959 if (dir) 960 rcu_assign_pointer(pn->right, ln); 961 else 962 rcu_assign_pointer(pn->left, ln); 963 } 964 return ln; 965 } 966 967 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh, 968 const struct fib6_info *match) 969 { 970 int cpu; 971 972 if (!fib6_nh->rt6i_pcpu) 973 return; 974 975 rcu_read_lock(); 976 /* release the reference to this fib entry from 977 * all of its cached pcpu routes 978 */ 979 for_each_possible_cpu(cpu) { 980 struct rt6_info **ppcpu_rt; 981 struct rt6_info *pcpu_rt; 982 983 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 984 985 /* Paired with xchg() in rt6_get_pcpu_route() */ 986 pcpu_rt = READ_ONCE(*ppcpu_rt); 987 988 /* only dropping the 'from' reference if the cached route 989 * is using 'match'. The cached pcpu_rt->from only changes 990 * from a fib6_info to NULL (ip6_dst_destroy); it can never 991 * change from one fib6_info reference to another 992 */ 993 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) { 994 struct fib6_info *from; 995 996 from = unrcu_pointer(xchg(&pcpu_rt->from, NULL)); 997 fib6_info_release(from); 998 } 999 } 1000 rcu_read_unlock(); 1001 } 1002 1003 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg) 1004 { 1005 struct fib6_info *arg = _arg; 1006 1007 __fib6_drop_pcpu_from(nh, arg); 1008 return 0; 1009 } 1010 1011 static void fib6_drop_pcpu_from(struct fib6_info *f6i) 1012 { 1013 /* Make sure rt6_make_pcpu_route() wont add other percpu routes 1014 * while we are cleaning them here. 1015 */ 1016 f6i->fib6_destroying = 1; 1017 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */ 1018 1019 if (f6i->nh) { 1020 rcu_read_lock(); 1021 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from, f6i); 1022 rcu_read_unlock(); 1023 } else { 1024 struct fib6_nh *fib6_nh; 1025 1026 fib6_nh = f6i->fib6_nh; 1027 __fib6_drop_pcpu_from(fib6_nh, f6i); 1028 } 1029 } 1030 1031 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn, 1032 struct net *net) 1033 { 1034 struct fib6_table *table = rt->fib6_table; 1035 1036 /* Flush all cached dst in exception table */ 1037 rt6_flush_exceptions(rt); 1038 fib6_drop_pcpu_from(rt); 1039 1040 if (rt->nh) { 1041 spin_lock(&rt->nh->lock); 1042 1043 if (!list_empty(&rt->nh_list)) 1044 list_del_init(&rt->nh_list); 1045 1046 spin_unlock(&rt->nh->lock); 1047 } 1048 1049 if (refcount_read(&rt->fib6_ref) != 1) { 1050 /* This route is used as dummy address holder in some split 1051 * nodes. It is not leaked, but it still holds other resources, 1052 * which must be released in time. So, scan ascendant nodes 1053 * and replace dummy references to this route with references 1054 * to still alive ones. 1055 */ 1056 while (fn) { 1057 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1058 lockdep_is_held(&table->tb6_lock)); 1059 struct fib6_info *new_leaf; 1060 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) { 1061 new_leaf = fib6_find_prefix(net, table, fn); 1062 fib6_info_hold(new_leaf); 1063 1064 rcu_assign_pointer(fn->leaf, new_leaf); 1065 fib6_info_release(rt); 1066 } 1067 fn = rcu_dereference_protected(fn->parent, 1068 lockdep_is_held(&table->tb6_lock)); 1069 } 1070 } 1071 1072 fib6_clean_expires(rt); 1073 fib6_remove_gc_list(rt); 1074 } 1075 1076 /* 1077 * Insert routing information in a node. 1078 */ 1079 1080 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt, 1081 struct nl_info *info, struct netlink_ext_ack *extack, 1082 struct list_head *purge_list) 1083 { 1084 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1085 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1086 struct fib6_info *iter = NULL; 1087 struct fib6_info __rcu **ins; 1088 struct fib6_info __rcu **fallback_ins = NULL; 1089 int replace = (info->nlh && 1090 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 1091 int add = (!info->nlh || 1092 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 1093 int found = 0; 1094 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 1095 bool notify_sibling_rt = false; 1096 u16 nlflags = NLM_F_EXCL; 1097 int err; 1098 1099 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND)) 1100 nlflags |= NLM_F_APPEND; 1101 1102 ins = &fn->leaf; 1103 1104 for (iter = leaf; iter; 1105 iter = rcu_dereference_protected(iter->fib6_next, 1106 lockdep_is_held(&rt->fib6_table->tb6_lock))) { 1107 /* 1108 * Search for duplicates 1109 */ 1110 1111 if (iter->fib6_metric == rt->fib6_metric) { 1112 /* 1113 * Same priority level 1114 */ 1115 if (info->nlh && 1116 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 1117 return -EEXIST; 1118 1119 nlflags &= ~NLM_F_EXCL; 1120 if (replace) { 1121 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { 1122 found++; 1123 break; 1124 } 1125 fallback_ins = fallback_ins ?: ins; 1126 goto next_iter; 1127 } 1128 1129 if (rt6_duplicate_nexthop(iter, rt)) { 1130 if (rt->fib6_nsiblings) 1131 WRITE_ONCE(rt->fib6_nsiblings, 0); 1132 if (!(iter->fib6_flags & RTF_EXPIRES)) 1133 return -EEXIST; 1134 if (!(rt->fib6_flags & RTF_EXPIRES)) { 1135 fib6_clean_expires(iter); 1136 fib6_remove_gc_list(iter); 1137 } else { 1138 fib6_set_expires(iter, rt->expires); 1139 fib6_add_gc_list(iter); 1140 } 1141 if (!(rt->fib6_flags & (RTF_ADDRCONF | RTF_PREFIX_RT)) && 1142 !iter->fib6_nh->fib_nh_gw_family) { 1143 iter->fib6_flags &= ~RTF_ADDRCONF; 1144 iter->fib6_flags &= ~RTF_PREFIX_RT; 1145 } 1146 1147 if (rt->fib6_pmtu) 1148 fib6_metric_set(iter, RTAX_MTU, 1149 rt->fib6_pmtu); 1150 return -EEXIST; 1151 } 1152 /* If we have the same destination and the same metric, 1153 * but not the same gateway, then the route we try to 1154 * add is sibling to this route, increment our counter 1155 * of siblings, and later we will add our route to the 1156 * list. 1157 * Only static routes (which don't have flag 1158 * RTF_EXPIRES) are used for ECMPv6. 1159 * 1160 * To avoid long list, we only had siblings if the 1161 * route have a gateway. 