xref: /linux/drivers/usb/gadget/function/f_fs.c (revision 49233c41cf8546b94d213a5dd877ef07e61b1f3f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/dma-buf.h>
19 #include <linux/dma-fence.h>
20 #include <linux/dma-resv.h>
21 #include <linux/pagemap.h>
22 #include <linux/export.h>
23 #include <linux/fs_parser.h>
24 #include <linux/hid.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/scatterlist.h>
28 #include <linux/sched/signal.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <linux/unaligned.h>
32 
33 #include <linux/usb/ccid.h>
34 #include <linux/usb/composite.h>
35 #include <linux/usb/functionfs.h>
36 #include <linux/usb/func_utils.h>
37 
38 #include <linux/aio.h>
39 #include <linux/kthread.h>
40 #include <linux/poll.h>
41 #include <linux/eventfd.h>
42 
43 #include "u_fs.h"
44 #include "u_os_desc.h"
45 #include "configfs.h"
46 
47 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
48 #define MAX_ALT_SETTINGS	2		  /* Allow up to 2 alt settings to be set. */
49 
50 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000
51 
52 MODULE_IMPORT_NS("DMA_BUF");
53 
54 /* Reference counter handling */
55 static void ffs_data_get(struct ffs_data *ffs);
56 static void ffs_data_put(struct ffs_data *ffs);
57 /* Creates new ffs_data object. */
58 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
59 	__attribute__((malloc));
60 
61 /* Opened counter handling. */
62 static void ffs_data_closed(struct ffs_data *ffs);
63 
64 /* Called with ffs->mutex held; take over ownership of data. */
65 static int __must_check
66 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
67 static int __must_check
68 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
69 
70 
71 /* The function structure ***************************************************/
72 
73 struct ffs_ep;
74 
75 struct ffs_function {
76 	struct usb_configuration	*conf;
77 	struct usb_gadget		*gadget;
78 	struct ffs_data			*ffs;
79 
80 	struct ffs_ep			*eps;
81 	u8				eps_revmap[16];
82 	short				*interfaces_nums;
83 
84 	struct usb_function		function;
85 	int				cur_alt[MAX_CONFIG_INTERFACES];
86 };
87 
88 
ffs_func_from_usb(struct usb_function * f)89 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
90 {
91 	return container_of(f, struct ffs_function, function);
92 }
93 
94 
95 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)96 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
97 {
98 	return (enum ffs_setup_state)
99 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
100 }
101 
102 
103 static void ffs_func_eps_disable(struct ffs_function *func);
104 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
105 
106 static int ffs_func_bind(struct usb_configuration *,
107 			 struct usb_function *);
108 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
109 static int ffs_func_get_alt(struct usb_function *f, unsigned int intf);
110 static void ffs_func_disable(struct usb_function *);
111 static int ffs_func_setup(struct usb_function *,
112 			  const struct usb_ctrlrequest *);
113 static bool ffs_func_req_match(struct usb_function *,
114 			       const struct usb_ctrlrequest *,
115 			       bool config0);
116 static void ffs_func_suspend(struct usb_function *);
117 static void ffs_func_resume(struct usb_function *);
118 
119 
120 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
121 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
122 
123 
124 /* The endpoints structures *************************************************/
125 
126 struct ffs_ep {
127 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
128 	struct usb_request		*req;	/* P: epfile->mutex */
129 
130 	/* [0]: full speed, [1]: high speed, [2]: super speed */
131 	struct usb_endpoint_descriptor	*descs[3];
132 
133 	u8				num;
134 };
135 
136 struct ffs_dmabuf_priv {
137 	struct list_head entry;
138 	struct kref ref;
139 	struct ffs_data *ffs;
140 	struct dma_buf_attachment *attach;
141 	struct sg_table *sgt;
142 	enum dma_data_direction dir;
143 	spinlock_t lock;
144 	u64 context;
145 	struct usb_request *req;	/* P: ffs->eps_lock */
146 	struct usb_ep *ep;		/* P: ffs->eps_lock */
147 };
148 
149 struct ffs_dma_fence {
150 	struct dma_fence base;
151 	struct ffs_dmabuf_priv *priv;
152 	struct work_struct work;
153 };
154 
155 struct ffs_epfile {
156 	/* Protects ep->ep and ep->req. */
157 	struct mutex			mutex;
158 
159 	struct ffs_data			*ffs;
160 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
161 
162 	/*
163 	 * Buffer for holding data from partial reads which may happen since
164 	 * we’re rounding user read requests to a multiple of a max packet size.
165 	 *
166 	 * The pointer is initialised with NULL value and may be set by
167 	 * __ffs_epfile_read_data function to point to a temporary buffer.
168 	 *
169 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
170 	 * data from said buffer and eventually free it.  Importantly, while the
171 	 * function is using the buffer, it sets the pointer to NULL.  This is
172 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
173 	 * can never run concurrently (they are synchronised by epfile->mutex)
174 	 * so the latter will not assign a new value to the pointer.
175 	 *
176 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
177 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
178 	 * value is crux of the synchronisation between ffs_func_eps_disable and
179 	 * __ffs_epfile_read_data.
180 	 *
181 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
182 	 * pointer back to its old value (as described above), but seeing as the
183 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
184 	 * the buffer.
185 	 *
186 	 * == State transitions ==
187 	 *
188 	 * • ptr == NULL:  (initial state)
189 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
190 	 *   ◦ __ffs_epfile_read_buffered:    nop
191 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
192 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
193 	 * • ptr == DROP:
194 	 *   ◦ __ffs_epfile_read_buffer_free: nop
195 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
196 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
197 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
198 	 * • ptr == buf:
199 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
200 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
201 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
202 	 *                                    is always called first
203 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
204 	 * • ptr == NULL and reading:
205 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
206 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
207 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
208 	 *   ◦ reading finishes and …
209 	 *     … all data read:               free buf, go to ptr == NULL
210 	 *     … otherwise:                   go to ptr == buf and reading
211 	 * • ptr == DROP and reading:
212 	 *   ◦ __ffs_epfile_read_buffer_free: nop
213 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
214 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
215 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
216 	 */
217 	struct ffs_buffer		*read_buffer;
218 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
219 
220 	char				name[5];
221 
222 	unsigned char			in;	/* P: ffs->eps_lock */
223 	unsigned char			isoc;	/* P: ffs->eps_lock */
224 
225 	unsigned char			_pad;
226 
227 	/* Protects dmabufs */
228 	struct mutex			dmabufs_mutex;
229 	struct list_head		dmabufs; /* P: dmabufs_mutex */
230 	atomic_t			seqno;
231 };
232 
233 struct ffs_buffer {
234 	size_t length;
235 	char *data;
236 	char storage[] __counted_by(length);
237 };
238 
239 /*  ffs_io_data structure ***************************************************/
240 
241 struct ffs_io_data {
242 	bool aio;
243 	bool read;
244 
245 	struct kiocb *kiocb;
246 	struct iov_iter data;
247 	const void *to_free;
248 	char *buf;
249 
250 	struct mm_struct *mm;
251 	struct work_struct work;
252 
253 	struct usb_ep *ep;
254 	struct usb_request *req;
255 	struct sg_table sgt;
256 	bool use_sg;
257 
258 	struct ffs_data *ffs;
259 
260 	int status;
261 	struct completion done;
262 };
263 
264 struct ffs_desc_helper {
265 	struct ffs_data *ffs;
266 	unsigned interfaces_count;
267 	unsigned eps_count;
268 };
269 
270 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
271 static void ffs_epfiles_destroy(struct super_block *sb,
272 				struct ffs_epfile *epfiles, unsigned count);
273 
274 static int ffs_sb_create_file(struct super_block *sb, const char *name,
275 			      void *data, const struct file_operations *fops);
276 
277 /* Devices management *******************************************************/
278 
279 DEFINE_MUTEX(ffs_lock);
280 EXPORT_SYMBOL_GPL(ffs_lock);
281 
282 static struct ffs_dev *_ffs_find_dev(const char *name);
283 static struct ffs_dev *_ffs_alloc_dev(void);
284 static void _ffs_free_dev(struct ffs_dev *dev);
285 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
286 static void ffs_release_dev(struct ffs_dev *ffs_dev);
287 static int ffs_ready(struct ffs_data *ffs);
288 static void ffs_closed(struct ffs_data *ffs);
289 
290 /* Misc helper functions ****************************************************/
291 
292 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
293 	__attribute__((warn_unused_result, nonnull));
294 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
295 	__attribute__((warn_unused_result, nonnull));
296 
297 
298 /* Control file aka ep0 *****************************************************/
299 
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)300 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
301 {
302 	struct ffs_data *ffs = req->context;
303 
304 	complete(&ffs->ep0req_completion);
305 }
306 
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)307 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
308 	__releases(&ffs->ev.waitq.lock)
309 {
310 	struct usb_request *req = ffs->ep0req;
311 	int ret;
312 
313 	if (!req) {
314 		spin_unlock_irq(&ffs->ev.waitq.lock);
315 		return -EINVAL;
316 	}
317 
318 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
319 
320 	spin_unlock_irq(&ffs->ev.waitq.lock);
321 
322 	req->buf      = data;
323 	req->length   = len;
324 
325 	/*
326 	 * UDC layer requires to provide a buffer even for ZLP, but should
327 	 * not use it at all. Let's provide some poisoned pointer to catch
328 	 * possible bug in the driver.
329 	 */
330 	if (req->buf == NULL)
331 		req->buf = (void *)0xDEADBABE;
332 
333 	reinit_completion(&ffs->ep0req_completion);
334 
335 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
336 	if (ret < 0)
337 		return ret;
338 
339 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
340 	if (ret) {
341 		usb_ep_dequeue(ffs->gadget->ep0, req);
342 		return -EINTR;
343 	}
344 
345 	ffs->setup_state = FFS_NO_SETUP;
346 	return req->status ? req->status : req->actual;
347 }
348 
__ffs_ep0_stall(struct ffs_data * ffs)349 static int __ffs_ep0_stall(struct ffs_data *ffs)
350 {
351 	if (ffs->ev.can_stall) {
352 		pr_vdebug("ep0 stall\n");
353 		usb_ep_set_halt(ffs->gadget->ep0);
354 		ffs->setup_state = FFS_NO_SETUP;
355 		return -EL2HLT;
356 	} else {
357 		pr_debug("bogus ep0 stall!\n");
358 		return -ESRCH;
359 	}
360 }
361 
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)362 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
363 			     size_t len, loff_t *ptr)
364 {
365 	struct ffs_data *ffs = file->private_data;
366 	ssize_t ret;
367 	char *data;
368 
369 	/* Fast check if setup was canceled */
370 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
371 		return -EIDRM;
372 
373 	/* Acquire mutex */
374 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
375 	if (ret < 0)
376 		return ret;
377 
378 	/* Check state */
379 	switch (ffs->state) {
380 	case FFS_READ_DESCRIPTORS:
381 	case FFS_READ_STRINGS:
382 		/* Copy data */
383 		if (len < 16) {
384 			ret = -EINVAL;
385 			break;
386 		}
387 
388 		data = ffs_prepare_buffer(buf, len);
389 		if (IS_ERR(data)) {
390 			ret = PTR_ERR(data);
391 			break;
392 		}
393 
394 		/* Handle data */
395 		if (ffs->state == FFS_READ_DESCRIPTORS) {
396 			pr_info("read descriptors\n");
397 			ret = __ffs_data_got_descs(ffs, data, len);
398 			if (ret < 0)
399 				break;
400 
401 			ffs->state = FFS_READ_STRINGS;
402 			ret = len;
403 		} else {
404 			pr_info("read strings\n");
405 			ret = __ffs_data_got_strings(ffs, data, len);
406 			if (ret < 0)
407 				break;
408 
409 			ret = ffs_epfiles_create(ffs);
410 			if (ret) {
411 				ffs->state = FFS_CLOSING;
412 				break;
413 			}
414 
415 			ffs->state = FFS_ACTIVE;
416 			mutex_unlock(&ffs->mutex);
417 
418 			ret = ffs_ready(ffs);
419 			if (ret < 0) {
420 				ffs->state = FFS_CLOSING;
421 				return ret;
422 			}
423 
424 			return len;
425 		}
426 		break;
427 
428 	case FFS_ACTIVE:
429 		data = NULL;
430 		/*
431 		 * We're called from user space, we can use _irq
432 		 * rather then _irqsave
433 		 */
434 		spin_lock_irq(&ffs->ev.waitq.lock);
435 		switch (ffs_setup_state_clear_cancelled(ffs)) {
436 		case FFS_SETUP_CANCELLED:
437 			ret = -EIDRM;
438 			goto done_spin;
439 
440 		case FFS_NO_SETUP:
441 			ret = -ESRCH;
442 			goto done_spin;
443 
444 		case FFS_SETUP_PENDING:
445 			break;
446 		}
447 
448 		/* FFS_SETUP_PENDING */
449 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
450 			spin_unlock_irq(&ffs->ev.waitq.lock);
451 			ret = __ffs_ep0_stall(ffs);
452 			break;
453 		}
454 
455 		/* FFS_SETUP_PENDING and not stall */
456 		len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength));
457 
458 		spin_unlock_irq(&ffs->ev.waitq.lock);
459 
460 		data = ffs_prepare_buffer(buf, len);
461 		if (IS_ERR(data)) {
462 			ret = PTR_ERR(data);
463 			break;
464 		}
465 
466 		spin_lock_irq(&ffs->ev.waitq.lock);
467 
468 		/*
469 		 * We are guaranteed to be still in FFS_ACTIVE state
470 		 * but the state of setup could have changed from
471 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
472 		 * to check for that.  If that happened we copied data
473 		 * from user space in vain but it's unlikely.
474 		 *
475 		 * For sure we are not in FFS_NO_SETUP since this is
476 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
477 		 * transition can be performed and it's protected by
478 		 * mutex.
479 		 */
480 		if (ffs_setup_state_clear_cancelled(ffs) ==
481 		    FFS_SETUP_CANCELLED) {
482 			ret = -EIDRM;
483 done_spin:
484 			spin_unlock_irq(&ffs->ev.waitq.lock);
485 		} else {
486 			/* unlocks spinlock */
487 			ret = __ffs_ep0_queue_wait(ffs, data, len);
488 		}
489 		kfree(data);
490 		break;
491 
492 	default:
493 		ret = -EBADFD;
494 		break;
495 	}
496 
497 	mutex_unlock(&ffs->mutex);
498 	return ret;
499 }
500 
501 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)502 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
503 				     size_t n)
504 	__releases(&ffs->ev.waitq.lock)
505 {
506 	/*
507 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
508 	 * size of ffs->ev.types array (which is four) so that's how much space
509 	 * we reserve.
