1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * f_fs.c -- user mode file system API for USB composite function controllers
4 *
5 * Copyright (C) 2010 Samsung Electronics
6 * Author: Michal Nazarewicz <mina86@mina86.com>
7 *
8 * Based on inode.c (GadgetFS) which was:
9 * Copyright (C) 2003-2004 David Brownell
10 * Copyright (C) 2003 Agilent Technologies
11 */
12
13
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16
17 #include <linux/blkdev.h>
18 #include <linux/dma-buf.h>
19 #include <linux/dma-fence.h>
20 #include <linux/dma-resv.h>
21 #include <linux/pagemap.h>
22 #include <linux/export.h>
23 #include <linux/fs_parser.h>
24 #include <linux/hid.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/scatterlist.h>
28 #include <linux/sched/signal.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <linux/unaligned.h>
32
33 #include <linux/usb/ccid.h>
34 #include <linux/usb/composite.h>
35 #include <linux/usb/functionfs.h>
36 #include <linux/usb/func_utils.h>
37
38 #include <linux/aio.h>
39 #include <linux/kthread.h>
40 #include <linux/poll.h>
41 #include <linux/eventfd.h>
42
43 #include "u_fs.h"
44 #include "u_os_desc.h"
45 #include "configfs.h"
46
47 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
48 #define MAX_ALT_SETTINGS 2 /* Allow up to 2 alt settings to be set. */
49
50 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000
51
52 MODULE_IMPORT_NS(DMA_BUF);
53
54 /* Reference counter handling */
55 static void ffs_data_get(struct ffs_data *ffs);
56 static void ffs_data_put(struct ffs_data *ffs);
57 /* Creates new ffs_data object. */
58 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
59 __attribute__((malloc));
60
61 /* Opened counter handling. */
62 static void ffs_data_opened(struct ffs_data *ffs);
63 static void ffs_data_closed(struct ffs_data *ffs);
64
65 /* Called with ffs->mutex held; take over ownership of data. */
66 static int __must_check
67 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
68 static int __must_check
69 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
70
71
72 /* The function structure ***************************************************/
73
74 struct ffs_ep;
75
76 struct ffs_function {
77 struct usb_configuration *conf;
78 struct usb_gadget *gadget;
79 struct ffs_data *ffs;
80
81 struct ffs_ep *eps;
82 u8 eps_revmap[16];
83 short *interfaces_nums;
84
85 struct usb_function function;
86 int cur_alt[MAX_CONFIG_INTERFACES];
87 };
88
89
ffs_func_from_usb(struct usb_function * f)90 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
91 {
92 return container_of(f, struct ffs_function, function);
93 }
94
95
96 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)97 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
98 {
99 return (enum ffs_setup_state)
100 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
101 }
102
103
104 static void ffs_func_eps_disable(struct ffs_function *func);
105 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
106
107 static int ffs_func_bind(struct usb_configuration *,
108 struct usb_function *);
109 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
110 static int ffs_func_get_alt(struct usb_function *f, unsigned int intf);
111 static void ffs_func_disable(struct usb_function *);
112 static int ffs_func_setup(struct usb_function *,
113 const struct usb_ctrlrequest *);
114 static bool ffs_func_req_match(struct usb_function *,
115 const struct usb_ctrlrequest *,
116 bool config0);
117 static void ffs_func_suspend(struct usb_function *);
118 static void ffs_func_resume(struct usb_function *);
119
120
121 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
122 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
123
124
125 /* The endpoints structures *************************************************/
126
127 struct ffs_ep {
128 struct usb_ep *ep; /* P: ffs->eps_lock */
129 struct usb_request *req; /* P: epfile->mutex */
130
131 /* [0]: full speed, [1]: high speed, [2]: super speed */
132 struct usb_endpoint_descriptor *descs[3];
133
134 u8 num;
135 };
136
137 struct ffs_dmabuf_priv {
138 struct list_head entry;
139 struct kref ref;
140 struct ffs_data *ffs;
141 struct dma_buf_attachment *attach;
142 struct sg_table *sgt;
143 enum dma_data_direction dir;
144 spinlock_t lock;
145 u64 context;
146 struct usb_request *req; /* P: ffs->eps_lock */
147 struct usb_ep *ep; /* P: ffs->eps_lock */
148 };
149
150 struct ffs_dma_fence {
151 struct dma_fence base;
152 struct ffs_dmabuf_priv *priv;
153 struct work_struct work;
154 };
155
156 struct ffs_epfile {
157 /* Protects ep->ep and ep->req. */
158 struct mutex mutex;
159
160 struct ffs_data *ffs;
161 struct ffs_ep *ep; /* P: ffs->eps_lock */
162
163 struct dentry *dentry;
164
165 /*
166 * Buffer for holding data from partial reads which may happen since
167 * we’re rounding user read requests to a multiple of a max packet size.
168 *
169 * The pointer is initialised with NULL value and may be set by
170 * __ffs_epfile_read_data function to point to a temporary buffer.
171 *
172 * In normal operation, calls to __ffs_epfile_read_buffered will consume
173 * data from said buffer and eventually free it. Importantly, while the
174 * function is using the buffer, it sets the pointer to NULL. This is
175 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
176 * can never run concurrently (they are synchronised by epfile->mutex)
177 * so the latter will not assign a new value to the pointer.
178 *
179 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
180 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
181 * value is crux of the synchronisation between ffs_func_eps_disable and
182 * __ffs_epfile_read_data.
183 *
184 * Once __ffs_epfile_read_data is about to finish it will try to set the
185 * pointer back to its old value (as described above), but seeing as the
186 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
187 * the buffer.
188 *
189 * == State transitions ==
190 *
191 * • ptr == NULL: (initial state)
192 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
193 * ◦ __ffs_epfile_read_buffered: nop
194 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
195 * ◦ reading finishes: n/a, not in ‘and reading’ state
196 * • ptr == DROP:
197 * ◦ __ffs_epfile_read_buffer_free: nop
198 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
199 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
200 * ◦ reading finishes: n/a, not in ‘and reading’ state
201 * • ptr == buf:
202 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
203 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
204 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
205 * is always called first
206 * ◦ reading finishes: n/a, not in ‘and reading’ state
207 * • ptr == NULL and reading:
208 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
209 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
210 * ◦ __ffs_epfile_read_data: n/a, mutex is held
211 * ◦ reading finishes and …
212 * … all data read: free buf, go to ptr == NULL
213 * … otherwise: go to ptr == buf and reading
214 * • ptr == DROP and reading:
215 * ◦ __ffs_epfile_read_buffer_free: nop
216 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
217 * ◦ __ffs_epfile_read_data: n/a, mutex is held
218 * ◦ reading finishes: free buf, go to ptr == DROP
219 */
220 struct ffs_buffer *read_buffer;
221 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
222
223 char name[5];
224
225 unsigned char in; /* P: ffs->eps_lock */
226 unsigned char isoc; /* P: ffs->eps_lock */
227
228 unsigned char _pad;
229
230 /* Protects dmabufs */
231 struct mutex dmabufs_mutex;
232 struct list_head dmabufs; /* P: dmabufs_mutex */
233 atomic_t seqno;
234 };
235
236 struct ffs_buffer {
237 size_t length;
238 char *data;
239 char storage[] __counted_by(length);
240 };
241
242 /* ffs_io_data structure ***************************************************/
243
244 struct ffs_io_data {
245 bool aio;
246 bool read;
247
248 struct kiocb *kiocb;
249 struct iov_iter data;
250 const void *to_free;
251 char *buf;
252
253 struct mm_struct *mm;
254 struct work_struct work;
255
256 struct usb_ep *ep;
257 struct usb_request *req;
258 struct sg_table sgt;
259 bool use_sg;
260
261 struct ffs_data *ffs;
262
263 int status;
264 struct completion done;
265 };
266
267 struct ffs_desc_helper {
268 struct ffs_data *ffs;
269 unsigned interfaces_count;
270 unsigned eps_count;
271 };
272
273 static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
274 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
275
276 static struct dentry *
277 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
278 const struct file_operations *fops);
279
280 /* Devices management *******************************************************/
281
282 DEFINE_MUTEX(ffs_lock);
283 EXPORT_SYMBOL_GPL(ffs_lock);
284
285 static struct ffs_dev *_ffs_find_dev(const char *name);
286 static struct ffs_dev *_ffs_alloc_dev(void);
287 static void _ffs_free_dev(struct ffs_dev *dev);
288 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
289 static void ffs_release_dev(struct ffs_dev *ffs_dev);
290 static int ffs_ready(struct ffs_data *ffs);
291 static void ffs_closed(struct ffs_data *ffs);
292
293 /* Misc helper functions ****************************************************/
294
295 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
296 __attribute__((warn_unused_result, nonnull));
297 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
298 __attribute__((warn_unused_result, nonnull));
299
300
301 /* Control file aka ep0 *****************************************************/
302
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)303 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
304 {
305 struct ffs_data *ffs = req->context;
306
307 complete(&ffs->ep0req_completion);
308 }
309
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)310 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
311 __releases(&ffs->ev.waitq.lock)
312 {
313 struct usb_request *req = ffs->ep0req;
314 int ret;
315
316 if (!req) {
317 spin_unlock_irq(&ffs->ev.waitq.lock);
318 return -EINVAL;
319 }
320
321 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
322
323 spin_unlock_irq(&ffs->ev.waitq.lock);
324
325 req->buf = data;
326 req->length = len;
327
328 /*
329 * UDC layer requires to provide a buffer even for ZLP, but should
330 * not use it at all. Let's provide some poisoned pointer to catch
331 * possible bug in the driver.
332 */
333 if (req->buf == NULL)
334 req->buf = (void *)0xDEADBABE;
335
336 reinit_completion(&ffs->ep0req_completion);
337
338 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
339 if (ret < 0)
340 return ret;
341
342 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
343 if (ret) {
344 usb_ep_dequeue(ffs->gadget->ep0, req);
345 return -EINTR;
346 }
347
348 ffs->setup_state = FFS_NO_SETUP;
349 return req->status ? req->status : req->actual;
350 }
351
__ffs_ep0_stall(struct ffs_data * ffs)352 static int __ffs_ep0_stall(struct ffs_data *ffs)
353 {
354 if (ffs->ev.can_stall) {
355 pr_vdebug("ep0 stall\n");
356 usb_ep_set_halt(ffs->gadget->ep0);
357 ffs->setup_state = FFS_NO_SETUP;
358 return -EL2HLT;
359 } else {
360 pr_debug("bogus ep0 stall!\n");
361 return -ESRCH;
362 }
363 }
364
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)365 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
366 size_t len, loff_t *ptr)
367 {
368 struct ffs_data *ffs = file->private_data;
369 ssize_t ret;
370 char *data;
371
372 /* Fast check if setup was canceled */
373 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
374 return -EIDRM;
375
376 /* Acquire mutex */
377 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
378 if (ret < 0)
379 return ret;
380
381 /* Check state */
382 switch (ffs->state) {
383 case FFS_READ_DESCRIPTORS:
384 case FFS_READ_STRINGS:
385 /* Copy data */
386 if (len < 16) {
387 ret = -EINVAL;
388 break;
389 }
390
391 data = ffs_prepare_buffer(buf, len);
392 if (IS_ERR(data)) {
393 ret = PTR_ERR(data);
394 break;
395 }
396
397 /* Handle data */
398 if (ffs->state == FFS_READ_DESCRIPTORS) {
399 pr_info("read descriptors\n");
400 ret = __ffs_data_got_descs(ffs, data, len);
401 if (ret < 0)
402 break;
403
404 ffs->state = FFS_READ_STRINGS;
405 ret = len;
406 } else {
407 pr_info("read strings\n");
408 ret = __ffs_data_got_strings(ffs, data, len);
409 if (ret < 0)
410 break;
411
412 ret = ffs_epfiles_create(ffs);
413 if (ret) {
414 ffs->state = FFS_CLOSING;
415 break;
416 }
417
418 ffs->state = FFS_ACTIVE;
419 mutex_unlock(&ffs->mutex);
420
421 ret = ffs_ready(ffs);
422 if (ret < 0) {
423 ffs->state = FFS_CLOSING;
424 return ret;
425 }
426
427 return len;
428 }
429 break;
430
431 case FFS_ACTIVE:
432 data = NULL;
433 /*
434 * We're called from user space, we can use _irq
435 * rather then _irqsave
436 */
437 spin_lock_irq(&ffs->ev.waitq.lock);
438 switch (ffs_setup_state_clear_cancelled(ffs)) {
439 case FFS_SETUP_CANCELLED:
440 ret = -EIDRM;
441 goto done_spin;
442
443 case FFS_NO_SETUP:
444 ret = -ESRCH;
445 goto done_spin;
446
447 case FFS_SETUP_PENDING:
448 break;
449 }
450
451 /* FFS_SETUP_PENDING */
452 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
453 spin_unlock_irq(&ffs->ev.waitq.lock);
454 ret = __ffs_ep0_stall(ffs);
455 break;
456 }
457
458 /* FFS_SETUP_PENDING and not stall */
459 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
460
461 spin_unlock_irq(&ffs->ev.waitq.lock);
462
463 data = ffs_prepare_buffer(buf, len);
464 if (IS_ERR(data)) {
465 ret = PTR_ERR(data);
466 break;
467 }
468
469 spin_lock_irq(&ffs->ev.waitq.lock);
470
471 /*
472 * We are guaranteed to be still in FFS_ACTIVE state
473 * but the state of setup could have changed from
474 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
475 * to check for that. If that happened we copied data
476 * from user space in vain but it's unlikely.
477 *
478 * For sure we are not in FFS_NO_SETUP since this is
479 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
480 * transition can be performed and it's protected by
481 * mutex.
482 */
483 if (ffs_setup_state_clear_cancelled(ffs) ==
484 FFS_SETUP_CANCELLED) {
485 ret = -EIDRM;
486 done_spin:
487 spin_unlock_irq(&ffs->ev.waitq.lock);
488 } else {
489 /* unlocks spinlock */
490 ret = __ffs_ep0_queue_wait(ffs, data, len);
491 }
492 kfree(data);
493 break;
494
495 default:
496 ret = -EBADFD;
497 break;
498 }
499
500 mutex_unlock(&ffs->mutex);
501 return ret;
502 }
503
504 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)505 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
506 size_t n)
507 __releases(&ffs->ev.waitq.lock)
508 {
509 /*
510 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
511 * size of ffs->ev.types array (which is four) so that's how much space
512 * we reserve.
