1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * f_fs.c -- user mode file system API for USB composite function controllers
4 *
5 * Copyright (C) 2010 Samsung Electronics
6 * Author: Michal Nazarewicz <mina86@mina86.com>
7 *
8 * Based on inode.c (GadgetFS) which was:
9 * Copyright (C) 2003-2004 David Brownell
10 * Copyright (C) 2003 Agilent Technologies
11 */
12
13
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16
17 #include <linux/blkdev.h>
18 #include <linux/dma-buf.h>
19 #include <linux/dma-fence.h>
20 #include <linux/dma-resv.h>
21 #include <linux/pagemap.h>
22 #include <linux/export.h>
23 #include <linux/fs_parser.h>
24 #include <linux/hid.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/scatterlist.h>
28 #include <linux/sched/signal.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <linux/unaligned.h>
32
33 #include <linux/usb/ccid.h>
34 #include <linux/usb/composite.h>
35 #include <linux/usb/functionfs.h>
36 #include <linux/usb/func_utils.h>
37
38 #include <linux/aio.h>
39 #include <linux/kthread.h>
40 #include <linux/poll.h>
41 #include <linux/eventfd.h>
42
43 #include "u_fs.h"
44 #include "u_os_desc.h"
45 #include "configfs.h"
46
47 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
48 #define MAX_ALT_SETTINGS 2 /* Allow up to 2 alt settings to be set. */
49
50 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000
51
52 MODULE_IMPORT_NS("DMA_BUF");
53
54 /* Reference counter handling */
55 static void ffs_data_get(struct ffs_data *ffs);
56 static void ffs_data_put(struct ffs_data *ffs);
57 /* Creates new ffs_data object. */
58 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
59 __attribute__((malloc));
60
61 /* Opened counter handling. */
62 static void ffs_data_closed(struct ffs_data *ffs);
63
64 /* Called with ffs->mutex held; take over ownership of data. */
65 static int __must_check
66 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
67 static int __must_check
68 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
69
70
71 /* The function structure ***************************************************/
72
73 struct ffs_ep;
74
75 struct ffs_function {
76 struct usb_configuration *conf;
77 struct usb_gadget *gadget;
78 struct ffs_data *ffs;
79
80 struct ffs_ep *eps;
81 u8 eps_revmap[16];
82 short *interfaces_nums;
83
84 struct usb_function function;
85 int cur_alt[MAX_CONFIG_INTERFACES];
86 };
87
88
ffs_func_from_usb(struct usb_function * f)89 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
90 {
91 return container_of(f, struct ffs_function, function);
92 }
93
94
95 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)96 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
97 {
98 return (enum ffs_setup_state)
99 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
100 }
101
102
103 static void ffs_func_eps_disable(struct ffs_function *func);
104 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
105
106 static int ffs_func_bind(struct usb_configuration *,
107 struct usb_function *);
108 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
109 static int ffs_func_get_alt(struct usb_function *f, unsigned int intf);
110 static void ffs_func_disable(struct usb_function *);
111 static int ffs_func_setup(struct usb_function *,
112 const struct usb_ctrlrequest *);
113 static bool ffs_func_req_match(struct usb_function *,
114 const struct usb_ctrlrequest *,
115 bool config0);
116 static void ffs_func_suspend(struct usb_function *);
117 static void ffs_func_resume(struct usb_function *);
118
119
120 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
121 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
122
123
124 /* The endpoints structures *************************************************/
125
126 struct ffs_ep {
127 struct usb_ep *ep; /* P: ffs->eps_lock */
128 struct usb_request *req; /* P: epfile->mutex */
129
130 /* [0]: full speed, [1]: high speed, [2]: super speed */
131 struct usb_endpoint_descriptor *descs[3];
132
133 u8 num;
134 };
135
136 struct ffs_dmabuf_priv {
137 struct list_head entry;
138 struct kref ref;
139 struct ffs_data *ffs;
140 struct dma_buf_attachment *attach;
141 struct sg_table *sgt;
142 enum dma_data_direction dir;
143 spinlock_t lock;
144 u64 context;
145 struct usb_request *req; /* P: ffs->eps_lock */
146 struct usb_ep *ep; /* P: ffs->eps_lock */
147 };
148
149 struct ffs_dma_fence {
150 struct dma_fence base;
151 struct ffs_dmabuf_priv *priv;
152 struct work_struct work;
153 };
154
155 struct ffs_epfile {
156 /* Protects ep->ep and ep->req. */
157 struct mutex mutex;
158
159 struct ffs_data *ffs;
160 struct ffs_ep *ep; /* P: ffs->eps_lock */
161
162 /*
163 * Buffer for holding data from partial reads which may happen since
164 * we’re rounding user read requests to a multiple of a max packet size.
165 *
166 * The pointer is initialised with NULL value and may be set by
167 * __ffs_epfile_read_data function to point to a temporary buffer.
168 *
169 * In normal operation, calls to __ffs_epfile_read_buffered will consume
170 * data from said buffer and eventually free it. Importantly, while the
171 * function is using the buffer, it sets the pointer to NULL. This is
172 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
173 * can never run concurrently (they are synchronised by epfile->mutex)
174 * so the latter will not assign a new value to the pointer.
175 *
176 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
177 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
178 * value is crux of the synchronisation between ffs_func_eps_disable and
179 * __ffs_epfile_read_data.
180 *
181 * Once __ffs_epfile_read_data is about to finish it will try to set the
182 * pointer back to its old value (as described above), but seeing as the
183 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
184 * the buffer.
185 *
186 * == State transitions ==
187 *
188 * • ptr == NULL: (initial state)
189 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
190 * ◦ __ffs_epfile_read_buffered: nop
191 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
192 * ◦ reading finishes: n/a, not in ‘and reading’ state
193 * • ptr == DROP:
194 * ◦ __ffs_epfile_read_buffer_free: nop
195 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
196 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
197 * ◦ reading finishes: n/a, not in ‘and reading’ state
198 * • ptr == buf:
199 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
200 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
201 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
202 * is always called first
203 * ◦ reading finishes: n/a, not in ‘and reading’ state
204 * • ptr == NULL and reading:
205 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
206 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
207 * ◦ __ffs_epfile_read_data: n/a, mutex is held
208 * ◦ reading finishes and …
209 * … all data read: free buf, go to ptr == NULL
210 * … otherwise: go to ptr == buf and reading
211 * • ptr == DROP and reading:
212 * ◦ __ffs_epfile_read_buffer_free: nop
213 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
214 * ◦ __ffs_epfile_read_data: n/a, mutex is held
215 * ◦ reading finishes: free buf, go to ptr == DROP
216 */
217 struct ffs_buffer *read_buffer;
218 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
219
220 char name[5];
221
222 unsigned char in; /* P: ffs->eps_lock */
223 unsigned char isoc; /* P: ffs->eps_lock */
224
225 unsigned char _pad;
226
227 /* Protects dmabufs */
228 struct mutex dmabufs_mutex;
229 struct list_head dmabufs; /* P: dmabufs_mutex */
230 atomic_t seqno;
231 };
232
233 struct ffs_buffer {
234 size_t length;
235 char *data;
236 char storage[] __counted_by(length);
237 };
238
239 /* ffs_io_data structure ***************************************************/
240
241 struct ffs_io_data {
242 bool aio;
243 bool read;
244
245 struct kiocb *kiocb;
246 struct iov_iter data;
247 const void *to_free;
248 char *buf;
249
250 struct mm_struct *mm;
251 struct work_struct work;
252
253 struct usb_ep *ep;
254 struct usb_request *req;
255 struct sg_table sgt;
256 bool use_sg;
257
258 struct ffs_data *ffs;
259
260 int status;
261 struct completion done;
262 };
263
264 struct ffs_desc_helper {
265 struct ffs_data *ffs;
266 unsigned interfaces_count;
267 unsigned eps_count;
268 };
269
270 static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
271 static void ffs_epfiles_destroy(struct super_block *sb,
272 struct ffs_epfile *epfiles, unsigned count);
273
274 static int ffs_sb_create_file(struct super_block *sb, const char *name,
275 void *data, const struct file_operations *fops);
276
277 /* Devices management *******************************************************/
278
279 DEFINE_MUTEX(ffs_lock);
280 EXPORT_SYMBOL_GPL(ffs_lock);
281
282 static struct ffs_dev *_ffs_find_dev(const char *name);
283 static struct ffs_dev *_ffs_alloc_dev(void);
284 static void _ffs_free_dev(struct ffs_dev *dev);
285 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
286 static void ffs_release_dev(struct ffs_dev *ffs_dev);
287 static int ffs_ready(struct ffs_data *ffs);
288 static void ffs_closed(struct ffs_data *ffs);
289
290 /* Misc helper functions ****************************************************/
291
292 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
293 __attribute__((warn_unused_result, nonnull));
294 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
295 __attribute__((warn_unused_result, nonnull));
296
297
298 /* Control file aka ep0 *****************************************************/
299
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)300 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
301 {
302 struct ffs_data *ffs = req->context;
303
304 complete(&ffs->ep0req_completion);
305 }
306
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)307 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
308 __releases(&ffs->ev.waitq.lock)
309 {
310 struct usb_request *req = ffs->ep0req;
311 int ret;
312
313 if (!req) {
314 spin_unlock_irq(&ffs->ev.waitq.lock);
315 return -EINVAL;
316 }
317
318 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
319
320 spin_unlock_irq(&ffs->ev.waitq.lock);
321
322 req->buf = data;
323 req->length = len;
324
325 /*
326 * UDC layer requires to provide a buffer even for ZLP, but should
327 * not use it at all. Let's provide some poisoned pointer to catch
328 * possible bug in the driver.
329 */
330 if (req->buf == NULL)
331 req->buf = (void *)0xDEADBABE;
332
333 reinit_completion(&ffs->ep0req_completion);
334
335 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
336 if (ret < 0)
337 return ret;
338
339 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
340 if (ret) {
341 usb_ep_dequeue(ffs->gadget->ep0, req);
342 return -EINTR;
343 }
344
345 ffs->setup_state = FFS_NO_SETUP;
346 return req->status ? req->status : req->actual;
347 }
348
__ffs_ep0_stall(struct ffs_data * ffs)349 static int __ffs_ep0_stall(struct ffs_data *ffs)
350 {
351 if (ffs->ev.can_stall) {
352 pr_vdebug("ep0 stall\n");
353 usb_ep_set_halt(ffs->gadget->ep0);
354 ffs->setup_state = FFS_NO_SETUP;
355 return -EL2HLT;
356 } else {
357 pr_debug("bogus ep0 stall!\n");
358 return -ESRCH;
359 }
360 }
361
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)362 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
363 size_t len, loff_t *ptr)
364 {
365 struct ffs_data *ffs = file->private_data;
366 ssize_t ret;
367 char *data;
368
369 /* Fast check if setup was canceled */
370 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
371 return -EIDRM;
372
373 /* Acquire mutex */
374 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
375 if (ret < 0)
376 return ret;
377
378 /* Check state */
379 switch (ffs->state) {
380 case FFS_READ_DESCRIPTORS:
381 case FFS_READ_STRINGS:
382 /* Copy data */
383 if (len < 16) {
384 ret = -EINVAL;
385 break;
386 }
387
388 data = ffs_prepare_buffer(buf, len);
389 if (IS_ERR(data)) {
390 ret = PTR_ERR(data);
391 break;
392 }
393
394 /* Handle data */
395 if (ffs->state == FFS_READ_DESCRIPTORS) {
396 pr_info("read descriptors\n");
397 ret = __ffs_data_got_descs(ffs, data, len);
398 if (ret < 0)
399 break;
400
401 ffs->state = FFS_READ_STRINGS;
402 ret = len;
403 } else {
404 pr_info("read strings\n");
405 ret = __ffs_data_got_strings(ffs, data, len);
406 if (ret < 0)
407 break;
408
409 ret = ffs_epfiles_create(ffs);
410 if (ret) {
411 ffs->state = FFS_CLOSING;
412 break;
413 }
414
415 ffs->state = FFS_ACTIVE;
416 mutex_unlock(&ffs->mutex);
417
418 ret = ffs_ready(ffs);
419 if (ret < 0) {
420 ffs->state = FFS_CLOSING;
421 return ret;
422 }
423
424 return len;
425 }
426 break;
427
428 case FFS_ACTIVE:
429 data = NULL;
430 /*
431 * We're called from user space, we can use _irq
432 * rather then _irqsave
433 */
434 spin_lock_irq(&ffs->ev.waitq.lock);
435 switch (ffs_setup_state_clear_cancelled(ffs)) {
436 case FFS_SETUP_CANCELLED:
437 ret = -EIDRM;
438 goto done_spin;
439
440 case FFS_NO_SETUP:
441 ret = -ESRCH;
442 goto done_spin;
443
444 case FFS_SETUP_PENDING:
445 break;
446 }
447
448 /* FFS_SETUP_PENDING */
449 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
450 spin_unlock_irq(&ffs->ev.waitq.lock);
451 ret = __ffs_ep0_stall(ffs);
452 break;
453 }
454
455 /* FFS_SETUP_PENDING and not stall */
456 len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength));
457
458 spin_unlock_irq(&ffs->ev.waitq.lock);
459
460 data = ffs_prepare_buffer(buf, len);
461 if (IS_ERR(data)) {
462 ret = PTR_ERR(data);
463 break;
464 }
465
466 spin_lock_irq(&ffs->ev.waitq.lock);
467
468 /*
469 * We are guaranteed to be still in FFS_ACTIVE state
470 * but the state of setup could have changed from
471 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
472 * to check for that. If that happened we copied data
473 * from user space in vain but it's unlikely.
474 *
475 * For sure we are not in FFS_NO_SETUP since this is
476 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
477 * transition can be performed and it's protected by
478 * mutex.
479 */
480 if (ffs_setup_state_clear_cancelled(ffs) ==
481 FFS_SETUP_CANCELLED) {
482 ret = -EIDRM;
483 done_spin:
484 spin_unlock_irq(&ffs->ev.waitq.lock);
485 } else {
486 /* unlocks spinlock */
487 ret = __ffs_ep0_queue_wait(ffs, data, len);
488 }
489 kfree(data);
490 break;
491
492 default:
493 ret = -EBADFD;
494 break;
495 }
496
497 mutex_unlock(&ffs->mutex);
498 return ret;
499 }
500
501 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)502 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
503 size_t n)
504 __releases(&ffs->ev.waitq.lock)
505 {
506 /*
507 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
508 * size of ffs->ev.types array (which is four) so that's how much space
509 * we reserve.