510 	 */
511 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
512 	const size_t size = n * sizeof *events;
513 	unsigned i = 0;
514 
515 	memset(events, 0, size);
516 
517 	do {
518 		events[i].type = ffs->ev.types[i];
519 		if (events[i].type == FUNCTIONFS_SETUP) {
520 			events[i].u.setup = ffs->ev.setup;
521 			ffs->setup_state = FFS_SETUP_PENDING;
522 		}
523 	} while (++i < n);
524 
525 	ffs->ev.count -= n;
526 	if (ffs->ev.count)
527 		memmove(ffs->ev.types, ffs->ev.types + n,
528 			ffs->ev.count * sizeof *ffs->ev.types);
529 
530 	spin_unlock_irq(&ffs->ev.waitq.lock);
531 	mutex_unlock(&ffs->mutex);
532 
533 	return copy_to_user(buf, events, size) ? -EFAULT : size;
534 }
535 
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)536 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
537 			    size_t len, loff_t *ptr)
538 {
539 	struct ffs_data *ffs = file->private_data;
540 	char *data = NULL;
541 	size_t n;
542 	int ret;
543 
544 	/* Fast check if setup was canceled */
545 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
546 		return -EIDRM;
547 
548 	/* Acquire mutex */
549 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
550 	if (ret < 0)
551 		return ret;
552 
553 	/* Check state */
554 	if (ffs->state != FFS_ACTIVE) {
555 		ret = -EBADFD;
556 		goto done_mutex;
557 	}
558 
559 	/*
560 	 * We're called from user space, we can use _irq rather then
561 	 * _irqsave
562 	 */
563 	spin_lock_irq(&ffs->ev.waitq.lock);
564 
565 	switch (ffs_setup_state_clear_cancelled(ffs)) {
566 	case FFS_SETUP_CANCELLED:
567 		ret = -EIDRM;
568 		break;
569 
570 	case FFS_NO_SETUP:
571 		n = len / sizeof(struct usb_functionfs_event);
572 		if (!n) {
573 			ret = -EINVAL;
574 			break;
575 		}
576 
577 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
578 			ret = -EAGAIN;
579 			break;
580 		}
581 
582 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
583 							ffs->ev.count)) {
584 			ret = -EINTR;
585 			break;
586 		}
587 
588 		/* unlocks spinlock */
589 		return __ffs_ep0_read_events(ffs, buf,
590 					     min_t(size_t, n, ffs->ev.count));
591 
592 	case FFS_SETUP_PENDING:
593 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
594 			spin_unlock_irq(&ffs->ev.waitq.lock);
595 			ret = __ffs_ep0_stall(ffs);
596 			goto done_mutex;
597 		}
598 
599 		len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength));
600 
601 		spin_unlock_irq(&ffs->ev.waitq.lock);
602 
603 		if (len) {
604 			data = kmalloc(len, GFP_KERNEL);
605 			if (!data) {
606 				ret = -ENOMEM;
607 				goto done_mutex;
608 			}
609 		}
610 
611 		spin_lock_irq(&ffs->ev.waitq.lock);
612 
613 		/* See ffs_ep0_write() */
614 		if (ffs_setup_state_clear_cancelled(ffs) ==
615 		    FFS_SETUP_CANCELLED) {
616 			ret = -EIDRM;
617 			break;
618 		}
619 
620 		/* unlocks spinlock */
621 		ret = __ffs_ep0_queue_wait(ffs, data, len);
622 		if ((ret > 0) && (copy_to_user(buf, data, len)))
623 			ret = -EFAULT;
624 		goto done_mutex;
625 
626 	default:
627 		ret = -EBADFD;
628 		break;
629 	}
630 
631 	spin_unlock_irq(&ffs->ev.waitq.lock);
632 done_mutex:
633 	mutex_unlock(&ffs->mutex);
634 	kfree(data);
635 	return ret;
636 }
637 
638 
639 static void ffs_data_reset(struct ffs_data *ffs);
640 
ffs_ep0_open(struct inode * inode,struct file * file)641 static int ffs_ep0_open(struct inode *inode, struct file *file)
642 {
643 	struct ffs_data *ffs = inode->i_sb->s_fs_info;
644 
645 	spin_lock_irq(&ffs->eps_lock);
646 	if (ffs->state == FFS_CLOSING) {
647 		spin_unlock_irq(&ffs->eps_lock);
648 		return -EBUSY;
649 	}
650 	if (!ffs->opened++ && ffs->state == FFS_DEACTIVATED) {
651 		ffs->state = FFS_CLOSING;
652 		spin_unlock_irq(&ffs->eps_lock);
653 		ffs_data_reset(ffs);
654 	} else {
655 		spin_unlock_irq(&ffs->eps_lock);
656 	}
657 	file->private_data = ffs;
658 
659 	return stream_open(inode, file);
660 }
661 
ffs_ep0_release(struct inode * inode,struct file * file)662 static int ffs_ep0_release(struct inode *inode, struct file *file)
663 {
664 	struct ffs_data *ffs = file->private_data;
665 
666 	ffs_data_closed(ffs);
667 
668 	return 0;
669 }
670 
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)671 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
672 {
673 	struct ffs_data *ffs = file->private_data;
674 	struct usb_gadget *gadget = ffs->gadget;
675 	long ret;
676 
677 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
678 		struct ffs_function *func = ffs->func;
679 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
680 	} else if (gadget && gadget->ops->ioctl) {
681 		ret = gadget->ops->ioctl(gadget, code, value);
682 	} else {
683 		ret = -ENOTTY;
684 	}
685 
686 	return ret;
687 }
688 
ffs_ep0_poll(struct file * file,poll_table * wait)689 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
690 {
691 	struct ffs_data *ffs = file->private_data;
692 	__poll_t mask = EPOLLWRNORM;
693 	int ret;
694 
695 	poll_wait(file, &ffs->ev.waitq, wait);
696 
697 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
698 	if (ret < 0)
699 		return mask;
700 
701 	switch (ffs->state) {
702 	case FFS_READ_DESCRIPTORS:
703 	case FFS_READ_STRINGS:
704 		mask |= EPOLLOUT;
705 		break;
706 
707 	case FFS_ACTIVE:
708 		switch (ffs->setup_state) {
709 		case FFS_NO_SETUP:
710 			if (ffs->ev.count)
711 				mask |= EPOLLIN;
712 			break;
713 
714 		case FFS_SETUP_PENDING:
715 		case FFS_SETUP_CANCELLED:
716 			mask |= (EPOLLIN | EPOLLOUT);
717 			break;
718 		}
719 		break;
720 
721 	case FFS_CLOSING:
722 		break;
723 	case FFS_DEACTIVATED:
724 		break;
725 	}
726 
727 	mutex_unlock(&ffs->mutex);
728 
729 	return mask;
730 }
731 
732 static const struct file_operations ffs_ep0_operations = {
733 
734 	.open =		ffs_ep0_open,
735 	.write =	ffs_ep0_write,
736 	.read =		ffs_ep0_read,
737 	.release =	ffs_ep0_release,
738 	.unlocked_ioctl =	ffs_ep0_ioctl,
739 	.poll =		ffs_ep0_poll,
740 };
741 
742 
743 /* "Normal" endpoints operations ********************************************/
744 
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)745 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
746 {
747 	struct ffs_io_data *io_data = req->context;
748 
749 	if (req->status)
750 		io_data->status = req->status;
751 	else
752 		io_data->status = req->actual;
753 
754 	complete(&io_data->done);
755 }
756 
ffs_copy_to_iter(void * data,int data_len,struct iov_iter * iter)757 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
758 {
759 	ssize_t ret = copy_to_iter(data, data_len, iter);
760 	if (ret == data_len)
761 		return ret;
762 
763 	if (iov_iter_count(iter))
764 		return -EFAULT;
765 
766 	/*
767 	 * Dear user space developer!
768 	 *
769 	 * TL;DR: To stop getting below error message in your kernel log, change
770 	 * user space code using functionfs to align read buffers to a max
771 	 * packet size.
772 	 *
773 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
774 	 * packet size.  When unaligned buffer is passed to functionfs, it
775 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
776 	 *
777 	 * Unfortunately, this means that host may send more data than was
778 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
779 	 * that excess data so it simply drops it.
780 	 *
781 	 * Was the buffer aligned in the first place, no such problem would
782 	 * happen.
783 	 *
784 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
785 	 * by splitting a request into multiple parts.  This splitting may still
786 	 * be a problem though so it’s likely best to align the buffer
787 	 * regardless of it being AIO or not..
788 	 *
789 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
790 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
791 	 * affected.
792 	 */
793 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
794 	       "Align read buffer size to max packet size to avoid the problem.\n",
795 	       data_len, ret);
796 
797 	return ret;
798 }
799 
800 /*
801  * allocate a virtually contiguous buffer and create a scatterlist describing it
802  * @sg_table	- pointer to a place to be filled with sg_table contents
803  * @size	- required buffer size
804  */
ffs_build_sg_list(struct sg_table * sgt,size_t sz)805 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
806 {
807 	struct page **pages;
808 	void *vaddr, *ptr;
809 	unsigned int n_pages;
810 	int i;
811 
812 	vaddr = vmalloc(sz);
813 	if (!vaddr)
814 		return NULL;
815 
816 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
817 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
818 	if (!pages) {
819 		vfree(vaddr);
820 
821 		return NULL;
822 	}
823 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
824 		pages[i] = vmalloc_to_page(ptr);
825 
826 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
827 		kvfree(pages);
828 		vfree(vaddr);
829 
830 		return NULL;
831 	}
832 	kvfree(pages);
833 
834 	return vaddr;
835 }
836 
ffs_alloc_buffer(struct ffs_io_data * io_data,size_t data_len)837 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
838 	size_t data_len)
839 {
840 	if (io_data->use_sg)
841 		return ffs_build_sg_list(&io_data->sgt, data_len);
842 
843 	return kmalloc(data_len, GFP_KERNEL);
844 }
845 
ffs_free_buffer(struct ffs_io_data * io_data)846 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
847 {
848 	if (!io_data->buf)
849 		return;
850 
851 	if (io_data->use_sg) {
852 		sg_free_table(&io_data->sgt);
853 		vfree(io_data->buf);
854 	} else {
855 		kfree(io_data->buf);
856 	}
857 }
858 
ffs_user_copy_worker(struct work_struct * work)859 static void ffs_user_copy_worker(struct work_struct *work)
860 {
861 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
862 						   work);
863 	int ret = io_data->status;
864 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
865 
866 	if (io_data->read && ret > 0) {
867 		kthread_use_mm(io_data->mm);
868 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
869 		kthread_unuse_mm(io_data->mm);
870 	}
871 
872 	io_data->kiocb->ki_complete(io_data->kiocb, ret);
873 
874 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
875 		eventfd_signal(io_data->ffs->ffs_eventfd);
876 
877 	usb_ep_free_request(io_data->ep, io_data->req);
878 
879 	if (io_data->read)
880 		kfree(io_data->to_free);
881 	ffs_free_buffer(io_data);
882 	kfree(io_data);
883 }
884 
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)885 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
886 					 struct usb_request *req)
887 {
888 	struct ffs_io_data *io_data = req->context;
889 	struct ffs_data *ffs = io_data->ffs;
890 
891 	io_data->status = req->status ? req->status : req->actual;
892 
893 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
894 	queue_work(ffs->io_completion_wq, &io_data->work);
895 }
896 
__ffs_epfile_read_buffer_free(struct ffs_epfile * epfile)897 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
898 {
899 	/*
900 	 * See comment in struct ffs_epfile for full read_buffer pointer
901 	 * synchronisation story.
902 	 */
903 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
904 	if (buf && buf != READ_BUFFER_DROP)
905 		kfree(buf);
906 }
907 
908 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_buffered(struct ffs_epfile * epfile,struct iov_iter * iter)909 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
910 					  struct iov_iter *iter)
911 {
912 	/*
913 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
914 	 * the buffer while we are using it.  See comment in struct ffs_epfile
915 	 * for full read_buffer pointer synchronisation story.
916 	 */
917 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
918 	ssize_t ret;
919 	if (!buf || buf == READ_BUFFER_DROP)
920 		return 0;
921 
922 	ret = copy_to_iter(buf->data, buf->length, iter);
923 	if (buf->length == ret) {
924 		kfree(buf);
925 		return ret;
926 	}
927 
928 	if (iov_iter_count(iter)) {
929 		ret = -EFAULT;
930 	} else {
931 		buf->length -= ret;
932 		buf->data += ret;
933 	}
934 
935 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
936 		kfree(buf);
937 
938 	return ret;
939 }
940 
941 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_data(struct ffs_epfile * epfile,void * data,int data_len,struct iov_iter * iter)942 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
943 				      void *data, int data_len,
944 				      struct iov_iter *iter)
945 {
946 	struct ffs_buffer *buf;
947 
948 	ssize_t ret = copy_to_iter(data, data_len, iter);
949 	if (data_len == ret)
950 		return ret;
951 
952 	if (iov_iter_count(iter))
953 		return -EFAULT;
954 
955 	/* See ffs_copy_to_iter for more context. */
956 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
957 		data_len, ret);
958 
959 	data_len -= ret;
960 	buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
961 	if (!buf)
962 		return -ENOMEM;
963 	buf->length = data_len;
964 	buf->data = buf->storage;
965 	memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
966 
967 	/*
968 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
969 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
970 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
971 	 * story.
972 	 */
973 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
974 		kfree(buf);
975 
976 	return ret;
977 }
978 
ffs_epfile_wait_ep(struct file * file)979 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
980 {
981 	struct ffs_epfile *epfile = file->private_data;
982 	struct ffs_ep *ep;
983 	int ret;
984 
985 	/* Wait for endpoint to be enabled */
986 	ep = epfile->ep;
987 	if (!ep) {
988 		if (file->f_flags & O_NONBLOCK)
989 			return ERR_PTR(-EAGAIN);
990 
991 		ret = wait_event_interruptible(
992 				epfile->ffs->wait, (ep = epfile->ep));
993 		if (ret)
994 			return ERR_PTR(-EINTR);
995 	}
996 
997 	return ep;
998 }
999 
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)1000 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
1001 {
1002 	struct ffs_epfile *epfile = file->private_data;
1003 	struct usb_request *req;
1004 	struct ffs_ep *ep;
1005 	char *data = NULL;
1006 	ssize_t ret, data_len = -EINVAL;
1007 	int halt;
1008 
1009 	/* Are we still active? */
1010 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1011 		return -ENODEV;
1012 
1013 	ep = ffs_epfile_wait_ep(file);
1014 	if (IS_ERR(ep))
1015 		return PTR_ERR(ep);
1016 
1017 	/* Do we halt? */
1018 	halt = (!io_data->read == !epfile->in);
1019 	if (halt && epfile->isoc)
1020 		return -EINVAL;
1021 
1022 	/* We will be using request and read_buffer */
1023 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1024 	if (ret)
1025 		goto error;
1026 
1027 	/* Allocate & copy */
1028 	if (!halt) {
1029 		struct usb_gadget *gadget;
1030 
1031 		/*
1032 		 * Do we have buffered data from previous partial read?  Check
1033 		 * that for synchronous case only because we do not have
1034 		 * facility to ‘wake up’ a pending asynchronous read and push
1035 		 * buffered data to it which we would need to make things behave
1036 		 * consistently.
1037 		 */
1038 		if (!io_data->aio && io_data->read) {
1039 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
1040 			if (ret)
1041 				goto error_mutex;
1042 		}
1043 
1044 		/*
1045 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1046 		 * before the waiting completes, so do not assign to 'gadget'
1047 		 * earlier
1048 		 */
1049 		gadget = epfile->ffs->gadget;
1050 
1051 		spin_lock_irq(&epfile->ffs->eps_lock);
1052 		/* In the meantime, endpoint got disabled or changed. */
1053 		if (epfile->ep != ep) {
1054 			ret = -ESHUTDOWN;
1055 			goto error_lock;
1056 		}
1057 		data_len = iov_iter_count(&io_data->data);
1058 		/*
1059 		 * Controller may require buffer size to be aligned to
1060 		 * maxpacketsize of an out endpoint.
1061 		 */
1062 		if (io_data->read)
1063 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1064 
1065 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1066 		spin_unlock_irq(&epfile->ffs->eps_lock);
1067 
1068 		data = ffs_alloc_buffer(io_data, data_len);
1069 		if (!data) {
1070 			ret = -ENOMEM;
1071 			goto error_mutex;
1072 		}
1073 		if (!io_data->read &&
1074 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1075 			ret = -EFAULT;
1076 			goto error_mutex;
1077 		}
1078 	}
1079 
1080 	spin_lock_irq(&epfile->ffs->eps_lock);
1081 
1082 	if (epfile->ep != ep) {
1083 		/* In the meantime, endpoint got disabled or changed. */
1084 		ret = -ESHUTDOWN;
1085 	} else if (halt) {
1086 		ret = usb_ep_set_halt(ep->ep);
1087 		if (!ret)
1088 			ret = -EBADMSG;
1089 	} else if (data_len == -EINVAL) {
1090 		/*
1091 		 * Sanity Check: even though data_len can't be used
1092 		 * uninitialized at the time I write this comment, some
1093 		 * compilers complain about this situation.
1094 		 * In order to keep the code clean from warnings, data_len is
1095 		 * being initialized to -EINVAL during its declaration, which
1096 		 * means we can't rely on compiler anymore to warn no future
1097 		 * changes won't result in data_len being used uninitialized.
1098 		 * For such reason, we're adding this redundant sanity check
1099 		 * here.
1100 		 */
1101 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1102 		ret = -EINVAL;
1103 	} else if (!io_data->aio) {
1104 		bool interrupted = false;
1105 
1106 		req = ep->req;
1107 		if (io_data->use_sg) {
1108 			req->buf = NULL;
1109 			req->sg	= io_data->sgt.sgl;
1110 			req->num_sgs = io_data->sgt.nents;
1111 		} else {
1112 			req->buf = data;
1113 			req->num_sgs = 0;
1114 		}
1115 		req->length = data_len;
1116 
1117 		io_data->buf = data;
1118 
1119 		init_completion(&io_data->done);
1120 		req->context  = io_data;
1121 		req->complete = ffs_epfile_io_complete;
1122 
1123 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1124 		if (ret < 0)
1125 			goto error_lock;
1126 
1127 		spin_unlock_irq(&epfile->ffs->eps_lock);
1128 
1129 		if (wait_for_completion_interruptible(&io_data->done)) {
1130 			spin_lock_irq(&epfile->ffs->eps_lock);
1131 			if (epfile->ep != ep) {
1132 				ret = -ESHUTDOWN;
1133 				goto error_lock;
1134 			}
1135 			/*
1136 			 * To avoid race condition with ffs_epfile_io_complete,
1137 			 * dequeue the request first then check
1138 			 * status. usb_ep_dequeue API should guarantee no race
1139 			 * condition with req->complete callback.
1140 			 */
1141 			usb_ep_dequeue(ep->ep, req);
1142 			spin_unlock_irq(&epfile->ffs->eps_lock);
1143 			wait_for_completion(&io_data->done);
1144 			interrupted = io_data->status < 0;
1145 		}
1146 
1147 		if (interrupted)
1148 			ret = -EINTR;
1149 		else if (io_data->read && io_data->status > 0)
1150 			ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1151 						     &io_data->data);
1152 		else
1153 			ret = io_data->status;
1154 		goto error_mutex;
1155 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1156 		ret = -ENOMEM;
1157 	} else {
1158 		if (io_data->use_sg) {
1159 			req->buf = NULL;
1160 			req->sg	= io_data->sgt.sgl;
1161 			req->num_sgs = io_data->sgt.nents;
1162 		} else {
1163 			req->buf = data;
1164 			req->num_sgs = 0;
1165 		}
1166 		req->length = data_len;
1167 
1168 		io_data->buf = data;
1169 		io_data->ep = ep->ep;
1170 		io_data->req = req;
1171 		io_data->ffs = epfile->ffs;
1172 
1173 		req->context  = io_data;
1174 		req->complete = ffs_epfile_async_io_complete;
1175 
1176 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1177 		if (ret) {
1178 			io_data->req = NULL;
1179 			usb_ep_free_request(ep->ep, req);
1180 			goto error_lock;
1181 		}
1182 
1183 		ret = -EIOCBQUEUED;
1184 		/*
1185 		 * Do not kfree the buffer in this function.  It will be freed
1186 		 * by ffs_user_copy_worker.