513 */
514 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
515 const size_t size = n * sizeof *events;
516 unsigned i = 0;
517
518 memset(events, 0, size);
519
520 do {
521 events[i].type = ffs->ev.types[i];
522 if (events[i].type == FUNCTIONFS_SETUP) {
523 events[i].u.setup = ffs->ev.setup;
524 ffs->setup_state = FFS_SETUP_PENDING;
525 }
526 } while (++i < n);
527
528 ffs->ev.count -= n;
529 if (ffs->ev.count)
530 memmove(ffs->ev.types, ffs->ev.types + n,
531 ffs->ev.count * sizeof *ffs->ev.types);
532
533 spin_unlock_irq(&ffs->ev.waitq.lock);
534 mutex_unlock(&ffs->mutex);
535
536 return copy_to_user(buf, events, size) ? -EFAULT : size;
537 }
538
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)539 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
540 size_t len, loff_t *ptr)
541 {
542 struct ffs_data *ffs = file->private_data;
543 char *data = NULL;
544 size_t n;
545 int ret;
546
547 /* Fast check if setup was canceled */
548 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
549 return -EIDRM;
550
551 /* Acquire mutex */
552 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
553 if (ret < 0)
554 return ret;
555
556 /* Check state */
557 if (ffs->state != FFS_ACTIVE) {
558 ret = -EBADFD;
559 goto done_mutex;
560 }
561
562 /*
563 * We're called from user space, we can use _irq rather then
564 * _irqsave
565 */
566 spin_lock_irq(&ffs->ev.waitq.lock);
567
568 switch (ffs_setup_state_clear_cancelled(ffs)) {
569 case FFS_SETUP_CANCELLED:
570 ret = -EIDRM;
571 break;
572
573 case FFS_NO_SETUP:
574 n = len / sizeof(struct usb_functionfs_event);
575 if (!n) {
576 ret = -EINVAL;
577 break;
578 }
579
580 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
581 ret = -EAGAIN;
582 break;
583 }
584
585 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
586 ffs->ev.count)) {
587 ret = -EINTR;
588 break;
589 }
590
591 /* unlocks spinlock */
592 return __ffs_ep0_read_events(ffs, buf,
593 min(n, (size_t)ffs->ev.count));
594
595 case FFS_SETUP_PENDING:
596 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
597 spin_unlock_irq(&ffs->ev.waitq.lock);
598 ret = __ffs_ep0_stall(ffs);
599 goto done_mutex;
600 }
601
602 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
603
604 spin_unlock_irq(&ffs->ev.waitq.lock);
605
606 if (len) {
607 data = kmalloc(len, GFP_KERNEL);
608 if (!data) {
609 ret = -ENOMEM;
610 goto done_mutex;
611 }
612 }
613
614 spin_lock_irq(&ffs->ev.waitq.lock);
615
616 /* See ffs_ep0_write() */
617 if (ffs_setup_state_clear_cancelled(ffs) ==
618 FFS_SETUP_CANCELLED) {
619 ret = -EIDRM;
620 break;
621 }
622
623 /* unlocks spinlock */
624 ret = __ffs_ep0_queue_wait(ffs, data, len);
625 if ((ret > 0) && (copy_to_user(buf, data, len)))
626 ret = -EFAULT;
627 goto done_mutex;
628
629 default:
630 ret = -EBADFD;
631 break;
632 }
633
634 spin_unlock_irq(&ffs->ev.waitq.lock);
635 done_mutex:
636 mutex_unlock(&ffs->mutex);
637 kfree(data);
638 return ret;
639 }
640
ffs_ep0_open(struct inode * inode,struct file * file)641 static int ffs_ep0_open(struct inode *inode, struct file *file)
642 {
643 struct ffs_data *ffs = inode->i_private;
644
645 if (ffs->state == FFS_CLOSING)
646 return -EBUSY;
647
648 file->private_data = ffs;
649 ffs_data_opened(ffs);
650
651 return stream_open(inode, file);
652 }
653
ffs_ep0_release(struct inode * inode,struct file * file)654 static int ffs_ep0_release(struct inode *inode, struct file *file)
655 {
656 struct ffs_data *ffs = file->private_data;
657
658 ffs_data_closed(ffs);
659
660 return 0;
661 }
662
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)663 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
664 {
665 struct ffs_data *ffs = file->private_data;
666 struct usb_gadget *gadget = ffs->gadget;
667 long ret;
668
669 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
670 struct ffs_function *func = ffs->func;
671 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
672 } else if (gadget && gadget->ops->ioctl) {
673 ret = gadget->ops->ioctl(gadget, code, value);
674 } else {
675 ret = -ENOTTY;
676 }
677
678 return ret;
679 }
680
ffs_ep0_poll(struct file * file,poll_table * wait)681 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
682 {
683 struct ffs_data *ffs = file->private_data;
684 __poll_t mask = EPOLLWRNORM;
685 int ret;
686
687 poll_wait(file, &ffs->ev.waitq, wait);
688
689 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
690 if (ret < 0)
691 return mask;
692
693 switch (ffs->state) {
694 case FFS_READ_DESCRIPTORS:
695 case FFS_READ_STRINGS:
696 mask |= EPOLLOUT;
697 break;
698
699 case FFS_ACTIVE:
700 switch (ffs->setup_state) {
701 case FFS_NO_SETUP:
702 if (ffs->ev.count)
703 mask |= EPOLLIN;
704 break;
705
706 case FFS_SETUP_PENDING:
707 case FFS_SETUP_CANCELLED:
708 mask |= (EPOLLIN | EPOLLOUT);
709 break;
710 }
711 break;
712
713 case FFS_CLOSING:
714 break;
715 case FFS_DEACTIVATED:
716 break;
717 }
718
719 mutex_unlock(&ffs->mutex);
720
721 return mask;
722 }
723
724 static const struct file_operations ffs_ep0_operations = {
725
726 .open = ffs_ep0_open,
727 .write = ffs_ep0_write,
728 .read = ffs_ep0_read,
729 .release = ffs_ep0_release,
730 .unlocked_ioctl = ffs_ep0_ioctl,
731 .poll = ffs_ep0_poll,
732 };
733
734
735 /* "Normal" endpoints operations ********************************************/
736
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)737 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
738 {
739 struct ffs_io_data *io_data = req->context;
740
741 if (req->status)
742 io_data->status = req->status;
743 else
744 io_data->status = req->actual;
745
746 complete(&io_data->done);
747 }
748
ffs_copy_to_iter(void * data,int data_len,struct iov_iter * iter)749 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
750 {
751 ssize_t ret = copy_to_iter(data, data_len, iter);
752 if (ret == data_len)
753 return ret;
754
755 if (iov_iter_count(iter))
756 return -EFAULT;
757
758 /*
759 * Dear user space developer!
760 *
761 * TL;DR: To stop getting below error message in your kernel log, change
762 * user space code using functionfs to align read buffers to a max
763 * packet size.
764 *
765 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
766 * packet size. When unaligned buffer is passed to functionfs, it
767 * internally uses a larger, aligned buffer so that such UDCs are happy.
768 *
769 * Unfortunately, this means that host may send more data than was
770 * requested in read(2) system call. f_fs doesn’t know what to do with
771 * that excess data so it simply drops it.
772 *
773 * Was the buffer aligned in the first place, no such problem would
774 * happen.
775 *
776 * Data may be dropped only in AIO reads. Synchronous reads are handled
777 * by splitting a request into multiple parts. This splitting may still
778 * be a problem though so it’s likely best to align the buffer
779 * regardless of it being AIO or not..
780 *
781 * This only affects OUT endpoints, i.e. reading data with a read(2),
782 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
783 * affected.
784 */
785 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
786 "Align read buffer size to max packet size to avoid the problem.\n",
787 data_len, ret);
788
789 return ret;
790 }
791
792 /*
793 * allocate a virtually contiguous buffer and create a scatterlist describing it
794 * @sg_table - pointer to a place to be filled with sg_table contents
795 * @size - required buffer size
796 */
ffs_build_sg_list(struct sg_table * sgt,size_t sz)797 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
798 {
799 struct page **pages;
800 void *vaddr, *ptr;
801 unsigned int n_pages;
802 int i;
803
804 vaddr = vmalloc(sz);
805 if (!vaddr)
806 return NULL;
807
808 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
809 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
810 if (!pages) {
811 vfree(vaddr);
812
813 return NULL;
814 }
815 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
816 pages[i] = vmalloc_to_page(ptr);
817
818 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
819 kvfree(pages);
820 vfree(vaddr);
821
822 return NULL;
823 }
824 kvfree(pages);
825
826 return vaddr;
827 }
828
ffs_alloc_buffer(struct ffs_io_data * io_data,size_t data_len)829 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
830 size_t data_len)
831 {
832 if (io_data->use_sg)
833 return ffs_build_sg_list(&io_data->sgt, data_len);
834
835 return kmalloc(data_len, GFP_KERNEL);
836 }
837
ffs_free_buffer(struct ffs_io_data * io_data)838 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
839 {
840 if (!io_data->buf)
841 return;
842
843 if (io_data->use_sg) {
844 sg_free_table(&io_data->sgt);
845 vfree(io_data->buf);
846 } else {
847 kfree(io_data->buf);
848 }
849 }
850
ffs_user_copy_worker(struct work_struct * work)851 static void ffs_user_copy_worker(struct work_struct *work)
852 {
853 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
854 work);
855 int ret = io_data->status;
856 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
857 unsigned long flags;
858
859 if (io_data->read && ret > 0) {
860 kthread_use_mm(io_data->mm);
861 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
862 kthread_unuse_mm(io_data->mm);
863 }
864
865 io_data->kiocb->ki_complete(io_data->kiocb, ret);
866
867 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
868 eventfd_signal(io_data->ffs->ffs_eventfd);
869
870 spin_lock_irqsave(&io_data->ffs->eps_lock, flags);
871 usb_ep_free_request(io_data->ep, io_data->req);
872 io_data->req = NULL;
873 spin_unlock_irqrestore(&io_data->ffs->eps_lock, flags);
874
875 if (io_data->read)
876 kfree(io_data->to_free);
877 ffs_free_buffer(io_data);
878 kfree(io_data);
879 }
880
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)881 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
882 struct usb_request *req)
883 {
884 struct ffs_io_data *io_data = req->context;
885 struct ffs_data *ffs = io_data->ffs;
886
887 io_data->status = req->status ? req->status : req->actual;
888
889 INIT_WORK(&io_data->work, ffs_user_copy_worker);
890 queue_work(ffs->io_completion_wq, &io_data->work);
891 }
892
__ffs_epfile_read_buffer_free(struct ffs_epfile * epfile)893 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
894 {
895 /*
896 * See comment in struct ffs_epfile for full read_buffer pointer
897 * synchronisation story.
898 */
899 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
900 if (buf && buf != READ_BUFFER_DROP)
901 kfree(buf);
902 }
903
904 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_buffered(struct ffs_epfile * epfile,struct iov_iter * iter)905 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
906 struct iov_iter *iter)
907 {
908 /*
909 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
910 * the buffer while we are using it. See comment in struct ffs_epfile
911 * for full read_buffer pointer synchronisation story.
912 */
913 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
914 ssize_t ret;
915 if (!buf || buf == READ_BUFFER_DROP)
916 return 0;
917
918 ret = copy_to_iter(buf->data, buf->length, iter);
919 if (buf->length == ret) {
920 kfree(buf);
921 return ret;
922 }
923
924 if (iov_iter_count(iter)) {
925 ret = -EFAULT;
926 } else {
927 buf->length -= ret;
928 buf->data += ret;
929 }
930
931 if (cmpxchg(&epfile->read_buffer, NULL, buf))
932 kfree(buf);
933
934 return ret;
935 }
936
937 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_data(struct ffs_epfile * epfile,void * data,int data_len,struct iov_iter * iter)938 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
939 void *data, int data_len,
940 struct iov_iter *iter)
941 {
942 struct ffs_buffer *buf;
943
944 ssize_t ret = copy_to_iter(data, data_len, iter);
945 if (data_len == ret)
946 return ret;
947
948 if (iov_iter_count(iter))
949 return -EFAULT;
950
951 /* See ffs_copy_to_iter for more context. */
952 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
953 data_len, ret);
954
955 data_len -= ret;
956 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
957 if (!buf)
958 return -ENOMEM;
959 buf->length = data_len;
960 buf->data = buf->storage;
961 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
962
963 /*
964 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
965 * ffs_func_eps_disable has been called in the meanwhile). See comment
966 * in struct ffs_epfile for full read_buffer pointer synchronisation
967 * story.
968 */
969 if (cmpxchg(&epfile->read_buffer, NULL, buf))
970 kfree(buf);
971
972 return ret;
973 }
974
ffs_epfile_wait_ep(struct file * file)975 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
976 {
977 struct ffs_epfile *epfile = file->private_data;
978 struct ffs_ep *ep;
979 int ret;
980
981 /* Wait for endpoint to be enabled */
982 ep = epfile->ep;
983 if (!ep) {
984 if (file->f_flags & O_NONBLOCK)
985 return ERR_PTR(-EAGAIN);
986
987 ret = wait_event_interruptible(
988 epfile->ffs->wait, (ep = epfile->ep));
989 if (ret)
990 return ERR_PTR(-EINTR);
991 }
992
993 return ep;
994 }
995
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)996 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
997 {
998 struct ffs_epfile *epfile = file->private_data;
999 struct usb_request *req;
1000 struct ffs_ep *ep;
1001 char *data = NULL;
1002 ssize_t ret, data_len = -EINVAL;
1003 int halt;
1004
1005 /* Are we still active? */
1006 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1007 return -ENODEV;
1008
1009 ep = ffs_epfile_wait_ep(file);
1010 if (IS_ERR(ep))
1011 return PTR_ERR(ep);
1012
1013 /* Do we halt? */
1014 halt = (!io_data->read == !epfile->in);
1015 if (halt && epfile->isoc)
1016 return -EINVAL;
1017
1018 /* We will be using request and read_buffer */
1019 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1020 if (ret)
1021 goto error;
1022
1023 /* Allocate & copy */
1024 if (!halt) {
1025 struct usb_gadget *gadget;
1026
1027 /*
1028 * Do we have buffered data from previous partial read? Check
1029 * that for synchronous case only because we do not have
1030 * facility to ‘wake up’ a pending asynchronous read and push
1031 * buffered data to it which we would need to make things behave
1032 * consistently.
1033 */
1034 if (!io_data->aio && io_data->read) {
1035 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
1036 if (ret)
1037 goto error_mutex;
1038 }
1039
1040 /*
1041 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1042 * before the waiting completes, so do not assign to 'gadget'
1043 * earlier
1044 */
1045 gadget = epfile->ffs->gadget;
1046
1047 spin_lock_irq(&epfile->ffs->eps_lock);
1048 /* In the meantime, endpoint got disabled or changed. */
1049 if (epfile->ep != ep) {
1050 ret = -ESHUTDOWN;
1051 goto error_lock;
1052 }
1053 data_len = iov_iter_count(&io_data->data);
1054 /*
1055 * Controller may require buffer size to be aligned to
1056 * maxpacketsize of an out endpoint.
1057 */
1058 if (io_data->read)
1059 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1060
1061 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1062 spin_unlock_irq(&epfile->ffs->eps_lock);
1063
1064 data = ffs_alloc_buffer(io_data, data_len);
1065 if (!data) {
1066 ret = -ENOMEM;
1067 goto error_mutex;
1068 }
1069 if (!io_data->read &&
1070 !copy_from_iter_full(data, data_len, &io_data->data)) {
1071 ret = -EFAULT;
1072 goto error_mutex;
1073 }
1074 }
1075
1076 spin_lock_irq(&epfile->ffs->eps_lock);
1077
1078 if (epfile->ep != ep) {
1079 /* In the meantime, endpoint got disabled or changed. */
1080 ret = -ESHUTDOWN;
1081 } else if (halt) {
1082 ret = usb_ep_set_halt(ep->ep);
1083 if (!ret)
1084 ret = -EBADMSG;
1085 } else if (data_len == -EINVAL) {
1086 /*
1087 * Sanity Check: even though data_len can't be used
1088 * uninitialized at the time I write this comment, some
1089 * compilers complain about this situation.
1090 * In order to keep the code clean from warnings, data_len is
1091 * being initialized to -EINVAL during its declaration, which
1092 * means we can't rely on compiler anymore to warn no future
1093 * changes won't result in data_len being used uninitialized.
1094 * For such reason, we're adding this redundant sanity check
1095 * here.
1096 */
1097 WARN(1, "%s: data_len == -EINVAL\n", __func__);
1098 ret = -EINVAL;
1099 } else if (!io_data->aio) {
1100 bool interrupted = false;
1101
1102 req = ep->req;
1103 if (io_data->use_sg) {
1104 req->buf = NULL;
1105 req->sg = io_data->sgt.sgl;
1106 req->num_sgs = io_data->sgt.nents;
1107 } else {
1108 req->buf = data;
1109 req->num_sgs = 0;
1110 }
1111 req->length = data_len;
1112
1113 io_data->buf = data;
1114
1115 init_completion(&io_data->done);
1116 req->context = io_data;
1117 req->complete = ffs_epfile_io_complete;
1118
1119 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1120 if (ret < 0)
1121 goto error_lock;
1122
1123 spin_unlock_irq(&epfile->ffs->eps_lock);
1124
1125 if (wait_for_completion_interruptible(&io_data->done)) {
1126 spin_lock_irq(&epfile->ffs->eps_lock);
1127 if (epfile->ep != ep) {
1128 ret = -ESHUTDOWN;
1129 goto error_lock;
1130 }
1131 /*
1132 * To avoid race condition with ffs_epfile_io_complete,
1133 * dequeue the request first then check
1134 * status. usb_ep_dequeue API should guarantee no race
1135 * condition with req->complete callback.
1136 */
1137 usb_ep_dequeue(ep->ep, req);
1138 spin_unlock_irq(&epfile->ffs->eps_lock);
1139 wait_for_completion(&io_data->done);
1140 interrupted = io_data->status < 0;
1141 }
1142
1143 if (interrupted)
1144 ret = -EINTR;
1145 else if (io_data->read && io_data->status > 0)
1146 ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1147 &io_data->data);
1148 else
1149 ret = io_data->status;
1150 goto error_mutex;
1151 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1152 ret = -ENOMEM;
1153 } else {
1154 if (io_data->use_sg) {
1155 req->buf = NULL;
1156 req->sg = io_data->sgt.sgl;
1157 req->num_sgs = io_data->sgt.nents;
1158 } else {
1159 req->buf = data;
1160 req->num_sgs = 0;
1161 }
1162 req->length = data_len;
1163
1164 io_data->buf = data;
1165 io_data->ep = ep->ep;
1166 io_data->req = req;
1167 io_data->ffs = epfile->ffs;
1168
1169 req->context = io_data;
1170 req->complete = ffs_epfile_async_io_complete;
1171
1172 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1173 if (ret) {
1174 io_data->req = NULL;
1175 usb_ep_free_request(ep->ep, req);
1176 goto error_lock;
1177 }
1178
1179 ret = -EIOCBQUEUED;
1180 /*
1181 * Do not kfree the buffer in this function. It will be freed
1182 * by ffs_user_copy_worker.