1162 */ 1163 if (rt_can_ecmp && 1164 rt6_qualify_for_ecmp(iter)) 1165 WRITE_ONCE(rt->fib6_nsiblings, 1166 rt->fib6_nsiblings + 1); 1167 } 1168 1169 if (iter->fib6_metric > rt->fib6_metric) 1170 break; 1171 1172 next_iter: 1173 ins = &iter->fib6_next; 1174 } 1175 1176 if (fallback_ins && !found) { 1177 /* No matching route with same ecmp-able-ness found, replace 1178 * first matching route 1179 */ 1180 ins = fallback_ins; 1181 iter = rcu_dereference_protected(*ins, 1182 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1183 found++; 1184 } 1185 1186 /* Reset round-robin state, if necessary */ 1187 if (ins == &fn->leaf) 1188 fn->rr_ptr = NULL; 1189 1190 /* Link this route to others same route. */ 1191 if (rt->fib6_nsiblings) { 1192 unsigned int fib6_nsiblings; 1193 struct fib6_info *sibling, *temp_sibling; 1194 1195 /* Find the first route that have the same metric */ 1196 sibling = leaf; 1197 notify_sibling_rt = true; 1198 while (sibling) { 1199 if (sibling->fib6_metric == rt->fib6_metric && 1200 rt6_qualify_for_ecmp(sibling)) { 1201 list_add_tail_rcu(&rt->fib6_siblings, 1202 &sibling->fib6_siblings); 1203 break; 1204 } 1205 sibling = rcu_dereference_protected(sibling->fib6_next, 1206 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1207 notify_sibling_rt = false; 1208 } 1209 /* For each sibling in the list, increment the counter of 1210 * siblings. BUG() if counters does not match, list of siblings 1211 * is broken! 1212 */ 1213 fib6_nsiblings = 0; 1214 list_for_each_entry_safe(sibling, temp_sibling, 1215 &rt->fib6_siblings, fib6_siblings) { 1216 WRITE_ONCE(sibling->fib6_nsiblings, 1217 sibling->fib6_nsiblings + 1); 1218 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings); 1219 fib6_nsiblings++; 1220 } 1221 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings); 1222 rcu_read_lock(); 1223 rt6_multipath_rebalance(temp_sibling); 1224 rcu_read_unlock(); 1225 } 1226 1227 /* 1228 * insert node 1229 */ 1230 if (!replace) { 1231 if (!add) 1232 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 1233 1234 add: 1235 nlflags |= NLM_F_CREATE; 1236 1237 /* The route should only be notified if it is the first 1238 * route in the node or if it is added as a sibling 1239 * route to the first route in the node. 1240 */ 1241 if (!info->skip_notify_kernel && 1242 (notify_sibling_rt || ins == &fn->leaf)) { 1243 enum fib_event_type fib_event; 1244 1245 if (notify_sibling_rt) 1246 fib_event = FIB_EVENT_ENTRY_APPEND; 1247 else 1248 fib_event = FIB_EVENT_ENTRY_REPLACE; 1249 err = call_fib6_entry_notifiers(info->nl_net, 1250 fib_event, rt, 1251 extack); 1252 if (err) { 1253 struct fib6_info *sibling, *next_sibling; 1254 1255 /* If the route has siblings, then it first 1256 * needs to be unlinked from them. 1257 */ 1258 if (!rt->fib6_nsiblings) 1259 return err; 1260 1261 list_for_each_entry_safe(sibling, next_sibling, 1262 &rt->fib6_siblings, 1263 fib6_siblings) 1264 WRITE_ONCE(sibling->fib6_nsiblings, 1265 sibling->fib6_nsiblings - 1); 1266 WRITE_ONCE(rt->fib6_nsiblings, 0); 1267 list_del_rcu(&rt->fib6_siblings); 1268 rcu_read_lock(); 1269 rt6_multipath_rebalance(next_sibling); 1270 rcu_read_unlock(); 1271 return err; 1272 } 1273 } 1274 1275 rcu_assign_pointer(rt->fib6_next, iter); 1276 fib6_info_hold(rt); 1277 rcu_assign_pointer(rt->fib6_node, fn); 1278 rcu_assign_pointer(*ins, rt); 1279 if (!info->skip_notify) 1280 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 1281 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 1282 1283 if (!(fn->fn_flags & RTN_RTINFO)) { 1284 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1285 fn->fn_flags |= RTN_RTINFO; 1286 } 1287 1288 } else { 1289 int nsiblings; 1290 1291 if (!found) { 1292 if (add) 1293 goto add; 1294 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 1295 return -ENOENT; 1296 } 1297 1298 if (!info->skip_notify_kernel && ins == &fn->leaf) { 1299 err = call_fib6_entry_notifiers(info->nl_net, 1300 FIB_EVENT_ENTRY_REPLACE, 1301 rt, extack); 1302 if (err) 1303 return err; 1304 } 1305 1306 fib6_info_hold(rt); 1307 rcu_assign_pointer(rt->fib6_node, fn); 1308 rt->fib6_next = iter->fib6_next; 1309 rcu_assign_pointer(*ins, rt); 1310 if (!info->skip_notify) 1311 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); 1312 if (!(fn->fn_flags & RTN_RTINFO)) { 1313 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1314 fn->fn_flags |= RTN_RTINFO; 1315 } 1316 nsiblings = iter->fib6_nsiblings; 1317 iter->fib6_node = NULL; 1318 list_add(&iter->purge_link, purge_list); 1319 if (rcu_access_pointer(fn->rr_ptr) == iter) 1320 fn->rr_ptr = NULL; 1321 1322 if (nsiblings) { 1323 /* Replacing an ECMP route, remove all siblings */ 1324 ins = &rt->fib6_next; 1325 iter = rcu_dereference_protected(*ins, 1326 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1327 while (iter) { 1328 if (iter->fib6_metric > rt->fib6_metric) 1329 break; 1330 if (rt6_qualify_for_ecmp(iter)) { 1331 *ins = iter->fib6_next; 1332 iter->fib6_node = NULL; 1333 list_add(&iter->purge_link, purge_list); 1334 if (rcu_access_pointer(fn->rr_ptr) == iter) 1335 fn->rr_ptr = NULL; 1336 nsiblings--; 1337 info->nl_net->ipv6.rt6_stats->fib_rt_entries--; 1338 } else { 1339 ins = &iter->fib6_next; 1340 } 1341 iter = rcu_dereference_protected(*ins, 1342 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1343 } 1344 WARN_ON(nsiblings != 0); 1345 } 1346 } 1347 1348 return 0; 1349 } 1350 1351 static int fib6_add_rt2node_nh(struct fib6_node *fn, struct fib6_info *rt, 1352 struct nl_info *info, struct netlink_ext_ack *extack, 1353 struct list_head *purge_list) 1354 { 1355 int err; 1356 1357 spin_lock(&rt->nh->lock); 1358 1359 if (rt->nh->dead) { 1360 NL_SET_ERR_MSG(extack, "Nexthop has been deleted"); 1361 err = -EINVAL; 1362 } else { 1363 err = fib6_add_rt2node(fn, rt, info, extack, purge_list); 1364 if (!err) 1365 list_add(&rt->nh_list, &rt->nh->f6i_list); 1366 } 1367 1368 spin_unlock(&rt->nh->lock); 1369 1370 return err; 1371 } 1372 1373 static void fib6_start_gc(struct net *net, struct fib6_info *rt) 1374 { 1375 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 1376 (rt->fib6_flags & RTF_EXPIRES)) 1377 mod_timer(&net->ipv6.ip6_fib_timer, 1378 jiffies + READ_ONCE(net->ipv6.sysctl.ip6_rt_gc_interval)); 1379 } 1380 1381 void fib6_force_start_gc(struct net *net) 1382 { 1383 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 1384 mod_timer(&net->ipv6.ip6_fib_timer, 1385 jiffies + READ_ONCE(net->ipv6.sysctl.ip6_rt_gc_interval)); 1386 } 1387 1388 static void __fib6_update_sernum_upto_root(struct fib6_info *rt, 1389 int sernum) 1390 { 1391 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node, 1392 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1393 1394 /* paired with smp_rmb() in fib6_get_cookie_safe() */ 1395 smp_wmb(); 1396 while (fn) { 1397 WRITE_ONCE(fn->fn_sernum, sernum); 1398 fn = rcu_dereference_protected(fn->parent, 1399 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1400 } 1401 } 1402 1403 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt) 1404 { 1405 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net)); 1406 } 1407 1408 /* allow ipv4 to update sernum via ipv6_stub */ 1409 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i) 1410 { 1411 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1412 fib6_update_sernum_upto_root(net, f6i); 1413 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1414 } 1415 1416 /* 1417 * Add routing information to the routing tree. 1418 * <destination addr>/<source addr> 1419 * with source addr info in sub-trees 1420 * Need to own table->tb6_lock 1421 */ 1422 1423 int fib6_add(struct fib6_node *root, struct fib6_info *rt, 1424 struct nl_info *info, struct netlink_ext_ack *extack) 1425 { 1426 struct fib6_table *table = rt->fib6_table; 1427 LIST_HEAD(purge_list); 1428 struct fib6_node *fn; 1429 #ifdef CONFIG_IPV6_SUBTREES 1430 struct fib6_node *pn = NULL; 1431 #endif 1432 int err = -ENOMEM; 1433 int allow_create = 1; 1434 int replace_required = 0; 1435 1436 if (info->nlh) { 1437 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 1438 allow_create = 0; 1439 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 1440 replace_required = 1; 1441 } 1442 if (!allow_create && !replace_required) 1443 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 1444 1445 fn = fib6_add_1(info->nl_net, table, root, 1446 &rt->fib6_dst.addr, rt->fib6_dst.plen, 1447 offsetof(struct fib6_info, fib6_dst), allow_create, 1448 replace_required, extack); 1449 if (IS_ERR(fn)) { 1450 err = PTR_ERR(fn); 1451 fn = NULL; 1452 goto out; 1453 } 1454 1455 #ifdef CONFIG_IPV6_SUBTREES 1456 pn = fn; 1457 1458 if (rt->fib6_src.plen) { 1459 struct fib6_node *sn; 1460 1461 if (!rcu_access_pointer(fn->subtree)) { 1462 struct fib6_node *sfn; 1463 1464 /* 1465 * Create subtree. 1466 * 1467 * fn[main tree] 1468 * | 1469 * sfn[subtree root] 1470 * \ 1471 * sn[new leaf node] 1472 */ 1473 1474 /* Create subtree root node */ 1475 sfn = node_alloc(info->nl_net); 1476 if (!sfn) 1477 goto failure; 1478 1479 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry); 1480 rcu_assign_pointer(sfn->leaf, 1481 info->nl_net->ipv6.fib6_null_entry); 1482 sfn->fn_flags = RTN_ROOT; 1483 1484 /* Now add the first leaf node to new subtree */ 1485 1486 sn = fib6_add_1(info->nl_net, table, sfn, 1487 &rt->fib6_src.addr, rt->fib6_src.plen, 1488 offsetof(struct fib6_info, fib6_src), 1489 allow_create, replace_required, extack); 1490 1491 if (IS_ERR(sn)) { 1492 /* If it is failed, discard just allocated 1493 root, and then (in failure) stale node 1494 in main tree. 1495 */ 1496 node_free_immediate(info->nl_net, sfn); 1497 err = PTR_ERR(sn); 1498 goto failure; 1499 } 1500 1501 /* Now link new subtree to main tree */ 1502 rcu_assign_pointer(sfn->parent, fn); 1503 rcu_assign_pointer(fn->subtree, sfn); 1504 } else { 1505 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn), 1506 &rt->fib6_src.addr, rt->fib6_src.plen, 1507 offsetof(struct fib6_info, fib6_src), 1508 allow_create, replace_required, extack); 1509 1510 if (IS_ERR(sn)) { 1511 err = PTR_ERR(sn); 1512 goto failure; 1513 } 1514 } 1515 1516 if (!rcu_access_pointer(fn->leaf)) { 1517 if (fn->fn_flags & RTN_TL_ROOT) { 1518 /* put back null_entry for root node */ 1519 rcu_assign_pointer(fn->leaf, 1520 info->nl_net->ipv6.fib6_null_entry); 1521 } else { 1522 fib6_info_hold(rt); 1523 rcu_assign_pointer(fn->leaf, rt); 1524 } 1525 } 1526 fn = sn; 1527 } 1528 #endif 1529 1530 if (rt->nh) 1531 err = fib6_add_rt2node_nh(fn, rt, info, extack, &purge_list); 1532 else 1533 err = fib6_add_rt2node(fn, rt, info, extack, &purge_list); 1534 if (!err) { 1535 struct fib6_info *iter, *next; 1536 1537 list_for_each_entry_safe(iter, next, &purge_list, purge_link) { 1538 list_del(&iter->purge_link); 1539 fib6_purge_rt(iter, fn, info->nl_net); 1540 fib6_info_release(iter); 1541 } 1542 1543 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net)); 1544 1545 if (rt->fib6_flags & RTF_EXPIRES) 1546 fib6_add_gc_list(rt); 1547 1548 fib6_start_gc(info->nl_net, rt); 1549 } 1550 1551 out: 1552 if (err) { 1553 #ifdef CONFIG_IPV6_SUBTREES 1554 /* 1555 * If fib6_add_1 has cleared the old leaf pointer in the 1556 * super-tree leaf node we have to find a new one for it. 1557 */ 1558 if (pn != fn) { 1559 struct fib6_info *pn_leaf = 1560 rcu_dereference_protected(pn->leaf, 1561 lockdep_is_held(&table->tb6_lock)); 1562 if (pn_leaf == rt) { 1563 pn_leaf = NULL; 1564 RCU_INIT_POINTER(pn->leaf, NULL); 1565 fib6_info_release(rt); 1566 } 1567 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) { 1568 pn_leaf = fib6_find_prefix(info->nl_net, table, 1569 pn); 1570 if (!pn_leaf) 1571 pn_leaf = 1572 info->nl_net->ipv6.fib6_null_entry; 1573 fib6_info_hold(pn_leaf); 1574 rcu_assign_pointer(pn->leaf, pn_leaf); 1575 } 1576 } 1577 #endif 1578 goto failure; 1579 } else if (fib6_requires_src(rt)) { 1580 fib6_routes_require_src_inc(info->nl_net); 1581 } 1582 return err; 1583 1584 failure: 1585 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if: 1586 * 1. fn is an intermediate node and we failed to add the new 1587 * route to it in both subtree creation failure and fib6_add_rt2node() 1588 * failure case. 1589 * 2. fn is the root node in the table and we fail to add the first 1590 * default route to it. 1591 */ 1592 if (fn && 1593 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) || 1594 (fn->fn_flags & RTN_TL_ROOT && 1595 !rcu_access_pointer(fn->leaf)))) 1596 fib6_repair_tree(info->nl_net, table, fn); 1597 return err; 1598 } 1599 1600 /* 1601 * Routing tree lookup 1602 * 1603 */ 1604 1605 struct lookup_args { 1606 int offset; /* key offset on fib6_info */ 1607 const struct in6_addr *addr; /* search key */ 1608 }; 1609 1610 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root, 1611 struct lookup_args *args) 1612 { 1613 struct fib6_node *fn; 1614 __be32 dir; 1615 1616 if (unlikely(args->offset == 0)) 1617 return NULL; 1618 1619 /* 1620 * Descend on a tree 1621 */ 1622 1623 fn = root; 1624 1625 for (;;) { 1626 struct fib6_node *next; 1627 1628 dir = addr_bit_set(args->addr, fn->fn_bit); 1629 1630 next = dir ? rcu_dereference(fn->right) : 1631 rcu_dereference(fn->left); 1632 1633 if (next) { 1634 fn = next; 1635 continue; 1636 } 1637 break; 1638 } 1639 1640 while (fn) { 1641 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1642 1643 if (subtree || fn->fn_flags & RTN_RTINFO) { 1644 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1645 struct rt6key *key; 1646 1647 if (!leaf) 1648 goto backtrack; 1649 1650 key = (struct rt6key *) ((u8 *)leaf + args->offset); 1651 1652 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1653 #ifdef CONFIG_IPV6_SUBTREES 1654 if (subtree) { 1655 struct fib6_node *sfn; 1656 sfn = fib6_node_lookup_1(subtree, 1657 args + 1); 1658 if (!sfn) 1659 goto backtrack; 1660 fn = sfn; 1661 } 1662 #endif 1663 if (fn->fn_flags & RTN_RTINFO) 1664 return fn; 1665 } 1666 } 1667 backtrack: 1668 if (fn->fn_flags & RTN_ROOT) 1669 break; 1670 1671 fn = rcu_dereference(fn->parent); 1672 } 1673 1674 return NULL; 1675 } 1676 1677 /* called with rcu_read_lock() held 1678 */ 1679 struct fib6_node *fib6_node_lookup(struct fib6_node *root, 1680 const struct in6_addr *daddr, 1681 const struct in6_addr *saddr) 1682 { 1683 struct fib6_node *fn; 1684 struct lookup_args args[] = { 1685 { 1686 .offset = offsetof(struct fib6_info, fib6_dst), 1687 .addr = daddr, 1688 }, 1689 #ifdef CONFIG_IPV6_SUBTREES 1690 { 1691 .offset = offsetof(struct fib6_info, fib6_src), 1692 .addr = saddr, 1693 }, 1694 #endif 1695 { 1696 .offset = 0, /* sentinel */ 1697 } 1698 }; 1699 1700 fn = fib6_node_lookup_1(root, daddr ? args : args + 1); 1701 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1702 fn = root; 1703 1704 return fn; 1705 } 1706 1707 /* 1708 * Get node with specified destination prefix (and source prefix, 1709 * if subtrees are used) 1710 * exact_match == true means we try to find fn with exact match of 1711 * the passed in prefix addr 1712 * exact_match == false means we try to find fn with longest prefix 1713 * match of the passed in prefix addr. This is useful for finding fn 1714 * for cached route as it will be stored in the exception table under 1715 * the node with longest prefix length. 1716 */ 1717 1718 1719 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1720 const struct in6_addr *addr, 1721 int plen, int offset, 1722 bool exact_match) 1723 { 1724 struct fib6_node *fn, *prev = NULL; 1725 1726 for (fn = root; fn ; ) { 1727 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1728 struct rt6key *key; 1729 1730 /* This node is being deleted */ 1731 if (!leaf) { 1732 if (plen <= fn->fn_bit) 1733 goto out; 1734 else 1735 goto next; 1736 } 1737 1738 key = (struct rt6key *)((u8 *)leaf + offset); 1739 1740 /* 1741 * Prefix match 1742 */ 1743 if (plen < fn->fn_bit || 1744 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1745 goto out; 1746 1747 if (plen == fn->fn_bit) 1748 return fn; 1749 1750 if (fn->fn_flags & RTN_RTINFO) 1751 prev = fn; 1752 1753 next: 1754 /* 1755 * We have more bits to go 1756 */ 1757 if (addr_bit_set(addr, fn->fn_bit)) 1758 fn = rcu_dereference(fn->right); 1759 else 1760 fn = rcu_dereference(fn->left); 1761 } 1762 out: 1763 if (exact_match) 1764 return NULL; 1765 else 1766 return prev; 1767 } 1768 1769 struct fib6_node *fib6_locate(struct fib6_node *root, 1770 const struct in6_addr *daddr, int dst_len, 1771 const struct in6_addr *saddr, int src_len, 1772 bool exact_match) 1773 { 1774 struct fib6_node *fn; 1775 1776 fn = fib6_locate_1(root, daddr, dst_len, 1777 offsetof(struct fib6_info, fib6_dst), 1778 exact_match); 1779 1780 #ifdef CONFIG_IPV6_SUBTREES 1781 if (src_len) { 1782 WARN_ON(saddr == NULL); 1783 if (fn) { 1784 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1785 1786 if (subtree) { 1787 fn = fib6_locate_1(subtree, saddr, src_len, 1788 offsetof(struct fib6_info, fib6_src), 1789 exact_match); 1790 } 1791 } 1792 } 1793 #endif 1794 1795 if (fn && fn->fn_flags & RTN_RTINFO) 1796 return fn; 1797 1798 return NULL; 1799 } 1800 1801 1802 /* 1803 * Deletion 1804 * 1805 */ 1806 1807 static struct fib6_info *fib6_find_prefix(struct net *net, 1808 struct fib6_table *table, 1809 struct fib6_node *fn) 1810 { 1811 struct fib6_node *child_left, *child_right; 1812 1813 if (fn->fn_flags & RTN_ROOT) 1814 return net->ipv6.fib6_null_entry; 1815 1816 while (fn) { 1817 child_left = rcu_dereference_protected(fn->left, 1818 lockdep_is_held(&table->tb6_lock)); 1819 child_right = rcu_dereference_protected(fn->right, 1820 lockdep_is_held(&table->tb6_lock)); 1821 if (child_left) 1822 return rcu_dereference_protected(child_left->leaf, 1823 lockdep_is_held(&table->tb6_lock)); 1824 if (child_right) 1825 return rcu_dereference_protected(child_right->leaf, 1826 lockdep_is_held(&table->tb6_lock)); 1827 1828 fn = FIB6_SUBTREE(fn); 1829 } 1830 return NULL; 1831 } 1832 1833 /* 1834 * Called to trim the tree of intermediate nodes when possible. "fn" 1835 * is the node we want to try and remove. 1836 * Need to own table->tb6_lock 1837 */ 1838 1839 static struct fib6_node *fib6_repair_tree(struct net *net, 1840 struct fib6_table *table, 1841 struct fib6_node *fn) 1842 { 1843 int children; 1844 int nstate; 1845 struct fib6_node *child; 1846 struct fib6_walker *w; 1847 int iter = 0; 1848 1849 /* Set fn->leaf to null_entry for root node. */ 1850 if (fn->fn_flags & RTN_TL_ROOT) { 1851 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry); 1852 return fn; 1853 } 1854 1855 for (;;) { 1856 struct fib6_node *fn_r = rcu_dereference_protected(fn->right, 1857 lockdep_is_held(&table->tb6_lock)); 1858 struct fib6_node *fn_l = rcu_dereference_protected(fn->left, 1859 lockdep_is_held(&table->tb6_lock)); 1860 struct fib6_node *pn = rcu_dereference_protected(fn->parent, 1861 lockdep_is_held(&table->tb6_lock)); 1862 struct fib6_node *pn_r = rcu_dereference_protected(pn->right, 1863 lockdep_is_held(&table->tb6_lock)); 1864 struct fib6_node *pn_l = rcu_dereference_protected(pn->left, 1865 lockdep_is_held(&table->tb6_lock)); 1866 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf, 1867 lockdep_is_held(&table->tb6_lock)); 1868 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1869 lockdep_is_held(&table->tb6_lock)); 1870 struct fib6_info *new_fn_leaf; 1871 1872 pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1873 iter++; 1874 1875 WARN_ON(fn->fn_flags & RTN_RTINFO); 1876 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1877 WARN_ON(fn_leaf); 1878 1879 children = 0; 1880 child = NULL; 1881 if (fn_r) { 1882 child = fn_r; 1883 children |= 1; 1884 } 1885 if (fn_l) { 1886 child = fn_l; 1887 children |= 2; 1888 } 1889 1890 if (children == 3 || FIB6_SUBTREE(fn) 1891 #ifdef CONFIG_IPV6_SUBTREES 1892 /* Subtree