510 */
511 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
512 const size_t size = n * sizeof *events;
513 unsigned i = 0;
514
515 memset(events, 0, size);
516
517 do {
518 events[i].type = ffs->ev.types[i];
519 if (events[i].type == FUNCTIONFS_SETUP) {
520 events[i].u.setup = ffs->ev.setup;
521 ffs->setup_state = FFS_SETUP_PENDING;
522 }
523 } while (++i < n);
524
525 ffs->ev.count -= n;
526 if (ffs->ev.count)
527 memmove(ffs->ev.types, ffs->ev.types + n,
528 ffs->ev.count * sizeof *ffs->ev.types);
529
530 spin_unlock_irq(&ffs->ev.waitq.lock);
531 mutex_unlock(&ffs->mutex);
532
533 return copy_to_user(buf, events, size) ? -EFAULT : size;
534 }
535
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)536 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
537 size_t len, loff_t *ptr)
538 {
539 struct ffs_data *ffs = file->private_data;
540 char *data = NULL;
541 size_t n;
542 int ret;
543
544 /* Fast check if setup was canceled */
545 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
546 return -EIDRM;
547
548 /* Acquire mutex */
549 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
550 if (ret < 0)
551 return ret;
552
553 /* Check state */
554 if (ffs->state != FFS_ACTIVE) {
555 ret = -EBADFD;
556 goto done_mutex;
557 }
558
559 /*
560 * We're called from user space, we can use _irq rather then
561 * _irqsave
562 */
563 spin_lock_irq(&ffs->ev.waitq.lock);
564
565 switch (ffs_setup_state_clear_cancelled(ffs)) {
566 case FFS_SETUP_CANCELLED:
567 ret = -EIDRM;
568 break;
569
570 case FFS_NO_SETUP:
571 n = len / sizeof(struct usb_functionfs_event);
572 if (!n) {
573 ret = -EINVAL;
574 break;
575 }
576
577 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
578 ret = -EAGAIN;
579 break;
580 }
581
582 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
583 ffs->ev.count)) {
584 ret = -EINTR;
585 break;
586 }
587
588 /* unlocks spinlock */
589 return __ffs_ep0_read_events(ffs, buf,
590 min_t(size_t, n, ffs->ev.count));
591
592 case FFS_SETUP_PENDING:
593 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
594 spin_unlock_irq(&ffs->ev.waitq.lock);
595 ret = __ffs_ep0_stall(ffs);
596 goto done_mutex;
597 }
598
599 len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength));
600
601 spin_unlock_irq(&ffs->ev.waitq.lock);
602
603 if (len) {
604 data = kmalloc(len, GFP_KERNEL);
605 if (!data) {
606 ret = -ENOMEM;
607 goto done_mutex;
608 }
609 }
610
611 spin_lock_irq(&ffs->ev.waitq.lock);
612
613 /* See ffs_ep0_write() */
614 if (ffs_setup_state_clear_cancelled(ffs) ==
615 FFS_SETUP_CANCELLED) {
616 ret = -EIDRM;
617 break;
618 }
619
620 /* unlocks spinlock */
621 ret = __ffs_ep0_queue_wait(ffs, data, len);
622 if ((ret > 0) && (copy_to_user(buf, data, len)))
623 ret = -EFAULT;
624 goto done_mutex;
625
626 default:
627 ret = -EBADFD;
628 break;
629 }
630
631 spin_unlock_irq(&ffs->ev.waitq.lock);
632 done_mutex:
633 mutex_unlock(&ffs->mutex);
634 kfree(data);
635 return ret;
636 }
637
638
639 static void ffs_data_reset(struct ffs_data *ffs);
640
ffs_ep0_open(struct inode * inode,struct file * file)641 static int ffs_ep0_open(struct inode *inode, struct file *file)
642 {
643 struct ffs_data *ffs = inode->i_sb->s_fs_info;
644
645 spin_lock_irq(&ffs->eps_lock);
646 if (ffs->state == FFS_CLOSING) {
647 spin_unlock_irq(&ffs->eps_lock);
648 return -EBUSY;
649 }
650 if (!ffs->opened++ && ffs->state == FFS_DEACTIVATED) {
651 ffs->state = FFS_CLOSING;
652 spin_unlock_irq(&ffs->eps_lock);
653 ffs_data_reset(ffs);
654 } else {
655 spin_unlock_irq(&ffs->eps_lock);
656 }
657 file->private_data = ffs;
658
659 return stream_open(inode, file);
660 }
661
ffs_ep0_release(struct inode * inode,struct file * file)662 static int ffs_ep0_release(struct inode *inode, struct file *file)
663 {
664 struct ffs_data *ffs = file->private_data;
665
666 ffs_data_closed(ffs);
667
668 return 0;
669 }
670
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)671 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
672 {
673 struct ffs_data *ffs = file->private_data;
674 struct usb_gadget *gadget = ffs->gadget;
675 long ret;
676
677 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
678 struct ffs_function *func = ffs->func;
679 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
680 } else if (gadget && gadget->ops->ioctl) {
681 ret = gadget->ops->ioctl(gadget, code, value);
682 } else {
683 ret = -ENOTTY;
684 }
685
686 return ret;
687 }
688
ffs_ep0_poll(struct file * file,poll_table * wait)689 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
690 {
691 struct ffs_data *ffs = file->private_data;
692 __poll_t mask = EPOLLWRNORM;
693 int ret;
694
695 poll_wait(file, &ffs->ev.waitq, wait);
696
697 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
698 if (ret < 0)
699 return mask;
700
701 switch (ffs->state) {
702 case FFS_READ_DESCRIPTORS:
703 case FFS_READ_STRINGS:
704 mask |= EPOLLOUT;
705 break;
706
707 case FFS_ACTIVE:
708 switch (ffs->setup_state) {
709 case FFS_NO_SETUP:
710 if (ffs->ev.count)
711 mask |= EPOLLIN;
712 break;
713
714 case FFS_SETUP_PENDING:
715 case FFS_SETUP_CANCELLED:
716 mask |= (EPOLLIN | EPOLLOUT);
717 break;
718 }
719 break;
720
721 case FFS_CLOSING:
722 break;
723 case FFS_DEACTIVATED:
724 break;
725 }
726
727 mutex_unlock(&ffs->mutex);
728
729 return mask;
730 }
731
732 static const struct file_operations ffs_ep0_operations = {
733
734 .open = ffs_ep0_open,
735 .write = ffs_ep0_write,
736 .read = ffs_ep0_read,
737 .release = ffs_ep0_release,
738 .unlocked_ioctl = ffs_ep0_ioctl,
739 .poll = ffs_ep0_poll,
740 };
741
742
743 /* "Normal" endpoints operations ********************************************/
744
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)745 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
746 {
747 struct ffs_io_data *io_data = req->context;
748
749 if (req->status)
750 io_data->status = req->status;
751 else
752 io_data->status = req->actual;
753
754 complete(&io_data->done);
755 }
756
ffs_copy_to_iter(void * data,int data_len,struct iov_iter * iter)757 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
758 {
759 ssize_t ret = copy_to_iter(data, data_len, iter);
760 if (ret == data_len)
761 return ret;
762
763 if (iov_iter_count(iter))
764 return -EFAULT;
765
766 /*
767 * Dear user space developer!
768 *
769 * TL;DR: To stop getting below error message in your kernel log, change
770 * user space code using functionfs to align read buffers to a max
771 * packet size.
772 *
773 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
774 * packet size. When unaligned buffer is passed to functionfs, it
775 * internally uses a larger, aligned buffer so that such UDCs are happy.
776 *
777 * Unfortunately, this means that host may send more data than was
778 * requested in read(2) system call. f_fs doesn’t know what to do with
779 * that excess data so it simply drops it.
780 *
781 * Was the buffer aligned in the first place, no such problem would
782 * happen.
783 *
784 * Data may be dropped only in AIO reads. Synchronous reads are handled
785 * by splitting a request into multiple parts. This splitting may still
786 * be a problem though so it’s likely best to align the buffer
787 * regardless of it being AIO or not..
788 *
789 * This only affects OUT endpoints, i.e. reading data with a read(2),
790 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
791 * affected.
792 */
793 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
794 "Align read buffer size to max packet size to avoid the problem.\n",
795 data_len, ret);
796
797 return ret;
798 }
799
800 /*
801 * allocate a virtually contiguous buffer and create a scatterlist describing it
802 * @sg_table - pointer to a place to be filled with sg_table contents
803 * @size - required buffer size
804 */
ffs_build_sg_list(struct sg_table * sgt,size_t sz)805 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
806 {
807 struct page **pages;
808 void *vaddr, *ptr;
809 unsigned int n_pages;
810 int i;
811
812 vaddr = vmalloc(sz);
813 if (!vaddr)
814 return NULL;
815
816 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
817 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
818 if (!pages) {
819 vfree(vaddr);
820
821 return NULL;
822 }
823 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
824 pages[i] = vmalloc_to_page(ptr);
825
826 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
827 kvfree(pages);
828 vfree(vaddr);
829
830 return NULL;
831 }
832 kvfree(pages);
833
834 return vaddr;
835 }
836
ffs_alloc_buffer(struct ffs_io_data * io_data,size_t data_len)837 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
838 size_t data_len)
839 {
840 if (io_data->use_sg)
841 return ffs_build_sg_list(&io_data->sgt, data_len);
842
843 return kmalloc(data_len, GFP_KERNEL);
844 }
845
ffs_free_buffer(struct ffs_io_data * io_data)846 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
847 {
848 if (!io_data->buf)
849 return;
850
851 if (io_data->use_sg) {
852 sg_free_table(&io_data->sgt);
853 vfree(io_data->buf);
854 } else {
855 kfree(io_data->buf);
856 }
857 }
858
ffs_user_copy_worker(struct work_struct * work)859 static void ffs_user_copy_worker(struct work_struct *work)
860 {
861 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
862 work);
863 int ret = io_data->status;
864 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
865
866 if (io_data->read && ret > 0) {
867 kthread_use_mm(io_data->mm);
868 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
869 kthread_unuse_mm(io_data->mm);
870 }
871
872 io_data->kiocb->ki_complete(io_data->kiocb, ret);
873
874 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
875 eventfd_signal(io_data->ffs->ffs_eventfd);
876
877 usb_ep_free_request(io_data->ep, io_data->req);
878
879 if (io_data->read)
880 kfree(io_data->to_free);
881 ffs_free_buffer(io_data);
882 kfree(io_data);
883 }
884
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)885 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
886 struct usb_request *req)
887 {
888 struct ffs_io_data *io_data = req->context;
889 struct ffs_data *ffs = io_data->ffs;
890
891 io_data->status = req->status ? req->status : req->actual;
892
893 INIT_WORK(&io_data->work, ffs_user_copy_worker);
894 queue_work(ffs->io_completion_wq, &io_data->work);
895 }
896
__ffs_epfile_read_buffer_free(struct ffs_epfile * epfile)897 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
898 {
899 /*
900 * See comment in struct ffs_epfile for full read_buffer pointer
901 * synchronisation story.
902 */
903 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
904 if (buf && buf != READ_BUFFER_DROP)
905 kfree(buf);
906 }
907
908 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_buffered(struct ffs_epfile * epfile,struct iov_iter * iter)909 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
910 struct iov_iter *iter)
911 {
912 /*
913 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
914 * the buffer while we are using it. See comment in struct ffs_epfile
915 * for full read_buffer pointer synchronisation story.
916 */
917 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
918 ssize_t ret;
919 if (!buf || buf == READ_BUFFER_DROP)
920 return 0;
921
922 ret = copy_to_iter(buf->data, buf->length, iter);
923 if (buf->length == ret) {
924 kfree(buf);
925 return ret;
926 }
927
928 if (iov_iter_count(iter)) {
929 ret = -EFAULT;
930 } else {
931 buf->length -= ret;
932 buf->data += ret;
933 }
934
935 if (cmpxchg(&epfile->read_buffer, NULL, buf))
936 kfree(buf);
937
938 return ret;
939 }
940
941 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_data(struct ffs_epfile * epfile,void * data,int data_len,struct iov_iter * iter)942 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
943 void *data, int data_len,
944 struct iov_iter *iter)
945 {
946 struct ffs_buffer *buf;
947
948 ssize_t ret = copy_to_iter(data, data_len, iter);
949 if (data_len == ret)
950 return ret;
951
952 if (iov_iter_count(iter))
953 return -EFAULT;
954
955 /* See ffs_copy_to_iter for more context. */
956 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
957 data_len, ret);
958
959 data_len -= ret;
960 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
961 if (!buf)
962 return -ENOMEM;
963 buf->length = data_len;
964 buf->data = buf->storage;
965 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
966
967 /*
968 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
969 * ffs_func_eps_disable has been called in the meanwhile). See comment
970 * in struct ffs_epfile for full read_buffer pointer synchronisation
971 * story.
972 */
973 if (cmpxchg(&epfile->read_buffer, NULL, buf))
974 kfree(buf);
975
976 return ret;
977 }
978
ffs_epfile_wait_ep(struct file * file)979 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
980 {
981 struct ffs_epfile *epfile = file->private_data;
982 struct ffs_ep *ep;
983 int ret;
984
985 /* Wait for endpoint to be enabled */
986 ep = epfile->ep;
987 if (!ep) {
988 if (file->f_flags & O_NONBLOCK)
989 return ERR_PTR(-EAGAIN);
990
991 ret = wait_event_interruptible(
992 epfile->ffs->wait, (ep = epfile->ep));
993 if (ret)
994 return ERR_PTR(-EINTR);
995 }
996
997 return ep;
998 }
999
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)1000 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
1001 {
1002 struct ffs_epfile *epfile = file->private_data;
1003 struct usb_request *req;
1004 struct ffs_ep *ep;
1005 char *data = NULL;
1006 ssize_t ret, data_len = -EINVAL;
1007 int halt;
1008
1009 /* Are we still active? */
1010 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1011 return -ENODEV;
1012
1013 ep = ffs_epfile_wait_ep(file);
1014 if (IS_ERR(ep))
1015 return PTR_ERR(ep);
1016
1017 /* Do we halt? */
1018 halt = (!io_data->read == !epfile->in);
1019 if (halt && epfile->isoc)
1020 return -EINVAL;
1021
1022 /* We will be using request and read_buffer */
1023 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1024 if (ret)
1025 goto error;
1026
1027 /* Allocate & copy */
1028 if (!halt) {
1029 struct usb_gadget *gadget;
1030
1031 /*
1032 * Do we have buffered data from previous partial read? Check
1033 * that for synchronous case only because we do not have
1034 * facility to ‘wake up’ a pending asynchronous read and push
1035 * buffered data to it which we would need to make things behave
1036 * consistently.
1037 */
1038 if (!io_data->aio && io_data->read) {
1039 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
1040 if (ret)
1041 goto error_mutex;
1042 }
1043
1044 /*
1045 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1046 * before the waiting completes, so do not assign to 'gadget'
1047 * earlier
1048 */
1049 gadget = epfile->ffs->gadget;
1050
1051 spin_lock_irq(&epfile->ffs->eps_lock);
1052 /* In the meantime, endpoint got disabled or changed. */
1053 if (epfile->ep != ep) {
1054 ret = -ESHUTDOWN;
1055 goto error_lock;
1056 }
1057 data_len = iov_iter_count(&io_data->data);
1058 /*
1059 * Controller may require buffer size to be aligned to
1060 * maxpacketsize of an out endpoint.
1061 */
1062 if (io_data->read)
1063 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1064
1065 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1066 spin_unlock_irq(&epfile->ffs->eps_lock);
1067
1068 data = ffs_alloc_buffer(io_data, data_len);
1069 if (!data) {
1070 ret = -ENOMEM;
1071 goto error_mutex;
1072 }
1073 if (!io_data->read &&
1074 !copy_from_iter_full(data, data_len, &io_data->data)) {
1075 ret = -EFAULT;
1076 goto error_mutex;
1077 }
1078 }
1079
1080 spin_lock_irq(&epfile->ffs->eps_lock);
1081
1082 if (epfile->ep != ep) {
1083 /* In the meantime, endpoint got disabled or changed. */
1084 ret = -ESHUTDOWN;
1085 } else if (halt) {
1086 ret = usb_ep_set_halt(ep->ep);
1087 if (!ret)
1088 ret = -EBADMSG;
1089 } else if (data_len == -EINVAL) {
1090 /*
1091 * Sanity Check: even though data_len can't be used
1092 * uninitialized at the time I write this comment, some
1093 * compilers complain about this situation.
1094 * In order to keep the code clean from warnings, data_len is
1095 * being initialized to -EINVAL during its declaration, which
1096 * means we can't rely on compiler anymore to warn no future
1097 * changes won't result in data_len being used uninitialized.
1098 * For such reason, we're adding this redundant sanity check
1099 * here.
1100 */
1101 WARN(1, "%s: data_len == -EINVAL\n", __func__);
1102 ret = -EINVAL;
1103 } else if (!io_data->aio) {
1104 bool interrupted = false;
1105
1106 req = ep->req;
1107 if (io_data->use_sg) {
1108 req->buf = NULL;
1109 req->sg = io_data->sgt.sgl;
1110 req->num_sgs = io_data->sgt.nents;
1111 } else {
1112 req->buf = data;
1113 req->num_sgs = 0;
1114 }
1115 req->length = data_len;
1116
1117 io_data->buf = data;
1118
1119 init_completion(&io_data->done);
1120 req->context = io_data;
1121 req->complete = ffs_epfile_io_complete;
1122
1123 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1124 if (ret < 0)
1125 goto error_lock;
1126
1127 spin_unlock_irq(&epfile->ffs->eps_lock);
1128
1129 if (wait_for_completion_interruptible(&io_data->done)) {
1130 spin_lock_irq(&epfile->ffs->eps_lock);
1131 if (epfile->ep != ep) {
1132 ret = -ESHUTDOWN;
1133 goto error_lock;
1134 }
1135 /*
1136 * To avoid race condition with ffs_epfile_io_complete,
1137 * dequeue the request first then check
1138 * status. usb_ep_dequeue API should guarantee no race
1139 * condition with req->complete callback.
1140 */
1141 usb_ep_dequeue(ep->ep, req);
1142 spin_unlock_irq(&epfile->ffs->eps_lock);
1143 wait_for_completion(&io_data->done);
1144 interrupted = io_data->status < 0;
1145 }
1146
1147 if (interrupted)
1148 ret = -EINTR;
1149 else if (io_data->read && io_data->status > 0)
1150 ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1151 &io_data->data);
1152 else
1153 ret = io_data->status;
1154 goto error_mutex;
1155 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1156 ret = -ENOMEM;
1157 } else {
1158 if (io_data->use_sg) {
1159 req->buf = NULL;
1160 req->sg = io_data->sgt.sgl;
1161 req->num_sgs = io_data->sgt.nents;
1162 } else {
1163 req->buf = data;
1164 req->num_sgs = 0;
1165 }
1166 req->length = data_len;
1167
1168 io_data->buf = data;
1169 io_data->ep = ep->ep;
1170 io_data->req = req;
1171 io_data->ffs = epfile->ffs;
1172
1173 req->context = io_data;
1174 req->complete = ffs_epfile_async_io_complete;
1175
1176 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1177 if (ret) {
1178 io_data->req = NULL;
1179 usb_ep_free_request(ep->ep, req);
1180 goto error_lock;
1181 }
1182
1183 ret = -EIOCBQUEUED;
1184 /*
1185 * Do not kfree the buffer in this function. It will be freed
1186 * by ffs_user_copy_worker.