1183 */
1184 data = NULL;
1185 }
1186
1187 error_lock:
1188 spin_unlock_irq(&epfile->ffs->eps_lock);
1189 error_mutex:
1190 mutex_unlock(&epfile->mutex);
1191 error:
1192 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1193 ffs_free_buffer(io_data);
1194 return ret;
1195 }
1196
1197 static int
ffs_epfile_open(struct inode * inode,struct file * file)1198 ffs_epfile_open(struct inode *inode, struct file *file)
1199 {
1200 struct ffs_epfile *epfile = inode->i_private;
1201
1202 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1203 return -ENODEV;
1204
1205 file->private_data = epfile;
1206 ffs_data_opened(epfile->ffs);
1207
1208 return stream_open(inode, file);
1209 }
1210
ffs_aio_cancel(struct kiocb * kiocb)1211 static int ffs_aio_cancel(struct kiocb *kiocb)
1212 {
1213 struct ffs_io_data *io_data = kiocb->private;
1214 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1215 unsigned long flags;
1216 int value;
1217
1218 spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1219
1220 if (io_data && io_data->ep && io_data->req)
1221 value = usb_ep_dequeue(io_data->ep, io_data->req);
1222 else
1223 value = -EINVAL;
1224
1225 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1226
1227 return value;
1228 }
1229
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)1230 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1231 {
1232 struct ffs_io_data io_data, *p = &io_data;
1233 ssize_t res;
1234
1235 if (!is_sync_kiocb(kiocb)) {
1236 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1237 if (!p)
1238 return -ENOMEM;
1239 p->aio = true;
1240 } else {
1241 memset(p, 0, sizeof(*p));
1242 p->aio = false;
1243 }
1244
1245 p->read = false;
1246 p->kiocb = kiocb;
1247 p->data = *from;
1248 p->mm = current->mm;
1249
1250 kiocb->private = p;
1251
1252 if (p->aio)
1253 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1254
1255 res = ffs_epfile_io(kiocb->ki_filp, p);
1256 if (res == -EIOCBQUEUED)
1257 return res;
1258 if (p->aio)
1259 kfree(p);
1260 else
1261 *from = p->data;
1262 return res;
1263 }
1264
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)1265 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1266 {
1267 struct ffs_io_data io_data, *p = &io_data;
1268 ssize_t res;
1269
1270 if (!is_sync_kiocb(kiocb)) {
1271 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1272 if (!p)
1273 return -ENOMEM;
1274 p->aio = true;
1275 } else {
1276 memset(p, 0, sizeof(*p));
1277 p->aio = false;
1278 }
1279
1280 p->read = true;
1281 p->kiocb = kiocb;
1282 if (p->aio) {
1283 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1284 if (!iter_is_ubuf(&p->data) && !p->to_free) {
1285 kfree(p);
1286 return -ENOMEM;
1287 }
1288 } else {
1289 p->data = *to;
1290 p->to_free = NULL;
1291 }
1292 p->mm = current->mm;
1293
1294 kiocb->private = p;
1295
1296 if (p->aio)
1297 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1298
1299 res = ffs_epfile_io(kiocb->ki_filp, p);
1300 if (res == -EIOCBQUEUED)
1301 return res;
1302
1303 if (p->aio) {
1304 kfree(p->to_free);
1305 kfree(p);
1306 } else {
1307 *to = p->data;
1308 }
1309 return res;
1310 }
1311
ffs_dmabuf_release(struct kref * ref)1312 static void ffs_dmabuf_release(struct kref *ref)
1313 {
1314 struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1315 struct dma_buf_attachment *attach = priv->attach;
1316 struct dma_buf *dmabuf = attach->dmabuf;
1317
1318 pr_vdebug("FFS DMABUF release\n");
1319 dma_resv_lock(dmabuf->resv, NULL);
1320 dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1321 dma_resv_unlock(dmabuf->resv);
1322
1323 dma_buf_detach(attach->dmabuf, attach);
1324 dma_buf_put(dmabuf);
1325 kfree(priv);
1326 }
1327
ffs_dmabuf_get(struct dma_buf_attachment * attach)1328 static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1329 {
1330 struct ffs_dmabuf_priv *priv = attach->importer_priv;
1331
1332 kref_get(&priv->ref);
1333 }
1334
ffs_dmabuf_put(struct dma_buf_attachment * attach)1335 static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1336 {
1337 struct ffs_dmabuf_priv *priv = attach->importer_priv;
1338
1339 kref_put(&priv->ref, ffs_dmabuf_release);
1340 }
1341
1342 static int
ffs_epfile_release(struct inode * inode,struct file * file)1343 ffs_epfile_release(struct inode *inode, struct file *file)
1344 {
1345 struct ffs_epfile *epfile = inode->i_private;
1346 struct ffs_dmabuf_priv *priv, *tmp;
1347 struct ffs_data *ffs = epfile->ffs;
1348
1349 mutex_lock(&epfile->dmabufs_mutex);
1350
1351 /* Close all attached DMABUFs */
1352 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1353 /* Cancel any pending transfer */
1354 spin_lock_irq(&ffs->eps_lock);
1355 if (priv->ep && priv->req)
1356 usb_ep_dequeue(priv->ep, priv->req);
1357 spin_unlock_irq(&ffs->eps_lock);
1358
1359 list_del(&priv->entry);
1360 ffs_dmabuf_put(priv->attach);
1361 }
1362
1363 mutex_unlock(&epfile->dmabufs_mutex);
1364
1365 __ffs_epfile_read_buffer_free(epfile);
1366 ffs_data_closed(epfile->ffs);
1367
1368 return 0;
1369 }
1370
ffs_dmabuf_cleanup(struct work_struct * work)1371 static void ffs_dmabuf_cleanup(struct work_struct *work)
1372 {
1373 struct ffs_dma_fence *dma_fence =
1374 container_of(work, struct ffs_dma_fence, work);
1375 struct ffs_dmabuf_priv *priv = dma_fence->priv;
1376 struct dma_buf_attachment *attach = priv->attach;
1377 struct dma_fence *fence = &dma_fence->base;
1378
1379 ffs_dmabuf_put(attach);
1380 dma_fence_put(fence);
1381 }
1382
ffs_dmabuf_signal_done(struct ffs_dma_fence * dma_fence,int ret)1383 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1384 {
1385 struct ffs_dmabuf_priv *priv = dma_fence->priv;
1386 struct dma_fence *fence = &dma_fence->base;
1387 bool cookie = dma_fence_begin_signalling();
1388
1389 dma_fence_get(fence);
1390 fence->error = ret;
1391 dma_fence_signal(fence);
1392 dma_fence_end_signalling(cookie);
1393
1394 /*
1395 * The fence will be unref'd in ffs_dmabuf_cleanup.
1396 * It can't be done here, as the unref functions might try to lock
1397 * the resv object, which would deadlock.
1398 */
1399 INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1400 queue_work(priv->ffs->io_completion_wq, &dma_fence->work);
1401 }
1402
ffs_epfile_dmabuf_io_complete(struct usb_ep * ep,struct usb_request * req)1403 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1404 struct usb_request *req)
1405 {
1406 pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1407 ffs_dmabuf_signal_done(req->context, req->status);
1408 usb_ep_free_request(ep, req);
1409 }
1410
ffs_dmabuf_get_driver_name(struct dma_fence * fence)1411 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1412 {
1413 return "functionfs";
1414 }
1415
ffs_dmabuf_get_timeline_name(struct dma_fence * fence)1416 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1417 {
1418 return "";
1419 }
1420
ffs_dmabuf_fence_release(struct dma_fence * fence)1421 static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1422 {
1423 struct ffs_dma_fence *dma_fence =
1424 container_of(fence, struct ffs_dma_fence, base);
1425
1426 kfree(dma_fence);
1427 }
1428
1429 static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1430 .get_driver_name = ffs_dmabuf_get_driver_name,
1431 .get_timeline_name = ffs_dmabuf_get_timeline_name,
1432 .release = ffs_dmabuf_fence_release,
1433 };
1434
ffs_dma_resv_lock(struct dma_buf * dmabuf,bool nonblock)1435 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1436 {
1437 if (!nonblock)
1438 return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1439
1440 if (!dma_resv_trylock(dmabuf->resv))
1441 return -EBUSY;
1442
1443 return 0;
1444 }
1445
1446 static struct dma_buf_attachment *
ffs_dmabuf_find_attachment(struct ffs_epfile * epfile,struct dma_buf * dmabuf)1447 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1448 {
1449 struct device *dev = epfile->ffs->gadget->dev.parent;
1450 struct dma_buf_attachment *attach = NULL;
1451 struct ffs_dmabuf_priv *priv;
1452
1453 mutex_lock(&epfile->dmabufs_mutex);
1454
1455 list_for_each_entry(priv, &epfile->dmabufs, entry) {
1456 if (priv->attach->dev == dev
1457 && priv->attach->dmabuf == dmabuf) {
1458 attach = priv->attach;
1459 break;
1460 }
1461 }
1462
1463 if (attach)
1464 ffs_dmabuf_get(attach);
1465
1466 mutex_unlock(&epfile->dmabufs_mutex);
1467
1468 return attach ?: ERR_PTR(-EPERM);
1469 }
1470
ffs_dmabuf_attach(struct file * file,int fd)1471 static int ffs_dmabuf_attach(struct file *file, int fd)
1472 {
1473 bool nonblock = file->f_flags & O_NONBLOCK;
1474 struct ffs_epfile *epfile = file->private_data;
1475 struct usb_gadget *gadget = epfile->ffs->gadget;
1476 struct dma_buf_attachment *attach;
1477 struct ffs_dmabuf_priv *priv;
1478 enum dma_data_direction dir;
1479 struct sg_table *sg_table;
1480 struct dma_buf *dmabuf;
1481 int err;
1482
1483 if (!gadget || !gadget->sg_supported)
1484 return -EPERM;
1485
1486 dmabuf = dma_buf_get(fd);
1487 if (IS_ERR(dmabuf))
1488 return PTR_ERR(dmabuf);
1489
1490 attach = dma_buf_attach(dmabuf, gadget->dev.parent);
1491 if (IS_ERR(attach)) {
1492 err = PTR_ERR(attach);
1493 goto err_dmabuf_put;
1494 }
1495
1496 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1497 if (!priv) {
1498 err = -ENOMEM;
1499 goto err_dmabuf_detach;
1500 }
1501
1502 dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1503
1504 err = ffs_dma_resv_lock(dmabuf, nonblock);
1505 if (err)
1506 goto err_free_priv;
1507
1508 sg_table = dma_buf_map_attachment(attach, dir);
1509 dma_resv_unlock(dmabuf->resv);
1510
1511 if (IS_ERR(sg_table)) {
1512 err = PTR_ERR(sg_table);
1513 goto err_free_priv;
1514 }
1515
1516 attach->importer_priv = priv;
1517
1518 priv->sgt = sg_table;
1519 priv->dir = dir;
1520 priv->ffs = epfile->ffs;
1521 priv->attach = attach;
1522 spin_lock_init(&priv->lock);
1523 kref_init(&priv->ref);
1524 priv->context = dma_fence_context_alloc(1);
1525
1526 mutex_lock(&epfile->dmabufs_mutex);
1527 list_add(&priv->entry, &epfile->dmabufs);
1528 mutex_unlock(&epfile->dmabufs_mutex);
1529
1530 return 0;
1531
1532 err_free_priv:
1533 kfree(priv);
1534 err_dmabuf_detach:
1535 dma_buf_detach(dmabuf, attach);
1536 err_dmabuf_put:
1537 dma_buf_put(dmabuf);
1538
1539 return err;
1540 }
1541
ffs_dmabuf_detach(struct file * file,int fd)1542 static int ffs_dmabuf_detach(struct file *file, int fd)
1543 {
1544 struct ffs_epfile *epfile = file->private_data;
1545 struct ffs_data *ffs = epfile->ffs;
1546 struct device *dev = ffs->gadget->dev.parent;
1547 struct ffs_dmabuf_priv *priv, *tmp;
1548 struct dma_buf *dmabuf;
1549 int ret = -EPERM;
1550
1551 dmabuf = dma_buf_get(fd);
1552 if (IS_ERR(dmabuf))
1553 return PTR_ERR(dmabuf);
1554
1555 mutex_lock(&epfile->dmabufs_mutex);
1556
1557 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1558 if (priv->attach->dev == dev
1559 && priv->attach->dmabuf == dmabuf) {
1560 /* Cancel any pending transfer */
1561 spin_lock_irq(&ffs->eps_lock);
1562 if (priv->ep && priv->req)
1563 usb_ep_dequeue(priv->ep, priv->req);
1564 spin_unlock_irq(&ffs->eps_lock);
1565
1566 list_del(&priv->entry);
1567
1568 /* Unref the reference from ffs_dmabuf_attach() */
1569 ffs_dmabuf_put(priv->attach);
1570 ret = 0;
1571 break;
1572 }
1573 }
1574
1575 mutex_unlock(&epfile->dmabufs_mutex);
1576 dma_buf_put(dmabuf);
1577
1578 return ret;
1579 }
1580
ffs_dmabuf_transfer(struct file * file,const struct usb_ffs_dmabuf_transfer_req * req)1581 static int ffs_dmabuf_transfer(struct file *file,
1582 const struct usb_ffs_dmabuf_transfer_req *req)
1583 {
1584 bool nonblock = file->f_flags & O_NONBLOCK;
1585 struct ffs_epfile *epfile = file->private_data;
1586 struct dma_buf_attachment *attach;
1587 struct ffs_dmabuf_priv *priv;
1588 struct ffs_dma_fence *fence;
1589 struct usb_request *usb_req;
1590 enum dma_resv_usage resv_dir;
1591 struct dma_buf *dmabuf;
1592 unsigned long timeout;
1593 struct ffs_ep *ep;
1594 bool cookie;
1595 u32 seqno;
1596 long retl;
1597 int ret;
1598
1599 if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1600 return -EINVAL;
1601
1602 dmabuf = dma_buf_get(req->fd);
1603 if (IS_ERR(dmabuf))
1604 return PTR_ERR(dmabuf);
1605
1606 if (req->length > dmabuf->size || req->length == 0) {
1607 ret = -EINVAL;
1608 goto err_dmabuf_put;
1609 }
1610
1611 attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1612 if (IS_ERR(attach)) {
1613 ret = PTR_ERR(attach);
1614 goto err_dmabuf_put;
1615 }
1616
1617 priv = attach->importer_priv;
1618
1619 ep = ffs_epfile_wait_ep(file);
1620 if (IS_ERR(ep)) {
1621 ret = PTR_ERR(ep);
1622 goto err_attachment_put;
1623 }
1624
1625 ret = ffs_dma_resv_lock(dmabuf, nonblock);
1626 if (ret)
1627 goto err_attachment_put;
1628
1629 /* Make sure we don't have writers */
1630 timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1631 retl = dma_resv_wait_timeout(dmabuf->resv,
1632 dma_resv_usage_rw(epfile->in),
1633 true, timeout);
1634 if (retl == 0)
1635 retl = -EBUSY;
1636 if (retl < 0) {
1637 ret = (int)retl;
1638 goto err_resv_unlock;
1639 }
1640
1641 ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1642 if (ret)
1643 goto err_resv_unlock;
1644
1645 fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1646 if (!fence) {
1647 ret = -ENOMEM;
1648 goto err_resv_unlock;
1649 }
1650
1651 fence->priv = priv;
1652
1653 spin_lock_irq(&epfile->ffs->eps_lock);
1654
1655 /* In the meantime, endpoint got disabled or changed. */
1656 if (epfile->ep != ep) {
1657 ret = -ESHUTDOWN;
1658 goto err_fence_put;
1659 }
1660
1661 usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC);
1662 if (!usb_req) {
1663 ret = -ENOMEM;
1664 goto err_fence_put;
1665 }
1666
1667 /*
1668 * usb_ep_queue() guarantees that all transfers are processed in the
1669 * order they are enqueued, so we can use a simple incrementing
1670 * sequence number for the dma_fence.