1187 		 */
1188 		data = NULL;
1189 	}
1190 
1191 error_lock:
1192 	spin_unlock_irq(&epfile->ffs->eps_lock);
1193 error_mutex:
1194 	mutex_unlock(&epfile->mutex);
1195 error:
1196 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1197 		ffs_free_buffer(io_data);
1198 	return ret;
1199 }
1200 
1201 static int
ffs_epfile_open(struct inode * inode,struct file * file)1202 ffs_epfile_open(struct inode *inode, struct file *file)
1203 {
1204 	struct ffs_data *ffs = inode->i_sb->s_fs_info;
1205 	struct ffs_epfile *epfile;
1206 
1207 	spin_lock_irq(&ffs->eps_lock);
1208 	if (!ffs->opened) {
1209 		spin_unlock_irq(&ffs->eps_lock);
1210 		return -ENODEV;
1211 	}
1212 	/*
1213 	 * we want the state to be FFS_ACTIVE; FFS_ACTIVE alone is
1214 	 * not enough, though - we might have been through FFS_CLOSING
1215 	 * and back to FFS_ACTIVE, with our file already removed.
1216 	 */
1217 	epfile = smp_load_acquire(&inode->i_private);
1218 	if (unlikely(ffs->state != FFS_ACTIVE || !epfile)) {
1219 		spin_unlock_irq(&ffs->eps_lock);
1220 		return -ENODEV;
1221 	}
1222 	ffs->opened++;
1223 	spin_unlock_irq(&ffs->eps_lock);
1224 
1225 	file->private_data = epfile;
1226 	return stream_open(inode, file);
1227 }
1228 
ffs_aio_cancel(struct kiocb * kiocb)1229 static int ffs_aio_cancel(struct kiocb *kiocb)
1230 {
1231 	struct ffs_io_data *io_data = kiocb->private;
1232 	int value;
1233 
1234 	if (io_data && io_data->ep && io_data->req)
1235 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1236 	else
1237 		value = -EINVAL;
1238 
1239 	return value;
1240 }
1241 
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)1242 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1243 {
1244 	struct ffs_io_data io_data, *p = &io_data;
1245 	ssize_t res;
1246 
1247 	if (!is_sync_kiocb(kiocb)) {
1248 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1249 		if (!p)
1250 			return -ENOMEM;
1251 		p->aio = true;
1252 	} else {
1253 		memset(p, 0, sizeof(*p));
1254 		p->aio = false;
1255 	}
1256 
1257 	p->read = false;
1258 	p->kiocb = kiocb;
1259 	p->data = *from;
1260 	p->mm = current->mm;
1261 
1262 	kiocb->private = p;
1263 
1264 	if (p->aio)
1265 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1266 
1267 	res = ffs_epfile_io(kiocb->ki_filp, p);
1268 	if (res == -EIOCBQUEUED)
1269 		return res;
1270 	if (p->aio)
1271 		kfree(p);
1272 	else
1273 		*from = p->data;
1274 	return res;
1275 }
1276 
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)1277 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1278 {
1279 	struct ffs_io_data io_data, *p = &io_data;
1280 	ssize_t res;
1281 
1282 	if (!is_sync_kiocb(kiocb)) {
1283 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1284 		if (!p)
1285 			return -ENOMEM;
1286 		p->aio = true;
1287 	} else {
1288 		memset(p, 0, sizeof(*p));
1289 		p->aio = false;
1290 	}
1291 
1292 	p->read = true;
1293 	p->kiocb = kiocb;
1294 	if (p->aio) {
1295 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1296 		if (!iter_is_ubuf(&p->data) && !p->to_free) {
1297 			kfree(p);
1298 			return -ENOMEM;
1299 		}
1300 	} else {
1301 		p->data = *to;
1302 		p->to_free = NULL;
1303 	}
1304 	p->mm = current->mm;
1305 
1306 	kiocb->private = p;
1307 
1308 	if (p->aio)
1309 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1310 
1311 	res = ffs_epfile_io(kiocb->ki_filp, p);
1312 	if (res == -EIOCBQUEUED)
1313 		return res;
1314 
1315 	if (p->aio) {
1316 		kfree(p->to_free);
1317 		kfree(p);
1318 	} else {
1319 		*to = p->data;
1320 	}
1321 	return res;
1322 }
1323 
ffs_dmabuf_release(struct kref * ref)1324 static void ffs_dmabuf_release(struct kref *ref)
1325 {
1326 	struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1327 	struct dma_buf_attachment *attach = priv->attach;
1328 	struct dma_buf *dmabuf = attach->dmabuf;
1329 
1330 	pr_vdebug("FFS DMABUF release\n");
1331 	dma_buf_unmap_attachment_unlocked(attach, priv->sgt, priv->dir);
1332 
1333 	dma_buf_detach(attach->dmabuf, attach);
1334 	dma_buf_put(dmabuf);
1335 	kfree(priv);
1336 }
1337 
ffs_dmabuf_get(struct dma_buf_attachment * attach)1338 static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1339 {
1340 	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1341 
1342 	kref_get(&priv->ref);
1343 }
1344 
ffs_dmabuf_put(struct dma_buf_attachment * attach)1345 static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1346 {
1347 	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1348 
1349 	kref_put(&priv->ref, ffs_dmabuf_release);
1350 }
1351 
1352 static int
ffs_epfile_release(struct inode * inode,struct file * file)1353 ffs_epfile_release(struct inode *inode, struct file *file)
1354 {
1355 	struct ffs_epfile *epfile = file->private_data;
1356 	struct ffs_dmabuf_priv *priv, *tmp;
1357 	struct ffs_data *ffs = epfile->ffs;
1358 
1359 	mutex_lock(&epfile->dmabufs_mutex);
1360 
1361 	/* Close all attached DMABUFs */
1362 	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1363 		/* Cancel any pending transfer */
1364 		spin_lock_irq(&ffs->eps_lock);
1365 		if (priv->ep && priv->req)
1366 			usb_ep_dequeue(priv->ep, priv->req);
1367 		spin_unlock_irq(&ffs->eps_lock);
1368 
1369 		list_del(&priv->entry);
1370 		ffs_dmabuf_put(priv->attach);
1371 	}
1372 
1373 	mutex_unlock(&epfile->dmabufs_mutex);
1374 
1375 	__ffs_epfile_read_buffer_free(epfile);
1376 	ffs_data_closed(epfile->ffs);
1377 
1378 	return 0;
1379 }
1380 
ffs_dmabuf_cleanup(struct work_struct * work)1381 static void ffs_dmabuf_cleanup(struct work_struct *work)
1382 {
1383 	struct ffs_dma_fence *dma_fence =
1384 		container_of(work, struct ffs_dma_fence, work);
1385 	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1386 	struct dma_buf_attachment *attach = priv->attach;
1387 	struct dma_fence *fence = &dma_fence->base;
1388 
1389 	ffs_dmabuf_put(attach);
1390 	dma_fence_put(fence);
1391 }
1392 
ffs_dmabuf_signal_done(struct ffs_dma_fence * dma_fence,int ret)1393 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1394 {
1395 	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1396 	struct dma_fence *fence = &dma_fence->base;
1397 	bool cookie = dma_fence_begin_signalling();
1398 
1399 	dma_fence_get(fence);
1400 	fence->error = ret;
1401 	dma_fence_signal(fence);
1402 	dma_fence_end_signalling(cookie);
1403 
1404 	/*
1405 	 * The fence will be unref'd in ffs_dmabuf_cleanup.
1406 	 * It can't be done here, as the unref functions might try to lock
1407 	 * the resv object, which would deadlock.
1408 	 */
1409 	INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1410 	queue_work(priv->ffs->io_completion_wq, &dma_fence->work);
1411 }
1412 
ffs_epfile_dmabuf_io_complete(struct usb_ep * ep,struct usb_request * req)1413 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1414 					  struct usb_request *req)
1415 {
1416 	pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1417 	ffs_dmabuf_signal_done(req->context, req->status);
1418 	usb_ep_free_request(ep, req);
1419 }
1420 
ffs_dmabuf_get_driver_name(struct dma_fence * fence)1421 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1422 {
1423 	return "functionfs";
1424 }
1425 
ffs_dmabuf_get_timeline_name(struct dma_fence * fence)1426 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1427 {
1428 	return "";
1429 }
1430 
ffs_dmabuf_fence_release(struct dma_fence * fence)1431 static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1432 {
1433 	struct ffs_dma_fence *dma_fence =
1434 		container_of(fence, struct ffs_dma_fence, base);
1435 
1436 	kfree(dma_fence);
1437 }
1438 
1439 static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1440 	.get_driver_name	= ffs_dmabuf_get_driver_name,
1441 	.get_timeline_name	= ffs_dmabuf_get_timeline_name,
1442 	.release		= ffs_dmabuf_fence_release,
1443 };
1444 
ffs_dma_resv_lock(struct dma_buf * dmabuf,bool nonblock)1445 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1446 {
1447 	if (!nonblock)
1448 		return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1449 
1450 	if (!dma_resv_trylock(dmabuf->resv))
1451 		return -EBUSY;
1452 
1453 	return 0;
1454 }
1455 
1456 static struct dma_buf_attachment *
ffs_dmabuf_find_attachment(struct ffs_epfile * epfile,struct dma_buf * dmabuf)1457 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1458 {
1459 	struct device *dev = epfile->ffs->gadget->dev.parent;
1460 	struct dma_buf_attachment *attach = NULL;
1461 	struct ffs_dmabuf_priv *priv;
1462 
1463 	mutex_lock(&epfile->dmabufs_mutex);
1464 
1465 	list_for_each_entry(priv, &epfile->dmabufs, entry) {
1466 		if (priv->attach->dev == dev
1467 		    && priv->attach->dmabuf == dmabuf) {
1468 			attach = priv->attach;
1469 			break;
1470 		}
1471 	}
1472 
1473 	if (attach)
1474 		ffs_dmabuf_get(attach);
1475 
1476 	mutex_unlock(&epfile->dmabufs_mutex);
1477 
1478 	return attach ?: ERR_PTR(-EPERM);
1479 }
1480 
ffs_dmabuf_attach(struct file * file,int fd)1481 static int ffs_dmabuf_attach(struct file *file, int fd)
1482 {
1483 	bool nonblock = file->f_flags & O_NONBLOCK;
1484 	struct ffs_epfile *epfile = file->private_data;
1485 	struct usb_gadget *gadget = epfile->ffs->gadget;
1486 	struct dma_buf_attachment *attach;
1487 	struct ffs_dmabuf_priv *priv;
1488 	enum dma_data_direction dir;
1489 	struct sg_table *sg_table;
1490 	struct dma_buf *dmabuf;
1491 	int err;
1492 
1493 	if (!gadget || !gadget->sg_supported)
1494 		return -EPERM;
1495 
1496 	dmabuf = dma_buf_get(fd);
1497 	if (IS_ERR(dmabuf))
1498 		return PTR_ERR(dmabuf);
1499 
1500 	attach = dma_buf_attach(dmabuf, gadget->dev.parent);
1501 	if (IS_ERR(attach)) {
1502 		err = PTR_ERR(attach);
1503 		goto err_dmabuf_put;
1504 	}
1505 
1506 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1507 	if (!priv) {
1508 		err = -ENOMEM;
1509 		goto err_dmabuf_detach;
1510 	}
1511 
1512 	dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1513 
1514 	err = ffs_dma_resv_lock(dmabuf, nonblock);
1515 	if (err)
1516 		goto err_free_priv;
1517 
1518 	sg_table = dma_buf_map_attachment(attach, dir);
1519 	dma_resv_unlock(dmabuf->resv);
1520 
1521 	if (IS_ERR(sg_table)) {
1522 		err = PTR_ERR(sg_table);
1523 		goto err_free_priv;
1524 	}
1525 
1526 	attach->importer_priv = priv;
1527 
1528 	priv->sgt = sg_table;
1529 	priv->dir = dir;
1530 	priv->ffs = epfile->ffs;
1531 	priv->attach = attach;
1532 	spin_lock_init(&priv->lock);
1533 	kref_init(&priv->ref);
1534 	priv->context = dma_fence_context_alloc(1);
1535 
1536 	mutex_lock(&epfile->dmabufs_mutex);
1537 	list_add(&priv->entry, &epfile->dmabufs);
1538 	mutex_unlock(&epfile->dmabufs_mutex);
1539 
1540 	return 0;
1541 
1542 err_free_priv:
1543 	kfree(priv);
1544 err_dmabuf_detach:
1545 	dma_buf_detach(dmabuf, attach);
1546 err_dmabuf_put:
1547 	dma_buf_put(dmabuf);
1548 
1549 	return err;
1550 }
1551 
ffs_dmabuf_detach(struct file * file,int fd)1552 static int ffs_dmabuf_detach(struct file *file, int fd)
1553 {
1554 	struct ffs_epfile *epfile = file->private_data;
1555 	struct ffs_data *ffs = epfile->ffs;
1556 	struct device *dev = ffs->gadget->dev.parent;
1557 	struct ffs_dmabuf_priv *priv, *tmp;
1558 	struct dma_buf *dmabuf;
1559 	int ret = -EPERM;
1560 
1561 	dmabuf = dma_buf_get(fd);
1562 	if (IS_ERR(dmabuf))
1563 		return PTR_ERR(dmabuf);
1564 
1565 	mutex_lock(&epfile->dmabufs_mutex);
1566 
1567 	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1568 		if (priv->attach->dev == dev
1569 		    && priv->attach->dmabuf == dmabuf) {
1570 			/* Cancel any pending transfer */
1571 			spin_lock_irq(&ffs->eps_lock);
1572 			if (priv->ep && priv->req)
1573 				usb_ep_dequeue(priv->ep, priv->req);
1574 			spin_unlock_irq(&ffs->eps_lock);
1575 
1576 			list_del(&priv->entry);
1577 
1578 			/* Unref the reference from ffs_dmabuf_attach() */
1579 			ffs_dmabuf_put(priv->attach);
1580 			ret = 0;
1581 			break;
1582 		}
1583 	}
1584 
1585 	mutex_unlock(&epfile->dmabufs_mutex);
1586 	dma_buf_put(dmabuf);
1587 
1588 	return ret;
1589 }
1590 
ffs_dmabuf_transfer(struct file * file,const struct usb_ffs_dmabuf_transfer_req * req)1591 static int ffs_dmabuf_transfer(struct file *file,
1592 			       const struct usb_ffs_dmabuf_transfer_req *req)
1593 {
1594 	bool nonblock = file->f_flags & O_NONBLOCK;
1595 	struct ffs_epfile *epfile = file->private_data;
1596 	struct dma_buf_attachment *attach;
1597 	struct ffs_dmabuf_priv *priv;
1598 	struct ffs_dma_fence *fence;
1599 	struct usb_request *usb_req;
1600 	enum dma_resv_usage resv_dir;
1601 	struct dma_buf *dmabuf;
1602 	unsigned long timeout;
1603 	struct ffs_ep *ep;
1604 	bool cookie;
1605 	u32 seqno;
1606 	long retl;
1607 	int ret;
1608 
1609 	if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1610 		return -EINVAL;
1611 
1612 	dmabuf = dma_buf_get(req->fd);
1613 	if (IS_ERR(dmabuf))
1614 		return PTR_ERR(dmabuf);
1615 
1616 	if (req->length > dmabuf->size || req->length == 0) {
1617 		ret = -EINVAL;
1618 		goto err_dmabuf_put;
1619 	}
1620 
1621 	attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1622 	if (IS_ERR(attach)) {
1623 		ret = PTR_ERR(attach);
1624 		goto err_dmabuf_put;
1625 	}
1626 
1627 	priv = attach->importer_priv;
1628 
1629 	ep = ffs_epfile_wait_ep(file);
1630 	if (IS_ERR(ep)) {
1631 		ret = PTR_ERR(ep);
1632 		goto err_attachment_put;
1633 	}
1634 
1635 	ret = ffs_dma_resv_lock(dmabuf, nonblock);
1636 	if (ret)
1637 		goto err_attachment_put;
1638 
1639 	/* Make sure we don't have writers */
1640 	timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1641 	retl = dma_resv_wait_timeout(dmabuf->resv,
1642 				     dma_resv_usage_rw(epfile->in),
1643 				     true, timeout);
1644 	if (retl == 0)
1645 		retl = -EBUSY;
1646 	if (retl < 0) {
1647 		ret = (int)retl;
1648 		goto err_resv_unlock;
1649 	}
1650 
1651 	ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1652 	if (ret)
1653 		goto err_resv_unlock;
1654 
1655 	fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1656 	if (!fence) {
1657 		ret = -ENOMEM;
1658 		goto err_resv_unlock;
1659 	}
1660 
1661 	fence->priv = priv;
1662 
1663 	spin_lock_irq(&epfile->ffs->eps_lock);
1664 
1665 	/* In the meantime, endpoint got disabled or changed. */
1666 	if (epfile->ep != ep) {
1667 		ret = -ESHUTDOWN;
1668 		goto err_fence_put;
1669 	}
1670 
1671 	usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC);
1672 	if (!usb_req) {
1673 		ret = -ENOMEM;
1674 		goto err_fence_put;
1675 	}
1676 
1677 	/*
1678 	 * usb_ep_queue() guarantees that all transfers are processed in the
1679 	 * order they are enqueued, so we can use a simple incrementing
1680 	 * sequence number for the dma_fence.