1187 */
1188 data = NULL;
1189 }
1190
1191 error_lock:
1192 spin_unlock_irq(&epfile->ffs->eps_lock);
1193 error_mutex:
1194 mutex_unlock(&epfile->mutex);
1195 error:
1196 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1197 ffs_free_buffer(io_data);
1198 return ret;
1199 }
1200
1201 static int
ffs_epfile_open(struct inode * inode,struct file * file)1202 ffs_epfile_open(struct inode *inode, struct file *file)
1203 {
1204 struct ffs_data *ffs = inode->i_sb->s_fs_info;
1205 struct ffs_epfile *epfile;
1206
1207 spin_lock_irq(&ffs->eps_lock);
1208 if (!ffs->opened) {
1209 spin_unlock_irq(&ffs->eps_lock);
1210 return -ENODEV;
1211 }
1212 /*
1213 * we want the state to be FFS_ACTIVE; FFS_ACTIVE alone is
1214 * not enough, though - we might have been through FFS_CLOSING
1215 * and back to FFS_ACTIVE, with our file already removed.
1216 */
1217 epfile = smp_load_acquire(&inode->i_private);
1218 if (unlikely(ffs->state != FFS_ACTIVE || !epfile)) {
1219 spin_unlock_irq(&ffs->eps_lock);
1220 return -ENODEV;
1221 }
1222 ffs->opened++;
1223 spin_unlock_irq(&ffs->eps_lock);
1224
1225 file->private_data = epfile;
1226 return stream_open(inode, file);
1227 }
1228
ffs_aio_cancel(struct kiocb * kiocb)1229 static int ffs_aio_cancel(struct kiocb *kiocb)
1230 {
1231 struct ffs_io_data *io_data = kiocb->private;
1232 int value;
1233
1234 if (io_data && io_data->ep && io_data->req)
1235 value = usb_ep_dequeue(io_data->ep, io_data->req);
1236 else
1237 value = -EINVAL;
1238
1239 return value;
1240 }
1241
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)1242 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1243 {
1244 struct ffs_io_data io_data, *p = &io_data;
1245 ssize_t res;
1246
1247 if (!is_sync_kiocb(kiocb)) {
1248 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1249 if (!p)
1250 return -ENOMEM;
1251 p->aio = true;
1252 } else {
1253 memset(p, 0, sizeof(*p));
1254 p->aio = false;
1255 }
1256
1257 p->read = false;
1258 p->kiocb = kiocb;
1259 p->data = *from;
1260 p->mm = current->mm;
1261
1262 kiocb->private = p;
1263
1264 if (p->aio)
1265 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1266
1267 res = ffs_epfile_io(kiocb->ki_filp, p);
1268 if (res == -EIOCBQUEUED)
1269 return res;
1270 if (p->aio)
1271 kfree(p);
1272 else
1273 *from = p->data;
1274 return res;
1275 }
1276
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)1277 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1278 {
1279 struct ffs_io_data io_data, *p = &io_data;
1280 ssize_t res;
1281
1282 if (!is_sync_kiocb(kiocb)) {
1283 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1284 if (!p)
1285 return -ENOMEM;
1286 p->aio = true;
1287 } else {
1288 memset(p, 0, sizeof(*p));
1289 p->aio = false;
1290 }
1291
1292 p->read = true;
1293 p->kiocb = kiocb;
1294 if (p->aio) {
1295 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1296 if (!iter_is_ubuf(&p->data) && !p->to_free) {
1297 kfree(p);
1298 return -ENOMEM;
1299 }
1300 } else {
1301 p->data = *to;
1302 p->to_free = NULL;
1303 }
1304 p->mm = current->mm;
1305
1306 kiocb->private = p;
1307
1308 if (p->aio)
1309 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1310
1311 res = ffs_epfile_io(kiocb->ki_filp, p);
1312 if (res == -EIOCBQUEUED)
1313 return res;
1314
1315 if (p->aio) {
1316 kfree(p->to_free);
1317 kfree(p);
1318 } else {
1319 *to = p->data;
1320 }
1321 return res;
1322 }
1323
ffs_dmabuf_release(struct kref * ref)1324 static void ffs_dmabuf_release(struct kref *ref)
1325 {
1326 struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1327 struct dma_buf_attachment *attach = priv->attach;
1328 struct dma_buf *dmabuf = attach->dmabuf;
1329
1330 pr_vdebug("FFS DMABUF release\n");
1331 dma_buf_unmap_attachment_unlocked(attach, priv->sgt, priv->dir);
1332
1333 dma_buf_detach(attach->dmabuf, attach);
1334 dma_buf_put(dmabuf);
1335 kfree(priv);
1336 }
1337
ffs_dmabuf_get(struct dma_buf_attachment * attach)1338 static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1339 {
1340 struct ffs_dmabuf_priv *priv = attach->importer_priv;
1341
1342 kref_get(&priv->ref);
1343 }
1344
ffs_dmabuf_put(struct dma_buf_attachment * attach)1345 static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1346 {
1347 struct ffs_dmabuf_priv *priv = attach->importer_priv;
1348
1349 kref_put(&priv->ref, ffs_dmabuf_release);
1350 }
1351
1352 static int
ffs_epfile_release(struct inode * inode,struct file * file)1353 ffs_epfile_release(struct inode *inode, struct file *file)
1354 {
1355 struct ffs_epfile *epfile = file->private_data;
1356 struct ffs_dmabuf_priv *priv, *tmp;
1357 struct ffs_data *ffs = epfile->ffs;
1358
1359 mutex_lock(&epfile->dmabufs_mutex);
1360
1361 /* Close all attached DMABUFs */
1362 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1363 /* Cancel any pending transfer */
1364 spin_lock_irq(&ffs->eps_lock);
1365 if (priv->ep && priv->req)
1366 usb_ep_dequeue(priv->ep, priv->req);
1367 spin_unlock_irq(&ffs->eps_lock);
1368
1369 list_del(&priv->entry);
1370 ffs_dmabuf_put(priv->attach);
1371 }
1372
1373 mutex_unlock(&epfile->dmabufs_mutex);
1374
1375 __ffs_epfile_read_buffer_free(epfile);
1376 ffs_data_closed(epfile->ffs);
1377
1378 return 0;
1379 }
1380
ffs_dmabuf_cleanup(struct work_struct * work)1381 static void ffs_dmabuf_cleanup(struct work_struct *work)
1382 {
1383 struct ffs_dma_fence *dma_fence =
1384 container_of(work, struct ffs_dma_fence, work);
1385 struct ffs_dmabuf_priv *priv = dma_fence->priv;
1386 struct dma_buf_attachment *attach = priv->attach;
1387 struct dma_fence *fence = &dma_fence->base;
1388
1389 ffs_dmabuf_put(attach);
1390 dma_fence_put(fence);
1391 }
1392
ffs_dmabuf_signal_done(struct ffs_dma_fence * dma_fence,int ret)1393 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1394 {
1395 struct ffs_dmabuf_priv *priv = dma_fence->priv;
1396 struct dma_fence *fence = &dma_fence->base;
1397 bool cookie = dma_fence_begin_signalling();
1398
1399 dma_fence_get(fence);
1400 fence->error = ret;
1401 dma_fence_signal(fence);
1402 dma_fence_end_signalling(cookie);
1403
1404 /*
1405 * The fence will be unref'd in ffs_dmabuf_cleanup.
1406 * It can't be done here, as the unref functions might try to lock
1407 * the resv object, which would deadlock.
1408 */
1409 INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1410 queue_work(priv->ffs->io_completion_wq, &dma_fence->work);
1411 }
1412
ffs_epfile_dmabuf_io_complete(struct usb_ep * ep,struct usb_request * req)1413 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1414 struct usb_request *req)
1415 {
1416 pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1417 ffs_dmabuf_signal_done(req->context, req->status);
1418 usb_ep_free_request(ep, req);
1419 }
1420
ffs_dmabuf_get_driver_name(struct dma_fence * fence)1421 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1422 {
1423 return "functionfs";
1424 }
1425
ffs_dmabuf_get_timeline_name(struct dma_fence * fence)1426 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1427 {
1428 return "";
1429 }
1430
ffs_dmabuf_fence_release(struct dma_fence * fence)1431 static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1432 {
1433 struct ffs_dma_fence *dma_fence =
1434 container_of(fence, struct ffs_dma_fence, base);
1435
1436 kfree(dma_fence);
1437 }
1438
1439 static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1440 .get_driver_name = ffs_dmabuf_get_driver_name,
1441 .get_timeline_name = ffs_dmabuf_get_timeline_name,
1442 .release = ffs_dmabuf_fence_release,
1443 };
1444
ffs_dma_resv_lock(struct dma_buf * dmabuf,bool nonblock)1445 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1446 {
1447 if (!nonblock)
1448 return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1449
1450 if (!dma_resv_trylock(dmabuf->resv))
1451 return -EBUSY;
1452
1453 return 0;
1454 }
1455
1456 static struct dma_buf_attachment *
ffs_dmabuf_find_attachment(struct ffs_epfile * epfile,struct dma_buf * dmabuf)1457 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1458 {
1459 struct device *dev = epfile->ffs->gadget->dev.parent;
1460 struct dma_buf_attachment *attach = NULL;
1461 struct ffs_dmabuf_priv *priv;
1462
1463 mutex_lock(&epfile->dmabufs_mutex);
1464
1465 list_for_each_entry(priv, &epfile->dmabufs, entry) {
1466 if (priv->attach->dev == dev
1467 && priv->attach->dmabuf == dmabuf) {
1468 attach = priv->attach;
1469 break;
1470 }
1471 }
1472
1473 if (attach)
1474 ffs_dmabuf_get(attach);
1475
1476 mutex_unlock(&epfile->dmabufs_mutex);
1477
1478 return attach ?: ERR_PTR(-EPERM);
1479 }
1480
ffs_dmabuf_attach(struct file * file,int fd)1481 static int ffs_dmabuf_attach(struct file *file, int fd)
1482 {
1483 bool nonblock = file->f_flags & O_NONBLOCK;
1484 struct ffs_epfile *epfile = file->private_data;
1485 struct usb_gadget *gadget = epfile->ffs->gadget;
1486 struct dma_buf_attachment *attach;
1487 struct ffs_dmabuf_priv *priv;
1488 enum dma_data_direction dir;
1489 struct sg_table *sg_table;
1490 struct dma_buf *dmabuf;
1491 int err;
1492
1493 if (!gadget || !gadget->sg_supported)
1494 return -EPERM;
1495
1496 dmabuf = dma_buf_get(fd);
1497 if (IS_ERR(dmabuf))
1498 return PTR_ERR(dmabuf);
1499
1500 attach = dma_buf_attach(dmabuf, gadget->dev.parent);
1501 if (IS_ERR(attach)) {
1502 err = PTR_ERR(attach);
1503 goto err_dmabuf_put;
1504 }
1505
1506 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1507 if (!priv) {
1508 err = -ENOMEM;
1509 goto err_dmabuf_detach;
1510 }
1511
1512 dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1513
1514 err = ffs_dma_resv_lock(dmabuf, nonblock);
1515 if (err)
1516 goto err_free_priv;
1517
1518 sg_table = dma_buf_map_attachment(attach, dir);
1519 dma_resv_unlock(dmabuf->resv);
1520
1521 if (IS_ERR(sg_table)) {
1522 err = PTR_ERR(sg_table);
1523 goto err_free_priv;
1524 }
1525
1526 attach->importer_priv = priv;
1527
1528 priv->sgt = sg_table;
1529 priv->dir = dir;
1530 priv->ffs = epfile->ffs;
1531 priv->attach = attach;
1532 spin_lock_init(&priv->lock);
1533 kref_init(&priv->ref);
1534 priv->context = dma_fence_context_alloc(1);
1535
1536 mutex_lock(&epfile->dmabufs_mutex);
1537 list_add(&priv->entry, &epfile->dmabufs);
1538 mutex_unlock(&epfile->dmabufs_mutex);
1539
1540 return 0;
1541
1542 err_free_priv:
1543 kfree(priv);
1544 err_dmabuf_detach:
1545 dma_buf_detach(dmabuf, attach);
1546 err_dmabuf_put:
1547 dma_buf_put(dmabuf);
1548
1549 return err;
1550 }
1551
ffs_dmabuf_detach(struct file * file,int fd)1552 static int ffs_dmabuf_detach(struct file *file, int fd)
1553 {
1554 struct ffs_epfile *epfile = file->private_data;
1555 struct ffs_data *ffs = epfile->ffs;
1556 struct device *dev = ffs->gadget->dev.parent;
1557 struct ffs_dmabuf_priv *priv, *tmp;
1558 struct dma_buf *dmabuf;
1559 int ret = -EPERM;
1560
1561 dmabuf = dma_buf_get(fd);
1562 if (IS_ERR(dmabuf))
1563 return PTR_ERR(dmabuf);
1564
1565 mutex_lock(&epfile->dmabufs_mutex);
1566
1567 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1568 if (priv->attach->dev == dev
1569 && priv->attach->dmabuf == dmabuf) {
1570 /* Cancel any pending transfer */
1571 spin_lock_irq(&ffs->eps_lock);
1572 if (priv->ep && priv->req)
1573 usb_ep_dequeue(priv->ep, priv->req);
1574 spin_unlock_irq(&ffs->eps_lock);
1575
1576 list_del(&priv->entry);
1577
1578 /* Unref the reference from ffs_dmabuf_attach() */
1579 ffs_dmabuf_put(priv->attach);
1580 ret = 0;
1581 break;
1582 }
1583 }
1584
1585 mutex_unlock(&epfile->dmabufs_mutex);
1586 dma_buf_put(dmabuf);
1587
1588 return ret;
1589 }
1590
ffs_dmabuf_transfer(struct file * file,const struct usb_ffs_dmabuf_transfer_req * req)1591 static int ffs_dmabuf_transfer(struct file *file,
1592 const struct usb_ffs_dmabuf_transfer_req *req)
1593 {
1594 bool nonblock = file->f_flags & O_NONBLOCK;
1595 struct ffs_epfile *epfile = file->private_data;
1596 struct dma_buf_attachment *attach;
1597 struct ffs_dmabuf_priv *priv;
1598 struct ffs_dma_fence *fence;
1599 struct usb_request *usb_req;
1600 enum dma_resv_usage resv_dir;
1601 struct dma_buf *dmabuf;
1602 unsigned long timeout;
1603 struct ffs_ep *ep;
1604 bool cookie;
1605 u32 seqno;
1606 long retl;
1607 int ret;
1608
1609 if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1610 return -EINVAL;
1611
1612 dmabuf = dma_buf_get(req->fd);
1613 if (IS_ERR(dmabuf))
1614 return PTR_ERR(dmabuf);
1615
1616 if (req->length > dmabuf->size || req->length == 0) {
1617 ret = -EINVAL;
1618 goto err_dmabuf_put;
1619 }
1620
1621 attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1622 if (IS_ERR(attach)) {
1623 ret = PTR_ERR(attach);
1624 goto err_dmabuf_put;
1625 }
1626
1627 priv = attach->importer_priv;
1628
1629 ep = ffs_epfile_wait_ep(file);
1630 if (IS_ERR(ep)) {
1631 ret = PTR_ERR(ep);
1632 goto err_attachment_put;
1633 }
1634
1635 ret = ffs_dma_resv_lock(dmabuf, nonblock);
1636 if (ret)
1637 goto err_attachment_put;
1638
1639 /* Make sure we don't have writers */
1640 timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1641 retl = dma_resv_wait_timeout(dmabuf->resv,
1642 dma_resv_usage_rw(epfile->in),
1643 true, timeout);
1644 if (retl == 0)
1645 retl = -EBUSY;
1646 if (retl < 0) {
1647 ret = (int)retl;
1648 goto err_resv_unlock;
1649 }
1650
1651 ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1652 if (ret)
1653 goto err_resv_unlock;
1654
1655 fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1656 if (!fence) {
1657 ret = -ENOMEM;
1658 goto err_resv_unlock;
1659 }
1660
1661 fence->priv = priv;
1662
1663 spin_lock_irq(&epfile->ffs->eps_lock);
1664
1665 /* In the meantime, endpoint got disabled or changed. */
1666 if (epfile->ep != ep) {
1667 ret = -ESHUTDOWN;
1668 goto err_fence_put;
1669 }
1670
1671 usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC);
1672 if (!usb_req) {
1673 ret = -ENOMEM;
1674 goto err_fence_put;
1675 }
1676
1677 /*
1678 * usb_ep_queue() guarantees that all transfers are processed in the
1679 * order they are enqueued, so we can use a simple incrementing
1680 * sequence number for the dma_fence.