1671 */
1672 seqno = atomic_add_return(1, &epfile->seqno);
1673
1674 dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops,
1675 &priv->lock, priv->context, seqno);
1676
1677 resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
1678
1679 dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir);
1680 dma_resv_unlock(dmabuf->resv);
1681
1682 /* Now that the dma_fence is in place, queue the transfer. */
1683
1684 usb_req->length = req->length;
1685 usb_req->buf = NULL;
1686 usb_req->sg = priv->sgt->sgl;
1687 usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length);
1688 usb_req->sg_was_mapped = true;
1689 usb_req->context = fence;
1690 usb_req->complete = ffs_epfile_dmabuf_io_complete;
1691
1692 cookie = dma_fence_begin_signalling();
1693 ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC);
1694 dma_fence_end_signalling(cookie);
1695 if (!ret) {
1696 priv->req = usb_req;
1697 priv->ep = ep->ep;
1698 } else {
1699 pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1700 ffs_dmabuf_signal_done(fence, ret);
1701 usb_ep_free_request(ep->ep, usb_req);
1702 }
1703
1704 spin_unlock_irq(&epfile->ffs->eps_lock);
1705 dma_buf_put(dmabuf);
1706
1707 return ret;
1708
1709 err_fence_put:
1710 spin_unlock_irq(&epfile->ffs->eps_lock);
1711 dma_fence_put(&fence->base);
1712 err_resv_unlock:
1713 dma_resv_unlock(dmabuf->resv);
1714 err_attachment_put:
1715 ffs_dmabuf_put(attach);
1716 err_dmabuf_put:
1717 dma_buf_put(dmabuf);
1718
1719 return ret;
1720 }
1721
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1722 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1723 unsigned long value)
1724 {
1725 struct ffs_epfile *epfile = file->private_data;
1726 struct ffs_ep *ep;
1727 int ret;
1728
1729 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1730 return -ENODEV;
1731
1732 switch (code) {
1733 case FUNCTIONFS_DMABUF_ATTACH:
1734 {
1735 int fd;
1736
1737 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1738 ret = -EFAULT;
1739 break;
1740 }
1741
1742 return ffs_dmabuf_attach(file, fd);
1743 }
1744 case FUNCTIONFS_DMABUF_DETACH:
1745 {
1746 int fd;
1747
1748 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1749 ret = -EFAULT;
1750 break;
1751 }
1752
1753 return ffs_dmabuf_detach(file, fd);
1754 }
1755 case FUNCTIONFS_DMABUF_TRANSFER:
1756 {
1757 struct usb_ffs_dmabuf_transfer_req req;
1758
1759 if (copy_from_user(&req, (void __user *)value, sizeof(req))) {
1760 ret = -EFAULT;
1761 break;
1762 }
1763
1764 return ffs_dmabuf_transfer(file, &req);
1765 }
1766 default:
1767 break;
1768 }
1769
1770 /* Wait for endpoint to be enabled */
1771 ep = ffs_epfile_wait_ep(file);
1772 if (IS_ERR(ep))
1773 return PTR_ERR(ep);
1774
1775 spin_lock_irq(&epfile->ffs->eps_lock);
1776
1777 /* In the meantime, endpoint got disabled or changed. */
1778 if (epfile->ep != ep) {
1779 spin_unlock_irq(&epfile->ffs->eps_lock);
1780 return -ESHUTDOWN;
1781 }
1782
1783 switch (code) {
1784 case FUNCTIONFS_FIFO_STATUS:
1785 ret = usb_ep_fifo_status(epfile->ep->ep);
1786 break;
1787 case FUNCTIONFS_FIFO_FLUSH:
1788 usb_ep_fifo_flush(epfile->ep->ep);
1789 ret = 0;
1790 break;
1791 case FUNCTIONFS_CLEAR_HALT:
1792 ret = usb_ep_clear_halt(epfile->ep->ep);
1793 break;
1794 case FUNCTIONFS_ENDPOINT_REVMAP:
1795 ret = epfile->ep->num;
1796 break;
1797 case FUNCTIONFS_ENDPOINT_DESC:
1798 {
1799 int desc_idx;
1800 struct usb_endpoint_descriptor desc1, *desc;
1801
1802 switch (epfile->ffs->gadget->speed) {
1803 case USB_SPEED_SUPER:
1804 case USB_SPEED_SUPER_PLUS:
1805 desc_idx = 2;
1806 break;
1807 case USB_SPEED_HIGH:
1808 desc_idx = 1;
1809 break;
1810 default:
1811 desc_idx = 0;
1812 }
1813
1814 desc = epfile->ep->descs[desc_idx];
1815 memcpy(&desc1, desc, desc->bLength);
1816
1817 spin_unlock_irq(&epfile->ffs->eps_lock);
1818 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1819 if (ret)
1820 ret = -EFAULT;
1821 return ret;
1822 }
1823 default:
1824 ret = -ENOTTY;
1825 }
1826 spin_unlock_irq(&epfile->ffs->eps_lock);
1827
1828 return ret;
1829 }
1830
1831 static const struct file_operations ffs_epfile_operations = {
1832
1833 .open = ffs_epfile_open,
1834 .write_iter = ffs_epfile_write_iter,
1835 .read_iter = ffs_epfile_read_iter,
1836 .release = ffs_epfile_release,
1837 .unlocked_ioctl = ffs_epfile_ioctl,
1838 .compat_ioctl = compat_ptr_ioctl,
1839 };
1840
1841
1842 /* File system and super block operations ***********************************/
1843
1844 /*
1845 * Mounting the file system creates a controller file, used first for
1846 * function configuration then later for event monitoring.
1847 */
1848
1849 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1850 ffs_sb_make_inode(struct super_block *sb, void *data,
1851 const struct file_operations *fops,
1852 const struct inode_operations *iops,
1853 struct ffs_file_perms *perms)
1854 {
1855 struct inode *inode;
1856
1857 inode = new_inode(sb);
1858
1859 if (inode) {
1860 struct timespec64 ts = inode_set_ctime_current(inode);
1861
1862 inode->i_ino = get_next_ino();
1863 inode->i_mode = perms->mode;
1864 inode->i_uid = perms->uid;
1865 inode->i_gid = perms->gid;
1866 inode_set_atime_to_ts(inode, ts);
1867 inode_set_mtime_to_ts(inode, ts);
1868 inode->i_private = data;
1869 if (fops)
1870 inode->i_fop = fops;
1871 if (iops)
1872 inode->i_op = iops;
1873 }
1874
1875 return inode;
1876 }
1877
1878 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1879 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1880 const char *name, void *data,
1881 const struct file_operations *fops)
1882 {
1883 struct ffs_data *ffs = sb->s_fs_info;
1884 struct dentry *dentry;
1885 struct inode *inode;
1886
1887 dentry = d_alloc_name(sb->s_root, name);
1888 if (!dentry)
1889 return NULL;
1890
1891 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1892 if (!inode) {
1893 dput(dentry);
1894 return NULL;
1895 }
1896
1897 d_add(dentry, inode);
1898 return dentry;
1899 }
1900
1901 /* Super block */
1902 static const struct super_operations ffs_sb_operations = {
1903 .statfs = simple_statfs,
1904 .drop_inode = generic_delete_inode,
1905 };
1906
1907 struct ffs_sb_fill_data {
1908 struct ffs_file_perms perms;
1909 umode_t root_mode;
1910 const char *dev_name;
1911 bool no_disconnect;
1912 struct ffs_data *ffs_data;
1913 };
1914
ffs_sb_fill(struct super_block * sb,struct fs_context * fc)1915 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1916 {
1917 struct ffs_sb_fill_data *data = fc->fs_private;
1918 struct inode *inode;
1919 struct ffs_data *ffs = data->ffs_data;
1920
1921 ffs->sb = sb;
1922 data->ffs_data = NULL;
1923 sb->s_fs_info = ffs;
1924 sb->s_blocksize = PAGE_SIZE;
1925 sb->s_blocksize_bits = PAGE_SHIFT;
1926 sb->s_magic = FUNCTIONFS_MAGIC;
1927 sb->s_op = &ffs_sb_operations;
1928 sb->s_time_gran = 1;
1929
1930 /* Root inode */
1931 data->perms.mode = data->root_mode;
1932 inode = ffs_sb_make_inode(sb, NULL,
1933 &simple_dir_operations,
1934 &simple_dir_inode_operations,
1935 &data->perms);
1936 sb->s_root = d_make_root(inode);
1937 if (!sb->s_root)
1938 return -ENOMEM;
1939
1940 /* EP0 file */
1941 if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1942 return -ENOMEM;
1943
1944 return 0;
1945 }
1946
1947 enum {
1948 Opt_no_disconnect,
1949 Opt_rmode,
1950 Opt_fmode,
1951 Opt_mode,
1952 Opt_uid,
1953 Opt_gid,
1954 };
1955
1956 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1957 fsparam_bool ("no_disconnect", Opt_no_disconnect),
1958 fsparam_u32 ("rmode", Opt_rmode),
1959 fsparam_u32 ("fmode", Opt_fmode),
1960 fsparam_u32 ("mode", Opt_mode),
1961 fsparam_u32 ("uid", Opt_uid),
1962 fsparam_u32 ("gid", Opt_gid),
1963 {}
1964 };
1965
ffs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1966 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1967 {
1968 struct ffs_sb_fill_data *data = fc->fs_private;
1969 struct fs_parse_result result;
1970 int opt;
1971
1972 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1973 if (opt < 0)
1974 return opt;
1975
1976 switch (opt) {
1977 case Opt_no_disconnect:
1978 data->no_disconnect = result.boolean;
1979 break;
1980 case Opt_rmode:
1981 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1982 break;
1983 case Opt_fmode:
1984 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1985 break;
1986 case Opt_mode:
1987 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1988 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1989 break;
1990
1991 case Opt_uid:
1992 data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1993 if (!uid_valid(data->perms.uid))
1994 goto unmapped_value;
1995 break;
1996 case Opt_gid:
1997 data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1998 if (!gid_valid(data->perms.gid))
1999 goto unmapped_value;
2000 break;
2001
2002 default:
2003 return -ENOPARAM;
2004 }
2005
2006 return 0;
2007
2008 unmapped_value:
2009 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2010 }
2011
2012 /*
2013 * Set up the superblock for a mount.
2014 */
ffs_fs_get_tree(struct fs_context * fc)2015 static int ffs_fs_get_tree(struct fs_context *fc)
2016 {
2017 struct ffs_sb_fill_data *ctx = fc->fs_private;
2018 struct ffs_data *ffs;
2019 int ret;
2020
2021 if (!fc->source)
2022 return invalf(fc, "No source specified");
2023
2024 ffs = ffs_data_new(fc->source);
2025 if (!ffs)
2026 return -ENOMEM;
2027 ffs->file_perms = ctx->perms;
2028 ffs->no_disconnect = ctx->no_disconnect;
2029
2030 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
2031 if (!ffs->dev_name) {
2032 ffs_data_put(ffs);
2033 return -ENOMEM;
2034 }
2035
2036 ret = ffs_acquire_dev(ffs->dev_name, ffs);
2037 if (ret) {
2038 ffs_data_put(ffs);
2039 return ret;
2040 }
2041
2042 ctx->ffs_data = ffs;
2043 return get_tree_nodev(fc, ffs_sb_fill);
2044 }
2045
ffs_fs_free_fc(struct fs_context * fc)2046 static void ffs_fs_free_fc(struct fs_context *fc)
2047 {
2048 struct ffs_sb_fill_data *ctx = fc->fs_private;
2049
2050 if (ctx) {
2051 if (ctx->ffs_data) {
2052 ffs_data_put(ctx->ffs_data);
2053 }
2054
2055 kfree(ctx);
2056 }
2057 }
2058
2059 static const struct fs_context_operations ffs_fs_context_ops = {
2060 .free = ffs_fs_free_fc,
2061 .parse_param = ffs_fs_parse_param,
2062 .get_tree = ffs_fs_get_tree,
2063 };
2064
ffs_fs_init_fs_context(struct fs_context * fc)2065 static int ffs_fs_init_fs_context(struct fs_context *fc)
2066 {
2067 struct ffs_sb_fill_data *ctx;
2068
2069 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2070 if (!ctx)
2071 return -ENOMEM;
2072
2073 ctx->perms.mode = S_IFREG | 0600;
2074 ctx->perms.uid = GLOBAL_ROOT_UID;
2075 ctx->perms.gid = GLOBAL_ROOT_GID;
2076 ctx->root_mode = S_IFDIR | 0500;
2077 ctx->no_disconnect = false;
2078
2079 fc->fs_private = ctx;
2080 fc->ops = &ffs_fs_context_ops;
2081 return 0;
2082 }
2083
2084 static void
ffs_fs_kill_sb(struct super_block * sb)2085 ffs_fs_kill_sb(struct super_block *sb)
2086 {
2087 kill_litter_super(sb);
2088 if (sb->s_fs_info)
2089 ffs_data_closed(sb->s_fs_info);
2090 }
2091
2092 static struct file_system_type ffs_fs_type = {
2093 .owner = THIS_MODULE,
2094 .name = "functionfs",
2095 .init_fs_context = ffs_fs_init_fs_context,
2096 .parameters = ffs_fs_fs_parameters,
2097 .kill_sb = ffs_fs_kill_sb,
2098 };
2099 MODULE_ALIAS_FS("functionfs");
2100
2101
2102 /* Driver's main init/cleanup functions *************************************/
2103
functionfs_init(void)2104 static int functionfs_init(void)
2105 {
2106 int ret;
2107
2108 ret = register_filesystem(&ffs_fs_type);
2109 if (!ret)
2110 pr_info("file system registered\n");
2111 else
2112 pr_err("failed registering file system (%d)\n", ret);
2113
2114 return ret;
2115 }
2116
functionfs_cleanup(void)2117 static void functionfs_cleanup(void)
2118 {
2119 pr_info("unloading\n");
2120 unregister_filesystem(&ffs_fs_type);
2121 }
2122
2123
2124 /* ffs_data and ffs_function construction and destruction code **************/
2125
2126 static void ffs_data_clear(struct ffs_data *ffs);
2127 static void ffs_data_reset(struct ffs_data *ffs);
2128
ffs_data_get(struct ffs_data * ffs)2129 static void ffs_data_get(struct ffs_data *ffs)
2130 {
2131 refcount_inc(&ffs->ref);
2132 }
2133
ffs_data_opened(struct ffs_data * ffs)2134 static void ffs_data_opened(struct ffs_data *ffs)
2135 {
2136 refcount_inc(&ffs->ref);
2137 if (atomic_add_return(1, &ffs->opened) == 1 &&
2138 ffs->state == FFS_DEACTIVATED) {
2139 ffs->state = FFS_CLOSING;
2140 ffs_data_reset(ffs);
2141 }
2142 }
2143
ffs_data_put(struct ffs_data * ffs)2144 static void ffs_data_put(struct ffs_data *ffs)
2145 {
2146 if (refcount_dec_and_test(&ffs->ref)) {
2147 pr_info("%s(): freeing\n", __func__);
2148 ffs_data_clear(ffs);
2149 ffs_release_dev(ffs->private_data);
2150 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2151 swait_active(&ffs->ep0req_completion.wait) ||
2152 waitqueue_active(&ffs->wait));
2153 destroy_workqueue(ffs->io_completion_wq);
2154 kfree(ffs->dev_name);
2155 kfree(ffs);
2156 }
2157 }
2158
ffs_data_closed(struct ffs_data * ffs)2159 static void ffs_data_closed(struct ffs_data *ffs)
2160 {
2161 struct ffs_epfile *epfiles;
2162 unsigned long flags;
2163
2164 if (atomic_dec_and_test(&ffs->opened)) {
2165 if (ffs->no_disconnect) {
2166 ffs->state = FFS_DEACTIVATED;
2167 spin_lock_irqsave(&ffs->eps_lock, flags);
2168 epfiles = ffs->epfiles;
2169 ffs->epfiles = NULL;
2170 spin_unlock_irqrestore(&ffs->eps_lock,
2171 flags);
2172
2173 if (epfiles)
2174 ffs_epfiles_destroy(epfiles,
2175 ffs->eps_count);
2176
2177 if (ffs->setup_state == FFS_SETUP_PENDING)
2178 __ffs_ep0_stall(ffs);
2179 } else {
2180 ffs->state = FFS_CLOSING;
2181 ffs_data_reset(ffs);
2182 }
2183 }
2184 if (atomic_read(&ffs->opened) < 0) {
2185 ffs->state = FFS_CLOSING;
2186 ffs_data_reset(ffs);
2187 }
2188
2189 ffs_data_put(ffs);
2190 }
2191
ffs_data_new(const char * dev_name)2192 static struct ffs_data *ffs_data_new(const char *dev_name)
2193 {
2194 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
2195 if (!ffs)
2196 return NULL;
2197
2198 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2199 if (!ffs->io_completion_wq) {
2200 kfree(ffs);
2201 return NULL;
2202 }
2203
2204 refcount_set(&ffs->ref, 1);
2205 atomic_set(&ffs->opened, 0);
2206 ffs->state = FFS_READ_DESCRIPTORS;
2207 mutex_init(&ffs->mutex);
2208 spin_lock_init(&ffs->eps_lock);
2209 init_waitqueue_head(&ffs->ev.waitq);
2210 init_waitqueue_head(&ffs->wait);
2211 init_completion(&ffs->ep0req_completion);
2212
2213 /* XXX REVISIT need to update it in some places, or do we? */
2214 ffs->ev.can_stall = 1;
2215
2216 return ffs;
2217 }
2218
ffs_data_clear(struct ffs_data * ffs)2219 static void ffs_data_clear(struct ffs_data *ffs)
2220 {
2221 struct ffs_epfile *epfiles;
2222 unsigned long flags;
2223
2224 ffs_closed(ffs);
2225
2226 BUG_ON(ffs->gadget);
2227
2228 spin_lock_irqsave(&ffs->eps_lock, flags);
2229 epfiles = ffs->epfiles;
2230 ffs->epfiles = NULL;
2231 spin_unlock_irqrestore(&ffs->eps_lock, flags);
2232
2233 /*
2234 * potential race possible between ffs_func_eps_disable
2235 * & ffs_epfile_release therefore maintaining a local
2236 * copy of epfile will save us from use-after-free.