1681 	 */
1682 	seqno = atomic_add_return(1, &epfile->seqno);
1683 
1684 	dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops,
1685 		       &priv->lock, priv->context, seqno);
1686 
1687 	resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
1688 
1689 	dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir);
1690 	dma_resv_unlock(dmabuf->resv);
1691 
1692 	/* Now that the dma_fence is in place, queue the transfer. */
1693 
1694 	usb_req->length = req->length;
1695 	usb_req->buf = NULL;
1696 	usb_req->sg = priv->sgt->sgl;
1697 	usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length);
1698 	usb_req->sg_was_mapped = true;
1699 	usb_req->context  = fence;
1700 	usb_req->complete = ffs_epfile_dmabuf_io_complete;
1701 
1702 	cookie = dma_fence_begin_signalling();
1703 	ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC);
1704 	dma_fence_end_signalling(cookie);
1705 	if (!ret) {
1706 		priv->req = usb_req;
1707 		priv->ep = ep->ep;
1708 	} else {
1709 		pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1710 		ffs_dmabuf_signal_done(fence, ret);
1711 		usb_ep_free_request(ep->ep, usb_req);
1712 	}
1713 
1714 	spin_unlock_irq(&epfile->ffs->eps_lock);
1715 	dma_buf_put(dmabuf);
1716 
1717 	return ret;
1718 
1719 err_fence_put:
1720 	spin_unlock_irq(&epfile->ffs->eps_lock);
1721 	dma_fence_put(&fence->base);
1722 err_resv_unlock:
1723 	dma_resv_unlock(dmabuf->resv);
1724 err_attachment_put:
1725 	ffs_dmabuf_put(attach);
1726 err_dmabuf_put:
1727 	dma_buf_put(dmabuf);
1728 
1729 	return ret;
1730 }
1731 
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1732 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1733 			     unsigned long value)
1734 {
1735 	struct ffs_epfile *epfile = file->private_data;
1736 	struct ffs_ep *ep;
1737 	int ret;
1738 
1739 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1740 		return -ENODEV;
1741 
1742 	switch (code) {
1743 	case FUNCTIONFS_DMABUF_ATTACH:
1744 	{
1745 		int fd;
1746 
1747 		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1748 			ret = -EFAULT;
1749 			break;
1750 		}
1751 
1752 		return ffs_dmabuf_attach(file, fd);
1753 	}
1754 	case FUNCTIONFS_DMABUF_DETACH:
1755 	{
1756 		int fd;
1757 
1758 		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1759 			ret = -EFAULT;
1760 			break;
1761 		}
1762 
1763 		return ffs_dmabuf_detach(file, fd);
1764 	}
1765 	case FUNCTIONFS_DMABUF_TRANSFER:
1766 	{
1767 		struct usb_ffs_dmabuf_transfer_req req;
1768 
1769 		if (copy_from_user(&req, (void __user *)value, sizeof(req))) {
1770 			ret = -EFAULT;
1771 			break;
1772 		}
1773 
1774 		return ffs_dmabuf_transfer(file, &req);
1775 	}
1776 	default:
1777 		break;
1778 	}
1779 
1780 	/* Wait for endpoint to be enabled */
1781 	ep = ffs_epfile_wait_ep(file);
1782 	if (IS_ERR(ep))
1783 		return PTR_ERR(ep);
1784 
1785 	spin_lock_irq(&epfile->ffs->eps_lock);
1786 
1787 	/* In the meantime, endpoint got disabled or changed. */
1788 	if (epfile->ep != ep) {
1789 		spin_unlock_irq(&epfile->ffs->eps_lock);
1790 		return -ESHUTDOWN;
1791 	}
1792 
1793 	switch (code) {
1794 	case FUNCTIONFS_FIFO_STATUS:
1795 		ret = usb_ep_fifo_status(epfile->ep->ep);
1796 		break;
1797 	case FUNCTIONFS_FIFO_FLUSH:
1798 		usb_ep_fifo_flush(epfile->ep->ep);
1799 		ret = 0;
1800 		break;
1801 	case FUNCTIONFS_CLEAR_HALT:
1802 		ret = usb_ep_clear_halt(epfile->ep->ep);
1803 		break;
1804 	case FUNCTIONFS_ENDPOINT_REVMAP:
1805 		ret = epfile->ep->num;
1806 		break;
1807 	case FUNCTIONFS_ENDPOINT_DESC:
1808 	{
1809 		int desc_idx;
1810 		struct usb_endpoint_descriptor desc1, *desc;
1811 
1812 		switch (epfile->ffs->gadget->speed) {
1813 		case USB_SPEED_SUPER:
1814 		case USB_SPEED_SUPER_PLUS:
1815 			desc_idx = 2;
1816 			break;
1817 		case USB_SPEED_HIGH:
1818 			desc_idx = 1;
1819 			break;
1820 		default:
1821 			desc_idx = 0;
1822 		}
1823 
1824 		desc = epfile->ep->descs[desc_idx];
1825 		memcpy(&desc1, desc, desc->bLength);
1826 
1827 		spin_unlock_irq(&epfile->ffs->eps_lock);
1828 		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1829 		if (ret)
1830 			ret = -EFAULT;
1831 		return ret;
1832 	}
1833 	default:
1834 		ret = -ENOTTY;
1835 	}
1836 	spin_unlock_irq(&epfile->ffs->eps_lock);
1837 
1838 	return ret;
1839 }
1840 
1841 static const struct file_operations ffs_epfile_operations = {
1842 
1843 	.open =		ffs_epfile_open,
1844 	.write_iter =	ffs_epfile_write_iter,
1845 	.read_iter =	ffs_epfile_read_iter,
1846 	.release =	ffs_epfile_release,
1847 	.unlocked_ioctl =	ffs_epfile_ioctl,
1848 	.compat_ioctl = compat_ptr_ioctl,
1849 };
1850 
1851 
1852 /* File system and super block operations ***********************************/
1853 
1854 /*
1855  * Mounting the file system creates a controller file, used first for
1856  * function configuration then later for event monitoring.
1857  */
1858 
1859 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1860 ffs_sb_make_inode(struct super_block *sb, void *data,
1861 		  const struct file_operations *fops,
1862 		  const struct inode_operations *iops,
1863 		  struct ffs_file_perms *perms)
1864 {
1865 	struct inode *inode;
1866 
1867 	inode = new_inode(sb);
1868 
1869 	if (inode) {
1870 		struct timespec64 ts = inode_set_ctime_current(inode);
1871 
1872 		inode->i_ino	 = get_next_ino();
1873 		inode->i_mode    = perms->mode;
1874 		inode->i_uid     = perms->uid;
1875 		inode->i_gid     = perms->gid;
1876 		inode_set_atime_to_ts(inode, ts);
1877 		inode_set_mtime_to_ts(inode, ts);
1878 		inode->i_private = data;
1879 		if (fops)
1880 			inode->i_fop = fops;
1881 		if (iops)
1882 			inode->i_op  = iops;
1883 	}
1884 
1885 	return inode;
1886 }
1887 
1888 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1889 static int ffs_sb_create_file(struct super_block *sb, const char *name,
1890 			      void *data, const struct file_operations *fops)
1891 {
1892 	struct ffs_data	*ffs = sb->s_fs_info;
1893 	struct dentry	*dentry;
1894 	struct inode	*inode;
1895 
1896 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1897 	if (!inode)
1898 		return -ENOMEM;
1899 	dentry = simple_start_creating(sb->s_root, name);
1900 	if (IS_ERR(dentry)) {
1901 		iput(inode);
1902 		return PTR_ERR(dentry);
1903 	}
1904 
1905 	d_make_persistent(dentry, inode);
1906 
1907 	simple_done_creating(dentry);
1908 	return 0;
1909 }
1910 
1911 /* Super block */
1912 static const struct super_operations ffs_sb_operations = {
1913 	.statfs =	simple_statfs,
1914 	.drop_inode =	inode_just_drop,
1915 };
1916 
1917 struct ffs_sb_fill_data {
1918 	struct ffs_file_perms perms;
1919 	umode_t root_mode;
1920 	const char *dev_name;
1921 	bool no_disconnect;
1922 	struct ffs_data *ffs_data;
1923 };
1924 
ffs_sb_fill(struct super_block * sb,struct fs_context * fc)1925 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1926 {
1927 	struct ffs_sb_fill_data *data = fc->fs_private;
1928 	struct inode	*inode;
1929 	struct ffs_data	*ffs = data->ffs_data;
1930 
1931 	ffs->sb              = sb;
1932 	data->ffs_data       = NULL;
1933 	sb->s_fs_info        = ffs;
1934 	sb->s_blocksize      = PAGE_SIZE;
1935 	sb->s_blocksize_bits = PAGE_SHIFT;
1936 	sb->s_magic          = FUNCTIONFS_MAGIC;
1937 	sb->s_op             = &ffs_sb_operations;
1938 	sb->s_time_gran      = 1;
1939 
1940 	/* Root inode */
1941 	data->perms.mode = data->root_mode;
1942 	inode = ffs_sb_make_inode(sb, NULL,
1943 				  &simple_dir_operations,
1944 				  &simple_dir_inode_operations,
1945 				  &data->perms);
1946 	sb->s_root = d_make_root(inode);
1947 	if (!sb->s_root)
1948 		return -ENOMEM;
1949 
1950 	/* EP0 file */
1951 	return ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations);
1952 }
1953 
1954 enum {
1955 	Opt_no_disconnect,
1956 	Opt_rmode,
1957 	Opt_fmode,
1958 	Opt_mode,
1959 	Opt_uid,
1960 	Opt_gid,
1961 };
1962 
1963 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1964 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1965 	fsparam_u32	("rmode",		Opt_rmode),
1966 	fsparam_u32	("fmode",		Opt_fmode),
1967 	fsparam_u32	("mode",		Opt_mode),
1968 	fsparam_u32	("uid",			Opt_uid),
1969 	fsparam_u32	("gid",			Opt_gid),
1970 	{}
1971 };
1972 
ffs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1973 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1974 {
1975 	struct ffs_sb_fill_data *data = fc->fs_private;
1976 	struct fs_parse_result result;
1977 	int opt;
1978 
1979 	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1980 	if (opt < 0)
1981 		return opt;
1982 
1983 	switch (opt) {
1984 	case Opt_no_disconnect:
1985 		data->no_disconnect = result.boolean;
1986 		break;
1987 	case Opt_rmode:
1988 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1989 		break;
1990 	case Opt_fmode:
1991 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1992 		break;
1993 	case Opt_mode:
1994 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1995 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1996 		break;
1997 
1998 	case Opt_uid:
1999 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
2000 		if (!uid_valid(data->perms.uid))
2001 			goto unmapped_value;
2002 		break;
2003 	case Opt_gid:
2004 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
2005 		if (!gid_valid(data->perms.gid))
2006 			goto unmapped_value;
2007 		break;
2008 
2009 	default:
2010 		return -ENOPARAM;
2011 	}
2012 
2013 	return 0;
2014 
2015 unmapped_value:
2016 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2017 }
2018 
2019 /*
2020  * Set up the superblock for a mount.
2021  */
ffs_fs_get_tree(struct fs_context * fc)2022 static int ffs_fs_get_tree(struct fs_context *fc)
2023 {
2024 	struct ffs_sb_fill_data *ctx = fc->fs_private;
2025 	struct ffs_data	*ffs;
2026 	int ret;
2027 
2028 	if (!fc->source)
2029 		return invalf(fc, "No source specified");
2030 
2031 	ffs = ffs_data_new(fc->source);
2032 	if (!ffs)
2033 		return -ENOMEM;
2034 	ffs->file_perms = ctx->perms;
2035 	ffs->no_disconnect = ctx->no_disconnect;
2036 
2037 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
2038 	if (!ffs->dev_name) {
2039 		ffs_data_put(ffs);
2040 		return -ENOMEM;
2041 	}
2042 
2043 	ret = ffs_acquire_dev(ffs->dev_name, ffs);
2044 	if (ret) {
2045 		ffs_data_put(ffs);
2046 		return ret;
2047 	}
2048 
2049 	ctx->ffs_data = ffs;
2050 	return get_tree_nodev(fc, ffs_sb_fill);
2051 }
2052 
ffs_fs_free_fc(struct fs_context * fc)2053 static void ffs_fs_free_fc(struct fs_context *fc)
2054 {
2055 	struct ffs_sb_fill_data *ctx = fc->fs_private;
2056 
2057 	if (ctx) {
2058 		if (ctx->ffs_data) {
2059 			ffs_data_put(ctx->ffs_data);
2060 		}
2061 
2062 		kfree(ctx);
2063 	}
2064 }
2065 
2066 static const struct fs_context_operations ffs_fs_context_ops = {
2067 	.free		= ffs_fs_free_fc,
2068 	.parse_param	= ffs_fs_parse_param,
2069 	.get_tree	= ffs_fs_get_tree,
2070 };
2071 
ffs_fs_init_fs_context(struct fs_context * fc)2072 static int ffs_fs_init_fs_context(struct fs_context *fc)
2073 {
2074 	struct ffs_sb_fill_data *ctx;
2075 
2076 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2077 	if (!ctx)
2078 		return -ENOMEM;
2079 
2080 	ctx->perms.mode = S_IFREG | 0600;
2081 	ctx->perms.uid = GLOBAL_ROOT_UID;
2082 	ctx->perms.gid = GLOBAL_ROOT_GID;
2083 	ctx->root_mode = S_IFDIR | 0500;
2084 	ctx->no_disconnect = false;
2085 
2086 	fc->fs_private = ctx;
2087 	fc->ops = &ffs_fs_context_ops;
2088 	return 0;
2089 }
2090 
2091 static void
ffs_fs_kill_sb(struct super_block * sb)2092 ffs_fs_kill_sb(struct super_block *sb)
2093 {
2094 	kill_anon_super(sb);
2095 	if (sb->s_fs_info) {
2096 		struct ffs_data *ffs = sb->s_fs_info;
2097 		ffs->state = FFS_CLOSING;
2098 		ffs_data_reset(ffs);
2099 		// no configfs accesses from that point on,
2100 		// so no further schedule_work() is possible
2101 		cancel_work_sync(&ffs->reset_work);
2102 		ffs_data_put(ffs);
2103 	}
2104 }
2105 
2106 static struct file_system_type ffs_fs_type = {
2107 	.owner		= THIS_MODULE,
2108 	.name		= "functionfs",
2109 	.init_fs_context = ffs_fs_init_fs_context,
2110 	.parameters	= ffs_fs_fs_parameters,
2111 	.kill_sb	= ffs_fs_kill_sb,
2112 };
2113 MODULE_ALIAS_FS("functionfs");
2114 
2115 
2116 /* Driver's main init/cleanup functions *************************************/
2117 
functionfs_init(void)2118 static int functionfs_init(void)
2119 {
2120 	int ret;
2121 
2122 	ret = register_filesystem(&ffs_fs_type);
2123 	if (!ret)
2124 		pr_info("file system registered\n");
2125 	else
2126 		pr_err("failed registering file system (%d)\n", ret);
2127 
2128 	return ret;
2129 }
2130 
functionfs_cleanup(void)2131 static void functionfs_cleanup(void)
2132 {
2133 	pr_info("unloading\n");
2134 	unregister_filesystem(&ffs_fs_type);
2135 }
2136 
2137 
2138 /* ffs_data and ffs_function construction and destruction code **************/
2139 
2140 static void ffs_data_clear(struct ffs_data *ffs);
2141 
ffs_data_get(struct ffs_data * ffs)2142 static void ffs_data_get(struct ffs_data *ffs)
2143 {
2144 	refcount_inc(&ffs->ref);
2145 }
2146 
ffs_data_put(struct ffs_data * ffs)2147 static void ffs_data_put(struct ffs_data *ffs)
2148 {
2149 	if (refcount_dec_and_test(&ffs->ref)) {
2150 		pr_info("%s(): freeing\n", __func__);
2151 		ffs_data_clear(ffs);
2152 		ffs_release_dev(ffs->private_data);
2153 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2154 		       swait_active(&ffs->ep0req_completion.wait) ||
2155 		       waitqueue_active(&ffs->wait));
2156 		destroy_workqueue(ffs->io_completion_wq);
2157 		kfree(ffs->dev_name);
2158 		kfree(ffs);
2159 	}
2160 }
2161 
ffs_data_closed(struct ffs_data * ffs)2162 static void ffs_data_closed(struct ffs_data *ffs)
2163 {
2164 	spin_lock_irq(&ffs->eps_lock);
2165 	if (--ffs->opened) {	// not the last opener?
2166 		spin_unlock_irq(&ffs->eps_lock);
2167 		return;
2168 	}
2169 	if (ffs->no_disconnect) {
2170 		struct ffs_epfile *epfiles;
2171 
2172 		ffs->state = FFS_DEACTIVATED;
2173 		epfiles = ffs->epfiles;
2174 		ffs->epfiles = NULL;
2175 		spin_unlock_irq(&ffs->eps_lock);
2176 
2177 		if (epfiles)
2178 			ffs_epfiles_destroy(ffs->sb, epfiles,
2179 					 ffs->eps_count);
2180 
2181 		if (ffs->setup_state == FFS_SETUP_PENDING)
2182 			__ffs_ep0_stall(ffs);
2183 	} else {
2184 		ffs->state = FFS_CLOSING;
2185 		spin_unlock_irq(&ffs->eps_lock);
2186 		ffs_data_reset(ffs);
2187 	}
2188 }
2189 
ffs_data_new(const char * dev_name)2190 static struct ffs_data *ffs_data_new(const char *dev_name)
2191 {
2192 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
2193 	if (!ffs)
2194 		return NULL;
2195 
2196 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2197 	if (!ffs->io_completion_wq) {
2198 		kfree(ffs);
2199 		return NULL;
2200 	}
2201 
2202 	refcount_set(&ffs->ref, 1);
2203 	ffs->opened = 0;
2204 	ffs->state = FFS_READ_DESCRIPTORS;
2205 	mutex_init(&ffs->mutex);
2206 	spin_lock_init(&ffs->eps_lock);
2207 	init_waitqueue_head(&ffs->ev.waitq);
2208 	init_waitqueue_head(&ffs->wait);
2209 	init_completion(&ffs->ep0req_completion);
2210 
2211 	/* XXX REVISIT need to update it in some places, or do we? */
2212 	ffs->ev.can_stall = 1;
2213 
2214 	return ffs;
2215 }
2216 
ffs_data_clear(struct ffs_data * ffs)2217 static void ffs_data_clear(struct ffs_data *ffs)
2218 {
2219 	struct ffs_epfile *epfiles;
2220 	unsigned long flags;
2221 
2222 	ffs_closed(ffs);
2223 
2224 	BUG_ON(ffs->gadget);
2225 
2226 	spin_lock_irqsave(&ffs->eps_lock, flags);
2227 	epfiles = ffs->epfiles;
2228 	ffs->epfiles = NULL;
2229 	spin_unlock_irqrestore(&ffs->eps_lock, flags);
2230 
2231 	/*
2232 	 * potential race possible between ffs_func_eps_disable
2233 	 * & ffs_epfile_release therefore maintaining a local
2234 	 * copy of epfile will save us from use-after-free.