1681 */
1682 seqno = atomic_add_return(1, &epfile->seqno);
1683
1684 dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops,
1685 &priv->lock, priv->context, seqno);
1686
1687 resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
1688
1689 dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir);
1690 dma_resv_unlock(dmabuf->resv);
1691
1692 /* Now that the dma_fence is in place, queue the transfer. */
1693
1694 usb_req->length = req->length;
1695 usb_req->buf = NULL;
1696 usb_req->sg = priv->sgt->sgl;
1697 usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length);
1698 usb_req->sg_was_mapped = true;
1699 usb_req->context = fence;
1700 usb_req->complete = ffs_epfile_dmabuf_io_complete;
1701
1702 cookie = dma_fence_begin_signalling();
1703 ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC);
1704 dma_fence_end_signalling(cookie);
1705 if (!ret) {
1706 priv->req = usb_req;
1707 priv->ep = ep->ep;
1708 } else {
1709 pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1710 ffs_dmabuf_signal_done(fence, ret);
1711 usb_ep_free_request(ep->ep, usb_req);
1712 }
1713
1714 spin_unlock_irq(&epfile->ffs->eps_lock);
1715 dma_buf_put(dmabuf);
1716
1717 return ret;
1718
1719 err_fence_put:
1720 spin_unlock_irq(&epfile->ffs->eps_lock);
1721 dma_fence_put(&fence->base);
1722 err_resv_unlock:
1723 dma_resv_unlock(dmabuf->resv);
1724 err_attachment_put:
1725 ffs_dmabuf_put(attach);
1726 err_dmabuf_put:
1727 dma_buf_put(dmabuf);
1728
1729 return ret;
1730 }
1731
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1732 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1733 unsigned long value)
1734 {
1735 struct ffs_epfile *epfile = file->private_data;
1736 struct ffs_ep *ep;
1737 int ret;
1738
1739 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1740 return -ENODEV;
1741
1742 switch (code) {
1743 case FUNCTIONFS_DMABUF_ATTACH:
1744 {
1745 int fd;
1746
1747 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1748 ret = -EFAULT;
1749 break;
1750 }
1751
1752 return ffs_dmabuf_attach(file, fd);
1753 }
1754 case FUNCTIONFS_DMABUF_DETACH:
1755 {
1756 int fd;
1757
1758 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1759 ret = -EFAULT;
1760 break;
1761 }
1762
1763 return ffs_dmabuf_detach(file, fd);
1764 }
1765 case FUNCTIONFS_DMABUF_TRANSFER:
1766 {
1767 struct usb_ffs_dmabuf_transfer_req req;
1768
1769 if (copy_from_user(&req, (void __user *)value, sizeof(req))) {
1770 ret = -EFAULT;
1771 break;
1772 }
1773
1774 return ffs_dmabuf_transfer(file, &req);
1775 }
1776 default:
1777 break;
1778 }
1779
1780 /* Wait for endpoint to be enabled */
1781 ep = ffs_epfile_wait_ep(file);
1782 if (IS_ERR(ep))
1783 return PTR_ERR(ep);
1784
1785 spin_lock_irq(&epfile->ffs->eps_lock);
1786
1787 /* In the meantime, endpoint got disabled or changed. */
1788 if (epfile->ep != ep) {
1789 spin_unlock_irq(&epfile->ffs->eps_lock);
1790 return -ESHUTDOWN;
1791 }
1792
1793 switch (code) {
1794 case FUNCTIONFS_FIFO_STATUS:
1795 ret = usb_ep_fifo_status(epfile->ep->ep);
1796 break;
1797 case FUNCTIONFS_FIFO_FLUSH:
1798 usb_ep_fifo_flush(epfile->ep->ep);
1799 ret = 0;
1800 break;
1801 case FUNCTIONFS_CLEAR_HALT:
1802 ret = usb_ep_clear_halt(epfile->ep->ep);
1803 break;
1804 case FUNCTIONFS_ENDPOINT_REVMAP:
1805 ret = epfile->ep->num;
1806 break;
1807 case FUNCTIONFS_ENDPOINT_DESC:
1808 {
1809 int desc_idx;
1810 struct usb_endpoint_descriptor desc1, *desc;
1811
1812 switch (epfile->ffs->gadget->speed) {
1813 case USB_SPEED_SUPER:
1814 case USB_SPEED_SUPER_PLUS:
1815 desc_idx = 2;
1816 break;
1817 case USB_SPEED_HIGH:
1818 desc_idx = 1;
1819 break;
1820 default:
1821 desc_idx = 0;
1822 }
1823
1824 desc = epfile->ep->descs[desc_idx];
1825 memcpy(&desc1, desc, desc->bLength);
1826
1827 spin_unlock_irq(&epfile->ffs->eps_lock);
1828 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1829 if (ret)
1830 ret = -EFAULT;
1831 return ret;
1832 }
1833 default:
1834 ret = -ENOTTY;
1835 }
1836 spin_unlock_irq(&epfile->ffs->eps_lock);
1837
1838 return ret;
1839 }
1840
1841 static const struct file_operations ffs_epfile_operations = {
1842
1843 .open = ffs_epfile_open,
1844 .write_iter = ffs_epfile_write_iter,
1845 .read_iter = ffs_epfile_read_iter,
1846 .release = ffs_epfile_release,
1847 .unlocked_ioctl = ffs_epfile_ioctl,
1848 .compat_ioctl = compat_ptr_ioctl,
1849 };
1850
1851
1852 /* File system and super block operations ***********************************/
1853
1854 /*
1855 * Mounting the file system creates a controller file, used first for
1856 * function configuration then later for event monitoring.
1857 */
1858
1859 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1860 ffs_sb_make_inode(struct super_block *sb, void *data,
1861 const struct file_operations *fops,
1862 const struct inode_operations *iops,
1863 struct ffs_file_perms *perms)
1864 {
1865 struct inode *inode;
1866
1867 inode = new_inode(sb);
1868
1869 if (inode) {
1870 struct timespec64 ts = inode_set_ctime_current(inode);
1871
1872 inode->i_ino = get_next_ino();
1873 inode->i_mode = perms->mode;
1874 inode->i_uid = perms->uid;
1875 inode->i_gid = perms->gid;
1876 inode_set_atime_to_ts(inode, ts);
1877 inode_set_mtime_to_ts(inode, ts);
1878 inode->i_private = data;
1879 if (fops)
1880 inode->i_fop = fops;
1881 if (iops)
1882 inode->i_op = iops;
1883 }
1884
1885 return inode;
1886 }
1887
1888 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1889 static int ffs_sb_create_file(struct super_block *sb, const char *name,
1890 void *data, const struct file_operations *fops)
1891 {
1892 struct ffs_data *ffs = sb->s_fs_info;
1893 struct dentry *dentry;
1894 struct inode *inode;
1895
1896 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1897 if (!inode)
1898 return -ENOMEM;
1899 dentry = simple_start_creating(sb->s_root, name);
1900 if (IS_ERR(dentry)) {
1901 iput(inode);
1902 return PTR_ERR(dentry);
1903 }
1904
1905 d_make_persistent(dentry, inode);
1906
1907 simple_done_creating(dentry);
1908 return 0;
1909 }
1910
1911 /* Super block */
1912 static const struct super_operations ffs_sb_operations = {
1913 .statfs = simple_statfs,
1914 .drop_inode = inode_just_drop,
1915 };
1916
1917 struct ffs_sb_fill_data {
1918 struct ffs_file_perms perms;
1919 umode_t root_mode;
1920 const char *dev_name;
1921 bool no_disconnect;
1922 struct ffs_data *ffs_data;
1923 };
1924
ffs_sb_fill(struct super_block * sb,struct fs_context * fc)1925 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1926 {
1927 struct ffs_sb_fill_data *data = fc->fs_private;
1928 struct inode *inode;
1929 struct ffs_data *ffs = data->ffs_data;
1930
1931 ffs->sb = sb;
1932 data->ffs_data = NULL;
1933 sb->s_fs_info = ffs;
1934 sb->s_blocksize = PAGE_SIZE;
1935 sb->s_blocksize_bits = PAGE_SHIFT;
1936 sb->s_magic = FUNCTIONFS_MAGIC;
1937 sb->s_op = &ffs_sb_operations;
1938 sb->s_time_gran = 1;
1939
1940 /* Root inode */
1941 data->perms.mode = data->root_mode;
1942 inode = ffs_sb_make_inode(sb, NULL,
1943 &simple_dir_operations,
1944 &simple_dir_inode_operations,
1945 &data->perms);
1946 sb->s_root = d_make_root(inode);
1947 if (!sb->s_root)
1948 return -ENOMEM;
1949
1950 /* EP0 file */
1951 return ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations);
1952 }
1953
1954 enum {
1955 Opt_no_disconnect,
1956 Opt_rmode,
1957 Opt_fmode,
1958 Opt_mode,
1959 Opt_uid,
1960 Opt_gid,
1961 };
1962
1963 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1964 fsparam_bool ("no_disconnect", Opt_no_disconnect),
1965 fsparam_u32 ("rmode", Opt_rmode),
1966 fsparam_u32 ("fmode", Opt_fmode),
1967 fsparam_u32 ("mode", Opt_mode),
1968 fsparam_u32 ("uid", Opt_uid),
1969 fsparam_u32 ("gid", Opt_gid),
1970 {}
1971 };
1972
ffs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1973 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1974 {
1975 struct ffs_sb_fill_data *data = fc->fs_private;
1976 struct fs_parse_result result;
1977 int opt;
1978
1979 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1980 if (opt < 0)
1981 return opt;
1982
1983 switch (opt) {
1984 case Opt_no_disconnect:
1985 data->no_disconnect = result.boolean;
1986 break;
1987 case Opt_rmode:
1988 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1989 break;
1990 case Opt_fmode:
1991 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1992 break;
1993 case Opt_mode:
1994 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1995 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1996 break;
1997
1998 case Opt_uid:
1999 data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
2000 if (!uid_valid(data->perms.uid))
2001 goto unmapped_value;
2002 break;
2003 case Opt_gid:
2004 data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
2005 if (!gid_valid(data->perms.gid))
2006 goto unmapped_value;
2007 break;
2008
2009 default:
2010 return -ENOPARAM;
2011 }
2012
2013 return 0;
2014
2015 unmapped_value:
2016 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2017 }
2018
2019 /*
2020 * Set up the superblock for a mount.
2021 */
ffs_fs_get_tree(struct fs_context * fc)2022 static int ffs_fs_get_tree(struct fs_context *fc)
2023 {
2024 struct ffs_sb_fill_data *ctx = fc->fs_private;
2025 struct ffs_data *ffs;
2026 int ret;
2027
2028 if (!fc->source)
2029 return invalf(fc, "No source specified");
2030
2031 ffs = ffs_data_new(fc->source);
2032 if (!ffs)
2033 return -ENOMEM;
2034 ffs->file_perms = ctx->perms;
2035 ffs->no_disconnect = ctx->no_disconnect;
2036
2037 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
2038 if (!ffs->dev_name) {
2039 ffs_data_put(ffs);
2040 return -ENOMEM;
2041 }
2042
2043 ret = ffs_acquire_dev(ffs->dev_name, ffs);
2044 if (ret) {
2045 ffs_data_put(ffs);
2046 return ret;
2047 }
2048
2049 ctx->ffs_data = ffs;
2050 return get_tree_nodev(fc, ffs_sb_fill);
2051 }
2052
ffs_fs_free_fc(struct fs_context * fc)2053 static void ffs_fs_free_fc(struct fs_context *fc)
2054 {
2055 struct ffs_sb_fill_data *ctx = fc->fs_private;
2056
2057 if (ctx) {
2058 if (ctx->ffs_data) {
2059 ffs_data_put(ctx->ffs_data);
2060 }
2061
2062 kfree(ctx);
2063 }
2064 }
2065
2066 static const struct fs_context_operations ffs_fs_context_ops = {
2067 .free = ffs_fs_free_fc,
2068 .parse_param = ffs_fs_parse_param,
2069 .get_tree = ffs_fs_get_tree,
2070 };
2071
ffs_fs_init_fs_context(struct fs_context * fc)2072 static int ffs_fs_init_fs_context(struct fs_context *fc)
2073 {
2074 struct ffs_sb_fill_data *ctx;
2075
2076 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2077 if (!ctx)
2078 return -ENOMEM;
2079
2080 ctx->perms.mode = S_IFREG | 0600;
2081 ctx->perms.uid = GLOBAL_ROOT_UID;
2082 ctx->perms.gid = GLOBAL_ROOT_GID;
2083 ctx->root_mode = S_IFDIR | 0500;
2084 ctx->no_disconnect = false;
2085
2086 fc->fs_private = ctx;
2087 fc->ops = &ffs_fs_context_ops;
2088 return 0;
2089 }
2090
2091 static void
ffs_fs_kill_sb(struct super_block * sb)2092 ffs_fs_kill_sb(struct super_block *sb)
2093 {
2094 kill_anon_super(sb);
2095 if (sb->s_fs_info) {
2096 struct ffs_data *ffs = sb->s_fs_info;
2097 ffs->state = FFS_CLOSING;
2098 ffs_data_reset(ffs);
2099 // no configfs accesses from that point on,
2100 // so no further schedule_work() is possible
2101 cancel_work_sync(&ffs->reset_work);
2102 ffs_data_put(ffs);
2103 }
2104 }
2105
2106 static struct file_system_type ffs_fs_type = {
2107 .owner = THIS_MODULE,
2108 .name = "functionfs",
2109 .init_fs_context = ffs_fs_init_fs_context,
2110 .parameters = ffs_fs_fs_parameters,
2111 .kill_sb = ffs_fs_kill_sb,
2112 };
2113 MODULE_ALIAS_FS("functionfs");
2114
2115
2116 /* Driver's main init/cleanup functions *************************************/
2117
functionfs_init(void)2118 static int functionfs_init(void)
2119 {
2120 int ret;
2121
2122 ret = register_filesystem(&ffs_fs_type);
2123 if (!ret)
2124 pr_info("file system registered\n");
2125 else
2126 pr_err("failed registering file system (%d)\n", ret);
2127
2128 return ret;
2129 }
2130
functionfs_cleanup(void)2131 static void functionfs_cleanup(void)
2132 {
2133 pr_info("unloading\n");
2134 unregister_filesystem(&ffs_fs_type);
2135 }
2136
2137
2138 /* ffs_data and ffs_function construction and destruction code **************/
2139
2140 static void ffs_data_clear(struct ffs_data *ffs);
2141
ffs_data_get(struct ffs_data * ffs)2142 static void ffs_data_get(struct ffs_data *ffs)
2143 {
2144 refcount_inc(&ffs->ref);
2145 }
2146
ffs_data_put(struct ffs_data * ffs)2147 static void ffs_data_put(struct ffs_data *ffs)
2148 {
2149 if (refcount_dec_and_test(&ffs->ref)) {
2150 pr_info("%s(): freeing\n", __func__);
2151 ffs_data_clear(ffs);
2152 ffs_release_dev(ffs->private_data);
2153 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2154 swait_active(&ffs->ep0req_completion.wait) ||
2155 waitqueue_active(&ffs->wait));
2156 destroy_workqueue(ffs->io_completion_wq);
2157 kfree(ffs->dev_name);
2158 kfree(ffs);
2159 }
2160 }
2161
ffs_data_closed(struct ffs_data * ffs)2162 static void ffs_data_closed(struct ffs_data *ffs)
2163 {
2164 spin_lock_irq(&ffs->eps_lock);
2165 if (--ffs->opened) { // not the last opener?
2166 spin_unlock_irq(&ffs->eps_lock);
2167 return;
2168 }
2169 if (ffs->no_disconnect) {
2170 struct ffs_epfile *epfiles;
2171
2172 ffs->state = FFS_DEACTIVATED;
2173 epfiles = ffs->epfiles;
2174 ffs->epfiles = NULL;
2175 spin_unlock_irq(&ffs->eps_lock);
2176
2177 if (epfiles)
2178 ffs_epfiles_destroy(ffs->sb, epfiles,
2179 ffs->eps_count);
2180
2181 if (ffs->setup_state == FFS_SETUP_PENDING)
2182 __ffs_ep0_stall(ffs);
2183 } else {
2184 ffs->state = FFS_CLOSING;
2185 spin_unlock_irq(&ffs->eps_lock);
2186 ffs_data_reset(ffs);
2187 }
2188 }
2189
ffs_data_new(const char * dev_name)2190 static struct ffs_data *ffs_data_new(const char *dev_name)
2191 {
2192 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
2193 if (!ffs)
2194 return NULL;
2195
2196 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2197 if (!ffs->io_completion_wq) {
2198 kfree(ffs);
2199 return NULL;
2200 }
2201
2202 refcount_set(&ffs->ref, 1);
2203 ffs->opened = 0;
2204 ffs->state = FFS_READ_DESCRIPTORS;
2205 mutex_init(&ffs->mutex);
2206 spin_lock_init(&ffs->eps_lock);
2207 init_waitqueue_head(&ffs->ev.waitq);
2208 init_waitqueue_head(&ffs->wait);
2209 init_completion(&ffs->ep0req_completion);
2210
2211 /* XXX REVISIT need to update it in some places, or do we? */
2212 ffs->ev.can_stall = 1;
2213
2214 return ffs;
2215 }
2216
ffs_data_clear(struct ffs_data * ffs)2217 static void ffs_data_clear(struct ffs_data *ffs)
2218 {
2219 struct ffs_epfile *epfiles;
2220 unsigned long flags;
2221
2222 ffs_closed(ffs);
2223
2224 BUG_ON(ffs->gadget);
2225
2226 spin_lock_irqsave(&ffs->eps_lock, flags);
2227 epfiles = ffs->epfiles;
2228 ffs->epfiles = NULL;
2229 spin_unlock_irqrestore(&ffs->eps_lock, flags);
2230
2231 /*
2232 * potential race possible between ffs_func_eps_disable
2233 * & ffs_epfile_release therefore maintaining a local
2234 * copy of epfile will save us from use-after-free.