2237 */
2238 if (epfiles) {
2239 ffs_epfiles_destroy(epfiles, ffs->eps_count);
2240 ffs->epfiles = NULL;
2241 }
2242
2243 if (ffs->ffs_eventfd) {
2244 eventfd_ctx_put(ffs->ffs_eventfd);
2245 ffs->ffs_eventfd = NULL;
2246 }
2247
2248 kfree(ffs->raw_descs_data);
2249 kfree(ffs->raw_strings);
2250 kfree(ffs->stringtabs);
2251 }
2252
ffs_data_reset(struct ffs_data * ffs)2253 static void ffs_data_reset(struct ffs_data *ffs)
2254 {
2255 ffs_data_clear(ffs);
2256
2257 ffs->raw_descs_data = NULL;
2258 ffs->raw_descs = NULL;
2259 ffs->raw_strings = NULL;
2260 ffs->stringtabs = NULL;
2261
2262 ffs->raw_descs_length = 0;
2263 ffs->fs_descs_count = 0;
2264 ffs->hs_descs_count = 0;
2265 ffs->ss_descs_count = 0;
2266
2267 ffs->strings_count = 0;
2268 ffs->interfaces_count = 0;
2269 ffs->eps_count = 0;
2270
2271 ffs->ev.count = 0;
2272
2273 ffs->state = FFS_READ_DESCRIPTORS;
2274 ffs->setup_state = FFS_NO_SETUP;
2275 ffs->flags = 0;
2276
2277 ffs->ms_os_descs_ext_prop_count = 0;
2278 ffs->ms_os_descs_ext_prop_name_len = 0;
2279 ffs->ms_os_descs_ext_prop_data_len = 0;
2280 }
2281
2282
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)2283 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2284 {
2285 struct usb_gadget_strings **lang;
2286 int first_id;
2287
2288 if (WARN_ON(ffs->state != FFS_ACTIVE
2289 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2290 return -EBADFD;
2291
2292 first_id = usb_string_ids_n(cdev, ffs->strings_count);
2293 if (first_id < 0)
2294 return first_id;
2295
2296 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
2297 if (!ffs->ep0req)
2298 return -ENOMEM;
2299 ffs->ep0req->complete = ffs_ep0_complete;
2300 ffs->ep0req->context = ffs;
2301
2302 lang = ffs->stringtabs;
2303 if (lang) {
2304 for (; *lang; ++lang) {
2305 struct usb_string *str = (*lang)->strings;
2306 int id = first_id;
2307 for (; str->s; ++id, ++str)
2308 str->id = id;
2309 }
2310 }
2311
2312 ffs->gadget = cdev->gadget;
2313 ffs_data_get(ffs);
2314 return 0;
2315 }
2316
functionfs_unbind(struct ffs_data * ffs)2317 static void functionfs_unbind(struct ffs_data *ffs)
2318 {
2319 if (!WARN_ON(!ffs->gadget)) {
2320 /* dequeue before freeing ep0req */
2321 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
2322 mutex_lock(&ffs->mutex);
2323 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
2324 ffs->ep0req = NULL;
2325 ffs->gadget = NULL;
2326 clear_bit(FFS_FL_BOUND, &ffs->flags);
2327 mutex_unlock(&ffs->mutex);
2328 ffs_data_put(ffs);
2329 }
2330 }
2331
ffs_epfiles_create(struct ffs_data * ffs)2332 static int ffs_epfiles_create(struct ffs_data *ffs)
2333 {
2334 struct ffs_epfile *epfile, *epfiles;
2335 unsigned i, count;
2336
2337 count = ffs->eps_count;
2338 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
2339 if (!epfiles)
2340 return -ENOMEM;
2341
2342 epfile = epfiles;
2343 for (i = 1; i <= count; ++i, ++epfile) {
2344 epfile->ffs = ffs;
2345 mutex_init(&epfile->mutex);
2346 mutex_init(&epfile->dmabufs_mutex);
2347 INIT_LIST_HEAD(&epfile->dmabufs);
2348 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2349 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
2350 else
2351 sprintf(epfile->name, "ep%u", i);
2352 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
2353 epfile,
2354 &ffs_epfile_operations);
2355 if (!epfile->dentry) {
2356 ffs_epfiles_destroy(epfiles, i - 1);
2357 return -ENOMEM;
2358 }
2359 }
2360
2361 ffs->epfiles = epfiles;
2362 return 0;
2363 }
2364
ffs_epfiles_destroy(struct ffs_epfile * epfiles,unsigned count)2365 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
2366 {
2367 struct ffs_epfile *epfile = epfiles;
2368
2369 for (; count; --count, ++epfile) {
2370 BUG_ON(mutex_is_locked(&epfile->mutex));
2371 if (epfile->dentry) {
2372 d_delete(epfile->dentry);
2373 dput(epfile->dentry);
2374 epfile->dentry = NULL;
2375 }
2376 }
2377
2378 kfree(epfiles);
2379 }
2380
ffs_func_eps_disable(struct ffs_function * func)2381 static void ffs_func_eps_disable(struct ffs_function *func)
2382 {
2383 struct ffs_ep *ep;
2384 struct ffs_epfile *epfile;
2385 unsigned short count;
2386 unsigned long flags;
2387
2388 spin_lock_irqsave(&func->ffs->eps_lock, flags);
2389 count = func->ffs->eps_count;
2390 epfile = func->ffs->epfiles;
2391 ep = func->eps;
2392 while (count--) {
2393 /* pending requests get nuked */
2394 if (ep->ep)
2395 usb_ep_disable(ep->ep);
2396 ++ep;
2397
2398 if (epfile) {
2399 epfile->ep = NULL;
2400 __ffs_epfile_read_buffer_free(epfile);
2401 ++epfile;
2402 }
2403 }
2404 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2405 }
2406
ffs_func_eps_enable(struct ffs_function * func)2407 static int ffs_func_eps_enable(struct ffs_function *func)
2408 {
2409 struct ffs_data *ffs;
2410 struct ffs_ep *ep;
2411 struct ffs_epfile *epfile;
2412 unsigned short count;
2413 unsigned long flags;
2414 int ret = 0;
2415
2416 spin_lock_irqsave(&func->ffs->eps_lock, flags);
2417 ffs = func->ffs;
2418 ep = func->eps;
2419 epfile = ffs->epfiles;
2420 count = ffs->eps_count;
2421 while(count--) {
2422 ep->ep->driver_data = ep;
2423
2424 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2425 if (ret) {
2426 pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2427 __func__, ep->ep->name, ret);
2428 break;
2429 }
2430
2431 ret = usb_ep_enable(ep->ep);
2432 if (!ret) {
2433 epfile->ep = ep;
2434 epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2435 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2436 } else {
2437 break;
2438 }
2439
2440 ++ep;
2441 ++epfile;
2442 }
2443
2444 wake_up_interruptible(&ffs->wait);
2445 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2446
2447 return ret;
2448 }
2449
2450
2451 /* Parsing and building descriptors and strings *****************************/
2452
2453 /*
2454 * This validates if data pointed by data is a valid USB descriptor as
2455 * well as record how many interfaces, endpoints and strings are
2456 * required by given configuration. Returns address after the
2457 * descriptor or NULL if data is invalid.
2458 */
2459
2460 enum ffs_entity_type {
2461 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2462 };
2463
2464 enum ffs_os_desc_type {
2465 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2466 };
2467
2468 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2469 u8 *valuep,
2470 struct usb_descriptor_header *desc,
2471 void *priv);
2472
2473 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2474 struct usb_os_desc_header *h, void *data,
2475 unsigned len, void *priv);
2476
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv,int * current_class,int * current_subclass)2477 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2478 ffs_entity_callback entity,
2479 void *priv, int *current_class, int *current_subclass)
2480 {
2481 struct usb_descriptor_header *_ds = (void *)data;
2482 u8 length;
2483 int ret;
2484
2485 /* At least two bytes are required: length and type */
2486 if (len < 2) {
2487 pr_vdebug("descriptor too short\n");
2488 return -EINVAL;
2489 }
2490
2491 /* If we have at least as many bytes as the descriptor takes? */
2492 length = _ds->bLength;
2493 if (len < length) {
2494 pr_vdebug("descriptor longer then available data\n");
2495 return -EINVAL;
2496 }
2497
2498 #define __entity_check_INTERFACE(val) 1
2499 #define __entity_check_STRING(val) (val)
2500 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
2501 #define __entity(type, val) do { \
2502 pr_vdebug("entity " #type "(%02x)\n", (val)); \
2503 if (!__entity_check_ ##type(val)) { \
2504 pr_vdebug("invalid entity's value\n"); \
2505 return -EINVAL; \
2506 } \
2507 ret = entity(FFS_ ##type, &val, _ds, priv); \
2508 if (ret < 0) { \
2509 pr_debug("entity " #type "(%02x); ret = %d\n", \
2510 (val), ret); \
2511 return ret; \
2512 } \
2513 } while (0)
2514
2515 /* Parse descriptor depending on type. */
2516 switch (_ds->bDescriptorType) {
2517 case USB_DT_DEVICE:
2518 case USB_DT_CONFIG:
2519 case USB_DT_STRING:
2520 case USB_DT_DEVICE_QUALIFIER:
2521 /* function can't have any of those */
2522 pr_vdebug("descriptor reserved for gadget: %d\n",
2523 _ds->bDescriptorType);
2524 return -EINVAL;
2525
2526 case USB_DT_INTERFACE: {
2527 struct usb_interface_descriptor *ds = (void *)_ds;
2528 pr_vdebug("interface descriptor\n");
2529 if (length != sizeof *ds)
2530 goto inv_length;
2531
2532 __entity(INTERFACE, ds->bInterfaceNumber);
2533 if (ds->iInterface)
2534 __entity(STRING, ds->iInterface);
2535 *current_class = ds->bInterfaceClass;
2536 *current_subclass = ds->bInterfaceSubClass;
2537 }
2538 break;
2539
2540 case USB_DT_ENDPOINT: {
2541 struct usb_endpoint_descriptor *ds = (void *)_ds;
2542 pr_vdebug("endpoint descriptor\n");
2543 if (length != USB_DT_ENDPOINT_SIZE &&
2544 length != USB_DT_ENDPOINT_AUDIO_SIZE)
2545 goto inv_length;
2546 __entity(ENDPOINT, ds->bEndpointAddress);
2547 }
2548 break;
2549
2550 case USB_TYPE_CLASS | 0x01:
2551 if (*current_class == USB_INTERFACE_CLASS_HID) {
2552 pr_vdebug("hid descriptor\n");
2553 if (length != sizeof(struct hid_descriptor))
2554 goto inv_length;
2555 break;
2556 } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2557 pr_vdebug("ccid descriptor\n");
2558 if (length != sizeof(struct ccid_descriptor))
2559 goto inv_length;
2560 break;
2561 } else if (*current_class == USB_CLASS_APP_SPEC &&
2562 *current_subclass == USB_SUBCLASS_DFU) {
2563 pr_vdebug("dfu functional descriptor\n");
2564 if (length != sizeof(struct usb_dfu_functional_descriptor))
2565 goto inv_length;
2566 break;
2567 } else {
2568 pr_vdebug("unknown descriptor: %d for class %d\n",
2569 _ds->bDescriptorType, *current_class);
2570 return -EINVAL;
2571 }
2572
2573 case USB_DT_OTG:
2574 if (length != sizeof(struct usb_otg_descriptor))
2575 goto inv_length;
2576 break;
2577
2578 case USB_DT_INTERFACE_ASSOCIATION: {
2579 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2580 pr_vdebug("interface association descriptor\n");
2581 if (length != sizeof *ds)
2582 goto inv_length;
2583 if (ds->iFunction)
2584 __entity(STRING, ds->iFunction);
2585 }
2586 break;
2587
2588 case USB_DT_SS_ENDPOINT_COMP:
2589 pr_vdebug("EP SS companion descriptor\n");
2590 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2591 goto inv_length;
2592 break;
2593
2594 case USB_DT_OTHER_SPEED_CONFIG:
2595 case USB_DT_INTERFACE_POWER:
2596 case USB_DT_DEBUG:
2597 case USB_DT_SECURITY:
2598 case USB_DT_CS_RADIO_CONTROL:
2599 /* TODO */
2600 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2601 return -EINVAL;
2602
2603 default:
2604 /* We should never be here */
2605 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2606 return -EINVAL;
2607
2608 inv_length:
2609 pr_vdebug("invalid length: %d (descriptor %d)\n",
2610 _ds->bLength, _ds->bDescriptorType);
2611 return -EINVAL;
2612 }
2613
2614 #undef __entity
2615 #undef __entity_check_DESCRIPTOR
2616 #undef __entity_check_INTERFACE
2617 #undef __entity_check_STRING
2618 #undef __entity_check_ENDPOINT
2619
2620 return length;
2621 }
2622
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2623 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2624 ffs_entity_callback entity, void *priv)
2625 {
2626 const unsigned _len = len;
2627 unsigned long num = 0;
2628 int current_class = -1;
2629 int current_subclass = -1;
2630
2631 for (;;) {
2632 int ret;
2633
2634 if (num == count)
2635 data = NULL;
2636
2637 /* Record "descriptor" entity */
2638 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2639 if (ret < 0) {
2640 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2641 num, ret);
2642 return ret;
2643 }
2644
2645 if (!data)
2646 return _len - len;
2647
2648 ret = ffs_do_single_desc(data, len, entity, priv,
2649 ¤t_class, ¤t_subclass);
2650 if (ret < 0) {
2651 pr_debug("%s returns %d\n", __func__, ret);
2652 return ret;
2653 }
2654
2655 len -= ret;
2656 data += ret;
2657 ++num;
2658 }
2659 }
2660
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2661 static int __ffs_data_do_entity(enum ffs_entity_type type,
2662 u8 *valuep, struct usb_descriptor_header *desc,
2663 void *priv)
2664 {
2665 struct ffs_desc_helper *helper = priv;
2666 struct usb_endpoint_descriptor *d;
2667
2668 switch (type) {
2669 case FFS_DESCRIPTOR:
2670 break;
2671
2672 case FFS_INTERFACE:
2673 /*
2674 * Interfaces are indexed from zero so if we
2675 * encountered interface "n" then there are at least
2676 * "n+1" interfaces.