2235 	 */
2236 	if (epfiles) {
2237 		ffs_epfiles_destroy(ffs->sb, epfiles, ffs->eps_count);
2238 		ffs->epfiles = NULL;
2239 	}
2240 
2241 	if (ffs->ffs_eventfd) {
2242 		eventfd_ctx_put(ffs->ffs_eventfd);
2243 		ffs->ffs_eventfd = NULL;
2244 	}
2245 
2246 	kfree(ffs->raw_descs_data);
2247 	kfree(ffs->raw_strings);
2248 	kfree(ffs->stringtabs);
2249 }
2250 
ffs_data_reset(struct ffs_data * ffs)2251 static void ffs_data_reset(struct ffs_data *ffs)
2252 {
2253 	ffs_data_clear(ffs);
2254 
2255 	spin_lock_irq(&ffs->eps_lock);
2256 	ffs->raw_descs_data = NULL;
2257 	ffs->raw_descs = NULL;
2258 	ffs->raw_strings = NULL;
2259 	ffs->stringtabs = NULL;
2260 
2261 	ffs->raw_descs_length = 0;
2262 	ffs->fs_descs_count = 0;
2263 	ffs->hs_descs_count = 0;
2264 	ffs->ss_descs_count = 0;
2265 
2266 	ffs->strings_count = 0;
2267 	ffs->interfaces_count = 0;
2268 	ffs->eps_count = 0;
2269 
2270 	ffs->ev.count = 0;
2271 
2272 	ffs->state = FFS_READ_DESCRIPTORS;
2273 	ffs->setup_state = FFS_NO_SETUP;
2274 	ffs->flags = 0;
2275 
2276 	ffs->ms_os_descs_ext_prop_count = 0;
2277 	ffs->ms_os_descs_ext_prop_name_len = 0;
2278 	ffs->ms_os_descs_ext_prop_data_len = 0;
2279 	spin_unlock_irq(&ffs->eps_lock);
2280 }
2281 
2282 
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)2283 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2284 {
2285 	struct usb_gadget_strings **lang;
2286 	int first_id;
2287 
2288 	if ((ffs->state != FFS_ACTIVE
2289 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2290 		return -EBADFD;
2291 
2292 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
2293 	if (first_id < 0)
2294 		return first_id;
2295 
2296 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
2297 	if (!ffs->ep0req)
2298 		return -ENOMEM;
2299 	ffs->ep0req->complete = ffs_ep0_complete;
2300 	ffs->ep0req->context = ffs;
2301 
2302 	lang = ffs->stringtabs;
2303 	if (lang) {
2304 		for (; *lang; ++lang) {
2305 			struct usb_string *str = (*lang)->strings;
2306 			int id = first_id;
2307 			for (; str->s; ++id, ++str)
2308 				str->id = id;
2309 		}
2310 	}
2311 
2312 	ffs->gadget = cdev->gadget;
2313 	ffs_data_get(ffs);
2314 	return 0;
2315 }
2316 
functionfs_unbind(struct ffs_data * ffs)2317 static void functionfs_unbind(struct ffs_data *ffs)
2318 {
2319 	if (!WARN_ON(!ffs->gadget)) {
2320 		/* dequeue before freeing ep0req */
2321 		usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
2322 		mutex_lock(&ffs->mutex);
2323 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
2324 		ffs->ep0req = NULL;
2325 		ffs->gadget = NULL;
2326 		clear_bit(FFS_FL_BOUND, &ffs->flags);
2327 		mutex_unlock(&ffs->mutex);
2328 		ffs_data_put(ffs);
2329 	}
2330 }
2331 
ffs_epfiles_create(struct ffs_data * ffs)2332 static int ffs_epfiles_create(struct ffs_data *ffs)
2333 {
2334 	struct ffs_epfile *epfile, *epfiles;
2335 	unsigned i, count;
2336 	int err;
2337 
2338 	count = ffs->eps_count;
2339 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
2340 	if (!epfiles)
2341 		return -ENOMEM;
2342 
2343 	epfile = epfiles;
2344 	for (i = 1; i <= count; ++i, ++epfile) {
2345 		epfile->ffs = ffs;
2346 		mutex_init(&epfile->mutex);
2347 		mutex_init(&epfile->dmabufs_mutex);
2348 		INIT_LIST_HEAD(&epfile->dmabufs);
2349 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2350 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
2351 		else
2352 			sprintf(epfile->name, "ep%u", i);
2353 		err = ffs_sb_create_file(ffs->sb, epfile->name,
2354 					 epfile, &ffs_epfile_operations);
2355 		if (err) {
2356 			ffs_epfiles_destroy(ffs->sb, epfiles, i - 1);
2357 			return err;
2358 		}
2359 	}
2360 
2361 	ffs->epfiles = epfiles;
2362 	return 0;
2363 }
2364 
clear_one(struct dentry * dentry)2365 static void clear_one(struct dentry *dentry)
2366 {
2367 	smp_store_release(&dentry->d_inode->i_private, NULL);
2368 }
2369 
ffs_epfiles_destroy(struct super_block * sb,struct ffs_epfile * epfiles,unsigned count)2370 static void ffs_epfiles_destroy(struct super_block *sb,
2371 				struct ffs_epfile *epfiles, unsigned count)
2372 {
2373 	struct ffs_epfile *epfile = epfiles;
2374 	struct dentry *root = sb->s_root;
2375 
2376 	for (; count; --count, ++epfile) {
2377 		BUG_ON(mutex_is_locked(&epfile->mutex));
2378 		simple_remove_by_name(root, epfile->name, clear_one);
2379 	}
2380 
2381 	kfree(epfiles);
2382 }
2383 
ffs_func_eps_disable(struct ffs_function * func)2384 static void ffs_func_eps_disable(struct ffs_function *func)
2385 {
2386 	struct ffs_ep *ep;
2387 	struct ffs_epfile *epfile;
2388 	unsigned short count;
2389 	unsigned long flags;
2390 
2391 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2392 	count = func->ffs->eps_count;
2393 	epfile = func->ffs->epfiles;
2394 	ep = func->eps;
2395 	while (count--) {
2396 		/* pending requests get nuked */
2397 		if (ep->ep)
2398 			usb_ep_disable(ep->ep);
2399 		++ep;
2400 
2401 		if (epfile) {
2402 			epfile->ep = NULL;
2403 			__ffs_epfile_read_buffer_free(epfile);
2404 			++epfile;
2405 		}
2406 	}
2407 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2408 }
2409 
ffs_func_eps_enable(struct ffs_function * func)2410 static int ffs_func_eps_enable(struct ffs_function *func)
2411 {
2412 	struct ffs_data *ffs;
2413 	struct ffs_ep *ep;
2414 	struct ffs_epfile *epfile;
2415 	unsigned short count;
2416 	unsigned long flags;
2417 	int ret = 0;
2418 
2419 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2420 	ffs = func->ffs;
2421 	ep = func->eps;
2422 	epfile = ffs->epfiles;
2423 	count = ffs->eps_count;
2424 	if (!epfile) {
2425 		ret = -ENOMEM;
2426 		goto done;
2427 	}
2428 
2429 	while (count--) {
2430 		ep->ep->driver_data = ep;
2431 
2432 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2433 		if (ret) {
2434 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2435 					__func__, ep->ep->name, ret);
2436 			break;
2437 		}
2438 
2439 		ret = usb_ep_enable(ep->ep);
2440 		if (!ret) {
2441 			epfile->ep = ep;
2442 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2443 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2444 		} else {
2445 			break;
2446 		}
2447 
2448 		++ep;
2449 		++epfile;
2450 	}
2451 
2452 	wake_up_interruptible(&ffs->wait);
2453 done:
2454 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2455 
2456 	return ret;
2457 }
2458 
2459 
2460 /* Parsing and building descriptors and strings *****************************/
2461 
2462 /*
2463  * This validates if data pointed by data is a valid USB descriptor as
2464  * well as record how many interfaces, endpoints and strings are
2465  * required by given configuration.  Returns address after the
2466  * descriptor or NULL if data is invalid.
2467  */
2468 
2469 enum ffs_entity_type {
2470 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2471 };
2472 
2473 enum ffs_os_desc_type {
2474 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2475 };
2476 
2477 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2478 				   u8 *valuep,
2479 				   struct usb_descriptor_header *desc,
2480 				   void *priv);
2481 
2482 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2483 				    struct usb_os_desc_header *h, void *data,
2484 				    unsigned len, void *priv);
2485 
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv,int * current_class,int * current_subclass)2486 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2487 					   ffs_entity_callback entity,
2488 					   void *priv, int *current_class, int *current_subclass)
2489 {
2490 	struct usb_descriptor_header *_ds = (void *)data;
2491 	u8 length;
2492 	int ret;
2493 
2494 	/* At least two bytes are required: length and type */
2495 	if (len < 2) {
2496 		pr_vdebug("descriptor too short\n");
2497 		return -EINVAL;
2498 	}
2499 
2500 	/* If we have at least as many bytes as the descriptor takes? */
2501 	length = _ds->bLength;
2502 	if (len < length) {
2503 		pr_vdebug("descriptor longer then available data\n");
2504 		return -EINVAL;
2505 	}
2506 
2507 #define __entity_check_INTERFACE(val)  1
2508 #define __entity_check_STRING(val)     (val)
2509 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2510 #define __entity(type, val) do {					\
2511 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2512 		if (!__entity_check_ ##type(val)) {			\
2513 			pr_vdebug("invalid entity's value\n");		\
2514 			return -EINVAL;					\
2515 		}							\
2516 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2517 		if (ret < 0) {						\
2518 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2519 				 (val), ret);				\
2520 			return ret;					\
2521 		}							\
2522 	} while (0)
2523 
2524 	/* Parse descriptor depending on type. */
2525 	switch (_ds->bDescriptorType) {
2526 	case USB_DT_DEVICE:
2527 	case USB_DT_CONFIG:
2528 	case USB_DT_STRING:
2529 	case USB_DT_DEVICE_QUALIFIER:
2530 		/* function can't have any of those */
2531 		pr_vdebug("descriptor reserved for gadget: %d\n",
2532 		      _ds->bDescriptorType);
2533 		return -EINVAL;
2534 
2535 	case USB_DT_INTERFACE: {
2536 		struct usb_interface_descriptor *ds = (void *)_ds;
2537 		pr_vdebug("interface descriptor\n");
2538 		if (length != sizeof *ds)
2539 			goto inv_length;
2540 
2541 		__entity(INTERFACE, ds->bInterfaceNumber);
2542 		if (ds->iInterface)
2543 			__entity(STRING, ds->iInterface);
2544 		*current_class = ds->bInterfaceClass;
2545 		*current_subclass = ds->bInterfaceSubClass;
2546 	}
2547 		break;
2548 
2549 	case USB_DT_ENDPOINT: {
2550 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2551 		pr_vdebug("endpoint descriptor\n");
2552 		if (length != USB_DT_ENDPOINT_SIZE &&
2553 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2554 			goto inv_length;
2555 		__entity(ENDPOINT, ds->bEndpointAddress);
2556 	}
2557 		break;
2558 
2559 	case USB_TYPE_CLASS | 0x01:
2560 		if (*current_class == USB_INTERFACE_CLASS_HID) {
2561 			pr_vdebug("hid descriptor\n");
2562 			if (length != sizeof(struct hid_descriptor))
2563 				goto inv_length;
2564 			break;
2565 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2566 			pr_vdebug("ccid descriptor\n");
2567 			if (length != sizeof(struct ccid_descriptor))
2568 				goto inv_length;
2569 			break;
2570 		} else if (*current_class == USB_CLASS_APP_SPEC &&
2571 			   *current_subclass == USB_SUBCLASS_DFU) {
2572 			pr_vdebug("dfu functional descriptor\n");
2573 			if (length != sizeof(struct usb_dfu_functional_descriptor))
2574 				goto inv_length;
2575 			break;
2576 		} else {
2577 			pr_vdebug("unknown descriptor: %d for class %d\n",
2578 			      _ds->bDescriptorType, *current_class);
2579 			return -EINVAL;
2580 		}
2581 
2582 	case USB_DT_OTG:
2583 		if (length != sizeof(struct usb_otg_descriptor))
2584 			goto inv_length;
2585 		break;
2586 
2587 	case USB_DT_INTERFACE_ASSOCIATION: {
2588 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2589 		pr_vdebug("interface association descriptor\n");
2590 		if (length != sizeof *ds)
2591 			goto inv_length;
2592 		if (ds->iFunction)
2593 			__entity(STRING, ds->iFunction);
2594 	}
2595 		break;
2596 
2597 	case USB_DT_SS_ENDPOINT_COMP:
2598 		pr_vdebug("EP SS companion descriptor\n");
2599 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2600 			goto inv_length;
2601 		break;
2602 
2603 	case USB_DT_OTHER_SPEED_CONFIG:
2604 	case USB_DT_INTERFACE_POWER:
2605 	case USB_DT_DEBUG:
2606 	case USB_DT_SECURITY:
2607 	case USB_DT_CS_RADIO_CONTROL:
2608 		/* TODO */
2609 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2610 		return -EINVAL;
2611 
2612 	default:
2613 		/* We should never be here */
2614 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2615 		return -EINVAL;
2616 
2617 inv_length:
2618 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2619 			  _ds->bLength, _ds->bDescriptorType);
2620 		return -EINVAL;
2621 	}
2622 
2623 #undef __entity
2624 #undef __entity_check_DESCRIPTOR
2625 #undef __entity_check_INTERFACE
2626 #undef __entity_check_STRING
2627 #undef __entity_check_ENDPOINT
2628 
2629 	return length;
2630 }
2631 
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2632 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2633 				     ffs_entity_callback entity, void *priv)
2634 {
2635 	const unsigned _len = len;
2636 	unsigned long num = 0;
2637 	int current_class = -1;
2638 	int current_subclass = -1;
2639 
2640 	for (;;) {
2641 		int ret;
2642 
2643 		if (num == count)
2644 			data = NULL;
2645 
2646 		/* Record "descriptor" entity */
2647 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2648 		if (ret < 0) {
2649 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2650 				 num, ret);
2651 			return ret;
2652 		}
2653 
2654 		if (!data)
2655 			return _len - len;
2656 
2657 		ret = ffs_do_single_desc(data, len, entity, priv,
2658 			&current_class, &current_subclass);
2659 		if (ret < 0) {
2660 			pr_debug("%s returns %d\n", __func__, ret);
2661 			return ret;
2662 		}
2663 
2664 		len -= ret;
2665 		data += ret;
2666 		++num;
2667 	}
2668 }
2669 
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2670 static int __ffs_data_do_entity(enum ffs_entity_type type,
2671 				u8 *valuep, struct usb_descriptor_header *desc,
2672 				void *priv)
2673 {
2674 	struct ffs_desc_helper *helper = priv;
2675 	struct usb_endpoint_descriptor *d;
2676 
2677 	switch (type) {
2678 	case FFS_DESCRIPTOR:
2679 		break;
2680 
2681 	case FFS_INTERFACE:
2682 		/*
2683 		 * Interfaces are indexed from zero so if we
2684 		 * encountered interface "n" then there are at least
2685 		 * "n+1" interfaces.