2235 */
2236 if (epfiles) {
2237 ffs_epfiles_destroy(ffs->sb, epfiles, ffs->eps_count);
2238 ffs->epfiles = NULL;
2239 }
2240
2241 if (ffs->ffs_eventfd) {
2242 eventfd_ctx_put(ffs->ffs_eventfd);
2243 ffs->ffs_eventfd = NULL;
2244 }
2245
2246 kfree(ffs->raw_descs_data);
2247 kfree(ffs->raw_strings);
2248 kfree(ffs->stringtabs);
2249 }
2250
ffs_data_reset(struct ffs_data * ffs)2251 static void ffs_data_reset(struct ffs_data *ffs)
2252 {
2253 ffs_data_clear(ffs);
2254
2255 spin_lock_irq(&ffs->eps_lock);
2256 ffs->raw_descs_data = NULL;
2257 ffs->raw_descs = NULL;
2258 ffs->raw_strings = NULL;
2259 ffs->stringtabs = NULL;
2260
2261 ffs->raw_descs_length = 0;
2262 ffs->fs_descs_count = 0;
2263 ffs->hs_descs_count = 0;
2264 ffs->ss_descs_count = 0;
2265
2266 ffs->strings_count = 0;
2267 ffs->interfaces_count = 0;
2268 ffs->eps_count = 0;
2269
2270 ffs->ev.count = 0;
2271
2272 ffs->state = FFS_READ_DESCRIPTORS;
2273 ffs->setup_state = FFS_NO_SETUP;
2274 ffs->flags = 0;
2275
2276 ffs->ms_os_descs_ext_prop_count = 0;
2277 ffs->ms_os_descs_ext_prop_name_len = 0;
2278 ffs->ms_os_descs_ext_prop_data_len = 0;
2279 spin_unlock_irq(&ffs->eps_lock);
2280 }
2281
2282
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)2283 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2284 {
2285 struct usb_gadget_strings **lang;
2286 int first_id;
2287
2288 if ((ffs->state != FFS_ACTIVE
2289 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2290 return -EBADFD;
2291
2292 first_id = usb_string_ids_n(cdev, ffs->strings_count);
2293 if (first_id < 0)
2294 return first_id;
2295
2296 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
2297 if (!ffs->ep0req)
2298 return -ENOMEM;
2299 ffs->ep0req->complete = ffs_ep0_complete;
2300 ffs->ep0req->context = ffs;
2301
2302 lang = ffs->stringtabs;
2303 if (lang) {
2304 for (; *lang; ++lang) {
2305 struct usb_string *str = (*lang)->strings;
2306 int id = first_id;
2307 for (; str->s; ++id, ++str)
2308 str->id = id;
2309 }
2310 }
2311
2312 ffs->gadget = cdev->gadget;
2313 ffs_data_get(ffs);
2314 return 0;
2315 }
2316
functionfs_unbind(struct ffs_data * ffs)2317 static void functionfs_unbind(struct ffs_data *ffs)
2318 {
2319 if (!WARN_ON(!ffs->gadget)) {
2320 /* dequeue before freeing ep0req */
2321 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
2322 mutex_lock(&ffs->mutex);
2323 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
2324 ffs->ep0req = NULL;
2325 ffs->gadget = NULL;
2326 clear_bit(FFS_FL_BOUND, &ffs->flags);
2327 mutex_unlock(&ffs->mutex);
2328 ffs_data_put(ffs);
2329 }
2330 }
2331
ffs_epfiles_create(struct ffs_data * ffs)2332 static int ffs_epfiles_create(struct ffs_data *ffs)
2333 {
2334 struct ffs_epfile *epfile, *epfiles;
2335 unsigned i, count;
2336 int err;
2337
2338 count = ffs->eps_count;
2339 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
2340 if (!epfiles)
2341 return -ENOMEM;
2342
2343 epfile = epfiles;
2344 for (i = 1; i <= count; ++i, ++epfile) {
2345 epfile->ffs = ffs;
2346 mutex_init(&epfile->mutex);
2347 mutex_init(&epfile->dmabufs_mutex);
2348 INIT_LIST_HEAD(&epfile->dmabufs);
2349 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2350 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
2351 else
2352 sprintf(epfile->name, "ep%u", i);
2353 err = ffs_sb_create_file(ffs->sb, epfile->name,
2354 epfile, &ffs_epfile_operations);
2355 if (err) {
2356 ffs_epfiles_destroy(ffs->sb, epfiles, i - 1);
2357 return err;
2358 }
2359 }
2360
2361 ffs->epfiles = epfiles;
2362 return 0;
2363 }
2364
clear_one(struct dentry * dentry)2365 static void clear_one(struct dentry *dentry)
2366 {
2367 smp_store_release(&dentry->d_inode->i_private, NULL);
2368 }
2369
ffs_epfiles_destroy(struct super_block * sb,struct ffs_epfile * epfiles,unsigned count)2370 static void ffs_epfiles_destroy(struct super_block *sb,
2371 struct ffs_epfile *epfiles, unsigned count)
2372 {
2373 struct ffs_epfile *epfile = epfiles;
2374 struct dentry *root = sb->s_root;
2375
2376 for (; count; --count, ++epfile) {
2377 BUG_ON(mutex_is_locked(&epfile->mutex));
2378 simple_remove_by_name(root, epfile->name, clear_one);
2379 }
2380
2381 kfree(epfiles);
2382 }
2383
ffs_func_eps_disable(struct ffs_function * func)2384 static void ffs_func_eps_disable(struct ffs_function *func)
2385 {
2386 struct ffs_ep *ep;
2387 struct ffs_epfile *epfile;
2388 unsigned short count;
2389 unsigned long flags;
2390
2391 spin_lock_irqsave(&func->ffs->eps_lock, flags);
2392 count = func->ffs->eps_count;
2393 epfile = func->ffs->epfiles;
2394 ep = func->eps;
2395 while (count--) {
2396 /* pending requests get nuked */
2397 if (ep->ep)
2398 usb_ep_disable(ep->ep);
2399 ++ep;
2400
2401 if (epfile) {
2402 epfile->ep = NULL;
2403 __ffs_epfile_read_buffer_free(epfile);
2404 ++epfile;
2405 }
2406 }
2407 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2408 }
2409
ffs_func_eps_enable(struct ffs_function * func)2410 static int ffs_func_eps_enable(struct ffs_function *func)
2411 {
2412 struct ffs_data *ffs;
2413 struct ffs_ep *ep;
2414 struct ffs_epfile *epfile;
2415 unsigned short count;
2416 unsigned long flags;
2417 int ret = 0;
2418
2419 spin_lock_irqsave(&func->ffs->eps_lock, flags);
2420 ffs = func->ffs;
2421 ep = func->eps;
2422 epfile = ffs->epfiles;
2423 count = ffs->eps_count;
2424 if (!epfile) {
2425 ret = -ENOMEM;
2426 goto done;
2427 }
2428
2429 while (count--) {
2430 ep->ep->driver_data = ep;
2431
2432 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2433 if (ret) {
2434 pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2435 __func__, ep->ep->name, ret);
2436 break;
2437 }
2438
2439 ret = usb_ep_enable(ep->ep);
2440 if (!ret) {
2441 epfile->ep = ep;
2442 epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2443 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2444 } else {
2445 break;
2446 }
2447
2448 ++ep;
2449 ++epfile;
2450 }
2451
2452 wake_up_interruptible(&ffs->wait);
2453 done:
2454 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2455
2456 return ret;
2457 }
2458
2459
2460 /* Parsing and building descriptors and strings *****************************/
2461
2462 /*
2463 * This validates if data pointed by data is a valid USB descriptor as
2464 * well as record how many interfaces, endpoints and strings are
2465 * required by given configuration. Returns address after the
2466 * descriptor or NULL if data is invalid.
2467 */
2468
2469 enum ffs_entity_type {
2470 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2471 };
2472
2473 enum ffs_os_desc_type {
2474 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2475 };
2476
2477 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2478 u8 *valuep,
2479 struct usb_descriptor_header *desc,
2480 void *priv);
2481
2482 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2483 struct usb_os_desc_header *h, void *data,
2484 unsigned len, void *priv);
2485
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv,int * current_class,int * current_subclass)2486 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2487 ffs_entity_callback entity,
2488 void *priv, int *current_class, int *current_subclass)
2489 {
2490 struct usb_descriptor_header *_ds = (void *)data;
2491 u8 length;
2492 int ret;
2493
2494 /* At least two bytes are required: length and type */
2495 if (len < 2) {
2496 pr_vdebug("descriptor too short\n");
2497 return -EINVAL;
2498 }
2499
2500 /* If we have at least as many bytes as the descriptor takes? */
2501 length = _ds->bLength;
2502 if (len < length) {
2503 pr_vdebug("descriptor longer then available data\n");
2504 return -EINVAL;
2505 }
2506
2507 #define __entity_check_INTERFACE(val) 1
2508 #define __entity_check_STRING(val) (val)
2509 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
2510 #define __entity(type, val) do { \
2511 pr_vdebug("entity " #type "(%02x)\n", (val)); \
2512 if (!__entity_check_ ##type(val)) { \
2513 pr_vdebug("invalid entity's value\n"); \
2514 return -EINVAL; \
2515 } \
2516 ret = entity(FFS_ ##type, &val, _ds, priv); \
2517 if (ret < 0) { \
2518 pr_debug("entity " #type "(%02x); ret = %d\n", \
2519 (val), ret); \
2520 return ret; \
2521 } \
2522 } while (0)
2523
2524 /* Parse descriptor depending on type. */
2525 switch (_ds->bDescriptorType) {
2526 case USB_DT_DEVICE:
2527 case USB_DT_CONFIG:
2528 case USB_DT_STRING:
2529 case USB_DT_DEVICE_QUALIFIER:
2530 /* function can't have any of those */
2531 pr_vdebug("descriptor reserved for gadget: %d\n",
2532 _ds->bDescriptorType);
2533 return -EINVAL;
2534
2535 case USB_DT_INTERFACE: {
2536 struct usb_interface_descriptor *ds = (void *)_ds;
2537 pr_vdebug("interface descriptor\n");
2538 if (length != sizeof *ds)
2539 goto inv_length;
2540
2541 __entity(INTERFACE, ds->bInterfaceNumber);
2542 if (ds->iInterface)
2543 __entity(STRING, ds->iInterface);
2544 *current_class = ds->bInterfaceClass;
2545 *current_subclass = ds->bInterfaceSubClass;
2546 }
2547 break;
2548
2549 case USB_DT_ENDPOINT: {
2550 struct usb_endpoint_descriptor *ds = (void *)_ds;
2551 pr_vdebug("endpoint descriptor\n");
2552 if (length != USB_DT_ENDPOINT_SIZE &&
2553 length != USB_DT_ENDPOINT_AUDIO_SIZE)
2554 goto inv_length;
2555 __entity(ENDPOINT, ds->bEndpointAddress);
2556 }
2557 break;
2558
2559 case USB_TYPE_CLASS | 0x01:
2560 if (*current_class == USB_INTERFACE_CLASS_HID) {
2561 pr_vdebug("hid descriptor\n");
2562 if (length != sizeof(struct hid_descriptor))
2563 goto inv_length;
2564 break;
2565 } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2566 pr_vdebug("ccid descriptor\n");
2567 if (length != sizeof(struct ccid_descriptor))
2568 goto inv_length;
2569 break;
2570 } else if (*current_class == USB_CLASS_APP_SPEC &&
2571 *current_subclass == USB_SUBCLASS_DFU) {
2572 pr_vdebug("dfu functional descriptor\n");
2573 if (length != sizeof(struct usb_dfu_functional_descriptor))
2574 goto inv_length;
2575 break;
2576 } else {
2577 pr_vdebug("unknown descriptor: %d for class %d\n",
2578 _ds->bDescriptorType, *current_class);
2579 return -EINVAL;
2580 }
2581
2582 case USB_DT_OTG:
2583 if (length != sizeof(struct usb_otg_descriptor))
2584 goto inv_length;
2585 break;
2586
2587 case USB_DT_INTERFACE_ASSOCIATION: {
2588 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2589 pr_vdebug("interface association descriptor\n");
2590 if (length != sizeof *ds)
2591 goto inv_length;
2592 if (ds->iFunction)
2593 __entity(STRING, ds->iFunction);
2594 }
2595 break;
2596
2597 case USB_DT_SS_ENDPOINT_COMP:
2598 pr_vdebug("EP SS companion descriptor\n");
2599 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2600 goto inv_length;
2601 break;
2602
2603 case USB_DT_OTHER_SPEED_CONFIG:
2604 case USB_DT_INTERFACE_POWER:
2605 case USB_DT_DEBUG:
2606 case USB_DT_SECURITY:
2607 case USB_DT_CS_RADIO_CONTROL:
2608 /* TODO */
2609 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2610 return -EINVAL;
2611
2612 default:
2613 /* We should never be here */
2614 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2615 return -EINVAL;
2616
2617 inv_length:
2618 pr_vdebug("invalid length: %d (descriptor %d)\n",
2619 _ds->bLength, _ds->bDescriptorType);
2620 return -EINVAL;
2621 }
2622
2623 #undef __entity
2624 #undef __entity_check_DESCRIPTOR
2625 #undef __entity_check_INTERFACE
2626 #undef __entity_check_STRING
2627 #undef __entity_check_ENDPOINT
2628
2629 return length;
2630 }
2631
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2632 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2633 ffs_entity_callback entity, void *priv)
2634 {
2635 const unsigned _len = len;
2636 unsigned long num = 0;
2637 int current_class = -1;
2638 int current_subclass = -1;
2639
2640 for (;;) {
2641 int ret;
2642
2643 if (num == count)
2644 data = NULL;
2645
2646 /* Record "descriptor" entity */
2647 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2648 if (ret < 0) {
2649 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2650 num, ret);
2651 return ret;
2652 }
2653
2654 if (!data)
2655 return _len - len;
2656
2657 ret = ffs_do_single_desc(data, len, entity, priv,
2658 ¤t_class, ¤t_subclass);
2659 if (ret < 0) {
2660 pr_debug("%s returns %d\n", __func__, ret);
2661 return ret;
2662 }
2663
2664 len -= ret;
2665 data += ret;
2666 ++num;
2667 }
2668 }
2669
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2670 static int __ffs_data_do_entity(enum ffs_entity_type type,
2671 u8 *valuep, struct usb_descriptor_header *desc,
2672 void *priv)
2673 {
2674 struct ffs_desc_helper *helper = priv;
2675 struct usb_endpoint_descriptor *d;
2676
2677 switch (type) {
2678 case FFS_DESCRIPTOR:
2679 break;
2680
2681 case FFS_INTERFACE:
2682 /*
2683 * Interfaces are indexed from zero so if we
2684 * encountered interface "n" then there are at least
2685 * "n+1" interfaces.