2677 */
2678 if (*valuep >= helper->interfaces_count)
2679 helper->interfaces_count = *valuep + 1;
2680 break;
2681
2682 case FFS_STRING:
2683 /*
2684 * Strings are indexed from 1 (0 is reserved
2685 * for languages list)
2686 */
2687 if (*valuep > helper->ffs->strings_count)
2688 helper->ffs->strings_count = *valuep;
2689 break;
2690
2691 case FFS_ENDPOINT:
2692 d = (void *)desc;
2693 helper->eps_count++;
2694 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2695 return -EINVAL;
2696 /* Check if descriptors for any speed were already parsed */
2697 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2698 helper->ffs->eps_addrmap[helper->eps_count] =
2699 d->bEndpointAddress;
2700 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2701 d->bEndpointAddress)
2702 return -EINVAL;
2703 break;
2704 }
2705
2706 return 0;
2707 }
2708
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2709 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2710 struct usb_os_desc_header *desc)
2711 {
2712 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2713 u16 w_index = le16_to_cpu(desc->wIndex);
2714
2715 if (bcd_version == 0x1) {
2716 pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2717 "Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2718 } else if (bcd_version != 0x100) {
2719 pr_vdebug("unsupported os descriptors version: 0x%x\n",
2720 bcd_version);
2721 return -EINVAL;
2722 }
2723 switch (w_index) {
2724 case 0x4:
2725 *next_type = FFS_OS_DESC_EXT_COMPAT;
2726 break;
2727 case 0x5:
2728 *next_type = FFS_OS_DESC_EXT_PROP;
2729 break;
2730 default:
2731 pr_vdebug("unsupported os descriptor type: %d", w_index);
2732 return -EINVAL;
2733 }
2734
2735 return sizeof(*desc);
2736 }
2737
2738 /*
2739 * Process all extended compatibility/extended property descriptors
2740 * of a feature descriptor
2741 */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2742 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2743 enum ffs_os_desc_type type,
2744 u16 feature_count,
2745 ffs_os_desc_callback entity,
2746 void *priv,
2747 struct usb_os_desc_header *h)
2748 {
2749 int ret;
2750 const unsigned _len = len;
2751
2752 /* loop over all ext compat/ext prop descriptors */
2753 while (feature_count--) {
2754 ret = entity(type, h, data, len, priv);
2755 if (ret < 0) {
2756 pr_debug("bad OS descriptor, type: %d\n", type);
2757 return ret;
2758 }
2759 data += ret;
2760 len -= ret;
2761 }
2762 return _len - len;
2763 }
2764
2765 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2766 static int __must_check ffs_do_os_descs(unsigned count,
2767 char *data, unsigned len,
2768 ffs_os_desc_callback entity, void *priv)
2769 {
2770 const unsigned _len = len;
2771 unsigned long num = 0;
2772
2773 for (num = 0; num < count; ++num) {
2774 int ret;
2775 enum ffs_os_desc_type type;
2776 u16 feature_count;
2777 struct usb_os_desc_header *desc = (void *)data;
2778
2779 if (len < sizeof(*desc))
2780 return -EINVAL;
2781
2782 /*
2783 * Record "descriptor" entity.
2784 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2785 * Move the data pointer to the beginning of extended
2786 * compatibilities proper or extended properties proper
2787 * portions of the data
2788 */
2789 if (le32_to_cpu(desc->dwLength) > len)
2790 return -EINVAL;
2791
2792 ret = __ffs_do_os_desc_header(&type, desc);
2793 if (ret < 0) {
2794 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2795 num, ret);
2796 return ret;
2797 }
2798 /*
2799 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2800 */
2801 feature_count = le16_to_cpu(desc->wCount);
2802 if (type == FFS_OS_DESC_EXT_COMPAT &&
2803 (feature_count > 255 || desc->Reserved))
2804 return -EINVAL;
2805 len -= ret;
2806 data += ret;
2807
2808 /*
2809 * Process all function/property descriptors
2810 * of this Feature Descriptor
2811 */
2812 ret = ffs_do_single_os_desc(data, len, type,
2813 feature_count, entity, priv, desc);
2814 if (ret < 0) {
2815 pr_debug("%s returns %d\n", __func__, ret);
2816 return ret;
2817 }
2818
2819 len -= ret;
2820 data += ret;
2821 }
2822 return _len - len;
2823 }
2824
2825 /*
2826 * Validate contents of the buffer from userspace related to OS descriptors.
2827 */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2828 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2829 struct usb_os_desc_header *h, void *data,
2830 unsigned len, void *priv)
2831 {
2832 struct ffs_data *ffs = priv;
2833 u8 length;
2834
2835 switch (type) {
2836 case FFS_OS_DESC_EXT_COMPAT: {
2837 struct usb_ext_compat_desc *d = data;
2838 int i;
2839
2840 if (len < sizeof(*d) ||
2841 d->bFirstInterfaceNumber >= ffs->interfaces_count)
2842 return -EINVAL;
2843 if (d->Reserved1 != 1) {
2844 /*
2845 * According to the spec, Reserved1 must be set to 1
2846 * but older kernels incorrectly rejected non-zero
2847 * values. We fix it here to avoid returning EINVAL
2848 * in response to values we used to accept.
2849 */
2850 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2851 d->Reserved1 = 1;
2852 }
2853 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2854 if (d->Reserved2[i])
2855 return -EINVAL;
2856
2857 length = sizeof(struct usb_ext_compat_desc);
2858 }
2859 break;
2860 case FFS_OS_DESC_EXT_PROP: {
2861 struct usb_ext_prop_desc *d = data;
2862 u32 type, pdl;
2863 u16 pnl;
2864
2865 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2866 return -EINVAL;
2867 length = le32_to_cpu(d->dwSize);
2868 if (len < length)
2869 return -EINVAL;
2870 type = le32_to_cpu(d->dwPropertyDataType);
2871 if (type < USB_EXT_PROP_UNICODE ||
2872 type > USB_EXT_PROP_UNICODE_MULTI) {
2873 pr_vdebug("unsupported os descriptor property type: %d",
2874 type);
2875 return -EINVAL;
2876 }
2877 pnl = le16_to_cpu(d->wPropertyNameLength);
2878 if (length < 14 + pnl) {
2879 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2880 length, pnl, type);
2881 return -EINVAL;
2882 }
2883 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2884 if (length != 14 + pnl + pdl) {
2885 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2886 length, pnl, pdl, type);
2887 return -EINVAL;
2888 }
2889 ++ffs->ms_os_descs_ext_prop_count;
2890 /* property name reported to the host as "WCHAR"s */
2891 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2892 ffs->ms_os_descs_ext_prop_data_len += pdl;
2893 }
2894 break;
2895 default:
2896 pr_vdebug("unknown descriptor: %d\n", type);
2897 return -EINVAL;
2898 }
2899 return length;
2900 }
2901
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2902 static int __ffs_data_got_descs(struct ffs_data *ffs,
2903 char *const _data, size_t len)
2904 {
2905 char *data = _data, *raw_descs;
2906 unsigned os_descs_count = 0, counts[3], flags;
2907 int ret = -EINVAL, i;
2908 struct ffs_desc_helper helper;
2909
2910 if (get_unaligned_le32(data + 4) != len)
2911 goto error;
2912
2913 switch (get_unaligned_le32(data)) {
2914 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2915 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2916 data += 8;
2917 len -= 8;
2918 break;
2919 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2920 flags = get_unaligned_le32(data + 8);
2921 ffs->user_flags = flags;
2922 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2923 FUNCTIONFS_HAS_HS_DESC |
2924 FUNCTIONFS_HAS_SS_DESC |
2925 FUNCTIONFS_HAS_MS_OS_DESC |
2926 FUNCTIONFS_VIRTUAL_ADDR |
2927 FUNCTIONFS_EVENTFD |
2928 FUNCTIONFS_ALL_CTRL_RECIP |
2929 FUNCTIONFS_CONFIG0_SETUP)) {
2930 ret = -ENOSYS;
2931 goto error;
2932 }
2933 data += 12;
2934 len -= 12;
2935 break;
2936 default:
2937 goto error;
2938 }
2939
2940 if (flags & FUNCTIONFS_EVENTFD) {
2941 if (len < 4)
2942 goto error;
2943 ffs->ffs_eventfd =
2944 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2945 if (IS_ERR(ffs->ffs_eventfd)) {
2946 ret = PTR_ERR(ffs->ffs_eventfd);
2947 ffs->ffs_eventfd = NULL;
2948 goto error;
2949 }
2950 data += 4;
2951 len -= 4;
2952 }
2953
2954 /* Read fs_count, hs_count and ss_count (if present) */
2955 for (i = 0; i < 3; ++i) {
2956 if (!(flags & (1 << i))) {
2957 counts[i] = 0;
2958 } else if (len < 4) {
2959 goto error;
2960 } else {
2961 counts[i] = get_unaligned_le32(data);
2962 data += 4;
2963 len -= 4;
2964 }
2965 }
2966 if (flags & (1 << i)) {
2967 if (len < 4) {
2968 goto error;
2969 }
2970 os_descs_count = get_unaligned_le32(data);
2971 data += 4;
2972 len -= 4;
2973 }
2974
2975 /* Read descriptors */
2976 raw_descs = data;
2977 helper.ffs = ffs;
2978 for (i = 0; i < 3; ++i) {
2979 if (!counts[i])
2980 continue;
2981 helper.interfaces_count = 0;
2982 helper.eps_count = 0;
2983 ret = ffs_do_descs(counts[i], data, len,
2984 __ffs_data_do_entity, &helper);
2985 if (ret < 0)
2986 goto error;
2987 if (!ffs->eps_count && !ffs->interfaces_count) {
2988 ffs->eps_count = helper.eps_count;
2989 ffs->interfaces_count = helper.interfaces_count;
2990 } else {
2991 if (ffs->eps_count != helper.eps_count) {
2992 ret = -EINVAL;
2993 goto error;
2994 }
2995 if (ffs->interfaces_count != helper.interfaces_count) {
2996 ret = -EINVAL;
2997 goto error;
2998 }
2999 }
3000 data += ret;
3001 len -= ret;
3002 }
3003 if (os_descs_count) {
3004 ret = ffs_do_os_descs(os_descs_count, data, len,
3005 __ffs_data_do_os_desc, ffs);
3006 if (ret < 0)
3007 goto error;
3008 data += ret;
3009 len -= ret;
3010 }
3011
3012 if (raw_descs == data || len) {
3013 ret = -EINVAL;
3014 goto error;
3015 }
3016
3017 ffs->raw_descs_data = _data;
3018 ffs->raw_descs = raw_descs;
3019 ffs->raw_descs_length = data - raw_descs;
3020 ffs->fs_descs_count = counts[0];
3021 ffs->hs_descs_count = counts[1];
3022 ffs->ss_descs_count = counts[2];
3023 ffs->ms_os_descs_count = os_descs_count;
3024
3025 return 0;
3026
3027 error:
3028 kfree(_data);
3029 return ret;
3030 }
3031
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)3032 static int __ffs_data_got_strings(struct ffs_data *ffs,
3033 char *const _data, size_t len)
3034 {
3035 u32 str_count, needed_count, lang_count;
3036 struct usb_gadget_strings **stringtabs, *t;
3037 const char *data = _data;
3038 struct usb_string *s;
3039
3040 if (len < 16 ||
3041 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
3042 get_unaligned_le32(data + 4) != len)
3043 goto error;
3044 str_count = get_unaligned_le32(data + 8);
3045 lang_count = get_unaligned_le32(data + 12);
3046
3047 /* if one is zero the other must be zero */
3048 if (!str_count != !lang_count)
3049 goto error;
3050
3051 /* Do we have at least as many strings as descriptors need? */
3052 needed_count = ffs->strings_count;
3053 if (str_count < needed_count)
3054 goto error;
3055
3056 /*
3057 * If we don't need any strings just return and free all
3058 * memory.
3059 */
3060 if (!needed_count) {
3061 kfree(_data);
3062 return 0;
3063 }
3064
3065 /* Allocate everything in one chunk so there's less maintenance. */
3066 {
3067 unsigned i = 0;
3068 vla_group(d);
3069 vla_item(d, struct usb_gadget_strings *, stringtabs,
3070 size_add(lang_count, 1));
3071 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3072 vla_item(d, struct usb_string, strings,
3073 size_mul(lang_count, (needed_count + 1)));
3074
3075 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3076
3077 if (!vlabuf) {
3078 kfree(_data);
3079 return -ENOMEM;
3080 }
3081
3082 /* Initialize the VLA pointers */
3083 stringtabs = vla_ptr(vlabuf, d, stringtabs);
3084 t = vla_ptr(vlabuf, d, stringtab);
3085 i = lang_count;
3086 do {
3087 *stringtabs++ = t++;
3088 } while (--i);
3089 *stringtabs = NULL;
3090
3091 /* stringtabs = vlabuf = d_stringtabs for later kfree */
3092 stringtabs = vla_ptr(vlabuf, d, stringtabs);
3093 t = vla_ptr(vlabuf, d, stringtab);
3094 s = vla_ptr(vlabuf, d, strings);
3095 }
3096
3097 /* For each language */
3098 data += 16;
3099 len -= 16;
3100
3101 do { /* lang_count > 0 so we can use do-while */
3102 unsigned needed = needed_count;
3103 u32 str_per_lang = str_count;
3104
3105 if (len < 3)
3106 goto error_free;
3107 t->language = get_unaligned_le16(data);
3108 t->strings = s;
3109 ++t;
3110
3111 data += 2;
3112 len -= 2;
3113
3114 /* For each string */
3115 do { /* str_count > 0 so we can use do-while */
3116 size_t length = strnlen(data, len);
3117
3118 if (length == len)
3119 goto error_free;
3120
3121 /*
3122 * User may provide more strings then we need,
3123 * if that's the case we simply ignore the
3124 * rest
3125 */
3126 if (needed) {
3127 /*
3128 * s->id will be set while adding
3129 * function to configuration so for
3130 * now just leave garbage here.
3131 */
3132 s->s = data;
3133 --needed;
3134 ++s;
3135 }
3136
3137 data += length + 1;
3138 len -= length + 1;
3139 } while (--str_per_lang);
3140
3141 s->id = 0; /* terminator */
3142 s->s = NULL;
3143 ++s;
3144
3145 } while (--lang_count);
3146
3147 /* Some garbage left? */
3148 if (len)
3149 goto error_free;
3150
3151 /* Done! */
3152 ffs->stringtabs = stringtabs;
3153 ffs->raw_strings = _data;
3154
3155 return 0;
3156
3157 error_free:
3158 kfree(stringtabs);
3159 error:
3160 kfree(_data);
3161 return -EINVAL;
3162 }
3163
3164
3165 /* Events handling and management *******************************************/
3166
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)3167 static void __ffs_event_add(struct ffs_data *ffs,
3168 enum usb_functionfs_event_type type)
3169 {
3170 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3171 int neg = 0;
3172
3173 /*
3174 * Abort any unhandled setup
3175 *
3176 * We do not need to worry about some cmpxchg() changing value
3177 * of ffs->setup_state without holding the lock because when
3178 * state is FFS_SETUP_PENDING cmpxchg() in several places in
3179 * the source does nothing.
3180 */
3181 if (ffs->setup_state == FFS_SETUP_PENDING)
3182 ffs->setup_state = FFS_SETUP_CANCELLED;
3183
3184 /*
3185 * Logic of this function guarantees that there are at most four pending
3186 * evens on ffs->ev.types queue. This is important because the queue
3187 * has space for four elements only and __ffs_ep0_read_events function
3188 * depends on that limit as well. If more event types are added, those
3189 * limits have to be revisited or guaranteed to still hold.
3190 */
3191 switch (type) {
3192 case FUNCTIONFS_RESUME:
3193 rem_type2 = FUNCTIONFS_SUSPEND;
3194 fallthrough;
3195 case FUNCTIONFS_SUSPEND:
3196 case FUNCTIONFS_SETUP:
3197 rem_type1 = type;
3198 /* Discard all similar events */
3199 break;
3200
3201 case FUNCTIONFS_BIND:
3202 case FUNCTIONFS_UNBIND:
3203 case FUNCTIONFS_DISABLE:
3204 case FUNCTIONFS_ENABLE:
3205 /* Discard everything other then power management. */
3206 rem_type1 = FUNCTIONFS_SUSPEND;
3207 rem_type2 = FUNCTIONFS_RESUME;
3208 neg = 1;
3209 break;
3210
3211 default:
3212 WARN(1, "%d: unknown event, this should not happen\n", type);
3213 return;
3214 }
3215
3216 {
3217 u8 *ev = ffs->ev.types, *out = ev;
3218 unsigned n = ffs->ev.count;
3219 for (; n; --n, ++ev)
3220 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3221 *out++ = *ev;
3222 else
3223 pr_vdebug("purging event %d\n", *ev);
3224 ffs->ev.count = out - ffs->ev.types;
3225 }
3226
3227 pr_vdebug("adding event %d\n", type);
3228 ffs->ev.types[ffs->ev.count++] = type;
3229 wake_up_locked(&ffs->ev.waitq);
3230 if (ffs->ffs_eventfd)
3231 eventfd_signal(ffs->ffs_eventfd);
3232 }
3233
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)3234 static void ffs_event_add(struct ffs_data *ffs,
3235 enum usb_functionfs_event_type type)
3236 {
3237 unsigned long flags;
3238 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3239 __ffs_event_add(ffs, type);
3240 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3241 }
3242
3243 /* Bind/unbind USB function hooks *******************************************/
3244
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)3245 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3246 {
3247 int i;
3248
3249 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3250 if (ffs->eps_addrmap[i] == endpoint_address)
3251 return i;
3252 return -ENOENT;
3253 }
3254
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)3255 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3256 struct usb_descriptor_header *desc,
3257 void *priv)
3258 {
3259 struct usb_endpoint_descriptor *ds = (void *)desc;
3260 struct ffs_function *func = priv;
3261 struct ffs_ep *ffs_ep;
3262 unsigned ep_desc_id;
3263 int idx;
3264 static const char *speed_names[] = { "full", "high", "super" };
3265
3266 if (type != FFS_DESCRIPTOR)
3267 return 0;
3268
3269 /*
3270 * If ss_descriptors is not NULL, we are reading super speed
3271 * descriptors; if hs_descriptors is not NULL, we are reading high
3272 * speed descriptors; otherwise, we are reading full speed
3273 * descriptors.