root (i.e. fn) may have one child */ 1893 || (children && fn->fn_flags & RTN_ROOT) 1894 #endif 1895 ) { 1896 new_fn_leaf = fib6_find_prefix(net, table, fn); 1897 #if RT6_DEBUG >= 2 1898 if (!new_fn_leaf) { 1899 WARN_ON(!new_fn_leaf); 1900 new_fn_leaf = net->ipv6.fib6_null_entry; 1901 } 1902 #endif 1903 fib6_info_hold(new_fn_leaf); 1904 rcu_assign_pointer(fn->leaf, new_fn_leaf); 1905 return pn; 1906 } 1907 1908 #ifdef CONFIG_IPV6_SUBTREES 1909 if (FIB6_SUBTREE(pn) == fn) { 1910 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1911 RCU_INIT_POINTER(pn->subtree, NULL); 1912 nstate = FWS_L; 1913 } else { 1914 WARN_ON(fn->fn_flags & RTN_ROOT); 1915 #endif 1916 if (pn_r == fn) 1917 rcu_assign_pointer(pn->right, child); 1918 else if (pn_l == fn) 1919 rcu_assign_pointer(pn->left, child); 1920 #if RT6_DEBUG >= 2 1921 else 1922 WARN_ON(1); 1923 #endif 1924 if (child) 1925 rcu_assign_pointer(child->parent, pn); 1926 nstate = FWS_R; 1927 #ifdef CONFIG_IPV6_SUBTREES 1928 } 1929 #endif 1930 1931 read_lock(&net->ipv6.fib6_walker_lock); 1932 FOR_WALKERS(net, w) { 1933 if (!child) { 1934 if (w->node == fn) { 1935 pr_debug("W %p adjusted by delnode 1, s=%d/%d\n", 1936 w, w->state, nstate); 1937 w->node = pn; 1938 w->state = nstate; 1939 } 1940 } else { 1941 if (w->node == fn) { 1942 w->node = child; 1943 if (children&2) { 1944 pr_debug("W %p adjusted by delnode 2, s=%d\n", 1945 w, w->state); 1946 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1947 } else { 1948 pr_debug("W %p adjusted by delnode 2, s=%d\n", 1949 w, w->state); 1950 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1951 } 1952 } 1953 } 1954 } 1955 read_unlock(&net->ipv6.fib6_walker_lock); 1956 1957 node_free(net, fn); 1958 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1959 return pn; 1960 1961 RCU_INIT_POINTER(pn->leaf, NULL); 1962 fib6_info_release(pn_leaf); 1963 fn = pn; 1964 } 1965 } 1966 1967 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn, 1968 struct fib6_info __rcu **rtp, struct nl_info *info) 1969 { 1970 struct fib6_info *leaf, *replace_rt = NULL; 1971 struct fib6_walker *w; 1972 struct fib6_info *rt = rcu_dereference_protected(*rtp, 1973 lockdep_is_held(&table->tb6_lock)); 1974 struct net *net = info->nl_net; 1975 bool notify_del = false; 1976 1977 /* If the deleted route is the first in the node and it is not part of 1978 * a multipath route, then we need to replace it with the next route 1979 * in the node, if exists. 1980 */ 1981 leaf = rcu_dereference_protected(fn->leaf, 1982 lockdep_is_held(&table->tb6_lock)); 1983 if (leaf == rt && !rt->fib6_nsiblings) { 1984 if (rcu_access_pointer(rt->fib6_next)) 1985 replace_rt = rcu_dereference_protected(rt->fib6_next, 1986 lockdep_is_held(&table->tb6_lock)); 1987 else 1988 notify_del = true; 1989 } 1990 1991 /* Unlink it */ 1992 *rtp = rt->fib6_next; 1993 rt->fib6_node = NULL; 1994 net->ipv6.rt6_stats->fib_rt_entries--; 1995 net->ipv6.rt6_stats->fib_discarded_routes++; 1996 1997 /* Reset round-robin state, if necessary */ 1998 if (rcu_access_pointer(fn->rr_ptr) == rt) 1999 fn->rr_ptr = NULL; 2000 2001 /* Remove this entry from other siblings */ 2002 if (rt->fib6_nsiblings) { 2003 struct fib6_info *sibling, *next_sibling; 2004 2005 /* The route is deleted from a multipath route. If this 2006 * multipath route is the first route in the node, then we need 2007 * to emit a delete notification. Otherwise, we need to skip 2008 * the notification. 2009 */ 2010 if (rt->fib6_metric == leaf->fib6_metric && 2011 rt6_qualify_for_ecmp(leaf)) 2012 notify_del = true; 2013 list_for_each_entry_safe(sibling, next_sibling, 2014 &rt->fib6_siblings, fib6_siblings) 2015 WRITE_ONCE(sibling->fib6_nsiblings, 2016 sibling->fib6_nsiblings - 1); 2017 WRITE_ONCE(rt->fib6_nsiblings, 0); 2018 list_del_rcu(&rt->fib6_siblings); 2019 rt6_multipath_rebalance(next_sibling); 2020 } 2021 2022 /* Adjust walkers */ 2023 read_lock(&net->ipv6.fib6_walker_lock); 2024 FOR_WALKERS(net, w) { 2025 if (w->state == FWS_C && w->leaf == rt) { 2026 pr_debug("walker %p adjusted by delroute\n", w); 2027 w->leaf = rcu_dereference_protected(rt->fib6_next, 2028 lockdep_is_held(&table->tb6_lock)); 2029 if (!w->leaf) 2030 w->state = FWS_U; 2031 } 2032 } 2033 read_unlock(&net->ipv6.fib6_walker_lock); 2034 2035 /* If it was last route, call fib6_repair_tree() to: 2036 * 1. For root node, put back null_entry as how the table was created. 2037 * 2. For other nodes, expunge its radix tree node. 2038 */ 2039 if (!rcu_access_pointer(fn->leaf)) { 2040 if (!(fn->fn_flags & RTN_TL_ROOT)) { 2041 fn->fn_flags &= ~RTN_RTINFO; 2042 net->ipv6.rt6_stats->fib_route_nodes--; 2043 } 2044 fn = fib6_repair_tree(net, table, fn); 2045 } 2046 2047 fib6_purge_rt(rt, fn, net); 2048 2049 if (!info->skip_notify_kernel) { 2050 if (notify_del) 2051 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 2052 rt, NULL); 2053 else if (replace_rt) 2054 call_fib6_entry_notifiers_replace(net, replace_rt); 2055 } 2056 if (!info->skip_notify) 2057 inet6_rt_notify(RTM_DELROUTE, rt, info, 0); 2058 2059 fib6_info_release(rt); 2060 } 2061 2062 /* Need to own table->tb6_lock */ 2063 int fib6_del(struct fib6_info *rt, struct nl_info *info) 2064 { 2065 struct net *net = info->nl_net; 2066 struct fib6_info __rcu **rtp; 2067 struct fib6_info __rcu **rtp_next; 2068 struct fib6_table *table; 2069 struct fib6_node *fn; 2070 2071 if (rt == net->ipv6.fib6_null_entry) 2072 return -ENOENT; 2073 2074 table = rt->fib6_table; 2075 fn = rcu_dereference_protected(rt->fib6_node, 2076 lockdep_is_held(&table->tb6_lock)); 2077 if (!fn) 2078 return -ENOENT; 2079 2080 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 2081 2082 /* 2083 * Walk the leaf entries looking for ourself 2084 */ 2085 2086 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) { 2087 struct fib6_info *cur = rcu_dereference_protected(*rtp, 2088 lockdep_is_held(&table->tb6_lock)); 2089 if (rt == cur) { 2090 if (fib6_requires_src(cur)) 2091 fib6_routes_require_src_dec(info->nl_net); 2092 fib6_del_route(table, fn, rtp, info); 2093 return 0; 2094 } 2095 rtp_next = &cur->fib6_next; 2096 } 2097 return -ENOENT; 2098 } 2099 2100 /* 2101 * Tree traversal function. 