2686 */
2687 if (*valuep >= helper->interfaces_count)
2688 helper->interfaces_count = *valuep + 1;
2689 break;
2690
2691 case FFS_STRING:
2692 /*
2693 * Strings are indexed from 1 (0 is reserved
2694 * for languages list)
2695 */
2696 if (*valuep > helper->ffs->strings_count)
2697 helper->ffs->strings_count = *valuep;
2698 break;
2699
2700 case FFS_ENDPOINT:
2701 d = (void *)desc;
2702 helper->eps_count++;
2703 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2704 return -EINVAL;
2705 /* Check if descriptors for any speed were already parsed */
2706 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2707 helper->ffs->eps_addrmap[helper->eps_count] =
2708 d->bEndpointAddress;
2709 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2710 d->bEndpointAddress)
2711 return -EINVAL;
2712 break;
2713 }
2714
2715 return 0;
2716 }
2717
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2718 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2719 struct usb_os_desc_header *desc)
2720 {
2721 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2722 u16 w_index = le16_to_cpu(desc->wIndex);
2723
2724 if (bcd_version == 0x1) {
2725 pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2726 "Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2727 } else if (bcd_version != 0x100) {
2728 pr_vdebug("unsupported os descriptors version: 0x%x\n",
2729 bcd_version);
2730 return -EINVAL;
2731 }
2732 switch (w_index) {
2733 case 0x4:
2734 *next_type = FFS_OS_DESC_EXT_COMPAT;
2735 break;
2736 case 0x5:
2737 *next_type = FFS_OS_DESC_EXT_PROP;
2738 break;
2739 default:
2740 pr_vdebug("unsupported os descriptor type: %d", w_index);
2741 return -EINVAL;
2742 }
2743
2744 return sizeof(*desc);
2745 }
2746
2747 /*
2748 * Process all extended compatibility/extended property descriptors
2749 * of a feature descriptor
2750 */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2751 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2752 enum ffs_os_desc_type type,
2753 u16 feature_count,
2754 ffs_os_desc_callback entity,
2755 void *priv,
2756 struct usb_os_desc_header *h)
2757 {
2758 int ret;
2759 const unsigned _len = len;
2760
2761 /* loop over all ext compat/ext prop descriptors */
2762 while (feature_count--) {
2763 ret = entity(type, h, data, len, priv);
2764 if (ret < 0) {
2765 pr_debug("bad OS descriptor, type: %d\n", type);
2766 return ret;
2767 }
2768 data += ret;
2769 len -= ret;
2770 }
2771 return _len - len;
2772 }
2773
2774 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2775 static int __must_check ffs_do_os_descs(unsigned count,
2776 char *data, unsigned len,
2777 ffs_os_desc_callback entity, void *priv)
2778 {
2779 const unsigned _len = len;
2780 unsigned long num = 0;
2781
2782 for (num = 0; num < count; ++num) {
2783 int ret;
2784 enum ffs_os_desc_type type;
2785 u16 feature_count;
2786 struct usb_os_desc_header *desc = (void *)data;
2787
2788 if (len < sizeof(*desc))
2789 return -EINVAL;
2790
2791 /*
2792 * Record "descriptor" entity.
2793 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2794 * Move the data pointer to the beginning of extended
2795 * compatibilities proper or extended properties proper
2796 * portions of the data
2797 */
2798 if (le32_to_cpu(desc->dwLength) > len)
2799 return -EINVAL;
2800
2801 ret = __ffs_do_os_desc_header(&type, desc);
2802 if (ret < 0) {
2803 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2804 num, ret);
2805 return ret;
2806 }
2807 /*
2808 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2809 */
2810 feature_count = le16_to_cpu(desc->wCount);
2811 if (type == FFS_OS_DESC_EXT_COMPAT &&
2812 (feature_count > 255 || desc->Reserved))
2813 return -EINVAL;
2814 len -= ret;
2815 data += ret;
2816
2817 /*
2818 * Process all function/property descriptors
2819 * of this Feature Descriptor
2820 */
2821 ret = ffs_do_single_os_desc(data, len, type,
2822 feature_count, entity, priv, desc);
2823 if (ret < 0) {
2824 pr_debug("%s returns %d\n", __func__, ret);
2825 return ret;
2826 }
2827
2828 len -= ret;
2829 data += ret;
2830 }
2831 return _len - len;
2832 }
2833
2834 /*
2835 * Validate contents of the buffer from userspace related to OS descriptors.
2836 */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2837 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2838 struct usb_os_desc_header *h, void *data,
2839 unsigned len, void *priv)
2840 {
2841 struct ffs_data *ffs = priv;
2842 u8 length;
2843
2844 switch (type) {
2845 case FFS_OS_DESC_EXT_COMPAT: {
2846 struct usb_ext_compat_desc *d = data;
2847 int i;
2848
2849 if (len < sizeof(*d) ||
2850 d->bFirstInterfaceNumber >= ffs->interfaces_count)
2851 return -EINVAL;
2852 if (d->Reserved1 != 1) {
2853 /*
2854 * According to the spec, Reserved1 must be set to 1
2855 * but older kernels incorrectly rejected non-zero
2856 * values. We fix it here to avoid returning EINVAL
2857 * in response to values we used to accept.
2858 */
2859 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2860 d->Reserved1 = 1;
2861 }
2862 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2863 if (d->Reserved2[i])
2864 return -EINVAL;
2865
2866 length = sizeof(struct usb_ext_compat_desc);
2867 }
2868 break;
2869 case FFS_OS_DESC_EXT_PROP: {
2870 struct usb_ext_prop_desc *d = data;
2871 u32 type, pdl;
2872 u16 pnl;
2873
2874 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2875 return -EINVAL;
2876 length = le32_to_cpu(d->dwSize);
2877 if (len < length)
2878 return -EINVAL;
2879 type = le32_to_cpu(d->dwPropertyDataType);
2880 if (type < USB_EXT_PROP_UNICODE ||
2881 type > USB_EXT_PROP_UNICODE_MULTI) {
2882 pr_vdebug("unsupported os descriptor property type: %d",
2883 type);
2884 return -EINVAL;
2885 }
2886 pnl = le16_to_cpu(d->wPropertyNameLength);
2887 if (length < 14 + pnl) {
2888 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2889 length, pnl, type);
2890 return -EINVAL;
2891 }
2892 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2893 if (length != 14 + pnl + pdl) {
2894 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2895 length, pnl, pdl, type);
2896 return -EINVAL;
2897 }
2898 ++ffs->ms_os_descs_ext_prop_count;
2899 /* property name reported to the host as "WCHAR"s */
2900 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2901 ffs->ms_os_descs_ext_prop_data_len += pdl;
2902 }
2903 break;
2904 default:
2905 pr_vdebug("unknown descriptor: %d\n", type);
2906 return -EINVAL;
2907 }
2908 return length;
2909 }
2910
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2911 static int __ffs_data_got_descs(struct ffs_data *ffs,
2912 char *const _data, size_t len)
2913 {
2914 char *data = _data, *raw_descs;
2915 unsigned os_descs_count = 0, counts[3], flags;
2916 int ret = -EINVAL, i;
2917 struct ffs_desc_helper helper;
2918
2919 if (get_unaligned_le32(data + 4) != len)
2920 goto error;
2921
2922 switch (get_unaligned_le32(data)) {
2923 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2924 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2925 data += 8;
2926 len -= 8;
2927 break;
2928 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2929 flags = get_unaligned_le32(data + 8);
2930 ffs->user_flags = flags;
2931 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2932 FUNCTIONFS_HAS_HS_DESC |
2933 FUNCTIONFS_HAS_SS_DESC |
2934 FUNCTIONFS_HAS_MS_OS_DESC |
2935 FUNCTIONFS_VIRTUAL_ADDR |
2936 FUNCTIONFS_EVENTFD |
2937 FUNCTIONFS_ALL_CTRL_RECIP |
2938 FUNCTIONFS_CONFIG0_SETUP)) {
2939 ret = -ENOSYS;
2940 goto error;
2941 }
2942 data += 12;
2943 len -= 12;
2944 break;
2945 default:
2946 goto error;
2947 }
2948
2949 if (flags & FUNCTIONFS_EVENTFD) {
2950 if (len < 4)
2951 goto error;
2952 ffs->ffs_eventfd =
2953 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2954 if (IS_ERR(ffs->ffs_eventfd)) {
2955 ret = PTR_ERR(ffs->ffs_eventfd);
2956 ffs->ffs_eventfd = NULL;
2957 goto error;
2958 }
2959 data += 4;
2960 len -= 4;
2961 }
2962
2963 /* Read fs_count, hs_count and ss_count (if present) */
2964 for (i = 0; i < 3; ++i) {
2965 if (!(flags & (1 << i))) {
2966 counts[i] = 0;
2967 } else if (len < 4) {
2968 goto error;
2969 } else {
2970 counts[i] = get_unaligned_le32(data);
2971 data += 4;
2972 len -= 4;
2973 }
2974 }
2975 if (flags & (1 << i)) {
2976 if (len < 4) {
2977 goto error;
2978 }
2979 os_descs_count = get_unaligned_le32(data);
2980 data += 4;
2981 len -= 4;
2982 }
2983
2984 /* Read descriptors */
2985 raw_descs = data;
2986 helper.ffs = ffs;
2987 for (i = 0; i < 3; ++i) {
2988 if (!counts[i])
2989 continue;
2990 helper.interfaces_count = 0;
2991 helper.eps_count = 0;
2992 ret = ffs_do_descs(counts[i], data, len,
2993 __ffs_data_do_entity, &helper);
2994 if (ret < 0)
2995 goto error;
2996 if (!ffs->eps_count && !ffs->interfaces_count) {
2997 ffs->eps_count = helper.eps_count;
2998 ffs->interfaces_count = helper.interfaces_count;
2999 } else {
3000 if (ffs->eps_count != helper.eps_count) {
3001 ret = -EINVAL;
3002 goto error;
3003 }
3004 if (ffs->interfaces_count != helper.interfaces_count) {
3005 ret = -EINVAL;
3006 goto error;
3007 }
3008 }
3009 data += ret;
3010 len -= ret;
3011 }
3012 if (os_descs_count) {
3013 ret = ffs_do_os_descs(os_descs_count, data, len,
3014 __ffs_data_do_os_desc, ffs);
3015 if (ret < 0)
3016 goto error;
3017 data += ret;
3018 len -= ret;
3019 }
3020
3021 if (raw_descs == data || len) {
3022 ret = -EINVAL;
3023 goto error;
3024 }
3025
3026 ffs->raw_descs_data = _data;
3027 ffs->raw_descs = raw_descs;
3028 ffs->raw_descs_length = data - raw_descs;
3029 ffs->fs_descs_count = counts[0];
3030 ffs->hs_descs_count = counts[1];
3031 ffs->ss_descs_count = counts[2];
3032 ffs->ms_os_descs_count = os_descs_count;
3033
3034 return 0;
3035
3036 error:
3037 kfree(_data);
3038 return ret;
3039 }
3040
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)3041 static int __ffs_data_got_strings(struct ffs_data *ffs,
3042 char *const _data, size_t len)
3043 {
3044 u32 str_count, needed_count, lang_count;
3045 struct usb_gadget_strings **stringtabs, *t;
3046 const char *data = _data;
3047 struct usb_string *s;
3048
3049 if (len < 16 ||
3050 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
3051 get_unaligned_le32(data + 4) != len)
3052 goto error;
3053 str_count = get_unaligned_le32(data + 8);
3054 lang_count = get_unaligned_le32(data + 12);
3055
3056 /* if one is zero the other must be zero */
3057 if (!str_count != !lang_count)
3058 goto error;
3059
3060 /* Do we have at least as many strings as descriptors need? */
3061 needed_count = ffs->strings_count;
3062 if (str_count < needed_count)
3063 goto error;
3064
3065 /*
3066 * If we don't need any strings just return and free all
3067 * memory.
3068 */
3069 if (!needed_count) {
3070 kfree(_data);
3071 return 0;
3072 }
3073
3074 /* Allocate everything in one chunk so there's less maintenance. */
3075 {
3076 unsigned i = 0;
3077 vla_group(d);
3078 vla_item(d, struct usb_gadget_strings *, stringtabs,
3079 size_add(lang_count, 1));
3080 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3081 vla_item(d, struct usb_string, strings,
3082 size_mul(lang_count, (needed_count + 1)));
3083
3084 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3085
3086 if (!vlabuf) {
3087 kfree(_data);
3088 return -ENOMEM;
3089 }
3090
3091 /* Initialize the VLA pointers */
3092 stringtabs = vla_ptr(vlabuf, d, stringtabs);
3093 t = vla_ptr(vlabuf, d, stringtab);
3094 i = lang_count;
3095 do {
3096 *stringtabs++ = t++;
3097 } while (--i);
3098 *stringtabs = NULL;
3099
3100 /* stringtabs = vlabuf = d_stringtabs for later kfree */
3101 stringtabs = vla_ptr(vlabuf, d, stringtabs);
3102 t = vla_ptr(vlabuf, d, stringtab);
3103 s = vla_ptr(vlabuf, d, strings);
3104 }
3105
3106 /* For each language */
3107 data += 16;
3108 len -= 16;
3109
3110 do { /* lang_count > 0 so we can use do-while */
3111 unsigned needed = needed_count;
3112 u32 str_per_lang = str_count;
3113
3114 if (len < 3)
3115 goto error_free;
3116 t->language = get_unaligned_le16(data);
3117 t->strings = s;
3118 ++t;
3119
3120 data += 2;
3121 len -= 2;
3122
3123 /* For each string */
3124 do { /* str_count > 0 so we can use do-while */
3125 size_t length = strnlen(data, len);
3126
3127 if (length == len)
3128 goto error_free;
3129
3130 /*
3131 * User may provide more strings then we need,
3132 * if that's the case we simply ignore the
3133 * rest
3134 */
3135 if (needed) {
3136 /*
3137 * s->id will be set while adding
3138 * function to configuration so for
3139 * now just leave garbage here.
3140 */
3141 s->s = data;
3142 --needed;
3143 ++s;
3144 }
3145
3146 data += length + 1;
3147 len -= length + 1;
3148 } while (--str_per_lang);
3149
3150 s->id = 0; /* terminator */
3151 s->s = NULL;
3152 ++s;
3153
3154 } while (--lang_count);
3155
3156 /* Some garbage left? */
3157 if (len)
3158 goto error_free;
3159
3160 /* Done! */
3161 ffs->stringtabs = stringtabs;
3162 ffs->raw_strings = _data;
3163
3164 return 0;
3165
3166 error_free:
3167 kfree(stringtabs);
3168 error:
3169 kfree(_data);
3170 return -EINVAL;
3171 }
3172
3173
3174 /* Events handling and management *******************************************/
3175
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)3176 static void __ffs_event_add(struct ffs_data *ffs,
3177 enum usb_functionfs_event_type type)
3178 {
3179 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3180 int neg = 0;
3181
3182 /*
3183 * Abort any unhandled setup
3184 *
3185 * We do not need to worry about some cmpxchg() changing value
3186 * of ffs->setup_state without holding the lock because when
3187 * state is FFS_SETUP_PENDING cmpxchg() in several places in
3188 * the source does nothing.
3189 */
3190 if (ffs->setup_state == FFS_SETUP_PENDING)
3191 ffs->setup_state = FFS_SETUP_CANCELLED;
3192
3193 /*
3194 * Logic of this function guarantees that there are at most four pending
3195 * evens on ffs->ev.types queue. This is important because the queue
3196 * has space for four elements only and __ffs_ep0_read_events function
3197 * depends on that limit as well. If more event types are added, those
3198 * limits have to be revisited or guaranteed to still hold.
3199 */
3200 switch (type) {
3201 case FUNCTIONFS_RESUME:
3202 rem_type2 = FUNCTIONFS_SUSPEND;
3203 fallthrough;
3204 case FUNCTIONFS_SUSPEND:
3205 case FUNCTIONFS_SETUP:
3206 rem_type1 = type;
3207 /* Discard all similar events */
3208 break;
3209
3210 case FUNCTIONFS_BIND:
3211 case FUNCTIONFS_UNBIND:
3212 case FUNCTIONFS_DISABLE:
3213 case FUNCTIONFS_ENABLE:
3214 /* Discard everything other then power management. */
3215 rem_type1 = FUNCTIONFS_SUSPEND;
3216 rem_type2 = FUNCTIONFS_RESUME;
3217 neg = 1;
3218 break;
3219
3220 default:
3221 WARN(1, "%d: unknown event, this should not happen\n", type);
3222 return;
3223 }
3224
3225 {
3226 u8 *ev = ffs->ev.types, *out = ev;
3227 unsigned n = ffs->ev.count;
3228 for (; n; --n, ++ev)
3229 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3230 *out++ = *ev;
3231 else
3232 pr_vdebug("purging event %d\n", *ev);
3233 ffs->ev.count = out - ffs->ev.types;
3234 }
3235
3236 pr_vdebug("adding event %d\n", type);
3237 ffs->ev.types[ffs->ev.count++] = type;
3238 wake_up_locked(&ffs->ev.waitq);
3239 if (ffs->ffs_eventfd)
3240 eventfd_signal(ffs->ffs_eventfd);
3241 }
3242
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)3243 static void ffs_event_add(struct ffs_data *ffs,
3244 enum usb_functionfs_event_type type)
3245 {
3246 unsigned long flags;
3247 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3248 __ffs_event_add(ffs, type);
3249 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3250 }
3251
3252 /* Bind/unbind USB function hooks *******************************************/
3253
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)3254 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3255 {
3256 int i;
3257
3258 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3259 if (ffs->eps_addrmap[i] == endpoint_address)
3260 return i;
3261 return -ENOENT;
3262 }
3263
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)3264 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3265 struct usb_descriptor_header *desc,
3266 void *priv)
3267 {
3268 struct usb_endpoint_descriptor *ds = (void *)desc;
3269 struct ffs_function *func = priv;
3270 struct ffs_ep *ffs_ep;
3271 unsigned ep_desc_id;
3272 int idx;
3273 static const char *speed_names[] = { "full", "high", "super" };
3274
3275 if (type != FFS_DESCRIPTOR)
3276 return 0;
3277
3278 /*
3279 * If ss_descriptors is not NULL, we are reading super speed
3280 * descriptors; if hs_descriptors is not NULL, we are reading high
3281 * speed descriptors; otherwise, we are reading full speed
3282 * descriptors.