3274 */
3275 if (func->function.ss_descriptors) {
3276 ep_desc_id = 2;
3277 func->function.ss_descriptors[(long)valuep] = desc;
3278 } else if (func->function.hs_descriptors) {
3279 ep_desc_id = 1;
3280 func->function.hs_descriptors[(long)valuep] = desc;
3281 } else {
3282 ep_desc_id = 0;
3283 func->function.fs_descriptors[(long)valuep] = desc;
3284 }
3285
3286 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3287 return 0;
3288
3289 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
3290 if (idx < 0)
3291 return idx;
3292
3293 ffs_ep = func->eps + idx;
3294
3295 if (ffs_ep->descs[ep_desc_id]) {
3296 pr_err("two %sspeed descriptors for EP %d\n",
3297 speed_names[ep_desc_id],
3298 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
3299 return -EINVAL;
3300 }
3301 ffs_ep->descs[ep_desc_id] = ds;
3302
3303 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
3304 if (ffs_ep->ep) {
3305 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3306 if (!ds->wMaxPacketSize)
3307 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3308 } else {
3309 struct usb_request *req;
3310 struct usb_ep *ep;
3311 u8 bEndpointAddress;
3312 u16 wMaxPacketSize;
3313
3314 /*
3315 * We back up bEndpointAddress because autoconfig overwrites
3316 * it with physical endpoint address.
3317 */
3318 bEndpointAddress = ds->bEndpointAddress;
3319 /*
3320 * We back up wMaxPacketSize because autoconfig treats
3321 * endpoint descriptors as if they were full speed.
3322 */
3323 wMaxPacketSize = ds->wMaxPacketSize;
3324 pr_vdebug("autoconfig\n");
3325 ep = usb_ep_autoconfig(func->gadget, ds);
3326 if (!ep)
3327 return -ENOTSUPP;
3328 ep->driver_data = func->eps + idx;
3329
3330 req = usb_ep_alloc_request(ep, GFP_KERNEL);
3331 if (!req)
3332 return -ENOMEM;
3333
3334 ffs_ep->ep = ep;
3335 ffs_ep->req = req;
3336 func->eps_revmap[ds->bEndpointAddress &
3337 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3338 /*
3339 * If we use virtual address mapping, we restore
3340 * original bEndpointAddress value.
3341 */
3342 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3343 ds->bEndpointAddress = bEndpointAddress;
3344 /*
3345 * Restore wMaxPacketSize which was potentially
3346 * overwritten by autoconfig.
3347 */
3348 ds->wMaxPacketSize = wMaxPacketSize;
3349 }
3350 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3351
3352 return 0;
3353 }
3354
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)3355 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3356 struct usb_descriptor_header *desc,
3357 void *priv)
3358 {
3359 struct ffs_function *func = priv;
3360 unsigned idx;
3361 u8 newValue;
3362
3363 switch (type) {
3364 default:
3365 case FFS_DESCRIPTOR:
3366 /* Handled in previous pass by __ffs_func_bind_do_descs() */
3367 return 0;
3368
3369 case FFS_INTERFACE:
3370 idx = *valuep;
3371 if (func->interfaces_nums[idx] < 0) {
3372 int id = usb_interface_id(func->conf, &func->function);
3373 if (id < 0)
3374 return id;
3375 func->interfaces_nums[idx] = id;
3376 }
3377 newValue = func->interfaces_nums[idx];
3378 break;
3379
3380 case FFS_STRING:
3381 /* String' IDs are allocated when fsf_data is bound to cdev */
3382 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3383 break;
3384
3385 case FFS_ENDPOINT:
3386 /*
3387 * USB_DT_ENDPOINT are handled in
3388 * __ffs_func_bind_do_descs().
3389 */
3390 if (desc->bDescriptorType == USB_DT_ENDPOINT)
3391 return 0;
3392
3393 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3394 if (!func->eps[idx].ep)
3395 return -EINVAL;
3396
3397 {
3398 struct usb_endpoint_descriptor **descs;
3399 descs = func->eps[idx].descs;
3400 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3401 }
3402 break;
3403 }
3404
3405 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3406 *valuep = newValue;
3407 return 0;
3408 }
3409
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)3410 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3411 struct usb_os_desc_header *h, void *data,
3412 unsigned len, void *priv)
3413 {
3414 struct ffs_function *func = priv;
3415 u8 length = 0;
3416
3417 switch (type) {
3418 case FFS_OS_DESC_EXT_COMPAT: {
3419 struct usb_ext_compat_desc *desc = data;
3420 struct usb_os_desc_table *t;
3421
3422 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3423 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3424 memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3425 sizeof_field(struct usb_ext_compat_desc, IDs));
3426 length = sizeof(*desc);
3427 }
3428 break;
3429 case FFS_OS_DESC_EXT_PROP: {
3430 struct usb_ext_prop_desc *desc = data;
3431 struct usb_os_desc_table *t;
3432 struct usb_os_desc_ext_prop *ext_prop;
3433 char *ext_prop_name;
3434 char *ext_prop_data;
3435
3436 t = &func->function.os_desc_table[h->interface];
3437 t->if_id = func->interfaces_nums[h->interface];
3438
3439 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3440 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3441
3442 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3443 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3444 ext_prop->data_len = le32_to_cpu(*(__le32 *)
3445 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3446 length = ext_prop->name_len + ext_prop->data_len + 14;
3447
3448 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3449 func->ffs->ms_os_descs_ext_prop_name_avail +=
3450 ext_prop->name_len;
3451
3452 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3453 func->ffs->ms_os_descs_ext_prop_data_avail +=
3454 ext_prop->data_len;
3455 memcpy(ext_prop_data,
3456 usb_ext_prop_data_ptr(data, ext_prop->name_len),
3457 ext_prop->data_len);
3458 /* unicode data reported to the host as "WCHAR"s */
3459 switch (ext_prop->type) {
3460 case USB_EXT_PROP_UNICODE:
3461 case USB_EXT_PROP_UNICODE_ENV:
3462 case USB_EXT_PROP_UNICODE_LINK:
3463 case USB_EXT_PROP_UNICODE_MULTI:
3464 ext_prop->data_len *= 2;
3465 break;
3466 }
3467 ext_prop->data = ext_prop_data;
3468
3469 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3470 ext_prop->name_len);
3471 /* property name reported to the host as "WCHAR"s */
3472 ext_prop->name_len *= 2;
3473 ext_prop->name = ext_prop_name;
3474
3475 t->os_desc->ext_prop_len +=
3476 ext_prop->name_len + ext_prop->data_len + 14;
3477 ++t->os_desc->ext_prop_count;
3478 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3479 }
3480 break;
3481 default:
3482 pr_vdebug("unknown descriptor: %d\n", type);
3483 }
3484
3485 return length;
3486 }
3487
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)3488 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3489 struct usb_configuration *c)
3490 {
3491 struct ffs_function *func = ffs_func_from_usb(f);
3492 struct f_fs_opts *ffs_opts =
3493 container_of(f->fi, struct f_fs_opts, func_inst);
3494 struct ffs_data *ffs_data;
3495 int ret;
3496
3497 /*
3498 * Legacy gadget triggers binding in functionfs_ready_callback,
3499 * which already uses locking; taking the same lock here would
3500 * cause a deadlock.
3501 *
3502 * Configfs-enabled gadgets however do need ffs_dev_lock.
3503 */
3504 if (!ffs_opts->no_configfs)
3505 ffs_dev_lock();
3506 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3507 ffs_data = ffs_opts->dev->ffs_data;
3508 if (!ffs_opts->no_configfs)
3509 ffs_dev_unlock();
3510 if (ret)
3511 return ERR_PTR(ret);
3512
3513 func->ffs = ffs_data;
3514 func->conf = c;
3515 func->gadget = c->cdev->gadget;
3516
3517 /*
3518 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3519 * configurations are bound in sequence with list_for_each_entry,
3520 * in each configuration its functions are bound in sequence
3521 * with list_for_each_entry, so we assume no race condition
3522 * with regard to ffs_opts->bound access
3523 */
3524 if (!ffs_opts->refcnt) {
3525 ret = functionfs_bind(func->ffs, c->cdev);
3526 if (ret)
3527 return ERR_PTR(ret);
3528 }
3529 ffs_opts->refcnt++;
3530 func->function.strings = func->ffs->stringtabs;
3531
3532 return ffs_opts;
3533 }
3534
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3535 static int _ffs_func_bind(struct usb_configuration *c,
3536 struct usb_function *f)
3537 {
3538 struct ffs_function *func = ffs_func_from_usb(f);
3539 struct ffs_data *ffs = func->ffs;
3540
3541 const int full = !!func->ffs->fs_descs_count;
3542 const int high = !!func->ffs->hs_descs_count;
3543 const int super = !!func->ffs->ss_descs_count;
3544
3545 int fs_len, hs_len, ss_len, ret, i;
3546 struct ffs_ep *eps_ptr;
3547
3548 /* Make it a single chunk, less management later on */
3549 vla_group(d);
3550 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3551 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3552 full ? ffs->fs_descs_count + 1 : 0);
3553 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3554 high ? ffs->hs_descs_count + 1 : 0);
3555 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3556 super ? ffs->ss_descs_count + 1 : 0);
3557 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3558 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3559 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3560 vla_item_with_sz(d, char[16], ext_compat,
3561 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3562 vla_item_with_sz(d, struct usb_os_desc, os_desc,
3563 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3564 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3565 ffs->ms_os_descs_ext_prop_count);
3566 vla_item_with_sz(d, char, ext_prop_name,
3567 ffs->ms_os_descs_ext_prop_name_len);
3568 vla_item_with_sz(d, char, ext_prop_data,
3569 ffs->ms_os_descs_ext_prop_data_len);
3570 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3571 char *vlabuf;
3572
3573 /* Has descriptors only for speeds gadget does not support */
3574 if (!(full | high | super))
3575 return -ENOTSUPP;
3576
3577 /* Allocate a single chunk, less management later on */
3578 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3579 if (!vlabuf)
3580 return -ENOMEM;
3581
3582 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3583 ffs->ms_os_descs_ext_prop_name_avail =
3584 vla_ptr(vlabuf, d, ext_prop_name);
3585 ffs->ms_os_descs_ext_prop_data_avail =
3586 vla_ptr(vlabuf, d, ext_prop_data);
3587
3588 /* Copy descriptors */
3589 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3590 ffs->raw_descs_length);
3591
3592 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3593 eps_ptr = vla_ptr(vlabuf, d, eps);
3594 for (i = 0; i < ffs->eps_count; i++)
3595 eps_ptr[i].num = -1;
3596
3597 /* Save pointers
3598 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3599 */
3600 func->eps = vla_ptr(vlabuf, d, eps);
3601 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3602
3603 /*
3604 * Go through all the endpoint descriptors and allocate
3605 * endpoints first, so that later we can rewrite the endpoint
3606 * numbers without worrying that it may be described later on.
3607 */
3608 if (full) {
3609 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3610 fs_len = ffs_do_descs(ffs->fs_descs_count,
3611 vla_ptr(vlabuf, d, raw_descs),
3612 d_raw_descs__sz,
3613 __ffs_func_bind_do_descs, func);
3614 if (fs_len < 0) {
3615 ret = fs_len;
3616 goto error;
3617 }
3618 } else {
3619 fs_len = 0;
3620 }
3621
3622 if (high) {
3623 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3624 hs_len = ffs_do_descs(ffs->hs_descs_count,
3625 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3626 d_raw_descs__sz - fs_len,
3627 __ffs_func_bind_do_descs, func);
3628 if (hs_len < 0) {
3629 ret = hs_len;
3630 goto error;
3631 }
3632 } else {
3633 hs_len = 0;
3634 }
3635
3636 if (super) {
3637 func->function.ss_descriptors = func->function.ssp_descriptors =
3638 vla_ptr(vlabuf, d, ss_descs);
3639 ss_len = ffs_do_descs(ffs->ss_descs_count,
3640 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3641 d_raw_descs__sz - fs_len - hs_len,
3642 __ffs_func_bind_do_descs, func);
3643 if (ss_len < 0) {
3644 ret = ss_len;
3645 goto error;
3646 }
3647 } else {
3648 ss_len = 0;
3649 }
3650
3651 /*
3652 * Now handle interface numbers allocation and interface and
3653 * endpoint numbers rewriting. We can do that in one go
3654 * now.
3655 */
3656 ret = ffs_do_descs(ffs->fs_descs_count +
3657 (high ? ffs->hs_descs_count : 0) +
3658 (super ? ffs->ss_descs_count : 0),
3659 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3660 __ffs_func_bind_do_nums, func);
3661 if (ret < 0)
3662 goto error;
3663
3664 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3665 if (c->cdev->use_os_string) {
3666 for (i = 0; i < ffs->interfaces_count; ++i) {
3667 struct usb_os_desc *desc;
3668
3669 desc = func->function.os_desc_table[i].os_desc =
3670 vla_ptr(vlabuf, d, os_desc) +
3671 i * sizeof(struct usb_os_desc);
3672 desc->ext_compat_id =
3673 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3674 INIT_LIST_HEAD(&desc->ext_prop);
3675 }
3676 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3677 vla_ptr(vlabuf, d, raw_descs) +
3678 fs_len + hs_len + ss_len,
3679 d_raw_descs__sz - fs_len - hs_len -
3680 ss_len,
3681 __ffs_func_bind_do_os_desc, func);
3682 if (ret < 0)
3683 goto error;
3684 }
3685 func->function.os_desc_n =
3686 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3687
3688 /* And we're done */
3689 ffs_event_add(ffs, FUNCTIONFS_BIND);
3690 return 0;
3691
3692 error:
3693 /* XXX Do we need to release all claimed endpoints here? */
3694 return ret;
3695 }
3696
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3697 static int ffs_func_bind(struct usb_configuration *c,
3698 struct usb_function *f)
3699 {
3700 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3701 struct ffs_function *func = ffs_func_from_usb(f);
3702 int ret;
3703
3704 if (IS_ERR(ffs_opts))
3705 return PTR_ERR(ffs_opts);
3706
3707 ret = _ffs_func_bind(c, f);
3708 if (ret && !--ffs_opts->refcnt)
3709 functionfs_unbind(func->ffs);
3710
3711 return ret;
3712 }
3713
3714
3715 /* Other USB function hooks *************************************************/
3716
ffs_reset_work(struct work_struct * work)3717 static void ffs_reset_work(struct work_struct *work)
3718 {
3719 struct ffs_data *ffs = container_of(work,
3720 struct ffs_data, reset_work);
3721 ffs_data_reset(ffs);
3722 }
3723
ffs_func_get_alt(struct usb_function * f,unsigned int interface)3724 static int ffs_func_get_alt(struct usb_function *f,
3725 unsigned int interface)
3726 {
3727 struct ffs_function *func = ffs_func_from_usb(f);
3728 int intf = ffs_func_revmap_intf(func, interface);
3729
3730 return (intf < 0) ? intf : func->cur_alt[interface];
3731 }
3732
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3733 static int ffs_func_set_alt(struct usb_function *f,
3734 unsigned interface, unsigned alt)
3735 {
3736 struct ffs_function *func = ffs_func_from_usb(f);
3737 struct ffs_data *ffs = func->ffs;
3738 int ret = 0, intf;
3739
3740 if (alt > MAX_ALT_SETTINGS)
3741 return -EINVAL;
3742
3743 intf = ffs_func_revmap_intf(func, interface);
3744 if (intf < 0)
3745 return intf;
3746
3747 if (ffs->func)
3748 ffs_func_eps_disable(ffs->func);
3749
3750 if (ffs->state == FFS_DEACTIVATED) {
3751 ffs->state = FFS_CLOSING;
3752 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3753 schedule_work(&ffs->reset_work);
3754 return -ENODEV;
3755 }
3756
3757 if (ffs->state != FFS_ACTIVE)
3758 return -ENODEV;
3759
3760 ffs->func = func;
3761 ret = ffs_func_eps_enable(func);
3762 if (ret >= 0) {
3763 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3764 func->cur_alt[interface] = alt;
3765 }
3766 return ret;
3767 }
3768
ffs_func_disable(struct usb_function * f)3769 static void ffs_func_disable(struct usb_function *f)
3770 {
3771 struct ffs_function *func = ffs_func_from_usb(f);
3772 struct ffs_data *ffs = func->ffs;
3773
3774 if (ffs->func)
3775 ffs_func_eps_disable(ffs->func);
3776
3777 if (ffs->state == FFS_DEACTIVATED) {
3778 ffs->state = FFS_CLOSING;
3779 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3780 schedule_work(&ffs->reset_work);
3781 return;
3782 }
3783
3784 if (ffs->state == FFS_ACTIVE) {
3785 ffs->func = NULL;
3786 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3787 }
3788 }
3789
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3790 static int ffs_func_setup(struct usb_function *f,
3791 const struct usb_ctrlrequest *creq)
3792 {
3793 struct ffs_function *func = ffs_func_from_usb(f);
3794 struct ffs_data *ffs = func->ffs;
3795 unsigned long flags;
3796 int ret;
3797
3798 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3799 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3800 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3801 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3802 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3803
3804 /*
3805 * Most requests directed to interface go through here
3806 * (notable exceptions are set/get interface) so we need to
3807 * handle them. All other either handled by composite or
3808 * passed to usb_configuration->setup() (if one is set). No
3809 * matter, we will handle requests directed to endpoint here
3810 * as well (as it's straightforward). Other request recipient
3811 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3812 * is being used.