2686 		 */
2687 		if (*valuep >= helper->interfaces_count)
2688 			helper->interfaces_count = *valuep + 1;
2689 		break;
2690 
2691 	case FFS_STRING:
2692 		/*
2693 		 * Strings are indexed from 1 (0 is reserved
2694 		 * for languages list)
2695 		 */
2696 		if (*valuep > helper->ffs->strings_count)
2697 			helper->ffs->strings_count = *valuep;
2698 		break;
2699 
2700 	case FFS_ENDPOINT:
2701 		d = (void *)desc;
2702 		helper->eps_count++;
2703 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2704 			return -EINVAL;
2705 		/* Check if descriptors for any speed were already parsed */
2706 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2707 			helper->ffs->eps_addrmap[helper->eps_count] =
2708 				d->bEndpointAddress;
2709 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2710 				d->bEndpointAddress)
2711 			return -EINVAL;
2712 		break;
2713 	}
2714 
2715 	return 0;
2716 }
2717 
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2718 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2719 				   struct usb_os_desc_header *desc)
2720 {
2721 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2722 	u16 w_index = le16_to_cpu(desc->wIndex);
2723 
2724 	if (bcd_version == 0x1) {
2725 		pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2726 			"Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2727 	} else if (bcd_version != 0x100) {
2728 		pr_vdebug("unsupported os descriptors version: 0x%x\n",
2729 			  bcd_version);
2730 		return -EINVAL;
2731 	}
2732 	switch (w_index) {
2733 	case 0x4:
2734 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2735 		break;
2736 	case 0x5:
2737 		*next_type = FFS_OS_DESC_EXT_PROP;
2738 		break;
2739 	default:
2740 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2741 		return -EINVAL;
2742 	}
2743 
2744 	return sizeof(*desc);
2745 }
2746 
2747 /*
2748  * Process all extended compatibility/extended property descriptors
2749  * of a feature descriptor
2750  */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2751 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2752 					      enum ffs_os_desc_type type,
2753 					      u16 feature_count,
2754 					      ffs_os_desc_callback entity,
2755 					      void *priv,
2756 					      struct usb_os_desc_header *h)
2757 {
2758 	int ret;
2759 	const unsigned _len = len;
2760 
2761 	/* loop over all ext compat/ext prop descriptors */
2762 	while (feature_count--) {
2763 		ret = entity(type, h, data, len, priv);
2764 		if (ret < 0) {
2765 			pr_debug("bad OS descriptor, type: %d\n", type);
2766 			return ret;
2767 		}
2768 		data += ret;
2769 		len -= ret;
2770 	}
2771 	return _len - len;
2772 }
2773 
2774 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2775 static int __must_check ffs_do_os_descs(unsigned count,
2776 					char *data, unsigned len,
2777 					ffs_os_desc_callback entity, void *priv)
2778 {
2779 	const unsigned _len = len;
2780 	unsigned long num = 0;
2781 
2782 	for (num = 0; num < count; ++num) {
2783 		int ret;
2784 		enum ffs_os_desc_type type;
2785 		u16 feature_count;
2786 		struct usb_os_desc_header *desc = (void *)data;
2787 
2788 		if (len < sizeof(*desc))
2789 			return -EINVAL;
2790 
2791 		/*
2792 		 * Record "descriptor" entity.
2793 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2794 		 * Move the data pointer to the beginning of extended
2795 		 * compatibilities proper or extended properties proper
2796 		 * portions of the data
2797 		 */
2798 		if (le32_to_cpu(desc->dwLength) > len)
2799 			return -EINVAL;
2800 
2801 		ret = __ffs_do_os_desc_header(&type, desc);
2802 		if (ret < 0) {
2803 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2804 				 num, ret);
2805 			return ret;
2806 		}
2807 		/*
2808 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2809 		 */
2810 		feature_count = le16_to_cpu(desc->wCount);
2811 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2812 		    (feature_count > 255 || desc->Reserved))
2813 				return -EINVAL;
2814 		len -= ret;
2815 		data += ret;
2816 
2817 		/*
2818 		 * Process all function/property descriptors
2819 		 * of this Feature Descriptor
2820 		 */
2821 		ret = ffs_do_single_os_desc(data, len, type,
2822 					    feature_count, entity, priv, desc);
2823 		if (ret < 0) {
2824 			pr_debug("%s returns %d\n", __func__, ret);
2825 			return ret;
2826 		}
2827 
2828 		len -= ret;
2829 		data += ret;
2830 	}
2831 	return _len - len;
2832 }
2833 
2834 /*
2835  * Validate contents of the buffer from userspace related to OS descriptors.
2836  */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2837 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2838 				 struct usb_os_desc_header *h, void *data,
2839 				 unsigned len, void *priv)
2840 {
2841 	struct ffs_data *ffs = priv;
2842 	u8 length;
2843 
2844 	switch (type) {
2845 	case FFS_OS_DESC_EXT_COMPAT: {
2846 		struct usb_ext_compat_desc *d = data;
2847 		int i;
2848 
2849 		if (len < sizeof(*d) ||
2850 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2851 			return -EINVAL;
2852 		if (d->Reserved1 != 1) {
2853 			/*
2854 			 * According to the spec, Reserved1 must be set to 1
2855 			 * but older kernels incorrectly rejected non-zero
2856 			 * values.  We fix it here to avoid returning EINVAL
2857 			 * in response to values we used to accept.
2858 			 */
2859 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2860 			d->Reserved1 = 1;
2861 		}
2862 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2863 			if (d->Reserved2[i])
2864 				return -EINVAL;
2865 
2866 		length = sizeof(struct usb_ext_compat_desc);
2867 	}
2868 		break;
2869 	case FFS_OS_DESC_EXT_PROP: {
2870 		struct usb_ext_prop_desc *d = data;
2871 		u32 type, pdl;
2872 		u16 pnl;
2873 
2874 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2875 			return -EINVAL;
2876 		length = le32_to_cpu(d->dwSize);
2877 		if (len < length)
2878 			return -EINVAL;
2879 		type = le32_to_cpu(d->dwPropertyDataType);
2880 		if (type < USB_EXT_PROP_UNICODE ||
2881 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2882 			pr_vdebug("unsupported os descriptor property type: %d",
2883 				  type);
2884 			return -EINVAL;
2885 		}
2886 		pnl = le16_to_cpu(d->wPropertyNameLength);
2887 		if (length < 14 + pnl) {
2888 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2889 				  length, pnl, type);
2890 			return -EINVAL;
2891 		}
2892 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2893 		if (length != 14 + pnl + pdl) {
2894 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2895 				  length, pnl, pdl, type);
2896 			return -EINVAL;
2897 		}
2898 		++ffs->ms_os_descs_ext_prop_count;
2899 		/* property name reported to the host as "WCHAR"s */
2900 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2901 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2902 	}
2903 		break;
2904 	default:
2905 		pr_vdebug("unknown descriptor: %d\n", type);
2906 		return -EINVAL;
2907 	}
2908 	return length;
2909 }
2910 
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2911 static int __ffs_data_got_descs(struct ffs_data *ffs,
2912 				char *const _data, size_t len)
2913 {
2914 	char *data = _data, *raw_descs;
2915 	unsigned os_descs_count = 0, counts[3], flags;
2916 	int ret = -EINVAL, i;
2917 	struct ffs_desc_helper helper;
2918 
2919 	if (get_unaligned_le32(data + 4) != len)
2920 		goto error;
2921 
2922 	switch (get_unaligned_le32(data)) {
2923 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2924 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2925 		data += 8;
2926 		len  -= 8;
2927 		break;
2928 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2929 		flags = get_unaligned_le32(data + 8);
2930 		ffs->user_flags = flags;
2931 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2932 			      FUNCTIONFS_HAS_HS_DESC |
2933 			      FUNCTIONFS_HAS_SS_DESC |
2934 			      FUNCTIONFS_HAS_MS_OS_DESC |
2935 			      FUNCTIONFS_VIRTUAL_ADDR |
2936 			      FUNCTIONFS_EVENTFD |
2937 			      FUNCTIONFS_ALL_CTRL_RECIP |
2938 			      FUNCTIONFS_CONFIG0_SETUP)) {
2939 			ret = -ENOSYS;
2940 			goto error;
2941 		}
2942 		data += 12;
2943 		len  -= 12;
2944 		break;
2945 	default:
2946 		goto error;
2947 	}
2948 
2949 	if (flags & FUNCTIONFS_EVENTFD) {
2950 		if (len < 4)
2951 			goto error;
2952 		ffs->ffs_eventfd =
2953 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2954 		if (IS_ERR(ffs->ffs_eventfd)) {
2955 			ret = PTR_ERR(ffs->ffs_eventfd);
2956 			ffs->ffs_eventfd = NULL;
2957 			goto error;
2958 		}
2959 		data += 4;
2960 		len  -= 4;
2961 	}
2962 
2963 	/* Read fs_count, hs_count and ss_count (if present) */
2964 	for (i = 0; i < 3; ++i) {
2965 		if (!(flags & (1 << i))) {
2966 			counts[i] = 0;
2967 		} else if (len < 4) {
2968 			goto error;
2969 		} else {
2970 			counts[i] = get_unaligned_le32(data);
2971 			data += 4;
2972 			len  -= 4;
2973 		}
2974 	}
2975 	if (flags & (1 << i)) {
2976 		if (len < 4) {
2977 			goto error;
2978 		}
2979 		os_descs_count = get_unaligned_le32(data);
2980 		data += 4;
2981 		len -= 4;
2982 	}
2983 
2984 	/* Read descriptors */
2985 	raw_descs = data;
2986 	helper.ffs = ffs;
2987 	for (i = 0; i < 3; ++i) {
2988 		if (!counts[i])
2989 			continue;
2990 		helper.interfaces_count = 0;
2991 		helper.eps_count = 0;
2992 		ret = ffs_do_descs(counts[i], data, len,
2993 				   __ffs_data_do_entity, &helper);
2994 		if (ret < 0)
2995 			goto error;
2996 		if (!ffs->eps_count && !ffs->interfaces_count) {
2997 			ffs->eps_count = helper.eps_count;
2998 			ffs->interfaces_count = helper.interfaces_count;
2999 		} else {
3000 			if (ffs->eps_count != helper.eps_count) {
3001 				ret = -EINVAL;
3002 				goto error;
3003 			}
3004 			if (ffs->interfaces_count != helper.interfaces_count) {
3005 				ret = -EINVAL;
3006 				goto error;
3007 			}
3008 		}
3009 		data += ret;
3010 		len  -= ret;
3011 	}
3012 	if (os_descs_count) {
3013 		ret = ffs_do_os_descs(os_descs_count, data, len,
3014 				      __ffs_data_do_os_desc, ffs);
3015 		if (ret < 0)
3016 			goto error;
3017 		data += ret;
3018 		len -= ret;
3019 	}
3020 
3021 	if (raw_descs == data || len) {
3022 		ret = -EINVAL;
3023 		goto error;
3024 	}
3025 
3026 	ffs->raw_descs_data	= _data;
3027 	ffs->raw_descs		= raw_descs;
3028 	ffs->raw_descs_length	= data - raw_descs;
3029 	ffs->fs_descs_count	= counts[0];
3030 	ffs->hs_descs_count	= counts[1];
3031 	ffs->ss_descs_count	= counts[2];
3032 	ffs->ms_os_descs_count	= os_descs_count;
3033 
3034 	return 0;
3035 
3036 error:
3037 	kfree(_data);
3038 	return ret;
3039 }
3040 
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)3041 static int __ffs_data_got_strings(struct ffs_data *ffs,
3042 				  char *const _data, size_t len)
3043 {
3044 	u32 str_count, needed_count, lang_count;
3045 	struct usb_gadget_strings **stringtabs, *t;
3046 	const char *data = _data;
3047 	struct usb_string *s;
3048 
3049 	if (len < 16 ||
3050 	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
3051 	    get_unaligned_le32(data + 4) != len)
3052 		goto error;
3053 	str_count  = get_unaligned_le32(data + 8);
3054 	lang_count = get_unaligned_le32(data + 12);
3055 
3056 	/* if one is zero the other must be zero */
3057 	if (!str_count != !lang_count)
3058 		goto error;
3059 
3060 	/* Do we have at least as many strings as descriptors need? */
3061 	needed_count = ffs->strings_count;
3062 	if (str_count < needed_count)
3063 		goto error;
3064 
3065 	/*
3066 	 * If we don't need any strings just return and free all
3067 	 * memory.
3068 	 */
3069 	if (!needed_count) {
3070 		kfree(_data);
3071 		return 0;
3072 	}
3073 
3074 	/* Allocate everything in one chunk so there's less maintenance. */
3075 	{
3076 		unsigned i = 0;
3077 		vla_group(d);
3078 		vla_item(d, struct usb_gadget_strings *, stringtabs,
3079 			size_add(lang_count, 1));
3080 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3081 		vla_item(d, struct usb_string, strings,
3082 			size_mul(lang_count, (needed_count + 1)));
3083 
3084 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3085 
3086 		if (!vlabuf) {
3087 			kfree(_data);
3088 			return -ENOMEM;
3089 		}
3090 
3091 		/* Initialize the VLA pointers */
3092 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3093 		t = vla_ptr(vlabuf, d, stringtab);
3094 		i = lang_count;
3095 		do {
3096 			*stringtabs++ = t++;
3097 		} while (--i);
3098 		*stringtabs = NULL;
3099 
3100 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
3101 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3102 		t = vla_ptr(vlabuf, d, stringtab);
3103 		s = vla_ptr(vlabuf, d, strings);
3104 	}
3105 
3106 	/* For each language */
3107 	data += 16;
3108 	len -= 16;
3109 
3110 	do { /* lang_count > 0 so we can use do-while */
3111 		unsigned needed = needed_count;
3112 		u32 str_per_lang = str_count;
3113 
3114 		if (len < 3)
3115 			goto error_free;
3116 		t->language = get_unaligned_le16(data);
3117 		t->strings  = s;
3118 		++t;
3119 
3120 		data += 2;
3121 		len -= 2;
3122 
3123 		/* For each string */
3124 		do { /* str_count > 0 so we can use do-while */
3125 			size_t length = strnlen(data, len);
3126 
3127 			if (length == len)
3128 				goto error_free;
3129 
3130 			/*
3131 			 * User may provide more strings then we need,
3132 			 * if that's the case we simply ignore the
3133 			 * rest
3134 			 */
3135 			if (needed) {
3136 				/*
3137 				 * s->id will be set while adding
3138 				 * function to configuration so for
3139 				 * now just leave garbage here.
3140 				 */
3141 				s->s = data;
3142 				--needed;
3143 				++s;
3144 			}
3145 
3146 			data += length + 1;
3147 			len -= length + 1;
3148 		} while (--str_per_lang);
3149 
3150 		s->id = 0;   /* terminator */
3151 		s->s = NULL;
3152 		++s;
3153 
3154 	} while (--lang_count);
3155 
3156 	/* Some garbage left? */
3157 	if (len)
3158 		goto error_free;
3159 
3160 	/* Done! */
3161 	ffs->stringtabs = stringtabs;
3162 	ffs->raw_strings = _data;
3163 
3164 	return 0;
3165 
3166 error_free:
3167 	kfree(stringtabs);
3168 error:
3169 	kfree(_data);
3170 	return -EINVAL;
3171 }
3172 
3173 
3174 /* Events handling and management *******************************************/
3175 
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)3176 static void __ffs_event_add(struct ffs_data *ffs,
3177 			    enum usb_functionfs_event_type type)
3178 {
3179 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3180 	int neg = 0;
3181 
3182 	/*
3183 	 * Abort any unhandled setup
3184 	 *
3185 	 * We do not need to worry about some cmpxchg() changing value
3186 	 * of ffs->setup_state without holding the lock because when
3187 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
3188 	 * the source does nothing.
3189 	 */
3190 	if (ffs->setup_state == FFS_SETUP_PENDING)
3191 		ffs->setup_state = FFS_SETUP_CANCELLED;
3192 
3193 	/*
3194 	 * Logic of this function guarantees that there are at most four pending
3195 	 * evens on ffs->ev.types queue.  This is important because the queue
3196 	 * has space for four elements only and __ffs_ep0_read_events function
3197 	 * depends on that limit as well.  If more event types are added, those
3198 	 * limits have to be revisited or guaranteed to still hold.
3199 	 */
3200 	switch (type) {
3201 	case FUNCTIONFS_RESUME:
3202 		rem_type2 = FUNCTIONFS_SUSPEND;
3203 		fallthrough;
3204 	case FUNCTIONFS_SUSPEND:
3205 	case FUNCTIONFS_SETUP:
3206 		rem_type1 = type;
3207 		/* Discard all similar events */
3208 		break;
3209 
3210 	case FUNCTIONFS_BIND:
3211 	case FUNCTIONFS_UNBIND:
3212 	case FUNCTIONFS_DISABLE:
3213 	case FUNCTIONFS_ENABLE:
3214 		/* Discard everything other then power management. */
3215 		rem_type1 = FUNCTIONFS_SUSPEND;
3216 		rem_type2 = FUNCTIONFS_RESUME;
3217 		neg = 1;
3218 		break;
3219 
3220 	default:
3221 		WARN(1, "%d: unknown event, this should not happen\n", type);
3222 		return;
3223 	}
3224 
3225 	{
3226 		u8 *ev  = ffs->ev.types, *out = ev;
3227 		unsigned n = ffs->ev.count;
3228 		for (; n; --n, ++ev)
3229 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3230 				*out++ = *ev;
3231 			else
3232 				pr_vdebug("purging event %d\n", *ev);
3233 		ffs->ev.count = out - ffs->ev.types;
3234 	}
3235 
3236 	pr_vdebug("adding event %d\n", type);
3237 	ffs->ev.types[ffs->ev.count++] = type;
3238 	wake_up_locked(&ffs->ev.waitq);
3239 	if (ffs->ffs_eventfd)
3240 		eventfd_signal(ffs->ffs_eventfd);
3241 }
3242 
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)3243 static void ffs_event_add(struct ffs_data *ffs,
3244 			  enum usb_functionfs_event_type type)
3245 {
3246 	unsigned long flags;
3247 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3248 	__ffs_event_add(ffs, type);
3249 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3250 }
3251 
3252 /* Bind/unbind USB function hooks *******************************************/
3253 
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)3254 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3255 {
3256 	int i;
3257 
3258 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3259 		if (ffs->eps_addrmap[i] == endpoint_address)
3260 			return i;
3261 	return -ENOENT;
3262 }
3263 
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)3264 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3265 				    struct usb_descriptor_header *desc,
3266 				    void *priv)
3267 {
3268 	struct usb_endpoint_descriptor *ds = (void *)desc;
3269 	struct ffs_function *func = priv;
3270 	struct ffs_ep *ffs_ep;
3271 	unsigned ep_desc_id;
3272 	int idx;
3273 	static const char *speed_names[] = { "full", "high", "super" };
3274 
3275 	if (type != FFS_DESCRIPTOR)
3276 		return 0;
3277 
3278 	/*
3279 	 * If ss_descriptors is not NULL, we are reading super speed
3280 	 * descriptors; if hs_descriptors is not NULL, we are reading high
3281 	 * speed descriptors; otherwise, we are reading full speed
3282 	 * descriptors.