3283 */
3284 if (func->function.ss_descriptors) {
3285 ep_desc_id = 2;
3286 func->function.ss_descriptors[(long)valuep] = desc;
3287 } else if (func->function.hs_descriptors) {
3288 ep_desc_id = 1;
3289 func->function.hs_descriptors[(long)valuep] = desc;
3290 } else {
3291 ep_desc_id = 0;
3292 func->function.fs_descriptors[(long)valuep] = desc;
3293 }
3294
3295 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3296 return 0;
3297
3298 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
3299 if (idx < 0)
3300 return idx;
3301
3302 ffs_ep = func->eps + idx;
3303
3304 if (ffs_ep->descs[ep_desc_id]) {
3305 pr_err("two %sspeed descriptors for EP %d\n",
3306 speed_names[ep_desc_id],
3307 usb_endpoint_num(ds));
3308 return -EINVAL;
3309 }
3310 ffs_ep->descs[ep_desc_id] = ds;
3311
3312 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
3313 if (ffs_ep->ep) {
3314 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3315 if (!ds->wMaxPacketSize)
3316 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3317 } else {
3318 struct usb_request *req;
3319 struct usb_ep *ep;
3320 u8 bEndpointAddress;
3321 u16 wMaxPacketSize;
3322
3323 /*
3324 * We back up bEndpointAddress because autoconfig overwrites
3325 * it with physical endpoint address.
3326 */
3327 bEndpointAddress = ds->bEndpointAddress;
3328 /*
3329 * We back up wMaxPacketSize because autoconfig treats
3330 * endpoint descriptors as if they were full speed.
3331 */
3332 wMaxPacketSize = ds->wMaxPacketSize;
3333 pr_vdebug("autoconfig\n");
3334 ep = usb_ep_autoconfig(func->gadget, ds);
3335 if (!ep)
3336 return -ENOTSUPP;
3337 ep->driver_data = func->eps + idx;
3338
3339 req = usb_ep_alloc_request(ep, GFP_KERNEL);
3340 if (!req)
3341 return -ENOMEM;
3342
3343 ffs_ep->ep = ep;
3344 ffs_ep->req = req;
3345 func->eps_revmap[ds->bEndpointAddress &
3346 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3347 /*
3348 * If we use virtual address mapping, we restore
3349 * original bEndpointAddress value.
3350 */
3351 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3352 ds->bEndpointAddress = bEndpointAddress;
3353 /*
3354 * Restore wMaxPacketSize which was potentially
3355 * overwritten by autoconfig.
3356 */
3357 ds->wMaxPacketSize = wMaxPacketSize;
3358 }
3359 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3360
3361 return 0;
3362 }
3363
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)3364 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3365 struct usb_descriptor_header *desc,
3366 void *priv)
3367 {
3368 struct ffs_function *func = priv;
3369 unsigned idx;
3370 u8 newValue;
3371
3372 switch (type) {
3373 default:
3374 case FFS_DESCRIPTOR:
3375 /* Handled in previous pass by __ffs_func_bind_do_descs() */
3376 return 0;
3377
3378 case FFS_INTERFACE:
3379 idx = *valuep;
3380 if (func->interfaces_nums[idx] < 0) {
3381 int id = usb_interface_id(func->conf, &func->function);
3382 if (id < 0)
3383 return id;
3384 func->interfaces_nums[idx] = id;
3385 }
3386 newValue = func->interfaces_nums[idx];
3387 break;
3388
3389 case FFS_STRING:
3390 /* String' IDs are allocated when fsf_data is bound to cdev */
3391 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3392 break;
3393
3394 case FFS_ENDPOINT:
3395 /*
3396 * USB_DT_ENDPOINT are handled in
3397 * __ffs_func_bind_do_descs().
3398 */
3399 if (desc->bDescriptorType == USB_DT_ENDPOINT)
3400 return 0;
3401
3402 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3403 if (!func->eps[idx].ep)
3404 return -EINVAL;
3405
3406 {
3407 struct usb_endpoint_descriptor **descs;
3408 descs = func->eps[idx].descs;
3409 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3410 }
3411 break;
3412 }
3413
3414 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3415 *valuep = newValue;
3416 return 0;
3417 }
3418
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)3419 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3420 struct usb_os_desc_header *h, void *data,
3421 unsigned len, void *priv)
3422 {
3423 struct ffs_function *func = priv;
3424 u8 length = 0;
3425
3426 switch (type) {
3427 case FFS_OS_DESC_EXT_COMPAT: {
3428 struct usb_ext_compat_desc *desc = data;
3429 struct usb_os_desc_table *t;
3430
3431 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3432 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3433 memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3434 sizeof_field(struct usb_ext_compat_desc, IDs));
3435 length = sizeof(*desc);
3436 }
3437 break;
3438 case FFS_OS_DESC_EXT_PROP: {
3439 struct usb_ext_prop_desc *desc = data;
3440 struct usb_os_desc_table *t;
3441 struct usb_os_desc_ext_prop *ext_prop;
3442 char *ext_prop_name;
3443 char *ext_prop_data;
3444
3445 t = &func->function.os_desc_table[h->interface];
3446 t->if_id = func->interfaces_nums[h->interface];
3447
3448 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3449 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3450
3451 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3452 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3453 ext_prop->data_len = le32_to_cpu(*(__le32 *)
3454 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3455 length = ext_prop->name_len + ext_prop->data_len + 14;
3456
3457 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3458 func->ffs->ms_os_descs_ext_prop_name_avail +=
3459 ext_prop->name_len;
3460
3461 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3462 func->ffs->ms_os_descs_ext_prop_data_avail +=
3463 ext_prop->data_len;
3464 memcpy(ext_prop_data,
3465 usb_ext_prop_data_ptr(data, ext_prop->name_len),
3466 ext_prop->data_len);
3467 /* unicode data reported to the host as "WCHAR"s */
3468 switch (ext_prop->type) {
3469 case USB_EXT_PROP_UNICODE:
3470 case USB_EXT_PROP_UNICODE_ENV:
3471 case USB_EXT_PROP_UNICODE_LINK:
3472 case USB_EXT_PROP_UNICODE_MULTI:
3473 ext_prop->data_len *= 2;
3474 break;
3475 }
3476 ext_prop->data = ext_prop_data;
3477
3478 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3479 ext_prop->name_len);
3480 /* property name reported to the host as "WCHAR"s */
3481 ext_prop->name_len *= 2;
3482 ext_prop->name = ext_prop_name;
3483
3484 t->os_desc->ext_prop_len +=
3485 ext_prop->name_len + ext_prop->data_len + 14;
3486 ++t->os_desc->ext_prop_count;
3487 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3488 }
3489 break;
3490 default:
3491 pr_vdebug("unknown descriptor: %d\n", type);
3492 }
3493
3494 return length;
3495 }
3496
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)3497 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3498 struct usb_configuration *c)
3499 {
3500 struct ffs_function *func = ffs_func_from_usb(f);
3501 struct f_fs_opts *ffs_opts =
3502 container_of(f->fi, struct f_fs_opts, func_inst);
3503 struct ffs_data *ffs_data;
3504 int ret;
3505
3506 /*
3507 * Legacy gadget triggers binding in functionfs_ready_callback,
3508 * which already uses locking; taking the same lock here would
3509 * cause a deadlock.
3510 *
3511 * Configfs-enabled gadgets however do need ffs_dev_lock.
3512 */
3513 if (!ffs_opts->no_configfs)
3514 ffs_dev_lock();
3515 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3516 ffs_data = ffs_opts->dev->ffs_data;
3517 if (!ffs_opts->no_configfs)
3518 ffs_dev_unlock();
3519 if (ret)
3520 return ERR_PTR(ret);
3521
3522 func->ffs = ffs_data;
3523 func->conf = c;
3524 func->gadget = c->cdev->gadget;
3525
3526 /*
3527 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3528 * configurations are bound in sequence with list_for_each_entry,
3529 * in each configuration its functions are bound in sequence
3530 * with list_for_each_entry, so we assume no race condition
3531 * with regard to ffs_opts->bound access
3532 */
3533 if (!ffs_opts->refcnt) {
3534 ret = functionfs_bind(func->ffs, c->cdev);
3535 if (ret)
3536 return ERR_PTR(ret);
3537 }
3538 ffs_opts->refcnt++;
3539 func->function.strings = func->ffs->stringtabs;
3540
3541 return ffs_opts;
3542 }
3543
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3544 static int _ffs_func_bind(struct usb_configuration *c,
3545 struct usb_function *f)
3546 {
3547 struct ffs_function *func = ffs_func_from_usb(f);
3548 struct ffs_data *ffs = func->ffs;
3549
3550 const int full = !!func->ffs->fs_descs_count;
3551 const int high = !!func->ffs->hs_descs_count;
3552 const int super = !!func->ffs->ss_descs_count;
3553
3554 int fs_len, hs_len, ss_len, ret, i;
3555 struct ffs_ep *eps_ptr;
3556
3557 /* Make it a single chunk, less management later on */
3558 vla_group(d);
3559 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3560 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3561 full ? ffs->fs_descs_count + 1 : 0);
3562 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3563 high ? ffs->hs_descs_count + 1 : 0);
3564 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3565 super ? ffs->ss_descs_count + 1 : 0);
3566 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3567 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3568 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3569 vla_item_with_sz(d, char[16], ext_compat,
3570 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3571 vla_item_with_sz(d, struct usb_os_desc, os_desc,
3572 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3573 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3574 ffs->ms_os_descs_ext_prop_count);
3575 vla_item_with_sz(d, char, ext_prop_name,
3576 ffs->ms_os_descs_ext_prop_name_len);
3577 vla_item_with_sz(d, char, ext_prop_data,
3578 ffs->ms_os_descs_ext_prop_data_len);
3579 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3580 char *vlabuf;
3581
3582 /* Has descriptors only for speeds gadget does not support */
3583 if (!(full | high | super))
3584 return -ENOTSUPP;
3585
3586 /* Allocate a single chunk, less management later on */
3587 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3588 if (!vlabuf)
3589 return -ENOMEM;
3590
3591 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3592 ffs->ms_os_descs_ext_prop_name_avail =
3593 vla_ptr(vlabuf, d, ext_prop_name);
3594 ffs->ms_os_descs_ext_prop_data_avail =
3595 vla_ptr(vlabuf, d, ext_prop_data);
3596
3597 /* Copy descriptors */
3598 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3599 ffs->raw_descs_length);
3600
3601 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3602 eps_ptr = vla_ptr(vlabuf, d, eps);
3603 for (i = 0; i < ffs->eps_count; i++)
3604 eps_ptr[i].num = -1;
3605
3606 /* Save pointers
3607 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3608 */
3609 func->eps = vla_ptr(vlabuf, d, eps);
3610 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3611
3612 /*
3613 * Go through all the endpoint descriptors and allocate
3614 * endpoints first, so that later we can rewrite the endpoint
3615 * numbers without worrying that it may be described later on.
3616 */
3617 if (full) {
3618 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3619 fs_len = ffs_do_descs(ffs->fs_descs_count,
3620 vla_ptr(vlabuf, d, raw_descs),
3621 d_raw_descs__sz,
3622 __ffs_func_bind_do_descs, func);
3623 if (fs_len < 0) {
3624 ret = fs_len;
3625 goto error;
3626 }
3627 } else {
3628 fs_len = 0;
3629 }
3630
3631 if (high) {
3632 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3633 hs_len = ffs_do_descs(ffs->hs_descs_count,
3634 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3635 d_raw_descs__sz - fs_len,
3636 __ffs_func_bind_do_descs, func);
3637 if (hs_len < 0) {
3638 ret = hs_len;
3639 goto error;
3640 }
3641 } else {
3642 hs_len = 0;
3643 }
3644
3645 if (super) {
3646 func->function.ss_descriptors = func->function.ssp_descriptors =
3647 vla_ptr(vlabuf, d, ss_descs);
3648 ss_len = ffs_do_descs(ffs->ss_descs_count,
3649 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3650 d_raw_descs__sz - fs_len - hs_len,
3651 __ffs_func_bind_do_descs, func);
3652 if (ss_len < 0) {
3653 ret = ss_len;
3654 goto error;
3655 }
3656 } else {
3657 ss_len = 0;
3658 }
3659
3660 /*
3661 * Now handle interface numbers allocation and interface and
3662 * endpoint numbers rewriting. We can do that in one go
3663 * now.
3664 */
3665 ret = ffs_do_descs(ffs->fs_descs_count +
3666 (high ? ffs->hs_descs_count : 0) +
3667 (super ? ffs->ss_descs_count : 0),
3668 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3669 __ffs_func_bind_do_nums, func);
3670 if (ret < 0)
3671 goto error;
3672
3673 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3674 if (c->cdev->use_os_string) {
3675 for (i = 0; i < ffs->interfaces_count; ++i) {
3676 struct usb_os_desc *desc;
3677
3678 desc = func->function.os_desc_table[i].os_desc =
3679 vla_ptr(vlabuf, d, os_desc) +
3680 i * sizeof(struct usb_os_desc);
3681 desc->ext_compat_id =
3682 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3683 INIT_LIST_HEAD(&desc->ext_prop);
3684 }
3685 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3686 vla_ptr(vlabuf, d, raw_descs) +
3687 fs_len + hs_len + ss_len,
3688 d_raw_descs__sz - fs_len - hs_len -
3689 ss_len,
3690 __ffs_func_bind_do_os_desc, func);
3691 if (ret < 0)
3692 goto error;
3693 }
3694 func->function.os_desc_n =
3695 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3696
3697 /* And we're done */
3698 ffs_event_add(ffs, FUNCTIONFS_BIND);
3699 return 0;
3700
3701 error:
3702 /* XXX Do we need to release all claimed endpoints here? */
3703 return ret;
3704 }
3705
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3706 static int ffs_func_bind(struct usb_configuration *c,
3707 struct usb_function *f)
3708 {
3709 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3710 struct ffs_function *func = ffs_func_from_usb(f);
3711 int ret;
3712
3713 if (IS_ERR(ffs_opts))
3714 return PTR_ERR(ffs_opts);
3715
3716 ret = _ffs_func_bind(c, f);
3717 if (ret && !--ffs_opts->refcnt)
3718 functionfs_unbind(func->ffs);
3719
3720 return ret;
3721 }
3722
3723
3724 /* Other USB function hooks *************************************************/
3725
ffs_reset_work(struct work_struct * work)3726 static void ffs_reset_work(struct work_struct *work)
3727 {
3728 struct ffs_data *ffs = container_of(work,
3729 struct ffs_data, reset_work);
3730 ffs_data_reset(ffs);
3731 }
3732
ffs_func_get_alt(struct usb_function * f,unsigned int interface)3733 static int ffs_func_get_alt(struct usb_function *f,
3734 unsigned int interface)
3735 {
3736 struct ffs_function *func = ffs_func_from_usb(f);
3737 int intf = ffs_func_revmap_intf(func, interface);
3738
3739 return (intf < 0) ? intf : func->cur_alt[interface];
3740 }
3741
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3742 static int ffs_func_set_alt(struct usb_function *f,
3743 unsigned interface, unsigned alt)
3744 {
3745 struct ffs_function *func = ffs_func_from_usb(f);
3746 struct ffs_data *ffs = func->ffs;
3747 unsigned long flags;
3748 int ret = 0, intf;
3749
3750 if (alt > MAX_ALT_SETTINGS)
3751 return -EINVAL;
3752
3753 intf = ffs_func_revmap_intf(func, interface);
3754 if (intf < 0)
3755 return intf;
3756
3757 if (ffs->func)
3758 ffs_func_eps_disable(ffs->func);
3759
3760 spin_lock_irqsave(&ffs->eps_lock, flags);
3761 if (ffs->state == FFS_DEACTIVATED) {
3762 ffs->state = FFS_CLOSING;
3763 spin_unlock_irqrestore(&ffs->eps_lock, flags);
3764 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3765 schedule_work(&ffs->reset_work);
3766 return -ENODEV;
3767 }
3768 spin_unlock_irqrestore(&ffs->eps_lock, flags);
3769
3770 if (ffs->state != FFS_ACTIVE)
3771 return -ENODEV;
3772
3773 ffs->func = func;
3774 ret = ffs_func_eps_enable(func);
3775 if (ret >= 0) {
3776 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3777 func->cur_alt[interface] = alt;
3778 }
3779 return ret;
3780 }
3781
ffs_func_disable(struct usb_function * f)3782 static void ffs_func_disable(struct usb_function *f)
3783 {
3784 struct ffs_function *func = ffs_func_from_usb(f);
3785 struct ffs_data *ffs = func->ffs;
3786 unsigned long flags;
3787
3788 if (ffs->func)
3789 ffs_func_eps_disable(ffs->func);
3790
3791 spin_lock_irqsave(&ffs->eps_lock, flags);
3792 if (ffs->state == FFS_DEACTIVATED) {
3793 ffs->state = FFS_CLOSING;
3794 spin_unlock_irqrestore(&ffs->eps_lock, flags);
3795 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3796 schedule_work(&ffs->reset_work);
3797 return;
3798 }
3799 spin_unlock_irqrestore(&ffs->eps_lock, flags);
3800
3801 if (ffs->state == FFS_ACTIVE) {
3802 ffs->func = NULL;
3803 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3804 }
3805 }
3806
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3807 static int ffs_func_setup(struct usb_function *f,
3808 const struct usb_ctrlrequest *creq)
3809 {
3810 struct ffs_function *func = ffs_func_from_usb(f);
3811 struct ffs_data *ffs = func->ffs;
3812 unsigned long flags;
3813 int ret;
3814
3815 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3816 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3817 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3818 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3819 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3820
3821 /*
3822 * Most requests directed to interface go through here
3823 * (notable exceptions are set/get interface) so we need to
3824 * handle them. All other either handled by composite or
3825 * passed to usb_configuration->setup() (if one is set). No
3826 * matter, we will handle requests directed to endpoint here
3827 * as well (as it's straightforward). Other request recipient
3828 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3829 * is being used.