2102 * 2103 * Certainly, it is not interrupt safe. 2104 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 2105 * It means, that we can modify tree during walking 2106 * and use this function for garbage collection, clone pruning, 2107 * cleaning tree when a device goes down etc. etc. 2108 * 2109 * It guarantees that every node will be traversed, 2110 * and that it will be traversed only once. 2111 * 2112 * Callback function w->func may return: 2113 * 0 -> continue walking. 2114 * positive value -> walking is suspended (used by tree dumps, 2115 * and probably by gc, if it will be split to several slices) 2116 * negative value -> terminate walking. 2117 * 2118 * The function itself returns: 2119 * 0 -> walk is complete. 2120 * >0 -> walk is incomplete (i.e. suspended) 2121 * <0 -> walk is terminated by an error. 2122 * 2123 * This function is called with tb6_lock held. 2124 */ 2125 2126 static int fib6_walk_continue(struct fib6_walker *w) 2127 { 2128 struct fib6_node *fn, *pn, *left, *right; 2129 2130 /* w->root should always be table->tb6_root */ 2131 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT)); 2132 2133 for (;;) { 2134 fn = w->node; 2135 if (!fn) 2136 return 0; 2137 2138 switch (w->state) { 2139 #ifdef CONFIG_IPV6_SUBTREES 2140 case FWS_S: 2141 if (FIB6_SUBTREE(fn)) { 2142 w->node = FIB6_SUBTREE(fn); 2143 continue; 2144 } 2145 w->state = FWS_L; 2146 fallthrough; 2147 #endif 2148 case FWS_L: 2149 left = rcu_dereference_protected(fn->left, 1); 2150 if (left) { 2151 w->node = left; 2152 w->state = FWS_INIT; 2153 continue; 2154 } 2155 w->state = FWS_R; 2156 fallthrough; 2157 case FWS_R: 2158 right = rcu_dereference_protected(fn->right, 1); 2159 if (right) { 2160 w->node = right; 2161 w->state = FWS_INIT; 2162 continue; 2163 } 2164 w->state = FWS_C; 2165 w->leaf = rcu_dereference_protected(fn->leaf, 1); 2166 fallthrough; 2167 case FWS_C: 2168 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 2169 int err; 2170 2171 if (w->skip) { 2172 w->skip--; 2173 goto skip; 2174 } 2175 2176 err = w->func(w); 2177 if (err) 2178 return err; 2179 2180 w->count++; 2181 continue; 2182 } 2183 skip: 2184 w->state = FWS_U; 2185 fallthrough; 2186 case FWS_U: 2187 if (fn == w->root) 2188 return 0; 2189 pn = rcu_dereference_protected(fn->parent, 1); 2190 left = rcu_dereference_protected(pn->left, 1); 2191 right = rcu_dereference_protected(pn->right, 1); 2192 w->node = pn; 2193 #ifdef CONFIG_IPV6_SUBTREES 2194 if (FIB6_SUBTREE(pn) == fn) { 2195 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 2196 w->state = FWS_L; 2197 continue; 2198 } 2199 #endif 2200 if (left == fn) { 2201 w->state = FWS_R; 2202 continue; 2203 } 2204 if (right == fn) { 2205 w->state = FWS_C; 2206 w->leaf = rcu_dereference_protected(w->node->leaf, 1); 2207 continue; 2208 } 2209 #if RT6_DEBUG >= 2 2210 WARN_ON(1); 2211 #endif 2212 } 2213 } 2214 } 2215 2216 static int fib6_walk(struct net *net, struct fib6_walker *w) 2217 { 2218 int res; 2219 2220 w->state = FWS_INIT; 2221 w->node = w->root; 2222 2223 fib6_walker_link(net, w); 2224 res = fib6_walk_continue(w); 2225 if (res <= 0) 2226 fib6_walker_unlink(net, w); 2227 return res; 2228 } 2229 2230 static int fib6_clean_node(struct fib6_walker *w) 2231 { 2232 int res; 2233 struct fib6_info *rt; 2234 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 2235 struct nl_info info = { 2236 .nl_net = c->net, 2237 .skip_notify = c->skip_notify, 2238 }; 2239 2240 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 2241 READ_ONCE(w->node->fn_sernum) != c->sernum) 2242 WRITE_ONCE(w->node->fn_sernum, c->sernum); 2243 2244 if (!c->func) { 2245 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 2246 w->leaf = NULL; 2247 return 0; 2248 } 2249 2250 for_each_fib6_walker_rt(w) { 2251 res = c->func(rt, c->arg); 2252 if (res == -1) { 2253 w->leaf = rt; 2254 res = fib6_del(rt, &info); 2255 if (res) { 2256 #if RT6_DEBUG >= 2 2257 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 2258 __func__, rt, 2259 rcu_access_pointer(rt->fib6_node), 2260 res); 2261 #endif 2262 continue; 2263 } 2264 return 0; 2265 } else if (res == -2) { 2266 if (WARN_ON(!rt->fib6_nsiblings)) 2267 continue; 2268 rt = list_last_entry(&rt->fib6_siblings, 2269 struct fib6_info, fib6_siblings); 2270 continue; 2271 } 2272 WARN_ON(res != 0); 2273 } 2274 w->leaf = rt; 2275 return 0; 2276 } 2277 2278 /* 2279 * Convenient frontend to tree walker. 2280 * 2281 * func is called on each route. 2282 * It may return -2 -> skip multipath route. 2283 * -1 -> delete this route. 2284 * 0 -> continue walking 2285 */ 2286 2287 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 2288 int (*func)(struct fib6_info *, void *arg), 2289 int sernum, void *arg, bool skip_notify) 2290 { 2291 struct fib6_cleaner c; 2292 2293 c.w.root = root; 2294 c.w.func = fib6_clean_node; 2295 c.w.count = 0; 2296 c.w.skip = 0; 2297 c.w.skip_in_node = 0; 2298 c.func = func; 2299 c.sernum = sernum; 2300 c.arg = arg; 2301 c.net = net; 2302 c.skip_notify = skip_notify; 2303 2304 fib6_walk(net, &c.w); 2305 } 2306 2307 static void __fib6_clean_all(struct net *net, 2308 int (*func)(struct fib6_info *, void *), 2309 int sernum, void *arg, bool skip_notify) 2310 { 2311 struct fib6_table *table; 2312 struct hlist_head *head; 2313 unsigned int h; 2314 2315 rcu_read_lock(); 2316 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2317 head = &net->ipv6.fib_table_hash[h]; 2318 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2319 spin_lock_bh(&table->tb6_lock); 2320 fib6_clean_tree(net, &table->tb6_root, 2321 func, sernum, arg, skip_notify); 2322 spin_unlock_bh(&table->tb6_lock); 2323 } 2324 } 2325 rcu_read_unlock(); 2326 } 2327 2328 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *), 2329 void *arg) 2330 { 2331 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false); 2332 } 2333 2334 void fib6_clean_all_skip_notify(struct net *net, 2335 int (*func)(struct fib6_info *, void *), 2336 void *arg) 2337 { 2338 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true); 2339 } 2340 2341 static void fib6_flush_trees(struct net *net) 2342 { 2343 int new_sernum = fib6_new_sernum(net); 2344 2345 __fib6_clean_all(net, NULL, new_sernum, NULL, false); 2346 } 2347 2348 /* 2349 * Garbage collection 2350 */ 2351 2352 static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args) 2353 { 2354 unsigned long now = jiffies; 2355 2356 /* 2357 * check addrconf expiration here. 2358 * Routes are expired even if they are in use. 2359 */ 2360 2361 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) { 2362 if (time_after(now, rt->expires)) { 2363 pr_debug("expiring %p\n", rt); 2364 return -1; 2365 } 2366 gc_args->more++; 2367 } 2368 2369 /* Also age clones in the exception table. 