3283 	 */
3284 	if (func->function.ss_descriptors) {
3285 		ep_desc_id = 2;
3286 		func->function.ss_descriptors[(long)valuep] = desc;
3287 	} else if (func->function.hs_descriptors) {
3288 		ep_desc_id = 1;
3289 		func->function.hs_descriptors[(long)valuep] = desc;
3290 	} else {
3291 		ep_desc_id = 0;
3292 		func->function.fs_descriptors[(long)valuep]    = desc;
3293 	}
3294 
3295 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3296 		return 0;
3297 
3298 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
3299 	if (idx < 0)
3300 		return idx;
3301 
3302 	ffs_ep = func->eps + idx;
3303 
3304 	if (ffs_ep->descs[ep_desc_id]) {
3305 		pr_err("two %sspeed descriptors for EP %d\n",
3306 			  speed_names[ep_desc_id],
3307 			  usb_endpoint_num(ds));
3308 		return -EINVAL;
3309 	}
3310 	ffs_ep->descs[ep_desc_id] = ds;
3311 
3312 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
3313 	if (ffs_ep->ep) {
3314 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3315 		if (!ds->wMaxPacketSize)
3316 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3317 	} else {
3318 		struct usb_request *req;
3319 		struct usb_ep *ep;
3320 		u8 bEndpointAddress;
3321 		u16 wMaxPacketSize;
3322 
3323 		/*
3324 		 * We back up bEndpointAddress because autoconfig overwrites
3325 		 * it with physical endpoint address.
3326 		 */
3327 		bEndpointAddress = ds->bEndpointAddress;
3328 		/*
3329 		 * We back up wMaxPacketSize because autoconfig treats
3330 		 * endpoint descriptors as if they were full speed.
3331 		 */
3332 		wMaxPacketSize = ds->wMaxPacketSize;
3333 		pr_vdebug("autoconfig\n");
3334 		ep = usb_ep_autoconfig(func->gadget, ds);
3335 		if (!ep)
3336 			return -ENOTSUPP;
3337 		ep->driver_data = func->eps + idx;
3338 
3339 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
3340 		if (!req)
3341 			return -ENOMEM;
3342 
3343 		ffs_ep->ep  = ep;
3344 		ffs_ep->req = req;
3345 		func->eps_revmap[ds->bEndpointAddress &
3346 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3347 		/*
3348 		 * If we use virtual address mapping, we restore
3349 		 * original bEndpointAddress value.
3350 		 */
3351 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3352 			ds->bEndpointAddress = bEndpointAddress;
3353 		/*
3354 		 * Restore wMaxPacketSize which was potentially
3355 		 * overwritten by autoconfig.
3356 		 */
3357 		ds->wMaxPacketSize = wMaxPacketSize;
3358 	}
3359 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3360 
3361 	return 0;
3362 }
3363 
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)3364 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3365 				   struct usb_descriptor_header *desc,
3366 				   void *priv)
3367 {
3368 	struct ffs_function *func = priv;
3369 	unsigned idx;
3370 	u8 newValue;
3371 
3372 	switch (type) {
3373 	default:
3374 	case FFS_DESCRIPTOR:
3375 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
3376 		return 0;
3377 
3378 	case FFS_INTERFACE:
3379 		idx = *valuep;
3380 		if (func->interfaces_nums[idx] < 0) {
3381 			int id = usb_interface_id(func->conf, &func->function);
3382 			if (id < 0)
3383 				return id;
3384 			func->interfaces_nums[idx] = id;
3385 		}
3386 		newValue = func->interfaces_nums[idx];
3387 		break;
3388 
3389 	case FFS_STRING:
3390 		/* String' IDs are allocated when fsf_data is bound to cdev */
3391 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3392 		break;
3393 
3394 	case FFS_ENDPOINT:
3395 		/*
3396 		 * USB_DT_ENDPOINT are handled in
3397 		 * __ffs_func_bind_do_descs().
3398 		 */
3399 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
3400 			return 0;
3401 
3402 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3403 		if (!func->eps[idx].ep)
3404 			return -EINVAL;
3405 
3406 		{
3407 			struct usb_endpoint_descriptor **descs;
3408 			descs = func->eps[idx].descs;
3409 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3410 		}
3411 		break;
3412 	}
3413 
3414 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3415 	*valuep = newValue;
3416 	return 0;
3417 }
3418 
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)3419 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3420 				      struct usb_os_desc_header *h, void *data,
3421 				      unsigned len, void *priv)
3422 {
3423 	struct ffs_function *func = priv;
3424 	u8 length = 0;
3425 
3426 	switch (type) {
3427 	case FFS_OS_DESC_EXT_COMPAT: {
3428 		struct usb_ext_compat_desc *desc = data;
3429 		struct usb_os_desc_table *t;
3430 
3431 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3432 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3433 		memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3434 		       sizeof_field(struct usb_ext_compat_desc, IDs));
3435 		length = sizeof(*desc);
3436 	}
3437 		break;
3438 	case FFS_OS_DESC_EXT_PROP: {
3439 		struct usb_ext_prop_desc *desc = data;
3440 		struct usb_os_desc_table *t;
3441 		struct usb_os_desc_ext_prop *ext_prop;
3442 		char *ext_prop_name;
3443 		char *ext_prop_data;
3444 
3445 		t = &func->function.os_desc_table[h->interface];
3446 		t->if_id = func->interfaces_nums[h->interface];
3447 
3448 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3449 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3450 
3451 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3452 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3453 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
3454 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3455 		length = ext_prop->name_len + ext_prop->data_len + 14;
3456 
3457 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3458 		func->ffs->ms_os_descs_ext_prop_name_avail +=
3459 			ext_prop->name_len;
3460 
3461 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3462 		func->ffs->ms_os_descs_ext_prop_data_avail +=
3463 			ext_prop->data_len;
3464 		memcpy(ext_prop_data,
3465 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3466 		       ext_prop->data_len);
3467 		/* unicode data reported to the host as "WCHAR"s */
3468 		switch (ext_prop->type) {
3469 		case USB_EXT_PROP_UNICODE:
3470 		case USB_EXT_PROP_UNICODE_ENV:
3471 		case USB_EXT_PROP_UNICODE_LINK:
3472 		case USB_EXT_PROP_UNICODE_MULTI:
3473 			ext_prop->data_len *= 2;
3474 			break;
3475 		}
3476 		ext_prop->data = ext_prop_data;
3477 
3478 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3479 		       ext_prop->name_len);
3480 		/* property name reported to the host as "WCHAR"s */
3481 		ext_prop->name_len *= 2;
3482 		ext_prop->name = ext_prop_name;
3483 
3484 		t->os_desc->ext_prop_len +=
3485 			ext_prop->name_len + ext_prop->data_len + 14;
3486 		++t->os_desc->ext_prop_count;
3487 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3488 	}
3489 		break;
3490 	default:
3491 		pr_vdebug("unknown descriptor: %d\n", type);
3492 	}
3493 
3494 	return length;
3495 }
3496 
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)3497 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3498 						struct usb_configuration *c)
3499 {
3500 	struct ffs_function *func = ffs_func_from_usb(f);
3501 	struct f_fs_opts *ffs_opts =
3502 		container_of(f->fi, struct f_fs_opts, func_inst);
3503 	struct ffs_data *ffs_data;
3504 	int ret;
3505 
3506 	/*
3507 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3508 	 * which already uses locking; taking the same lock here would
3509 	 * cause a deadlock.
3510 	 *
3511 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3512 	 */
3513 	if (!ffs_opts->no_configfs)
3514 		ffs_dev_lock();
3515 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3516 	ffs_data = ffs_opts->dev->ffs_data;
3517 	if (!ffs_opts->no_configfs)
3518 		ffs_dev_unlock();
3519 	if (ret)
3520 		return ERR_PTR(ret);
3521 
3522 	func->ffs = ffs_data;
3523 	func->conf = c;
3524 	func->gadget = c->cdev->gadget;
3525 
3526 	/*
3527 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3528 	 * configurations are bound in sequence with list_for_each_entry,
3529 	 * in each configuration its functions are bound in sequence
3530 	 * with list_for_each_entry, so we assume no race condition
3531 	 * with regard to ffs_opts->bound access
3532 	 */
3533 	if (!ffs_opts->refcnt) {
3534 		ret = functionfs_bind(func->ffs, c->cdev);
3535 		if (ret)
3536 			return ERR_PTR(ret);
3537 	}
3538 	ffs_opts->refcnt++;
3539 	func->function.strings = func->ffs->stringtabs;
3540 
3541 	return ffs_opts;
3542 }
3543 
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3544 static int _ffs_func_bind(struct usb_configuration *c,
3545 			  struct usb_function *f)
3546 {
3547 	struct ffs_function *func = ffs_func_from_usb(f);
3548 	struct ffs_data *ffs = func->ffs;
3549 
3550 	const int full = !!func->ffs->fs_descs_count;
3551 	const int high = !!func->ffs->hs_descs_count;
3552 	const int super = !!func->ffs->ss_descs_count;
3553 
3554 	int fs_len, hs_len, ss_len, ret, i;
3555 	struct ffs_ep *eps_ptr;
3556 
3557 	/* Make it a single chunk, less management later on */
3558 	vla_group(d);
3559 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3560 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3561 		full ? ffs->fs_descs_count + 1 : 0);
3562 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3563 		high ? ffs->hs_descs_count + 1 : 0);
3564 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3565 		super ? ffs->ss_descs_count + 1 : 0);
3566 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3567 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3568 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3569 	vla_item_with_sz(d, char[16], ext_compat,
3570 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3571 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3572 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3573 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3574 			 ffs->ms_os_descs_ext_prop_count);
3575 	vla_item_with_sz(d, char, ext_prop_name,
3576 			 ffs->ms_os_descs_ext_prop_name_len);
3577 	vla_item_with_sz(d, char, ext_prop_data,
3578 			 ffs->ms_os_descs_ext_prop_data_len);
3579 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3580 	char *vlabuf;
3581 
3582 	/* Has descriptors only for speeds gadget does not support */
3583 	if (!(full | high | super))
3584 		return -ENOTSUPP;
3585 
3586 	/* Allocate a single chunk, less management later on */
3587 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3588 	if (!vlabuf)
3589 		return -ENOMEM;
3590 
3591 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3592 	ffs->ms_os_descs_ext_prop_name_avail =
3593 		vla_ptr(vlabuf, d, ext_prop_name);
3594 	ffs->ms_os_descs_ext_prop_data_avail =
3595 		vla_ptr(vlabuf, d, ext_prop_data);
3596 
3597 	/* Copy descriptors  */
3598 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3599 	       ffs->raw_descs_length);
3600 
3601 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3602 	eps_ptr = vla_ptr(vlabuf, d, eps);
3603 	for (i = 0; i < ffs->eps_count; i++)
3604 		eps_ptr[i].num = -1;
3605 
3606 	/* Save pointers
3607 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3608 	*/
3609 	func->eps             = vla_ptr(vlabuf, d, eps);
3610 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3611 
3612 	/*
3613 	 * Go through all the endpoint descriptors and allocate
3614 	 * endpoints first, so that later we can rewrite the endpoint
3615 	 * numbers without worrying that it may be described later on.
3616 	 */
3617 	if (full) {
3618 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3619 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3620 				      vla_ptr(vlabuf, d, raw_descs),
3621 				      d_raw_descs__sz,
3622 				      __ffs_func_bind_do_descs, func);
3623 		if (fs_len < 0) {
3624 			ret = fs_len;
3625 			goto error;
3626 		}
3627 	} else {
3628 		fs_len = 0;
3629 	}
3630 
3631 	if (high) {
3632 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3633 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3634 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3635 				      d_raw_descs__sz - fs_len,
3636 				      __ffs_func_bind_do_descs, func);
3637 		if (hs_len < 0) {
3638 			ret = hs_len;
3639 			goto error;
3640 		}
3641 	} else {
3642 		hs_len = 0;
3643 	}
3644 
3645 	if (super) {
3646 		func->function.ss_descriptors = func->function.ssp_descriptors =
3647 			vla_ptr(vlabuf, d, ss_descs);
3648 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3649 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3650 				d_raw_descs__sz - fs_len - hs_len,
3651 				__ffs_func_bind_do_descs, func);
3652 		if (ss_len < 0) {
3653 			ret = ss_len;
3654 			goto error;
3655 		}
3656 	} else {
3657 		ss_len = 0;
3658 	}
3659 
3660 	/*
3661 	 * Now handle interface numbers allocation and interface and
3662 	 * endpoint numbers rewriting.  We can do that in one go
3663 	 * now.
3664 	 */
3665 	ret = ffs_do_descs(ffs->fs_descs_count +
3666 			   (high ? ffs->hs_descs_count : 0) +
3667 			   (super ? ffs->ss_descs_count : 0),
3668 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3669 			   __ffs_func_bind_do_nums, func);
3670 	if (ret < 0)
3671 		goto error;
3672 
3673 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3674 	if (c->cdev->use_os_string) {
3675 		for (i = 0; i < ffs->interfaces_count; ++i) {
3676 			struct usb_os_desc *desc;
3677 
3678 			desc = func->function.os_desc_table[i].os_desc =
3679 				vla_ptr(vlabuf, d, os_desc) +
3680 				i * sizeof(struct usb_os_desc);
3681 			desc->ext_compat_id =
3682 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3683 			INIT_LIST_HEAD(&desc->ext_prop);
3684 		}
3685 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3686 				      vla_ptr(vlabuf, d, raw_descs) +
3687 				      fs_len + hs_len + ss_len,
3688 				      d_raw_descs__sz - fs_len - hs_len -
3689 				      ss_len,
3690 				      __ffs_func_bind_do_os_desc, func);
3691 		if (ret < 0)
3692 			goto error;
3693 	}
3694 	func->function.os_desc_n =
3695 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3696 
3697 	/* And we're done */
3698 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3699 	return 0;
3700 
3701 error:
3702 	/* XXX Do we need to release all claimed endpoints here? */
3703 	return ret;
3704 }
3705 
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3706 static int ffs_func_bind(struct usb_configuration *c,
3707 			 struct usb_function *f)
3708 {
3709 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3710 	struct ffs_function *func = ffs_func_from_usb(f);
3711 	int ret;
3712 
3713 	if (IS_ERR(ffs_opts))
3714 		return PTR_ERR(ffs_opts);
3715 
3716 	ret = _ffs_func_bind(c, f);
3717 	if (ret && !--ffs_opts->refcnt)
3718 		functionfs_unbind(func->ffs);
3719 
3720 	return ret;
3721 }
3722 
3723 
3724 /* Other USB function hooks *************************************************/
3725 
ffs_reset_work(struct work_struct * work)3726 static void ffs_reset_work(struct work_struct *work)
3727 {
3728 	struct ffs_data *ffs = container_of(work,
3729 		struct ffs_data, reset_work);
3730 	ffs_data_reset(ffs);
3731 }
3732 
ffs_func_get_alt(struct usb_function * f,unsigned int interface)3733 static int ffs_func_get_alt(struct usb_function *f,
3734 			    unsigned int interface)
3735 {
3736 	struct ffs_function *func = ffs_func_from_usb(f);
3737 	int intf = ffs_func_revmap_intf(func, interface);
3738 
3739 	return (intf < 0) ? intf : func->cur_alt[interface];
3740 }
3741 
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3742 static int ffs_func_set_alt(struct usb_function *f,
3743 			    unsigned interface, unsigned alt)
3744 {
3745 	struct ffs_function *func = ffs_func_from_usb(f);
3746 	struct ffs_data *ffs = func->ffs;
3747 	unsigned long flags;
3748 	int ret = 0, intf;
3749 
3750 	if (alt > MAX_ALT_SETTINGS)
3751 		return -EINVAL;
3752 
3753 	intf = ffs_func_revmap_intf(func, interface);
3754 	if (intf < 0)
3755 		return intf;
3756 
3757 	if (ffs->func)
3758 		ffs_func_eps_disable(ffs->func);
3759 
3760 	spin_lock_irqsave(&ffs->eps_lock, flags);
3761 	if (ffs->state == FFS_DEACTIVATED) {
3762 		ffs->state = FFS_CLOSING;
3763 		spin_unlock_irqrestore(&ffs->eps_lock, flags);
3764 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3765 		schedule_work(&ffs->reset_work);
3766 		return -ENODEV;
3767 	}
3768 	spin_unlock_irqrestore(&ffs->eps_lock, flags);
3769 
3770 	if (ffs->state != FFS_ACTIVE)
3771 		return -ENODEV;
3772 
3773 	ffs->func = func;
3774 	ret = ffs_func_eps_enable(func);
3775 	if (ret >= 0) {
3776 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3777 		func->cur_alt[interface] = alt;
3778 	}
3779 	return ret;
3780 }
3781 
ffs_func_disable(struct usb_function * f)3782 static void ffs_func_disable(struct usb_function *f)
3783 {
3784 	struct ffs_function *func = ffs_func_from_usb(f);
3785 	struct ffs_data *ffs = func->ffs;
3786 	unsigned long flags;
3787 
3788 	if (ffs->func)
3789 		ffs_func_eps_disable(ffs->func);
3790 
3791 	spin_lock_irqsave(&ffs->eps_lock, flags);
3792 	if (ffs->state == FFS_DEACTIVATED) {
3793 		ffs->state = FFS_CLOSING;
3794 		spin_unlock_irqrestore(&ffs->eps_lock, flags);
3795 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3796 		schedule_work(&ffs->reset_work);
3797 		return;
3798 	}
3799 	spin_unlock_irqrestore(&ffs->eps_lock, flags);
3800 
3801 	if (ffs->state == FFS_ACTIVE) {
3802 		ffs->func = NULL;
3803 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3804 	}
3805 }
3806 
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3807 static int ffs_func_setup(struct usb_function *f,
3808 			  const struct usb_ctrlrequest *creq)
3809 {
3810 	struct ffs_function *func = ffs_func_from_usb(f);
3811 	struct ffs_data *ffs = func->ffs;
3812 	unsigned long flags;
3813 	int ret;
3814 
3815 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3816 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3817 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3818 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3819 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3820 
3821 	/*
3822 	 * Most requests directed to interface go through here
3823 	 * (notable exceptions are set/get interface) so we need to
3824 	 * handle them.  All other either handled by composite or
3825 	 * passed to usb_configuration->setup() (if one is set).  No
3826 	 * matter, we will handle requests directed to endpoint here
3827 	 * as well (as it's straightforward).  Other request recipient
3828 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3829 	 * is being used.