3830 */
3831 if (ffs->state != FFS_ACTIVE)
3832 return -ENODEV;
3833
3834 switch (creq->bRequestType & USB_RECIP_MASK) {
3835 case USB_RECIP_INTERFACE:
3836 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3837 if (ret < 0)
3838 return ret;
3839 break;
3840
3841 case USB_RECIP_ENDPOINT:
3842 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3843 if (ret < 0)
3844 return ret;
3845 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3846 ret = func->ffs->eps_addrmap[ret];
3847 break;
3848
3849 default:
3850 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3851 ret = le16_to_cpu(creq->wIndex);
3852 else
3853 return -EOPNOTSUPP;
3854 }
3855
3856 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3857 ffs->ev.setup = *creq;
3858 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3859 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3860 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3861
3862 return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3863 }
3864
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3865 static bool ffs_func_req_match(struct usb_function *f,
3866 const struct usb_ctrlrequest *creq,
3867 bool config0)
3868 {
3869 struct ffs_function *func = ffs_func_from_usb(f);
3870
3871 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3872 return false;
3873
3874 switch (creq->bRequestType & USB_RECIP_MASK) {
3875 case USB_RECIP_INTERFACE:
3876 return (ffs_func_revmap_intf(func,
3877 le16_to_cpu(creq->wIndex)) >= 0);
3878 case USB_RECIP_ENDPOINT:
3879 return (ffs_func_revmap_ep(func,
3880 le16_to_cpu(creq->wIndex)) >= 0);
3881 default:
3882 return (bool) (func->ffs->user_flags &
3883 FUNCTIONFS_ALL_CTRL_RECIP);
3884 }
3885 }
3886
ffs_func_suspend(struct usb_function * f)3887 static void ffs_func_suspend(struct usb_function *f)
3888 {
3889 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3890 }
3891
ffs_func_resume(struct usb_function * f)3892 static void ffs_func_resume(struct usb_function *f)
3893 {
3894 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3895 }
3896
3897
3898 /* Endpoint and interface numbers reverse mapping ***************************/
3899
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3900 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3901 {
3902 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3903 return num ? num : -EDOM;
3904 }
3905
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3906 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3907 {
3908 short *nums = func->interfaces_nums;
3909 unsigned count = func->ffs->interfaces_count;
3910
3911 for (; count; --count, ++nums) {
3912 if (*nums >= 0 && *nums == intf)
3913 return nums - func->interfaces_nums;
3914 }
3915
3916 return -EDOM;
3917 }
3918
3919
3920 /* Devices management *******************************************************/
3921
3922 static LIST_HEAD(ffs_devices);
3923
_ffs_do_find_dev(const char * name)3924 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3925 {
3926 struct ffs_dev *dev;
3927
3928 if (!name)
3929 return NULL;
3930
3931 list_for_each_entry(dev, &ffs_devices, entry) {
3932 if (strcmp(dev->name, name) == 0)
3933 return dev;
3934 }
3935
3936 return NULL;
3937 }
3938
3939 /*
3940 * ffs_lock must be taken by the caller of this function
3941 */
_ffs_get_single_dev(void)3942 static struct ffs_dev *_ffs_get_single_dev(void)
3943 {
3944 struct ffs_dev *dev;
3945
3946 if (list_is_singular(&ffs_devices)) {
3947 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3948 if (dev->single)
3949 return dev;
3950 }
3951
3952 return NULL;
3953 }
3954
3955 /*
3956 * ffs_lock must be taken by the caller of this function
3957 */
_ffs_find_dev(const char * name)3958 static struct ffs_dev *_ffs_find_dev(const char *name)
3959 {
3960 struct ffs_dev *dev;
3961
3962 dev = _ffs_get_single_dev();
3963 if (dev)
3964 return dev;
3965
3966 return _ffs_do_find_dev(name);
3967 }
3968
3969 /* Configfs support *********************************************************/
3970
to_ffs_opts(struct config_item * item)3971 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3972 {
3973 return container_of(to_config_group(item), struct f_fs_opts,
3974 func_inst.group);
3975 }
3976
f_fs_opts_ready_show(struct config_item * item,char * page)3977 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3978 {
3979 struct f_fs_opts *opts = to_ffs_opts(item);
3980 int ready;
3981
3982 ffs_dev_lock();
3983 ready = opts->dev->desc_ready;
3984 ffs_dev_unlock();
3985
3986 return sprintf(page, "%d\n", ready);
3987 }
3988
3989 CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3990
3991 static struct configfs_attribute *ffs_attrs[] = {
3992 &f_fs_opts_attr_ready,
3993 NULL,
3994 };
3995
ffs_attr_release(struct config_item * item)3996 static void ffs_attr_release(struct config_item *item)
3997 {
3998 struct f_fs_opts *opts = to_ffs_opts(item);
3999
4000 usb_put_function_instance(&opts->func_inst);
4001 }
4002
4003 static struct configfs_item_operations ffs_item_ops = {
4004 .release = ffs_attr_release,
4005 };
4006
4007 static const struct config_item_type ffs_func_type = {
4008 .ct_item_ops = &ffs_item_ops,
4009 .ct_attrs = ffs_attrs,
4010 .ct_owner = THIS_MODULE,
4011 };
4012
4013
4014 /* Function registration interface ******************************************/
4015
ffs_free_inst(struct usb_function_instance * f)4016 static void ffs_free_inst(struct usb_function_instance *f)
4017 {
4018 struct f_fs_opts *opts;
4019
4020 opts = to_f_fs_opts(f);
4021 ffs_release_dev(opts->dev);
4022 ffs_dev_lock();
4023 _ffs_free_dev(opts->dev);
4024 ffs_dev_unlock();
4025 kfree(opts);
4026 }
4027
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)4028 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
4029 {
4030 if (strlen(name) >= sizeof_field(struct ffs_dev, name))
4031 return -ENAMETOOLONG;
4032 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
4033 }
4034
ffs_alloc_inst(void)4035 static struct usb_function_instance *ffs_alloc_inst(void)
4036 {
4037 struct f_fs_opts *opts;
4038 struct ffs_dev *dev;
4039
4040 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
4041 if (!opts)
4042 return ERR_PTR(-ENOMEM);
4043
4044 opts->func_inst.set_inst_name = ffs_set_inst_name;
4045 opts->func_inst.free_func_inst = ffs_free_inst;
4046 ffs_dev_lock();
4047 dev = _ffs_alloc_dev();
4048 ffs_dev_unlock();
4049 if (IS_ERR(dev)) {
4050 kfree(opts);
4051 return ERR_CAST(dev);
4052 }
4053 opts->dev = dev;
4054 dev->opts = opts;
4055
4056 config_group_init_type_name(&opts->func_inst.group, "",
4057 &ffs_func_type);
4058 return &opts->func_inst;
4059 }
4060
ffs_free(struct usb_function * f)4061 static void ffs_free(struct usb_function *f)
4062 {
4063 kfree(ffs_func_from_usb(f));
4064 }
4065
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)4066 static void ffs_func_unbind(struct usb_configuration *c,
4067 struct usb_function *f)
4068 {
4069 struct ffs_function *func = ffs_func_from_usb(f);
4070 struct ffs_data *ffs = func->ffs;
4071 struct f_fs_opts *opts =
4072 container_of(f->fi, struct f_fs_opts, func_inst);
4073 struct ffs_ep *ep = func->eps;
4074 unsigned count = ffs->eps_count;
4075 unsigned long flags;
4076
4077 if (ffs->func == func) {
4078 ffs_func_eps_disable(func);
4079 ffs->func = NULL;
4080 }
4081
4082 /* Drain any pending AIO completions */
4083 drain_workqueue(ffs->io_completion_wq);
4084
4085 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
4086 if (!--opts->refcnt)
4087 functionfs_unbind(ffs);
4088
4089 /* cleanup after autoconfig */
4090 spin_lock_irqsave(&func->ffs->eps_lock, flags);
4091 while (count--) {
4092 if (ep->ep && ep->req)
4093 usb_ep_free_request(ep->ep, ep->req);
4094 ep->req = NULL;
4095 ++ep;
4096 }
4097 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
4098 kfree(func->eps);
4099 func->eps = NULL;
4100 /*
4101 * eps, descriptors and interfaces_nums are allocated in the
4102 * same chunk so only one free is required.
4103 */
4104 func->function.fs_descriptors = NULL;
4105 func->function.hs_descriptors = NULL;
4106 func->function.ss_descriptors = NULL;
4107 func->function.ssp_descriptors = NULL;
4108 func->interfaces_nums = NULL;
4109
4110 }
4111
ffs_alloc(struct usb_function_instance * fi)4112 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4113 {
4114 struct ffs_function *func;
4115
4116 func = kzalloc(sizeof(*func), GFP_KERNEL);
4117 if (!func)
4118 return ERR_PTR(-ENOMEM);
4119
4120 func->function.name = "Function FS Gadget";
4121
4122 func->function.bind = ffs_func_bind;
4123 func->function.unbind = ffs_func_unbind;
4124 func->function.set_alt = ffs_func_set_alt;
4125 func->function.get_alt = ffs_func_get_alt;
4126 func->function.disable = ffs_func_disable;
4127 func->function.setup = ffs_func_setup;
4128 func->function.req_match = ffs_func_req_match;
4129 func->function.suspend = ffs_func_suspend;
4130 func->function.resume = ffs_func_resume;
4131 func->function.free_func = ffs_free;
4132
4133 return &func->function;
4134 }
4135
4136 /*
4137 * ffs_lock must be taken by the caller of this function
4138 */
_ffs_alloc_dev(void)4139 static struct ffs_dev *_ffs_alloc_dev(void)
4140 {
4141 struct ffs_dev *dev;
4142 int ret;
4143
4144 if (_ffs_get_single_dev())
4145 return ERR_PTR(-EBUSY);
4146
4147 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4148 if (!dev)
4149 return ERR_PTR(-ENOMEM);
4150
4151 if (list_empty(&ffs_devices)) {
4152 ret = functionfs_init();
4153 if (ret) {
4154 kfree(dev);
4155 return ERR_PTR(ret);
4156 }
4157 }
4158
4159 list_add(&dev->entry, &ffs_devices);
4160
4161 return dev;
4162 }
4163
ffs_name_dev(struct ffs_dev * dev,const char * name)4164 int ffs_name_dev(struct ffs_dev *dev, const char *name)
4165 {
4166 struct ffs_dev *existing;
4167 int ret = 0;
4168
4169 ffs_dev_lock();
4170
4171 existing = _ffs_do_find_dev(name);
4172 if (!existing)
4173 strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4174 else if (existing != dev)
4175 ret = -EBUSY;
4176
4177 ffs_dev_unlock();
4178
4179 return ret;
4180 }
4181 EXPORT_SYMBOL_GPL(ffs_name_dev);
4182
ffs_single_dev(struct ffs_dev * dev)4183 int ffs_single_dev(struct ffs_dev *dev)
4184 {
4185 int ret;
4186
4187 ret = 0;
4188 ffs_dev_lock();
4189
4190 if (!list_is_singular(&ffs_devices))
4191 ret = -EBUSY;
4192 else
4193 dev->single = true;
4194
4195 ffs_dev_unlock();
4196 return ret;
4197 }
4198 EXPORT_SYMBOL_GPL(ffs_single_dev);
4199
4200 /*
4201 * ffs_lock must be taken by the caller of this function
4202 */
_ffs_free_dev(struct ffs_dev * dev)4203 static void _ffs_free_dev(struct ffs_dev *dev)
4204 {
4205 list_del(&dev->entry);
4206
4207 kfree(dev);
4208 if (list_empty(&ffs_devices))
4209 functionfs_cleanup();
4210 }
4211
ffs_acquire_dev(const char * dev_name,struct ffs_data * ffs_data)4212 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4213 {
4214 int ret = 0;
4215 struct ffs_dev *ffs_dev;
4216
4217 ffs_dev_lock();
4218
4219 ffs_dev = _ffs_find_dev(dev_name);
4220 if (!ffs_dev) {
4221 ret = -ENOENT;
4222 } else if (ffs_dev->mounted) {
4223 ret = -EBUSY;
4224 } else if (ffs_dev->ffs_acquire_dev_callback &&
4225 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4226 ret = -ENOENT;
4227 } else {
4228 ffs_dev->mounted = true;
4229 ffs_dev->ffs_data = ffs_data;
4230 ffs_data->private_data = ffs_dev;
4231 }
4232
4233 ffs_dev_unlock();
4234 return ret;
4235 }
4236
ffs_release_dev(struct ffs_dev * ffs_dev)4237 static void ffs_release_dev(struct ffs_dev *ffs_dev)
4238 {
4239 ffs_dev_lock();
4240
4241 if (ffs_dev && ffs_dev->mounted) {
4242 ffs_dev->mounted = false;
4243 if (ffs_dev->ffs_data) {
4244 ffs_dev->ffs_data->private_data = NULL;
4245 ffs_dev->ffs_data = NULL;
4246 }
4247
4248 if (ffs_dev->ffs_release_dev_callback)
4249 ffs_dev->ffs_release_dev_callback(ffs_dev);
4250 }
4251
4252 ffs_dev_unlock();
4253 }
4254
ffs_ready(struct ffs_data * ffs)4255 static int ffs_ready(struct ffs_data *ffs)
4256 {
4257 struct ffs_dev *ffs_obj;
4258 int ret = 0;
4259
4260 ffs_dev_lock();
4261
4262 ffs_obj = ffs->private_data;
4263 if (!ffs_obj) {
4264 ret = -EINVAL;
4265 goto done;
4266 }
4267 if (WARN_ON(ffs_obj->desc_ready)) {
4268 ret = -EBUSY;
4269 goto done;
4270 }
4271
4272 ffs_obj->desc_ready = true;
4273
4274 if (ffs_obj->ffs_ready_callback) {
4275 ret = ffs_obj->ffs_ready_callback(ffs);
4276 if (ret)
4277 goto done;
4278 }
4279
4280 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
4281 done:
4282 ffs_dev_unlock();
4283 return ret;
4284 }
4285
ffs_closed(struct ffs_data * ffs)4286 static void ffs_closed(struct ffs_data *ffs)
4287 {
4288 struct ffs_dev *ffs_obj;
4289 struct f_fs_opts *opts;
4290 struct config_item *ci;
4291
4292 ffs_dev_lock();
4293
4294 ffs_obj = ffs->private_data;
4295 if (!ffs_obj)
4296 goto done;
4297
4298 ffs_obj->desc_ready = false;
4299
4300 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
4301 ffs_obj->ffs_closed_callback)
4302 ffs_obj->ffs_closed_callback(ffs);
4303
4304 if (ffs_obj->opts)
4305 opts = ffs_obj->opts;
4306 else
4307 goto done;
4308
4309 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4310 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
4311 goto done;
4312
4313 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4314 ffs_dev_unlock();
4315
4316 if (test_bit(FFS_FL_BOUND, &ffs->flags))
4317 unregister_gadget_item(ci);
4318 return;
4319 done:
4320 ffs_dev_unlock();
4321 }
4322
4323 /* Misc helper functions ****************************************************/
4324
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)4325 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4326 {
4327 return nonblock
4328 ? mutex_trylock(mutex) ? 0 : -EAGAIN
4329 : mutex_lock_interruptible(mutex);
4330 }
4331
ffs_prepare_buffer(const char __user * buf,size_t len)4332 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4333 {
4334 char *data;
4335
4336 if (!len)
4337 return NULL;
4338
4339 data = memdup_user(buf, len);
4340 if (IS_ERR(data))
4341 return data;
4342
4343 pr_vdebug("Buffer from user space:\n");
4344 ffs_dump_mem("", data, len);
4345
4346 return data;
4347 }
4348
4349 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4350 MODULE_DESCRIPTION("user mode file system API for USB composite function controllers");
4351 MODULE_LICENSE("GPL");
4352 MODULE_AUTHOR("Michal Nazarewicz");
4353