2370 * Note, that clones are aged out 2371 * only if they are not in use now. 2372 */ 2373 rt6_age_exceptions(rt, gc_args, now); 2374 2375 return 0; 2376 } 2377 2378 static void fib6_gc_table(struct net *net, 2379 struct fib6_table *tb6, 2380 struct fib6_gc_args *gc_args) 2381 { 2382 struct fib6_info *rt; 2383 struct hlist_node *n; 2384 struct nl_info info = { 2385 .nl_net = net, 2386 .skip_notify = false, 2387 }; 2388 2389 hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link) 2390 if (fib6_age(rt, gc_args) == -1) 2391 fib6_del(rt, &info); 2392 } 2393 2394 static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args) 2395 { 2396 struct fib6_table *table; 2397 struct hlist_head *head; 2398 unsigned int h; 2399 2400 rcu_read_lock(); 2401 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2402 head = &net->ipv6.fib_table_hash[h]; 2403 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2404 spin_lock_bh(&table->tb6_lock); 2405 2406 fib6_gc_table(net, table, gc_args); 2407 2408 spin_unlock_bh(&table->tb6_lock); 2409 } 2410 } 2411 rcu_read_unlock(); 2412 } 2413 2414 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 2415 { 2416 struct fib6_gc_args gc_args; 2417 int ip6_rt_gc_interval; 2418 unsigned long now; 2419 2420 if (force) { 2421 spin_lock_bh(&net->ipv6.fib6_gc_lock); 2422 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { 2423 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 2424 return; 2425 } 2426 ip6_rt_gc_interval = READ_ONCE(net->ipv6.sysctl.ip6_rt_gc_interval); 2427 gc_args.timeout = expires ? (int)expires : ip6_rt_gc_interval; 2428 gc_args.more = 0; 2429 2430 fib6_gc_all(net, &gc_args); 2431 now = jiffies; 2432 net->ipv6.ip6_rt_last_gc = now; 2433 2434 if (gc_args.more) 2435 mod_timer(&net->ipv6.ip6_fib_timer, 2436 round_jiffies(now + ip6_rt_gc_interval)); 2437 else 2438 timer_delete(&net->ipv6.ip6_fib_timer); 2439 spin_unlock_bh(&net->ipv6.fib6_gc_lock); 2440 } 2441 2442 static void fib6_gc_timer_cb(struct timer_list *t) 2443 { 2444 struct net *arg = timer_container_of(arg, t, ipv6.ip6_fib_timer); 2445 2446 fib6_run_gc(0, arg, true); 2447 } 2448 2449 static int __net_init fib6_net_init(struct net *net) 2450 { 2451 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 2452 int err; 2453 2454 err = fib6_notifier_init(net); 2455 if (err) 2456 return err; 2457 2458 /* Default to 3-tuple */ 2459 net->ipv6.sysctl.multipath_hash_fields = 2460 FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK; 2461 2462 spin_lock_init(&net->ipv6.fib6_gc_lock); 2463 rwlock_init(&net->ipv6.fib6_walker_lock); 2464 INIT_LIST_HEAD(&net->ipv6.fib6_walkers); 2465 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0); 2466 2467 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 2468 if (!net->ipv6.rt6_stats) 2469 goto out_notifier; 2470 2471 /* Avoid false sharing : Use at least a full cache line */ 2472 size = max_t(size_t, size, L1_CACHE_BYTES); 2473 2474 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 2475 if (!net->ipv6.fib_table_hash) 2476 goto out_rt6_stats; 2477 2478 spin_lock_init(&net->ipv6.fib_table_hash_lock); 2479 2480 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 2481 GFP_KERNEL); 2482 if (!net->ipv6.fib6_main_tbl) 2483 goto out_fib_table_hash; 2484 2485 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 2486 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf, 2487 net->ipv6.fib6_null_entry); 2488 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 2489 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2490 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 2491 INIT_HLIST_HEAD(&net->ipv6.fib6_main_tbl->tb6_gc_hlist); 2492 2493 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2494 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 2495 GFP_KERNEL); 2496 if (!net->ipv6.fib6_local_tbl) 2497 goto out_fib6_main_tbl; 2498 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 2499 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf, 2500 net->ipv6.fib6_null_entry); 2501 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 2502 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2503 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 2504 INIT_HLIST_HEAD(&net->ipv6.fib6_local_tbl->tb6_gc_hlist); 2505 #endif 2506 fib6_tables_init(net); 2507 2508 return 0; 2509 2510 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2511 out_fib6_main_tbl: 2512 kfree(net->ipv6.fib6_main_tbl); 2513 #endif 2514 out_fib_table_hash: 2515 kfree(net->ipv6.fib_table_hash); 2516 out_rt6_stats: 2517 kfree(net->ipv6.rt6_stats); 2518 out_notifier: 2519 fib6_notifier_exit(net); 2520 return -ENOMEM; 2521 } 2522 2523 static void fib6_net_exit(struct net *net) 2524 { 2525 unsigned int i; 2526 2527 timer_delete_sync(&net->ipv6.ip6_fib_timer); 2528 2529 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) { 2530 struct hlist_head *head = &net->ipv6.fib_table_hash[i]; 2531 struct hlist_node *tmp; 2532 struct fib6_table *tb; 2533 2534 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) { 2535 hlist_del(&tb->tb6_hlist); 2536 fib6_free_table(tb); 2537 } 2538 } 2539 2540 kfree(net->ipv6.fib_table_hash); 2541 kfree(net->ipv6.rt6_stats); 2542 fib6_notifier_exit(net); 2543 } 2544 2545 static struct pernet_operations fib6_net_ops = { 2546 .init = fib6_net_init, 2547 .exit = fib6_net_exit, 2548 }; 2549 2550 static const struct rtnl_msg_handler fib6_rtnl_msg_handlers[] __initconst_or_module = { 2551 {.owner = THIS_MODULE, .protocol = PF_INET6, .msgtype = RTM_GETROUTE, 2552 .dumpit = inet6_dump_fib, 2553 .flags = RTNL_FLAG_DUMP_UNLOCKED | RTNL_FLAG_DUMP_SPLIT_NLM_DONE}, 2554 }; 2555 2556 int __init fib6_init(void) 2557 { 2558 int ret = -ENOMEM; 2559 2560 fib6_node_kmem = KMEM_CACHE(fib6_node, 2561 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT); 2562 if (!fib6_node_kmem) 2563 goto out; 2564 2565 ret = register_pernet_subsys(&fib6_net_ops); 2566 if (ret) 2567 goto out_kmem_cache_create; 2568 2569 ret = rtnl_register_many(fib6_rtnl_msg_handlers); 2570 if (ret) 2571 goto out_unregister_subsys; 2572 2573 __fib6_flush_trees = fib6_flush_trees; 2574 out: 2575 return ret; 2576 2577 out_unregister_subsys: 2578 unregister_pernet_subsys(&fib6_net_ops); 2579 out_kmem_cache_create: 2580 kmem_cache_destroy(fib6_node_kmem); 2581 goto out; 2582 } 2583 2584 void