3830 	 */
3831 	if (ffs->state != FFS_ACTIVE)
3832 		return -ENODEV;
3833 
3834 	switch (creq->bRequestType & USB_RECIP_MASK) {
3835 	case USB_RECIP_INTERFACE:
3836 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3837 		if (ret < 0)
3838 			return ret;
3839 		break;
3840 
3841 	case USB_RECIP_ENDPOINT:
3842 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3843 		if (ret < 0)
3844 			return ret;
3845 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3846 			ret = func->ffs->eps_addrmap[ret];
3847 		break;
3848 
3849 	default:
3850 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3851 			ret = le16_to_cpu(creq->wIndex);
3852 		else
3853 			return -EOPNOTSUPP;
3854 	}
3855 
3856 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3857 	ffs->ev.setup = *creq;
3858 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3859 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3860 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3861 
3862 	return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3863 }
3864 
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3865 static bool ffs_func_req_match(struct usb_function *f,
3866 			       const struct usb_ctrlrequest *creq,
3867 			       bool config0)
3868 {
3869 	struct ffs_function *func = ffs_func_from_usb(f);
3870 
3871 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3872 		return false;
3873 
3874 	switch (creq->bRequestType & USB_RECIP_MASK) {
3875 	case USB_RECIP_INTERFACE:
3876 		return (ffs_func_revmap_intf(func,
3877 					     le16_to_cpu(creq->wIndex)) >= 0);
3878 	case USB_RECIP_ENDPOINT:
3879 		return (ffs_func_revmap_ep(func,
3880 					   le16_to_cpu(creq->wIndex)) >= 0);
3881 	default:
3882 		return (bool) (func->ffs->user_flags &
3883 			       FUNCTIONFS_ALL_CTRL_RECIP);
3884 	}
3885 }
3886 
ffs_func_suspend(struct usb_function * f)3887 static void ffs_func_suspend(struct usb_function *f)
3888 {
3889 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3890 }
3891 
ffs_func_resume(struct usb_function * f)3892 static void ffs_func_resume(struct usb_function *f)
3893 {
3894 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3895 }
3896 
3897 
3898 /* Endpoint and interface numbers reverse mapping ***************************/
3899 
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3900 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3901 {
3902 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3903 	return num ? num : -EDOM;
3904 }
3905 
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3906 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3907 {
3908 	short *nums = func->interfaces_nums;
3909 	unsigned count = func->ffs->interfaces_count;
3910 
3911 	for (; count; --count, ++nums) {
3912 		if (*nums >= 0 && *nums == intf)
3913 			return nums - func->interfaces_nums;
3914 	}
3915 
3916 	return -EDOM;
3917 }
3918 
3919 
3920 /* Devices management *******************************************************/
3921 
3922 static LIST_HEAD(ffs_devices);
3923 
_ffs_do_find_dev(const char * name)3924 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3925 {
3926 	struct ffs_dev *dev;
3927 
3928 	if (!name)
3929 		return NULL;
3930 
3931 	list_for_each_entry(dev, &ffs_devices, entry) {
3932 		if (strcmp(dev->name, name) == 0)
3933 			return dev;
3934 	}
3935 
3936 	return NULL;
3937 }
3938 
3939 /*
3940  * ffs_lock must be taken by the caller of this function
3941  */
_ffs_get_single_dev(void)3942 static struct ffs_dev *_ffs_get_single_dev(void)
3943 {
3944 	struct ffs_dev *dev;
3945 
3946 	if (list_is_singular(&ffs_devices)) {
3947 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3948 		if (dev->single)
3949 			return dev;
3950 	}
3951 
3952 	return NULL;
3953 }
3954 
3955 /*
3956  * ffs_lock must be taken by the caller of this function
3957  */
_ffs_find_dev(const char * name)3958 static struct ffs_dev *_ffs_find_dev(const char *name)
3959 {
3960 	struct ffs_dev *dev;
3961 
3962 	dev = _ffs_get_single_dev();
3963 	if (dev)
3964 		return dev;
3965 
3966 	return _ffs_do_find_dev(name);
3967 }
3968 
3969 /* Configfs support *********************************************************/
3970 
to_ffs_opts(struct config_item * item)3971 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3972 {
3973 	return container_of(to_config_group(item), struct f_fs_opts,
3974 			    func_inst.group);
3975 }
3976 
f_fs_opts_ready_show(struct config_item * item,char * page)3977 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3978 {
3979 	struct f_fs_opts *opts = to_ffs_opts(item);
3980 	int ready;
3981 
3982 	ffs_dev_lock();
3983 	ready = opts->dev->desc_ready;
3984 	ffs_dev_unlock();
3985 
3986 	return sprintf(page, "%d\n", ready);
3987 }
3988 
3989 CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3990 
3991 static struct configfs_attribute *ffs_attrs[] = {
3992 	&f_fs_opts_attr_ready,
3993 	NULL,
3994 };
3995 
ffs_attr_release(struct config_item * item)3996 static void ffs_attr_release(struct config_item *item)
3997 {
3998 	struct f_fs_opts *opts = to_ffs_opts(item);
3999 
4000 	usb_put_function_instance(&opts->func_inst);
4001 }
4002 
4003 static struct configfs_item_operations ffs_item_ops = {
4004 	.release	= ffs_attr_release,
4005 };
4006 
4007 static const struct config_item_type ffs_func_type = {
4008 	.ct_item_ops	= &ffs_item_ops,
4009 	.ct_attrs	= ffs_attrs,
4010 	.ct_owner	= THIS_MODULE,
4011 };
4012 
4013 
4014 /* Function registration interface ******************************************/
4015 
ffs_free_inst(struct usb_function_instance * f)4016 static void ffs_free_inst(struct usb_function_instance *f)
4017 {
4018 	struct f_fs_opts *opts;
4019 
4020 	opts = to_f_fs_opts(f);
4021 	ffs_release_dev(opts->dev);
4022 	ffs_dev_lock();
4023 	_ffs_free_dev(opts->dev);
4024 	ffs_dev_unlock();
4025 	kfree(opts);
4026 }
4027 
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)4028 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
4029 {
4030 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
4031 		return -ENAMETOOLONG;
4032 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
4033 }
4034 
ffs_alloc_inst(void)4035 static struct usb_function_instance *ffs_alloc_inst(void)
4036 {
4037 	struct f_fs_opts *opts;
4038 	struct ffs_dev *dev;
4039 
4040 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
4041 	if (!opts)
4042 		return ERR_PTR(-ENOMEM);
4043 
4044 	opts->func_inst.set_inst_name = ffs_set_inst_name;
4045 	opts->func_inst.free_func_inst = ffs_free_inst;
4046 	ffs_dev_lock();
4047 	dev = _ffs_alloc_dev();
4048 	ffs_dev_unlock();
4049 	if (IS_ERR(dev)) {
4050 		kfree(opts);
4051 		return ERR_CAST(dev);
4052 	}
4053 	opts->dev = dev;
4054 	dev->opts = opts;
4055 
4056 	config_group_init_type_name(&opts->func_inst.group, "",
4057 				    &ffs_func_type);
4058 	return &opts->func_inst;
4059 }
4060 
ffs_free(struct usb_function * f)4061 static void ffs_free(struct usb_function *f)
4062 {
4063 	kfree(ffs_func_from_usb(f));
4064 }
4065 
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)4066 static void ffs_func_unbind(struct usb_configuration *c,
4067 			    struct usb_function *f)
4068 {
4069 	struct ffs_function *func = ffs_func_from_usb(f);
4070 	struct ffs_data *ffs = func->ffs;
4071 	struct f_fs_opts *opts =
4072 		container_of(f->fi, struct f_fs_opts, func_inst);
4073 	struct ffs_ep *ep = func->eps;
4074 	unsigned count = ffs->eps_count;
4075 	unsigned long flags;
4076 
4077 	if (ffs->func == func) {
4078 		ffs_func_eps_disable(func);
4079 		ffs->func = NULL;
4080 	}
4081 
4082 	/* Drain any pending AIO completions */
4083 	drain_workqueue(ffs->io_completion_wq);
4084 
4085 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
4086 	if (!--opts->refcnt)
4087 		functionfs_unbind(ffs);
4088 
4089 	/* cleanup after autoconfig */
4090 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
4091 	while (count--) {
4092 		if (ep->ep && ep->req)
4093 			usb_ep_free_request(ep->ep, ep->req);
4094 		ep->req = NULL;
4095 		++ep;
4096 	}
4097 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
4098 	kfree(func->eps);
4099 	func->eps = NULL;
4100 	/*
4101 	 * eps, descriptors and interfaces_nums are allocated in the
4102 	 * same chunk so only one free is required.
4103 	 */
4104 	func->function.fs_descriptors = NULL;
4105 	func->function.hs_descriptors = NULL;
4106 	func->function.ss_descriptors = NULL;
4107 	func->function.ssp_descriptors = NULL;
4108 	func->interfaces_nums = NULL;
4109 
4110 }
4111 
ffs_alloc(struct usb_function_instance * fi)4112 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4113 {
4114 	struct ffs_function *func;
4115 
4116 	func = kzalloc(sizeof(*func), GFP_KERNEL);
4117 	if (!func)
4118 		return ERR_PTR(-ENOMEM);
4119 
4120 	func->function.name    = "Function FS Gadget";
4121 
4122 	func->function.bind    = ffs_func_bind;
4123 	func->function.unbind  = ffs_func_unbind;
4124 	func->function.set_alt = ffs_func_set_alt;
4125 	func->function.get_alt = ffs_func_get_alt;
4126 	func->function.disable = ffs_func_disable;
4127 	func->function.setup   = ffs_func_setup;
4128 	func->function.req_match = ffs_func_req_match;
4129 	func->function.suspend = ffs_func_suspend;
4130 	func->function.resume  = ffs_func_resume;
4131 	func->function.free_func = ffs_free;
4132 
4133 	return &func->function;
4134 }
4135 
4136 /*
4137  * ffs_lock must be taken by the caller of this function
4138  */
_ffs_alloc_dev(void)4139 static struct ffs_dev *_ffs_alloc_dev(void)
4140 {
4141 	struct ffs_dev *dev;
4142 	int ret;
4143 
4144 	if (_ffs_get_single_dev())
4145 			return ERR_PTR(-EBUSY);
4146 
4147 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4148 	if (!dev)
4149 		return ERR_PTR(-ENOMEM);
4150 
4151 	if (list_empty(&ffs_devices)) {
4152 		ret = functionfs_init();
4153 		if (ret) {
4154 			kfree(dev);
4155 			return ERR_PTR(ret);
4156 		}
4157 	}
4158 
4159 	list_add(&dev->entry, &ffs_devices);
4160 
4161 	return dev;
4162 }
4163 
ffs_name_dev(struct ffs_dev * dev,const char * name)4164 int ffs_name_dev(struct ffs_dev *dev, const char *name)
4165 {
4166 	struct ffs_dev *existing;
4167 	int ret = 0;
4168 
4169 	ffs_dev_lock();
4170 
4171 	existing = _ffs_do_find_dev(name);
4172 	if (!existing)
4173 		strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4174 	else if (existing != dev)
4175 		ret = -EBUSY;
4176 
4177 	ffs_dev_unlock();
4178 
4179 	return ret;
4180 }
4181 EXPORT_SYMBOL_GPL(ffs_name_dev);
4182 
ffs_single_dev(struct ffs_dev * dev)4183 int ffs_single_dev(struct ffs_dev *dev)
4184 {
4185 	int ret;
4186 
4187 	ret = 0;
4188 	ffs_dev_lock();
4189 
4190 	if (!list_is_singular(&ffs_devices))
4191 		ret = -EBUSY;
4192 	else
4193 		dev->single = true;
4194 
4195 	ffs_dev_unlock();
4196 	return ret;
4197 }
4198 EXPORT_SYMBOL_GPL(ffs_single_dev);
4199 
4200 /*
4201  * ffs_lock must be taken by the caller of this function
4202  */
_ffs_free_dev(struct ffs_dev * dev)4203 static void _ffs_free_dev(struct ffs_dev *dev)
4204 {
4205 	list_del(&dev->entry);
4206 
4207 	kfree(dev);
4208 	if (list_empty(&ffs_devices))
4209 		functionfs_cleanup();
4210 }
4211 
ffs_acquire_dev(const char * dev_name,struct ffs_data * ffs_data)4212 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4213 {
4214 	int ret = 0;
4215 	struct ffs_dev *ffs_dev;
4216 
4217 	ffs_dev_lock();
4218 
4219 	ffs_dev = _ffs_find_dev(dev_name);
4220 	if (!ffs_dev) {
4221 		ret = -ENOENT;
4222 	} else if (ffs_dev->mounted) {
4223 		ret = -EBUSY;
4224 	} else if (ffs_dev->ffs_acquire_dev_callback &&
4225 		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4226 		ret = -ENOENT;
4227 	} else {
4228 		ffs_dev->mounted = true;
4229 		ffs_dev->ffs_data = ffs_data;
4230 		ffs_data->private_data = ffs_dev;
4231 	}
4232 
4233 	ffs_dev_unlock();
4234 	return ret;
4235 }
4236 
ffs_release_dev(struct ffs_dev * ffs_dev)4237 static void ffs_release_dev(struct ffs_dev *ffs_dev)
4238 {
4239 	ffs_dev_lock();
4240 
4241 	if (ffs_dev && ffs_dev->mounted) {
4242 		ffs_dev->mounted = false;
4243 		if (ffs_dev->ffs_data) {
4244 			ffs_dev->ffs_data->private_data = NULL;
4245 			ffs_dev->ffs_data = NULL;
4246 		}
4247 
4248 		if (ffs_dev->ffs_release_dev_callback)
4249 			ffs_dev->ffs_release_dev_callback(ffs_dev);
4250 	}
4251 
4252 	ffs_dev_unlock();
4253 }
4254 
ffs_ready(struct ffs_data * ffs)4255 static int ffs_ready(struct ffs_data *ffs)
4256 {
4257 	struct ffs_dev *ffs_obj;
4258 	int ret = 0;
4259 
4260 	ffs_dev_lock();
4261 
4262 	ffs_obj = ffs->private_data;
4263 	if (!ffs_obj) {
4264 		ret = -EINVAL;
4265 		goto done;
4266 	}
4267 	if (WARN_ON(ffs_obj->desc_ready)) {
4268 		ret = -EBUSY;
4269 		goto done;
4270 	}
4271 
4272 	ffs_obj->desc_ready = true;
4273 
4274 	if (ffs_obj->ffs_ready_callback) {
4275 		ret = ffs_obj->ffs_ready_callback(ffs);
4276 		if (ret)
4277 			goto done;
4278 	}
4279 
4280 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
4281 done:
4282 	ffs_dev_unlock();
4283 	return ret;
4284 }
4285 
ffs_closed(struct ffs_data * ffs)4286 static void ffs_closed(struct ffs_data *ffs)
4287 {
4288 	struct ffs_dev *ffs_obj;
4289 	struct f_fs_opts *opts;
4290 	struct config_item *ci;
4291 
4292 	ffs_dev_lock();
4293 
4294 	ffs_obj = ffs->private_data;
4295 	if (!ffs_obj)
4296 		goto done;
4297 
4298 	ffs_obj->desc_ready = false;
4299 
4300 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
4301 	    ffs_obj->ffs_closed_callback)
4302 		ffs_obj->ffs_closed_callback(ffs);
4303 
4304 	if (ffs_obj->opts)
4305 		opts = ffs_obj->opts;
4306 	else
4307 		goto done;
4308 
4309 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4310 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
4311 		goto done;
4312 
4313 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4314 	ffs_dev_unlock();
4315 
4316 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
4317 		unregister_gadget_item(ci);
4318 	return;
4319 done:
4320 	ffs_dev_unlock();
4321 }
4322 
4323 /* Misc helper functions ****************************************************/
4324 
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)4325 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4326 {
4327 	return nonblock
4328 		? mutex_trylock(mutex) ? 0 : -EAGAIN
4329 		: mutex_lock_interruptible(mutex);
4330 }
4331 
ffs_prepare_buffer(const char __user * buf,size_t len)4332 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4333 {
4334 	char *data;
4335 
4336 	if (!len)
4337 		return NULL;
4338 
4339 	data = memdup_user(buf, len);
4340 	if (IS_ERR(data))
4341 		return data;
4342 
4343 	pr_vdebug("Buffer from user space:\n");
4344 	ffs_dump_mem("", data, len);
4345 
4346 	return data;
4347 }
4348 
4349 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4350 MODULE_DESCRIPTION("user mode file system API for USB composite function controllers");
4351 MODULE_LICENSE("GPL");
4352 MODULE_AUTHOR("Michal Nazarewicz");
4353