3813 */
3814 if (ffs->state != FFS_ACTIVE)
3815 return -ENODEV;
3816
3817 switch (creq->bRequestType & USB_RECIP_MASK) {
3818 case USB_RECIP_INTERFACE:
3819 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3820 if (ret < 0)
3821 return ret;
3822 break;
3823
3824 case USB_RECIP_ENDPOINT:
3825 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3826 if (ret < 0)
3827 return ret;
3828 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3829 ret = func->ffs->eps_addrmap[ret];
3830 break;
3831
3832 default:
3833 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3834 ret = le16_to_cpu(creq->wIndex);
3835 else
3836 return -EOPNOTSUPP;
3837 }
3838
3839 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3840 ffs->ev.setup = *creq;
3841 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3842 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3843 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3844
3845 return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3846 }
3847
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3848 static bool ffs_func_req_match(struct usb_function *f,
3849 const struct usb_ctrlrequest *creq,
3850 bool config0)
3851 {
3852 struct ffs_function *func = ffs_func_from_usb(f);
3853
3854 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3855 return false;
3856
3857 switch (creq->bRequestType & USB_RECIP_MASK) {
3858 case USB_RECIP_INTERFACE:
3859 return (ffs_func_revmap_intf(func,
3860 le16_to_cpu(creq->wIndex)) >= 0);
3861 case USB_RECIP_ENDPOINT:
3862 return (ffs_func_revmap_ep(func,
3863 le16_to_cpu(creq->wIndex)) >= 0);
3864 default:
3865 return (bool) (func->ffs->user_flags &
3866 FUNCTIONFS_ALL_CTRL_RECIP);
3867 }
3868 }
3869
ffs_func_suspend(struct usb_function * f)3870 static void ffs_func_suspend(struct usb_function *f)
3871 {
3872 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3873 }
3874
ffs_func_resume(struct usb_function * f)3875 static void ffs_func_resume(struct usb_function *f)
3876 {
3877 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3878 }
3879
3880
3881 /* Endpoint and interface numbers reverse mapping ***************************/
3882
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3883 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3884 {
3885 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3886 return num ? num : -EDOM;
3887 }
3888
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3889 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3890 {
3891 short *nums = func->interfaces_nums;
3892 unsigned count = func->ffs->interfaces_count;
3893
3894 for (; count; --count, ++nums) {
3895 if (*nums >= 0 && *nums == intf)
3896 return nums - func->interfaces_nums;
3897 }
3898
3899 return -EDOM;
3900 }
3901
3902
3903 /* Devices management *******************************************************/
3904
3905 static LIST_HEAD(ffs_devices);
3906
_ffs_do_find_dev(const char * name)3907 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3908 {
3909 struct ffs_dev *dev;
3910
3911 if (!name)
3912 return NULL;
3913
3914 list_for_each_entry(dev, &ffs_devices, entry) {
3915 if (strcmp(dev->name, name) == 0)
3916 return dev;
3917 }
3918
3919 return NULL;
3920 }
3921
3922 /*
3923 * ffs_lock must be taken by the caller of this function
3924 */
_ffs_get_single_dev(void)3925 static struct ffs_dev *_ffs_get_single_dev(void)
3926 {
3927 struct ffs_dev *dev;
3928
3929 if (list_is_singular(&ffs_devices)) {
3930 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3931 if (dev->single)
3932 return dev;
3933 }
3934
3935 return NULL;
3936 }
3937
3938 /*
3939 * ffs_lock must be taken by the caller of this function
3940 */
_ffs_find_dev(const char * name)3941 static struct ffs_dev *_ffs_find_dev(const char *name)
3942 {
3943 struct ffs_dev *dev;
3944
3945 dev = _ffs_get_single_dev();
3946 if (dev)
3947 return dev;
3948
3949 return _ffs_do_find_dev(name);
3950 }
3951
3952 /* Configfs support *********************************************************/
3953
to_ffs_opts(struct config_item * item)3954 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3955 {
3956 return container_of(to_config_group(item), struct f_fs_opts,
3957 func_inst.group);
3958 }
3959
f_fs_opts_ready_show(struct config_item * item,char * page)3960 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3961 {
3962 struct f_fs_opts *opts = to_ffs_opts(item);
3963 int ready;
3964
3965 ffs_dev_lock();
3966 ready = opts->dev->desc_ready;
3967 ffs_dev_unlock();
3968
3969 return sprintf(page, "%d\n", ready);
3970 }
3971
3972 CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3973
3974 static struct configfs_attribute *ffs_attrs[] = {
3975 &f_fs_opts_attr_ready,
3976 NULL,
3977 };
3978
ffs_attr_release(struct config_item * item)3979 static void ffs_attr_release(struct config_item *item)
3980 {
3981 struct f_fs_opts *opts = to_ffs_opts(item);
3982
3983 usb_put_function_instance(&opts->func_inst);
3984 }
3985
3986 static struct configfs_item_operations ffs_item_ops = {
3987 .release = ffs_attr_release,
3988 };
3989
3990 static const struct config_item_type ffs_func_type = {
3991 .ct_item_ops = &ffs_item_ops,
3992 .ct_attrs = ffs_attrs,
3993 .ct_owner = THIS_MODULE,
3994 };
3995
3996
3997 /* Function registration interface ******************************************/
3998
ffs_free_inst(struct usb_function_instance * f)3999 static void ffs_free_inst(struct usb_function_instance *f)
4000 {
4001 struct f_fs_opts *opts;
4002
4003 opts = to_f_fs_opts(f);
4004 ffs_release_dev(opts->dev);
4005 ffs_dev_lock();
4006 _ffs_free_dev(opts->dev);
4007 ffs_dev_unlock();
4008 kfree(opts);
4009 }
4010
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)4011 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
4012 {
4013 if (strlen(name) >= sizeof_field(struct ffs_dev, name))
4014 return -ENAMETOOLONG;
4015 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
4016 }
4017
ffs_alloc_inst(void)4018 static struct usb_function_instance *ffs_alloc_inst(void)
4019 {
4020 struct f_fs_opts *opts;
4021 struct ffs_dev *dev;
4022
4023 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
4024 if (!opts)
4025 return ERR_PTR(-ENOMEM);
4026
4027 opts->func_inst.set_inst_name = ffs_set_inst_name;
4028 opts->func_inst.free_func_inst = ffs_free_inst;
4029 ffs_dev_lock();
4030 dev = _ffs_alloc_dev();
4031 ffs_dev_unlock();
4032 if (IS_ERR(dev)) {
4033 kfree(opts);
4034 return ERR_CAST(dev);
4035 }
4036 opts->dev = dev;
4037 dev->opts = opts;
4038
4039 config_group_init_type_name(&opts->func_inst.group, "",
4040 &ffs_func_type);
4041 return &opts->func_inst;
4042 }
4043
ffs_free(struct usb_function * f)4044 static void ffs_free(struct usb_function *f)
4045 {
4046 kfree(ffs_func_from_usb(f));
4047 }
4048
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)4049 static void ffs_func_unbind(struct usb_configuration *c,
4050 struct usb_function *f)
4051 {
4052 struct ffs_function *func = ffs_func_from_usb(f);
4053 struct ffs_data *ffs = func->ffs;
4054 struct f_fs_opts *opts =
4055 container_of(f->fi, struct f_fs_opts, func_inst);
4056 struct ffs_ep *ep = func->eps;
4057 unsigned count = ffs->eps_count;
4058 unsigned long flags;
4059
4060 if (ffs->func == func) {
4061 ffs_func_eps_disable(func);
4062 ffs->func = NULL;
4063 }
4064
4065 /* Drain any pending AIO completions */
4066 drain_workqueue(ffs->io_completion_wq);
4067
4068 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
4069 if (!--opts->refcnt)
4070 functionfs_unbind(ffs);
4071
4072 /* cleanup after autoconfig */
4073 spin_lock_irqsave(&func->ffs->eps_lock, flags);
4074 while (count--) {
4075 if (ep->ep && ep->req)
4076 usb_ep_free_request(ep->ep, ep->req);
4077 ep->req = NULL;
4078 ++ep;
4079 }
4080 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
4081 kfree(func->eps);
4082 func->eps = NULL;
4083 /*
4084 * eps, descriptors and interfaces_nums are allocated in the
4085 * same chunk so only one free is required.
4086 */
4087 func->function.fs_descriptors = NULL;
4088 func->function.hs_descriptors = NULL;
4089 func->function.ss_descriptors = NULL;
4090 func->function.ssp_descriptors = NULL;
4091 func->interfaces_nums = NULL;
4092
4093 }
4094
ffs_alloc(struct usb_function_instance * fi)4095 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4096 {
4097 struct ffs_function *func;
4098
4099 func = kzalloc(sizeof(*func), GFP_KERNEL);
4100 if (!func)
4101 return ERR_PTR(-ENOMEM);
4102
4103 func->function.name = "Function FS Gadget";
4104
4105 func->function.bind = ffs_func_bind;
4106 func->function.unbind = ffs_func_unbind;
4107 func->function.set_alt = ffs_func_set_alt;
4108 func->function.get_alt = ffs_func_get_alt;
4109 func->function.disable = ffs_func_disable;
4110 func->function.setup = ffs_func_setup;
4111 func->function.req_match = ffs_func_req_match;
4112 func->function.suspend = ffs_func_suspend;
4113 func->function.resume = ffs_func_resume;
4114 func->function.free_func = ffs_free;
4115
4116 return &func->function;
4117 }
4118
4119 /*
4120 * ffs_lock must be taken by the caller of this function
4121 */
_ffs_alloc_dev(void)4122 static struct ffs_dev *_ffs_alloc_dev(void)
4123 {
4124 struct ffs_dev *dev;
4125 int ret;
4126
4127 if (_ffs_get_single_dev())
4128 return ERR_PTR(-EBUSY);
4129
4130 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4131 if (!dev)
4132 return ERR_PTR(-ENOMEM);
4133
4134 if (list_empty(&ffs_devices)) {
4135 ret = functionfs_init();
4136 if (ret) {
4137 kfree(dev);
4138 return ERR_PTR(ret);
4139 }
4140 }
4141
4142 list_add(&dev->entry, &ffs_devices);
4143
4144 return dev;
4145 }
4146
ffs_name_dev(struct ffs_dev * dev,const char * name)4147 int ffs_name_dev(struct ffs_dev *dev, const char *name)
4148 {
4149 struct ffs_dev *existing;
4150 int ret = 0;
4151
4152 ffs_dev_lock();
4153
4154 existing = _ffs_do_find_dev(name);
4155 if (!existing)
4156 strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4157 else if (existing != dev)
4158 ret = -EBUSY;
4159
4160 ffs_dev_unlock();
4161
4162 return ret;
4163 }
4164 EXPORT_SYMBOL_GPL(ffs_name_dev);
4165
ffs_single_dev(struct ffs_dev * dev)4166 int ffs_single_dev(struct ffs_dev *dev)
4167 {
4168 int ret;
4169
4170 ret = 0;
4171 ffs_dev_lock();
4172
4173 if (!list_is_singular(&ffs_devices))
4174 ret = -EBUSY;
4175 else
4176 dev->single = true;
4177
4178 ffs_dev_unlock();
4179 return ret;
4180 }
4181 EXPORT_SYMBOL_GPL(ffs_single_dev);
4182
4183 /*
4184 * ffs_lock must be taken by the caller of this function
4185 */
_ffs_free_dev(struct ffs_dev * dev)4186 static void _ffs_free_dev(struct ffs_dev *dev)
4187 {
4188 list_del(&dev->entry);
4189
4190 kfree(dev);
4191 if (list_empty(&ffs_devices))
4192 functionfs_cleanup();
4193 }
4194
ffs_acquire_dev(const char * dev_name,struct ffs_data * ffs_data)4195 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4196 {
4197 int ret = 0;
4198 struct ffs_dev *ffs_dev;
4199
4200 ffs_dev_lock();
4201
4202 ffs_dev = _ffs_find_dev(dev_name);
4203 if (!ffs_dev) {
4204 ret = -ENOENT;
4205 } else if (ffs_dev->mounted) {
4206 ret = -EBUSY;
4207 } else if (ffs_dev->ffs_acquire_dev_callback &&
4208 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4209 ret = -ENOENT;
4210 } else {
4211 ffs_dev->mounted = true;
4212 ffs_dev->ffs_data = ffs_data;
4213 ffs_data->private_data = ffs_dev;
4214 }
4215
4216 ffs_dev_unlock();
4217 return ret;
4218 }
4219
ffs_release_dev(struct ffs_dev * ffs_dev)4220 static void ffs_release_dev(struct ffs_dev *ffs_dev)
4221 {
4222 ffs_dev_lock();
4223
4224 if (ffs_dev && ffs_dev->mounted) {
4225 ffs_dev->mounted = false;
4226 if (ffs_dev->ffs_data) {
4227 ffs_dev->ffs_data->private_data = NULL;
4228 ffs_dev->ffs_data = NULL;
4229 }
4230
4231 if (ffs_dev->ffs_release_dev_callback)
4232 ffs_dev->ffs_release_dev_callback(ffs_dev);
4233 }
4234
4235 ffs_dev_unlock();
4236 }
4237
ffs_ready(struct ffs_data * ffs)4238 static int ffs_ready(struct ffs_data *ffs)
4239 {
4240 struct ffs_dev *ffs_obj;
4241 int ret = 0;
4242
4243 ffs_dev_lock();
4244
4245 ffs_obj = ffs->private_data;
4246 if (!ffs_obj) {
4247 ret = -EINVAL;
4248 goto done;
4249 }
4250 if (WARN_ON(ffs_obj->desc_ready)) {
4251 ret = -EBUSY;
4252 goto done;
4253 }
4254
4255 ffs_obj->desc_ready = true;
4256
4257 if (ffs_obj->ffs_ready_callback) {
4258 ret = ffs_obj->ffs_ready_callback(ffs);
4259 if (ret)
4260 goto done;
4261 }
4262
4263 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
4264 done:
4265 ffs_dev_unlock();
4266 return ret;
4267 }
4268
ffs_closed(struct ffs_data * ffs)4269 static void ffs_closed(struct ffs_data *ffs)
4270 {
4271 struct ffs_dev *ffs_obj;
4272 struct f_fs_opts *opts;
4273 struct config_item *ci;
4274
4275 ffs_dev_lock();
4276
4277 ffs_obj = ffs->private_data;
4278 if (!ffs_obj)
4279 goto done;
4280
4281 ffs_obj->desc_ready = false;
4282
4283 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
4284 ffs_obj->ffs_closed_callback)
4285 ffs_obj->ffs_closed_callback(ffs);
4286
4287 if (ffs_obj->opts)
4288 opts = ffs_obj->opts;
4289 else
4290 goto done;
4291
4292 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4293 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
4294 goto done;
4295
4296 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4297 ffs_dev_unlock();
4298
4299 if (test_bit(FFS_FL_BOUND, &ffs->flags))
4300 unregister_gadget_item(ci);
4301 return;
4302 done:
4303 ffs_dev_unlock();
4304 }
4305
4306 /* Misc helper functions ****************************************************/
4307
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)4308 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4309 {
4310 return nonblock
4311 ? mutex_trylock(mutex) ? 0 : -EAGAIN
4312 : mutex_lock_interruptible(mutex);
4313 }
4314
ffs_prepare_buffer(const char __user * buf,size_t len)4315 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4316 {
4317 char *data;
4318
4319 if (!len)
4320 return NULL;
4321
4322 data = memdup_user(buf, len);
4323 if (IS_ERR(data))
4324 return data;
4325
4326 pr_vdebug("Buffer from user space:\n");
4327 ffs_dump_mem("", data, len);
4328
4329 return data;
4330 }
4331
4332 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4333 MODULE_DESCRIPTION("user mode file system API for USB composite function controllers");
4334 MODULE_LICENSE("GPL");
4335 MODULE_AUTHOR("Michal Nazarewicz");
4336