fib6_gc_cleanup(void) 2585 { 2586 unregister_pernet_subsys(&fib6_net_ops); 2587 kmem_cache_destroy(fib6_node_kmem); 2588 } 2589 2590 #ifdef CONFIG_PROC_FS 2591 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v) 2592 { 2593 struct fib6_info *rt = v; 2594 struct ipv6_route_iter *iter = seq->private; 2595 struct fib6_nh *fib6_nh = rt->fib6_nh; 2596 unsigned int flags = rt->fib6_flags; 2597 const struct net_device *dev; 2598 2599 if (rt->nh) 2600 fib6_nh = nexthop_fib6_nh(rt->nh); 2601 2602 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen); 2603 2604 #ifdef CONFIG_IPV6_SUBTREES 2605 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen); 2606 #else 2607 seq_puts(seq, "00000000000000000000000000000000 00 "); 2608 #endif 2609 if (fib6_nh->fib_nh_gw_family) { 2610 flags |= RTF_GATEWAY; 2611 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6); 2612 } else { 2613 seq_puts(seq, "00000000000000000000000000000000"); 2614 } 2615 2616 dev = fib6_nh->fib_nh_dev; 2617 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 2618 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0, 2619 flags, dev ? dev->name : ""); 2620 iter->w.leaf = NULL; 2621 return 0; 2622 } 2623 2624 static int ipv6_route_yield(struct fib6_walker *w) 2625 { 2626 struct ipv6_route_iter *iter = w->args; 2627 2628 if (!iter->skip) 2629 return 1; 2630 2631 do { 2632 iter->w.leaf = rcu_dereference_protected( 2633 iter->w.leaf->fib6_next, 2634 lockdep_is_held(&iter->tbl->tb6_lock)); 2635 iter->skip--; 2636 if (!iter->skip && iter->w.leaf) 2637 return 1; 2638 } while (iter->w.leaf); 2639 2640 return 0; 2641 } 2642 2643 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, 2644 struct net *net) 2645 { 2646 memset(&iter->w, 0, sizeof(iter->w)); 2647 iter->w.func = ipv6_route_yield; 2648 iter->w.root = &iter->tbl->tb6_root; 2649 iter->w.state = FWS_INIT; 2650 iter->w.node = iter->w.root; 2651 iter->w.args = iter; 2652 iter->sernum = READ_ONCE(iter->w.root->fn_sernum); 2653 INIT_LIST_HEAD(&iter->w.lh); 2654 fib6_walker_link(net, &iter->w); 2655 } 2656 2657 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 2658 struct net *net) 2659 { 2660 unsigned int h; 2661 struct hlist_node *node; 2662 2663 if (tbl) { 2664 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 2665 node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist)); 2666 } else { 2667 h = 0; 2668 node = NULL; 2669 } 2670 2671 while (!node && h < FIB6_TABLE_HASHSZ) { 2672 node = rcu_dereference( 2673 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 2674 } 2675 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 2676 } 2677 2678 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 2679 { 2680 int sernum = READ_ONCE(iter->w.root->fn_sernum); 2681 2682 if (iter->sernum != sernum) { 2683 iter->sernum = sernum; 2684 iter->w.state = FWS_INIT; 2685 iter->w.node = iter->w.root; 2686 WARN_ON(iter->w.skip); 2687 iter->w.skip = iter->w.count; 2688 } 2689 } 2690 2691 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2692 { 2693 int r; 2694 struct fib6_info *n; 2695 struct net *net = seq_file_net(seq); 2696 struct ipv6_route_iter *iter = seq->private; 2697 2698 ++(*pos); 2699 if (!v) 2700 goto iter_table; 2701 2702 n = rcu_dereference(((struct fib6_info *)v)->fib6_next); 2703 if (n) 2704 return n; 2705 2706 iter_table: 2707 ipv6_route_check_sernum(iter); 2708 spin_lock_bh(&iter->tbl->tb6_lock); 2709 r = fib6_walk_continue(&iter->w); 2710 spin_unlock_bh(&iter->tbl->tb6_lock); 2711 if (r > 0) { 2712 return iter->w.leaf; 2713 } else if (r < 0) { 2714 fib6_walker_unlink(net, &iter->w); 2715 return NULL; 2716 } 2717 fib6_walker_unlink(net, &iter->w); 2718 2719 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 2720 if (!iter->tbl) 2721 return NULL; 2722 2723 ipv6_route_seq_setup_walk(iter, net); 2724 goto iter_table; 2725 } 2726 2727 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 2728 __acquires(RCU) 2729 { 2730 struct net *net = seq_file_net(seq); 2731 struct ipv6_route_iter *iter = seq->private; 2732 2733 rcu_read_lock(); 2734 iter->tbl = ipv6_route_seq_next_table(NULL, net); 2735 iter->skip = *pos; 2736 2737 if (iter->tbl) { 2738 loff_t p = 0; 2739 2740 ipv6_route_seq_setup_walk(iter, net); 2741 return ipv6_route_seq_next(seq, NULL, &p); 2742 } else { 2743 return NULL; 2744 } 2745 } 2746 2747 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 2748 { 2749 struct fib6_walker *w = &iter->w; 2750 return w->node && !(w->state == FWS_U && w->node == w->root); 2751 } 2752 2753 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v) 2754 __releases(RCU) 2755 { 2756 struct net *net = seq_file_net(seq); 2757 struct ipv6_route_iter *iter = seq->private; 2758 2759 if (ipv6_route_iter_active(iter)) 2760 fib6_walker_unlink(net, &iter->w); 2761 2762 rcu_read_unlock(); 2763 } 2764 2765 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) 2766 static int ipv6_route_prog_seq_show(struct bpf_prog *prog, 2767 struct bpf_iter_meta *meta, 2768 void *v) 2769 { 2770 struct bpf_iter__ipv6_route ctx; 2771 2772 ctx.meta = meta; 2773 ctx.rt = v; 2774 return bpf_iter_run_prog(prog, &ctx); 2775 } 2776 2777 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2778 { 2779 struct ipv6_route_iter *iter = seq->private; 2780 struct bpf_iter_meta meta; 2781 struct bpf_prog *prog; 2782 int ret; 2783 2784 meta.seq = seq; 2785 prog = bpf_iter_get_info(&meta, false); 2786 if (!prog) 2787 return ipv6_route_native_seq_show(seq, v); 2788 2789 ret = ipv6_route_prog_seq_show(prog, &meta, v); 2790 iter->w.leaf = NULL; 2791 2792 return ret; 2793 } 2794 2795 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2796 { 2797 struct bpf_iter_meta meta; 2798 struct bpf_prog *prog; 2799 2800 if (!v) { 2801 meta.seq = seq; 2802 prog = bpf_iter_get_info(&meta, true); 2803 if (prog) 2804 (void)ipv6_route_prog_seq_show(prog, &meta, v); 2805 } 2806 2807 ipv6_route_native_seq_stop(seq, v); 2808 } 2809 #else 2810 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2811 { 2812 return ipv6_route_native_seq_show(seq, v); 2813 } 2814 2815 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2816 { 2817 ipv6_route_native_seq_stop(seq, v); 2818 } 2819 #endif 2820 2821 const struct seq_operations ipv6_route_seq_ops = { 2822 .start = ipv6_route_seq_start, 2823 .next = ipv6_route_seq_next, 2824 .stop = ipv6_route_seq_stop, 2825 .show = ipv6_route_seq_show 2826 }; 2827 #endif /* CONFIG_PROC_FS */ 2828